Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include "internal.h"
  39
  40static int thaw_super_locked(struct super_block *sb);
  41
  42static LIST_HEAD(super_blocks);
  43static DEFINE_SPINLOCK(sb_lock);
  44
  45static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  46	"sb_writers",
  47	"sb_pagefaults",
  48	"sb_internal",
  49};
  50
  51/*
  52 * One thing we have to be careful of with a per-sb shrinker is that we don't
  53 * drop the last active reference to the superblock from within the shrinker.
  54 * If that happens we could trigger unregistering the shrinker from within the
  55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  56 * take a passive reference to the superblock to avoid this from occurring.
  57 */
  58static unsigned long super_cache_scan(struct shrinker *shrink,
  59				      struct shrink_control *sc)
  60{
  61	struct super_block *sb;
  62	long	fs_objects = 0;
  63	long	total_objects;
  64	long	freed = 0;
  65	long	dentries;
  66	long	inodes;
  67
  68	sb = container_of(shrink, struct super_block, s_shrink);
  69
  70	/*
  71	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  72	 * to recurse into the FS that called us in clear_inode() and friends..
  73	 */
  74	if (!(sc->gfp_mask & __GFP_FS))
  75		return SHRINK_STOP;
  76
  77	if (!trylock_super(sb))
  78		return SHRINK_STOP;
  79
  80	if (sb->s_op->nr_cached_objects)
  81		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  82
  83	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  84	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  85	total_objects = dentries + inodes + fs_objects + 1;
  86	if (!total_objects)
  87		total_objects = 1;
  88
  89	/* proportion the scan between the caches */
  90	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  91	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  92	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  93
  94	/*
  95	 * prune the dcache first as the icache is pinned by it, then
  96	 * prune the icache, followed by the filesystem specific caches
  97	 *
  98	 * Ensure that we always scan at least one object - memcg kmem
  99	 * accounting uses this to fully empty the caches.
 100	 */
 101	sc->nr_to_scan = dentries + 1;
 102	freed = prune_dcache_sb(sb, sc);
 103	sc->nr_to_scan = inodes + 1;
 104	freed += prune_icache_sb(sb, sc);
 105
 106	if (fs_objects) {
 107		sc->nr_to_scan = fs_objects + 1;
 108		freed += sb->s_op->free_cached_objects(sb, sc);
 109	}
 110
 111	up_read(&sb->s_umount);
 112	return freed;
 113}
 114
 115static unsigned long super_cache_count(struct shrinker *shrink,
 116				       struct shrink_control *sc)
 117{
 118	struct super_block *sb;
 119	long	total_objects = 0;
 120
 121	sb = container_of(shrink, struct super_block, s_shrink);
 122
 123	/*
 124	 * We don't call trylock_super() here as it is a scalability bottleneck,
 125	 * so we're exposed to partial setup state. The shrinker rwsem does not
 126	 * protect filesystem operations backing list_lru_shrink_count() or
 127	 * s_op->nr_cached_objects(). Counts can change between
 128	 * super_cache_count and super_cache_scan, so we really don't need locks
 129	 * here.
 130	 *
 131	 * However, if we are currently mounting the superblock, the underlying
 132	 * filesystem might be in a state of partial construction and hence it
 133	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 134	 * avoid this situation, so do the same here. The memory barrier is
 135	 * matched with the one in mount_fs() as we don't hold locks here.
 136	 */
 137	if (!(sb->s_flags & SB_BORN))
 138		return 0;
 139	smp_rmb();
 140
 141	if (sb->s_op && sb->s_op->nr_cached_objects)
 142		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 143
 144	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 145	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 146
 147	total_objects = vfs_pressure_ratio(total_objects);
 148	return total_objects;
 149}
 150
 151static void destroy_super_work(struct work_struct *work)
 152{
 153	struct super_block *s = container_of(work, struct super_block,
 154							destroy_work);
 155	int i;
 156
 157	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 158		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 159	kfree(s);
 160}
 161
 162static void destroy_super_rcu(struct rcu_head *head)
 163{
 164	struct super_block *s = container_of(head, struct super_block, rcu);
 165	INIT_WORK(&s->destroy_work, destroy_super_work);
 166	schedule_work(&s->destroy_work);
 167}
 168
 169/* Free a superblock that has never been seen by anyone */
 170static void destroy_unused_super(struct super_block *s)
 171{
 172	if (!s)
 173		return;
 174	up_write(&s->s_umount);
 175	list_lru_destroy(&s->s_dentry_lru);
 176	list_lru_destroy(&s->s_inode_lru);
 177	security_sb_free(s);
 178	put_user_ns(s->s_user_ns);
 179	kfree(s->s_subtype);
 180	free_prealloced_shrinker(&s->s_shrink);
 181	/* no delays needed */
 182	destroy_super_work(&s->destroy_work);
 183}
 184
 185/**
 186 *	alloc_super	-	create new superblock
 187 *	@type:	filesystem type superblock should belong to
 188 *	@flags: the mount flags
 189 *	@user_ns: User namespace for the super_block
 190 *
 191 *	Allocates and initializes a new &struct super_block.  alloc_super()
 192 *	returns a pointer new superblock or %NULL if allocation had failed.
 193 */
 194static struct super_block *alloc_super(struct file_system_type *type, int flags,
 195				       struct user_namespace *user_ns)
 196{
 197	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 198	static const struct super_operations default_op;
 199	int i;
 200
 201	if (!s)
 202		return NULL;
 203
 204	INIT_LIST_HEAD(&s->s_mounts);
 205	s->s_user_ns = get_user_ns(user_ns);
 206	init_rwsem(&s->s_umount);
 207	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 208	/*
 209	 * sget() can have s_umount recursion.
 210	 *
 211	 * When it cannot find a suitable sb, it allocates a new
 212	 * one (this one), and tries again to find a suitable old
 213	 * one.
 214	 *
 215	 * In case that succeeds, it will acquire the s_umount
 216	 * lock of the old one. Since these are clearly distrinct
 217	 * locks, and this object isn't exposed yet, there's no
 218	 * risk of deadlocks.
 219	 *
 220	 * Annotate this by putting this lock in a different
 221	 * subclass.
 222	 */
 223	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 224
 225	if (security_sb_alloc(s))
 226		goto fail;
 227
 228	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 229		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 230					sb_writers_name[i],
 231					&type->s_writers_key[i]))
 232			goto fail;
 233	}
 234	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 235	s->s_bdi = &noop_backing_dev_info;
 236	s->s_flags = flags;
 237	if (s->s_user_ns != &init_user_ns)
 238		s->s_iflags |= SB_I_NODEV;
 239	INIT_HLIST_NODE(&s->s_instances);
 240	INIT_HLIST_BL_HEAD(&s->s_roots);
 241	mutex_init(&s->s_sync_lock);
 242	INIT_LIST_HEAD(&s->s_inodes);
 243	spin_lock_init(&s->s_inode_list_lock);
 244	INIT_LIST_HEAD(&s->s_inodes_wb);
 245	spin_lock_init(&s->s_inode_wblist_lock);
 246
 247	if (list_lru_init_memcg(&s->s_dentry_lru))
 248		goto fail;
 249	if (list_lru_init_memcg(&s->s_inode_lru))
 250		goto fail;
 251	s->s_count = 1;
 252	atomic_set(&s->s_active, 1);
 253	mutex_init(&s->s_vfs_rename_mutex);
 254	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 255	init_rwsem(&s->s_dquot.dqio_sem);
 256	s->s_maxbytes = MAX_NON_LFS;
 257	s->s_op = &default_op;
 258	s->s_time_gran = 1000000000;
 259	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 260
 261	s->s_shrink.seeks = DEFAULT_SEEKS;
 262	s->s_shrink.scan_objects = super_cache_scan;
 263	s->s_shrink.count_objects = super_cache_count;
 264	s->s_shrink.batch = 1024;
 265	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 266	if (prealloc_shrinker(&s->s_shrink))
 267		goto fail;
 268	return s;
 269
 270fail:
 271	destroy_unused_super(s);
 272	return NULL;
 273}
 274
 275/* Superblock refcounting  */
 276
 277/*
 278 * Drop a superblock's refcount.  The caller must hold sb_lock.
 279 */
 280static void __put_super(struct super_block *s)
 281{
 282	if (!--s->s_count) {
 283		list_del_init(&s->s_list);
 284		WARN_ON(s->s_dentry_lru.node);
 285		WARN_ON(s->s_inode_lru.node);
 286		WARN_ON(!list_empty(&s->s_mounts));
 287		security_sb_free(s);
 288		put_user_ns(s->s_user_ns);
 289		kfree(s->s_subtype);
 290		call_rcu(&s->rcu, destroy_super_rcu);
 291	}
 292}
 293
 294/**
 295 *	put_super	-	drop a temporary reference to superblock
 296 *	@sb: superblock in question
 297 *
 298 *	Drops a temporary reference, frees superblock if there's no
 299 *	references left.
 300 */
 301static void put_super(struct super_block *sb)
 302{
 303	spin_lock(&sb_lock);
 304	__put_super(sb);
 305	spin_unlock(&sb_lock);
 306}
 307
 308
 309/**
 310 *	deactivate_locked_super	-	drop an active reference to superblock
 311 *	@s: superblock to deactivate
 312 *
 313 *	Drops an active reference to superblock, converting it into a temporary
 314 *	one if there is no other active references left.  In that case we
 315 *	tell fs driver to shut it down and drop the temporary reference we
 316 *	had just acquired.
 317 *
 318 *	Caller holds exclusive lock on superblock; that lock is released.
 319 */
 320void deactivate_locked_super(struct super_block *s)
 321{
 322	struct file_system_type *fs = s->s_type;
 323	if (atomic_dec_and_test(&s->s_active)) {
 324		cleancache_invalidate_fs(s);
 325		unregister_shrinker(&s->s_shrink);
 326		fs->kill_sb(s);
 327
 328		/*
 329		 * Since list_lru_destroy() may sleep, we cannot call it from
 330		 * put_super(), where we hold the sb_lock. Therefore we destroy
 331		 * the lru lists right now.
 332		 */
 333		list_lru_destroy(&s->s_dentry_lru);
 334		list_lru_destroy(&s->s_inode_lru);
 335
 336		put_filesystem(fs);
 337		put_super(s);
 338	} else {
 339		up_write(&s->s_umount);
 340	}
 341}
 342
 343EXPORT_SYMBOL(deactivate_locked_super);
 344
 345/**
 346 *	deactivate_super	-	drop an active reference to superblock
 347 *	@s: superblock to deactivate
 348 *
 349 *	Variant of deactivate_locked_super(), except that superblock is *not*
 350 *	locked by caller.  If we are going to drop the final active reference,
 351 *	lock will be acquired prior to that.
