Loading...
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <linux/fsnotify_backend.h>
77#include <uapi/linux/limits.h>
78
79#include "audit.h"
80
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
93/* number of audit rules */
94int audit_n_rules;
95
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118};
119
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
176static int audit_match_filetype(struct audit_context *ctx, int val)
177{
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191}
192
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203#ifdef CONFIG_AUDIT_TREE
204static void audit_set_auditable(struct audit_context *ctx)
205{
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210}
211
212static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213{
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231}
232
233static int grow_tree_refs(struct audit_context *ctx)
234{
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247}
248#endif
249
250static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252{
253#ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277#endif
278}
279
280static void free_tree_refs(struct audit_context *ctx)
281{
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287}
288
289static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290{
291#ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308#endif
309 return 0;
310}
311
312static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316{
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334}
335
336static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340{
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358}
359
360static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365{
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430}
431
432/* Determine if any context name data matches a rule's watch data */
433/* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446{
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450 unsigned int sessionid;
451
452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 struct audit_names *n;
457 int result = 0;
458 pid_t pid;
459
460 switch (f->type) {
461 case AUDIT_PID:
462 pid = task_tgid_nr(tsk);
463 result = audit_comparator(pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = task_ppid_nr(tsk);
469 result = audit_comparator(ctx->ppid, f->op, f->val);
470 }
471 break;
472 case AUDIT_EXE:
473 result = audit_exe_compare(tsk, rule->exe);
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(current);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
613 break;
614 case AUDIT_LOGINUID_SET:
615 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
616 break;
617 case AUDIT_SUBJ_USER:
618 case AUDIT_SUBJ_ROLE:
619 case AUDIT_SUBJ_TYPE:
620 case AUDIT_SUBJ_SEN:
621 case AUDIT_SUBJ_CLR:
622 /* NOTE: this may return negative values indicating
623 a temporary error. We simply treat this as a
624 match for now to avoid losing information that
625 may be wanted. An error message will also be
626 logged upon error */
627 if (f->lsm_rule) {
628 if (need_sid) {
629 security_task_getsecid(tsk, &sid);
630 need_sid = 0;
631 }
632 result = security_audit_rule_match(sid, f->type,
633 f->op,
634 f->lsm_rule,
635 ctx);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid, f->type, f->op,
650 f->lsm_rule, ctx);
651 } else if (ctx) {
652 list_for_each_entry(n, &ctx->names_list, list) {
653 if (security_audit_rule_match(n->osid, f->type,
654 f->op, f->lsm_rule,
655 ctx)) {
656 ++result;
657 break;
658 }
659 }
660 }
661 /* Find ipc objects that match */
662 if (!ctx || ctx->type != AUDIT_IPC)
663 break;
664 if (security_audit_rule_match(ctx->ipc.osid,
665 f->type, f->op,
666 f->lsm_rule, ctx))
667 ++result;
668 }
669 break;
670 case AUDIT_ARG0:
671 case AUDIT_ARG1:
672 case AUDIT_ARG2:
673 case AUDIT_ARG3:
674 if (ctx)
675 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
676 break;
677 case AUDIT_FILTERKEY:
678 /* ignore this field for filtering */
679 result = 1;
680 break;
681 case AUDIT_PERM:
682 result = audit_match_perm(ctx, f->val);
683 break;
684 case AUDIT_FILETYPE:
685 result = audit_match_filetype(ctx, f->val);
686 break;
687 case AUDIT_FIELD_COMPARE:
688 result = audit_field_compare(tsk, cred, f, ctx, name);
689 break;
690 }
691 if (!result)
692 return 0;
693 }
694
695 if (ctx) {
696 if (rule->prio <= ctx->prio)
697 return 0;
698 if (rule->filterkey) {
699 kfree(ctx->filterkey);
700 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
701 }
702 ctx->prio = rule->prio;
703 }
704 switch (rule->action) {
705 case AUDIT_NEVER:
706 *state = AUDIT_DISABLED;
707 break;
708 case AUDIT_ALWAYS:
709 *state = AUDIT_RECORD_CONTEXT;
710 break;
711 }
712 return 1;
713}
714
715/* At process creation time, we can determine if system-call auditing is
716 * completely disabled for this task. Since we only have the task
717 * structure at this point, we can only check uid and gid.
718 */
719static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
720{
721 struct audit_entry *e;
722 enum audit_state state;
723
724 rcu_read_lock();
725 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
726 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
727 &state, true)) {
728 if (state == AUDIT_RECORD_CONTEXT)
729 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
730 rcu_read_unlock();
731 return state;
732 }
733 }
734 rcu_read_unlock();
735 return AUDIT_BUILD_CONTEXT;
736}
737
738static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
739{
740 int word, bit;
741
742 if (val > 0xffffffff)
743 return false;
744
745 word = AUDIT_WORD(val);
746 if (word >= AUDIT_BITMASK_SIZE)
747 return false;
748
749 bit = AUDIT_BIT(val);
750
751 return rule->mask[word] & bit;
752}
753
754/* At syscall entry and exit time, this filter is called if the
755 * audit_state is not low enough that auditing cannot take place, but is
756 * also not high enough that we already know we have to write an audit
757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
758 */
759static enum audit_state audit_filter_syscall(struct task_struct *tsk,
760 struct audit_context *ctx,
761 struct list_head *list)
762{
763 struct audit_entry *e;
764 enum audit_state state;
765
766 if (auditd_test_task(tsk))
767 return AUDIT_DISABLED;
768
769 rcu_read_lock();
770 if (!list_empty(list)) {
771 list_for_each_entry_rcu(e, list, list) {
772 if (audit_in_mask(&e->rule, ctx->major) &&
773 audit_filter_rules(tsk, &e->rule, ctx, NULL,
774 &state, false)) {
775 rcu_read_unlock();
776 ctx->current_state = state;
777 return state;
778 }
779 }
780 }
781 rcu_read_unlock();
782 return AUDIT_BUILD_CONTEXT;
783}
784
785/*
786 * Given an audit_name check the inode hash table to see if they match.
787 * Called holding the rcu read lock to protect the use of audit_inode_hash
788 */
789static int audit_filter_inode_name(struct task_struct *tsk,
790 struct audit_names *n,
791 struct audit_context *ctx) {
792 int h = audit_hash_ino((u32)n->ino);
793 struct list_head *list = &audit_inode_hash[h];
794 struct audit_entry *e;
795 enum audit_state state;
796
797 if (list_empty(list))
798 return 0;
799
800 list_for_each_entry_rcu(e, list, list) {
801 if (audit_in_mask(&e->rule, ctx->major) &&
802 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
803 ctx->current_state = state;
804 return 1;
805 }
806 }
807
808 return 0;
809}
810
811/* At syscall exit time, this filter is called if any audit_names have been
812 * collected during syscall processing. We only check rules in sublists at hash
813 * buckets applicable to the inode numbers in audit_names.
814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
815 */
816void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
817{
818 struct audit_names *n;
819
820 if (auditd_test_task(tsk))
821 return;
822
823 rcu_read_lock();
824
825 list_for_each_entry(n, &ctx->names_list, list) {
826 if (audit_filter_inode_name(tsk, n, ctx))
827 break;
828 }
829 rcu_read_unlock();
830}
831
832/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
833static inline struct audit_context *audit_take_context(struct task_struct *tsk,
834 int return_valid,
835 long return_code)
836{
837 struct audit_context *context = tsk->audit_context;
838
839 if (!context)
840 return NULL;
841 context->return_valid = return_valid;
842
843 /*
844 * we need to fix up the return code in the audit logs if the actual
845 * return codes are later going to be fixed up by the arch specific
846 * signal handlers
847 *
848 * This is actually a test for:
849 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
850 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
851 *
852 * but is faster than a bunch of ||
853 */
854 if (unlikely(return_code <= -ERESTARTSYS) &&
855 (return_code >= -ERESTART_RESTARTBLOCK) &&
856 (return_code != -ENOIOCTLCMD))
857 context->return_code = -EINTR;
858 else
859 context->return_code = return_code;
860
861 if (context->in_syscall && !context->dummy) {
862 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
863 audit_filter_inodes(tsk, context);
864 }
865
866 tsk->audit_context = NULL;
867 return context;
868}
869
870static inline void audit_proctitle_free(struct audit_context *context)
871{
872 kfree(context->proctitle.value);
873 context->proctitle.value = NULL;
874 context->proctitle.len = 0;
875}
876
877static inline void audit_free_names(struct audit_context *context)
878{
879 struct audit_names *n, *next;
880
881 list_for_each_entry_safe(n, next, &context->names_list, list) {
882 list_del(&n->list);
883 if (n->name)
884 putname(n->name);
885 if (n->should_free)
886 kfree(n);
887 }
888 context->name_count = 0;
889 path_put(&context->pwd);
890 context->pwd.dentry = NULL;
891 context->pwd.mnt = NULL;
892}
893
894static inline void audit_free_aux(struct audit_context *context)
895{
896 struct audit_aux_data *aux;
897
898 while ((aux = context->aux)) {
899 context->aux = aux->next;
900 kfree(aux);
901 }
902 while ((aux = context->aux_pids)) {
903 context->aux_pids = aux->next;
904 kfree(aux);
905 }
906}
907
908static inline struct audit_context *audit_alloc_context(enum audit_state state)
909{
910 struct audit_context *context;
911
912 context = kzalloc(sizeof(*context), GFP_KERNEL);
913 if (!context)
914 return NULL;
915 context->state = state;
916 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
917 INIT_LIST_HEAD(&context->killed_trees);
918 INIT_LIST_HEAD(&context->names_list);
919 return context;
920}
921
922/**
923 * audit_alloc - allocate an audit context block for a task
924 * @tsk: task
925 *
926 * Filter on the task information and allocate a per-task audit context
927 * if necessary. Doing so turns on system call auditing for the
928 * specified task. This is called from copy_process, so no lock is
929 * needed.
930 */
931int audit_alloc(struct task_struct *tsk)
932{
933 struct audit_context *context;
934 enum audit_state state;
935 char *key = NULL;
936
937 if (likely(!audit_ever_enabled))
938 return 0; /* Return if not auditing. */
939
940 state = audit_filter_task(tsk, &key);
941 if (state == AUDIT_DISABLED) {
942 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944 }
945
946 if (!(context = audit_alloc_context(state))) {
947 kfree(key);
948 audit_log_lost("out of memory in audit_alloc");
949 return -ENOMEM;
950 }
951 context->filterkey = key;
952
953 tsk->audit_context = context;
954 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 return 0;
956}
957
958static inline void audit_free_context(struct audit_context *context)
959{
960 audit_free_names(context);
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
963 audit_free_aux(context);
964 kfree(context->filterkey);
965 kfree(context->sockaddr);
966 audit_proctitle_free(context);
967 kfree(context);
968}
969
970static int audit_log_pid_context(struct audit_context *context, pid_t pid,
971 kuid_t auid, kuid_t uid, unsigned int sessionid,
972 u32 sid, char *comm)
973{
974 struct audit_buffer *ab;
975 char *ctx = NULL;
976 u32 len;
977 int rc = 0;
978
979 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
980 if (!ab)
981 return rc;
982
983 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
984 from_kuid(&init_user_ns, auid),
985 from_kuid(&init_user_ns, uid), sessionid);
986 if (sid) {
987 if (security_secid_to_secctx(sid, &ctx, &len)) {
988 audit_log_format(ab, " obj=(none)");
989 rc = 1;
990 } else {
991 audit_log_format(ab, " obj=%s", ctx);
992 security_release_secctx(ctx, len);
993 }
994 }
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
997 audit_log_end(ab);
998
999 return rc;
1000}
1001
1002static void audit_log_execve_info(struct audit_context *context,
1003 struct audit_buffer **ab)
1004{
1005 long len_max;
1006 long len_rem;
1007 long len_full;
1008 long len_buf;
1009 long len_abuf = 0;
1010 long len_tmp;
1011 bool require_data;
1012 bool encode;
1013 unsigned int iter;
1014 unsigned int arg;
1015 char *buf_head;
1016 char *buf;
1017 const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1020 * data we put in the audit record for this argument (see the
1021 * code below) ... at this point in time 96 is plenty */
1022 char abuf[96];
1023
1024 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025 * current value of 7500 is not as important as the fact that it
1026 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1027 * room if we go over a little bit in the logging below */
1028 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029 len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031 /* scratch buffer to hold the userspace args */
1032 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033 if (!buf_head) {
1034 audit_panic("out of memory for argv string");
1035 return;
1036 }
1037 buf = buf_head;
1038
1039 audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041 len_rem = len_max;
1042 len_buf = 0;
1043 len_full = 0;
1044 require_data = true;
1045 encode = false;
1046 iter = 0;
1047 arg = 0;
1048 do {
1049 /* NOTE: we don't ever want to trust this value for anything
1050 * serious, but the audit record format insists we
1051 * provide an argument length for really long arguments,
1052 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053 * to use strncpy_from_user() to obtain this value for
1054 * recording in the log, although we don't use it
1055 * anywhere here to avoid a double-fetch problem */
1056 if (len_full == 0)
1057 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059 /* read more data from userspace */
1060 if (require_data) {
1061 /* can we make more room in the buffer? */
1062 if (buf != buf_head) {
1063 memmove(buf_head, buf, len_buf);
1064 buf = buf_head;
1065 }
1066
1067 /* fetch as much as we can of the argument */
1068 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069 len_max - len_buf);
1070 if (len_tmp == -EFAULT) {
1071 /* unable to copy from userspace */
1072 send_sig(SIGKILL, current, 0);
1073 goto out;
1074 } else if (len_tmp == (len_max - len_buf)) {
1075 /* buffer is not large enough */
1076 require_data = true;
1077 /* NOTE: if we are going to span multiple
1078 * buffers force the encoding so we stand
1079 * a chance at a sane len_full value and
1080 * consistent record encoding */
1081 encode = true;
1082 len_full = len_full * 2;
1083 p += len_tmp;
1084 } else {
1085 require_data = false;
1086 if (!encode)
1087 encode = audit_string_contains_control(
1088 buf, len_tmp);
1089 /* try to use a trusted value for len_full */
1090 if (len_full < len_max)
1091 len_full = (encode ?
