Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
 
 
  38#include "internal.h"
  39
  40static int thaw_super_locked(struct super_block *sb);
  41
  42static LIST_HEAD(super_blocks);
  43static DEFINE_SPINLOCK(sb_lock);
  44
  45static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  46	"sb_writers",
  47	"sb_pagefaults",
  48	"sb_internal",
  49};
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51/*
  52 * One thing we have to be careful of with a per-sb shrinker is that we don't
  53 * drop the last active reference to the superblock from within the shrinker.
  54 * If that happens we could trigger unregistering the shrinker from within the
  55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  56 * take a passive reference to the superblock to avoid this from occurring.
  57 */
  58static unsigned long super_cache_scan(struct shrinker *shrink,
  59				      struct shrink_control *sc)
  60{
  61	struct super_block *sb;
  62	long	fs_objects = 0;
  63	long	total_objects;
  64	long	freed = 0;
  65	long	dentries;
  66	long	inodes;
  67
  68	sb = container_of(shrink, struct super_block, s_shrink);
  69
  70	/*
  71	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  72	 * to recurse into the FS that called us in clear_inode() and friends..
  73	 */
  74	if (!(sc->gfp_mask & __GFP_FS))
  75		return SHRINK_STOP;
  76
  77	if (!trylock_super(sb))
  78		return SHRINK_STOP;
  79
  80	if (sb->s_op->nr_cached_objects)
  81		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  82
  83	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  84	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  85	total_objects = dentries + inodes + fs_objects + 1;
  86	if (!total_objects)
  87		total_objects = 1;
  88
  89	/* proportion the scan between the caches */
  90	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  91	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  92	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  93
  94	/*
  95	 * prune the dcache first as the icache is pinned by it, then
  96	 * prune the icache, followed by the filesystem specific caches
  97	 *
  98	 * Ensure that we always scan at least one object - memcg kmem
  99	 * accounting uses this to fully empty the caches.
 100	 */
 101	sc->nr_to_scan = dentries + 1;
 102	freed = prune_dcache_sb(sb, sc);
 103	sc->nr_to_scan = inodes + 1;
 104	freed += prune_icache_sb(sb, sc);
 105
 106	if (fs_objects) {
 107		sc->nr_to_scan = fs_objects + 1;
 108		freed += sb->s_op->free_cached_objects(sb, sc);
 109	}
 110
 111	up_read(&sb->s_umount);
 112	return freed;
 113}
 114
 115static unsigned long super_cache_count(struct shrinker *shrink,
 116				       struct shrink_control *sc)
 117{
 118	struct super_block *sb;
 119	long	total_objects = 0;
 120
 121	sb = container_of(shrink, struct super_block, s_shrink);
 122
 123	/*
 124	 * We don't call trylock_super() here as it is a scalability bottleneck,
 125	 * so we're exposed to partial setup state. The shrinker rwsem does not
 126	 * protect filesystem operations backing list_lru_shrink_count() or
 127	 * s_op->nr_cached_objects(). Counts can change between
 128	 * super_cache_count and super_cache_scan, so we really don't need locks
 129	 * here.
 130	 *
 131	 * However, if we are currently mounting the superblock, the underlying
 132	 * filesystem might be in a state of partial construction and hence it
 133	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 134	 * avoid this situation, so do the same here. The memory barrier is
 135	 * matched with the one in mount_fs() as we don't hold locks here.
 136	 */
 137	if (!(sb->s_flags & SB_BORN))
 138		return 0;
 139	smp_rmb();
 140
 141	if (sb->s_op && sb->s_op->nr_cached_objects)
 142		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 143
 144	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 145	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 146
 
 
 
 147	total_objects = vfs_pressure_ratio(total_objects);
 148	return total_objects;
 149}
 150
 151static void destroy_super_work(struct work_struct *work)
 152{
 153	struct super_block *s = container_of(work, struct super_block,
 154							destroy_work);
 155	int i;
 156
 157	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 
 
 158		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 159	kfree(s);
 160}
 161
 162static void destroy_super_rcu(struct rcu_head *head)
 163{
 164	struct super_block *s = container_of(head, struct super_block, rcu);
 165	INIT_WORK(&s->destroy_work, destroy_super_work);
 166	schedule_work(&s->destroy_work);
 167}
 168
 169/* Free a superblock that has never been seen by anyone */
 170static void destroy_unused_super(struct super_block *s)
 171{
 172	if (!s)
 173		return;
 174	up_write(&s->s_umount);
 175	list_lru_destroy(&s->s_dentry_lru);
 176	list_lru_destroy(&s->s_inode_lru);
 177	security_sb_free(s);
 178	put_user_ns(s->s_user_ns);
 179	kfree(s->s_subtype);
 180	free_prealloced_shrinker(&s->s_shrink);
 181	/* no delays needed */
 182	destroy_super_work(&s->destroy_work);
 183}
 184
 185/**
 186 *	alloc_super	-	create new superblock
 187 *	@type:	filesystem type superblock should belong to
 188 *	@flags: the mount flags
 189 *	@user_ns: User namespace for the super_block
 190 *
 191 *	Allocates and initializes a new &struct super_block.  alloc_super()
 192 *	returns a pointer new superblock or %NULL if allocation had failed.
 193 */
 194static struct super_block *alloc_super(struct file_system_type *type, int flags,
 195				       struct user_namespace *user_ns)
 196{
 197	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 198	static const struct super_operations default_op;
 199	int i;
 200
 201	if (!s)
 202		return NULL;
 203
 204	INIT_LIST_HEAD(&s->s_mounts);
 205	s->s_user_ns = get_user_ns(user_ns);
 206	init_rwsem(&s->s_umount);
 207	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 208	/*
 209	 * sget() can have s_umount recursion.
 210	 *
 211	 * When it cannot find a suitable sb, it allocates a new
 212	 * one (this one), and tries again to find a suitable old
 213	 * one.
 214	 *
 215	 * In case that succeeds, it will acquire the s_umount
 216	 * lock of the old one. Since these are clearly distrinct
 217	 * locks, and this object isn't exposed yet, there's no
 218	 * risk of deadlocks.
 219	 *
 220	 * Annotate this by putting this lock in a different
 221	 * subclass.
 222	 */
 223	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 224
 225	if (security_sb_alloc(s))
 226		goto fail;
 227
 228	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 229		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 230					sb_writers_name[i],
 231					&type->s_writers_key[i]))
 232			goto fail;
 233	}
 234	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 235	s->s_bdi = &noop_backing_dev_info;
 236	s->s_flags = flags;
 237	if (s->s_user_ns != &init_user_ns)
 238		s->s_iflags |= SB_I_NODEV;
 239	INIT_HLIST_NODE(&s->s_instances);
 240	INIT_HLIST_BL_HEAD(&s->s_roots);
 241	mutex_init(&s->s_sync_lock);
 242	INIT_LIST_HEAD(&s->s_inodes);
 243	spin_lock_init(&s->s_inode_list_lock);
 244	INIT_LIST_HEAD(&s->s_inodes_wb);
 245	spin_lock_init(&s->s_inode_wblist_lock);
 246
 247	if (list_lru_init_memcg(&s->s_dentry_lru))
 248		goto fail;
 249	if (list_lru_init_memcg(&s->s_inode_lru))
 250		goto fail;
 251	s->s_count = 1;
 252	atomic_set(&s->s_active, 1);
 253	mutex_init(&s->s_vfs_rename_mutex);
 254	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 255	init_rwsem(&s->s_dquot.dqio_sem);
 256	s->s_maxbytes = MAX_NON_LFS;
 257	s->s_op = &default_op;
 258	s->s_time_gran = 1000000000;
 259	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 
 
 
 
 
 
 
 
 
 
 
 260
 261	s->s_shrink.seeks = DEFAULT_SEEKS;
 262	s->s_shrink.scan_objects = super_cache_scan;
 263	s->s_shrink.count_objects = super_cache_count;
 264	s->s_shrink.batch = 1024;
 265	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 266	if (prealloc_shrinker(&s->s_shrink))
 267		goto fail;
 268	return s;
 269
 270fail:
 271	destroy_unused_super(s);
 272	return NULL;
 273}
 274
 275/* Superblock refcounting  */
 276
 277/*
 278 * Drop a superblock's refcount.  The caller must hold sb_lock.
 279 */
 280static void __put_super(struct super_block *s)
 281{
 282	if (!--s->s_count) {
 283		list_del_init(&s->s_list);
 284		WARN_ON(s->s_dentry_lru.node);
 285		WARN_ON(s->s_inode_lru.node);
 286		WARN_ON(!list_empty(&s->s_mounts));
 287		security_sb_free(s);
 288		put_user_ns(s->s_user_ns);
 289		kfree(s->s_subtype);
 290		call_rcu(&s->rcu, destroy_super_rcu);
 291	}
 292}
 293
 294/**
 295 *	put_super	-	drop a temporary reference to superblock
 296 *	@sb: superblock in question
 297 *
 298 *	Drops a temporary reference, frees superblock if there's no
 299 *	references left.
 300 */
 301static void put_super(struct super_block *sb)
 302{
 303	spin_lock(&sb_lock);
 304	__put_super(sb);
 305	spin_unlock(&sb_lock);
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308
 309/**
 310 *	deactivate_locked_super	-	drop an active reference to superblock
 311 *	@s: superblock to deactivate
 312 *
 313 *	Drops an active reference to superblock, converting it into a temporary
 314 *	one if there is no other active references left.  In that case we
 315 *	tell fs driver to shut it down and drop the temporary reference we
 316 *	had just acquired.
 317 *
 318 *	Caller holds exclusive lock on superblock; that lock is released.
 319 */
 320void deactivate_locked_super(struct super_block *s)
 321{
 322	struct file_system_type *fs = s->s_type;
 323	if (atomic_dec_and_test(&s->s_active)) {
 324		cleancache_invalidate_fs(s);
 325		unregister_shrinker(&s->s_shrink);
 326		fs->kill_sb(s);
 327
 
 
 328		/*
 329		 * Since list_lru_destroy() may sleep, we cannot call it from
 330		 * put_super(), where we hold the sb_lock. Therefore we destroy
 331		 * the lru lists right now.
 332		 */
 333		list_lru_destroy(&s->s_dentry_lru);
 334		list_lru_destroy(&s->s_inode_lru);
 335
 336		put_filesystem(fs);
 337		put_super(s);
 338	} else {
 339		up_write(&s->s_umount);
 340	}
 341}
 342
 343EXPORT_SYMBOL(deactivate_locked_super);
 344
 345/**
 346 *	deactivate_super	-	drop an active reference to superblock
 347 *	@s: superblock to deactivate
 348 *
 349 *	Variant of deactivate_locked_super(), except that superblock is *not*
 350 *	locked by caller.  If we are going to drop the final active reference,
 351 *	lock will be acquired prior to that.
 352 */
 353void deactivate_super(struct super_block *s)
 354{
 355        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 356		down_write(&s->s_umount);
 357		deactivate_locked_super(s);
 358	}
 359}
 360
 361EXPORT_SYMBOL(deactivate_super);
 362
 363/**
 364 *	grab_super - acquire an active reference
 365 *	@s: reference we are trying to make active
 
 
 
 
 
 366 *
 367 *	Tries to acquire an active reference.  grab_super() is used when we
 368 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 369 *	and want to turn it into a full-blown active reference.  grab_super()
 370 *	is called with sb_lock held and drops it.  Returns 1 in case of
 371 *	success, 0 if we had failed (superblock contents was already dead or
 372 *	dying when grab_super() had been called).  Note that this is only
 373 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 374 *	of their type), so increment of ->s_count is OK here.
 375 */
 376static int grab_super(struct super_block *s) __releases(sb_lock)
 377{
 378	s->s_count++;
 
 
 379	spin_unlock(&sb_lock);
 380	down_write(&s->s_umount);
 381	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 382		put_super(s);
 383		return 1;
 
 
 
 384	}
 385	up_write(&s->s_umount);
 386	put_super(s);
 387	return 0;
 388}
 389
 390/*
 391 *	trylock_super - try to grab ->s_umount shared
 392 *	@sb: reference we are trying to grab
 393 *
 394 *	Try to prevent fs shutdown.  This is used in places where we
 395 *	cannot take an active reference but we need to ensure that the
 396 *	filesystem is not shut down while we are working on it. It returns
 397 *	false if we cannot acquire s_umount or if we lose the race and
 398 *	filesystem already got into shutdown, and returns true with the s_umount
 399 *	lock held in read mode in case of success. On successful return,
 400 *	the caller must drop the s_umount lock when done.
 401 *
 402 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 403 *	The reason why it's safe is that we are OK with doing trylock instead
 404 *	of down_read().  There's a couple of places that are OK with that, but
 405 *	it's very much not a general-purpose interface.
 406 */
 407bool trylock_super(struct super_block *sb)
 408{
 409	if (down_read_trylock(&sb->s_umount)) {
 410		if (!hlist_unhashed(&sb->s_instances) &&
 411		    sb->s_root && (sb->s_flags & SB_BORN))
 412			return true;
 413		up_read(&sb->s_umount);
 414	}
 415
 416	return false;
 417}
 418
 419/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420 *	generic_shutdown_super	-	common helper for ->kill_sb()
 421 *	@sb: superblock to kill
 422 *
 423 *	generic_shutdown_super() does all fs-independent work on superblock
 424 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 425 *	that need destruction out of superblock, call generic_shutdown_super()
 426 *	and release aforementioned objects.  Note: dentries and inodes _are_
 427 *	taken care of and do not need specific handling.
 428 *
 429 *	Upon calling this function, the filesystem may no longer alter or
 430 *	rearrange the set of dentries belonging to this super_block, nor may it
 431 *	change the attachments of dentries to inodes.
 432 */
 433void generic_shutdown_super(struct super_block *sb)
 434{
 435	const struct super_operations *sop = sb->s_op;
 436
 437	if (sb->s_root) {
 438		shrink_dcache_for_umount(sb);
 439		sync_filesystem(sb);
 440		sb->s_flags &= ~SB_ACTIVE;
 441
 442		fsnotify_unmount_inodes(sb);
 443		cgroup_writeback_umount();
 444
 
 445		evict_inodes(sb);
 446
 
 
 
 
 
 
 
 447		if (sb->s_dio_done_wq) {
 448			destroy_workqueue(sb->s_dio_done_wq);
 449			sb->s_dio_done_wq = NULL;
 450		}
 451
 452		if (sop->put_super)
 453			sop->put_super(sb);
 454
 455		if (!list_empty(&sb->s_inodes)) {
 456			printk("VFS: Busy inodes after unmount of %s. "
 457			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 458			   sb->s_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459		}
 460	}
 461	spin_lock(&sb_lock);
 462	/* should be initialized for __put_super_and_need_restart() */
 463	hlist_del_init(&sb->s_instances);
 464	spin_unlock(&sb_lock);
 465	up_write(&sb->s_umount);
 
 
 
 
 
