Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
 
 
 
 
  17 */
  18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  19#define SUPPORT_SYSRQ
  20#endif
  21
  22#undef DEBUG
  23
  24#include <linux/clk.h>
  25#include <linux/console.h>
  26#include <linux/ctype.h>
  27#include <linux/cpufreq.h>
  28#include <linux/delay.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/err.h>
  32#include <linux/errno.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/ioport.h>
  36#include <linux/ktime.h>
  37#include <linux/major.h>
  38#include <linux/module.h>
  39#include <linux/mm.h>
  40#include <linux/of.h>
  41#include <linux/of_device.h>
  42#include <linux/platform_device.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/scatterlist.h>
  45#include <linux/serial.h>
  46#include <linux/serial_sci.h>
  47#include <linux/sh_dma.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/sysrq.h>
  51#include <linux/timer.h>
  52#include <linux/tty.h>
  53#include <linux/tty_flip.h>
  54
  55#ifdef CONFIG_SUPERH
  56#include <asm/sh_bios.h>
  57#endif
  58
  59#include "serial_mctrl_gpio.h"
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct plat_sci_reg {
 104	u8 offset, size;
 105};
 106
 107struct sci_port_params {
 108	const struct plat_sci_reg regs[SCIx_NR_REGS];
 109	unsigned int fifosize;
 110	unsigned int overrun_reg;
 111	unsigned int overrun_mask;
 112	unsigned int sampling_rate_mask;
 113	unsigned int error_mask;
 114	unsigned int error_clear;
 115};
 116
 117struct sci_port {
 118	struct uart_port	port;
 119
 120	/* Platform configuration */
 121	const struct sci_port_params *params;
 122	const struct plat_sci_port *cfg;
 
 
 
 123	unsigned int		sampling_rate_mask;
 124	resource_size_t		reg_size;
 125	struct mctrl_gpios	*gpios;
 126
 
 
 
 
 127	/* Clocks */
 128	struct clk		*clks[SCI_NUM_CLKS];
 129	unsigned long		clk_rates[SCI_NUM_CLKS];
 130
 131	int			irqs[SCIx_NR_IRQS];
 132	char			*irqstr[SCIx_NR_IRQS];
 133
 134	struct dma_chan			*chan_tx;
 135	struct dma_chan			*chan_rx;
 136
 137#ifdef CONFIG_SERIAL_SH_SCI_DMA
 138	dma_cookie_t			cookie_tx;
 139	dma_cookie_t			cookie_rx[2];
 140	dma_cookie_t			active_rx;
 141	dma_addr_t			tx_dma_addr;
 142	unsigned int			tx_dma_len;
 143	struct scatterlist		sg_rx[2];
 144	void				*rx_buf[2];
 145	size_t				buf_len_rx;
 146	struct work_struct		work_tx;
 147	struct hrtimer			rx_timer;
 148	unsigned int			rx_timeout;	/* microseconds */
 149#endif
 150	unsigned int			rx_frame;
 151	int				rx_trigger;
 152	struct timer_list		rx_fifo_timer;
 153	int				rx_fifo_timeout;
 154	u16				hscif_tot;
 155
 156	bool has_rtscts;
 157	bool autorts;
 158};
 159
 160#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 161
 162static struct sci_port sci_ports[SCI_NPORTS];
 163static struct uart_driver sci_uart_driver;
 164
 165static inline struct sci_port *
 166to_sci_port(struct uart_port *uart)
 167{
 168	return container_of(uart, struct sci_port, port);
 169}
 170
 171static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 
 
 
 
 
 
 
 
 
 
 
 172	/*
 173	 * Common SCI definitions, dependent on the port's regshift
 174	 * value.
 175	 */
 176	[SCIx_SCI_REGTYPE] = {
 177		.regs = {
 178			[SCSMR]		= { 0x00,  8 },
 179			[SCBRR]		= { 0x01,  8 },
 180			[SCSCR]		= { 0x02,  8 },
 181			[SCxTDR]	= { 0x03,  8 },
 182			[SCxSR]		= { 0x04,  8 },
 183			[SCxRDR]	= { 0x05,  8 },
 184		},
 185		.fifosize = 1,
 186		.overrun_reg = SCxSR,
 187		.overrun_mask = SCI_ORER,
 188		.sampling_rate_mask = SCI_SR(32),
 189		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 190		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 
 
 
 191	},
 192
 193	/*
 194	 * Common definitions for legacy IrDA ports.
 