 352 */
 353void deactivate_super(struct super_block *s)
 354{
 355        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 356		down_write(&s->s_umount);
 357		deactivate_locked_super(s);
 358	}
 359}
 360
 361EXPORT_SYMBOL(deactivate_super);
 362
 363/**
 364 *	grab_super - acquire an active reference
 365 *	@s: reference we are trying to make active
 366 *
 367 *	Tries to acquire an active reference.  grab_super() is used when we
 368 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 369 *	and want to turn it into a full-blown active reference.  grab_super()
 370 *	is called with sb_lock held and drops it.  Returns 1 in case of
 371 *	success, 0 if we had failed (superblock contents was already dead or
 372 *	dying when grab_super() had been called).  Note that this is only
 373 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 374 *	of their type), so increment of ->s_count is OK here.
 375 */
 376static int grab_super(struct super_block *s) __releases(sb_lock)
 377{
 378	s->s_count++;
 379	spin_unlock(&sb_lock);
 380	down_write(&s->s_umount);
 381	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 382		put_super(s);
 383		return 1;
 384	}
 385	up_write(&s->s_umount);
 386	put_super(s);
 387	return 0;
 388}
 389
 390/*
 391 *	trylock_super - try to grab ->s_umount shared
 392 *	@sb: reference we are trying to grab
 393 *
 394 *	Try to prevent fs shutdown.  This is used in places where we
 395 *	cannot take an active reference but we need to ensure that the
 396 *	filesystem is not shut down while we are working on it. It returns
 397 *	false if we cannot acquire s_umount or if we lose the race and
 398 *	filesystem already got into shutdown, and returns true with the s_umount
 399 *	lock held in read mode in case of success. On successful return,
 400 *	the caller must drop the s_umount lock when done.
 401 *
 402 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 403 *	The reason why it's safe is that we are OK with doing trylock instead
 404 *	of down_read().  There's a couple of places that are OK with that, but
 405 *	it's very much not a general-purpose interface.
 406 */
 407bool trylock_super(struct super_block *sb)
 408{
 409	if (down_read_trylock(&sb->s_umount)) {
 410		if (!hlist_unhashed(&sb->s_instances) &&
 411		    sb->s_root && (sb->s_flags & SB_BORN))
 412			return true;
 413		up_read(&sb->s_umount);
 414	}
 415
 416	return false;
 417}
 418
 419/**
 420 *	generic_shutdown_super	-	common helper for ->kill_sb()
 421 *	@sb: superblock to kill
 422 *
 423 *	generic_shutdown_super() does all fs-independent work on superblock
 424 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 425 *	that need destruction out of superblock, call generic_shutdown_super()
 426 *	and release aforementioned objects.  Note: dentries and inodes _are_
 427 *	taken care of and do not need specific handling.
 428 *
 429 *	Upon calling this function, the filesystem may no longer alter or
 430 *	rearrange the set of dentries belonging to this super_block, nor may it
 431 *	change the attachments of dentries to inodes.
 432 */
 433void generic_shutdown_super(struct super_block *sb)
 434{
 435	const struct super_operations *sop = sb->s_op;
 436
 437	if (sb->s_root) {
 438		shrink_dcache_for_umount(sb);
 439		sync_filesystem(sb);
 440		sb->s_flags &= ~SB_ACTIVE;
 441
 442		fsnotify_unmount_inodes(sb);
 443		cgroup_writeback_umount();
 444
 445		evict_inodes(sb);
 446
 447		if (sb->s_dio_done_wq) {
 448			destroy_workqueue(sb->s_dio_done_wq);
 449			sb->s_dio_done_wq = NULL;
 450		}
 451
 452		if (sop->put_super)
 453			sop->put_super(sb);
 454
 455		if (!list_empty(&sb->s_inodes)) {
 456			printk("VFS: Busy inodes after unmount of %s. "
 457			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 458			   sb->s_id);
 459		}
 460	}
 461	spin_lock(&sb_lock);
 462	/* should be initialized for __put_super_and_need_restart() */
 463	hlist_del_init(&sb->s_instances);
 464	spin_unlock(&sb_lock);
 465	up_write(&sb->s_umount);
 466	if (sb->s_bdi != &noop_backing_dev_info) {
 467		bdi_put(sb->s_bdi);
 468		sb->s_bdi = &noop_backing_dev_info;
 469	}
 470}
 471
 472EXPORT_SYMBOL(generic_shutdown_super);
 473
 474/**
 475 *	sget_userns -	find or create a superblock
 476 *	@type:	filesystem type superblock should belong to
 477 *	@test:	comparison callback
 478 *	@set:	setup callback
 479 *	@flags:	mount flags
 480 *	@user_ns: User namespace for the super_block
 481 *	@data:	argument to each of them
 482 */
 483struct super_block *sget_userns(struct file_system_type *type,
 484			int (*test)(struct super_block *,void *),
 485			int (*set)(struct super_block *,void *),
 486			int flags, struct user_namespace *user_ns,
 487			void *data)
 488{
 489	struct super_block *s = NULL;
 490	struct super_block *old;
 491	int err;
 492
 493	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
 494	    !(type->fs_flags & FS_USERNS_MOUNT) &&
 495	    !capable(CAP_SYS_ADMIN))
 496		return ERR_PTR(-EPERM);
 497retry:
 498	spin_lock(&sb_lock);
 499	if (test) {
 500		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 501			if (!test(old, data))
 502				continue;
 503			if (user_ns != old->s_user_ns) {
 504				spin_unlock(&sb_lock);
 505				destroy_unused_super(s);
 506				return ERR_PTR(-EBUSY);
 507			}
 508			if (!grab_super(old))
 509				goto retry;
 510			destroy_unused_super(s);
 511			return old;
 512		}
 513	}
 514	if (!s) {
 515		spin_unlock(&sb_lock);
 516		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 517		if (!s)
 518			return ERR_PTR(-ENOMEM);
 519		goto retry;
 520	}
 521
 522	err = set(s, data);
 523	if (err) {
 524		spin_unlock(&sb_lock);
 525		destroy_unused_super(s);
 526		return ERR_PTR(err);
 527	}
 528	s->s_type = type;
 529	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 530	list_add_tail(&s->s_list, &super_blocks);
 531	hlist_add_head(&s->s_instances, &type->fs_supers);
 532	spin_unlock(&sb_lock);
 533	get_filesystem(type);
 534	register_shrinker_prepared(&s->s_shrink);
 535	return s;
 536}
 537
 538EXPORT_SYMBOL(sget_userns);
 539
 540/**
 541 *	sget	-	find or create a superblock
 542 *	@type:	  filesystem type superblock should belong to
 543 *	@test:	  comparison callback
 544 *	@set:	  setup callback
 545 *	@flags:	  mount flags
 546 *	@data:	  argument to each of them
 547 */
 548struct super_block *sget(struct file_system_type *type,
 549			int (*test)(struct super_block *,void *),
 550			int (*set)(struct super_block *,void *),
 551			int flags,
 552			void *data)
 553{
 554	struct user_namespace *user_ns = current_user_ns();
 555
 556	/* We don't yet pass the user namespace of the parent
 557	 * mount through to here so always use &init_user_ns
 558	 * until that changes.
 559	 */
 560	if (flags & SB_SUBMOUNT)
 561		user_ns = &init_user_ns;
 562
 563	/* Ensure the requestor has permissions over the target filesystem */
 564	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 565		return ERR_PTR(-EPERM);
 566
 567	return sget_userns(type, test, set, flags, user_ns, data);
 568}
 569
 570EXPORT_SYMBOL(sget);
 571
 572void drop_super(struct super_block *sb)
 573{
 574	up_read(&sb->s_umount);
 575	put_super(sb);
 576}
 577
 578EXPORT_SYMBOL(drop_super);
 579
 580void drop_super_exclusive(struct super_block *sb)
 581{
 582	up_write(&sb->s_umount);
 583	put_super(sb);
 584}
 585EXPORT_SYMBOL(drop_super_exclusive);
 586
 587static void __iterate_supers(void (*f)(struct super_block *))
 588{
 589	struct super_block *sb, *p = NULL;
 590
 591	spin_lock(&sb_lock);
 592	list_for_each_entry(sb, &super_blocks, s_list) {
 593		if (hlist_unhashed(&sb->s_instances))
 594			continue;
 595		sb->s_count++;
 596		spin_unlock(&sb_lock);
 597
 598		f(sb);
 599
 600		spin_lock(&sb_lock);
 601		if (p)
 602			__put_super(p);
 603		p = sb;
 604	}
 605	if (p)
 606		__put_super(p);
 607	spin_unlock(&sb_lock);
 608}
 609/**
 610 *	iterate_supers - call function for all active superblocks
 611 *	@f: function to call
 612 *	@arg: argument to pass to it
 613 *
 614 *	Scans the superblock list and calls given function, passing it
 615 *	locked superblock and given argument.
 616 */
 617void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 618{
 619	struct super_block *sb, *p = NULL;
 620
 621	spin_lock(&sb_lock);
 622	list_for_each_entry(sb, &super_blocks, s_list) {
 623		if (hlist_unhashed(&sb->s_instances))
 624			continue;
 625		sb->s_count++;
 626		spin_unlock(&sb_lock);
 627
 628		down_read(&sb->s_umount);
 629		if (sb->s_root && (sb->s_flags & SB_BORN))
 630			f(sb, arg);
 631		up_read(&sb->s_umount);
 632
 633		spin_lock(&sb_lock);
 634		if (p)
 635			__put_super(p);
 636		p = sb;
 637	}
 638	if (p)
 639		__put_super(p);
 640	spin_unlock(&sb_lock);
 641}
 642
 643/**
 644 *	iterate_supers_type - call function for superblocks of given type
 645 *	@type: fs type
 646 *	@f: function to call
 647 *	@arg: argument to pass to it
 648 *
 649 *	Scans the superblock list and calls given function, passing it
 650 *	locked superblock and given argument.