1092 len_tmp * 2 : len_tmp);
1093 p += len_tmp + 1;
1094 }
1095 len_buf += len_tmp;
1096 buf_head[len_buf] = '\0';
1097
1098 /* length of the buffer in the audit record? */
1099 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100 }
1101
1102 /* write as much as we can to the audit log */
1103 if (len_buf > 0) {
1104 /* NOTE: some magic numbers here - basically if we
1105 * can't fit a reasonable amount of data into the
1106 * existing audit buffer, flush it and start with
1107 * a new buffer */
1108 if ((sizeof(abuf) + 8) > len_rem) {
1109 len_rem = len_max;
1110 audit_log_end(*ab);
1111 *ab = audit_log_start(context,
1112 GFP_KERNEL, AUDIT_EXECVE);
1113 if (!*ab)
1114 goto out;
1115 }
1116
1117 /* create the non-arg portion of the arg record */
1118 len_tmp = 0;
1119 if (require_data || (iter > 0) ||
1120 ((len_abuf + sizeof(abuf)) > len_rem)) {
1121 if (iter == 0) {
1122 len_tmp += snprintf(&abuf[len_tmp],
1123 sizeof(abuf) - len_tmp,
1124 " a%d_len=%lu",
1125 arg, len_full);
1126 }
1127 len_tmp += snprintf(&abuf[len_tmp],
1128 sizeof(abuf) - len_tmp,
1129 " a%d[%d]=", arg, iter++);
1130 } else
1131 len_tmp += snprintf(&abuf[len_tmp],
1132 sizeof(abuf) - len_tmp,
1133 " a%d=", arg);
1134 WARN_ON(len_tmp >= sizeof(abuf));
1135 abuf[sizeof(abuf) - 1] = '\0';
1136
1137 /* log the arg in the audit record */
1138 audit_log_format(*ab, "%s", abuf);
1139 len_rem -= len_tmp;
1140 len_tmp = len_buf;
1141 if (encode) {
1142 if (len_abuf > len_rem)
1143 len_tmp = len_rem / 2; /* encoding */
1144 audit_log_n_hex(*ab, buf, len_tmp);
1145 len_rem -= len_tmp * 2;
1146 len_abuf -= len_tmp * 2;
1147 } else {
1148 if (len_abuf > len_rem)
1149 len_tmp = len_rem - 2; /* quotes */
1150 audit_log_n_string(*ab, buf, len_tmp);
1151 len_rem -= len_tmp + 2;
1152 /* don't subtract the "2" because we still need
1153 * to add quotes to the remaining string */
1154 len_abuf -= len_tmp;
1155 }
1156 len_buf -= len_tmp;
1157 buf += len_tmp;
1158 }
1159
1160 /* ready to move to the next argument? */
1161 if ((len_buf == 0) && !require_data) {
1162 arg++;
1163 iter = 0;
1164 len_full = 0;
1165 require_data = true;
1166 encode = false;
1167 }
1168 } while (arg < context->execve.argc);
1169
1170 /* NOTE: the caller handles the final audit_log_end() call */
1171
1172out:
1173 kfree(buf_head);
1174}
1175
1176static void show_special(struct audit_context *context, int *call_panic)
1177{
1178 struct audit_buffer *ab;
1179 int i;
1180
1181 ab = audit_log_start(context, GFP_KERNEL, context->type);
1182 if (!ab)
1183 return;
1184
1185 switch (context->type) {
1186 case AUDIT_SOCKETCALL: {
1187 int nargs = context->socketcall.nargs;
1188 audit_log_format(ab, "nargs=%d", nargs);
1189 for (i = 0; i < nargs; i++)
1190 audit_log_format(ab, " a%d=%lx", i,
1191 context->socketcall.args[i]);
1192 break; }
1193 case AUDIT_IPC: {
1194 u32 osid = context->ipc.osid;
1195
1196 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197 from_kuid(&init_user_ns, context->ipc.uid),
1198 from_kgid(&init_user_ns, context->ipc.gid),
1199 context->ipc.mode);
1200 if (osid) {
1201 char *ctx = NULL;
1202 u32 len;
1203 if (security_secid_to_secctx(osid, &ctx, &len)) {
1204 audit_log_format(ab, " osid=%u", osid);
1205 *call_panic = 1;
1206 } else {
1207 audit_log_format(ab, " obj=%s", ctx);
1208 security_release_secctx(ctx, len);
1209 }
1210 }
1211 if (context->ipc.has_perm) {
1212 audit_log_end(ab);
1213 ab = audit_log_start(context, GFP_KERNEL,
1214 AUDIT_IPC_SET_PERM);
1215 if (unlikely(!ab))
1216 return;
1217 audit_log_format(ab,
1218 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219 context->ipc.qbytes,
1220 context->ipc.perm_uid,
1221 context->ipc.perm_gid,
1222 context->ipc.perm_mode);
1223 }
1224 break; }
1225 case AUDIT_MQ_OPEN:
1226 audit_log_format(ab,
1227 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228 "mq_msgsize=%ld mq_curmsgs=%ld",
1229 context->mq_open.oflag, context->mq_open.mode,
1230 context->mq_open.attr.mq_flags,
1231 context->mq_open.attr.mq_maxmsg,
1232 context->mq_open.attr.mq_msgsize,
1233 context->mq_open.attr.mq_curmsgs);
1234 break;
1235 case AUDIT_MQ_SENDRECV:
1236 audit_log_format(ab,
1237 "mqdes=%d msg_len=%zd msg_prio=%u "
1238 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239 context->mq_sendrecv.mqdes,
1240 context->mq_sendrecv.msg_len,
1241 context->mq_sendrecv.msg_prio,
1242 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243 context->mq_sendrecv.abs_timeout.tv_nsec);
1244 break;
1245 case AUDIT_MQ_NOTIFY:
1246 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247 context->mq_notify.mqdes,
1248 context->mq_notify.sigev_signo);
1249 break;
1250 case AUDIT_MQ_GETSETATTR: {
1251 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1252 audit_log_format(ab,
1253 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254 "mq_curmsgs=%ld ",
1255 context->mq_getsetattr.mqdes,
1256 attr->mq_flags, attr->mq_maxmsg,
1257 attr->mq_msgsize, attr->mq_curmsgs);
1258 break; }
1259 case AUDIT_CAPSET:
1260 audit_log_format(ab, "pid=%d", context->capset.pid);
1261 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265 break;
1266 case AUDIT_MMAP:
1267 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268 context->mmap.flags);
1269 break;
1270 case AUDIT_EXECVE:
1271 audit_log_execve_info(context, &ab);
1272 break;
1273 case AUDIT_KERN_MODULE:
1274 audit_log_format(ab, "name=");
1275 audit_log_untrustedstring(ab, context->module.name);
1276 kfree(context->module.name);
1277 break;
1278 }
1279 audit_log_end(ab);
1280}
1281
1282static inline int audit_proctitle_rtrim(char *proctitle, int len)
1283{
1284 char *end = proctitle + len - 1;
1285 while (end > proctitle && !isprint(*end))
1286 end--;
1287
1288 /* catch the case where proctitle is only 1 non-print character */
1289 len = end - proctitle + 1;
1290 len -= isprint(proctitle[len-1]) == 0;
1291 return len;
1292}
1293
1294static void audit_log_proctitle(struct task_struct *tsk,
1295 struct audit_context *context)
1296{
1297 int res;
1298 char *buf;
1299 char *msg = "(null)";
1300 int len = strlen(msg);
1301 struct audit_buffer *ab;
1302
1303 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1304 if (!ab)
1305 return; /* audit_panic or being filtered */
1306
1307 audit_log_format(ab, "proctitle=");
1308
1309 /* Not cached */
1310 if (!context->proctitle.value) {
1311 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1312 if (!buf)
1313 goto out;
1314 /* Historically called this from procfs naming */
1315 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1316 if (res == 0) {
1317 kfree(buf);
1318 goto out;
1319 }
1320 res = audit_proctitle_rtrim(buf, res);
1321 if (res == 0) {
1322 kfree(buf);
1323 goto out;
1324 }
1325 context->proctitle.value = buf;
1326 context->proctitle.len = res;
1327 }
1328 msg = context->proctitle.value;
1329 len = context->proctitle.len;
1330out:
1331 audit_log_n_untrustedstring(ab, msg, len);
1332 audit_log_end(ab);
1333}
1334
1335static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1336{
1337 int i, call_panic = 0;
1338 struct audit_buffer *ab;
1339 struct audit_aux_data *aux;
1340 struct audit_names *n;
1341
1342 /* tsk == current */
1343 context->personality = tsk->personality;
1344
1345 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1346 if (!ab)
1347 return; /* audit_panic has been called */
1348 audit_log_format(ab, "arch=%x syscall=%d",
1349 context->arch, context->major);
1350 if (context->personality != PER_LINUX)
1351 audit_log_format(ab, " per=%lx", context->personality);
1352 if (context->return_valid)
1353 audit_log_format(ab, " success=%s exit=%ld",
1354 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1355 context->return_code);
1356
1357 audit_log_format(ab,
1358 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1359 context->argv[0],
1360 context->argv[1],
1361 context->argv[2],
1362 context->argv[3],
1363 context->name_count);
1364
1365 audit_log_task_info(ab, tsk);
1366 audit_log_key(ab, context->filterkey);
1367 audit_log_end(ab);
1368
1369 for (aux = context->aux; aux; aux = aux->next) {
1370
1371 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372 if (!ab)
1373 continue; /* audit_panic has been called */
1374
1375 switch (aux->type) {
1376
1377 case AUDIT_BPRM_FCAPS: {
1378 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1379 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1380 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1381 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1382 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1383 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1384 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1385 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1386 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1387 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1388 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1389 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1390 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1391 break; }
1392
1393 }
1394 audit_log_end(ab);
1395 }
1396
1397 if (context->type)
1398 show_special(context, &call_panic);
1399
1400 if (context->fds[0] >= 0) {
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1402 if (ab) {
1403 audit_log_format(ab, "fd0=%d fd1=%d",
1404 context->fds[0], context->fds[1]);
1405 audit_log_end(ab);
1406 }
1407 }
1408
1409 if (context->sockaddr_len) {
1410 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1411 if (ab) {
1412 audit_log_format(ab, "saddr=");
1413 audit_log_n_hex(ab, (void *)context->sockaddr,
1414 context->sockaddr_len);
1415 audit_log_end(ab);
1416 }
1417 }
1418
1419 for (aux = context->aux_pids; aux; aux = aux->next) {
1420 struct audit_aux_data_pids *axs = (void *)aux;
1421
1422 for (i = 0; i < axs->pid_count; i++)
1423 if (audit_log_pid_context(context, axs->target_pid[i],
1424 axs->target_auid[i],
1425 axs->target_uid[i],
1426 axs->target_sessionid[i],
1427 axs->target_sid[i],
1428 axs->target_comm[i]))
1429 call_panic = 1;
1430 }
1431
1432 if (context->target_pid &&
1433 audit_log_pid_context(context, context->target_pid,
1434 context->target_auid, context->target_uid,
1435 context->target_sessionid,
1436 context->target_sid, context->target_comm))
1437 call_panic = 1;
1438
1439 if (context->pwd.dentry && context->pwd.mnt) {
1440 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1441 if (ab) {
1442 audit_log_d_path(ab, "cwd=", &context->pwd);
1443 audit_log_end(ab);
1444 }
1445 }
1446
1447 i = 0;
1448 list_for_each_entry(n, &context->names_list, list) {
1449 if (n->hidden)
1450 continue;
1451 audit_log_name(context, n, NULL, i++, &call_panic);
1452 }
1453
1454 audit_log_proctitle(tsk, context);
1455
1456 /* Send end of event record to help user space know we are finished */
1457 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1458 if (ab)
1459 audit_log_end(ab);
1460 if (call_panic)
1461 audit_panic("error converting sid to string");
1462}
1463
1464/**
1465 * __audit_free - free a per-task audit context
1466 * @tsk: task whose audit context block to free
1467 *
1468 * Called from copy_process and do_exit
1469 */
1470void __audit_free(struct task_struct *tsk)
1471{
1472 struct audit_context *context;
1473
1474 context = audit_take_context(tsk, 0, 0);
1475 if (!context)
1476 return;
1477
1478 /* Check for system calls that do not go through the exit
1479 * function (e.g., exit_group), then free context block.
1480 * We use GFP_ATOMIC here because we might be doing this
1481 * in the context of the idle thread */
1482 /* that can happen only if we are called from do_exit() */
1483 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1484 audit_log_exit(context, tsk);
1485 if (!list_empty(&context->killed_trees))
1486 audit_kill_trees(&context->killed_trees);
1487
1488 audit_free_context(context);
1489}
1490
1491/**
1492 * __audit_syscall_entry - fill in an audit record at syscall entry
1493 * @major: major syscall type (function)
1494 * @a1: additional syscall register 1
1495 * @a2: additional syscall register 2
1496 * @a3: additional syscall register 3
1497 * @a4: additional syscall register 4
1498 *
1499 * Fill in audit context at syscall entry. This only happens if the
1500 * audit context was created when the task was created and the state or
1501 * filters demand the audit context be built. If the state from the
1502 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1503 * then the record will be written at syscall exit time (otherwise, it
1504 * will only be written if another part of the kernel requests that it
1505 * be written).
1506 */
1507void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1508 unsigned long a3, unsigned long a4)
1509{
1510 struct task_struct *tsk = current;
1511 struct audit_context *context = tsk->audit_context;
1512 enum audit_state state;
1513
1514 if (!audit_enabled || !context)
1515 return;
1516
1517 BUG_ON(context->in_syscall || context->name_count);
1518
1519 state = context->state;
1520 if (state == AUDIT_DISABLED)
1521 return;
1522
1523 context->dummy = !audit_n_rules;
1524 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1525 context->prio = 0;
1526 if (auditd_test_task(tsk))
1527 return;
1528 }
1529
1530 context->arch = syscall_get_arch();
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536 context->serial = 0;
1537 context->ctime = current_kernel_time64();
1538 context->in_syscall = 1;
1539 context->current_state = state;
1540 context->ppid = 0;
1541}
1542
1543/**
1544 * __audit_syscall_exit - deallocate audit context after a system call
1545 * @success: success value of the syscall
1546 * @return_code: return value of the syscall
1547 *
1548 * Tear down after system call. If the audit context has been marked as
1549 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1550 * filtering, or because some other part of the kernel wrote an audit
1551 * message), then write out the syscall information. In call cases,
1552 * free the names stored from getname().