 
 466	if (sb->s_bdi != &noop_backing_dev_info) {
 
 
 467		bdi_put(sb->s_bdi);
 468		sb->s_bdi = &noop_backing_dev_info;
 469	}
 470}
 471
 472EXPORT_SYMBOL(generic_shutdown_super);
 473
 
 
 
 
 
 
 
 
 474/**
 475 *	sget_userns -	find or create a superblock
 476 *	@type:	filesystem type superblock should belong to
 477 *	@test:	comparison callback
 478 *	@set:	setup callback
 479 *	@flags:	mount flags
 480 *	@user_ns: User namespace for the super_block
 481 *	@data:	argument to each of them
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482 */
 483struct super_block *sget_userns(struct file_system_type *type,
 484			int (*test)(struct super_block *,void *),
 485			int (*set)(struct super_block *,void *),
 486			int flags, struct user_namespace *user_ns,
 487			void *data)
 488{
 489	struct super_block *s = NULL;
 490	struct super_block *old;
 
 491	int err;
 492
 493	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
 494	    !(type->fs_flags & FS_USERNS_MOUNT) &&
 495	    !capable(CAP_SYS_ADMIN))
 
 
 
 
 
 496		return ERR_PTR(-EPERM);
 
 
 497retry:
 498	spin_lock(&sb_lock);
 499	if (test) {
 500		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 501			if (!test(old, data))
 502				continue;
 503			if (user_ns != old->s_user_ns) {
 504				spin_unlock(&sb_lock);
 505				destroy_unused_super(s);
 506				return ERR_PTR(-EBUSY);
 507			}
 508			if (!grab_super(old))
 509				goto retry;
 510			destroy_unused_super(s);
 511			return old;
 512		}
 513	}
 514	if (!s) {
 515		spin_unlock(&sb_lock);
 516		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 517		if (!s)
 518			return ERR_PTR(-ENOMEM);
 519		goto retry;
 520	}
 521
 522	err = set(s, data);
 
 523	if (err) {
 
 524		spin_unlock(&sb_lock);
 525		destroy_unused_super(s);
 526		return ERR_PTR(err);
 527	}
 528	s->s_type = type;
 529	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 
 
 
 
 
 
 
 530	list_add_tail(&s->s_list, &super_blocks);
 531	hlist_add_head(&s->s_instances, &type->fs_supers);
 532	spin_unlock(&sb_lock);
 533	get_filesystem(type);
 534	register_shrinker_prepared(&s->s_shrink);
 535	return s;
 536}
 537
 538EXPORT_SYMBOL(sget_userns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539
 540/**
 541 *	sget	-	find or create a superblock
 542 *	@type:	  filesystem type superblock should belong to
 543 *	@test:	  comparison callback
 544 *	@set:	  setup callback
 545 *	@flags:	  mount flags
 546 *	@data:	  argument to each of them
 547 */
 548struct super_block *sget(struct file_system_type *type,
 549			int (*test)(struct super_block *,void *),
 550			int (*set)(struct super_block *,void *),
 551			int flags,
 552			void *data)
 553{
 554	struct user_namespace *user_ns = current_user_ns();
 
 
 
 555
 556	/* We don't yet pass the user namespace of the parent
 557	 * mount through to here so always use &init_user_ns
 558	 * until that changes.
 559	 */
 560	if (flags & SB_SUBMOUNT)
 561		user_ns = &init_user_ns;
 562
 563	/* Ensure the requestor has permissions over the target filesystem */
 564	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 565		return ERR_PTR(-EPERM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	return sget_userns(type, test, set, flags, user_ns, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 568}
 569
 570EXPORT_SYMBOL(sget);
 571
 572void drop_super(struct super_block *sb)
 573{
 574	up_read(&sb->s_umount);
 575	put_super(sb);
 576}
 577
 578EXPORT_SYMBOL(drop_super);
 579
 580void drop_super_exclusive(struct super_block *sb)
 581{
 582	up_write(&sb->s_umount);
 583	put_super(sb);
 584}
 585EXPORT_SYMBOL(drop_super_exclusive);
 586
 587static void __iterate_supers(void (*f)(struct super_block *))
 588{
 589	struct super_block *sb, *p = NULL;
 590
 591	spin_lock(&sb_lock);
 592	list_for_each_entry(sb, &super_blocks, s_list) {
 593		if (hlist_unhashed(&sb->s_instances))
 594			continue;
 595		sb->s_count++;
 596		spin_unlock(&sb_lock);
 597
 598		f(sb);
 599
 600		spin_lock(&sb_lock);
 601		if (p)
 602			__put_super(p);
 603		p = sb;
 604	}
 605	if (p)
 606		__put_super(p);
 607	spin_unlock(&sb_lock);
 608}
 609/**
 610 *	iterate_supers - call function for all active superblocks
 611 *	@f: function to call
 612 *	@arg: argument to pass to it
 613 *
 614 *	Scans the superblock list and calls given function, passing it
 615 *	locked superblock and given argument.
 616 */
 617void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 618{
 619	struct super_block *sb, *p = NULL;
 620
 621	spin_lock(&sb_lock);
 622	list_for_each_entry(sb, &super_blocks, s_list) {
 623		if (hlist_unhashed(&sb->s_instances))
 624			continue;
 625		sb->s_count++;
 626		spin_unlock(&sb_lock);
 627
 628		down_read(&sb->s_umount);
 629		if (sb->s_root && (sb->s_flags & SB_BORN))
 630			f(sb, arg);
 631		up_read(&sb->s_umount);
 
 
 632
 633		spin_lock(&sb_lock);
 634		if (p)
 635			__put_super(p);
 636		p = sb;
 637	}
 638	if (p)
 639		__put_super(p);
 640	spin_unlock(&sb_lock);
 641}
 642
 643/**
 644 *	iterate_supers_type - call function for superblocks of given type
 645 *	@type: fs type
 646 *	@f: function to call
 647 *	@arg: argument to pass to it
 648 *
 649 *	Scans the superblock list and calls given function, passing it
 650 *	locked superblock and given argument.
 651 */
 652void iterate_supers_type(struct file_system_type *type,
 653	void (*f)(struct super_block *, void *), void *arg)
 654{
 655	struct super_block *sb, *p = NULL;
 656
 657	spin_lock(&sb_lock);
 658	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 
 
 659		sb->s_count++;
 660		spin_unlock(&sb_lock);
 661
 662		down_read(&sb->s_umount);
 663		if (sb->s_root && (sb->s_flags & SB_BORN))
 664			f(sb, arg);
 665		up_read(&sb->s_umount);
 
 
 666
 667		spin_lock(&sb_lock);
 668		if (p)
 669			__put_super(p);
 670		p = sb;
 671	}
 672	if (p)
 673		__put_super(p);
 674	spin_unlock(&sb_lock);
 675}
 676
 677EXPORT_SYMBOL(iterate_supers_type);
 678
 679static struct super_block *__get_super(struct block_device *bdev, bool excl)
 680{
 681	struct super_block *sb;
 682
 683	if (!bdev)
 684		return NULL;
 685
 686	spin_lock(&sb_lock);
 687rescan:
 688	list_for_each_entry(sb, &super_blocks, s_list) {
 689		if (hlist_unhashed(&sb->s_instances))
 690			continue;
 691		if (sb->s_bdev == bdev) {
 692			sb->s_count++;
 693			spin_unlock(&sb_lock);
 694			if (!excl)
 695				down_read(&sb->s_umount);
 696			else
 697				down_write(&sb->s_umount);
 698			/* still alive? */
 699			if (sb->s_root && (sb->s_flags & SB_BORN))
 700				return sb;
 701			if (!excl)
 702				up_read(&sb->s_umount);
 703			else
 704				up_write(&sb->s_umount);
 705			/* nope, got unmounted */
 706			spin_lock(&sb_lock);
 707			__put_super(sb);
 708			goto rescan;
 709		}
 710	}
 711	spin_unlock(&sb_lock);
 712	return NULL;
 713}
 714
 715/**
 716 *	get_super - get the superblock of a device
 717 *	@bdev: device to get the superblock for
 718 *
 719 *	Scans the superblock list and finds the superblock of the file system
 720 *	mounted on the device given. %NULL is returned if no match is found.
 721 */
 722struct super_block *get_super(struct block_device *bdev)
 723{
 724	return __get_super(bdev, false);
 725}
 726EXPORT_SYMBOL(get_super);
 727
 728static struct super_block *__get_super_thawed(struct block_device *bdev,
 729					      bool excl)
 730{
 731	while (1) {
 732		struct super_block *s = __get_super(bdev, excl);
 733		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 734			return s;
 735		if (!excl)
 736			up_read(&s->s_umount);
 737		else
 738			up_write(&s->s_umount);
 739		wait_event(s->s_writers.wait_unfrozen,
 740			   s->s_writers.frozen == SB_UNFROZEN);
 741		put_super(s);
 742	}
 743}
 744
 745/**
 746 *	get_super_thawed - get thawed superblock of a device
 747 *	@bdev: device to get the superblock for
 748 *
 749 *	Scans the superblock list and finds the superblock of the file system
 750 *	mounted on the device. The superblock is returned once it is thawed
 751 *	(or immediately if it was not frozen). %NULL is returned if no match
 752 *	is found.
 753 */
 754struct super_block *get_super_thawed(struct block_device *bdev)
 755{
 756	return __get_super_thawed(bdev, false);
 757}
 758EXPORT_SYMBOL(get_super_thawed);
 759
 760/**
 761 *	get_super_exclusive_thawed - get thawed superblock of a device
 762 *	@bdev: device to get the superblock for
 763 *
 764 *	Scans the superblock list and finds the superblock of the file system
 765 *	mounted on the device. The superblock is returned once it is thawed
 766 *	(or immediately if it was not frozen) and s_umount semaphore is held
 767 *	in exclusive mode. %NULL is returned if no match is found.
 768 */
 769struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 770{
 771	return __get_super_thawed(bdev, true);
 772}
 773EXPORT_SYMBOL(get_super_exclusive_thawed);
 774
 775/**
 776 * get_active_super - get an active reference to the superblock of a device
 777 * @bdev: device to get the superblock for
 778 *
 779 * Scans the superblock list and finds the superblock of the file system
 780 * mounted on the device given.  Returns the superblock with an active
 781 * reference or %NULL if none was found.
 782 */
 783struct super_block *get_active_super(struct block_device *bdev)
 784{
 785	struct super_block *sb;
 786
 787	if (!bdev)
 788		return NULL;
 789
 790restart:
 791	spin_lock(&sb_lock);
 792	list_for_each_entry(sb, &super_blocks, s_list) {
 793		if (hlist_unhashed(&sb->s_instances))
 794			continue;
 795		if (sb->s_bdev == bdev) {
 796			if (!grab_super(sb))
 797				goto restart;
 798			up_write(&sb->s_umount);
 799			return sb;
 800		}
 801	}
 802	spin_unlock(&sb_lock);
 803	return NULL;
 804}
 805
 806struct super_block *user_get_super(dev_t dev)
 807{
 808	struct super_block *sb;
 809
 810	spin_lock(&sb_lock);
 811rescan:
 812	list_for_each_entry(sb, &super_blocks, s_list) {
 813		if (hlist_unhashed(&sb->s_instances))
 814			continue;
 815		if (sb->s_dev ==  dev) {
 
 
 816			sb->s_count++;
 817			spin_unlock(&sb_lock);
 818			down_read(&sb->s_umount);
 819			/* still alive? */
 820			if (sb->s_root && (sb->s_flags & SB_BORN))
 821				return sb;
 822			up_read(&sb->s_umount);
 
 
 
 823			/* nope, got unmounted */
 824			spin_lock(&sb_lock);
 825			__put_super(sb);
 826			goto rescan;
 827		}
 828	}
 829	spin_unlock(&sb_lock);
 830	return NULL;
 831}
 832
 833/**
 834 *	do_remount_sb - asks filesystem to change mount options.
 835 *	@sb:	superblock in question
 836 *	@sb_flags: revised superblock flags
 837 *	@data:	the rest of options
 838 *      @force: whether or not to force the change
 839 *
 840 *	Alters the mount options of a mounted file system.
 841 */
 842int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
 843{
 
 844	int retval;
 845	int remount_ro;
 
 
 846
 
 
 847	if (sb->s_writers.frozen != SB_UNFROZEN)
 848		return -EBUSY;
 849
 
 
 
 
 
 850#ifdef CONFIG_BLOCK
 851	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 852		return -EACCES;
 
 853#endif
 854
 855	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 
 856
 857	if (remount_ro) {
 858		if (!hlist_empty(&sb->s_pins)) {
 859			up_write(&sb->s_umount);
 860			group_pin_kill(&sb->s_pins);
 861			down_write(&sb->s_umount);
 862			if (!sb->s_root)
 863				return 0;
 864			if (sb->s_writers.frozen != SB_UNFROZEN)
 865				return -EBUSY;
 866			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 867		}
 868	}
 869	shrink_dcache_sb(sb);
 870
 871	/* If we are remounting RDONLY and current sb is read/write,
 872	   make sure there are no rw files opened */
 
 873	if (remount_ro) {
 874		if (force) {
 875			sb->s_readonly_remount = 1;
 876			smp_wmb();
 877		} else {
 878			retval = sb_prepare_remount_readonly(sb);
 879			if (retval)
 880				return retval;
 881		}
 
 
 
 
 
 
 882	}
 883
 884	if (sb->s_op->remount_fs) {
 885		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
 886		if (retval) {
 887			if (!force)
 888				goto cancel_readonly;
 889			/* If forced remount, go ahead despite any errors */
 890			WARN(1, "forced remount of a %s fs returned %i\n",
 891			     sb->s_type->name, retval);
 892		}
 893	}
 894	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
 895	/* Needs to be ordered wrt mnt_is_readonly() */
 896	smp_wmb();
 897	sb->s_readonly_remount = 0;
 898
 899	/*
 900	 * Some filesystems modify their metadata via some other path than the
 901	 * bdev buffer cache (eg. use a private mapping, or directories in
 902	 * pagecache, etc). Also file data modifications go via their own
 903	 * mappings. So If we try to mount readonly then copy the filesystem
 904	 * from bdev, we could get stale data, so invalidate it to give a best
 905	 * effort at coherency.
 906	 */
 907	if (remount_ro && sb->s_bdev)
 908		invalidate_bdev(sb->s_bdev);
 909	return 0;
 910
 911cancel_readonly:
 912	sb->s_readonly_remount = 0;
 913	return retval;
 914}
 915
 916static void do_emergency_remount_callback(struct super_block *sb)
 917{
 918	down_write(&sb->s_umount);
 919	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 920	    !sb_rdonly(sb)) {
 921		/*
 922		 * What lock protects sb->s_flags??
 923		 */
 924		do_remount_sb(sb, SB_RDONLY, NULL, 1);
 
 
 
 
 
 925	}
 926	up_write(&sb->s_umount);
 