 651 */
 652void iterate_supers_type(struct file_system_type *type,
 653	void (*f)(struct super_block *, void *), void *arg)
 654{
 655	struct super_block *sb, *p = NULL;
 656
 657	spin_lock(&sb_lock);
 658	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 659		sb->s_count++;
 660		spin_unlock(&sb_lock);
 661
 662		down_read(&sb->s_umount);
 663		if (sb->s_root && (sb->s_flags & SB_BORN))
 664			f(sb, arg);
 665		up_read(&sb->s_umount);
 666
 667		spin_lock(&sb_lock);
 668		if (p)
 669			__put_super(p);
 670		p = sb;
 671	}
 672	if (p)
 673		__put_super(p);
 674	spin_unlock(&sb_lock);
 675}
 676
 677EXPORT_SYMBOL(iterate_supers_type);
 678
 679static struct super_block *__get_super(struct block_device *bdev, bool excl)
 680{
 681	struct super_block *sb;
 682
 683	if (!bdev)
 684		return NULL;
 685
 686	spin_lock(&sb_lock);
 687rescan:
 688	list_for_each_entry(sb, &super_blocks, s_list) {
 689		if (hlist_unhashed(&sb->s_instances))
 690			continue;
 691		if (sb->s_bdev == bdev) {
 692			sb->s_count++;
 693			spin_unlock(&sb_lock);
 694			if (!excl)
 695				down_read(&sb->s_umount);
 696			else
 697				down_write(&sb->s_umount);
 698			/* still alive? */
 699			if (sb->s_root && (sb->s_flags & SB_BORN))
 700				return sb;
 701			if (!excl)
 702				up_read(&sb->s_umount);
 703			else
 704				up_write(&sb->s_umount);
 705			/* nope, got unmounted */
 706			spin_lock(&sb_lock);
 707			__put_super(sb);
 708			goto rescan;
 709		}
 710	}
 711	spin_unlock(&sb_lock);
 712	return NULL;
 713}
 714
 715/**
 716 *	get_super - get the superblock of a device
 717 *	@bdev: device to get the superblock for
 718 *
 719 *	Scans the superblock list and finds the superblock of the file system
 720 *	mounted on the device given. %NULL is returned if no match is found.
 721 */
 722struct super_block *get_super(struct block_device *bdev)
 723{
 724	return __get_super(bdev, false);
 725}
 726EXPORT_SYMBOL(get_super);
 727
 728static struct super_block *__get_super_thawed(struct block_device *bdev,
 729					      bool excl)
 730{
 731	while (1) {
 732		struct super_block *s = __get_super(bdev, excl);
 733		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 734			return s;
 735		if (!excl)
 736			up_read(&s->s_umount);
 737		else
 738			up_write(&s->s_umount);
 739		wait_event(s->s_writers.wait_unfrozen,
 740			   s->s_writers.frozen == SB_UNFROZEN);
 741		put_super(s);
 742	}
 743}
 744
 745/**
 746 *	get_super_thawed - get thawed superblock of a device
 747 *	@bdev: device to get the superblock for
 748 *
 749 *	Scans the superblock list and finds the superblock of the file system
 750 *	mounted on the device. The superblock is returned once it is thawed
 751 *	(or immediately if it was not frozen). %NULL is returned if no match
 752 *	is found.
 753 */
 754struct super_block *get_super_thawed(struct block_device *bdev)
 755{
 756	return __get_super_thawed(bdev, false);
 757}
 758EXPORT_SYMBOL(get_super_thawed);
 759
 760/**
 761 *	get_super_exclusive_thawed - get thawed superblock of a device
 762 *	@bdev: device to get the superblock for
 763 *
 764 *	Scans the superblock list and finds the superblock of the file system
 765 *	mounted on the device. The superblock is returned once it is thawed
 766 *	(or immediately if it was not frozen) and s_umount semaphore is held
 767 *	in exclusive mode. %NULL is returned if no match is found.
 768 */
 769struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 770{
 771	return __get_super_thawed(bdev, true);
 772}
 773EXPORT_SYMBOL(get_super_exclusive_thawed);
 774
 775/**
 776 * get_active_super - get an active reference to the superblock of a device
 777 * @bdev: device to get the superblock for
 778 *
 779 * Scans the superblock list and finds the superblock of the file system
 780 * mounted on the device given.  Returns the superblock with an active
 781 * reference or %NULL if none was found.
 782 */
 783struct super_block *get_active_super(struct block_device *bdev)
 784{
 785	struct super_block *sb;
 786
 787	if (!bdev)
 788		return NULL;
 789
 790restart:
 791	spin_lock(&sb_lock);
 792	list_for_each_entry(sb, &super_blocks, s_list) {
 793		if (hlist_unhashed(&sb->s_instances))
 794			continue;
 795		if (sb->s_bdev == bdev) {
 796			if (!grab_super(sb))
 797				goto restart;
 798			up_write(&sb->s_umount);
 799			return sb;
 800		}
 801	}
 802	spin_unlock(&sb_lock);
 803	return NULL;
 804}
 805
 806struct super_block *user_get_super(dev_t dev)
 807{
 808	struct super_block *sb;
 809
 810	spin_lock(&sb_lock);
 811rescan:
 812	list_for_each_entry(sb, &super_blocks, s_list) {
 813		if (hlist_unhashed(&sb->s_instances))
 814			continue;
 815		if (sb->s_dev ==  dev) {
 816			sb->s_count++;
 817			spin_unlock(&sb_lock);
 818			down_read(&sb->s_umount);
 819			/* still alive? */
 820			if (sb->s_root && (sb->s_flags & SB_BORN))
 821				return sb;
 822			up_read(&sb->s_umount);
 823			/* nope, got unmounted */
 824			spin_lock(&sb_lock);
 825			__put_super(sb);
 826			goto rescan;
 827		}
 828	}
 829	spin_unlock(&sb_lock);
 830	return NULL;
 831}
 832
 833/**
 834 *	do_remount_sb - asks filesystem to change mount options.
 835 *	@sb:	superblock in question
 836 *	@sb_flags: revised superblock flags
 837 *	@data:	the rest of options
 838 *      @force: whether or not to force the change
 839 *
 840 *	Alters the mount options of a mounted file system.
 841 */
 842int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
 843{
 844	int retval;
 845	int remount_ro;
 846
 847	if (sb->s_writers.frozen != SB_UNFROZEN)
 848		return -EBUSY;
 849
 850#ifdef CONFIG_BLOCK
 851	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 852		return -EACCES;
 853#endif
 854
 855	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 856
 857	if (remount_ro) {
 858		if (!hlist_empty(&sb->s_pins)) {
 859			up_write(&sb->s_umount);
 860			group_pin_kill(&sb->s_pins);
 861			down_write(&sb->s_umount);
 862			if (!sb->s_root)
 863				return 0;
 864			if (sb->s_writers.frozen != SB_UNFROZEN)
 865				return -EBUSY;
 866			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 867		}
 868	}
 869	shrink_dcache_sb(sb);
 870
 871	/* If we are remounting RDONLY and current sb is read/write,
 872	   make sure there are no rw files opened */
 873	if (remount_ro) {
 874		if (force) {
 875			sb->s_readonly_remount = 1;
 876			smp_wmb();
 877		} else {
 878			retval = sb_prepare_remount_readonly(sb);
 879			if (retval)
 880				return retval;
 881		}
 882	}
 883
 884	if (sb->s_op->remount_fs) {
 885		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
 886		if (retval) {
 887			if (!force)
 888				goto cancel_readonly;
 889			/* If forced remount, go ahead despite any errors */
 890			WARN(1, "forced remount of a %s fs returned %i\n",
 891			     sb->s_type->name, retval);
 892		}
 893	}
 894	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
 895	/* Needs to be ordered wrt mnt_is_readonly() */
 896	smp_wmb();
 897	sb->s_readonly_remount = 0;
 898
 899	/*
 900	 * Some filesystems modify their metadata via some other path than the
 901	 * bdev buffer cache (eg. use a private mapping, or directories in
 902	 * pagecache, etc). Also file data modifications go via their own
 903	 * mappings. So If we try to mount readonly then copy the filesystem
 904	 * from bdev, we could get stale data, so invalidate it to give a best
 905	 * effort at coherency.
 906	 */
 907	if (remount_ro && sb->s_bdev)
 908		invalidate_bdev(sb->s_bdev);
 909	return 0;
 910
 911cancel_readonly:
 912	sb->s_readonly_remount = 0;
 913	return retval;
 914}
 915
 916static void do_emergency_remount_callback(struct super_block *sb)
 917{
 918	down_write(&sb->s_umount);
 919	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 920	    !sb_rdonly(sb)) {
 921		/*
 922		 * What lock protects sb->s_flags??
 923		 */
 924		do_remount_sb(sb, SB_RDONLY, NULL, 1);
 925	}
 926	up_write(&sb->s_umount);
 927}
 928
 929static void do_emergency_remount(struct work_struct *work)
 930{
 931	__iterate_supers(do_emergency_remount_callback);
 932	kfree(work);
 933	printk("Emergency Remount complete\n");
 934}
 935
 936void emergency_remount(void)
 937{
 938	struct work_struct *work;
 939
 940	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 941	if (work) {
 942		INIT_WORK(work, do_emergency_remount);
 943		schedule_work(work);
 944	}
 945}
 946
 947static void do_thaw_all_callback(struct super_block *sb)
 948{
 949	down_write(&sb->s_umount);
 950	if (sb->s_root && sb->s_flags & MS_BORN) {
 951		emergency_thaw_bdev(sb);
 952		thaw_super_locked(sb);
 953	} else {
 954		up_write(&sb->s_umount);
 955	}
 956}
 957
 958static void do_thaw_all(struct work_struct *work)
 959{
 960	__iterate_supers(do_thaw_all_callback);
 961	kfree(work);
 962	printk(KERN_WARNING "Emergency Thaw complete\n");
 963}
 964
 965/**
 966 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 967 *
 968 * Used for emergency unfreeze of all filesystems via SysRq
 969 */
 970void emergency_thaw_all(void)
 971{
 972	struct work_struct *work;
 973
 974	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 975	if (work) {
 976		INIT_WORK(work, do_thaw_all);
 977		schedule_work(work);
 978	}
 979}
 980
 981/*
 982 * Unnamed block devices are dummy devices used by virtual
 983 * filesystems which don't use real block-devices.  -- jrs
 984 */
 985
 986static DEFINE_IDA(unnamed_dev_ida);
 987static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 988/* Many userspace utilities consider an FSID of 0 invalid.
 989 * Always return at least 1 from get_anon_bdev.