 195	 */
 196	[SCIx_IRDA_REGTYPE] = {
 197		.regs = {
 198			[SCSMR]		= { 0x00,  8 },
 199			[SCBRR]		= { 0x02,  8 },
 200			[SCSCR]		= { 0x04,  8 },
 201			[SCxTDR]	= { 0x06,  8 },
 202			[SCxSR]		= { 0x08, 16 },
 203			[SCxRDR]	= { 0x0a,  8 },
 204			[SCFCR]		= { 0x0c,  8 },
 205			[SCFDR]		= { 0x0e, 16 },
 206		},
 207		.fifosize = 1,
 208		.overrun_reg = SCxSR,
 209		.overrun_mask = SCI_ORER,
 210		.sampling_rate_mask = SCI_SR(32),
 211		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 212		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 
 213	},
 214
 215	/*
 216	 * Common SCIFA definitions.
 217	 */
 218	[SCIx_SCIFA_REGTYPE] = {
 219		.regs = {
 220			[SCSMR]		= { 0x00, 16 },
 221			[SCBRR]		= { 0x04,  8 },
 222			[SCSCR]		= { 0x08, 16 },
 223			[SCxTDR]	= { 0x20,  8 },
 224			[SCxSR]		= { 0x14, 16 },
 225			[SCxRDR]	= { 0x24,  8 },
 226			[SCFCR]		= { 0x18, 16 },
 227			[SCFDR]		= { 0x1c, 16 },
 228			[SCPCR]		= { 0x30, 16 },
 229			[SCPDR]		= { 0x34, 16 },
 230		},
 231		.fifosize = 64,
 232		.overrun_reg = SCxSR,
 233		.overrun_mask = SCIFA_ORER,
 234		.sampling_rate_mask = SCI_SR_SCIFAB,
 235		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 236		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 237	},
 238
 239	/*
 240	 * Common SCIFB definitions.
 241	 */
 242	[SCIx_SCIFB_REGTYPE] = {
 243		.regs = {
 244			[SCSMR]		= { 0x00, 16 },
 245			[SCBRR]		= { 0x04,  8 },
 246			[SCSCR]		= { 0x08, 16 },
 247			[SCxTDR]	= { 0x40,  8 },
 248			[SCxSR]		= { 0x14, 16 },
 249			[SCxRDR]	= { 0x60,  8 },
 250			[SCFCR]		= { 0x18, 16 },
 251			[SCTFDR]	= { 0x38, 16 },
 252			[SCRFDR]	= { 0x3c, 16 },
 253			[SCPCR]		= { 0x30, 16 },
 254			[SCPDR]		= { 0x34, 16 },
 255		},
 256		.fifosize = 256,
 257		.overrun_reg = SCxSR,
 258		.overrun_mask = SCIFA_ORER,
 259		.sampling_rate_mask = SCI_SR_SCIFAB,
 260		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 261		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 262	},
 263
 264	/*
 265	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 269		.regs = {
 270			[SCSMR]		= { 0x00, 16 },
 271			[SCBRR]		= { 0x04,  8 },
 272			[SCSCR]		= { 0x08, 16 },
 273			[SCxTDR]	= { 0x0c,  8 },
 274			[SCxSR]		= { 0x10, 16 },
 275			[SCxRDR]	= { 0x14,  8 },
 276			[SCFCR]		= { 0x18, 16 },
 277			[SCFDR]		= { 0x1c, 16 },
 278			[SCSPTR]	= { 0x20, 16 },
 279			[SCLSR]		= { 0x24, 16 },
 280		},
 281		.fifosize = 16,
 282		.overrun_reg = SCLSR,
 283		.overrun_mask = SCLSR_ORER,
 284		.sampling_rate_mask = SCI_SR(32),
 285		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 286		.error_clear = SCIF_ERROR_CLEAR,
 287	},
 288
 289	/*
 290	 * Common SH-3 SCIF definitions.
 291	 */
 292	[SCIx_SH3_SCIF_REGTYPE] = {
 293		.regs = {
 294			[SCSMR]		= { 0x00,  8 },
 295			[SCBRR]		= { 0x02,  8 },
 296			[SCSCR]		= { 0x04,  8 },
 297			[SCxTDR]	= { 0x06,  8 },
 298			[SCxSR]		= { 0x08, 16 },
 299			[SCxRDR]	= { 0x0a,  8 },
 300			[SCFCR]		= { 0x0c,  8 },
 301			[SCFDR]		= { 0x0e, 16 },
 302		},
 303		.fifosize = 16,
 304		.overrun_reg = SCLSR,
 305		.overrun_mask = SCLSR_ORER,
 306		.sampling_rate_mask = SCI_SR(32),
 307		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 308		.error_clear = SCIF_ERROR_CLEAR,
 