1553 */
1554void __audit_syscall_exit(int success, long return_code)
1555{
1556 struct task_struct *tsk = current;
1557 struct audit_context *context;
1558
1559 if (success)
1560 success = AUDITSC_SUCCESS;
1561 else
1562 success = AUDITSC_FAILURE;
1563
1564 context = audit_take_context(tsk, success, return_code);
1565 if (!context)
1566 return;
1567
1568 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1569 audit_log_exit(context, tsk);
1570
1571 context->in_syscall = 0;
1572 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573
1574 if (!list_empty(&context->killed_trees))
1575 audit_kill_trees(&context->killed_trees);
1576
1577 audit_free_names(context);
1578 unroll_tree_refs(context, NULL, 0);
1579 audit_free_aux(context);
1580 context->aux = NULL;
1581 context->aux_pids = NULL;
1582 context->target_pid = 0;
1583 context->target_sid = 0;
1584 context->sockaddr_len = 0;
1585 context->type = 0;
1586 context->fds[0] = -1;
1587 if (context->state != AUDIT_RECORD_CONTEXT) {
1588 kfree(context->filterkey);
1589 context->filterkey = NULL;
1590 }
1591 tsk->audit_context = context;
1592}
1593
1594static inline void handle_one(const struct inode *inode)
1595{
1596#ifdef CONFIG_AUDIT_TREE
1597 struct audit_context *context;
1598 struct audit_tree_refs *p;
1599 struct audit_chunk *chunk;
1600 int count;
1601 if (likely(!inode->i_fsnotify_marks))
1602 return;
1603 context = current->audit_context;
1604 p = context->trees;
1605 count = context->tree_count;
1606 rcu_read_lock();
1607 chunk = audit_tree_lookup(inode);
1608 rcu_read_unlock();
1609 if (!chunk)
1610 return;
1611 if (likely(put_tree_ref(context, chunk)))
1612 return;
1613 if (unlikely(!grow_tree_refs(context))) {
1614 pr_warn("out of memory, audit has lost a tree reference\n");
1615 audit_set_auditable(context);
1616 audit_put_chunk(chunk);
1617 unroll_tree_refs(context, p, count);
1618 return;
1619 }
1620 put_tree_ref(context, chunk);
1621#endif
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
1626#ifdef CONFIG_AUDIT_TREE
1627 struct audit_context *context;
1628 struct audit_tree_refs *p;
1629 const struct dentry *d, *parent;
1630 struct audit_chunk *drop;
1631 unsigned long seq;
1632 int count;
1633
1634 context = current->audit_context;
1635 p = context->trees;
1636 count = context->tree_count;
1637retry:
1638 drop = NULL;
1639 d = dentry;
1640 rcu_read_lock();
1641 seq = read_seqbegin(&rename_lock);
1642 for(;;) {
1643 struct inode *inode = d_backing_inode(d);
1644 if (inode && unlikely(inode->i_fsnotify_marks)) {
1645 struct audit_chunk *chunk;
1646 chunk = audit_tree_lookup(inode);
1647 if (chunk) {
1648 if (unlikely(!put_tree_ref(context, chunk))) {
1649 drop = chunk;
1650 break;
1651 }
1652 }
1653 }
1654 parent = d->d_parent;
1655 if (parent == d)
1656 break;
1657 d = parent;
1658 }
1659 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1660 rcu_read_unlock();
1661 if (!drop) {
1662 /* just a race with rename */
1663 unroll_tree_refs(context, p, count);
1664 goto retry;
1665 }
1666 audit_put_chunk(drop);
1667 if (grow_tree_refs(context)) {
1668 /* OK, got more space */
1669 unroll_tree_refs(context, p, count);
1670 goto retry;
1671 }
1672 /* too bad */
1673 pr_warn("out of memory, audit has lost a tree reference\n");
1674 unroll_tree_refs(context, p, count);
1675 audit_set_auditable(context);
1676 return;
1677 }
1678 rcu_read_unlock();
1679#endif
1680}
1681
1682static struct audit_names *audit_alloc_name(struct audit_context *context,
1683 unsigned char type)
1684{
1685 struct audit_names *aname;
1686
1687 if (context->name_count < AUDIT_NAMES) {
1688 aname = &context->preallocated_names[context->name_count];
1689 memset(aname, 0, sizeof(*aname));
1690 } else {
1691 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1692 if (!aname)
1693 return NULL;
1694 aname->should_free = true;
1695 }
1696
1697 aname->ino = AUDIT_INO_UNSET;
1698 aname->type = type;
1699 list_add_tail(&aname->list, &context->names_list);
1700
1701 context->name_count++;
1702 return aname;
1703}
1704
1705/**
1706 * __audit_reusename - fill out filename with info from existing entry
1707 * @uptr: userland ptr to pathname
1708 *
1709 * Search the audit_names list for the current audit context. If there is an
1710 * existing entry with a matching "uptr" then return the filename
1711 * associated with that audit_name. If not, return NULL.
1712 */
1713struct filename *
1714__audit_reusename(const __user char *uptr)
1715{
1716 struct audit_context *context = current->audit_context;
1717 struct audit_names *n;
1718
1719 list_for_each_entry(n, &context->names_list, list) {
1720 if (!n->name)
1721 continue;
1722 if (n->name->uptr == uptr) {
1723 n->name->refcnt++;
1724 return n->name;
1725 }
1726 }
1727 return NULL;
1728}
1729
1730/**
1731 * __audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737void __audit_getname(struct filename *name)
1738{
1739 struct audit_context *context = current->audit_context;
1740 struct audit_names *n;
1741
1742 if (!context->in_syscall)
1743 return;
1744
1745 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1746 if (!n)
1747 return;
1748
1749 n->name = name;
1750 n->name_len = AUDIT_NAME_FULL;
1751 name->aname = n;
1752 name->refcnt++;
1753
1754 if (!context->pwd.dentry)
1755 get_fs_pwd(current->fs, &context->pwd);
1756}
1757
1758/**
1759 * __audit_inode - store the inode and device from a lookup
1760 * @name: name being audited
1761 * @dentry: dentry being audited
1762 * @flags: attributes for this particular entry
1763 */
1764void __audit_inode(struct filename *name, const struct dentry *dentry,
1765 unsigned int flags)
1766{
1767 struct audit_context *context = current->audit_context;
1768 struct inode *inode = d_backing_inode(dentry);
1769 struct audit_names *n;
1770 bool parent = flags & AUDIT_INODE_PARENT;
1771
1772 if (!context->in_syscall)
1773 return;
1774
1775 if (!name)
1776 goto out_alloc;
1777
1778 /*
1779 * If we have a pointer to an audit_names entry already, then we can
1780 * just use it directly if the type is correct.
1781 */
1782 n = name->aname;
1783 if (n) {
1784 if (parent) {
1785 if (n->type == AUDIT_TYPE_PARENT ||
1786 n->type == AUDIT_TYPE_UNKNOWN)
1787 goto out;
1788 } else {
1789 if (n->type != AUDIT_TYPE_PARENT)
1790 goto out;
1791 }
1792 }
1793
1794 list_for_each_entry_reverse(n, &context->names_list, list) {
1795 if (n->ino) {
1796 /* valid inode number, use that for the comparison */
1797 if (n->ino != inode->i_ino ||
1798 n->dev != inode->i_sb->s_dev)
1799 continue;
1800 } else if (n->name) {
1801 /* inode number has not been set, check the name */
1802 if (strcmp(n->name->name, name->name))
1803 continue;
1804 } else
1805 /* no inode and no name (?!) ... this is odd ... */
1806 continue;
1807
1808 /* match the correct record type */
1809 if (parent) {
1810 if (n->type == AUDIT_TYPE_PARENT ||
1811 n->type == AUDIT_TYPE_UNKNOWN)
1812 goto out;
1813 } else {
1814 if (n->type != AUDIT_TYPE_PARENT)
1815 goto out;
1816 }
1817 }
1818
1819out_alloc:
1820 /* unable to find an entry with both a matching name and type */
1821 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1822 if (!n)
1823 return;
1824 if (name) {
1825 n->name = name;
1826 name->refcnt++;
1827 }
1828
1829out:
1830 if (parent) {
1831 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1832 n->type = AUDIT_TYPE_PARENT;
1833 if (flags & AUDIT_INODE_HIDDEN)
1834 n->hidden = true;
1835 } else {
1836 n->name_len = AUDIT_NAME_FULL;
1837 n->type = AUDIT_TYPE_NORMAL;
1838 }
1839 handle_path(dentry);
1840 audit_copy_inode(n, dentry, inode);
1841}
1842
1843void __audit_file(const struct file *file)
1844{
1845 __audit_inode(NULL, file->f_path.dentry, 0);
1846}
1847
1848/**
1849 * __audit_inode_child - collect inode info for created/removed objects
1850 * @parent: inode of dentry parent
1851 * @dentry: dentry being audited
1852 * @type: AUDIT_TYPE_* value that we're looking for
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created. Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
1862void __audit_inode_child(struct inode *parent,
1863 const struct dentry *dentry,
1864 const unsigned char type)
1865{
1866 struct audit_context *context = current->audit_context;
1867 struct inode *inode = d_backing_inode(dentry);
1868 const char *dname = dentry->d_name.name;
1869 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1870 struct audit_entry *e;
1871 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1872 int i;
1873
1874 if (!context->in_syscall)
1875 return;
1876
1877 rcu_read_lock();
1878 if (!list_empty(list)) {
1879 list_for_each_entry_rcu(e, list, list) {
1880 for (i = 0; i < e->rule.field_count; i++) {
1881 struct audit_field *f = &e->rule.fields[i];
1882
1883 if (f->type == AUDIT_FSTYPE) {
1884 if (audit_comparator(parent->i_sb->s_magic,
1885 f->op, f->val)) {
1886 if (e->rule.action == AUDIT_NEVER) {
1887 rcu_read_unlock();
1888 return;
1889 }
1890 }
1891 }
1892 }
1893 }
1894 }
1895 rcu_read_unlock();
1896
1897 if (inode)
1898 handle_one(inode);
1899
1900 /* look for a parent entry first */
1901 list_for_each_entry(n, &context->names_list, list) {
1902 if (!n->name ||
1903 (n->type != AUDIT_TYPE_PARENT &&
1904 n->type != AUDIT_TYPE_UNKNOWN))
1905 continue;
1906
1907 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1908 !audit_compare_dname_path(dname,
1909 n->name->name, n->name_len)) {
1910 if (n->type == AUDIT_TYPE_UNKNOWN)
1911 n->type = AUDIT_TYPE_PARENT;
1912 found_parent = n;
1913 break;
1914 }
1915 }
1916
1917 /* is there a matching child entry? */
1918 list_for_each_entry(n, &context->names_list, list) {
1919 /* can only match entries that have a name */
1920 if (!n->name ||
1921 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1922 continue;
1923
1924 if (!strcmp(dname, n->name->name) ||
1925 !audit_compare_dname_path(dname, n->name->name,
1926 found_parent ?
1927 found_parent->name_len :
1928 AUDIT_NAME_FULL)) {
1929 if (n->type == AUDIT_TYPE_UNKNOWN)
1930 n->type = type;
1931 found_child = n;
1932 break;
1933 }
1934 }
1935
1936 if (!found_parent) {
1937 /* create a new, "anonymous" parent record */
1938 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1939 if (!n)
1940 return;
1941 audit_copy_inode(n, NULL, parent);
1942 }
1943
1944 if (!found_child) {
1945 found_child = audit_alloc_name(context, type);
1946 if (!found_child)
1947 return;
1948
1949 /* Re-use the name belonging to the slot for a matching parent
1950 * directory. All names for this context are relinquished in
1951 * audit_free_names() */
1952 if (found_parent) {
1953 found_child->name = found_parent->name;
1954 found_child->name_len = AUDIT_NAME_FULL;
1955 found_child->name->refcnt++;
1956 }
1957 }
1958
1959 if (inode)
1960 audit_copy_inode(found_child, dentry, inode);
1961 else
1962 found_child->ino = AUDIT_INO_UNSET;
1963}
1964EXPORT_SYMBOL_GPL(__audit_inode_child);
1965
1966/**
1967 * auditsc_get_stamp - get local copies of audit_context values
1968 * @ctx: audit_context for the task
1969 * @t: timespec64 to store time recorded in the audit_context
1970 * @serial: serial value that is recorded in the audit_context
1971 *
1972 * Also sets the context as auditable.
1973 */
1974int auditsc_get_stamp(struct audit_context *ctx,
1975 struct timespec64 *t, unsigned int *serial)
1976{
1977 if (!ctx->in_syscall)
1978 return 0;
1979 if (!ctx->serial)
1980 ctx->serial = audit_serial();
1981 t->tv_sec = ctx->ctime.tv_sec;
1982 t->tv_nsec = ctx->ctime.tv_nsec;
1983 *serial = ctx->serial;
1984 if (!ctx->prio) {
1985 ctx->prio = 1;
1986 ctx->current_state = AUDIT_RECORD_CONTEXT;
1987 }
1988 return 1;
1989}
1990
1991/* global counter which is incremented every time something logs in */
1992static atomic_t session_id = ATOMIC_INIT(0);
1993
1994static int audit_set_loginuid_perm(kuid_t loginuid)
1995{
1996 /* if we are unset, we don't need privs */
1997 if (!audit_loginuid_set(current))
1998 return 0;
1999 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2000 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2001 return -EPERM;
2002 /* it is set, you need permission */
2003 if (!capable(CAP_AUDIT_CONTROL))
2004 return -EPERM;
2005 /* reject if this is not an unset and we don't allow that */
2006 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2007 return -EPERM;
2008 return 0;
2009}
2010
2011static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2012 unsigned int oldsessionid, unsigned int sessionid,
2013 int rc)
2014{
2015 struct audit_buffer *ab;
2016 uid_t uid, oldloginuid, loginuid;
2017 struct tty_struct *tty;
2018
2019 if (!audit_enabled)
2020 return;
2021
2022 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2023 if (!ab)
2024 return;
2025
2026 uid = from_kuid(&init_user_ns, task_uid(current));
2027 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2028 loginuid = from_kuid(&init_user_ns, kloginuid),
2029 tty = audit_get_tty(current);
2030
2031 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2032 audit_log_task_context(ab);
2033 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2034 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2035 oldsessionid, sessionid, !rc);
2036 audit_put_tty(tty);
2037 audit_log_end(ab);
2038}
2039
2040/**
2041 * audit_set_loginuid - set current task's audit_context loginuid
2042 * @loginuid: loginuid value
2043 *
2044 * Returns 0.
2045 *
2046 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2047 */
2048int audit_set_loginuid(kuid_t loginuid)
2049{
2050 struct task_struct *task = current;
2051 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2052 kuid_t oldloginuid;
2053 int rc;
2054
2055 oldloginuid = audit_get_loginuid(current);
2056 oldsessionid = audit_get_sessionid(current);
2057
2058 rc = audit_set_loginuid_perm(loginuid);
2059 if (rc)
2060 goto out;
2061
2062 /* are we setting or clearing? */
2063 if (uid_valid(loginuid)) {
2064 sessionid = (unsigned int)atomic_inc_return(&session_id);
2065 if (unlikely(sessionid == (unsigned int)-1))
2066 sessionid = (unsigned int)atomic_inc_return(&session_id);
2067 }
2068
2069 task->sessionid = sessionid;
2070 task->loginuid = loginuid;
2071out:
2072 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2073 return rc;
2074}
2075
2076/**
2077 * __audit_mq_open - record audit data for a POSIX MQ open
2078 * @oflag: open flag
2079 * @mode: mode bits
2080 * @attr: queue attributes
2081 *
2082 */
2083void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2084{
2085 struct audit_context *context = current->audit_context;
2086
2087 if (attr)
2088 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2089 else
2090 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2091
2092 context->mq_open.oflag = oflag;
2093 context->mq_open.mode = mode;
2094
2095 context->type = AUDIT_MQ_OPEN;
2096}
2097
2098/**
2099 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2100 * @mqdes: MQ descriptor
2101 * @msg_len: Message length
2102 * @msg_prio: Message priority
2103 * @abs_timeout: Message timeout in absolute time
2104 *
2105 */
2106void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2107 const struct timespec64 *abs_timeout)
2108{
2109 struct audit_context *context = current->audit_context;
2110 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2111
2112 if (abs_timeout)
2113 memcpy(p, abs_timeout, sizeof(*p));
2114 else
2115 memset(p, 0, sizeof(*p));
2116
2117 context->mq_sendrecv.mqdes = mqdes;
2118 context->mq_sendrecv.msg_len = msg_len;
2119 context->mq_sendrecv.msg_prio = msg_prio;
2120
2121 context->type = AUDIT_MQ_SENDRECV;
2122}
2123
2124/**
2125 * __audit_mq_notify - record audit data for a POSIX MQ notify
2126 * @mqdes: MQ descriptor
2127 * @notification: Notification event
2128 *
2129 */
2130
2131void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2132{
2133 struct audit_context *context = current->audit_context;
2134
2135 if (notification)
2136 context->mq_notify.sigev_signo = notification->sigev_signo;
2137 else
2138 context->mq_notify.sigev_signo = 0;
2139
2140 context->mq_notify.mqdes = mqdes;
2141 context->type = AUDIT_MQ_NOTIFY;
2142}
2143
2144/**
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2148 *
2149 */
2150void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2151{
2152 struct audit_context *context = current->audit_context;
2153 context->mq_getsetattr.mqdes = mqdes;
2154 context->mq_getsetattr.mqstat = *mqstat;
2155 context->type = AUDIT_MQ_GETSETATTR;
2156}
2157
2158/**
2159 * __audit_ipc_obj - record audit data for ipc object
2160 * @ipcp: ipc permissions
2161 *
2162 */
2163void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2164{
2165 struct audit_context *context = current->audit_context;
2166 context->ipc.uid = ipcp->uid;
2167 context->ipc.gid = ipcp->gid;
2168 context->ipc.mode = ipcp->mode;
2169 context->ipc.has_perm = 0;
2170 security_ipc_getsecid(ipcp, &context->ipc.osid);
2171 context->type = AUDIT_IPC;
2172}
2173
2174/**
2175 * __audit_ipc_set_perm - record audit data for new ipc permissions
2176 * @qbytes: msgq bytes
2177 * @uid: msgq user id
2178 * @gid: msgq group id
2179 * @mode: msgq mode (permissions)
2180 *
2181 * Called only after audit_ipc_obj().