 927}
 928
 929static void do_emergency_remount(struct work_struct *work)
 930{
 931	__iterate_supers(do_emergency_remount_callback);
 932	kfree(work);
 933	printk("Emergency Remount complete\n");
 934}
 935
 936void emergency_remount(void)
 937{
 938	struct work_struct *work;
 939
 940	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 941	if (work) {
 942		INIT_WORK(work, do_emergency_remount);
 943		schedule_work(work);
 944	}
 945}
 946
 947static void do_thaw_all_callback(struct super_block *sb)
 948{
 949	down_write(&sb->s_umount);
 950	if (sb->s_root && sb->s_flags & MS_BORN) {
 951		emergency_thaw_bdev(sb);
 952		thaw_super_locked(sb);
 953	} else {
 954		up_write(&sb->s_umount);
 
 
 955	}
 
 
 956}
 957
 958static void do_thaw_all(struct work_struct *work)
 959{
 960	__iterate_supers(do_thaw_all_callback);
 961	kfree(work);
 962	printk(KERN_WARNING "Emergency Thaw complete\n");
 963}
 964
 965/**
 966 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 967 *
 968 * Used for emergency unfreeze of all filesystems via SysRq
 969 */
 970void emergency_thaw_all(void)
 971{
 972	struct work_struct *work;
 973
 974	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 975	if (work) {
 976		INIT_WORK(work, do_thaw_all);
 977		schedule_work(work);
 978	}
 979}
 980
 981/*
 982 * Unnamed block devices are dummy devices used by virtual
 983 * filesystems which don't use real block-devices.  -- jrs
 984 */
 985
 986static DEFINE_IDA(unnamed_dev_ida);
 987static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 988/* Many userspace utilities consider an FSID of 0 invalid.
 989 * Always return at least 1 from get_anon_bdev.
 990 */
 991static int unnamed_dev_start = 1;
 992
 
 
 
 
 
 
 
 
 
 
 
 993int get_anon_bdev(dev_t *p)
 994{
 995	int dev;
 996	int error;
 997
 998 retry:
 999	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
1000		return -ENOMEM;
1001	spin_lock(&unnamed_dev_lock);
1002	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
1003	if (!error)
1004		unnamed_dev_start = dev + 1;
1005	spin_unlock(&unnamed_dev_lock);
1006	if (error == -EAGAIN)
1007		/* We raced and lost with another CPU. */
1008		goto retry;
1009	else if (error)
1010		return -EAGAIN;
1011
1012	if (dev >= (1 << MINORBITS)) {
1013		spin_lock(&unnamed_dev_lock);
1014		ida_remove(&unnamed_dev_ida, dev);
1015		if (unnamed_dev_start > dev)
1016			unnamed_dev_start = dev;
1017		spin_unlock(&unnamed_dev_lock);
1018		return -EMFILE;
1019	}
1020	*p = MKDEV(0, dev & MINORMASK);
1021	return 0;
1022}
1023EXPORT_SYMBOL(get_anon_bdev);
1024
1025void free_anon_bdev(dev_t dev)
1026{
1027	int slot = MINOR(dev);
1028	spin_lock(&unnamed_dev_lock);
1029	ida_remove(&unnamed_dev_ida, slot);
1030	if (slot < unnamed_dev_start)
1031		unnamed_dev_start = slot;
1032	spin_unlock(&unnamed_dev_lock);
1033}
1034EXPORT_SYMBOL(free_anon_bdev);
1035
1036int set_anon_super(struct super_block *s, void *data)
1037{
1038	return get_anon_bdev(&s->s_dev);
1039}
1040
1041EXPORT_SYMBOL(set_anon_super);
1042
1043void kill_anon_super(struct super_block *sb)
1044{
1045	dev_t dev = sb->s_dev;
1046	generic_shutdown_super(sb);
 
1047	free_anon_bdev(dev);
1048}
1049
1050EXPORT_SYMBOL(kill_anon_super);
1051
1052void kill_litter_super(struct super_block *sb)
1053{
1054	if (sb->s_root)
1055		d_genocide(sb->s_root);
1056	kill_anon_super(sb);
1057}
1058
1059EXPORT_SYMBOL(kill_litter_super);
1060
1061static int ns_test_super(struct super_block *sb, void *data)
1062{
1063	return sb->s_fs_info == data;
1064}
 
1065
1066static int ns_set_super(struct super_block *sb, void *data)
1067{
1068	sb->s_fs_info = data;
1069	return set_anon_super(sb, NULL);
1070}
1071
1072struct dentry *mount_ns(struct file_system_type *fs_type,
1073	int flags, void *data, void *ns, struct user_namespace *user_ns,
1074	int (*fill_super)(struct super_block *, void *, int))
1075{
1076	struct super_block *sb;
 
1077
1078	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1079	 * over the namespace.
1080	 */
1081	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1082		return ERR_PTR(-EPERM);
 
 
1083
1084	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1085			 user_ns, ns);
1086	if (IS_ERR(sb))
1087		return ERR_CAST(sb);
1088
1089	if (!sb->s_root) {
1090		int err;
1091		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1092		if (err) {
1093			deactivate_locked_super(sb);
1094			return ERR_PTR(err);
1095		}
1096
1097		sb->s_flags |= SB_ACTIVE;
1098	}
1099
1100	return dget(sb->s_root);
 
 
 
 
 
 
 
 
 
 
 
 
1101}
 
1102
1103EXPORT_SYMBOL(mount_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104
1105#ifdef CONFIG_BLOCK
1106static int set_bdev_super(struct super_block *s, void *data)
1107{
1108	s->s_bdev = data;
1109	s->s_dev = s->s_bdev->bd_dev;
1110	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112	return 0;
1113}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115static int test_bdev_super(struct super_block *s, void *data)
1116{
1117	return (void *)s->s_bdev == data;
1118}
1119
1120struct dentry *mount_bdev(struct file_system_type *fs_type,
1121	int flags, const char *dev_name, void *data,
1122	int (*fill_super)(struct super_block *, void *, int))
1123{
1124	struct block_device *bdev;
1125	struct super_block *s;
1126	fmode_t mode = FMODE_READ | FMODE_EXCL;
1127	int error = 0;
1128
1129	if (!(flags & SB_RDONLY))
1130		mode |= FMODE_WRITE;
 
1131
1132	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1133	if (IS_ERR(bdev))
1134		return ERR_CAST(bdev);
1135
1136	/*
1137	 * once the super is inserted into the list by sget, s_umount
1138	 * will protect the lockfs code from trying to start a snapshot
1139	 * while we are mounting
1140	 */
1141	mutex_lock(&bdev->bd_fsfreeze_mutex);
1142	if (bdev->bd_fsfreeze_count > 0) {
1143		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1144		error = -EBUSY;
1145		goto error_bdev;
1146	}
1147	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1148		 bdev);
1149	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1150	if (IS_ERR(s))
1151		goto error_s;
1152
1153	if (s->s_root) {
1154		if ((flags ^ s->s_flags) & SB_RDONLY) {
1155			deactivate_locked_super(s);
1156			error = -EBUSY;
1157			goto error_bdev;
1158		}
1159
1160		/*
1161		 * s_umount nests inside bd_mutex during
1162		 * __invalidate_device().  blkdev_put() acquires
1163		 * bd_mutex and can't be called under s_umount.  Drop
1164		 * s_umount temporarily.  This is safe as we're
1165		 * holding an active reference.
1166		 */
1167		up_write(&s->s_umount);
1168		blkdev_put(bdev, mode);
1169		down_write(&s->s_umount);
1170	} else {
1171		s->s_mode = mode;
1172		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1173		sb_set_blocksize(s, block_size(bdev));
1174		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1175		if (error) {
1176			deactivate_locked_super(s);
1177			goto error;
1178		}
1179
1180		s->s_flags |= SB_ACTIVE;
1181		bdev->bd_super = s;
1182	}
1183
1184	return dget(s->s_root);
1185
1186error_s:
1187	error = PTR_ERR(s);
1188error_bdev:
1189	blkdev_put(bdev, mode);
1190error:
1191	return ERR_PTR(error);
1192}
1193EXPORT_SYMBOL(mount_bdev);
1194
1195void kill_block_super(struct super_block *sb)
1196{
1197	struct block_device *bdev = sb->s_bdev;
1198	fmode_t mode = sb->s_mode;
1199
1200	bdev->bd_super = NULL;
1201	generic_shutdown_super(sb);
1202	sync_blockdev(bdev);
1203	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1204	blkdev_put(bdev, mode | FMODE_EXCL);
 
1205}
1206
1207EXPORT_SYMBOL(kill_block_super);
1208#endif
1209
1210struct dentry *mount_nodev(struct file_system_type *fs_type,
1211	int flags, void *data,
1212	int (*fill_super)(struct super_block *, void *, int))
1213{
1214	int error;
1215	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1216
1217	if (IS_ERR(s))
1218		return ERR_CAST(s);
1219
1220	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1221	if (error) {
1222		deactivate_locked_super(s);
1223		return ERR_PTR(error);
1224	}
1225	s->s_flags |= SB_ACTIVE;
1226	return dget(s->s_root);
1227}
1228EXPORT_SYMBOL(mount_nodev);
1229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230static int compare_single(struct super_block *s, void *p)
1231{
1232	return 1;
1233}
1234
1235struct dentry *mount_single(struct file_system_type *fs_type,
1236	int flags, void *data,
1237	int (*fill_super)(struct super_block *, void *, int))
1238{
1239	struct super_block *s;
1240	int error;
1241
1242	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1243	if (IS_ERR(s))
1244		return ERR_CAST(s);
1245	if (!s->s_root) {
1246		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1247		if (error) {
1248			deactivate_locked_super(s);
1249			return ERR_PTR(error);
1250		}
1251		s->s_flags |= SB_ACTIVE;
1252	} else {
1253		do_remount_sb(s, flags, data, 0);
 
 
 
 
1254	}
1255	return dget(s->s_root);
1256}
1257EXPORT_SYMBOL(mount_single);
1258
1259struct dentry *
1260mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
 
 
 
 
 
 
 
1261{
1262	struct dentry *root;
1263	struct super_block *sb;
1264	char *secdata = NULL;
1265	int error = -ENOMEM;
 
 
1266
1267	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1268		secdata = alloc_secdata();
1269		if (!secdata)
1270			goto out;
1271
1272		error = security_sb_copy_data(data, secdata);
1273		if (error)
1274			goto out_free_secdata;
1275	}
1276
1277	root = type->mount(type, flags, name, data);
1278	if (IS_ERR(root)) {
1279		error = PTR_ERR(root);
1280		goto out_free_secdata;
1281	}
1282	sb = root->d_sb;
1283	BUG_ON(!sb);
1284	WARN_ON(!sb->s_bdi);
1285
1286	/*
1287	 * Write barrier is for super_cache_count(). We place it before setting
1288	 * SB_BORN as the data dependency between the two functions is the
1289	 * superblock structure contents that we just set up, not the SB_BORN
1290	 * flag.
 
1291	 */
1292	smp_wmb();
1293	sb->s_flags |= SB_BORN;
1294
1295	error = security_sb_kern_mount(sb, flags, secdata);
1296	if (error)
1297		goto out_sb;
 
 
1298
1299	/*
1300	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1301	 * but s_maxbytes was an unsigned long long for many releases. Throw
1302	 * this warning for a little while to try and catch filesystems that
1303	 * violate this rule.
1304	 */
1305	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1306		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1307
1308	up_write(&sb->s_umount);
1309	free_secdata(secdata);
1310	return root;
1311out_sb:
1312	dput(root);
1313	deactivate_locked_super(sb);
1314out_free_secdata:
1315	free_secdata(secdata);
1316out:
1317	return ERR_PTR(error);
1318}
 
1319
1320/*
1321 * Setup private BDI for given superblock. It gets automatically cleaned up
1322 * in generic_shutdown_super().
1323 */
1324int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1325{
1326	struct backing_dev_info *bdi;
1327	int err;
1328	va_list args;
1329
1330	bdi = bdi_alloc(GFP_KERNEL);
1331	if (!bdi)
1332		return -ENOMEM;
1333
1334	bdi->name = sb->s_type->name;
1335
1336	va_start(args, fmt);
1337	err = bdi_register_va(bdi, fmt, args);
1338	va_end(args);
1339	if (err) {
1340		bdi_put(bdi);
1341		return err;
1342	}
1343	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1344	sb->s_bdi = bdi;
 
1345
1346	return 0;
1347}
1348EXPORT_SYMBOL(super_setup_bdi_name);
1349
1350/*
1351 * Setup private BDI for given superblock. I gets automatically cleaned up
1352 * in generic_shutdown_super().
1353 */
1354int super_setup_bdi(struct super_block *sb)
1355{
1356	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1357
1358	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1359				    atomic_long_inc_return(&bdi_seq));
1360}
1361EXPORT_SYMBOL(super_setup_bdi);
1362
1363/*
1364 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1365 * instead.
1366 */
1367void __sb_end_write(struct super_block *sb, int level)
1368{
1369	percpu_up_read(sb->s_writers.rw_sem + level-1);
1370}
1371EXPORT_SYMBOL(__sb_end_write);
1372
1373/*
1374 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1375 * instead.
1376 */
1377int __sb_start_write(struct super_block *sb, int level, bool wait)
1378{
1379	bool force_trylock = false;
1380	int ret = 1;
1381
1382#ifdef CONFIG_LOCKDEP
1383	/*
1384	 * We want lockdep to tell us about possible deadlocks with freezing
1385	 * but it's it bit tricky to properly instrument it. Getting a freeze
1386	 * protection works as getting a read lock but there are subtle
1387	 * problems. XFS for example gets freeze protection on internal level
1388	 * twice in some cases, which is OK only because we already hold a
1389	 * freeze protection also on higher level. Due to these cases we have
1390	 * to use wait == F (trylock mode) which must not fail.
1391	 */
1392	if (wait) {
1393		int i;
1394
1395		for (i = 0; i < level - 1; i++)
1396			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1397				force_trylock = true;
1398				break;
1399			}
1400	}
1401#endif
1402	if (wait && !force_trylock)
1403		percpu_down_read(sb->s_writers.rw_sem + level-1);
1404	else
1405		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1406
1407	WARN_ON(force_trylock && !ret);
1408	return ret;
1409}
1410EXPORT_SYMBOL(__sb_start_write);
1411
1412/**
1413 * sb_wait_write - wait until all writers to given file system finish
1414 * @sb: the super for which we wait
1415 * @level: type of writers we wait for (normal vs page fault)
1416 *
1417 * This function waits until there are no writers of given type to given file
1418 * system.
1419 */
1420static void sb_wait_write(struct super_block *sb, int level)
1421{
1422	percpu_down_write(sb->s_writers.rw_sem + level-1);
1423}
1424
1425/*
1426 * We are going to return to userspace and forget about these locks, the
1427 * ownership goes to the caller of thaw_super() which does unlock().
1428 */
1429static void lockdep_sb_freeze_release(struct super_block *sb)
1430{
1431	int level;
1432
1433	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1434		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1435}
1436
1437/*
1438 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1439 */
1440static void lockdep_sb_freeze_acquire(struct super_block *sb)
1441{
1442	int level;
1443
1444	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1445		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1446}
1447
1448static void sb_freeze_unlock(struct super_block *sb)
1449{
1450	int level;
1451
1452	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1453		percpu_up_write(sb->s_writers.rw_sem + level);
1454}
1455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456/**
1457 * freeze_super - lock the filesystem and force it into a consistent state
1458 * @sb: the super to lock
 
1459 *
1460 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1461 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1462 * -EBUSY.
1463 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464 * During this function, sb->s_writers.frozen goes through these values:
1465 *
1466 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1467 *
1468 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1469 * writes should be blocked, though page faults are still allowed. We wait for
1470 * all writes to complete and then proceed to the next stage.
1471 *
1472 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1473 * but internal fs threads can still modify the filesystem (although they
1474 * should not dirty new pages or inodes), writeback can run etc. After waiting
1475 * for all running page faults we sync the filesystem which will clean all
1476 * dirty pages and inodes (no new dirty pages or inodes can be created when
1477 * sync is running).
1478 *
1479 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1480 * modification are blocked (e.g. XFS preallocation truncation on inode
1481 * reclaim). This is usually implemented by blocking new transactions for
1482 * filesystems that have them and need this additional guard. After all
1483 * internal writers are finished we call ->freeze_fs() to finish filesystem
1484 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1485 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1486 *
1487 * sb->s_writers.frozen is protected by sb->s_umount.
 