 990 */
 991static int unnamed_dev_start = 1;
 992
 993int get_anon_bdev(dev_t *p)
 994{
 995	int dev;
 996	int error;
 997
 998 retry:
 999	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
1000		return -ENOMEM;
1001	spin_lock(&unnamed_dev_lock);
1002	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
1003	if (!error)
1004		unnamed_dev_start = dev + 1;
1005	spin_unlock(&unnamed_dev_lock);
1006	if (error == -EAGAIN)
1007		/* We raced and lost with another CPU. */
1008		goto retry;
1009	else if (error)
1010		return -EAGAIN;
1011
1012	if (dev >= (1 << MINORBITS)) {
1013		spin_lock(&unnamed_dev_lock);
1014		ida_remove(&unnamed_dev_ida, dev);
1015		if (unnamed_dev_start > dev)
1016			unnamed_dev_start = dev;
1017		spin_unlock(&unnamed_dev_lock);
1018		return -EMFILE;
1019	}
1020	*p = MKDEV(0, dev & MINORMASK);
1021	return 0;
1022}
1023EXPORT_SYMBOL(get_anon_bdev);
1024
1025void free_anon_bdev(dev_t dev)
1026{
1027	int slot = MINOR(dev);
1028	spin_lock(&unnamed_dev_lock);
1029	ida_remove(&unnamed_dev_ida, slot);
1030	if (slot < unnamed_dev_start)
1031		unnamed_dev_start = slot;
1032	spin_unlock(&unnamed_dev_lock);
1033}
1034EXPORT_SYMBOL(free_anon_bdev);
1035
1036int set_anon_super(struct super_block *s, void *data)
1037{
1038	return get_anon_bdev(&s->s_dev);
1039}
1040
1041EXPORT_SYMBOL(set_anon_super);
1042
1043void kill_anon_super(struct super_block *sb)
1044{
1045	dev_t dev = sb->s_dev;
1046	generic_shutdown_super(sb);
1047	free_anon_bdev(dev);
1048}
1049
1050EXPORT_SYMBOL(kill_anon_super);
1051
1052void kill_litter_super(struct super_block *sb)
1053{
1054	if (sb->s_root)
1055		d_genocide(sb->s_root);
1056	kill_anon_super(sb);
1057}
1058
1059EXPORT_SYMBOL(kill_litter_super);
1060
1061static int ns_test_super(struct super_block *sb, void *data)
1062{
1063	return sb->s_fs_info == data;
1064}
1065
1066static int ns_set_super(struct super_block *sb, void *data)
1067{
1068	sb->s_fs_info = data;
1069	return set_anon_super(sb, NULL);
1070}
1071
1072struct dentry *mount_ns(struct file_system_type *fs_type,
1073	int flags, void *data, void *ns, struct user_namespace *user_ns,
1074	int (*fill_super)(struct super_block *, void *, int))
1075{
1076	struct super_block *sb;
1077
1078	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1079	 * over the namespace.
1080	 */
1081	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1082		return ERR_PTR(-EPERM);
1083
1084	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1085			 user_ns, ns);
1086	if (IS_ERR(sb))
1087		return ERR_CAST(sb);
1088
1089	if (!sb->s_root) {
1090		int err;
1091		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1092		if (err) {
1093			deactivate_locked_super(sb);
1094			return ERR_PTR(err);
1095		}
1096
1097		sb->s_flags |= SB_ACTIVE;
1098	}
1099
1100	return dget(sb->s_root);
1101}
1102
1103EXPORT_SYMBOL(mount_ns);
1104
1105#ifdef CONFIG_BLOCK
1106static int set_bdev_super(struct super_block *s, void *data)
1107{
1108	s->s_bdev = data;
1109	s->s_dev = s->s_bdev->bd_dev;
1110	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1111
1112	return 0;
1113}
1114
1115static int test_bdev_super(struct super_block *s, void *data)
1116{
1117	return (void *)s->s_bdev == data;
1118}
1119
1120struct dentry *mount_bdev(struct file_system_type *fs_type,
1121	int flags, const char *dev_name, void *data,
1122	int (*fill_super)(struct super_block *, void *, int))
1123{
1124	struct block_device *bdev;
1125	struct super_block *s;
1126	fmode_t mode = FMODE_READ | FMODE_EXCL;
1127	int error = 0;
1128
1129	if (!(flags & SB_RDONLY))
1130		mode |= FMODE_WRITE;
1131
1132	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1133	if (IS_ERR(bdev))
1134		return ERR_CAST(bdev);
1135
1136	/*
1137	 * once the super is inserted into the list by sget, s_umount
1138	 * will protect the lockfs code from trying to start a snapshot
1139	 * while we are mounting
1140	 */
1141	mutex_lock(&bdev->bd_fsfreeze_mutex);
1142	if (bdev->bd_fsfreeze_count > 0) {
1143		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1144		error = -EBUSY;
1145		goto error_bdev;
1146	}
1147	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1148		 bdev);
1149	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1150	if (IS_ERR(s))
1151		goto error_s;
1152
1153	if (s->s_root) {
1154		if ((flags ^ s->s_flags) & SB_RDONLY) {
1155			deactivate_locked_super(s);
1156			error = -EBUSY;
1157			goto error_bdev;
1158		}
1159
1160		/*
1161		 * s_umount nests inside bd_mutex during
1162		 * __invalidate_device().  blkdev_put() acquires
1163		 * bd_mutex and can't be called under s_umount.  Drop
1164		 * s_umount temporarily.  This is safe as we're
1165		 * holding an active reference.
1166		 */
1167		up_write(&s->s_umount);
1168		blkdev_put(bdev, mode);
1169		down_write(&s->s_umount);
1170	} else {
1171		s->s_mode = mode;
1172		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1173		sb_set_blocksize(s, block_size(bdev));
1174		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1175		if (error) {
1176			deactivate_locked_super(s);
1177			goto error;
1178		}
1179
1180		s->s_flags |= SB_ACTIVE;
1181		bdev->bd_super = s;
1182	}
1183
1184	return dget(s->s_root);
1185
1186error_s:
1187	error = PTR_ERR(s);
1188error_bdev:
1189	blkdev_put(bdev, mode);
1190error:
1191	return ERR_PTR(error);
1192}
1193EXPORT_SYMBOL(mount_bdev);
1194
1195void kill_block_super(struct super_block *sb)
1196{
1197	struct block_device *bdev = sb->s_bdev;
1198	fmode_t mode = sb->s_mode;
1199
1200	bdev->bd_super = NULL;
1201	generic_shutdown_super(sb);
1202	sync_blockdev(bdev);
1203	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1204	blkdev_put(bdev, mode | FMODE_EXCL);
1205}
1206
1207EXPORT_SYMBOL(kill_block_super);
1208#endif
1209
1210struct dentry *mount_nodev(struct file_system_type *fs_type,
1211	int flags, void *data,
1212	int (*fill_super)(struct super_block *, void *, int))
1213{
1214	int error;
1215	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1216
1217	if (IS_ERR(s))
1218		return ERR_CAST(s);
1219
1220	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1221	if (error) {
1222		deactivate_locked_super(s);
1223		return ERR_PTR(error);
1224	}
1225	s->s_flags |= SB_ACTIVE;
1226	return dget(s->s_root);
1227}
1228EXPORT_SYMBOL(mount_nodev);
1229
1230static int compare_single(struct super_block *s, void *p)
1231{
1232	return 1;
1233}
1234
1235struct dentry *mount_single(struct file_system_type *fs_type,
1236	int flags, void *data,
1237	int (*fill_super)(struct super_block *, void *, int))
1238{
1239	struct super_block *s;
1240	int error;
1241
1242	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1243	if (IS_ERR(s))
1244		return ERR_CAST(s);
1245	if (!s->s_root) {
1246		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1247		if (error) {
1248			deactivate_locked_super(s);
1249			return ERR_PTR(error);
1250		}
1251		s->s_flags |= SB_ACTIVE;
1252	} else {
1253		do_remount_sb(s, flags, data, 0);
1254	}
1255	return dget(s->s_root);
1256}
1257EXPORT_SYMBOL(mount_single);
1258
1259struct dentry *
1260mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1261{
1262	struct dentry *root;
1263	struct super_block *sb;
1264	char *secdata = NULL;
1265	int error = -ENOMEM;
1266
1267	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1268		secdata = alloc_secdata();
1269		if (!secdata)
1270			goto out;
1271
1272		error = security_sb_copy_data(data, secdata);
1273		if (error)
1274			goto out_free_secdata;
1275	}
1276
1277	root = type->mount(type, flags, name, data);
1278	if (IS_ERR(root)) {
1279		error = PTR_ERR(root);
1280		goto out_free_secdata;
1281	}
1282	sb = root->d_sb;
1283	BUG_ON(!sb);
1284	WARN_ON(!sb->s_bdi);
1285
1286	/*
1287	 * Write barrier is for super_cache_count(). We place it before setting
1288	 * SB_BORN as the data dependency between the two functions is the
1289	 * superblock structure contents that we just set up, not the SB_BORN
1290	 * flag.
1291	 */
1292	smp_wmb();
1293	sb->s_flags |= SB_BORN;
1294
1295	error = security_sb_kern_mount(sb, flags, secdata);
1296	if (error)
1297		goto out_sb;
1298
1299	/*
1300	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1301	 * but s_maxbytes was an unsigned long long for many releases. Throw
1302	 * this warning for a little while to try and catch filesystems that
1303	 * violate this rule.
1304	 */
1305	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1306		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1307
1308	up_write(&sb->s_umount);
1309	free_secdata(secdata);
1310	return root;
1311out_sb:
1312	dput(root);
1313	deactivate_locked_super(sb);
1314out_free_secdata:
1315	free_secdata(secdata);
1316out:
1317	return ERR_PTR(error);
1318}
1319
1320/*
1321 * Setup private BDI for given superblock. It gets automatically cleaned up
1322 * in generic_shutdown_super().
1323 */
1324int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1325{
1326	struct backing_dev_info *bdi;
1327	int err;
1328	va_list args;
1329
1330	bdi = bdi_alloc(GFP_KERNEL);
1331	if (!bdi)
1332		return -ENOMEM;
1333
1334	bdi->name = sb->s_type->name;
1335
1336	va_start(args, fmt);
1337	err = bdi_register_va(bdi, fmt, args);
1338	va_end(args);
1339	if (err) {
1340		bdi_put(bdi);
1341		return err;
1342	}
1343	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1344	sb->s_bdi = bdi;
1345
1346	return 0;
1347}
1348EXPORT_SYMBOL(super_setup_bdi_name);
1349
1350/*
1351 * Setup private BDI for given superblock. I gets automatically cleaned up
1352 * in generic_shutdown_super().
1353 */
1354int super_setup_bdi(struct super_block *sb)
1355{
1356	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1357
1358	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1359				    atomic_long_inc_return(&bdi_seq));
1360}
1361EXPORT_SYMBOL(super_setup_bdi);
1362
1363/*
1364 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1365 * instead.
1366 */
1367void __sb_end_write(struct super_block *sb, int level)
1368{
1369	percpu_up_read(sb->s_writers.rw_sem + level-1);
1370}
1371EXPORT_SYMBOL(__sb_end_write);
1372
1373/*
1374 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1375 * instead.
1376 */
1377int __sb_start_write(struct super_block *sb, int level, bool wait)
1378{
1379	bool force_trylock = false;
1380	int ret = 1;
1381
1382#ifdef CONFIG_LOCKDEP
1383	/*
1384	 * We want lockdep to tell us about possible deadlocks with freezing
1385	 * but it's it bit tricky to properly instrument it. Getting a freeze
1386	 * protection works as getting a read lock but there are subtle
1387	 * problems. XFS for example gets freeze protection on internal level
1388	 * twice in some cases, which is OK only because we already hold a
1389	 * freeze protection also on higher level. Due to these cases we have
1390	 * to use wait == F (trylock mode) which must not fail.