2182 */
2183void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2184{
2185 struct audit_context *context = current->audit_context;
2186
2187 context->ipc.qbytes = qbytes;
2188 context->ipc.perm_uid = uid;
2189 context->ipc.perm_gid = gid;
2190 context->ipc.perm_mode = mode;
2191 context->ipc.has_perm = 1;
2192}
2193
2194void __audit_bprm(struct linux_binprm *bprm)
2195{
2196 struct audit_context *context = current->audit_context;
2197
2198 context->type = AUDIT_EXECVE;
2199 context->execve.argc = bprm->argc;
2200}
2201
2202
2203/**
2204 * __audit_socketcall - record audit data for sys_socketcall
2205 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2206 * @args: args array
2207 *
2208 */
2209int __audit_socketcall(int nargs, unsigned long *args)
2210{
2211 struct audit_context *context = current->audit_context;
2212
2213 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2214 return -EINVAL;
2215 context->type = AUDIT_SOCKETCALL;
2216 context->socketcall.nargs = nargs;
2217 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2218 return 0;
2219}
2220
2221/**
2222 * __audit_fd_pair - record audit data for pipe and socketpair
2223 * @fd1: the first file descriptor
2224 * @fd2: the second file descriptor
2225 *
2226 */
2227void __audit_fd_pair(int fd1, int fd2)
2228{
2229 struct audit_context *context = current->audit_context;
2230 context->fds[0] = fd1;
2231 context->fds[1] = fd2;
2232}
2233
2234/**
2235 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2236 * @len: data length in user space
2237 * @a: data address in kernel space
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241int __audit_sockaddr(int len, void *a)
2242{
2243 struct audit_context *context = current->audit_context;
2244
2245 if (!context->sockaddr) {
2246 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2247 if (!p)
2248 return -ENOMEM;
2249 context->sockaddr = p;
2250 }
2251
2252 context->sockaddr_len = len;
2253 memcpy(context->sockaddr, a, len);
2254 return 0;
2255}
2256
2257void __audit_ptrace(struct task_struct *t)
2258{
2259 struct audit_context *context = current->audit_context;
2260
2261 context->target_pid = task_tgid_nr(t);
2262 context->target_auid = audit_get_loginuid(t);
2263 context->target_uid = task_uid(t);
2264 context->target_sessionid = audit_get_sessionid(t);
2265 security_task_getsecid(t, &context->target_sid);
2266 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2267}
2268
2269/**
2270 * audit_signal_info - record signal info for shutting down audit subsystem
2271 * @sig: signal value
2272 * @t: task being signaled
2273 *
2274 * If the audit subsystem is being terminated, record the task (pid)
2275 * and uid that is doing that.
2276 */
2277int audit_signal_info(int sig, struct task_struct *t)
2278{
2279 struct audit_aux_data_pids *axp;
2280 struct task_struct *tsk = current;
2281 struct audit_context *ctx = tsk->audit_context;
2282 kuid_t uid = current_uid(), t_uid = task_uid(t);
2283
2284 if (auditd_test_task(t) &&
2285 (sig == SIGTERM || sig == SIGHUP ||
2286 sig == SIGUSR1 || sig == SIGUSR2)) {
2287 audit_sig_pid = task_tgid_nr(tsk);
2288 if (uid_valid(tsk->loginuid))
2289 audit_sig_uid = tsk->loginuid;
2290 else
2291 audit_sig_uid = uid;
2292 security_task_getsecid(tsk, &audit_sig_sid);
2293 }
2294
2295 if (!audit_signals || audit_dummy_context())
2296 return 0;
2297
2298 /* optimize the common case by putting first signal recipient directly
2299 * in audit_context */
2300 if (!ctx->target_pid) {
2301 ctx->target_pid = task_tgid_nr(t);
2302 ctx->target_auid = audit_get_loginuid(t);
2303 ctx->target_uid = t_uid;
2304 ctx->target_sessionid = audit_get_sessionid(t);
2305 security_task_getsecid(t, &ctx->target_sid);
2306 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2307 return 0;
2308 }
2309
2310 axp = (void *)ctx->aux_pids;
2311 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2312 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2313 if (!axp)
2314 return -ENOMEM;
2315
2316 axp->d.type = AUDIT_OBJ_PID;
2317 axp->d.next = ctx->aux_pids;
2318 ctx->aux_pids = (void *)axp;
2319 }
2320 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2321
2322 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2323 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2324 axp->target_uid[axp->pid_count] = t_uid;
2325 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2326 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2327 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2328 axp->pid_count++;
2329
2330 return 0;
2331}
2332
2333/**
2334 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2335 * @bprm: pointer to the bprm being processed
2336 * @new: the proposed new credentials
2337 * @old: the old credentials
2338 *
2339 * Simply check if the proc already has the caps given by the file and if not
2340 * store the priv escalation info for later auditing at the end of the syscall
2341 *
2342 * -Eric
2343 */
2344int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2345 const struct cred *new, const struct cred *old)
2346{
2347 struct audit_aux_data_bprm_fcaps *ax;
2348 struct audit_context *context = current->audit_context;
2349 struct cpu_vfs_cap_data vcaps;
2350
2351 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2352 if (!ax)
2353 return -ENOMEM;
2354
2355 ax->d.type = AUDIT_BPRM_FCAPS;
2356 ax->d.next = context->aux;
2357 context->aux = (void *)ax;
2358
2359 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2360
2361 ax->fcap.permitted = vcaps.permitted;
2362 ax->fcap.inheritable = vcaps.inheritable;
2363 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2364 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2365
2366 ax->old_pcap.permitted = old->cap_permitted;
2367 ax->old_pcap.inheritable = old->cap_inheritable;
2368 ax->old_pcap.effective = old->cap_effective;
2369 ax->old_pcap.ambient = old->cap_ambient;
2370
2371 ax->new_pcap.permitted = new->cap_permitted;
2372 ax->new_pcap.inheritable = new->cap_inheritable;
2373 ax->new_pcap.effective = new->cap_effective;
2374 ax->new_pcap.ambient = new->cap_ambient;
2375 return 0;
2376}
2377
2378/**
2379 * __audit_log_capset - store information about the arguments to the capset syscall
2380 * @new: the new credentials
2381 * @old: the old (current) credentials
2382 *
2383 * Record the arguments userspace sent to sys_capset for later printing by the
2384 * audit system if applicable
2385 */
2386void __audit_log_capset(const struct cred *new, const struct cred *old)
2387{
2388 struct audit_context *context = current->audit_context;
2389 context->capset.pid = task_tgid_nr(current);
2390 context->capset.cap.effective = new->cap_effective;
2391 context->capset.cap.inheritable = new->cap_effective;
2392 context->capset.cap.permitted = new->cap_permitted;
2393 context->capset.cap.ambient = new->cap_ambient;
2394 context->type = AUDIT_CAPSET;
2395}
2396
2397void __audit_mmap_fd(int fd, int flags)
2398{
2399 struct audit_context *context = current->audit_context;
2400 context->mmap.fd = fd;
2401 context->mmap.flags = flags;
2402 context->type = AUDIT_MMAP;
2403}
2404
2405void __audit_log_kern_module(char *name)
2406{
2407 struct audit_context *context = current->audit_context;
2408
2409 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2410 strcpy(context->module.name, name);
2411 context->type = AUDIT_KERN_MODULE;
2412}
2413
2414void __audit_fanotify(unsigned int response)
2415{
2416 audit_log(current->audit_context, GFP_KERNEL,
2417 AUDIT_FANOTIFY, "resp=%u", response);
2418}
2419
2420static void audit_log_task(struct audit_buffer *ab)
2421{
2422 kuid_t auid, uid;
2423 kgid_t gid;
2424 unsigned int sessionid;
2425 char comm[sizeof(current->comm)];
2426
2427 auid = audit_get_loginuid(current);
2428 sessionid = audit_get_sessionid(current);
2429 current_uid_gid(&uid, &gid);
2430
2431 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2432 from_kuid(&init_user_ns, auid),
2433 from_kuid(&init_user_ns, uid),
2434 from_kgid(&init_user_ns, gid),
2435 sessionid);
2436 audit_log_task_context(ab);
2437 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2438 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2439 audit_log_d_path_exe(ab, current->mm);
2440}
2441
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
2444 * @signr: signal value
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451 struct audit_buffer *ab;
2452
2453 if (!audit_enabled)
2454 return;
2455
2456 if (signr == SIGQUIT) /* don't care for those */
2457 return;
2458
2459 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2460 if (unlikely(!ab))
2461 return;
2462 audit_log_task(ab);
2463 audit_log_format(ab, " sig=%ld res=1", signr);
2464 audit_log_end(ab);
2465}
2466
2467void __audit_seccomp(unsigned long syscall, long signr, int code)
2468{
2469 struct audit_buffer *ab;
2470
2471 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2472 if (unlikely(!ab))
2473 return;
2474 audit_log_task(ab);
2475 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2476 signr, syscall_get_arch(), syscall,
2477 in_compat_syscall(), KSTK_EIP(current), code);
2478 audit_log_end(ab);
2479}
2480
2481struct list_head *audit_killed_trees(void)
2482{
2483 struct audit_context *ctx = current->audit_context;
2484 if (likely(!ctx || !ctx->in_syscall))
2485 return NULL;
2486 return &ctx->killed_trees;
2487}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <uapi/linux/limits.h>
77
78#include "audit.h"
79
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
85/* no execve audit message should be longer than this (userspace limits),
86 * see the note near the top of audit_log_execve_info() about this value */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
89/* max length to print of cmdline/proctitle value during audit */
90#define MAX_PROCTITLE_AUDIT_LEN 128
91
92/* number of audit rules */
93int audit_n_rules;
94
95/* determines whether we collect data for signals sent */
96int audit_signals;
97
98struct audit_aux_data {
99 struct audit_aux_data *next;
100 int type;
101};
102
103#define AUDIT_AUX_IPCPERM 0
104
105/* Number of target pids per aux struct. */
106#define AUDIT_AUX_PIDS 16
107
108struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117};
118
119struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125};
126
127struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130};
131
132static int audit_match_perm(struct audit_context *ctx, int mask)
133{
134 unsigned n;
135 if (unlikely(!ctx))
136 return 0;
137 n = ctx->major;
138
139 switch (audit_classify_syscall(ctx->arch, n)) {
140 case 0: /* native */
141 if ((mask & AUDIT_PERM_WRITE) &&
142 audit_match_class(AUDIT_CLASS_WRITE, n))
143 return 1;
144 if ((mask & AUDIT_PERM_READ) &&
145 audit_match_class(AUDIT_CLASS_READ, n))
146 return 1;
147 if ((mask & AUDIT_PERM_ATTR) &&
148 audit_match_class(AUDIT_CLASS_CHATTR, n))
149 return 1;
150 return 0;
151 case 1: /* 32bit on biarch */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE_32, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ_32, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
160 return 1;
161 return 0;
162 case 2: /* open */
163 return mask & ACC_MODE(ctx->argv[1]);
164 case 3: /* openat */
165 return mask & ACC_MODE(ctx->argv[2]);
166 case 4: /* socketcall */
167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
168 case 5: /* execve */
169 return mask & AUDIT_PERM_EXEC;
170 default:
171 return 0;
172 }
173}
174
175static int audit_match_filetype(struct audit_context *ctx, int val)
176{
177 struct audit_names *n;
178 umode_t mode = (umode_t)val;
179
180 if (unlikely(!ctx))
181 return 0;
182
183 list_for_each_entry(n, &ctx->names_list, list) {
184 if ((n->ino != AUDIT_INO_UNSET) &&
185 ((n->mode & S_IFMT) == mode))
186 return 1;
187 }
188
189 return 0;
190}
191
192/*
193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
194 * ->first_trees points to its beginning, ->trees - to the current end of data.
195 * ->tree_count is the number of free entries in array pointed to by ->trees.
196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
198 * it's going to remain 1-element for almost any setup) until we free context itself.
199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 */
201
202#ifdef CONFIG_AUDIT_TREE
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
247#endif
248
249static void unroll_tree_refs(struct audit_context *ctx,
250 struct audit_tree_refs *p, int count)
251{
252#ifdef CONFIG_AUDIT_TREE
253 struct audit_tree_refs *q;
254 int n;
255 if (!p) {
256 /* we started with empty chain */
257 p = ctx->first_trees;
258 count = 31;
259 /* if the very first allocation has failed, nothing to do */
260 if (!p)
261 return;
262 }
263 n = count;
264 for (q = p; q != ctx->trees; q = q->next, n = 31) {
265 while (n--) {
266 audit_put_chunk(q->c[n]);
267 q->c[n] = NULL;
268 }
269 }
270 while (n-- > ctx->tree_count) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
273 }
274 ctx->trees = p;
275 ctx->tree_count = count;
276#endif
277}
278
279static void free_tree_refs(struct audit_context *ctx)
280{
281 struct audit_tree_refs *p, *q;
282 for (p = ctx->first_trees; p; p = q) {
283 q = p->next;
284 kfree(p);
285 }
286}
287
288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
289{
290#ifdef CONFIG_AUDIT_TREE
291 struct audit_tree_refs *p;
292 int n;
293 if (!tree)
294 return 0;
295 /* full ones */
296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
297 for (n = 0; n < 31; n++)
298 if (audit_tree_match(p->c[n], tree))
299 return 1;
300 }
301 /* partial */
302 if (p) {
303 for (n = ctx->tree_count; n < 31; n++)
304 if (audit_tree_match(p->c[n], tree))
305 return 1;
306 }
307#endif
308 return 0;
309}
310
311static int audit_compare_uid(kuid_t uid,
312 struct audit_names *name,
313 struct audit_field *f,
314 struct audit_context *ctx)
315{
316 struct audit_names *n;
317 int rc;
318
319 if (name) {
320 rc = audit_uid_comparator(uid, f->op, name->uid);
321 if (rc)
322 return rc;
323 }
324
325 if (ctx) {
326 list_for_each_entry(n, &ctx->names_list, list) {
327 rc = audit_uid_comparator(uid, f->op, n->uid);
328 if (rc)
329 return rc;
330 }
331 }
332 return 0;
333}
334
335static int audit_compare_gid(kgid_t gid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339{
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_gid_comparator(gid, f->op, name->gid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_gid_comparator(gid, f->op, n->gid);
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357}
358
359static int audit_field_compare(struct task_struct *tsk,
360 const struct cred *cred,
361 struct audit_field *f,
362 struct audit_context *ctx,
363 struct audit_names *name)
364{
365 switch (f->val) {
366 /* process to file object comparisons */
367 case AUDIT_COMPARE_UID_TO_OBJ_UID:
368 return audit_compare_uid(cred->uid, name, f, ctx);
369 case AUDIT_COMPARE_GID_TO_OBJ_GID:
370 return audit_compare_gid(cred->gid, name, f, ctx);
371 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
372 return audit_compare_uid(cred->euid, name, f, ctx);
373 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
374 return audit_compare_gid(cred->egid, name, f, ctx);
375 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
376 return audit_compare_uid(tsk->loginuid, name, f, ctx);
377 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
378 return audit_compare_uid(cred->suid, name, f, ctx);
379 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
380 return audit_compare_gid(cred->sgid, name, f, ctx);
381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
382 return audit_compare_uid(cred->fsuid, name, f, ctx);
383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
384 return audit_compare_gid(cred->fsgid, name, f, ctx);
385 /* uid comparisons */
386 case AUDIT_COMPARE_UID_TO_AUID:
387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
388 case AUDIT_COMPARE_UID_TO_EUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->euid);
390 case AUDIT_COMPARE_UID_TO_SUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->suid);
392 case AUDIT_COMPARE_UID_TO_FSUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
394 /* auid comparisons */
395 case AUDIT_COMPARE_AUID_TO_EUID:
396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
397 case AUDIT_COMPARE_AUID_TO_SUID:
398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
399 case AUDIT_COMPARE_AUID_TO_FSUID:
400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
401 /* euid comparisons */
402 case AUDIT_COMPARE_EUID_TO_SUID:
403 return audit_uid_comparator(cred->euid, f->op, cred->suid);
404 case AUDIT_COMPARE_EUID_TO_FSUID:
405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
406 /* suid comparisons */
407 case AUDIT_COMPARE_SUID_TO_FSUID:
408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
409 /* gid comparisons */
410 case AUDIT_COMPARE_GID_TO_EGID:
411 return audit_gid_comparator(cred->gid, f->op, cred->egid);
412 case AUDIT_COMPARE_GID_TO_SGID:
413 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
414 case AUDIT_COMPARE_GID_TO_FSGID:
415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
416 /* egid comparisons */
417 case AUDIT_COMPARE_EGID_TO_SGID:
418 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
419 case AUDIT_COMPARE_EGID_TO_FSGID:
420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
421 /* sgid comparison */
422 case AUDIT_COMPARE_SGID_TO_FSGID:
423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
424 default:
425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
426 return 0;
427 }
428 return 0;
429}
430
431/* Determine if any context name data matches a rule's watch data */
432/* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise.