 
 
1488 */
1489int freeze_super(struct super_block *sb)
1490{
1491	int ret;
1492
 
 
 
 
1493	atomic_inc(&sb->s_active);
1494	down_write(&sb->s_umount);
1495	if (sb->s_writers.frozen != SB_UNFROZEN) {
 
 
 
 
 
 
1496		deactivate_locked_super(sb);
1497		return -EBUSY;
1498	}
1499
1500	if (!(sb->s_flags & SB_BORN)) {
1501		up_write(&sb->s_umount);
1502		return 0;	/* sic - it's "nothing to do" */
 
 
 
 
 
1503	}
1504
1505	if (sb_rdonly(sb)) {
1506		/* Nothing to do really... */
 
1507		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1508		up_write(&sb->s_umount);
 
1509		return 0;
1510	}
1511
1512	sb->s_writers.frozen = SB_FREEZE_WRITE;
1513	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1514	up_write(&sb->s_umount);
1515	sb_wait_write(sb, SB_FREEZE_WRITE);
1516	down_write(&sb->s_umount);
1517
1518	/* Now we go and block page faults... */
1519	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1520	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1521
1522	/* All writers are done so after syncing there won't be dirty data */
1523	sync_filesystem(sb);
 
 
 
 
 
 
 
1524
1525	/* Now wait for internal filesystem counter */
1526	sb->s_writers.frozen = SB_FREEZE_FS;
1527	sb_wait_write(sb, SB_FREEZE_FS);
1528
1529	if (sb->s_op->freeze_fs) {
1530		ret = sb->s_op->freeze_fs(sb);
1531		if (ret) {
1532			printk(KERN_ERR
1533				"VFS:Filesystem freeze failed\n");
1534			sb->s_writers.frozen = SB_UNFROZEN;
1535			sb_freeze_unlock(sb);
1536			wake_up(&sb->s_writers.wait_unfrozen);
1537			deactivate_locked_super(sb);
1538			return ret;
1539		}
1540	}
1541	/*
1542	 * For debugging purposes so that fs can warn if it sees write activity
1543	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1544	 */
 
1545	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 
1546	lockdep_sb_freeze_release(sb);
1547	up_write(&sb->s_umount);
1548	return 0;
1549}
1550EXPORT_SYMBOL(freeze_super);
1551
1552/**
1553 * thaw_super -- unlock filesystem
1554 * @sb: the super to thaw
1555 *
1556 * Unlocks the filesystem and marks it writeable again after freeze_super().
1557 */
1558static int thaw_super_locked(struct super_block *sb)
1559{
1560	int error;
1561
1562	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1563		up_write(&sb->s_umount);
1564		return -EINVAL;
1565	}
 
 
 
 
 
1566
1567	if (sb_rdonly(sb)) {
1568		sb->s_writers.frozen = SB_UNFROZEN;
1569		goto out;
 
1570	}
1571
1572	lockdep_sb_freeze_acquire(sb);
1573
1574	if (sb->s_op->unfreeze_fs) {
1575		error = sb->s_op->unfreeze_fs(sb);
1576		if (error) {
1577			printk(KERN_ERR
1578				"VFS:Filesystem thaw failed\n");
1579			lockdep_sb_freeze_release(sb);
1580			up_write(&sb->s_umount);
1581			return error;
1582		}
1583	}
1584
1585	sb->s_writers.frozen = SB_UNFROZEN;
1586	sb_freeze_unlock(sb);
1587out:
1588	wake_up(&sb->s_writers.wait_unfrozen);
1589	deactivate_locked_super(sb);
1590	return 0;
 
 
 
 
1591}
1592
1593int thaw_super(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594{
1595	down_write(&sb->s_umount);
1596	return thaw_super_locked(sb);
 
 
 
1597}
1598EXPORT_SYMBOL(thaw_super);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/fscrypt.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48	"sb_writers",
  49	"sb_pagefaults",
  50	"sb_internal",
  51};
  52
  53static inline void __super_lock(struct super_block *sb, bool excl)
  54{
  55	if (excl)
  56		down_write(&sb->s_umount);
  57	else
  58		down_read(&sb->s_umount);
  59}
  60
  61static inline void super_unlock(struct super_block *sb, bool excl)
  62{
  63	if (excl)
  64		up_write(&sb->s_umount);
  65	else
  66		up_read(&sb->s_umount);
  67}
  68
  69static inline void __super_lock_excl(struct super_block *sb)
  70{
  71	__super_lock(sb, true);
  72}
  73
  74static inline void super_unlock_excl(struct super_block *sb)
  75{
  76	super_unlock(sb, true);
  77}
  78
  79static inline void super_unlock_shared(struct super_block *sb)
  80{
  81	super_unlock(sb, false);
  82}
  83
  84static bool super_flags(const struct super_block *sb, unsigned int flags)
  85{
  86	/*
  87	 * Pairs with smp_store_release() in super_wake() and ensures
  88	 * that we see @flags after we're woken.
  89	 */
  90	return smp_load_acquire(&sb->s_flags) & flags;
  91}
  92
  93/**
  94 * super_lock - wait for superblock to become ready and lock it
  95 * @sb: superblock to wait for
  96 * @excl: whether exclusive access is required
  97 *
  98 * If the superblock has neither passed through vfs_get_tree() or
  99 * generic_shutdown_super() yet wait for it to happen. Either superblock
 100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
 101 * woken and we'll see SB_DYING.
 102 *
 103 * The caller must have acquired a temporary reference on @sb->s_count.
 104 *
 105 * Return: The function returns true if SB_BORN was set and with
 106 *         s_umount held. The function returns false if SB_DYING was
 107 *         set and without s_umount held.
 108 */
 109static __must_check bool super_lock(struct super_block *sb, bool excl)
 110{
 111	lockdep_assert_not_held(&sb->s_umount);
 112
 113	/* wait until the superblock is ready or dying */
 114	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
 115
 116	/* Don't pointlessly acquire s_umount. */
 117	if (super_flags(sb, SB_DYING))
 118		return false;
 119
 120	__super_lock(sb, excl);
 121
 122	/*
 123	 * Has gone through generic_shutdown_super() in the meantime.
 124	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
 125	 * grab a reference to this. Tell them so.
 126	 */
 127	if (sb->s_flags & SB_DYING) {
 128		super_unlock(sb, excl);
 129		return false;
 130	}
 131
 132	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
 133	return true;
 134}
 135
 136/* wait and try to acquire read-side of @sb->s_umount */
 137static inline bool super_lock_shared(struct super_block *sb)
 138{
 139	return super_lock(sb, false);
 140}
 141
 142/* wait and try to acquire write-side of @sb->s_umount */
 143static inline bool super_lock_excl(struct super_block *sb)
 144{
 145	return super_lock(sb, true);
 146}
 147
 148/* wake waiters */
 149#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
 150static void super_wake(struct super_block *sb, unsigned int flag)
 151{
 152	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
 153	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
 154
 155	/*
 156	 * Pairs with smp_load_acquire() in super_lock() to make sure
 157	 * all initializations in the superblock are seen by the user
 158	 * seeing SB_BORN sent.
 159	 */
 160	smp_store_release(&sb->s_flags, sb->s_flags | flag);
 161	/*
 162	 * Pairs with the barrier in prepare_to_wait_event() to make sure
 163	 * ___wait_var_event() either sees SB_BORN set or
 164	 * waitqueue_active() check in wake_up_var() sees the waiter.
 165	 */
 166	smp_mb();
 167	wake_up_var(&sb->s_flags);
 168}
 169
 170/*
 171 * One thing we have to be careful of with a per-sb shrinker is that we don't
 172 * drop the last active reference to the superblock from within the shrinker.
 173 * If that happens we could trigger unregistering the shrinker from within the
 174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
 175 * take a passive reference to the superblock to avoid this from occurring.
 176 */
 177static unsigned long super_cache_scan(struct shrinker *shrink,
 178				      struct shrink_control *sc)
 179{
 180	struct super_block *sb;
 181	long	fs_objects = 0;
 182	long	total_objects;
 183	long	freed = 0;
 184	long	dentries;
 185	long	inodes;
 186
 187	sb = shrink->private_data;
 188
 189	/*
 190	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
 191	 * to recurse into the FS that called us in clear_inode() and friends..
 192	 */
 193	if (!(sc->gfp_mask & __GFP_FS))
 194		return SHRINK_STOP;
 195
 196	if (!super_trylock_shared(sb))
 197		return SHRINK_STOP;
 198
 199	if (sb->s_op->nr_cached_objects)
 200		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
 201
 202	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
 203	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
 204	total_objects = dentries + inodes + fs_objects + 1;
 205	if (!total_objects)
 206		total_objects = 1;
 207
 208	/* proportion the scan between the caches */
 209	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
 210	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
 211	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
 212
 213	/*
 214	 * prune the dcache first as the icache is pinned by it, then
 215	 * prune the icache, followed by the filesystem specific caches
 216	 *
 217	 * Ensure that we always scan at least one object - memcg kmem
 218	 * accounting uses this to fully empty the caches.
 219	 */
 220	sc->nr_to_scan = dentries + 1;
 221	freed = prune_dcache_sb(sb, sc);
 222	sc->nr_to_scan = inodes + 1;
 223	freed += prune_icache_sb(sb, sc);
 224
 225	if (fs_objects) {
 226		sc->nr_to_scan = fs_objects + 1;
 227		freed += sb->s_op->free_cached_objects(sb, sc);
 228	}
 229
 230	super_unlock_shared(sb);
 231	return freed;
 232}
 233
 234static unsigned long super_cache_count(struct shrinker *shrink,
 235				       struct shrink_control *sc)
 236{
 237	struct super_block *sb;
 238	long	total_objects = 0;
 239
 240	sb = shrink->private_data;
 241
 242	/*
 243	 * We don't call super_trylock_shared() here as it is a scalability
 244	 * bottleneck, so we're exposed to partial setup state. The shrinker
 245	 * rwsem does not protect filesystem operations backing
 246	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
 247	 * change between super_cache_count and super_cache_scan, so we really
 248	 * don't need locks here.
 249	 *
 250	 * However, if we are currently mounting the superblock, the underlying
 251	 * filesystem might be in a state of partial construction and hence it
 252	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
 253	 * to avoid this situation, so do the same here. The memory barrier is
 254	 * matched with the one in mount_fs() as we don't hold locks here.
 255	 */
 256	if (!(sb->s_flags & SB_BORN))
 257		return 0;
 258	smp_rmb();
 259
 260	if (sb->s_op && sb->s_op->nr_cached_objects)
 261		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 262
 263	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 264	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 265
 266	if (!total_objects)
 267		return SHRINK_EMPTY;
 268
 269	total_objects = vfs_pressure_ratio(total_objects);
 270	return total_objects;
 271}
 272
 273static void destroy_super_work(struct work_struct *work)
 274{
 275	struct super_block *s = container_of(work, struct super_block,
 276							destroy_work);
 277	fsnotify_sb_free(s);
 278	security_sb_free(s);
 279	put_user_ns(s->s_user_ns);
 280	kfree(s->s_subtype);
 281	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
 282		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 283	kfree(s);
 284}
 285
 286static void destroy_super_rcu(struct rcu_head *head)
 287{
 288	struct super_block *s = container_of(head, struct super_block, rcu);
 289	INIT_WORK(&s->destroy_work, destroy_super_work);
 290	schedule_work(&s->destroy_work);
 291}
 292
 293/* Free a superblock that has never been seen by anyone */
 294static void destroy_unused_super(struct super_block *s)
 295{
 296	if (!s)
 297		return;
 298	super_unlock_excl(s);
 299	list_lru_destroy(&s->s_dentry_lru);
 300	list_lru_destroy(&s->s_inode_lru);
 301	shrinker_free(s->s_shrink);
 
 
 
 302	/* no delays needed */
 303	destroy_super_work(&s->destroy_work);
 304}
 305
 306/**
 307 *	alloc_super	-	create new superblock
 308 *	@type:	filesystem type superblock should belong to
 309 *	@flags: the mount flags
 310 *	@user_ns: User namespace for the super_block
 311 *
 312 *	Allocates and initializes a new &struct super_block.  alloc_super()
 313 *	returns a pointer new superblock or %NULL if allocation had failed.
 314 */
 315static struct super_block *alloc_super(struct file_system_type *type, int flags,
 316				       struct user_namespace *user_ns)
 317{
 318	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
 319	static const struct super_operations default_op;
 320	int i;
 321
 322	if (!s)
 323		return NULL;
 324
 325	INIT_LIST_HEAD(&s->s_mounts);
 326	s->s_user_ns = get_user_ns(user_ns);
 327	init_rwsem(&s->s_umount);
 328	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 329	/*
 330	 * sget() can have s_umount recursion.
 331	 *
 332	 * When it cannot find a suitable sb, it allocates a new
 333	 * one (this one), and tries again to find a suitable old
 334	 * one.
 335	 *
 336	 * In case that succeeds, it will acquire the s_umount
 337	 * lock of the old one. Since these are clearly distrinct
 338	 * locks, and this object isn't exposed yet, there's no
 339	 * risk of deadlocks.
 340	 *
 341	 * Annotate this by putting this lock in a different
 342	 * subclass.
 343	 */
 344	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 345
 346	if (security_sb_alloc(s))
 347		goto fail;
 348
 349	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 350		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 351					sb_writers_name[i],
 352					&type->s_writers_key[i]))
 353			goto fail;
 354	}
 