1391	 */
1392	if (wait) {
1393		int i;
1394
1395		for (i = 0; i < level - 1; i++)
1396			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1397				force_trylock = true;
1398				break;
1399			}
1400	}
1401#endif
1402	if (wait && !force_trylock)
1403		percpu_down_read(sb->s_writers.rw_sem + level-1);
1404	else
1405		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1406
1407	WARN_ON(force_trylock && !ret);
1408	return ret;
1409}
1410EXPORT_SYMBOL(__sb_start_write);
1411
1412/**
1413 * sb_wait_write - wait until all writers to given file system finish
1414 * @sb: the super for which we wait
1415 * @level: type of writers we wait for (normal vs page fault)
1416 *
1417 * This function waits until there are no writers of given type to given file
1418 * system.
1419 */
1420static void sb_wait_write(struct super_block *sb, int level)
1421{
1422	percpu_down_write(sb->s_writers.rw_sem + level-1);
1423}
1424
1425/*
1426 * We are going to return to userspace and forget about these locks, the
1427 * ownership goes to the caller of thaw_super() which does unlock().
1428 */
1429static void lockdep_sb_freeze_release(struct super_block *sb)
1430{
1431	int level;
1432
1433	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1434		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1435}
1436
1437/*
1438 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1439 */
1440static void lockdep_sb_freeze_acquire(struct super_block *sb)
1441{
1442	int level;
1443
1444	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1445		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1446}
1447
1448static void sb_freeze_unlock(struct super_block *sb)
1449{
1450	int level;
1451
1452	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1453		percpu_up_write(sb->s_writers.rw_sem + level);
1454}
1455
1456/**
1457 * freeze_super - lock the filesystem and force it into a consistent state
1458 * @sb: the super to lock
1459 *
1460 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1461 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1462 * -EBUSY.
1463 *
1464 * During this function, sb->s_writers.frozen goes through these values:
1465 *
1466 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1467 *
1468 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1469 * writes should be blocked, though page faults are still allowed. We wait for
1470 * all writes to complete and then proceed to the next stage.
1471 *
1472 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1473 * but internal fs threads can still modify the filesystem (although they
1474 * should not dirty new pages or inodes), writeback can run etc. After waiting
1475 * for all running page faults we sync the filesystem which will clean all
1476 * dirty pages and inodes (no new dirty pages or inodes can be created when
1477 * sync is running).
1478 *
1479 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1480 * modification are blocked (e.g. XFS preallocation truncation on inode
1481 * reclaim). This is usually implemented by blocking new transactions for
1482 * filesystems that have them and need this additional guard. After all
1483 * internal writers are finished we call ->freeze_fs() to finish filesystem
1484 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1485 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1486 *
1487 * sb->s_writers.frozen is protected by sb->s_umount.
1488 */
1489int freeze_super(struct super_block *sb)
1490{
1491	int ret;
1492
1493	atomic_inc(&sb->s_active);
1494	down_write(&sb->s_umount);
1495	if (sb->s_writers.frozen != SB_UNFROZEN) {
1496		deactivate_locked_super(sb);
1497		return -EBUSY;
1498	}
1499
1500	if (!(sb->s_flags & SB_BORN)) {
1501		up_write(&sb->s_umount);
1502		return 0;	/* sic - it's "nothing to do" */
1503	}
1504
1505	if (sb_rdonly(sb)) {
1506		/* Nothing to do really... */
1507		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1508		up_write(&sb->s_umount);
1509		return 0;
1510	}
1511
1512	sb->s_writers.frozen = SB_FREEZE_WRITE;
1513	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1514	up_write(&sb->s_umount);
1515	sb_wait_write(sb, SB_FREEZE_WRITE);
1516	down_write(&sb->s_umount);
1517
1518	/* Now we go and block page faults... */
1519	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1520	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1521
1522	/* All writers are done so after syncing there won't be dirty data */
1523	sync_filesystem(sb);
1524
1525	/* Now wait for internal filesystem counter */
1526	sb->s_writers.frozen = SB_FREEZE_FS;
1527	sb_wait_write(sb, SB_FREEZE_FS);
1528
1529	if (sb->s_op->freeze_fs) {
1530		ret = sb->s_op->freeze_fs(sb);
1531		if (ret) {
1532			printk(KERN_ERR
1533				"VFS:Filesystem freeze failed\n");
1534			sb->s_writers.frozen = SB_UNFROZEN;
1535			sb_freeze_unlock(sb);
1536			wake_up(&sb->s_writers.wait_unfrozen);
1537			deactivate_locked_super(sb);
1538			return ret;
1539		}
1540	}
1541	/*
1542	 * For debugging purposes so that fs can warn if it sees write activity
1543	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1544	 */
1545	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1546	lockdep_sb_freeze_release(sb);
1547	up_write(&sb->s_umount);
1548	return 0;
1549}
1550EXPORT_SYMBOL(freeze_super);
1551
1552/**
1553 * thaw_super -- unlock filesystem
1554 * @sb: the super to thaw
1555 *
1556 * Unlocks the filesystem and marks it writeable again after freeze_super().
1557 */
1558static int thaw_super_locked(struct super_block *sb)
1559{
1560	int error;
1561
1562	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1563		up_write(&sb->s_umount);
1564		return -EINVAL;
1565	}
1566
1567	if (sb_rdonly(sb)) {
1568		sb->s_writers.frozen = SB_UNFROZEN;
1569		goto out;
1570	}
1571
1572	lockdep_sb_freeze_acquire(sb);
1573
1574	if (sb->s_op->unfreeze_fs) {
1575		error = sb->s_op->unfreeze_fs(sb);
1576		if (error) {
1577			printk(KERN_ERR
1578				"VFS:Filesystem thaw failed\n");
1579			lockdep_sb_freeze_release(sb);
1580			up_write(&sb->s_umount);
1581			return error;
1582		}
1583	}
1584
1585	sb->s_writers.frozen = SB_UNFROZEN;
1586	sb_freeze_unlock(sb);
1587out:
1588	wake_up(&sb->s_writers.wait_unfrozen);
1589	deactivate_locked_super(sb);
1590	return 0;
1591}
1592
1593int thaw_super(struct super_block *sb)
1594{
1595	down_write(&sb->s_umount);
1596	return thaw_super_locked(sb);
1597}
1598EXPORT_SYMBOL(thaw_super);
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include "internal.h"
  36
  37
  38LIST_HEAD(super_blocks);
  39DEFINE_SPINLOCK(sb_lock);
  40
  41/*
  42 * One thing we have to be careful of with a per-sb shrinker is that we don't
  43 * drop the last active reference to the superblock from within the shrinker.
  44 * If that happens we could trigger unregistering the shrinker from within the
  45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  46 * take a passive reference to the superblock to avoid this from occurring.
  47 */
  48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
  49{
  50	struct super_block *sb;
  51	int	fs_objects = 0;
  52	int	total_objects;
  53
  54	sb = container_of(shrink, struct super_block, s_shrink);
  55
  56	/*
  57	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  58	 * to recurse into the FS that called us in clear_inode() and friends..
  59	 */
  60	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
  61		return -1;
  62
  63	if (!grab_super_passive(sb))
  64		return -1;
  65
  66	if (sb->s_op && sb->s_op->nr_cached_objects)
  67		fs_objects = sb->s_op->nr_cached_objects(sb);
  68
  69	total_objects = sb->s_nr_dentry_unused +
  70			sb->s_nr_inodes_unused + fs_objects + 1;
  71
  72	if (sc->nr_to_scan) {
  73		int	dentries;
  74		int	inodes;
  75
  76		/* proportion the scan between the caches */
  77		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
  78							total_objects;
  79		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
  80							total_objects;
  81		if (fs_objects)
  82			fs_objects = (sc->nr_to_scan * fs_objects) /
  83							total_objects;
  84		/*
  85		 * prune the dcache first as the icache is pinned by it, then
  86		 * prune the icache, followed by the filesystem specific caches
  87		 */
  88		prune_dcache_sb(sb, dentries);
  89		prune_icache_sb(sb, inodes);
  90
  91		if (fs_objects && sb->s_op->free_cached_objects) {
  92			sb->s_op->free_cached_objects(sb, fs_objects);
  93			fs_objects = sb->s_op->nr_cached_objects(sb);
  94		}
  95		total_objects = sb->s_nr_dentry_unused +
  96				sb->s_nr_inodes_unused + fs_objects;
  97	}
  98
  99	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
 100	drop_super(sb);
 101	return total_objects;
 102}
 103
 104/**
 105 *	alloc_super	-	create new superblock
 106 *	@type:	filesystem type superblock should belong to
 107 *
 108 *	Allocates and initializes a new &struct super_block.  alloc_super()
 109 *	returns a pointer new superblock or %NULL if allocation had failed.
 110 */
 111static struct super_block *alloc_super(struct file_system_type *type)
 112{
 113	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 114	static const struct super_operations default_op;
 115
 116	if (s) {
 117		if (security_sb_alloc(s)) {
 118			kfree(s);
 119			s = NULL;
 120			goto out;
 121		}
 122#ifdef CONFIG_SMP
 123		s->s_files = alloc_percpu(struct list_head);
 124		if (!s->s_files) {
 125			security_sb_free(s);
 126			kfree(s);
 127			s = NULL;
 128			goto out;
 129		} else {
 130			int i;
 131
 132			for_each_possible_cpu(i)
 133				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
 134		}
 135#else
 136		INIT_LIST_HEAD(&s->s_files);
 137#endif
 138		s->s_bdi = &default_backing_dev_info;
 139		INIT_LIST_HEAD(&s->s_instances);
 140		INIT_HLIST_BL_HEAD(&s->s_anon);
 141		INIT_LIST_HEAD(&s->s_inodes);
 142		INIT_LIST_HEAD(&s->s_dentry_lru);
 143		INIT_LIST_HEAD(&s->s_inode_lru);
 144		spin_lock_init(&s->s_inode_lru_lock);
 145		init_rwsem(&s->s_umount);
 146		mutex_init(&s->s_lock);
 147		lockdep_set_class(&s->s_umount, &type->s_umount_key);
 148		/*
 149		 * The locking rules for s_lock are up to the
 150		 * filesystem. For example ext3fs has different
 151		 * lock ordering than usbfs:
 152		 */
 153		lockdep_set_class(&s->s_lock, &type->s_lock_key);
 154		/*
 155		 * sget() can have s_umount recursion.
 156		 *
 157		 * When it cannot find a suitable sb, it allocates a new
 158		 * one (this one), and tries again to find a suitable old
 159		 * one.
 160		 *
 161		 * In case that succeeds, it will acquire the s_umount
 162		 * lock of the old one. Since these are clearly distrinct
 163		 * locks, and this object isn't exposed yet, there's no
 164		 * risk of deadlocks.