434 *
435 * If task_creation is true, this is an explicit indication that we are
436 * filtering a task rule at task creation time. This and tsk == current are
437 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 */
439static int audit_filter_rules(struct task_struct *tsk,
440 struct audit_krule *rule,
441 struct audit_context *ctx,
442 struct audit_names *name,
443 enum audit_state *state,
444 bool task_creation)
445{
446 const struct cred *cred;
447 int i, need_sid = 1;
448 u32 sid;
449 unsigned int sessionid;
450
451 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
452
453 for (i = 0; i < rule->field_count; i++) {
454 struct audit_field *f = &rule->fields[i];
455 struct audit_names *n;
456 int result = 0;
457 pid_t pid;
458
459 switch (f->type) {
460 case AUDIT_PID:
461 pid = task_tgid_nr(tsk);
462 result = audit_comparator(pid, f->op, f->val);
463 break;
464 case AUDIT_PPID:
465 if (ctx) {
466 if (!ctx->ppid)
467 ctx->ppid = task_ppid_nr(tsk);
468 result = audit_comparator(ctx->ppid, f->op, f->val);
469 }
470 break;
471 case AUDIT_EXE:
472 result = audit_exe_compare(tsk, rule->exe);
473 break;
474 case AUDIT_UID:
475 result = audit_uid_comparator(cred->uid, f->op, f->uid);
476 break;
477 case AUDIT_EUID:
478 result = audit_uid_comparator(cred->euid, f->op, f->uid);
479 break;
480 case AUDIT_SUID:
481 result = audit_uid_comparator(cred->suid, f->op, f->uid);
482 break;
483 case AUDIT_FSUID:
484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
485 break;
486 case AUDIT_GID:
487 result = audit_gid_comparator(cred->gid, f->op, f->gid);
488 if (f->op == Audit_equal) {
489 if (!result)
490 result = in_group_p(f->gid);
491 } else if (f->op == Audit_not_equal) {
492 if (result)
493 result = !in_group_p(f->gid);
494 }
495 break;
496 case AUDIT_EGID:
497 result = audit_gid_comparator(cred->egid, f->op, f->gid);
498 if (f->op == Audit_equal) {
499 if (!result)
500 result = in_egroup_p(f->gid);
501 } else if (f->op == Audit_not_equal) {
502 if (result)
503 result = !in_egroup_p(f->gid);
504 }
505 break;
506 case AUDIT_SGID:
507 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
508 break;
509 case AUDIT_FSGID:
510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
511 break;
512 case AUDIT_SESSIONID:
513 sessionid = audit_get_sessionid(current);
514 result = audit_comparator(sessionid, f->op, f->val);
515 break;
516 case AUDIT_PERS:
517 result = audit_comparator(tsk->personality, f->op, f->val);
518 break;
519 case AUDIT_ARCH:
520 if (ctx)
521 result = audit_comparator(ctx->arch, f->op, f->val);
522 break;
523
524 case AUDIT_EXIT:
525 if (ctx && ctx->return_valid)
526 result = audit_comparator(ctx->return_code, f->op, f->val);
527 break;
528 case AUDIT_SUCCESS:
529 if (ctx && ctx->return_valid) {
530 if (f->val)
531 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
532 else
533 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
534 }
535 break;
536 case AUDIT_DEVMAJOR:
537 if (name) {
538 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
539 audit_comparator(MAJOR(name->rdev), f->op, f->val))
540 ++result;
541 } else if (ctx) {
542 list_for_each_entry(n, &ctx->names_list, list) {
543 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
544 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
545 ++result;
546 break;
547 }
548 }
549 }
550 break;
551 case AUDIT_DEVMINOR:
552 if (name) {
553 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
554 audit_comparator(MINOR(name->rdev), f->op, f->val))
555 ++result;
556 } else if (ctx) {
557 list_for_each_entry(n, &ctx->names_list, list) {
558 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
559 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
560 ++result;
561 break;
562 }
563 }
564 }
565 break;
566 case AUDIT_INODE:
567 if (name)
568 result = audit_comparator(name->ino, f->op, f->val);
569 else if (ctx) {
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(n->ino, f->op, f->val)) {
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_OBJ_UID:
579 if (name) {
580 result = audit_uid_comparator(name->uid, f->op, f->uid);
581 } else if (ctx) {
582 list_for_each_entry(n, &ctx->names_list, list) {
583 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
584 ++result;
585 break;
586 }
587 }
588 }
589 break;
590 case AUDIT_OBJ_GID:
591 if (name) {
592 result = audit_gid_comparator(name->gid, f->op, f->gid);
593 } else if (ctx) {
594 list_for_each_entry(n, &ctx->names_list, list) {
595 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
596 ++result;
597 break;
598 }
599 }
600 }
601 break;
602 case AUDIT_WATCH:
603 if (name)
604 result = audit_watch_compare(rule->watch, name->ino, name->dev);
605 break;
606 case AUDIT_DIR:
607 if (ctx)
608 result = match_tree_refs(ctx, rule->tree);
609 break;
610 case AUDIT_LOGINUID:
611 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
612 break;
613 case AUDIT_LOGINUID_SET:
614 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
615 break;
616 case AUDIT_SUBJ_USER:
617 case AUDIT_SUBJ_ROLE:
618 case AUDIT_SUBJ_TYPE:
619 case AUDIT_SUBJ_SEN:
620 case AUDIT_SUBJ_CLR:
621 /* NOTE: this may return negative values indicating
622 a temporary error. We simply treat this as a
623 match for now to avoid losing information that
624 may be wanted. An error message will also be
625 logged upon error */
626 if (f->lsm_rule) {
627 if (need_sid) {
628 security_task_getsecid(tsk, &sid);
629 need_sid = 0;
630 }
631 result = security_audit_rule_match(sid, f->type,
632 f->op,
633 f->lsm_rule,
634 ctx);
635 }
636 break;
637 case AUDIT_OBJ_USER:
638 case AUDIT_OBJ_ROLE:
639 case AUDIT_OBJ_TYPE:
640 case AUDIT_OBJ_LEV_LOW:
641 case AUDIT_OBJ_LEV_HIGH:
642 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
643 also applies here */
644 if (f->lsm_rule) {
645 /* Find files that match */
646 if (name) {
647 result = security_audit_rule_match(
648 name->osid, f->type, f->op,
649 f->lsm_rule, ctx);
650 } else if (ctx) {
651 list_for_each_entry(n, &ctx->names_list, list) {
652 if (security_audit_rule_match(n->osid, f->type,
653 f->op, f->lsm_rule,
654 ctx)) {
655 ++result;
656 break;
657 }
658 }
659 }
660 /* Find ipc objects that match */
661 if (!ctx || ctx->type != AUDIT_IPC)
662 break;
663 if (security_audit_rule_match(ctx->ipc.osid,
664 f->type, f->op,
665 f->lsm_rule, ctx))
666 ++result;
667 }
668 break;
669 case AUDIT_ARG0:
670 case AUDIT_ARG1:
671 case AUDIT_ARG2:
672 case AUDIT_ARG3:
673 if (ctx)
674 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
675 break;
676 case AUDIT_FILTERKEY:
677 /* ignore this field for filtering */
678 result = 1;
679 break;
680 case AUDIT_PERM:
681 result = audit_match_perm(ctx, f->val);
682 break;
683 case AUDIT_FILETYPE:
684 result = audit_match_filetype(ctx, f->val);
685 break;
686 case AUDIT_FIELD_COMPARE:
687 result = audit_field_compare(tsk, cred, f, ctx, name);
688 break;
689 }
690 if (!result)
691 return 0;
692 }
693
694 if (ctx) {
695 if (rule->prio <= ctx->prio)
696 return 0;
697 if (rule->filterkey) {
698 kfree(ctx->filterkey);
699 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
700 }
701 ctx->prio = rule->prio;
702 }
703 switch (rule->action) {
704 case AUDIT_NEVER:
705 *state = AUDIT_DISABLED;
706 break;
707 case AUDIT_ALWAYS:
708 *state = AUDIT_RECORD_CONTEXT;
709 break;
710 }
711 return 1;
712}
713
714/* At process creation time, we can determine if system-call auditing is
715 * completely disabled for this task. Since we only have the task
716 * structure at this point, we can only check uid and gid.
717 */
718static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
719{
720 struct audit_entry *e;
721 enum audit_state state;
722
723 rcu_read_lock();
724 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
725 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
726 &state, true)) {
727 if (state == AUDIT_RECORD_CONTEXT)
728 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
729 rcu_read_unlock();
730 return state;
731 }
732 }
733 rcu_read_unlock();
734 return AUDIT_BUILD_CONTEXT;
735}
736
737static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
738{
739 int word, bit;
740
741 if (val > 0xffffffff)
742 return false;
743
744 word = AUDIT_WORD(val);
745 if (word >= AUDIT_BITMASK_SIZE)
746 return false;
747
748 bit = AUDIT_BIT(val);
749
750 return rule->mask[word] & bit;
751}
752
753/* At syscall entry and exit time, this filter is called if the
754 * audit_state is not low enough that auditing cannot take place, but is
755 * also not high enough that we already know we have to write an audit
756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
757 */
758static enum audit_state audit_filter_syscall(struct task_struct *tsk,
759 struct audit_context *ctx,
760 struct list_head *list)
761{
762 struct audit_entry *e;
763 enum audit_state state;
764
765 if (auditd_test_task(tsk))
766 return AUDIT_DISABLED;
767
768 rcu_read_lock();
769 if (!list_empty(list)) {
770 list_for_each_entry_rcu(e, list, list) {
771 if (audit_in_mask(&e->rule, ctx->major) &&
772 audit_filter_rules(tsk, &e->rule, ctx, NULL,
773 &state, false)) {
774 rcu_read_unlock();
775 ctx->current_state = state;
776 return state;
777 }
778 }
779 }
780 rcu_read_unlock();
781 return AUDIT_BUILD_CONTEXT;
782}
783
784/*
785 * Given an audit_name check the inode hash table to see if they match.
786 * Called holding the rcu read lock to protect the use of audit_inode_hash
787 */
788static int audit_filter_inode_name(struct task_struct *tsk,
789 struct audit_names *n,
790 struct audit_context *ctx) {
791 int h = audit_hash_ino((u32)n->ino);
792 struct list_head *list = &audit_inode_hash[h];
793 struct audit_entry *e;
794 enum audit_state state;
795
796 if (list_empty(list))
797 return 0;
798
799 list_for_each_entry_rcu(e, list, list) {
800 if (audit_in_mask(&e->rule, ctx->major) &&
801 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
802 ctx->current_state = state;
803 return 1;
804 }
805 }
806
807 return 0;
808}
809
810/* At syscall exit time, this filter is called if any audit_names have been
811 * collected during syscall processing. We only check rules in sublists at hash
812 * buckets applicable to the inode numbers in audit_names.
813 * Regarding audit_state, same rules apply as for audit_filter_syscall().
814 */
815void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
816{
817 struct audit_names *n;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823
824 list_for_each_entry(n, &ctx->names_list, list) {
825 if (audit_filter_inode_name(tsk, n, ctx))
826 break;
827 }
828 rcu_read_unlock();
829}
830
831/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
832static inline struct audit_context *audit_take_context(struct task_struct *tsk,
833 int return_valid,
834 long return_code)
835{
836 struct audit_context *context = tsk->audit_context;
837
838 if (!context)
839 return NULL;
840 context->return_valid = return_valid;
841
842 /*
843 * we need to fix up the return code in the audit logs if the actual
844 * return codes are later going to be fixed up by the arch specific
845 * signal handlers
846 *
847 * This is actually a test for:
848 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
849 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
850 *
851 * but is faster than a bunch of ||
852 */
853 if (unlikely(return_code <= -ERESTARTSYS) &&
854 (return_code >= -ERESTART_RESTARTBLOCK) &&
855 (return_code != -ENOIOCTLCMD))
856 context->return_code = -EINTR;
857 else
858 context->return_code = return_code;
859
860 if (context->in_syscall && !context->dummy) {
861 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
862 audit_filter_inodes(tsk, context);
863 }
864
865 tsk->audit_context = NULL;
866 return context;
867}
868
869static inline void audit_proctitle_free(struct audit_context *context)
870{
871 kfree(context->proctitle.value);
872 context->proctitle.value = NULL;
873 context->proctitle.len = 0;
874}
875
876static inline void audit_free_names(struct audit_context *context)
877{
878 struct audit_names *n, *next;
879
880 list_for_each_entry_safe(n, next, &context->names_list, list) {
881 list_del(&n->list);
882 if (n->name)
883 putname(n->name);
884 if (n->should_free)
885 kfree(n);
886 }
887 context->name_count = 0;
888 path_put(&context->pwd);
889 context->pwd.dentry = NULL;
890 context->pwd.mnt = NULL;
891}
892
893static inline void audit_free_aux(struct audit_context *context)
894{
895 struct audit_aux_data *aux;
896
897 while ((aux = context->aux)) {
898 context->aux = aux->next;
899 kfree(aux);
900 }
901 while ((aux = context->aux_pids)) {
902 context->aux_pids = aux->next;
903 kfree(aux);
904 }
905}
906
907static inline struct audit_context *audit_alloc_context(enum audit_state state)
908{
909 struct audit_context *context;
910
911 context = kzalloc(sizeof(*context), GFP_KERNEL);
912 if (!context)
913 return NULL;
914 context->state = state;
915 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916 INIT_LIST_HEAD(&context->killed_trees);
917 INIT_LIST_HEAD(&context->names_list);
918 return context;
919}
920
921/**
922 * audit_alloc - allocate an audit context block for a task
923 * @tsk: task
924 *
925 * Filter on the task information and allocate a per-task audit context
926 * if necessary. Doing so turns on system call auditing for the
927 * specified task. This is called from copy_process, so no lock is
928 * needed.