 355	s->s_bdi = &noop_backing_dev_info;
 356	s->s_flags = flags;
 357	if (s->s_user_ns != &init_user_ns)
 358		s->s_iflags |= SB_I_NODEV;
 359	INIT_HLIST_NODE(&s->s_instances);
 360	INIT_HLIST_BL_HEAD(&s->s_roots);
 361	mutex_init(&s->s_sync_lock);
 362	INIT_LIST_HEAD(&s->s_inodes);
 363	spin_lock_init(&s->s_inode_list_lock);
 364	INIT_LIST_HEAD(&s->s_inodes_wb);
 365	spin_lock_init(&s->s_inode_wblist_lock);
 366
 
 
 
 
 367	s->s_count = 1;
 368	atomic_set(&s->s_active, 1);
 369	mutex_init(&s->s_vfs_rename_mutex);
 370	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 371	init_rwsem(&s->s_dquot.dqio_sem);
 372	s->s_maxbytes = MAX_NON_LFS;
 373	s->s_op = &default_op;
 374	s->s_time_gran = 1000000000;
 375	s->s_time_min = TIME64_MIN;
 376	s->s_time_max = TIME64_MAX;
 377
 378	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
 379				     "sb-%s", type->name);
 380	if (!s->s_shrink)
 381		goto fail;
 382
 383	s->s_shrink->scan_objects = super_cache_scan;
 384	s->s_shrink->count_objects = super_cache_count;
 385	s->s_shrink->batch = 1024;
 386	s->s_shrink->private_data = s;
 387
 388	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
 389		goto fail;
 390	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
 
 
 
 391		goto fail;
 392	return s;
 393
 394fail:
 395	destroy_unused_super(s);
 396	return NULL;
 397}
 398
 399/* Superblock refcounting  */
 400
 401/*
 402 * Drop a superblock's refcount.  The caller must hold sb_lock.
 403 */
 404static void __put_super(struct super_block *s)
 405{
 406	if (!--s->s_count) {
 407		list_del_init(&s->s_list);
 408		WARN_ON(s->s_dentry_lru.node);
 409		WARN_ON(s->s_inode_lru.node);
 410		WARN_ON(!list_empty(&s->s_mounts));
 
 
 
 411		call_rcu(&s->rcu, destroy_super_rcu);
 412	}
 413}
 414
 415/**
 416 *	put_super	-	drop a temporary reference to superblock
 417 *	@sb: superblock in question
 418 *
 419 *	Drops a temporary reference, frees superblock if there's no
 420 *	references left.
 421 */
 422void put_super(struct super_block *sb)
 423{
 424	spin_lock(&sb_lock);
 425	__put_super(sb);
 426	spin_unlock(&sb_lock);
 427}
 428
 429static void kill_super_notify(struct super_block *sb)
 430{
 431	lockdep_assert_not_held(&sb->s_umount);
 432
 433	/* already notified earlier */
 434	if (sb->s_flags & SB_DEAD)
 435		return;
 436
 437	/*
 438	 * Remove it from @fs_supers so it isn't found by new
 439	 * sget{_fc}() walkers anymore. Any concurrent mounter still
 440	 * managing to grab a temporary reference is guaranteed to
 441	 * already see SB_DYING and will wait until we notify them about
 442	 * SB_DEAD.
 443	 */
 444	spin_lock(&sb_lock);
 445	hlist_del_init(&sb->s_instances);
 446	spin_unlock(&sb_lock);
 447
 448	/*
 449	 * Let concurrent mounts know that this thing is really dead.
 450	 * We don't need @sb->s_umount here as every concurrent caller
 451	 * will see SB_DYING and either discard the superblock or wait
 452	 * for SB_DEAD.
 453	 */
 454	super_wake(sb, SB_DEAD);
 455}
 456
 457/**
 458 *	deactivate_locked_super	-	drop an active reference to superblock
 459 *	@s: superblock to deactivate
 460 *
 461 *	Drops an active reference to superblock, converting it into a temporary
 462 *	one if there is no other active references left.  In that case we
 463 *	tell fs driver to shut it down and drop the temporary reference we
 464 *	had just acquired.
 465 *
 466 *	Caller holds exclusive lock on superblock; that lock is released.
 467 */
 468void deactivate_locked_super(struct super_block *s)
 469{
 470	struct file_system_type *fs = s->s_type;
 471	if (atomic_dec_and_test(&s->s_active)) {
 472		shrinker_free(s->s_shrink);
 
 473		fs->kill_sb(s);
 474
 475		kill_super_notify(s);
 476
 477		/*
 478		 * Since list_lru_destroy() may sleep, we cannot call it from
 479		 * put_super(), where we hold the sb_lock. Therefore we destroy
 480		 * the lru lists right now.
 481		 */
 482		list_lru_destroy(&s->s_dentry_lru);
 483		list_lru_destroy(&s->s_inode_lru);
 484
 485		put_filesystem(fs);
 486		put_super(s);
 487	} else {
 488		super_unlock_excl(s);
 489	}
 490}
 491
 492EXPORT_SYMBOL(deactivate_locked_super);
 493
 494/**
 495 *	deactivate_super	-	drop an active reference to superblock
 496 *	@s: superblock to deactivate
 497 *
 498 *	Variant of deactivate_locked_super(), except that superblock is *not*
 499 *	locked by caller.  If we are going to drop the final active reference,
 500 *	lock will be acquired prior to that.
 501 */
 502void deactivate_super(struct super_block *s)
 503{
 504	if (!atomic_add_unless(&s->s_active, -1, 1)) {
 505		__super_lock_excl(s);
 506		deactivate_locked_super(s);
 507	}
 508}
 509
 510EXPORT_SYMBOL(deactivate_super);
 511
 512/**
 513 * grab_super - acquire an active reference to a superblock
 514 * @sb: superblock to acquire
 515 *
 516 * Acquire a temporary reference on a superblock and try to trade it for
 517 * an active reference. This is used in sget{_fc}() to wait for a
 518 * superblock to either become SB_BORN or for it to pass through
 519 * sb->kill() and be marked as SB_DEAD.
 520 *
 521 * Return: This returns true if an active reference could be acquired,
 522 *         false if not.
 
 
 
 
 
 
 523 */
 524static bool grab_super(struct super_block *sb)
 525{
 526	bool locked;
 527
 528	sb->s_count++;
 529	spin_unlock(&sb_lock);
 530	locked = super_lock_excl(sb);
 531	if (locked) {
 532		if (atomic_inc_not_zero(&sb->s_active)) {
 533			put_super(sb);
 534			return true;
 535		}
 536		super_unlock_excl(sb);
 537	}
 538	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
 539	put_super(sb);
 540	return false;
 541}
 542
 543/*
 544 *	super_trylock_shared - try to grab ->s_umount shared
 545 *	@sb: reference we are trying to grab
 546 *
 547 *	Try to prevent fs shutdown.  This is used in places where we
 548 *	cannot take an active reference but we need to ensure that the
 549 *	filesystem is not shut down while we are working on it. It returns
 550 *	false if we cannot acquire s_umount or if we lose the race and
 551 *	filesystem already got into shutdown, and returns true with the s_umount
 552 *	lock held in read mode in case of success. On successful return,
 553 *	the caller must drop the s_umount lock when done.
 554 *
 555 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 556 *	The reason why it's safe is that we are OK with doing trylock instead
 557 *	of down_read().  There's a couple of places that are OK with that, but
 558 *	it's very much not a general-purpose interface.
 559 */
 560bool super_trylock_shared(struct super_block *sb)
 561{
 562	if (down_read_trylock(&sb->s_umount)) {
 563		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
 564		    (sb->s_flags & SB_BORN))
 565			return true;
 566		super_unlock_shared(sb);
 567	}
 568
 569	return false;
 570}
 571
 572/**
 573 *	retire_super	-	prevents superblock from being reused
 574 *	@sb: superblock to retire
 575 *
 576 *	The function marks superblock to be ignored in superblock test, which
 577 *	prevents it from being reused for any new mounts.  If the superblock has
 578 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 579 *	of the superblock to prevent potential races.  The refcount is reduced
 580 *	by generic_shutdown_super().  The function can not be called
 581 *	concurrently with generic_shutdown_super().  It is safe to call the
 582 *	function multiple times, subsequent calls have no effect.
 583 *
 584 *	The marker will affect the re-use only for block-device-based
 585 *	superblocks.  Other superblocks will still get marked if this function
 586 *	is used, but that will not affect their reusability.
 587 */
 588void retire_super(struct super_block *sb)
 589{
 590	WARN_ON(!sb->s_bdev);
 591	__super_lock_excl(sb);
 592	if (sb->s_iflags & SB_I_PERSB_BDI) {
 593		bdi_unregister(sb->s_bdi);
 594		sb->s_iflags &= ~SB_I_PERSB_BDI;
 595	}
 596	sb->s_iflags |= SB_I_RETIRED;
 597	super_unlock_excl(sb);
 598}
 599EXPORT_SYMBOL(retire_super);
 600
 601/**
 602 *	generic_shutdown_super	-	common helper for ->kill_sb()
 603 *	@sb: superblock to kill
 604 *
 605 *	generic_shutdown_super() does all fs-independent work on superblock
 606 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 607 *	that need destruction out of superblock, call generic_shutdown_super()
 608 *	and release aforementioned objects.  Note: dentries and inodes _are_
 609 *	taken care of and do not need specific handling.
 610 *
 611 *	Upon calling this function, the filesystem may no longer alter or
 612 *	rearrange the set of dentries belonging to this super_block, nor may it
 613 *	change the attachments of dentries to inodes.
 614 */
 615void generic_shutdown_super(struct super_block *sb)
 616{
 617	const struct super_operations *sop = sb->s_op;
 618
 619	if (sb->s_root) {
 620		shrink_dcache_for_umount(sb);
 621		sync_filesystem(sb);
 622		sb->s_flags &= ~SB_ACTIVE;
 623
 624		cgroup_writeback_umount(sb);
 
 625
 626		/* Evict all inodes with zero refcount. */
 627		evict_inodes(sb);
 628
 629		/*
 630		 * Clean up and evict any inodes that still have references due
 631		 * to fsnotify or the security policy.
 632		 */
 633		fsnotify_sb_delete(sb);
 634		security_sb_delete(sb);
 635
 636		if (sb->s_dio_done_wq) {
 637			destroy_workqueue(sb->s_dio_done_wq);
 638			sb->s_dio_done_wq = NULL;
 639		}
 640
 641		if (sop->put_super)
 642			sop->put_super(sb);
 643
 644		/*
 645		 * Now that all potentially-encrypted inodes have been evicted,
 646		 * the fscrypt keyring can be destroyed.
 647		 */
 648		fscrypt_destroy_keyring(sb);
 649
 650		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
 651				"VFS: Busy inodes after unmount of %s (%s)",
 652				sb->s_id, sb->s_type->name)) {
 653			/*
 654			 * Adding a proper bailout path here would be hard, but
 655			 * we can at least make it more likely that a later
 656			 * iput_final() or such crashes cleanly.
 657			 */
 658			struct inode *inode;
 659
 660			spin_lock(&sb->s_inode_list_lock);
 661			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
 662				inode->i_op = VFS_PTR_POISON;
 663				inode->i_sb = VFS_PTR_POISON;
 664				inode->i_mapping = VFS_PTR_POISON;
 665			}
 666			spin_unlock(&sb->s_inode_list_lock);
 667		}
 668	}
 669	/*
 670	 * Broadcast to everyone that grabbed a temporary reference to this
 671	 * superblock before we removed it from @fs_supers that the superblock
 672	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
 673	 * discard this superblock and treat it as dead.
 674	 *
 675	 * We leave the superblock on @fs_supers so it can be found by
 676	 * sget{_fc}() until we passed sb->kill_sb().
 677	 */
 678	super_wake(sb, SB_DYING);
 679	super_unlock_excl(sb);
 680	if (sb->s_bdi != &noop_backing_dev_info) {
 681		if (sb->s_iflags & SB_I_PERSB_BDI)
 682			bdi_unregister(sb->s_bdi);
 683		bdi_put(sb->s_bdi);
 684		sb->s_bdi = &noop_backing_dev_info;
 685	}
 686}
 687
 688EXPORT_SYMBOL(generic_shutdown_super);
 689
 690bool mount_capable(struct fs_context *fc)
 691{
 692	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 693		return capable(CAP_SYS_ADMIN);
 694	else
 695		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 696}
 697
 698/**
 699 * sget_fc - Find or create a superblock
 700 * @fc:	Filesystem context.
 701 * @test: Comparison callback
 702 * @set: Setup callback
 703 *
 704 * Create a new superblock or find an existing one.
 705 *
 706 * The @test callback is used to find a matching existing superblock.
 707 * Whether or not the requested parameters in @fc are taken into account
 708 * is specific to the @test callback that is used. They may even be
 709 * completely ignored.
 710 *
 711 * If an extant superblock is matched, it will be returned unless:
 712 *
 713 * (1) the namespace the filesystem context @fc and the extant
 714 *     superblock's namespace differ
 715 *
 716 * (2) the filesystem context @fc has requested that reusing an extant
 717 *     superblock is not allowed
 718 *
 719 * In both cases EBUSY will be returned.
 720 *
 721 * If no match is made, a new superblock will be allocated and basic
 722 * initialisation will be performed (s_type, s_fs_info and s_id will be
 723 * set and the @set callback will be invoked), the superblock will be
 724 * published and it will be returned in a partially constructed state
 725 * with SB_BORN and SB_ACTIVE as yet unset.
 726 *
 727 * Return: On success, an extant or newly created superblock is
 728 *         returned. On failure an error pointer is returned.
 729 */
 730struct super_block *sget_fc(struct fs_context *fc,
 731			    int (*test)(struct super_block *, struct fs_context *),
 732			    int (*set)(struct super_block *, struct fs_context *))
 
 
 733{
 734	struct super_block *s = NULL;
 735	struct super_block *old;
 736	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 737	int err;
 738
 739	/*
 740	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
 741	 * not set, as the filesystem is likely unprepared to handle it.
 742	 * This can happen when fsconfig() is called from init_user_ns with
 743	 * an fs_fd opened in another user namespace.
 744	 */
 745	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
 746		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
 747		return ERR_PTR(-EPERM);
 748	}
 749
 750retry:
 751	spin_lock(&sb_lock);
 752	if (test) {
 753		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 754			if (test(old, fc))
 755				goto share_extant_sb;
 
 
 
 
 
 
 
 
 
 756		}
 757	}
 758	if (!s) {
 759		spin_unlock(&sb_lock);
 760		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 761		if (!s)
 762			return ERR_PTR(-ENOMEM);
 763		goto retry;
 764	}
 765
 766	s->s_fs_info = fc->s_fs_info;
 767	err = set(s, fc);
 768	if (err) {
 769		s->s_fs_info = NULL;
 770		spin_unlock(&sb_lock);
 771		destroy_unused_super(s);
 772		return ERR_PTR(err);
 773	}
 774	fc->s_fs_info = NULL;
 775	s->s_type = fc->fs_type;
 776	s->s_iflags |= fc->s_iflags;
 777	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 778	/*
 779	 * Make the superblock visible on @super_blocks and @fs_supers.
 780	 * It's in a nascent state and users should wait on SB_BORN or
 781	 * SB_DYING to be set.
 782	 */
 783	list_add_tail(&s->s_list, &super_blocks);
 784	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 785	spin_unlock(&sb_lock);
 786	get_filesystem(s->s_type);
 787	shrinker_register(s->s_shrink);
 788	return s;
 