 309	},
 310
 311	/*
 312	 * Common SH-4(A) SCIF(B) definitions.
 313	 */
 314	[SCIx_SH4_SCIF_REGTYPE] = {
 315		.regs = {
 316			[SCSMR]		= { 0x00, 16 },
 317			[SCBRR]		= { 0x04,  8 },
 318			[SCSCR]		= { 0x08, 16 },
 319			[SCxTDR]	= { 0x0c,  8 },
 320			[SCxSR]		= { 0x10, 16 },
 321			[SCxRDR]	= { 0x14,  8 },
 322			[SCFCR]		= { 0x18, 16 },
 323			[SCFDR]		= { 0x1c, 16 },
 324			[SCSPTR]	= { 0x20, 16 },
 325			[SCLSR]		= { 0x24, 16 },
 326		},
 327		.fifosize = 16,
 328		.overrun_reg = SCLSR,
 329		.overrun_mask = SCLSR_ORER,
 330		.sampling_rate_mask = SCI_SR(32),
 331		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 332		.error_clear = SCIF_ERROR_CLEAR,
 333	},
 334
 335	/*
 336	 * Common SCIF definitions for ports with a Baud Rate Generator for
 337	 * External Clock (BRG).
 338	 */
 339	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 340		.regs = {
 341			[SCSMR]		= { 0x00, 16 },
 342			[SCBRR]		= { 0x04,  8 },
 343			[SCSCR]		= { 0x08, 16 },
 344			[SCxTDR]	= { 0x0c,  8 },
 345			[SCxSR]		= { 0x10, 16 },
 346			[SCxRDR]	= { 0x14,  8 },
 347			[SCFCR]		= { 0x18, 16 },
 348			[SCFDR]		= { 0x1c, 16 },
 349			[SCSPTR]	= { 0x20, 16 },
 350			[SCLSR]		= { 0x24, 16 },
 351			[SCDL]		= { 0x30, 16 },
 352			[SCCKS]		= { 0x34, 16 },
 353		},
 354		.fifosize = 16,
 355		.overrun_reg = SCLSR,
 356		.overrun_mask = SCLSR_ORER,
 357		.sampling_rate_mask = SCI_SR(32),
 358		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 359		.error_clear = SCIF_ERROR_CLEAR,
 360	},
 361
 362	/*
 363	 * Common HSCIF definitions.
 364	 */
 365	[SCIx_HSCIF_REGTYPE] = {
 366		.regs = {
 367			[SCSMR]		= { 0x00, 16 },
 368			[SCBRR]		= { 0x04,  8 },
 369			[SCSCR]		= { 0x08, 16 },
 370			[SCxTDR]	= { 0x0c,  8 },
 371			[SCxSR]		= { 0x10, 16 },
 372			[SCxRDR]	= { 0x14,  8 },
 373			[SCFCR]		= { 0x18, 16 },
 374			[SCFDR]		= { 0x1c, 16 },
 375			[SCSPTR]	= { 0x20, 16 },
 376			[SCLSR]		= { 0x24, 16 },
 377			[HSSRR]		= { 0x40, 16 },
 378			[SCDL]		= { 0x30, 16 },
 379			[SCCKS]		= { 0x34, 16 },
 380			[HSRTRGR]	= { 0x54, 16 },
 381			[HSTTRGR]	= { 0x58, 16 },
 382		},
 383		.fifosize = 128,
 384		.overrun_reg = SCLSR,
 385		.overrun_mask = SCLSR_ORER,
 386		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 387		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 388		.error_clear = SCIF_ERROR_CLEAR,
 389	},
 390
 391	/*
 392	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 393	 * register.
 394	 */
 395	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 396		.regs = {
 397			[SCSMR]		= { 0x00, 16 },
 398			[SCBRR]		= { 0x04,  8 },
 399			[SCSCR]		= { 0x08, 16 },
 400			[SCxTDR]	= { 0x0c,  8 },
 401			[SCxSR]		= { 0x10, 16 },
 402			[SCxRDR]	= { 0x14,  8 },
 403			[SCFCR]		= { 0x18, 16 },
 404			[SCFDR]		= { 0x1c, 16 },
 405			[SCLSR]		= { 0x24, 16 },
 406		},
 407		.fifosize = 16,
 408		.overrun_reg = SCLSR,
 409		.overrun_mask = SCLSR_ORER,
 410		.sampling_rate_mask = SCI_SR(32),
 411		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 412		.error_clear = SCIF_ERROR_CLEAR,
 413	},
 414
 415	/*
 416	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 417	 * count registers.
 418	 */
 419	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 420		.regs = {
 421			[SCSMR]		= { 0x00, 16 },
 422			[SCBRR]		= { 0x04,  8 },
 423			[SCSCR]		= { 0x08, 16 },
 424			[SCxTDR]	= { 0x0c,  8 },
 425			[SCxSR]		= { 0x10, 16 },
 426			[SCxRDR]	= { 0x14,  8 },
 427			[SCFCR]		= { 0x18, 16 },
 428			[SCFDR]		= { 0x1c, 16 },
 429			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 430			[SCRFDR]	= { 0x20, 16 },
 431			[SCSPTR]	= { 0x24, 16 },
 432			[SCLSR]		= { 0x28, 16 },
 433		},
 434		.fifosize = 16,
 435		.overrun_reg = SCLSR,
 436		.overrun_mask = SCLSR_ORER,
 437		.sampling_rate_mask = SCI_SR(32),
 438		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 439		.error_clear = SCIF_ERROR_CLEAR,
 440	},
 441
 442	/*
 443	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 444	 * registers.
 445	 */
 446	[SCIx_SH7705_SCIF_REGTYPE] = {
 447		.regs = {
 448			[SCSMR]		= { 0x00, 16 },
 449			[SCBRR]		= { 0x04,  8 },
 450			[SCSCR]		= { 0x08, 16 },
 451			[SCxTDR]	= { 0x20,  8 },
 452			[SCxSR]		= { 0x14, 16 },
 453			[SCxRDR]	= { 0x24,  8 },
 454			[SCFCR]		= { 0x18, 16 },
 455			[SCFDR]		= { 0x1c, 16 },
 456		},
 457		.fifosize = 64,
 458		.overrun_reg = SCxSR,
 459		.overrun_mask = SCIFA_ORER,
 460		.sampling_rate_mask = SCI_SR(16),
 461		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 462		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 
 463	},
 464};
 465
 466#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 467
 468/*
 469 * The "offset" here is rather misleading, in that it refers to an enum
 470 * value relative to the port mapping rather than the fixed offset
 471 * itself, which needs to be manually retrieved from the platform's
 472 * register map for the given port.
 473 */
 474static unsigned int sci_serial_in(struct uart_port *p, int offset)
 475{
 476	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 477
 478	if (reg->size == 8)
 479		return ioread8(p->membase + (reg->offset << p->regshift));
 480	else if (reg->size == 16)
 481		return ioread16(p->membase + (reg->offset << p->regshift));
 482	else
 483		WARN(1, "Invalid register access\n");
 484
 485	return 0;
 486}
 487
 488static void sci_serial_out(struct uart_port *p, int offset, int value)
 489{
 490	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 491
 492	if (reg->size == 8)
 493		iowrite8(value, p->membase + (reg->offset << p->regshift));
 494	else if (reg->size == 16)
 495		iowrite16(value, p->membase + (reg->offset << p->regshift));
 496	else
 497		WARN(1, "Invalid register access\n");
 498}
 499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500static void sci_port_enable(struct sci_port *sci_port)
 501{
 502	unsigned int i;
 503
 504	if (!sci_port->port.dev)
 505		return;
 506
 507	pm_runtime_get_sync(sci_port->port.dev);
 508
 509	for (i = 0; i < SCI_NUM_CLKS; i++) {
 510		clk_prepare_enable(sci_port->clks[i]);
 511		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 512	}
 513	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 514}
 515
 516static void sci_port_disable(struct sci_port *sci_port)
 517{
 518	unsigned int i;
 519
 520	if (!sci_port->port.dev)
 521		return;
 522
 