 165		 *
 166		 * Annotate this by putting this lock in a different
 167		 * subclass.
 168		 */
 169		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 170		s->s_count = 1;
 171		atomic_set(&s->s_active, 1);
 172		mutex_init(&s->s_vfs_rename_mutex);
 173		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 174		mutex_init(&s->s_dquot.dqio_mutex);
 175		mutex_init(&s->s_dquot.dqonoff_mutex);
 176		init_rwsem(&s->s_dquot.dqptr_sem);
 177		init_waitqueue_head(&s->s_wait_unfrozen);
 178		s->s_maxbytes = MAX_NON_LFS;
 179		s->s_op = &default_op;
 180		s->s_time_gran = 1000000000;
 181		s->cleancache_poolid = -1;
 182
 183		s->s_shrink.seeks = DEFAULT_SEEKS;
 184		s->s_shrink.shrink = prune_super;
 185		s->s_shrink.batch = 1024;
 186	}
 187out:
 188	return s;
 189}
 190
 191/**
 192 *	destroy_super	-	frees a superblock
 193 *	@s: superblock to free
 194 *
 195 *	Frees a superblock.
 196 */
 197static inline void destroy_super(struct super_block *s)
 198{
 199#ifdef CONFIG_SMP
 200	free_percpu(s->s_files);
 201#endif
 202	security_sb_free(s);
 203	kfree(s->s_subtype);
 204	kfree(s->s_options);
 205	kfree(s);
 206}
 207
 208/* Superblock refcounting  */
 209
 210/*
 211 * Drop a superblock's refcount.  The caller must hold sb_lock.
 212 */
 213void __put_super(struct super_block *sb)
 214{
 215	if (!--sb->s_count) {
 216		list_del_init(&sb->s_list);
 217		destroy_super(sb);
 218	}
 219}
 220
 221/**
 222 *	put_super	-	drop a temporary reference to superblock
 223 *	@sb: superblock in question
 224 *
 225 *	Drops a temporary reference, frees superblock if there's no
 226 *	references left.
 227 */
 228void put_super(struct super_block *sb)
 229{
 230	spin_lock(&sb_lock);
 231	__put_super(sb);
 232	spin_unlock(&sb_lock);
 233}
 234
 235
 236/**
 237 *	deactivate_locked_super	-	drop an active reference to superblock
 238 *	@s: superblock to deactivate
 239 *
 240 *	Drops an active reference to superblock, converting it into a temprory
 241 *	one if there is no other active references left.  In that case we
 242 *	tell fs driver to shut it down and drop the temporary reference we
 243 *	had just acquired.
 244 *
 245 *	Caller holds exclusive lock on superblock; that lock is released.
 246 */
 247void deactivate_locked_super(struct super_block *s)
 248{
 249	struct file_system_type *fs = s->s_type;
 250	if (atomic_dec_and_test(&s->s_active)) {
 251		cleancache_flush_fs(s);
 252		fs->kill_sb(s);
 253
 254		/* caches are now gone, we can safely kill the shrinker now */
 255		unregister_shrinker(&s->s_shrink);
 256
 257		/*
 258		 * We need to call rcu_barrier so all the delayed rcu free
 259		 * inodes are flushed before we release the fs module.
 260		 */
 261		rcu_barrier();
 262		put_filesystem(fs);
 263		put_super(s);
 264	} else {
 265		up_write(&s->s_umount);
 266	}
 267}
 268
 269EXPORT_SYMBOL(deactivate_locked_super);
 270
 271/**
 272 *	deactivate_super	-	drop an active reference to superblock
 273 *	@s: superblock to deactivate
 274 *
 275 *	Variant of deactivate_locked_super(), except that superblock is *not*
 276 *	locked by caller.  If we are going to drop the final active reference,
 277 *	lock will be acquired prior to that.
 278 */
 279void deactivate_super(struct super_block *s)
 280{
 281        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 282		down_write(&s->s_umount);
 283		deactivate_locked_super(s);
 284	}
 285}
 286
 287EXPORT_SYMBOL(deactivate_super);
 288
 289/**
 290 *	grab_super - acquire an active reference
 291 *	@s: reference we are trying to make active
 292 *
 293 *	Tries to acquire an active reference.  grab_super() is used when we
 294 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 295 *	and want to turn it into a full-blown active reference.  grab_super()
 296 *	is called with sb_lock held and drops it.  Returns 1 in case of
 297 *	success, 0 if we had failed (superblock contents was already dead or
 298 *	dying when grab_super() had been called).
 299 */
 300static int grab_super(struct super_block *s) __releases(sb_lock)
 301{
 302	if (atomic_inc_not_zero(&s->s_active)) {
 303		spin_unlock(&sb_lock);
 304		return 1;
 305	}
 306	/* it's going away */
 307	s->s_count++;
 308	spin_unlock(&sb_lock);
 309	/* wait for it to die */
 310	down_write(&s->s_umount);
 311	up_write(&s->s_umount);
 312	put_super(s);
 313	return 0;
 314}
 315
 316/*
 317 *	grab_super_passive - acquire a passive reference
 318 *	@s: reference we are trying to grab
 319 *
 320 *	Tries to acquire a passive reference. This is used in places where we
 321 *	cannot take an active reference but we need to ensure that the
 322 *	superblock does not go away while we are working on it. It returns
 323 *	false if a reference was not gained, and returns true with the s_umount
 324 *	lock held in read mode if a reference is gained. On successful return,
 325 *	the caller must drop the s_umount lock and the passive reference when
 326 *	done.
 327 */
 328bool grab_super_passive(struct super_block *sb)
 329{
 330	spin_lock(&sb_lock);
 331	if (list_empty(&sb->s_instances)) {
 332		spin_unlock(&sb_lock);
 333		return false;
 334	}
 335
 336	sb->s_count++;
 337	spin_unlock(&sb_lock);
 338
 339	if (down_read_trylock(&sb->s_umount)) {
 340		if (sb->s_root)
 341			return true;
 342		up_read(&sb->s_umount);
 343	}
 344
 345	put_super(sb);
 346	return false;
 347}
 348
 349/*
 350 * Superblock locking.  We really ought to get rid of these two.
 351 */
 352void lock_super(struct super_block * sb)
 353{
 354	mutex_lock(&sb->s_lock);
 355}
 356
 357void unlock_super(struct super_block * sb)
 358{
 359	mutex_unlock(&sb->s_lock);
 360}
 361
 362EXPORT_SYMBOL(lock_super);
 363EXPORT_SYMBOL(unlock_super);
 364
 365/**
 366 *	generic_shutdown_super	-	common helper for ->kill_sb()
 367 *	@sb: superblock to kill
 368 *
 369 *	generic_shutdown_super() does all fs-independent work on superblock
 370 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 371 *	that need destruction out of superblock, call generic_shutdown_super()
 372 *	and release aforementioned objects.  Note: dentries and inodes _are_
 373 *	taken care of and do not need specific handling.
 374 *
 375 *	Upon calling this function, the filesystem may no longer alter or
 376 *	rearrange the set of dentries belonging to this super_block, nor may it
 377 *	change the attachments of dentries to inodes.
 378 */
 379void generic_shutdown_super(struct super_block *sb)
 380{
 381	const struct super_operations *sop = sb->s_op;
 382
 383	if (sb->s_root) {
 384		shrink_dcache_for_umount(sb);
 385		sync_filesystem(sb);
 386		sb->s_flags &= ~MS_ACTIVE;
 387
 388		fsnotify_unmount_inodes(&sb->s_inodes);
 389
 390		evict_inodes(sb);
 391
 392		if (sop->put_super)
 393			sop->put_super(sb);
 394
 395		if (!list_empty(&sb->s_inodes)) {
 396			printk("VFS: Busy inodes after unmount of %s. "
 397			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 398			   sb->s_id);
 399		}
 400	}
 401	spin_lock(&sb_lock);
 402	/* should be initialized for __put_super_and_need_restart() */
 403	list_del_init(&sb->s_instances);
 404	spin_unlock(&sb_lock);
 405	up_write(&sb->s_umount);
 406}
 407
 408EXPORT_SYMBOL(generic_shutdown_super);
 409
 410/**
 411 *	sget	-	find or create a superblock
 412 *	@type:	filesystem type superblock should belong to
 413 *	@test:	comparison callback
 414 *	@set:	setup callback
 415 *	@data:	argument to each of them
 416 */
 417struct super_block *sget(struct file_system_type *type,
 418			int (*test)(struct super_block *,void *),
 419			int (*set)(struct super_block *,void *),
 420			void *data)
 421{
 422	struct super_block *s = NULL;
 423	struct super_block *old;
 424	int err;
 425
 426retry:
 427	spin_lock(&sb_lock);
 428	if (test) {
 429		list_for_each_entry(old, &type->fs_supers, s_instances) {
 430			if (!test(old, data))
 431				continue;
 432			if (!grab_super(old))
 433				goto retry;
 434			if (s) {
 435				up_write(&s->s_umount);
 436				destroy_super(s);
 437				s = NULL;
 438			}
 439			down_write(&old->s_umount);
 440			if (unlikely(!(old->s_flags & MS_BORN))) {
 441				deactivate_locked_super(old);
 442				goto retry;
 443			}
 444			return old;
 445		}
 446	}
 447	if (!s) {
 448		spin_unlock(&sb_lock);
 449		s = alloc_super(type);
 450		if (!s)
 451			return ERR_PTR(-ENOMEM);
 452		goto retry;
 453	}
 454		
 455	err = set(s, data);
 456	if (err) {
 457		spin_unlock(&sb_lock);
 458		up_write(&s->s_umount);
 459		destroy_super(s);
 460		return ERR_PTR(err);
 461	}
 462	s->s_type = type;
 463	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 464	list_add_tail(&s->s_list, &super_blocks);
 465	list_add(&s->s_instances, &type->fs_supers);
 466	spin_unlock(&sb_lock);
 467	get_filesystem(type);
 468	register_shrinker(&s->s_shrink);
 469	return s;
 470}
 471
 472EXPORT_SYMBOL(sget);
 473
 474void drop_super(struct super_block *sb)
 475{
 476	up_read(&sb->s_umount);
 477	put_super(sb);
 478}
 479
 480EXPORT_SYMBOL(drop_super);
 481
 482/**
 483 * sync_supers - helper for periodic superblock writeback
 484 *
 485 * Call the write_super method if present on all dirty superblocks in
 486 * the system.  This is for the periodic writeback used by most older
 487 * filesystems.  For data integrity superblock writeback use
 488 * sync_filesystems() instead.
 489 *
 490 * Note: check the dirty flag before waiting, so we don't
 491 * hold up the sync while mounting a device. (The newly
 492 * mounted device won't need syncing.)