 789
 790share_extant_sb:
 791	if (user_ns != old->s_user_ns || fc->exclusive) {
 792		spin_unlock(&sb_lock);
 793		destroy_unused_super(s);
 794		if (fc->exclusive)
 795			warnfc(fc, "reusing existing filesystem not allowed");
 796		else
 797			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
 798		return ERR_PTR(-EBUSY);
 799	}
 800	if (!grab_super(old))
 801		goto retry;
 802	destroy_unused_super(s);
 803	return old;
 804}
 805EXPORT_SYMBOL(sget_fc);
 806
 807/**
 808 *	sget	-	find or create a superblock
 809 *	@type:	  filesystem type superblock should belong to
 810 *	@test:	  comparison callback
 811 *	@set:	  setup callback
 812 *	@flags:	  mount flags
 813 *	@data:	  argument to each of them
 814 */
 815struct super_block *sget(struct file_system_type *type,
 816			int (*test)(struct super_block *,void *),
 817			int (*set)(struct super_block *,void *),
 818			int flags,
 819			void *data)
 820{
 821	struct user_namespace *user_ns = current_user_ns();
 822	struct super_block *s = NULL;
 823	struct super_block *old;
 824	int err;
 825
 826	/* We don't yet pass the user namespace of the parent
 827	 * mount through to here so always use &init_user_ns
 828	 * until that changes.
 829	 */
 830	if (flags & SB_SUBMOUNT)
 831		user_ns = &init_user_ns;
 832
 833retry:
 834	spin_lock(&sb_lock);
 835	if (test) {
 836		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 837			if (!test(old, data))
 838				continue;
 839			if (user_ns != old->s_user_ns) {
 840				spin_unlock(&sb_lock);
 841				destroy_unused_super(s);
 842				return ERR_PTR(-EBUSY);
 843			}
 844			if (!grab_super(old))
 845				goto retry;
 846			destroy_unused_super(s);
 847			return old;
 848		}
 849	}
 850	if (!s) {
 851		spin_unlock(&sb_lock);
 852		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 853		if (!s)
 854			return ERR_PTR(-ENOMEM);
 855		goto retry;
 856	}
 857
 858	err = set(s, data);
 859	if (err) {
 860		spin_unlock(&sb_lock);
 861		destroy_unused_super(s);
 862		return ERR_PTR(err);
 863	}
 864	s->s_type = type;
 865	strscpy(s->s_id, type->name, sizeof(s->s_id));
 866	list_add_tail(&s->s_list, &super_blocks);
 867	hlist_add_head(&s->s_instances, &type->fs_supers);
 868	spin_unlock(&sb_lock);
 869	get_filesystem(type);
 870	shrinker_register(s->s_shrink);
 871	return s;
 872}
 
 873EXPORT_SYMBOL(sget);
 874
 875void drop_super(struct super_block *sb)
 876{
 877	super_unlock_shared(sb);
 878	put_super(sb);
 879}
 880
 881EXPORT_SYMBOL(drop_super);
 882
 883void drop_super_exclusive(struct super_block *sb)
 884{
 885	super_unlock_excl(sb);
 886	put_super(sb);
 887}
 888EXPORT_SYMBOL(drop_super_exclusive);
 889
 890static void __iterate_supers(void (*f)(struct super_block *))
 891{
 892	struct super_block *sb, *p = NULL;
 893
 894	spin_lock(&sb_lock);
 895	list_for_each_entry(sb, &super_blocks, s_list) {
 896		if (super_flags(sb, SB_DYING))
 897			continue;
 898		sb->s_count++;
 899		spin_unlock(&sb_lock);
 900
 901		f(sb);
 902
 903		spin_lock(&sb_lock);
 904		if (p)
 905			__put_super(p);
 906		p = sb;
 907	}
 908	if (p)
 909		__put_super(p);
 910	spin_unlock(&sb_lock);
 911}
 912/**
 913 *	iterate_supers - call function for all active superblocks
 914 *	@f: function to call
 915 *	@arg: argument to pass to it
 916 *
 917 *	Scans the superblock list and calls given function, passing it
 918 *	locked superblock and given argument.
 919 */
 920void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 921{
 922	struct super_block *sb, *p = NULL;
 923
 924	spin_lock(&sb_lock);
 925	list_for_each_entry(sb, &super_blocks, s_list) {
 926		bool locked;
 927
 928		sb->s_count++;
 929		spin_unlock(&sb_lock);
 930
 931		locked = super_lock_shared(sb);
 932		if (locked) {
 933			if (sb->s_root)
 934				f(sb, arg);
 935			super_unlock_shared(sb);
 936		}
 937
 938		spin_lock(&sb_lock);
 939		if (p)
 940			__put_super(p);
 941		p = sb;
 942	}
 943	if (p)
 944		__put_super(p);
 945	spin_unlock(&sb_lock);
 946}
 947
 948/**
 949 *	iterate_supers_type - call function for superblocks of given type
 950 *	@type: fs type
 951 *	@f: function to call
 952 *	@arg: argument to pass to it
 953 *
 954 *	Scans the superblock list and calls given function, passing it
 955 *	locked superblock and given argument.
 956 */
 957void iterate_supers_type(struct file_system_type *type,
 958	void (*f)(struct super_block *, void *), void *arg)
 959{
 960	struct super_block *sb, *p = NULL;
 961
 962	spin_lock(&sb_lock);
 963	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 964		bool locked;
 965
 966		sb->s_count++;
 967		spin_unlock(&sb_lock);
 968
 969		locked = super_lock_shared(sb);
 970		if (locked) {
 971			if (sb->s_root)
 972				f(sb, arg);
 973			super_unlock_shared(sb);
 974		}
 975
 976		spin_lock(&sb_lock);
 977		if (p)
 978			__put_super(p);
 979		p = sb;
 980	}
 981	if (p)
 982		__put_super(p);
 983	spin_unlock(&sb_lock);
 984}
 985
 986EXPORT_SYMBOL(iterate_supers_type);
 987
 988struct super_block *user_get_super(dev_t dev, bool excl)
 989{
 990	struct super_block *sb;
 991
 
 
 
 992	spin_lock(&sb_lock);
 
 993	list_for_each_entry(sb, &super_blocks, s_list) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		if (sb->s_dev ==  dev) {
 995			bool locked;
 996
 997			sb->s_count++;
 998			spin_unlock(&sb_lock);
 
 999			/* still alive? */
1000			locked = super_lock(sb, excl);
1001			if (locked) {
1002				if (sb->s_root)
1003					return sb;
1004				super_unlock(sb, excl);
1005			}
1006			/* nope, got unmounted */
1007			spin_lock(&sb_lock);
1008			__put_super(sb);
1009			break;
1010		}
1011	}
1012	spin_unlock(&sb_lock);
1013	return NULL;
1014}
1015
1016/**
1017 * reconfigure_super - asks filesystem to change superblock parameters
1018 * @fc: The superblock and configuration
 
 
 
1019 *
1020 * Alters the configuration parameters of a live superblock.
1021 */
1022int reconfigure_super(struct fs_context *fc)
1023{
1024	struct super_block *sb = fc->root->d_sb;
1025	int retval;
1026	bool remount_ro = false;
1027	bool remount_rw = false;
1028	bool force = fc->sb_flags & SB_FORCE;
1029
1030	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1031		return -EINVAL;
1032	if (sb->s_writers.frozen != SB_UNFROZEN)
1033		return -EBUSY;
1034
1035	retval = security_sb_remount(sb, fc->security);
1036	if (retval)
1037		return retval;
1038
1039	if (fc->sb_flags_mask & SB_RDONLY) {
1040#ifdef CONFIG_BLOCK
1041		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1042		    bdev_read_only(sb->s_bdev))
1043			return -EACCES;
1044#endif
1045		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1046		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1047	}
1048
1049	if (remount_ro) {
1050		if (!hlist_empty(&sb->s_pins)) {
1051			super_unlock_excl(sb);
1052			group_pin_kill(&sb->s_pins);
1053			__super_lock_excl(sb);
1054			if (!sb->s_root)
1055				return 0;
1056			if (sb->s_writers.frozen != SB_UNFROZEN)
1057				return -EBUSY;
1058			remount_ro = !sb_rdonly(sb);
1059		}
1060	}
1061	shrink_dcache_sb(sb);
1062
1063	/* If we are reconfiguring to RDONLY and current sb is read/write,
1064	 * make sure there are no files open for writing.
1065	 */
1066	if (remount_ro) {
1067		if (force) {
1068			sb_start_ro_state_change(sb);
 
1069		} else {
1070			retval = sb_prepare_remount_readonly(sb);
1071			if (retval)
1072				return retval;
1073		}
1074	} else if (remount_rw) {
1075		/*
1076		 * Protect filesystem's reconfigure code from writes from
1077		 * userspace until reconfigure finishes.
1078		 */
1079		sb_start_ro_state_change(sb);
1080	}
1081
1082	if (fc->ops->reconfigure) {
1083		retval = fc->ops->reconfigure(fc);
1084		if (retval) {
1085			if (!force)
1086				goto cancel_readonly;
1087			/* If forced remount, go ahead despite any errors */
1088			WARN(1, "forced remount of a %s fs returned %i\n",
1089			     sb->s_type->name, retval);
1090		}
1091	}
1092
1093	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1094				 (fc->sb_flags & fc->sb_flags_mask)));
1095	sb_end_ro_state_change(sb);
1096
1097	/*
1098	 * Some filesystems modify their metadata via some other path than the
1099	 * bdev buffer cache (eg. use a private mapping, or directories in
1100	 * pagecache, etc). Also file data modifications go via their own
1101	 * mappings. So If we try to mount readonly then copy the filesystem
1102	 * from bdev, we could get stale data, so invalidate it to give a best
1103	 * effort at coherency.
1104	 */
1105	if (remount_ro && sb->s_bdev)
1106		invalidate_bdev(sb->s_bdev);
1107	return 0;
1108
1109cancel_readonly:
1110	sb_end_ro_state_change(sb);
1111	return retval;
1112}
1113
1114static void do_emergency_remount_callback(struct super_block *sb)
1115{
1116	bool locked = super_lock_excl(sb);
1117
1118	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1119		struct fs_context *fc;
1120
1121		fc = fs_context_for_reconfigure(sb->s_root,
1122					SB_RDONLY | SB_FORCE, SB_RDONLY);
1123		if (!IS_ERR(fc)) {
1124			if (parse_monolithic_mount_data(fc, NULL) == 0)
1125				(void)reconfigure_super(fc);
1126			put_fs_context(fc);
1127		}
1128	}
1129	if (locked)
1130		super_unlock_excl(sb);
1131}
1132
1133static void do_emergency_remount(struct work_struct *work)
1134{
1135	__iterate_supers(do_emergency_remount_callback);
1136	kfree(work);
1137	printk("Emergency Remount complete\n");
1138}
1139
1140void emergency_remount(void)
1141{
1142	struct work_struct *work;
1143
1144	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1145	if (work) {
1146		INIT_WORK(work, do_emergency_remount);
1147		schedule_work(work);
1148	}
1149}
1150
1151static void do_thaw_all_callback(struct super_block *sb)
1152{
1153	bool locked = super_lock_excl(sb);
1154
1155	if (locked && sb->s_root) {
1156		if (IS_ENABLED(CONFIG_BLOCK))
1157			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1158				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1159		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1160		return;
1161	}
1162	if (locked)
1163		super_unlock_excl(sb);
1164}
1165
1166static void do_thaw_all(struct work_struct *work)
1167{
1168	__iterate_supers(do_thaw_all_callback);
1169	kfree(work);
1170	printk(KERN_WARNING "Emergency Thaw complete\n");
1171}
1172
1173/**
1174 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1175 *
1176 * Used for emergency unfreeze of all filesystems via SysRq
1177 */
1178void emergency_thaw_all(void)
1179{
1180	struct work_struct *work;
1181
1182	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1183	if (work) {
1184		INIT_WORK(work, do_thaw_all);
1185		schedule_work(work);
1186	}
1187}
1188
 
 
 
 
 
1189static DEFINE_IDA(unnamed_dev_ida);
 
 
 
 
 
1190
1191/**
1192 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1193 * @p: Pointer to a dev_t.
1194 *
1195 * Filesystems which don't use real block devices can call this function
1196 * to allocate a virtual block device.
1197 *
1198 * Context: Any context.  Frequently called while holding sb_lock.
1199 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1200 * or -ENOMEM if memory allocation failed.
1201 */
1202int get_anon_bdev(dev_t *p)
1203{
1204	int dev;
 
1205
1206	/*
1207	 * Many userspace utilities consider an FSID of 0 invalid.
1208	 * Always return at least 1 from get_anon_bdev.
1209	 */
1210	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1211			GFP_ATOMIC);
1212	if (dev == -ENOSPC)
1213		dev = -EMFILE;
1214	if (dev < 0)
1215		return dev;
 
 
 
1216
1217	*p = MKDEV(0, dev);
 
 
 
 
 
 
 
 
1218	return 0;
1219}
1220EXPORT_SYMBOL(get_anon_bdev);
1221
1222void free_anon_bdev(dev_t dev)
1223{
1224	ida_free(&unnamed_dev_ida, MINOR(dev));
 
 
 
 
 
1225}
1226EXPORT_SYMBOL(free_anon_bdev);
1227
1228int set_anon_super(struct super_block *s, void *data)
1229{
1230	return get_anon_bdev(&s->s_dev);
1231}
 
1232EXPORT_SYMBOL(set_anon_super);
1233
1234void kill_anon_super(struct super_block *sb)
1235{
1236	dev_t dev = sb->s_dev;
1237	generic_shutdown_super(sb);
1238	kill_super_notify(sb);
1239	free_anon_bdev(dev);
1240}
 
1241EXPORT_SYMBOL(kill_anon_super);
1242
1243void kill_litter_super(struct super_block *sb)
1244{
1245	if (sb->s_root)
1246		d_genocide(sb->s_root);
1247	kill_anon_super(sb);
1248}
 
1249EXPORT_SYMBOL(kill_litter_super);
1250
1251int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1252{
1253	return set_anon_super(sb, NULL);
1254}
1255EXPORT_SYMBOL(set_anon_super_fc);
1256
1257static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1258{
1259	return sb->s_fs_info == fc->s_fs_info;
 
1260}
1261
1262static int test_single_super(struct super_block *s, struct fs_context *fc)
 
 
1263{
1264	return 1;
1265}
1266
1267static int vfs_get_super(struct fs_context *fc,
1268		int (*test)(struct super_block *, struct fs_context *),
1269		int (*fill_super)(struct super_block *sb,
1270				  struct fs_context *fc))
1271{
1272	struct super_block *sb;
1273	int err;
1274
1275	sb = sget_fc(fc, test, set_anon_super_fc);
 