 
 
 
 
 
 
 
 523	for (i = SCI_NUM_CLKS; i-- > 0; )
 524		clk_disable_unprepare(sci_port->clks[i]);
 525
 526	pm_runtime_put_sync(sci_port->port.dev);
 527}
 528
 529static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 530{
 531	/*
 532	 * Not all ports (such as SCIFA) will support REIE. Rather than
 533	 * special-casing the port type, we check the port initialization
 534	 * IRQ enable mask to see whether the IRQ is desired at all. If
 535	 * it's unset, it's logically inferred that there's no point in
 536	 * testing for it.
 537	 */
 538	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 539}
 540
 541static void sci_start_tx(struct uart_port *port)
 542{
 543	struct sci_port *s = to_sci_port(port);
 544	unsigned short ctrl;
 545
 546#ifdef CONFIG_SERIAL_SH_SCI_DMA
 547	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 548		u16 new, scr = serial_port_in(port, SCSCR);
 549		if (s->chan_tx)
 550			new = scr | SCSCR_TDRQE;
 551		else
 552			new = scr & ~SCSCR_TDRQE;
 553		if (new != scr)
 554			serial_port_out(port, SCSCR, new);
 555	}
 556
 557	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 558	    dma_submit_error(s->cookie_tx)) {
 559		s->cookie_tx = 0;
 560		schedule_work(&s->work_tx);
 561	}
 562#endif
 563
 564	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 565		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 566		ctrl = serial_port_in(port, SCSCR);
 567		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 568	}
 569}
 570
 571static void sci_stop_tx(struct uart_port *port)
 572{
 573	unsigned short ctrl;
 574
 575	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 576	ctrl = serial_port_in(port, SCSCR);
 577
 578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 579		ctrl &= ~SCSCR_TDRQE;
 580
 581	ctrl &= ~SCSCR_TIE;
 582
 583	serial_port_out(port, SCSCR, ctrl);
 584}
 585
 586static void sci_start_rx(struct uart_port *port)
 587{
 588	unsigned short ctrl;
 589
 590	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 591
 592	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 593		ctrl &= ~SCSCR_RDRQE;
 594
 595	serial_port_out(port, SCSCR, ctrl);
 596}
 597
 598static void sci_stop_rx(struct uart_port *port)
 599{
 600	unsigned short ctrl;
 601
 602	ctrl = serial_port_in(port, SCSCR);
 603
 604	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 605		ctrl &= ~SCSCR_RDRQE;
 606
 607	ctrl &= ~port_rx_irq_mask(port);
 608
 609	serial_port_out(port, SCSCR, ctrl);
 610}
 611
 612static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 613{
 614	if (port->type == PORT_SCI) {
 615		/* Just store the mask */
 616		serial_port_out(port, SCxSR, mask);
 617	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 618		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 619		/* Only clear the status bits we want to clear */
 620		serial_port_out(port, SCxSR,
 621				serial_port_in(port, SCxSR) & mask);
 622	} else {
 623		/* Store the mask, clear parity/framing errors */
 624		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 625	}
 626}
 627
 628#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 629    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 630
 631#ifdef CONFIG_CONSOLE_POLL
 632static int sci_poll_get_char(struct uart_port *port)
 633{
 634	unsigned short status;
 635	int c;
 636
 637	do {
 638		status = serial_port_in(port, SCxSR);
 639		if (status & SCxSR_ERRORS(port)) {
 640			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 641			continue;
 642		}
 643		break;
 644	} while (1);
 645
 646	if (!(status & SCxSR_RDxF(port)))
 647		return NO_POLL_CHAR;
 648
 649	c = serial_port_in(port, SCxRDR);
 650
 651	/* Dummy read */
 652	serial_port_in(port, SCxSR);
 653	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 654
 655	return c;
 656}
 657#endif
 658
 659static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 660{
 661	unsigned short status;
 662
 663	do {
 664		status = serial_port_in(port, SCxSR);
 665	} while (!(status & SCxSR_TDxE(port)));
 666
 667	serial_port_out(port, SCxTDR, c);
 668	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 669}
 670#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 671	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 672
 673static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 674{
 675	struct sci_port *s = to_sci_port(port);
 676
 677	/*
 678	 * Use port-specific handler if provided.
 679	 */
 680	if (s->cfg->ops && s->cfg->ops->init_pins) {