929 */
930int audit_alloc(struct task_struct *tsk)
931{
932 struct audit_context *context;
933 enum audit_state state;
934 char *key = NULL;
935
936 if (likely(!audit_ever_enabled))
937 return 0; /* Return if not auditing. */
938
939 state = audit_filter_task(tsk, &key);
940 if (state == AUDIT_DISABLED) {
941 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
942 return 0;
943 }
944
945 if (!(context = audit_alloc_context(state))) {
946 kfree(key);
947 audit_log_lost("out of memory in audit_alloc");
948 return -ENOMEM;
949 }
950 context->filterkey = key;
951
952 tsk->audit_context = context;
953 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
954 return 0;
955}
956
957static inline void audit_free_context(struct audit_context *context)
958{
959 audit_free_names(context);
960 unroll_tree_refs(context, NULL, 0);
961 free_tree_refs(context);
962 audit_free_aux(context);
963 kfree(context->filterkey);
964 kfree(context->sockaddr);
965 audit_proctitle_free(context);
966 kfree(context);
967}
968
969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
970 kuid_t auid, kuid_t uid, unsigned int sessionid,
971 u32 sid, char *comm)
972{
973 struct audit_buffer *ab;
974 char *ctx = NULL;
975 u32 len;
976 int rc = 0;
977
978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
979 if (!ab)
980 return rc;
981
982 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
983 from_kuid(&init_user_ns, auid),
984 from_kuid(&init_user_ns, uid), sessionid);
985 if (sid) {
986 if (security_secid_to_secctx(sid, &ctx, &len)) {
987 audit_log_format(ab, " obj=(none)");
988 rc = 1;
989 } else {
990 audit_log_format(ab, " obj=%s", ctx);
991 security_release_secctx(ctx, len);
992 }
993 }
994 audit_log_format(ab, " ocomm=");
995 audit_log_untrustedstring(ab, comm);
996 audit_log_end(ab);
997
998 return rc;
999}
1000
1001static void audit_log_execve_info(struct audit_context *context,
1002 struct audit_buffer **ab)
1003{
1004 long len_max;
1005 long len_rem;
1006 long len_full;
1007 long len_buf;
1008 long len_abuf = 0;
1009 long len_tmp;
1010 bool require_data;
1011 bool encode;
1012 unsigned int iter;
1013 unsigned int arg;
1014 char *buf_head;
1015 char *buf;
1016 const char __user *p = (const char __user *)current->mm->arg_start;
1017
1018 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1019 * data we put in the audit record for this argument (see the
1020 * code below) ... at this point in time 96 is plenty */
1021 char abuf[96];
1022
1023 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1024 * current value of 7500 is not as important as the fact that it
1025 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1026 * room if we go over a little bit in the logging below */
1027 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1028 len_max = MAX_EXECVE_AUDIT_LEN;
1029
1030 /* scratch buffer to hold the userspace args */
1031 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1032 if (!buf_head) {
1033 audit_panic("out of memory for argv string");
1034 return;
1035 }
1036 buf = buf_head;
1037
1038 audit_log_format(*ab, "argc=%d", context->execve.argc);
1039
1040 len_rem = len_max;
1041 len_buf = 0;
1042 len_full = 0;
1043 require_data = true;
1044 encode = false;
1045 iter = 0;
1046 arg = 0;
1047 do {
1048 /* NOTE: we don't ever want to trust this value for anything
1049 * serious, but the audit record format insists we
1050 * provide an argument length for really long arguments,
1051 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1052 * to use strncpy_from_user() to obtain this value for
1053 * recording in the log, although we don't use it
1054 * anywhere here to avoid a double-fetch problem */
1055 if (len_full == 0)
1056 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1057
1058 /* read more data from userspace */
1059 if (require_data) {
1060 /* can we make more room in the buffer? */
1061 if (buf != buf_head) {
1062 memmove(buf_head, buf, len_buf);
1063 buf = buf_head;
1064 }
1065
1066 /* fetch as much as we can of the argument */
1067 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1068 len_max - len_buf);
1069 if (len_tmp == -EFAULT) {
1070 /* unable to copy from userspace */
1071 send_sig(SIGKILL, current, 0);
1072 goto out;
1073 } else if (len_tmp == (len_max - len_buf)) {
1074 /* buffer is not large enough */
1075 require_data = true;
1076 /* NOTE: if we are going to span multiple
1077 * buffers force the encoding so we stand
1078 * a chance at a sane len_full value and
1079 * consistent record encoding */
1080 encode = true;
1081 len_full = len_full * 2;
1082 p += len_tmp;
1083 } else {
1084 require_data = false;
1085 if (!encode)
1086 encode = audit_string_contains_control(
1087 buf, len_tmp);
1088 /* try to use a trusted value for len_full */
1089 if (len_full < len_max)
1090 len_full = (encode ?
1091 len_tmp * 2 : len_tmp);
1092 p += len_tmp + 1;
1093 }
1094 len_buf += len_tmp;
1095 buf_head[len_buf] = '\0';
1096
1097 /* length of the buffer in the audit record? */
1098 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1099 }
1100
1101 /* write as much as we can to the audit log */
1102 if (len_buf > 0) {
1103 /* NOTE: some magic numbers here - basically if we
1104 * can't fit a reasonable amount of data into the
1105 * existing audit buffer, flush it and start with
1106 * a new buffer */
1107 if ((sizeof(abuf) + 8) > len_rem) {
1108 len_rem = len_max;
1109 audit_log_end(*ab);
1110 *ab = audit_log_start(context,
1111 GFP_KERNEL, AUDIT_EXECVE);
1112 if (!*ab)
1113 goto out;
1114 }
1115
1116 /* create the non-arg portion of the arg record */
1117 len_tmp = 0;
1118 if (require_data || (iter > 0) ||
1119 ((len_abuf + sizeof(abuf)) > len_rem)) {
1120 if (iter == 0) {
1121 len_tmp += snprintf(&abuf[len_tmp],
1122 sizeof(abuf) - len_tmp,
1123 " a%d_len=%lu",
1124 arg, len_full);
1125 }
1126 len_tmp += snprintf(&abuf[len_tmp],
1127 sizeof(abuf) - len_tmp,
1128 " a%d[%d]=", arg, iter++);
1129 } else
1130 len_tmp += snprintf(&abuf[len_tmp],
1131 sizeof(abuf) - len_tmp,
1132 " a%d=", arg);
1133 WARN_ON(len_tmp >= sizeof(abuf));
1134 abuf[sizeof(abuf) - 1] = '\0';
1135
1136 /* log the arg in the audit record */
1137 audit_log_format(*ab, "%s", abuf);
1138 len_rem -= len_tmp;
1139 len_tmp = len_buf;
1140 if (encode) {
1141 if (len_abuf > len_rem)
1142 len_tmp = len_rem / 2; /* encoding */
1143 audit_log_n_hex(*ab, buf, len_tmp);
1144 len_rem -= len_tmp * 2;
1145 len_abuf -= len_tmp * 2;
1146 } else {
1147 if (len_abuf > len_rem)
1148 len_tmp = len_rem - 2; /* quotes */
1149 audit_log_n_string(*ab, buf, len_tmp);
1150 len_rem -= len_tmp + 2;
1151 /* don't subtract the "2" because we still need
1152 * to add quotes to the remaining string */
1153 len_abuf -= len_tmp;
1154 }
1155 len_buf -= len_tmp;
1156 buf += len_tmp;
1157 }
1158
1159 /* ready to move to the next argument? */
1160 if ((len_buf == 0) && !require_data) {
1161 arg++;
1162 iter = 0;
1163 len_full = 0;
1164 require_data = true;
1165 encode = false;
1166 }
1167 } while (arg < context->execve.argc);
1168
1169 /* NOTE: the caller handles the final audit_log_end() call */
1170
1171out:
1172 kfree(buf_head);
1173}
1174
1175static void show_special(struct audit_context *context, int *call_panic)
1176{
1177 struct audit_buffer *ab;
1178 int i;
1179
1180 ab = audit_log_start(context, GFP_KERNEL, context->type);
1181 if (!ab)
1182 return;
1183
1184 switch (context->type) {
1185 case AUDIT_SOCKETCALL: {
1186 int nargs = context->socketcall.nargs;
1187 audit_log_format(ab, "nargs=%d", nargs);
1188 for (i = 0; i < nargs; i++)
1189 audit_log_format(ab, " a%d=%lx", i,
1190 context->socketcall.args[i]);
1191 break; }
1192 case AUDIT_IPC: {
1193 u32 osid = context->ipc.osid;
1194
1195 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1196 from_kuid(&init_user_ns, context->ipc.uid),
1197 from_kgid(&init_user_ns, context->ipc.gid),
1198 context->ipc.mode);
1199 if (osid) {
1200 char *ctx = NULL;
1201 u32 len;
1202 if (security_secid_to_secctx(osid, &ctx, &len)) {
1203 audit_log_format(ab, " osid=%u", osid);
1204 *call_panic = 1;
1205 } else {
1206 audit_log_format(ab, " obj=%s", ctx);
1207 security_release_secctx(ctx, len);
1208 }
1209 }
1210 if (context->ipc.has_perm) {
1211 audit_log_end(ab);
1212 ab = audit_log_start(context, GFP_KERNEL,
1213 AUDIT_IPC_SET_PERM);
1214 if (unlikely(!ab))
1215 return;
1216 audit_log_format(ab,
1217 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1218 context->ipc.qbytes,
1219 context->ipc.perm_uid,
1220 context->ipc.perm_gid,
1221 context->ipc.perm_mode);
1222 }
1223 break; }
1224 case AUDIT_MQ_OPEN: {
1225 audit_log_format(ab,
1226 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1227 "mq_msgsize=%ld mq_curmsgs=%ld",
1228 context->mq_open.oflag, context->mq_open.mode,
1229 context->mq_open.attr.mq_flags,
1230 context->mq_open.attr.mq_maxmsg,
1231 context->mq_open.attr.mq_msgsize,
1232 context->mq_open.attr.mq_curmsgs);
1233 break; }
1234 case AUDIT_MQ_SENDRECV: {
1235 audit_log_format(ab,
1236 "mqdes=%d msg_len=%zd msg_prio=%u "
1237 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238 context->mq_sendrecv.mqdes,
1239 context->mq_sendrecv.msg_len,
1240 context->mq_sendrecv.msg_prio,
1241 context->mq_sendrecv.abs_timeout.tv_sec,
1242 context->mq_sendrecv.abs_timeout.tv_nsec);
1243 break; }
1244 case AUDIT_MQ_NOTIFY: {
1245 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246 context->mq_notify.mqdes,
1247 context->mq_notify.sigev_signo);
1248 break; }
1249 case AUDIT_MQ_GETSETATTR: {
1250 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1251 audit_log_format(ab,
1252 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253 "mq_curmsgs=%ld ",
1254 context->mq_getsetattr.mqdes,
1255 attr->mq_flags, attr->mq_maxmsg,
1256 attr->mq_msgsize, attr->mq_curmsgs);
1257 break; }
1258 case AUDIT_CAPSET: {
1259 audit_log_format(ab, "pid=%d", context->capset.pid);
1260 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263 break; }
1264 case AUDIT_MMAP: {
1265 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266 context->mmap.flags);
1267 break; }
1268 case AUDIT_EXECVE: {
1269 audit_log_execve_info(context, &ab);
1270 break; }
1271 }
1272 audit_log_end(ab);
1273}
1274
1275static inline int audit_proctitle_rtrim(char *proctitle, int len)
1276{
1277 char *end = proctitle + len - 1;
1278 while (end > proctitle && !isprint(*end))
1279 end--;
1280
1281 /* catch the case where proctitle is only 1 non-print character */
1282 len = end - proctitle + 1;
1283 len -= isprint(proctitle[len-1]) == 0;
1284 return len;
1285}
1286
1287static void audit_log_proctitle(struct task_struct *tsk,
1288 struct audit_context *context)
1289{
1290 int res;
1291 char *buf;
1292 char *msg = "(null)";
1293 int len = strlen(msg);
1294 struct audit_buffer *ab;
1295
1296 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1297 if (!ab)
1298 return; /* audit_panic or being filtered */
1299
1300 audit_log_format(ab, "proctitle=");
1301
1302 /* Not cached */
1303 if (!context->proctitle.value) {
1304 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1305 if (!buf)
1306 goto out;
1307 /* Historically called this from procfs naming */
1308 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1309 if (res == 0) {
1310 kfree(buf);
1311 goto out;
1312 }
1313 res = audit_proctitle_rtrim(buf, res);
1314 if (res == 0) {
1315 kfree(buf);
1316 goto out;
1317 }
1318 context->proctitle.value = buf;
1319 context->proctitle.len = res;
1320 }
1321 msg = context->proctitle.value;
1322 len = context->proctitle.len;
1323out:
1324 audit_log_n_untrustedstring(ab, msg, len);
1325 audit_log_end(ab);
1326}
1327
1328static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1329{
1330 int i, call_panic = 0;
1331 struct audit_buffer *ab;
1332 struct audit_aux_data *aux;
1333 struct audit_names *n;
1334
1335 /* tsk == current */
1336 context->personality = tsk->personality;
1337
1338 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1339 if (!ab)
1340 return; /* audit_panic has been called */
1341 audit_log_format(ab, "arch=%x syscall=%d",
1342 context->arch, context->major);
1343 if (context->personality != PER_LINUX)
1344 audit_log_format(ab, " per=%lx", context->personality);
1345 if (context->return_valid)
1346 audit_log_format(ab, " success=%s exit=%ld",
1347 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1348 context->return_code);
1349
1350 audit_log_format(ab,
1351 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352 context->argv[0],
1353 context->argv[1],
1354 context->argv[2],
1355 context->argv[3],
1356 context->name_count);
1357
1358 audit_log_task_info(ab, tsk);
1359 audit_log_key(ab, context->filterkey);
1360 audit_log_end(ab);
1361
1362 for (aux = context->aux; aux; aux = aux->next) {
1363
1364 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1365 if (!ab)
1366 continue; /* audit_panic has been called */
1367
1368 switch (aux->type) {
1369
1370 case AUDIT_BPRM_FCAPS: {
1371 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1372 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1373 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1374 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1375 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1376 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1377 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1378 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1379 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1380 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1381 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1382 break; }
1383
1384 }
1385 audit_log_end(ab);
1386 }
1387
1388 if (context->type)
1389 show_special(context, &call_panic);
1390
1391 if (context->fds[0] >= 0) {
1392 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1393 if (ab) {
1394 audit_log_format(ab, "fd0=%d fd1=%d",
1395 context->fds[0], context->fds[1]);
1396 audit_log_end(ab);
1397 }
1398 }
1399
1400 if (context->sockaddr_len) {
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1402 if (ab) {
1403 audit_log_format(ab, "saddr=");
1404 audit_log_n_hex(ab, (void *)context->sockaddr,
1405 context->sockaddr_len);
1406 audit_log_end(ab);
1407 }
1408 }
1409
1410 for (aux = context->aux_pids; aux; aux = aux->next) {
1411 struct audit_aux_data_pids *axs = (void *)aux;
1412
1413 for (i = 0; i < axs->pid_count; i++)
1414 if (audit_log_pid_context(context, axs->target_pid[i],
1415 axs->target_auid[i],
1416 axs->target_uid[i],
1417 axs->target_sessionid[i],
1418 axs->target_sid[i],
1419 axs->target_comm[i]))
1420 call_panic = 1;
1421 }
1422
1423 if (context->target_pid &&
1424 audit_log_pid_context(context, context->target_pid,
1425 context->target_auid, context->target_uid,
1426 context->target_sessionid,
1427 context->target_sid, context->target_comm))
1428 call_panic = 1;
1429
1430 if (context->pwd.dentry && context->pwd.mnt) {
1431 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1432 if (ab) {
1433 audit_log_d_path(ab, "cwd=", &context->pwd);
1434 audit_log_end(ab);
1435 }
1436 }
1437
1438 i = 0;
1439 list_for_each_entry(n, &context->names_list, list) {
1440 if (n->hidden)
1441 continue;
1442 audit_log_name(context, n, NULL, i++, &call_panic);
1443 }
1444
1445 audit_log_proctitle(tsk, context);
1446
1447 /* Send end of event record to help user space know we are finished */
1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1449 if (ab)
1450 audit_log_end(ab);
1451 if (call_panic)
1452 audit_panic("error converting sid to string");
1453}
1454
1455/**
1456 * audit_free - free a per-task audit context
1457 * @tsk: task whose audit context block to free
1458 *
1459 * Called from copy_process and do_exit
1460 */
1461void __audit_free(struct task_struct *tsk)
1462{
1463 struct audit_context *context;
1464
1465 context = audit_take_context(tsk, 0, 0);
1466 if (!context)
1467 return;
1468
1469 /* Check for system calls that do not go through the exit
1470 * function (e.g., exit_group), then free context block.