1276	if (IS_ERR(sb))
1277		return PTR_ERR(sb);
1278
1279	if (!sb->s_root) {
1280		err = fill_super(sb, fc);
1281		if (err)
1282			goto error;
 
 
 
1283
1284		sb->s_flags |= SB_ACTIVE;
1285	}
1286
1287	fc->root = dget(sb->s_root);
1288	return 0;
1289
1290error:
1291	deactivate_locked_super(sb);
1292	return err;
1293}
1294
1295int get_tree_nodev(struct fs_context *fc,
1296		  int (*fill_super)(struct super_block *sb,
1297				    struct fs_context *fc))
1298{
1299	return vfs_get_super(fc, NULL, fill_super);
1300}
1301EXPORT_SYMBOL(get_tree_nodev);
1302
1303int get_tree_single(struct fs_context *fc,
1304		  int (*fill_super)(struct super_block *sb,
1305				    struct fs_context *fc))
1306{
1307	return vfs_get_super(fc, test_single_super, fill_super);
1308}
1309EXPORT_SYMBOL(get_tree_single);
1310
1311int get_tree_keyed(struct fs_context *fc,
1312		  int (*fill_super)(struct super_block *sb,
1313				    struct fs_context *fc),
1314		void *key)
1315{
1316	fc->s_fs_info = key;
1317	return vfs_get_super(fc, test_keyed_super, fill_super);
1318}
1319EXPORT_SYMBOL(get_tree_keyed);
1320
 
1321static int set_bdev_super(struct super_block *s, void *data)
1322{
1323	s->s_dev = *(dev_t *)data;
1324	return 0;
1325}
1326
1327static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1328{
1329	return set_bdev_super(s, fc->sget_key);
1330}
1331
1332static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1333{
1334	return !(s->s_iflags & SB_I_RETIRED) &&
1335		s->s_dev == *(dev_t *)fc->sget_key;
1336}
1337
1338/**
1339 * sget_dev - Find or create a superblock by device number
1340 * @fc: Filesystem context.
1341 * @dev: device number
1342 *
1343 * Find or create a superblock using the provided device number that
1344 * will be stored in fc->sget_key.
1345 *
1346 * If an extant superblock is matched, then that will be returned with
1347 * an elevated reference count that the caller must transfer or discard.
1348 *
1349 * If no match is made, a new superblock will be allocated and basic
1350 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1351 * be set). The superblock will be published and it will be returned in
1352 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1353 * unset.
1354 *
1355 * Return: an existing or newly created superblock on success, an error
1356 *         pointer on failure.
1357 */
1358struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1359{
1360	fc->sget_key = &dev;
1361	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1362}
1363EXPORT_SYMBOL(sget_dev);
1364
1365#ifdef CONFIG_BLOCK
1366/*
1367 * Lock the superblock that is holder of the bdev. Returns the superblock
1368 * pointer if we successfully locked the superblock and it is alive. Otherwise
1369 * we return NULL and just unlock bdev->bd_holder_lock.
1370 *
1371 * The function must be called with bdev->bd_holder_lock and releases it.
1372 */
1373static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1374	__releases(&bdev->bd_holder_lock)
1375{
1376	struct super_block *sb = bdev->bd_holder;
1377	bool locked;
1378
1379	lockdep_assert_held(&bdev->bd_holder_lock);
1380	lockdep_assert_not_held(&sb->s_umount);
1381	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1382
1383	/* Make sure sb doesn't go away from under us */
1384	spin_lock(&sb_lock);
1385	sb->s_count++;
1386	spin_unlock(&sb_lock);
1387
1388	mutex_unlock(&bdev->bd_holder_lock);
1389
1390	locked = super_lock(sb, excl);
1391
1392	/*
1393	 * If the superblock wasn't already SB_DYING then we hold
1394	 * s_umount and can safely drop our temporary reference.
1395         */
1396	put_super(sb);
1397
1398	if (!locked)
1399		return NULL;
1400
1401	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1402		super_unlock(sb, excl);
1403		return NULL;
1404	}
1405
1406	return sb;
1407}
1408
1409static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1410{
1411	struct super_block *sb;
1412
1413	sb = bdev_super_lock(bdev, false);
1414	if (!sb)
1415		return;
1416
1417	if (!surprise)
1418		sync_filesystem(sb);
1419	shrink_dcache_sb(sb);
1420	invalidate_inodes(sb);
1421	if (sb->s_op->shutdown)
1422		sb->s_op->shutdown(sb);
1423
1424	super_unlock_shared(sb);
1425}
1426
1427static void fs_bdev_sync(struct block_device *bdev)
1428{
1429	struct super_block *sb;
1430
1431	sb = bdev_super_lock(bdev, false);
1432	if (!sb)
1433		return;
1434
1435	sync_filesystem(sb);
1436	super_unlock_shared(sb);
1437}
1438
1439static struct super_block *get_bdev_super(struct block_device *bdev)
1440{
1441	bool active = false;
1442	struct super_block *sb;
1443
1444	sb = bdev_super_lock(bdev, true);
1445	if (sb) {
1446		active = atomic_inc_not_zero(&sb->s_active);
1447		super_unlock_excl(sb);
1448	}
1449	if (!active)
1450		return NULL;
1451	return sb;
1452}
1453
1454/**
1455 * fs_bdev_freeze - freeze owning filesystem of block device
1456 * @bdev: block device
1457 *
1458 * Freeze the filesystem that owns this block device if it is still
1459 * active.
1460 *
1461 * A filesystem that owns multiple block devices may be frozen from each
1462 * block device and won't be unfrozen until all block devices are
1463 * unfrozen. Each block device can only freeze the filesystem once as we
1464 * nest freezes for block devices in the block layer.
1465 *
1466 * Return: If the freeze was successful zero is returned. If the freeze
1467 *         failed a negative error code is returned.
1468 */
1469static int fs_bdev_freeze(struct block_device *bdev)
1470{
1471	struct super_block *sb;
1472	int error = 0;
1473
1474	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1475
1476	sb = get_bdev_super(bdev);
1477	if (!sb)
1478		return -EINVAL;
1479
1480	if (sb->s_op->freeze_super)
1481		error = sb->s_op->freeze_super(sb,
1482				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1483	else
1484		error = freeze_super(sb,
1485				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1486	if (!error)
1487		error = sync_blockdev(bdev);
1488	deactivate_super(sb);
1489	return error;
1490}
1491
1492/**
1493 * fs_bdev_thaw - thaw owning filesystem of block device
1494 * @bdev: block device
1495 *
1496 * Thaw the filesystem that owns this block device.
1497 *
1498 * A filesystem that owns multiple block devices may be frozen from each
1499 * block device and won't be unfrozen until all block devices are
1500 * unfrozen. Each block device can only freeze the filesystem once as we
1501 * nest freezes for block devices in the block layer.
1502 *
1503 * Return: If the thaw was successful zero is returned. If the thaw
1504 *         failed a negative error code is returned. If this function
1505 *         returns zero it doesn't mean that the filesystem is unfrozen
1506 *         as it may have been frozen multiple times (kernel may hold a
1507 *         freeze or might be frozen from other block devices).
1508 */
1509static int fs_bdev_thaw(struct block_device *bdev)
1510{
1511	struct super_block *sb;
1512	int error;
1513
1514	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1515
1516	/*
1517	 * The block device may have been frozen before it was claimed by a
1518	 * filesystem. Concurrently another process might try to mount that
1519	 * frozen block device and has temporarily claimed the block device for
1520	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1521	 * mounter is already about to abort mounting because they still saw an
1522	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1523	 * NULL in that case.
1524	 */
1525	sb = get_bdev_super(bdev);
1526	if (!sb)
1527		return -EINVAL;
1528
1529	if (sb->s_op->thaw_super)
1530		error = sb->s_op->thaw_super(sb,
1531				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1532	else
1533		error = thaw_super(sb,
1534				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1535	deactivate_super(sb);
1536	return error;
1537}
1538
1539const struct blk_holder_ops fs_holder_ops = {
1540	.mark_dead		= fs_bdev_mark_dead,
1541	.sync			= fs_bdev_sync,
1542	.freeze			= fs_bdev_freeze,
1543	.thaw			= fs_bdev_thaw,
1544};
1545EXPORT_SYMBOL_GPL(fs_holder_ops);
1546
1547int setup_bdev_super(struct super_block *sb, int sb_flags,
1548		struct fs_context *fc)
1549{
1550	blk_mode_t mode = sb_open_mode(sb_flags);
1551	struct file *bdev_file;
1552	struct block_device *bdev;
1553
1554	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1555	if (IS_ERR(bdev_file)) {
1556		if (fc)
1557			errorf(fc, "%s: Can't open blockdev", fc->source);
1558		return PTR_ERR(bdev_file);
1559	}
1560	bdev = file_bdev(bdev_file);
1561
1562	/*
1563	 * This really should be in blkdev_get_by_dev, but right now can't due
1564	 * to legacy issues that require us to allow opening a block device node
1565	 * writable from userspace even for a read-only block device.
1566	 */
1567	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1568		bdev_fput(bdev_file);
1569		return -EACCES;
1570	}
1571
1572	/*
1573	 * It is enough to check bdev was not frozen before we set
1574	 * s_bdev as freezing will wait until SB_BORN is set.
1575	 */
1576	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1577		if (fc)
1578			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1579		bdev_fput(bdev_file);
1580		return -EBUSY;
1581	}
1582	spin_lock(&sb_lock);
1583	sb->s_bdev_file = bdev_file;
1584	sb->s_bdev = bdev;
1585	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1586	if (bdev_stable_writes(bdev))
1587		sb->s_iflags |= SB_I_STABLE_WRITES;
1588	spin_unlock(&sb_lock);
1589
1590	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1591	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1592				sb->s_id);
1593	sb_set_blocksize(sb, block_size(bdev));
1594	return 0;
1595}
1596EXPORT_SYMBOL_GPL(setup_bdev_super);
1597
1598/**
1599 * get_tree_bdev_flags - Get a superblock based on a single block device
1600 * @fc: The filesystem context holding the parameters
1601 * @fill_super: Helper to initialise a new superblock
1602 * @flags: GET_TREE_BDEV_* flags
1603 */
1604int get_tree_bdev_flags(struct fs_context *fc,
1605		int (*fill_super)(struct super_block *sb,
1606				  struct fs_context *fc), unsigned int flags)
1607{
1608	struct super_block *s;
1609	int error = 0;
1610	dev_t dev;
1611
1612	if (!fc->source)
1613		return invalf(fc, "No source specified");
1614
1615	error = lookup_bdev(fc->source, &dev);
1616	if (error) {
1617		if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1618			errorf(fc, "%s: Can't lookup blockdev", fc->source);
1619		return error;
1620	}
1621	fc->sb_flags |= SB_NOSEC;
1622	s = sget_dev(fc, dev);
1623	if (IS_ERR(s))
1624		return PTR_ERR(s);
1625
1626	if (s->s_root) {
1627		/* Don't summarily change the RO/RW state. */
1628		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1629			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1630			deactivate_locked_super(s);
1631			return -EBUSY;
1632		}
1633	} else {
1634		error = setup_bdev_super(s, fc->sb_flags, fc);
1635		if (!error)
1636			error = fill_super(s, fc);
1637		if (error) {
1638			deactivate_locked_super(s);
1639			return error;
1640		}
1641		s->s_flags |= SB_ACTIVE;
1642	}
1643
1644	BUG_ON(fc->root);
1645	fc->root = dget(s->s_root);
1646	return 0;
1647}
1648EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1649
1650/**
1651 * get_tree_bdev - Get a superblock based on a single block device
1652 * @fc: The filesystem context holding the parameters
1653 * @fill_super: Helper to initialise a new superblock
1654 */
1655int get_tree_bdev(struct fs_context *fc,
1656		int (*fill_super)(struct super_block *,
1657				  struct fs_context *))
1658{
1659	return get_tree_bdev_flags(fc, fill_super, 0);
1660}
1661EXPORT_SYMBOL(get_tree_bdev);
1662
1663static int test_bdev_super(struct super_block *s, void *data)
1664{
1665	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1666}
1667
1668struct dentry *mount_bdev(struct file_system_type *fs_type,
1669	int flags, const char *dev_name, void *data,
1670	int (*fill_super)(struct super_block *, void *, int))
1671{
 
1672	struct super_block *s;
1673	int error;
1674	dev_t dev;
1675
1676	error = lookup_bdev(dev_name, &dev);
1677	if (error)
1678		return ERR_PTR(error);
1679
1680	flags |= SB_NOSEC;
1681	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682	if (IS_ERR(s))
1683		return ERR_CAST(s);
1684
1685	if (s->s_root) {
1686		if ((flags ^ s->s_flags) & SB_RDONLY) {
1687			deactivate_locked_super(s);
1688			return ERR_PTR(-EBUSY);
 
1689		}
 
 
 
 
 
 
 
 
 
 
 
1690	} else {
1691		error = setup_bdev_super(s, flags, NULL);
1692		if (!error)
1693			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
 
1694		if (error) {
1695			deactivate_locked_super(s);
1696			return ERR_PTR(error);
1697		}
1698
1699		s->s_flags |= SB_ACTIVE;
 
1700	}
1701
1702	return dget(s->s_root);
 
 
 
 
 
 
 
1703}
1704EXPORT_SYMBOL(mount_bdev);
1705
1706void kill_block_super(struct super_block *sb)
1707{
1708	struct block_device *bdev = sb->s_bdev;
 
1709
 
1710	generic_shutdown_super(sb);
1711	if (bdev) {
1712		sync_blockdev(bdev);
1713		bdev_fput(sb->s_bdev_file);
1714	}
1715}
1716
1717EXPORT_SYMBOL(kill_block_super);
1718#endif
1719
1720struct dentry *mount_nodev(struct file_system_type *fs_type,
1721	int flags, void *data,
1722	int (*fill_super)(struct super_block *, void *, int))
1723{
1724	int error;
1725	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1726
1727	if (IS_ERR(s))
1728		return ERR_CAST(s);
1729
1730	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1731	if (error) {
1732		deactivate_locked_super(s);
1733		return ERR_PTR(error);
1734	}
1735	s->s_flags |= SB_ACTIVE;
1736	return dget(s->s_root);
1737}
1738EXPORT_SYMBOL(mount_nodev);
1739
1740int reconfigure_single(struct super_block *s,
1741		       int flags, void *data)
1742{
1743	struct fs_context *fc;
1744	int ret;
1745
1746	/* The caller really need to be passing fc down into mount_single(),
1747	 * then a chunk of this can be removed.  [Bollocks -- AV]
1748	 * Better yet, reconfiguration shouldn't happen, but rather the second
1749	 * mount should be rejected if the parameters are not compatible.
1750	 */
1751	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1752	if (IS_ERR(fc))
1753		return PTR_ERR(fc);
1754
1755	ret = parse_monolithic_mount_data(fc, data);
1756	if (ret < 0)
1757		goto out;
1758
1759	ret = reconfigure_super(fc);
1760out:
1761	put_fs_context(fc);
1762	return ret;
1763}
1764
1765static int compare_single(struct super_block *s, void *p)
1766{
1767	return 1;
1768}
1769
1770struct dentry *mount_single(struct file_system_type *fs_type,
1771	int flags, void *data,
1772	int (*fill_super)(struct super_block *, void *, int))
1773{
1774	struct super_block *s;
1775	int error;
1776
1777	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1778	if (IS_ERR(s))
1779		return ERR_CAST(s);
1780	if (!s->s_root) {
1781		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1782		if (!error)
1783			s->s_flags |= SB_ACTIVE;
 