 681		s->cfg->ops->init_pins(port, cflag);
 682		return;
 683	}
 684
 685	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 686		u16 data = serial_port_in(port, SCPDR);
 687		u16 ctrl = serial_port_in(port, SCPCR);
 688
 689		/* Enable RXD and TXD pin functions */
 690		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 691		if (to_sci_port(port)->has_rtscts) {
 692			/* RTS# is output, active low, unless autorts */
 693			if (!(port->mctrl & TIOCM_RTS)) {
 694				ctrl |= SCPCR_RTSC;
 695				data |= SCPDR_RTSD;
 696			} else if (!s->autorts) {
 697				ctrl |= SCPCR_RTSC;
 698				data &= ~SCPDR_RTSD;
 699			} else {
 700				/* Enable RTS# pin function */
 701				ctrl &= ~SCPCR_RTSC;
 702			}
 703			/* Enable CTS# pin function */
 704			ctrl &= ~SCPCR_CTSC;
 705		}
 706		serial_port_out(port, SCPDR, data);
 707		serial_port_out(port, SCPCR, ctrl);
 708	} else if (sci_getreg(port, SCSPTR)->size) {
 709		u16 status = serial_port_in(port, SCSPTR);
 710
 711		/* RTS# is always output; and active low, unless autorts */
 712		status |= SCSPTR_RTSIO;
 713		if (!(port->mctrl & TIOCM_RTS))
 714			status |= SCSPTR_RTSDT;
 715		else if (!s->autorts)
 716			status &= ~SCSPTR_RTSDT;
 717		/* CTS# and SCK are inputs */
 718		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 719		serial_port_out(port, SCSPTR, status);
 720	}
 721}
 722
 723static int sci_txfill(struct uart_port *port)
 724{
 725	struct sci_port *s = to_sci_port(port);
 726	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 727	const struct plat_sci_reg *reg;
 728
 729	reg = sci_getreg(port, SCTFDR);
 730	if (reg->size)
 731		return serial_port_in(port, SCTFDR) & fifo_mask;
 732
 733	reg = sci_getreg(port, SCFDR);
 734	if (reg->size)
 735		return serial_port_in(port, SCFDR) >> 8;
 736
 737	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 738}
 739
 740static int sci_txroom(struct uart_port *port)
 741{
 742	return port->fifosize - sci_txfill(port);
 743}
 744
 745static int sci_rxfill(struct uart_port *port)
 746{
 747	struct sci_port *s = to_sci_port(port);
 748	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 749	const struct plat_sci_reg *reg;
 750
 751	reg = sci_getreg(port, SCRFDR);
 752	if (reg->size)
 753		return serial_port_in(port, SCRFDR) & fifo_mask;
 754
 755	reg = sci_getreg(port, SCFDR);
 756	if (reg->size)
 757		return serial_port_in(port, SCFDR) & fifo_mask;
 758
 759	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 760}
 761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762/* ********************************************************************** *
 763 *                   the interrupt related routines                       *
 764 * ********************************************************************** */
 765
 766static void sci_transmit_chars(struct uart_port *port)
 767{
 768	struct circ_buf *xmit = &port->state->xmit;
 769	unsigned int stopped = uart_tx_stopped(port);
 770	unsigned short status;
 771	unsigned short ctrl;
 772	int count;
 773
 774	status = serial_port_in(port, SCxSR);
 775	if (!(status & SCxSR_TDxE(port))) {
 776		ctrl = serial_port_in(port, SCSCR);
 777		if (uart_circ_empty(xmit))
 778			ctrl &= ~SCSCR_TIE;
 779		else
 780			ctrl |= SCSCR_TIE;
 781		serial_port_out(port, SCSCR, ctrl);
 782		return;
 783	}
 784
 785	count = sci_txroom(port);
 786
 787	do {
 788		unsigned char c;
 789
 790		if (port->x_char) {
 791			c = port->x_char;
 792			port->x_char = 0;
 793		} else if (!uart_circ_empty(xmit) && !stopped) {
 794			c = xmit->buf[xmit->tail];
 795			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 796		} else {
 797			break;
 798		}
 799
 800		serial_port_out(port, SCxTDR, c);
 801
 802		port->icount.tx++;
 803	} while (--count > 0);
 804
 805	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 806
 807	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 808		uart_write_wakeup(port);
 809	if (uart_circ_empty(xmit)) {
 810		sci_stop_tx(port);
 811	} else {
 812		ctrl = serial_port_in(port, SCSCR);
 813
 814		if (port->type != PORT_SCI) {
 815			serial_port_in(port, SCxSR); /* Dummy read */
 816			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 817		}
 818
 819		ctrl |= SCSCR_TIE;
 820		serial_port_out(port, SCSCR, ctrl);
 821	}
 822}
 823
 824/* On SH3, SCIF may read end-of-break as a space->mark char */
 825#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 826
 827static void sci_receive_chars(struct uart_port *port)
 828{
 