 493 */
 494void sync_supers(void)
 495{
 496	struct super_block *sb, *p = NULL;
 497
 498	spin_lock(&sb_lock);
 499	list_for_each_entry(sb, &super_blocks, s_list) {
 500		if (list_empty(&sb->s_instances))
 501			continue;
 502		if (sb->s_op->write_super && sb->s_dirt) {
 503			sb->s_count++;
 504			spin_unlock(&sb_lock);
 505
 506			down_read(&sb->s_umount);
 507			if (sb->s_root && sb->s_dirt)
 508				sb->s_op->write_super(sb);
 509			up_read(&sb->s_umount);
 510
 511			spin_lock(&sb_lock);
 512			if (p)
 513				__put_super(p);
 514			p = sb;
 515		}
 516	}
 517	if (p)
 518		__put_super(p);
 519	spin_unlock(&sb_lock);
 520}
 521
 522/**
 523 *	iterate_supers - call function for all active superblocks
 524 *	@f: function to call
 525 *	@arg: argument to pass to it
 526 *
 527 *	Scans the superblock list and calls given function, passing it
 528 *	locked superblock and given argument.
 529 */
 530void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 531{
 532	struct super_block *sb, *p = NULL;
 533
 534	spin_lock(&sb_lock);
 535	list_for_each_entry(sb, &super_blocks, s_list) {
 536		if (list_empty(&sb->s_instances))
 537			continue;
 538		sb->s_count++;
 539		spin_unlock(&sb_lock);
 540
 541		down_read(&sb->s_umount);
 542		if (sb->s_root)
 543			f(sb, arg);
 544		up_read(&sb->s_umount);
 545
 546		spin_lock(&sb_lock);
 547		if (p)
 548			__put_super(p);
 549		p = sb;
 550	}
 551	if (p)
 552		__put_super(p);
 553	spin_unlock(&sb_lock);
 554}
 555
 556/**
 557 *	iterate_supers_type - call function for superblocks of given type
 558 *	@type: fs type
 559 *	@f: function to call
 560 *	@arg: argument to pass to it
 561 *
 562 *	Scans the superblock list and calls given function, passing it
 563 *	locked superblock and given argument.
 564 */
 565void iterate_supers_type(struct file_system_type *type,
 566	void (*f)(struct super_block *, void *), void *arg)
 567{
 568	struct super_block *sb, *p = NULL;
 569
 570	spin_lock(&sb_lock);
 571	list_for_each_entry(sb, &type->fs_supers, s_instances) {
 572		sb->s_count++;
 573		spin_unlock(&sb_lock);
 574
 575		down_read(&sb->s_umount);
 576		if (sb->s_root)
 577			f(sb, arg);
 578		up_read(&sb->s_umount);
 579
 580		spin_lock(&sb_lock);
 581		if (p)
 582			__put_super(p);
 583		p = sb;
 584	}
 585	if (p)
 586		__put_super(p);
 587	spin_unlock(&sb_lock);
 588}
 589
 590EXPORT_SYMBOL(iterate_supers_type);
 591
 592/**
 593 *	get_super - get the superblock of a device
 594 *	@bdev: device to get the superblock for
 595 *	
 596 *	Scans the superblock list and finds the superblock of the file system
 597 *	mounted on the device given. %NULL is returned if no match is found.
 598 */
 599
 600struct super_block *get_super(struct block_device *bdev)
 601{
 602	struct super_block *sb;
 603
 604	if (!bdev)
 605		return NULL;
 606
 607	spin_lock(&sb_lock);
 608rescan:
 609	list_for_each_entry(sb, &super_blocks, s_list) {
 610		if (list_empty(&sb->s_instances))
 611			continue;
 612		if (sb->s_bdev == bdev) {
 613			sb->s_count++;
 614			spin_unlock(&sb_lock);
 615			down_read(&sb->s_umount);
 616			/* still alive? */
 617			if (sb->s_root)
 618				return sb;
 619			up_read(&sb->s_umount);
 620			/* nope, got unmounted */
 621			spin_lock(&sb_lock);
 622			__put_super(sb);
 623			goto rescan;
 624		}
 625	}
 626	spin_unlock(&sb_lock);
 627	return NULL;
 628}
 629
 630EXPORT_SYMBOL(get_super);
 631
 632/**
 633 * get_active_super - get an active reference to the superblock of a device
 634 * @bdev: device to get the superblock for
 635 *
 636 * Scans the superblock list and finds the superblock of the file system
 637 * mounted on the device given.  Returns the superblock with an active
 638 * reference or %NULL if none was found.
 639 */
 640struct super_block *get_active_super(struct block_device *bdev)
 641{
 642	struct super_block *sb;
 643
 644	if (!bdev)
 645		return NULL;
 646
 647restart:
 648	spin_lock(&sb_lock);
 649	list_for_each_entry(sb, &super_blocks, s_list) {
 650		if (list_empty(&sb->s_instances))
 651			continue;
 652		if (sb->s_bdev == bdev) {
 653			if (grab_super(sb)) /* drops sb_lock */
 654				return sb;
 655			else
 656				goto restart;
 657		}
 658	}
 659	spin_unlock(&sb_lock);
 660	return NULL;
 661}
 662 
 663struct super_block *user_get_super(dev_t dev)
 664{
 665	struct super_block *sb;
 666
 667	spin_lock(&sb_lock);
 668rescan:
 669	list_for_each_entry(sb, &super_blocks, s_list) {
 670		if (list_empty(&sb->s_instances))
 671			continue;
 672		if (sb->s_dev ==  dev) {
 673			sb->s_count++;
 674			spin_unlock(&sb_lock);
 675			down_read(&sb->s_umount);
 676			/* still alive? */
 677			if (sb->s_root)
 678				return sb;
 679			up_read(&sb->s_umount);
 680			/* nope, got unmounted */
 681			spin_lock(&sb_lock);
 682			__put_super(sb);
 683			goto rescan;
 684		}
 685	}
 686	spin_unlock(&sb_lock);
 687	return NULL;
 688}
 689
 690/**
 691 *	do_remount_sb - asks filesystem to change mount options.
 692 *	@sb:	superblock in question
 693 *	@flags:	numeric part of options
 694 *	@data:	the rest of options
 695 *      @force: whether or not to force the change
 696 *
 697 *	Alters the mount options of a mounted file system.
 698 */
 699int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 700{
 701	int retval;
 702	int remount_ro;
 703
 704	if (sb->s_frozen != SB_UNFROZEN)
 705		return -EBUSY;
 706
 707#ifdef CONFIG_BLOCK
 708	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 709		return -EACCES;
 710#endif
 711
 712	if (flags & MS_RDONLY)
 713		acct_auto_close(sb);
 714	shrink_dcache_sb(sb);
 715	sync_filesystem(sb);
 716
 717	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 718
 719	/* If we are remounting RDONLY and current sb is read/write,
 720	   make sure there are no rw files opened */
 721	if (remount_ro) {
 722		if (force)
 723			mark_files_ro(sb);
 724		else if (!fs_may_remount_ro(sb))
 725			return -EBUSY;
 726	}
 727
 728	if (sb->s_op->remount_fs) {
 729		retval = sb->s_op->remount_fs(sb, &flags, data);
 730		if (retval)
 731			return retval;
 732	}
 733	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 734
 735	/*
 736	 * Some filesystems modify their metadata via some other path than the
 737	 * bdev buffer cache (eg. use a private mapping, or directories in
 738	 * pagecache, etc). Also file data modifications go via their own
 739	 * mappings. So If we try to mount readonly then copy the filesystem
 740	 * from bdev, we could get stale data, so invalidate it to give a best
 741	 * effort at coherency.
 742	 */
 743	if (remount_ro && sb->s_bdev)
 744		invalidate_bdev(sb->s_bdev);
 745	return 0;
 746}
 747
 748static void do_emergency_remount(struct work_struct *work)
 749{
 750	struct super_block *sb, *p = NULL;
 751
 752	spin_lock(&sb_lock);
 753	list_for_each_entry(sb, &super_blocks, s_list) {
 754		if (list_empty(&sb->s_instances))
 755			continue;
 756		sb->s_count++;
 757		spin_unlock(&sb_lock);
 758		down_write(&sb->s_umount);
 759		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
 760			/*
 761			 * What lock protects sb->s_flags??