 
 
1784	} else {
1785		error = reconfigure_single(s, flags, data);
1786	}
1787	if (unlikely(error)) {
1788		deactivate_locked_super(s);
1789		return ERR_PTR(error);
1790	}
1791	return dget(s->s_root);
1792}
1793EXPORT_SYMBOL(mount_single);
1794
1795/**
1796 * vfs_get_tree - Get the mountable root
1797 * @fc: The superblock configuration context.
1798 *
1799 * The filesystem is invoked to get or create a superblock which can then later
1800 * be used for mounting.  The filesystem places a pointer to the root to be
1801 * used for mounting in @fc->root.
1802 */
1803int vfs_get_tree(struct fs_context *fc)
1804{
 
1805	struct super_block *sb;
1806	int error;
1807
1808	if (fc->root)
1809		return -EBUSY;
1810
1811	/* Get the mountable root in fc->root, with a ref on the root and a ref
1812	 * on the superblock.
1813	 */
1814	error = fc->ops->get_tree(fc);
1815	if (error < 0)
1816		return error;
1817
1818	if (!fc->root) {
1819		pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1820		       fc->fs_type->name, error);
1821		/* We don't know what the locking state of the superblock is -
1822		 * if there is a superblock.
1823		 */
1824		BUG();
1825	}
1826
1827	sb = fc->root->d_sb;
1828	WARN_ON(!sb->s_bdi);
1829
1830	/*
1831	 * super_wake() contains a memory barrier which also care of
1832	 * ordering for super_cache_count(). We place it before setting
1833	 * SB_BORN as the data dependency between the two functions is
1834	 * the superblock structure contents that we just set up, not
1835	 * the SB_BORN flag.
1836	 */
1837	super_wake(sb, SB_BORN);
 
1838
1839	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1840	if (unlikely(error)) {
1841		fc_drop_locked(fc);
1842		return error;
1843	}
1844
1845	/*
1846	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1847	 * but s_maxbytes was an unsigned long long for many releases. Throw
1848	 * this warning for a little while to try and catch filesystems that
1849	 * violate this rule.
1850	 */
1851	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1852		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1853
1854	return 0;
 
 
 
 
 
 
 
 
 
1855}
1856EXPORT_SYMBOL(vfs_get_tree);
1857
1858/*
1859 * Setup private BDI for given superblock. It gets automatically cleaned up
1860 * in generic_shutdown_super().
1861 */
1862int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1863{
1864	struct backing_dev_info *bdi;
1865	int err;
1866	va_list args;
1867
1868	bdi = bdi_alloc(NUMA_NO_NODE);
1869	if (!bdi)
1870		return -ENOMEM;
1871
 
 
1872	va_start(args, fmt);
1873	err = bdi_register_va(bdi, fmt, args);
1874	va_end(args);
1875	if (err) {
1876		bdi_put(bdi);
1877		return err;
1878	}
1879	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1880	sb->s_bdi = bdi;
1881	sb->s_iflags |= SB_I_PERSB_BDI;
1882
1883	return 0;
1884}
1885EXPORT_SYMBOL(super_setup_bdi_name);
1886
1887/*
1888 * Setup private BDI for given superblock. I gets automatically cleaned up
1889 * in generic_shutdown_super().
1890 */
1891int super_setup_bdi(struct super_block *sb)
1892{
1893	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1894
1895	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1896				    atomic_long_inc_return(&bdi_seq));
1897}
1898EXPORT_SYMBOL(super_setup_bdi);
1899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900/**
1901 * sb_wait_write - wait until all writers to given file system finish
1902 * @sb: the super for which we wait
1903 * @level: type of writers we wait for (normal vs page fault)
1904 *
1905 * This function waits until there are no writers of given type to given file
1906 * system.
1907 */
1908static void sb_wait_write(struct super_block *sb, int level)
1909{
1910	percpu_down_write(sb->s_writers.rw_sem + level-1);
1911}
1912
1913/*
1914 * We are going to return to userspace and forget about these locks, the
1915 * ownership goes to the caller of thaw_super() which does unlock().
1916 */
1917static void lockdep_sb_freeze_release(struct super_block *sb)
1918{
1919	int level;
1920
1921	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1922		percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1923}
1924
1925/*
1926 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1927 */
1928static void lockdep_sb_freeze_acquire(struct super_block *sb)
1929{
1930	int level;
1931
1932	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1933		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1934}
1935
1936static void sb_freeze_unlock(struct super_block *sb, int level)
1937{
1938	for (level--; level >= 0; level--)
 
 
1939		percpu_up_write(sb->s_writers.rw_sem + level);
1940}
1941
1942static int wait_for_partially_frozen(struct super_block *sb)
1943{
1944	int ret = 0;
1945
1946	do {
1947		unsigned short old = sb->s_writers.frozen;
1948
1949		up_write(&sb->s_umount);
1950		ret = wait_var_event_killable(&sb->s_writers.frozen,
1951					       sb->s_writers.frozen != old);
1952		down_write(&sb->s_umount);
1953	} while (ret == 0 &&
1954		 sb->s_writers.frozen != SB_UNFROZEN &&
1955		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1956
1957	return ret;
1958}
1959
1960#define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1961#define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1962
1963static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1964{
1965	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1966	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1967
1968	if (who & FREEZE_HOLDER_KERNEL)
1969		++sb->s_writers.freeze_kcount;
1970	if (who & FREEZE_HOLDER_USERSPACE)
1971		++sb->s_writers.freeze_ucount;
1972	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1973}
1974
1975static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1976{
1977	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1978	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1979
1980	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1981		--sb->s_writers.freeze_kcount;
1982	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1983		--sb->s_writers.freeze_ucount;
1984	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1985}
1986
1987static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
1988{
1989	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1990	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1991
1992	if (who & FREEZE_HOLDER_KERNEL)
1993		return (who & FREEZE_MAY_NEST) ||
1994		       sb->s_writers.freeze_kcount == 0;
1995	if (who & FREEZE_HOLDER_USERSPACE)
1996		return (who & FREEZE_MAY_NEST) ||
1997		       sb->s_writers.freeze_ucount == 0;
1998	return false;
1999}
2000
2001/**
2002 * freeze_super - lock the filesystem and force it into a consistent state
2003 * @sb: the super to lock
2004 * @who: context that wants to freeze
2005 *
2006 * Syncs the super to make sure the filesystem is consistent and calls the fs's
2007 * freeze_fs.  Subsequent calls to this without first thawing the fs may return
2008 * -EBUSY.
2009 *
2010 * @who should be:
2011 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2012 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2013 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2014 *
2015 * The @who argument distinguishes between the kernel and userspace trying to
2016 * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2017 * multiple userspace freezes in effect at any given time, the kernel and
2018 * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2019 * until there are no kernel or userspace freezes in effect.
2020 *
2021 * A filesystem may hold multiple devices and thus a filesystems may be
2022 * frozen through the block layer via multiple block devices. In this
2023 * case the request is marked as being allowed to nest by passing
2024 * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2025 * devices are unfrozen. If multiple freezes are attempted without
2026 * FREEZE_MAY_NEST -EBUSY will be returned.
2027 *
2028 * During this function, sb->s_writers.frozen goes through these values:
2029 *
2030 * SB_UNFROZEN: File system is normal, all writes progress as usual.
2031 *
2032 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2033 * writes should be blocked, though page faults are still allowed. We wait for
2034 * all writes to complete and then proceed to the next stage.
2035 *
2036 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2037 * but internal fs threads can still modify the filesystem (although they
2038 * should not dirty new pages or inodes), writeback can run etc. After waiting
2039 * for all running page faults we sync the filesystem which will clean all
2040 * dirty pages and inodes (no new dirty pages or inodes can be created when
2041 * sync is running).
2042 *
2043 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2044 * modification are blocked (e.g. XFS preallocation truncation on inode
2045 * reclaim). This is usually implemented by blocking new transactions for
2046 * filesystems that have them and need this additional guard. After all
2047 * internal writers are finished we call ->freeze_fs() to finish filesystem
2048 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2049 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2050 *
2051 * sb->s_writers.frozen is protected by sb->s_umount.
2052 *
2053 * Return: If the freeze was successful zero is returned. If the freeze
2054 *         failed a negative error code is returned.
2055 */
2056int freeze_super(struct super_block *sb, enum freeze_holder who)
2057{
2058	int ret;
2059
2060	if (!super_lock_excl(sb)) {
2061		WARN_ON_ONCE("Dying superblock while freezing!");
2062		return -EINVAL;
2063	}
2064	atomic_inc(&sb->s_active);
2065
2066retry:
2067	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2068		if (may_freeze(sb, who))
2069			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2070		else
2071			ret = -EBUSY;
2072		/* All freezers share a single active reference. */
2073		deactivate_locked_super(sb);
2074		return ret;
2075	}
2076
2077	if (sb->s_writers.frozen != SB_UNFROZEN) {
2078		ret = wait_for_partially_frozen(sb);
2079		if (ret) {
2080			deactivate_locked_super(sb);
2081			return ret;
2082		}
2083
2084		goto retry;
2085	}
2086
2087	if (sb_rdonly(sb)) {
2088		/* Nothing to do really... */
2089		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2090		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2091		wake_up_var(&sb->s_writers.frozen);
2092		super_unlock_excl(sb);
2093		return 0;
2094	}
2095
2096	sb->s_writers.frozen = SB_FREEZE_WRITE;
2097	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2098	super_unlock_excl(sb);
2099	sb_wait_write(sb, SB_FREEZE_WRITE);
2100	__super_lock_excl(sb);
2101
2102	/* Now we go and block page faults... */
2103	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2104	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2105
2106	/* All writers are done so after syncing there won't be dirty data */
2107	ret = sync_filesystem(sb);
2108	if (ret) {
2109		sb->s_writers.frozen = SB_UNFROZEN;
2110		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2111		wake_up_var(&sb->s_writers.frozen);
2112		deactivate_locked_super(sb);
2113		return ret;
2114	}
2115
2116	/* Now wait for internal filesystem counter */
2117	sb->s_writers.frozen = SB_FREEZE_FS;
2118	sb_wait_write(sb, SB_FREEZE_FS);
2119
2120	if (sb->s_op->freeze_fs) {
2121		ret = sb->s_op->freeze_fs(sb);
2122		if (ret) {
2123			printk(KERN_ERR
2124				"VFS:Filesystem freeze failed\n");
2125			sb->s_writers.frozen = SB_UNFROZEN;
2126			sb_freeze_unlock(sb, SB_FREEZE_FS);
2127			wake_up_var(&sb->s_writers.frozen);
2128			deactivate_locked_super(sb);
2129			return ret;
2130		}
2131	}
2132	/*
2133	 * For debugging purposes so that fs can warn if it sees write activity
2134	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2135	 */
2136	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2137	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2138	wake_up_var(&sb->s_writers.frozen);
2139	lockdep_sb_freeze_release(sb);
2140	super_unlock_excl(sb);
2141	return 0;
2142}
2143EXPORT_SYMBOL(freeze_super);
2144
2145/*
2146 * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2147 * frozen both by userspace and the kernel, a thaw call from either source
2148 * removes that state without releasing the other state or unlocking the
2149 * filesystem.
2150 */
2151static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2152{
2153	int error = -EINVAL;
2154
2155	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2156		goto out_unlock;
2157
2158	/*
2159	 * All freezers share a single active reference.
2160	 * So just unlock in case there are any left.
2161	 */
2162	if (freeze_dec(sb, who))
2163		goto out_unlock;
2164
2165	if (sb_rdonly(sb)) {
2166		sb->s_writers.frozen = SB_UNFROZEN;
2167		wake_up_var(&sb->s_writers.frozen);
2168		goto out_deactivate;
2169	}
2170
2171	lockdep_sb_freeze_acquire(sb);
2172
2173	if (sb->s_op->unfreeze_fs) {
2174		error = sb->s_op->unfreeze_fs(sb);
2175		if (error) {
2176			pr_err("VFS: Filesystem thaw failed\n");
2177			freeze_inc(sb, who);
2178			lockdep_sb_freeze_release(sb);
2179			goto out_unlock;
 
2180		}
2181	}
2182
2183	sb->s_writers.frozen = SB_UNFROZEN;
2184	wake_up_var(&sb->s_writers.frozen);
2185	sb_freeze_unlock(sb, SB_FREEZE_FS);
2186out_deactivate:
2187	deactivate_locked_super(sb);
2188	return 0;
2189
2190out_unlock:
2191	super_unlock_excl(sb);
2192	return error;
2193}
2194
2195/**
2196 * thaw_super -- unlock filesystem
2197 * @sb: the super to thaw
2198 * @who: context that wants to freeze
2199 *
2200 * Unlocks the filesystem and marks it writeable again after freeze_super()
2201 * if there are no remaining freezes on the filesystem.
2202 *
2203 * @who should be:
2204 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2205 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2206 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2207 *
2208 * A filesystem may hold multiple devices and thus a filesystems may
2209 * have been frozen through the block layer via multiple block devices.
2210 * The filesystem remains frozen until all block devices are unfrozen.
2211 */
2212int thaw_super(struct super_block *sb, enum freeze_holder who)
2213{
2214	if (!super_lock_excl(sb)) {
2215		WARN_ON_ONCE("Dying superblock while thawing!");
2216		return -EINVAL;
2217	}
2218	return thaw_super_locked(sb, who);
2219}
2220EXPORT_SYMBOL(thaw_super);
2221
2222/*
2223 * Create workqueue for deferred direct IO completions. We allocate the
2224 * workqueue when it's first needed. This avoids creating workqueue for
2225 * filesystems that don't need it and also allows us to create the workqueue
2226 * late enough so the we can include s_id in the name of the workqueue.
2227 */
2228int sb_init_dio_done_wq(struct super_block *sb)
2229{
2230	struct workqueue_struct *old;
2231	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2232						      WQ_MEM_RECLAIM, 0,
2233						      sb->s_id);
2234	if (!wq)
2235		return -ENOMEM;
2236	/*
2237	 * This has to be atomic as more DIOs can race to create the workqueue
2238	 */
2239	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2240	/* Someone created workqueue before us? Free ours... */
2241	if (old)
2242		destroy_workqueue(wq);
2243	return 0;
2244}
2245EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);