 829	struct tty_port *tport = &port->state->port;
 830	int i, count, copied = 0;
 831	unsigned short status;
 832	unsigned char flag;
 833
 834	status = serial_port_in(port, SCxSR);
 835	if (!(status & SCxSR_RDxF(port)))
 836		return;
 837
 838	while (1) {
 839		/* Don't copy more bytes than there is room for in the buffer */
 840		count = tty_buffer_request_room(tport, sci_rxfill(port));
 841
 842		/* If for any reason we can't copy more data, we're done! */
 843		if (count == 0)
 844			break;
 845
 846		if (port->type == PORT_SCI) {
 847			char c = serial_port_in(port, SCxRDR);
 848			if (uart_handle_sysrq_char(port, c))
 
 849				count = 0;
 850			else
 851				tty_insert_flip_char(tport, c, TTY_NORMAL);
 852		} else {
 853			for (i = 0; i < count; i++) {
 854				char c = serial_port_in(port, SCxRDR);
 855
 856				status = serial_port_in(port, SCxSR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857				if (uart_handle_sysrq_char(port, c)) {
 858					count--; i--;
 859					continue;
 860				}
 861
 862				/* Store data and status */
 863				if (status & SCxSR_FER(port)) {
 864					flag = TTY_FRAME;
 865					port->icount.frame++;
 866					dev_notice(port->dev, "frame error\n");
 867				} else if (status & SCxSR_PER(port)) {
 868					flag = TTY_PARITY;
 869					port->icount.parity++;
 870					dev_notice(port->dev, "parity error\n");
 871				} else
 872					flag = TTY_NORMAL;
 873
 874				tty_insert_flip_char(tport, c, flag);
 875			}
 876		}
 877
 878		serial_port_in(port, SCxSR); /* dummy read */
 879		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 880
 881		copied += count;
 882		port->icount.rx += count;
 883	}
 884
 885	if (copied) {
 886		/* Tell the rest of the system the news. New characters! */
 887		tty_flip_buffer_push(tport);
 888	} else {
 889		/* TTY buffers full; read from RX reg to prevent lockup */
 890		serial_port_in(port, SCxRDR);
 891		serial_port_in(port, SCxSR); /* dummy read */
 892		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 893	}
 894}
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896static int sci_handle_errors(struct uart_port *port)
 897{
 898	int copied = 0;
 899	unsigned short status = serial_port_in(port, SCxSR);
 900	struct tty_port *tport = &port->state->port;
 901	struct sci_port *s = to_sci_port(port);
 902
 903	/* Handle overruns */
 904	if (status & s->params->overrun_mask) {
 905		port->icount.overrun++;
 906
 907		/* overrun error */
 908		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 909			copied++;
 910
 911		dev_notice(port->dev, "overrun error\n");
 912	}
 913
 914	if (status & SCxSR_FER(port)) {
 915		/* frame error */
 916		port->icount.frame++;
 
 917
 918		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 919			copied++;
 
 
 
 
 
 
 
 
 
 920
 921		dev_notice(port->dev, "frame error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 922	}
 923
 924	if (status & SCxSR_PER(port)) {
 925		/* parity error */
 926		port->icount.parity++;
 927
 928		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 929			copied++;
 930
 931		dev_notice(port->dev, "parity error\n");
 932	}
 933
 934	if (copied)
 935		tty_flip_buffer_push(tport);
 936
 937	return copied;
 938}
 939
 940static int sci_handle_fifo_overrun(struct uart_port *port)
 941{
 942	struct tty_port *tport = &port->state->port;
 943	struct sci_port *s = to_sci_port(port);
 944	const struct plat_sci_reg *reg;
 945	int copied = 0;
 946	u16 status;
 947
 948	reg = sci_getreg(port, s->params->overrun_reg);
 949	if (!reg->size)
 950		return 0;
 951
 952	status = serial_port_in(port, s->params->overrun_reg);
 953	if (status & s->params->overrun_mask) {
 954		status &= ~s->params->overrun_mask;
 955		serial_port_out(port, s->params->overrun_reg, status);
 956
 957		port->icount.overrun++;
 958
 959		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 960		tty_flip_buffer_push(tport);
 961
 962		dev_dbg(port->dev, "overrun error\n");
 963		copied++;
 964	}
 965
 966	return copied;
 967}
 968
 969static int sci_handle_breaks(struct uart_port *port)
 970{
 971	int copied = 0;
 972	unsigned short status = serial_port_in(port, SCxSR);
 973	struct tty_port *tport = &port->state->port;
 