 762			 */
 763			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 764		}
 765		up_write(&sb->s_umount);
 766		spin_lock(&sb_lock);
 767		if (p)
 768			__put_super(p);
 769		p = sb;
 770	}
 771	if (p)
 772		__put_super(p);
 773	spin_unlock(&sb_lock);
 774	kfree(work);
 775	printk("Emergency Remount complete\n");
 776}
 777
 778void emergency_remount(void)
 779{
 780	struct work_struct *work;
 781
 782	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 783	if (work) {
 784		INIT_WORK(work, do_emergency_remount);
 785		schedule_work(work);
 786	}
 787}
 788
 789/*
 790 * Unnamed block devices are dummy devices used by virtual
 791 * filesystems which don't use real block-devices.  -- jrs
 792 */
 793
 794static DEFINE_IDA(unnamed_dev_ida);
 795static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 796static int unnamed_dev_start = 0; /* don't bother trying below it */
 797
 798int get_anon_bdev(dev_t *p)
 799{
 800	int dev;
 801	int error;
 802
 803 retry:
 804	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 805		return -ENOMEM;
 806	spin_lock(&unnamed_dev_lock);
 807	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 808	if (!error)
 809		unnamed_dev_start = dev + 1;
 810	spin_unlock(&unnamed_dev_lock);
 811	if (error == -EAGAIN)
 812		/* We raced and lost with another CPU. */
 813		goto retry;
 814	else if (error)
 815		return -EAGAIN;
 816
 817	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 818		spin_lock(&unnamed_dev_lock);
 819		ida_remove(&unnamed_dev_ida, dev);
 820		if (unnamed_dev_start > dev)
 821			unnamed_dev_start = dev;
 822		spin_unlock(&unnamed_dev_lock);
 823		return -EMFILE;
 824	}
 825	*p = MKDEV(0, dev & MINORMASK);
 826	return 0;
 827}
 828EXPORT_SYMBOL(get_anon_bdev);
 829
 830void free_anon_bdev(dev_t dev)
 831{
 832	int slot = MINOR(dev);
 833	spin_lock(&unnamed_dev_lock);
 834	ida_remove(&unnamed_dev_ida, slot);
 835	if (slot < unnamed_dev_start)
 836		unnamed_dev_start = slot;
 837	spin_unlock(&unnamed_dev_lock);
 838}
 839EXPORT_SYMBOL(free_anon_bdev);
 840
 841int set_anon_super(struct super_block *s, void *data)
 842{
 843	int error = get_anon_bdev(&s->s_dev);
 844	if (!error)
 845		s->s_bdi = &noop_backing_dev_info;
 846	return error;
 847}
 848
 849EXPORT_SYMBOL(set_anon_super);
 850
 851void kill_anon_super(struct super_block *sb)
 852{
 853	dev_t dev = sb->s_dev;
 854	generic_shutdown_super(sb);
 855	free_anon_bdev(dev);
 856}
 857
 858EXPORT_SYMBOL(kill_anon_super);
 859
 860void kill_litter_super(struct super_block *sb)
 861{
 862	if (sb->s_root)
 863		d_genocide(sb->s_root);
 864	kill_anon_super(sb);
 865}
 866
 867EXPORT_SYMBOL(kill_litter_super);
 868
 869static int ns_test_super(struct super_block *sb, void *data)
 870{
 871	return sb->s_fs_info == data;
 872}
 873
 874static int ns_set_super(struct super_block *sb, void *data)
 875{
 876	sb->s_fs_info = data;
 877	return set_anon_super(sb, NULL);
 878}
 879
 880struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 881	void *data, int (*fill_super)(struct super_block *, void *, int))
 882{
 883	struct super_block *sb;
 884
 885	sb = sget(fs_type, ns_test_super, ns_set_super, data);
 886	if (IS_ERR(sb))
 887		return ERR_CAST(sb);
 888
 889	if (!sb->s_root) {
 890		int err;
 891		sb->s_flags = flags;
 892		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 893		if (err) {
 894			deactivate_locked_super(sb);
 895			return ERR_PTR(err);
 896		}
 897
 898		sb->s_flags |= MS_ACTIVE;
 899	}
 900
 901	return dget(sb->s_root);
 902}
 903
 904EXPORT_SYMBOL(mount_ns);
 905
 906#ifdef CONFIG_BLOCK
 907static int set_bdev_super(struct super_block *s, void *data)
 908{
 909	s->s_bdev = data;
 910	s->s_dev = s->s_bdev->bd_dev;
 911
 912	/*
 913	 * We set the bdi here to the queue backing, file systems can
 914	 * overwrite this in ->fill_super()
 915	 */
 916	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 917	return 0;
 918}
 919
 920static int test_bdev_super(struct super_block *s, void *data)
 921{
 922	return (void *)s->s_bdev == data;
 923}
 924
 925struct dentry *mount_bdev(struct file_system_type *fs_type,
 926	int flags, const char *dev_name, void *data,
 927	int (*fill_super)(struct super_block *, void *, int))
 928{
 929	struct block_device *bdev;
 930	struct super_block *s;
 931	fmode_t mode = FMODE_READ | FMODE_EXCL;
 932	int error = 0;
 933
 934	if (!(flags & MS_RDONLY))
 935		mode |= FMODE_WRITE;
 936
 937	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 938	if (IS_ERR(bdev))
 939		return ERR_CAST(bdev);
 940
 941	/*
 942	 * once the super is inserted into the list by sget, s_umount
 943	 * will protect the lockfs code from trying to start a snapshot
 944	 * while we are mounting
 945	 */
 946	mutex_lock(&bdev->bd_fsfreeze_mutex);
 947	if (bdev->bd_fsfreeze_count > 0) {
 948		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 949		error = -EBUSY;
 950		goto error_bdev;
 951	}
 952	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 953	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 954	if (IS_ERR(s))
 955		goto error_s;
 956
 957	if (s->s_root) {
 958		if ((flags ^ s->s_flags) & MS_RDONLY) {
 959			deactivate_locked_super(s);
 960			error = -EBUSY;
 961			goto error_bdev;
 962		}
 963
 964		/*
 965		 * s_umount nests inside bd_mutex during
 966		 * __invalidate_device().  blkdev_put() acquires
 967		 * bd_mutex and can't be called under s_umount.  Drop
 968		 * s_umount temporarily.  This is safe as we're
 969		 * holding an active reference.
 970		 */
 971		up_write(&s->s_umount);
 972		blkdev_put(bdev, mode);
 973		down_write(&s->s_umount);
 974	} else {
 975		char b[BDEVNAME_SIZE];
 976
 977		s->s_flags = flags | MS_NOSEC;
 978		s->s_mode = mode;
 979		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 980		sb_set_blocksize(s, block_size(bdev));
 981		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 982		if (error) {
 983			deactivate_locked_super(s);
 984			goto error;
 985		}
 986
 987		s->s_flags |= MS_ACTIVE;
 988		bdev->bd_super = s;
 989	}
 990
 991	return dget(s->s_root);
 992
 993error_s:
 994	error = PTR_ERR(s);
 995error_bdev:
 996	blkdev_put(bdev, mode);
 997error:
 998	return ERR_PTR(error);
 999}
1000EXPORT_SYMBOL(mount_bdev);
1001
1002void kill_block_super(struct super_block *sb)
1003{
1004	struct block_device *bdev = sb->s_bdev;
1005	fmode_t mode = sb->s_mode;
1006
1007	bdev->bd_super = NULL;
1008	generic_shutdown_super(sb);
1009	sync_blockdev(bdev);
1010	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1011	blkdev_put(bdev, mode | FMODE_EXCL);
1012}
1013
1014EXPORT_SYMBOL(kill_block_super);
1015#endif
1016
1017struct dentry *mount_nodev(struct file_system_type *fs_type,
1018	int flags, void *data,
1019	int (*fill_super)(struct super_block *, void *, int))
1020{
1021	int error;
1022	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1023
1024	if (IS_ERR(s))
1025		return ERR_CAST(s);
1026
1027	s->s_flags = flags;
1028
1029	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1030	if (error) {
1031		deactivate_locked_super(s);
1032		return ERR_PTR(error);
1033	}
1034	s->s_flags |= MS_ACTIVE;
1035	return dget(s->s_root);
1036}
1037EXPORT_SYMBOL(mount_nodev);
1038
1039static int compare_single(struct super_block *s, void *p)
1040{
1041	return 1;
1042}
1043
1044struct dentry *mount_single(struct file_system_type *fs_type,
1045	int flags, void *data,
1046	int (*fill_super)(struct super_block *, void *, int))
1047{
1048	struct super_block *s;
1049	int error;
1050
1051	s = sget(fs_type, compare_single, set_anon_super, NULL);
1052	if (IS_ERR(s))
1053		return ERR_CAST(s);
1054	if (!s->s_root) {
1055		s->s_flags = flags;
1056		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057		if (error) {
1058			deactivate_locked_super(s);
1059			return ERR_PTR(error);
1060		}
1061		s->s_flags |= MS_ACTIVE;
1062	} else {
1063		do_remount_sb(s, flags, data, 0);
1064	}
1065	return dget(s->s_root);
1066}
1067EXPORT_SYMBOL(mount_single);
1068
1069struct dentry *
1070mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1071{
1072	struct dentry *root;
1073	struct super_block *sb;
1074	char *secdata = NULL;
1075	int error = -ENOMEM;
1076
1077	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078		secdata = alloc_secdata();
1079		if (!secdata)
1080			goto out;
1081
1082		error = security_sb_copy_data(data, secdata);
1083		if (error)
1084			goto out_free_secdata;
1085	}
1086
1087	root = type->mount(type, flags, name, data);
1088	if (IS_ERR(root)) {
1089		error = PTR_ERR(root);
1090		goto out_free_secdata;
1091	}
1092	sb = root->d_sb;
1093	BUG_ON(!sb);
1094	WARN_ON(!sb->s_bdi);
1095	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096	sb->s_flags |= MS_BORN;
1097
1098	error = security_sb_kern_mount(sb, flags, secdata);
1099	if (error)
1100		goto out_sb;
1101
1102	/*
1103	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104	 * but s_maxbytes was an unsigned long long for many releases. Throw
1105	 * this warning for a little while to try and catch filesystems that
1106	 * violate this rule.
1107	 */
1108	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1110
1111	up_write(&sb->s_umount);
1112	free_secdata(secdata);
1113	return root;
1114out_sb:
1115	dput(root);
1116	deactivate_locked_super(sb);
1117out_free_secdata:
1118	free_secdata(secdata);
1119out:
1120	return ERR_PTR(error);
1121}
1122
1123/**
1124 * freeze_super - lock the filesystem and force it into a consistent state
1125 * @sb: the super to lock
1126 *
1127 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1128 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1129 * -EBUSY.
1130 */
1131int freeze_super(struct super_block *sb)
1132{
1133	int ret;
1134
1135	atomic_inc(&sb->s_active);
1136	down_write(&sb->s_umount);
1137	if (sb->s_frozen) {
1138		deactivate_locked_super(sb);
1139		return -EBUSY;
1140	}
1141
1142	if (sb->s_flags & MS_RDONLY) {
1143		sb->s_frozen = SB_FREEZE_TRANS;
1144		smp_wmb();
1145		up_write(&sb->s_umount);
1146		return 0;
1147	}
1148
1149	sb->s_frozen = SB_FREEZE_WRITE;
1150	smp_wmb();
1151
1152	sync_filesystem(sb);
1153
1154	sb->s_frozen = SB_FREEZE_TRANS;
1155	smp_wmb();
1156
1157	sync_blockdev(sb->s_bdev);
1158	if (sb->s_op->freeze_fs) {
1159		ret = sb->s_op->freeze_fs(sb);
1160		if (ret) {
1161			printk(KERN_ERR
1162				"VFS:Filesystem freeze failed\n");
1163			sb->s_frozen = SB_UNFROZEN;
1164			deactivate_locked_super(sb);
1165			return ret;
1166		}
1167	}
1168	up_write(&sb->s_umount);
1169	return 0;
1170}
1171EXPORT_SYMBOL(freeze_super);
1172
1173/**
1174 * thaw_super -- unlock filesystem
1175 * @sb: the super to thaw
1176 *
1177 * Unlocks the filesystem and marks it writeable again after freeze_super().
1178 */
1179int thaw_super(struct super_block *sb)
1180{
1181	int error;
1182
1183	down_write(&sb->s_umount);
1184	if (sb->s_frozen == SB_UNFROZEN) {
1185		up_write(&sb->s_umount);
1186		return -EINVAL;
1187	}
1188
1189	if (sb->s_flags & MS_RDONLY)
1190		goto out;
1191
1192	if (sb->s_op->unfreeze_fs) {
1193		error = sb->s_op->unfreeze_fs(sb);
1194		if (error) {
1195			printk(KERN_ERR
1196				"VFS:Filesystem thaw failed\n");
1197			sb->s_frozen = SB_FREEZE_TRANS;
1198			up_write(&sb->s_umount);
1199			return error;
1200		}
1201	}
1202
1203out:
1204	sb->s_frozen = SB_UNFROZEN;
1205	smp_wmb();
1206	wake_up(&sb->s_wait_unfrozen);
1207	deactivate_locked_super(sb);
1208
1209	return 0;
1210}
1211EXPORT_SYMBOL(thaw_super);