1471 * We use GFP_ATOMIC here because we might be doing this
1472 * in the context of the idle thread */
1473 /* that can happen only if we are called from do_exit() */
1474 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1475 audit_log_exit(context, tsk);
1476 if (!list_empty(&context->killed_trees))
1477 audit_kill_trees(&context->killed_trees);
1478
1479 audit_free_context(context);
1480}
1481
1482/**
1483 * audit_syscall_entry - fill in an audit record at syscall entry
1484 * @major: major syscall type (function)
1485 * @a1: additional syscall register 1
1486 * @a2: additional syscall register 2
1487 * @a3: additional syscall register 3
1488 * @a4: additional syscall register 4
1489 *
1490 * Fill in audit context at syscall entry. This only happens if the
1491 * audit context was created when the task was created and the state or
1492 * filters demand the audit context be built. If the state from the
1493 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1494 * then the record will be written at syscall exit time (otherwise, it
1495 * will only be written if another part of the kernel requests that it
1496 * be written).
1497 */
1498void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1499 unsigned long a3, unsigned long a4)
1500{
1501 struct task_struct *tsk = current;
1502 struct audit_context *context = tsk->audit_context;
1503 enum audit_state state;
1504
1505 if (!context)
1506 return;
1507
1508 BUG_ON(context->in_syscall || context->name_count);
1509
1510 if (!audit_enabled)
1511 return;
1512
1513 context->arch = syscall_get_arch();
1514 context->major = major;
1515 context->argv[0] = a1;
1516 context->argv[1] = a2;
1517 context->argv[2] = a3;
1518 context->argv[3] = a4;
1519
1520 state = context->state;
1521 context->dummy = !audit_n_rules;
1522 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1523 context->prio = 0;
1524 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1525 }
1526 if (state == AUDIT_DISABLED)
1527 return;
1528
1529 context->serial = 0;
1530 context->ctime = CURRENT_TIME;
1531 context->in_syscall = 1;
1532 context->current_state = state;
1533 context->ppid = 0;
1534}
1535
1536/**
1537 * audit_syscall_exit - deallocate audit context after a system call
1538 * @success: success value of the syscall
1539 * @return_code: return value of the syscall
1540 *
1541 * Tear down after system call. If the audit context has been marked as
1542 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1543 * filtering, or because some other part of the kernel wrote an audit
1544 * message), then write out the syscall information. In call cases,
1545 * free the names stored from getname().
1546 */
1547void __audit_syscall_exit(int success, long return_code)
1548{
1549 struct task_struct *tsk = current;
1550 struct audit_context *context;
1551
1552 if (success)
1553 success = AUDITSC_SUCCESS;
1554 else
1555 success = AUDITSC_FAILURE;
1556
1557 context = audit_take_context(tsk, success, return_code);
1558 if (!context)
1559 return;
1560
1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562 audit_log_exit(context, tsk);
1563
1564 context->in_syscall = 0;
1565 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1566
1567 if (!list_empty(&context->killed_trees))
1568 audit_kill_trees(&context->killed_trees);
1569
1570 audit_free_names(context);
1571 unroll_tree_refs(context, NULL, 0);
1572 audit_free_aux(context);
1573 context->aux = NULL;
1574 context->aux_pids = NULL;
1575 context->target_pid = 0;
1576 context->target_sid = 0;
1577 context->sockaddr_len = 0;
1578 context->type = 0;
1579 context->fds[0] = -1;
1580 if (context->state != AUDIT_RECORD_CONTEXT) {
1581 kfree(context->filterkey);
1582 context->filterkey = NULL;
1583 }
1584 tsk->audit_context = context;
1585}
1586
1587static inline void handle_one(const struct inode *inode)
1588{
1589#ifdef CONFIG_AUDIT_TREE
1590 struct audit_context *context;
1591 struct audit_tree_refs *p;
1592 struct audit_chunk *chunk;
1593 int count;
1594 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1595 return;
1596 context = current->audit_context;
1597 p = context->trees;
1598 count = context->tree_count;
1599 rcu_read_lock();
1600 chunk = audit_tree_lookup(inode);
1601 rcu_read_unlock();
1602 if (!chunk)
1603 return;
1604 if (likely(put_tree_ref(context, chunk)))
1605 return;
1606 if (unlikely(!grow_tree_refs(context))) {
1607 pr_warn("out of memory, audit has lost a tree reference\n");
1608 audit_set_auditable(context);
1609 audit_put_chunk(chunk);
1610 unroll_tree_refs(context, p, count);
1611 return;
1612 }
1613 put_tree_ref(context, chunk);
1614#endif
1615}
1616
1617static void handle_path(const struct dentry *dentry)
1618{
1619#ifdef CONFIG_AUDIT_TREE
1620 struct audit_context *context;
1621 struct audit_tree_refs *p;
1622 const struct dentry *d, *parent;
1623 struct audit_chunk *drop;
1624 unsigned long seq;
1625 int count;
1626
1627 context = current->audit_context;
1628 p = context->trees;
1629 count = context->tree_count;
1630retry:
1631 drop = NULL;
1632 d = dentry;
1633 rcu_read_lock();
1634 seq = read_seqbegin(&rename_lock);
1635 for(;;) {
1636 struct inode *inode = d_backing_inode(d);
1637 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1638 struct audit_chunk *chunk;
1639 chunk = audit_tree_lookup(inode);
1640 if (chunk) {
1641 if (unlikely(!put_tree_ref(context, chunk))) {
1642 drop = chunk;
1643 break;
1644 }
1645 }
1646 }
1647 parent = d->d_parent;
1648 if (parent == d)
1649 break;
1650 d = parent;
1651 }
1652 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1653 rcu_read_unlock();
1654 if (!drop) {
1655 /* just a race with rename */
1656 unroll_tree_refs(context, p, count);
1657 goto retry;
1658 }
1659 audit_put_chunk(drop);
1660 if (grow_tree_refs(context)) {
1661 /* OK, got more space */
1662 unroll_tree_refs(context, p, count);
1663 goto retry;
1664 }
1665 /* too bad */
1666 pr_warn("out of memory, audit has lost a tree reference\n");
1667 unroll_tree_refs(context, p, count);
1668 audit_set_auditable(context);
1669 return;
1670 }
1671 rcu_read_unlock();
1672#endif
1673}
1674
1675static struct audit_names *audit_alloc_name(struct audit_context *context,
1676 unsigned char type)
1677{
1678 struct audit_names *aname;
1679
1680 if (context->name_count < AUDIT_NAMES) {
1681 aname = &context->preallocated_names[context->name_count];
1682 memset(aname, 0, sizeof(*aname));
1683 } else {
1684 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1685 if (!aname)
1686 return NULL;
1687 aname->should_free = true;
1688 }
1689
1690 aname->ino = AUDIT_INO_UNSET;
1691 aname->type = type;
1692 list_add_tail(&aname->list, &context->names_list);
1693
1694 context->name_count++;
1695 return aname;
1696}
1697
1698/**
1699 * audit_reusename - fill out filename with info from existing entry
1700 * @uptr: userland ptr to pathname
1701 *
1702 * Search the audit_names list for the current audit context. If there is an
1703 * existing entry with a matching "uptr" then return the filename
1704 * associated with that audit_name. If not, return NULL.
1705 */
1706struct filename *
1707__audit_reusename(const __user char *uptr)
1708{
1709 struct audit_context *context = current->audit_context;
1710 struct audit_names *n;
1711
1712 list_for_each_entry(n, &context->names_list, list) {
1713 if (!n->name)
1714 continue;
1715 if (n->name->uptr == uptr) {
1716 n->name->refcnt++;
1717 return n->name;
1718 }
1719 }
1720 return NULL;
1721}
1722
1723/**
1724 * audit_getname - add a name to the list
1725 * @name: name to add
1726 *
1727 * Add a name to the list of audit names for this context.
1728 * Called from fs/namei.c:getname().
1729 */
1730void __audit_getname(struct filename *name)
1731{
1732 struct audit_context *context = current->audit_context;
1733 struct audit_names *n;
1734
1735 if (!context->in_syscall)
1736 return;
1737
1738 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1739 if (!n)
1740 return;
1741
1742 n->name = name;
1743 n->name_len = AUDIT_NAME_FULL;
1744 name->aname = n;
1745 name->refcnt++;
1746
1747 if (!context->pwd.dentry)
1748 get_fs_pwd(current->fs, &context->pwd);
1749}
1750
1751/**
1752 * __audit_inode - store the inode and device from a lookup
1753 * @name: name being audited
1754 * @dentry: dentry being audited
1755 * @flags: attributes for this particular entry
1756 */
1757void __audit_inode(struct filename *name, const struct dentry *dentry,
1758 unsigned int flags)
1759{
1760 struct audit_context *context = current->audit_context;
1761 struct inode *inode = d_backing_inode(dentry);
1762 struct audit_names *n;
1763 bool parent = flags & AUDIT_INODE_PARENT;
1764
1765 if (!context->in_syscall)
1766 return;
1767
1768 if (!name)
1769 goto out_alloc;
1770
1771 /*
1772 * If we have a pointer to an audit_names entry already, then we can
1773 * just use it directly if the type is correct.
1774 */
1775 n = name->aname;
1776 if (n) {
1777 if (parent) {
1778 if (n->type == AUDIT_TYPE_PARENT ||
1779 n->type == AUDIT_TYPE_UNKNOWN)
1780 goto out;
1781 } else {
1782 if (n->type != AUDIT_TYPE_PARENT)
1783 goto out;
1784 }
1785 }
1786
1787 list_for_each_entry_reverse(n, &context->names_list, list) {
1788 if (n->ino) {
1789 /* valid inode number, use that for the comparison */
1790 if (n->ino != inode->i_ino ||
1791 n->dev != inode->i_sb->s_dev)
1792 continue;
1793 } else if (n->name) {
1794 /* inode number has not been set, check the name */
1795 if (strcmp(n->name->name, name->name))
1796 continue;
1797 } else
1798 /* no inode and no name (?!) ... this is odd ... */
1799 continue;
1800
1801 /* match the correct record type */
1802 if (parent) {
1803 if (n->type == AUDIT_TYPE_PARENT ||
1804 n->type == AUDIT_TYPE_UNKNOWN)
1805 goto out;
1806 } else {
1807 if (n->type != AUDIT_TYPE_PARENT)
1808 goto out;
1809 }
1810 }
1811
1812out_alloc:
1813 /* unable to find an entry with both a matching name and type */
1814 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1815 if (!n)
1816 return;
1817 if (name) {
1818 n->name = name;
1819 name->refcnt++;
1820 }
1821
1822out:
1823 if (parent) {
1824 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1825 n->type = AUDIT_TYPE_PARENT;
1826 if (flags & AUDIT_INODE_HIDDEN)
1827 n->hidden = true;
1828 } else {
1829 n->name_len = AUDIT_NAME_FULL;
1830 n->type = AUDIT_TYPE_NORMAL;
1831 }
1832 handle_path(dentry);
1833 audit_copy_inode(n, dentry, inode);
1834}
1835
1836void __audit_file(const struct file *file)
1837{
1838 __audit_inode(NULL, file->f_path.dentry, 0);
1839}
1840
1841/**
1842 * __audit_inode_child - collect inode info for created/removed objects
1843 * @parent: inode of dentry parent
1844 * @dentry: dentry being audited
1845 * @type: AUDIT_TYPE_* value that we're looking for
1846 *
1847 * For syscalls that create or remove filesystem objects, audit_inode
1848 * can only collect information for the filesystem object's parent.
1849 * This call updates the audit context with the child's information.
1850 * Syscalls that create a new filesystem object must be hooked after
1851 * the object is created. Syscalls that remove a filesystem object
1852 * must be hooked prior, in order to capture the target inode during
1853 * unsuccessful attempts.
1854 */
1855void __audit_inode_child(struct inode *parent,
1856 const struct dentry *dentry,
1857 const unsigned char type)
1858{
1859 struct audit_context *context = current->audit_context;
1860 struct inode *inode = d_backing_inode(dentry);
1861 const char *dname = dentry->d_name.name;
1862 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1863
1864 if (!context->in_syscall)
1865 return;
1866
1867 if (inode)
1868 handle_one(inode);
1869
1870 /* look for a parent entry first */
1871 list_for_each_entry(n, &context->names_list, list) {
1872 if (!n->name ||
1873 (n->type != AUDIT_TYPE_PARENT &&
1874 n->type != AUDIT_TYPE_UNKNOWN))
1875 continue;
1876
1877 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1878 !audit_compare_dname_path(dname,
1879 n->name->name, n->name_len)) {
1880 if (n->type == AUDIT_TYPE_UNKNOWN)
1881 n->type = AUDIT_TYPE_PARENT;
1882 found_parent = n;
1883 break;
1884 }
1885 }
1886
1887 /* is there a matching child entry? */
1888 list_for_each_entry(n, &context->names_list, list) {
1889 /* can only match entries that have a name */
1890 if (!n->name ||
1891 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1892 continue;
1893
1894 if (!strcmp(dname, n->name->name) ||
1895 !audit_compare_dname_path(dname, n->name->name,
1896 found_parent ?
1897 found_parent->name_len :
1898 AUDIT_NAME_FULL)) {
1899 if (n->type == AUDIT_TYPE_UNKNOWN)
1900 n->type = type;
1901 found_child = n;
1902 break;
1903 }
1904 }
1905
1906 if (!found_parent) {
1907 /* create a new, "anonymous" parent record */
1908 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1909 if (!n)
1910 return;
1911 audit_copy_inode(n, NULL, parent);
1912 }
1913
1914 if (!found_child) {
1915 found_child = audit_alloc_name(context, type);
1916 if (!found_child)
1917 return;
1918
1919 /* Re-use the name belonging to the slot for a matching parent
1920 * directory. All names for this context are relinquished in
1921 * audit_free_names() */
1922 if (found_parent) {
1923 found_child->name = found_parent->name;
1924 found_child->name_len = AUDIT_NAME_FULL;
1925 found_child->name->refcnt++;
1926 }
1927 }
1928
1929 if (inode)
1930 audit_copy_inode(found_child, dentry, inode);
1931 else
1932 found_child->ino = AUDIT_INO_UNSET;
1933}
1934EXPORT_SYMBOL_GPL(__audit_inode_child);
1935
1936/**
1937 * auditsc_get_stamp - get local copies of audit_context values
1938 * @ctx: audit_context for the task
1939 * @t: timespec to store time recorded in the audit_context
1940 * @serial: serial value that is recorded in the audit_context
1941 *
1942 * Also sets the context as auditable.