 974
 975	if (uart_handle_break(port))
 976		return 0;
 977
 978	if (status & SCxSR_BRK(port)) {
 
 
 
 
 
 979		port->icount.brk++;
 980
 981		/* Notify of BREAK */
 982		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
 983			copied++;
 984
 985		dev_dbg(port->dev, "BREAK detected\n");
 986	}
 987
 988	if (copied)
 989		tty_flip_buffer_push(tport);
 990
 991	copied += sci_handle_fifo_overrun(port);
 992
 993	return copied;
 994}
 995
 996static int scif_set_rtrg(struct uart_port *port, int rx_trig)
 997{
 998	unsigned int bits;
 999
1000	if (rx_trig < 1)
1001		rx_trig = 1;
1002	if (rx_trig >= port->fifosize)
1003		rx_trig = port->fifosize;
1004
1005	/* HSCIF can be set to an arbitrary level. */
1006	if (sci_getreg(port, HSRTRGR)->size) {
1007		serial_port_out(port, HSRTRGR, rx_trig);
1008		return rx_trig;
1009	}
1010
1011	switch (port->type) {
1012	case PORT_SCIF:
1013		if (rx_trig < 4) {
1014			bits = 0;
1015			rx_trig = 1;
1016		} else if (rx_trig < 8) {
1017			bits = SCFCR_RTRG0;
1018			rx_trig = 4;
1019		} else if (rx_trig < 14) {
1020			bits = SCFCR_RTRG1;
1021			rx_trig = 8;
1022		} else {
1023			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1024			rx_trig = 14;
1025		}
1026		break;
1027	case PORT_SCIFA:
1028	case PORT_SCIFB:
1029		if (rx_trig < 16) {
1030			bits = 0;
1031			rx_trig = 1;
1032		} else if (rx_trig < 32) {
1033			bits = SCFCR_RTRG0;
1034			rx_trig = 16;
1035		} else if (rx_trig < 48) {
1036			bits = SCFCR_RTRG1;
1037			rx_trig = 32;
1038		} else {
1039			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1040			rx_trig = 48;
1041		}
1042		break;
1043	default:
1044		WARN(1, "unknown FIFO configuration");
1045		return 1;
1046	}
1047
1048	serial_port_out(port, SCFCR,
1049		(serial_port_in(port, SCFCR) &
1050		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1051
1052	return rx_trig;
1053}
1054
1055static int scif_rtrg_enabled(struct uart_port *port)
1056{
1057	if (sci_getreg(port, HSRTRGR)->size)
1058		return serial_port_in(port, HSRTRGR) != 0;
1059	else
1060		return (serial_port_in(port, SCFCR) &
1061			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1062}
1063
1064static void rx_fifo_timer_fn(struct timer_list *t)
1065{
1066	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1067	struct uart_port *port = &s->port;
1068
1069	dev_dbg(port->dev, "Rx timed out\n");
1070	scif_set_rtrg(port, 1);
1071}
1072
1073static ssize_t rx_trigger_show(struct device *dev,
1074			       struct device_attribute *attr,
1075			       char *buf)
1076{
1077	struct uart_port *port = dev_get_drvdata(dev);
1078	struct sci_port *sci = to_sci_port(port);
1079
1080	return sprintf(buf, "%d\n", sci->rx_trigger);
1081}
1082
1083static ssize_t rx_trigger_store(struct device *dev,
1084				struct device_attribute *attr,
1085				const char *buf,
1086				size_t count)
1087{
1088	struct uart_port *port = dev_get_drvdata(dev);
1089	struct sci_port *sci = to_sci_port(port);
1090	int ret;
1091	long r;
1092
1093	ret = kstrtol(buf, 0, &r);
1094	if (ret)
1095		return ret;
1096
1097	sci->rx_trigger = scif_set_rtrg(port, r);
1098	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1099		scif_set_rtrg(port, 1);
1100
1101	return count;
1102}
1103
1104static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1105
1106static ssize_t rx_fifo_timeout_show(struct device *dev,
1107			       struct device_attribute *attr,
1108			       char *buf)
1109{
1110	struct uart_port *port = dev_get_drvdata(dev);
1111	struct sci_port *sci = to_sci_port(port);
1112	int v;
1113
1114	if (port->type == PORT_HSCIF)
1115		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1116	else
1117		v = sci->rx_fifo_timeout;
1118
1119	return sprintf(buf, "%d\n", v);
1120}
1121
1122static ssize_t rx_fifo_timeout_store(struct device *dev,
1123				struct device_attribute *attr,
1124				const char *buf,
1125				size_t count)
1126{
1127	struct uart_port *port = dev_get_drvdata(dev);
1128	struct sci_port *sci = to_sci_port(port);
1129	int ret;
1130	long r;
1131
1132	ret = kstrtol(buf, 0, &r);
1133	if (ret)
1134		return ret;
1135
1136	if (port->type == PORT_HSCIF) {
1137		if (r < 0 || r > 3)
1138			return -EINVAL;
1139		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1140	} else {
1141		sci->rx_fifo_timeout = r;
1142		scif_set_rtrg(port, 1);
1143		if (r > 0)