1943 */
1944int auditsc_get_stamp(struct audit_context *ctx,
1945 struct timespec *t, unsigned int *serial)
1946{
1947 if (!ctx->in_syscall)
1948 return 0;
1949 if (!ctx->serial)
1950 ctx->serial = audit_serial();
1951 t->tv_sec = ctx->ctime.tv_sec;
1952 t->tv_nsec = ctx->ctime.tv_nsec;
1953 *serial = ctx->serial;
1954 if (!ctx->prio) {
1955 ctx->prio = 1;
1956 ctx->current_state = AUDIT_RECORD_CONTEXT;
1957 }
1958 return 1;
1959}
1960
1961/* global counter which is incremented every time something logs in */
1962static atomic_t session_id = ATOMIC_INIT(0);
1963
1964static int audit_set_loginuid_perm(kuid_t loginuid)
1965{
1966 /* if we are unset, we don't need privs */
1967 if (!audit_loginuid_set(current))
1968 return 0;
1969 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1970 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1971 return -EPERM;
1972 /* it is set, you need permission */
1973 if (!capable(CAP_AUDIT_CONTROL))
1974 return -EPERM;
1975 /* reject if this is not an unset and we don't allow that */
1976 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1977 return -EPERM;
1978 return 0;
1979}
1980
1981static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1982 unsigned int oldsessionid, unsigned int sessionid,
1983 int rc)
1984{
1985 struct audit_buffer *ab;
1986 uid_t uid, oldloginuid, loginuid;
1987 struct tty_struct *tty;
1988
1989 if (!audit_enabled)
1990 return;
1991
1992 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1993 if (!ab)
1994 return;
1995
1996 uid = from_kuid(&init_user_ns, task_uid(current));
1997 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1998 loginuid = from_kuid(&init_user_ns, kloginuid),
1999 tty = audit_get_tty(current);
2000
2001 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2002 audit_log_task_context(ab);
2003 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2004 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2005 oldsessionid, sessionid, !rc);
2006 audit_put_tty(tty);
2007 audit_log_end(ab);
2008}
2009
2010/**
2011 * audit_set_loginuid - set current task's audit_context loginuid
2012 * @loginuid: loginuid value
2013 *
2014 * Returns 0.
2015 *
2016 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2017 */
2018int audit_set_loginuid(kuid_t loginuid)
2019{
2020 struct task_struct *task = current;
2021 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2022 kuid_t oldloginuid;
2023 int rc;
2024
2025 oldloginuid = audit_get_loginuid(current);
2026 oldsessionid = audit_get_sessionid(current);
2027
2028 rc = audit_set_loginuid_perm(loginuid);
2029 if (rc)
2030 goto out;
2031
2032 /* are we setting or clearing? */
2033 if (uid_valid(loginuid)) {
2034 sessionid = (unsigned int)atomic_inc_return(&session_id);
2035 if (unlikely(sessionid == (unsigned int)-1))
2036 sessionid = (unsigned int)atomic_inc_return(&session_id);
2037 }
2038
2039 task->sessionid = sessionid;
2040 task->loginuid = loginuid;
2041out:
2042 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2043 return rc;
2044}
2045
2046/**
2047 * __audit_mq_open - record audit data for a POSIX MQ open
2048 * @oflag: open flag
2049 * @mode: mode bits
2050 * @attr: queue attributes
2051 *
2052 */
2053void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2054{
2055 struct audit_context *context = current->audit_context;
2056
2057 if (attr)
2058 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2059 else
2060 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2061
2062 context->mq_open.oflag = oflag;
2063 context->mq_open.mode = mode;
2064
2065 context->type = AUDIT_MQ_OPEN;
2066}
2067
2068/**
2069 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
2072 * @msg_prio: Message priority
2073 * @abs_timeout: Message timeout in absolute time
2074 *
2075 */
2076void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2077 const struct timespec *abs_timeout)
2078{
2079 struct audit_context *context = current->audit_context;
2080 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2081
2082 if (abs_timeout)
2083 memcpy(p, abs_timeout, sizeof(struct timespec));
2084 else
2085 memset(p, 0, sizeof(struct timespec));
2086
2087 context->mq_sendrecv.mqdes = mqdes;
2088 context->mq_sendrecv.msg_len = msg_len;
2089 context->mq_sendrecv.msg_prio = msg_prio;
2090
2091 context->type = AUDIT_MQ_SENDRECV;
2092}
2093
2094/**
2095 * __audit_mq_notify - record audit data for a POSIX MQ notify
2096 * @mqdes: MQ descriptor
2097 * @notification: Notification event
2098 *
2099 */
2100
2101void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2102{
2103 struct audit_context *context = current->audit_context;
2104
2105 if (notification)
2106 context->mq_notify.sigev_signo = notification->sigev_signo;
2107 else
2108 context->mq_notify.sigev_signo = 0;
2109
2110 context->mq_notify.mqdes = mqdes;
2111 context->type = AUDIT_MQ_NOTIFY;
2112}
2113
2114/**
2115 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2116 * @mqdes: MQ descriptor
2117 * @mqstat: MQ flags
2118 *
2119 */
2120void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2121{
2122 struct audit_context *context = current->audit_context;
2123 context->mq_getsetattr.mqdes = mqdes;
2124 context->mq_getsetattr.mqstat = *mqstat;
2125 context->type = AUDIT_MQ_GETSETATTR;
2126}
2127
2128/**
2129 * audit_ipc_obj - record audit data for ipc object
2130 * @ipcp: ipc permissions
2131 *
2132 */
2133void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2134{
2135 struct audit_context *context = current->audit_context;
2136 context->ipc.uid = ipcp->uid;
2137 context->ipc.gid = ipcp->gid;
2138 context->ipc.mode = ipcp->mode;
2139 context->ipc.has_perm = 0;
2140 security_ipc_getsecid(ipcp, &context->ipc.osid);
2141 context->type = AUDIT_IPC;
2142}
2143
2144/**
2145 * audit_ipc_set_perm - record audit data for new ipc permissions
2146 * @qbytes: msgq bytes
2147 * @uid: msgq user id
2148 * @gid: msgq group id
2149 * @mode: msgq mode (permissions)
2150 *
2151 * Called only after audit_ipc_obj().
2152 */
2153void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2154{
2155 struct audit_context *context = current->audit_context;
2156
2157 context->ipc.qbytes = qbytes;
2158 context->ipc.perm_uid = uid;
2159 context->ipc.perm_gid = gid;
2160 context->ipc.perm_mode = mode;
2161 context->ipc.has_perm = 1;
2162}
2163
2164void __audit_bprm(struct linux_binprm *bprm)
2165{
2166 struct audit_context *context = current->audit_context;
2167
2168 context->type = AUDIT_EXECVE;
2169 context->execve.argc = bprm->argc;
2170}
2171
2172
2173/**
2174 * audit_socketcall - record audit data for sys_socketcall
2175 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2176 * @args: args array
2177 *
2178 */
2179int __audit_socketcall(int nargs, unsigned long *args)
2180{
2181 struct audit_context *context = current->audit_context;
2182
2183 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2184 return -EINVAL;
2185 context->type = AUDIT_SOCKETCALL;
2186 context->socketcall.nargs = nargs;
2187 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2188 return 0;
2189}
2190
2191/**
2192 * __audit_fd_pair - record audit data for pipe and socketpair
2193 * @fd1: the first file descriptor
2194 * @fd2: the second file descriptor
2195 *
2196 */
2197void __audit_fd_pair(int fd1, int fd2)
2198{
2199 struct audit_context *context = current->audit_context;
2200 context->fds[0] = fd1;
2201 context->fds[1] = fd2;
2202}
2203
2204/**
2205 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2206 * @len: data length in user space
2207 * @a: data address in kernel space
2208 *
2209 * Returns 0 for success or NULL context or < 0 on error.
2210 */
2211int __audit_sockaddr(int len, void *a)
2212{
2213 struct audit_context *context = current->audit_context;
2214
2215 if (!context->sockaddr) {
2216 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2217 if (!p)
2218 return -ENOMEM;
2219 context->sockaddr = p;
2220 }
2221
2222 context->sockaddr_len = len;
2223 memcpy(context->sockaddr, a, len);
2224 return 0;
2225}
2226
2227void __audit_ptrace(struct task_struct *t)
2228{
2229 struct audit_context *context = current->audit_context;
2230
2231 context->target_pid = task_tgid_nr(t);
2232 context->target_auid = audit_get_loginuid(t);
2233 context->target_uid = task_uid(t);
2234 context->target_sessionid = audit_get_sessionid(t);
2235 security_task_getsecid(t, &context->target_sid);
2236 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2237}
2238
2239/**
2240 * audit_signal_info - record signal info for shutting down audit subsystem
2241 * @sig: signal value
2242 * @t: task being signaled
2243 *
2244 * If the audit subsystem is being terminated, record the task (pid)
2245 * and uid that is doing that.
2246 */
2247int __audit_signal_info(int sig, struct task_struct *t)
2248{
2249 struct audit_aux_data_pids *axp;
2250 struct task_struct *tsk = current;
2251 struct audit_context *ctx = tsk->audit_context;
2252 kuid_t uid = current_uid(), t_uid = task_uid(t);
2253
2254 if (auditd_test_task(t)) {
2255 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2256 audit_sig_pid = task_tgid_nr(tsk);
2257 if (uid_valid(tsk->loginuid))
2258 audit_sig_uid = tsk->loginuid;
2259 else
2260 audit_sig_uid = uid;
2261 security_task_getsecid(tsk, &audit_sig_sid);
2262 }
2263 if (!audit_signals || audit_dummy_context())
2264 return 0;
2265 }
2266
2267 /* optimize the common case by putting first signal recipient directly
2268 * in audit_context */
2269 if (!ctx->target_pid) {
2270 ctx->target_pid = task_tgid_nr(t);
2271 ctx->target_auid = audit_get_loginuid(t);
2272 ctx->target_uid = t_uid;
2273 ctx->target_sessionid = audit_get_sessionid(t);
2274 security_task_getsecid(t, &ctx->target_sid);
2275 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2276 return 0;
2277 }
2278
2279 axp = (void *)ctx->aux_pids;
2280 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2281 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2282 if (!axp)
2283 return -ENOMEM;
2284
2285 axp->d.type = AUDIT_OBJ_PID;
2286 axp->d.next = ctx->aux_pids;
2287 ctx->aux_pids = (void *)axp;
2288 }
2289 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2290
2291 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2292 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2293 axp->target_uid[axp->pid_count] = t_uid;
2294 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2295 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2296 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2297 axp->pid_count++;
2298
2299 return 0;
2300}
2301
2302/**
2303 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2304 * @bprm: pointer to the bprm being processed
2305 * @new: the proposed new credentials
2306 * @old: the old credentials
2307 *
2308 * Simply check if the proc already has the caps given by the file and if not
2309 * store the priv escalation info for later auditing at the end of the syscall
2310 *
2311 * -Eric
2312 */
2313int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2314 const struct cred *new, const struct cred *old)
2315{
2316 struct audit_aux_data_bprm_fcaps *ax;
2317 struct audit_context *context = current->audit_context;
2318 struct cpu_vfs_cap_data vcaps;
2319
2320 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2321 if (!ax)
2322 return -ENOMEM;
2323
2324 ax->d.type = AUDIT_BPRM_FCAPS;
2325 ax->d.next = context->aux;
2326 context->aux = (void *)ax;
2327
2328 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2329
2330 ax->fcap.permitted = vcaps.permitted;
2331 ax->fcap.inheritable = vcaps.inheritable;
2332 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2333 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2334
2335 ax->old_pcap.permitted = old->cap_permitted;
2336 ax->old_pcap.inheritable = old->cap_inheritable;
2337 ax->old_pcap.effective = old->cap_effective;
2338
2339 ax->new_pcap.permitted = new->cap_permitted;
2340 ax->new_pcap.inheritable = new->cap_inheritable;
2341 ax->new_pcap.effective = new->cap_effective;
2342 return 0;
2343}
2344
2345/**
2346 * __audit_log_capset - store information about the arguments to the capset syscall
2347 * @new: the new credentials
2348 * @old: the old (current) credentials
2349 *
2350 * Record the arguments userspace sent to sys_capset for later printing by the
2351 * audit system if applicable
2352 */
2353void __audit_log_capset(const struct cred *new, const struct cred *old)
2354{
2355 struct audit_context *context = current->audit_context;
2356 context->capset.pid = task_tgid_nr(current);
2357 context->capset.cap.effective = new->cap_effective;
2358 context->capset.cap.inheritable = new->cap_effective;
2359 context->capset.cap.permitted = new->cap_permitted;
2360 context->type = AUDIT_CAPSET;
2361}
2362
2363void __audit_mmap_fd(int fd, int flags)
2364{
2365 struct audit_context *context = current->audit_context;
2366 context->mmap.fd = fd;
2367 context->mmap.flags = flags;
2368 context->type = AUDIT_MMAP;
2369}
2370
2371static void audit_log_task(struct audit_buffer *ab)
2372{
2373 kuid_t auid, uid;
2374 kgid_t gid;
2375 unsigned int sessionid;
2376 char comm[sizeof(current->comm)];
2377
2378 auid = audit_get_loginuid(current);
2379 sessionid = audit_get_sessionid(current);
2380 current_uid_gid(&uid, &gid);
2381
2382 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2383 from_kuid(&init_user_ns, auid),
2384 from_kuid(&init_user_ns, uid),
2385 from_kgid(&init_user_ns, gid),
2386 sessionid);
2387 audit_log_task_context(ab);
2388 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2389 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2390 audit_log_d_path_exe(ab, current->mm);
2391}
2392
2393/**
2394 * audit_core_dumps - record information about processes that end abnormally
2395 * @signr: signal value
2396 *
2397 * If a process ends with a core dump, something fishy is going on and we
2398 * should record the event for investigation.
2399 */
2400void audit_core_dumps(long signr)
2401{
2402 struct audit_buffer *ab;
2403
2404 if (!audit_enabled)
2405 return;
2406
2407 if (signr == SIGQUIT) /* don't care for those */
2408 return;
2409
2410 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2411 if (unlikely(!ab))
2412 return;
2413 audit_log_task(ab);
2414 audit_log_format(ab, " sig=%ld", signr);
2415 audit_log_end(ab);
2416}
2417
2418void __audit_seccomp(unsigned long syscall, long signr, int code)
2419{
2420 struct audit_buffer *ab;
2421
2422 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2423 if (unlikely(!ab))
2424 return;
2425 audit_log_task(ab);
2426 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2427 signr, syscall_get_arch(), syscall,
2428 in_compat_syscall(), KSTK_EIP(current), code);
2429 audit_log_end(ab);
2430}
2431
2432struct list_head *audit_killed_trees(void)
2433{
2434 struct audit_context *ctx = current->audit_context;
2435 if (likely(!ctx || !ctx->in_syscall))
2436 return NULL;
2437 return &ctx->killed_trees;
2438}