1144			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1145	}
1146
1147	return count;
1148}
1149
1150static DEVICE_ATTR_RW(rx_fifo_timeout);
1151
1152
1153#ifdef CONFIG_SERIAL_SH_SCI_DMA
1154static void sci_dma_tx_complete(void *arg)
1155{
1156	struct sci_port *s = arg;
1157	struct uart_port *port = &s->port;
1158	struct circ_buf *xmit = &port->state->xmit;
1159	unsigned long flags;
1160
1161	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1162
1163	spin_lock_irqsave(&port->lock, flags);
1164
1165	xmit->tail += s->tx_dma_len;
1166	xmit->tail &= UART_XMIT_SIZE - 1;
1167
1168	port->icount.tx += s->tx_dma_len;
1169
1170	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1171		uart_write_wakeup(port);
1172
1173	if (!uart_circ_empty(xmit)) {
1174		s->cookie_tx = 0;
1175		schedule_work(&s->work_tx);
1176	} else {
1177		s->cookie_tx = -EINVAL;
1178		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1179			u16 ctrl = serial_port_in(port, SCSCR);
1180			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1181		}
1182	}
1183
1184	spin_unlock_irqrestore(&port->lock, flags);
1185}
1186
1187/* Locking: called with port lock held */
1188static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1189{
1190	struct uart_port *port = &s->port;
1191	struct tty_port *tport = &port->state->port;
1192	int copied;
1193
1194	copied = tty_insert_flip_string(tport, buf, count);
1195	if (copied < count)
1196		port->icount.buf_overrun++;
1197
1198	port->icount.rx += copied;
1199
1200	return copied;
1201}
1202
1203static int sci_dma_rx_find_active(struct sci_port *s)
1204{
1205	unsigned int i;
1206
1207	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1208		if (s->active_rx == s->cookie_rx[i])
1209			return i;
1210
1211	return -1;
1212}
1213
1214static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1215{
1216	struct dma_chan *chan = s->chan_rx;
1217	struct uart_port *port = &s->port;
1218	unsigned long flags;
1219
1220	spin_lock_irqsave(&port->lock, flags);
1221	s->chan_rx = NULL;
1222	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1223	spin_unlock_irqrestore(&port->lock, flags);
1224	dmaengine_terminate_all(chan);
1225	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1226			  sg_dma_address(&s->sg_rx[0]));
1227	dma_release_channel(chan);
1228	if (enable_pio) {
1229		spin_lock_irqsave(&port->lock, flags);
1230		sci_start_rx(port);
1231		spin_unlock_irqrestore(&port->lock, flags);
1232	}
1233}
1234
1235static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1236{
1237	long sec = usec / 1000000;
1238	long nsec = (usec % 1000000) * 1000;
1239	ktime_t t = ktime_set(sec, nsec);
1240
1241	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1242}
1243
1244static void sci_dma_rx_complete(void *arg)
1245{
1246	struct sci_port *s = arg;
1247	struct dma_chan *chan = s->chan_rx;
1248	struct uart_port *port = &s->port;
1249	struct dma_async_tx_descriptor *desc;
1250	unsigned long flags;
1251	int active, count = 0;
1252
1253	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1254		s->active_rx);
1255
1256	spin_lock_irqsave(&port->lock, flags);
1257
1258	active = sci_dma_rx_find_active(s);
1259	if (active >= 0)
1260		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1261
1262	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1263
1264	if (count)
1265		tty_flip_buffer_push(&port->state->port);
1266
1267	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1268				       DMA_DEV_TO_MEM,
1269				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1270	if (!desc)
1271		goto fail;
1272
1273	desc->callback = sci_dma_rx_complete;
1274	desc->callback_param = s;
1275	s->cookie_rx[active] = dmaengine_submit(desc);
1276	if (dma_submit_error(s->cookie_rx[active]))
1277		goto fail;
1278
1279	s->active_rx = s->cookie_rx[!active];
1280
1281	dma_async_issue_pending(chan);
1282
1283	spin_unlock_irqrestore(&port->lock, flags);
1284	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1285		__func__, s->cookie_rx[active], active, s->active_rx);
1286	return;
1287
1288fail:
1289	spin_unlock_irqrestore(&port->lock, flags);
1290	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1291	sci_rx_dma_release(s, true);
1292}
1293
1294static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1295{
1296	struct dma_chan *chan = s->chan_tx;
1297	struct uart_port *port = &s->port;
1298	unsigned long flags;
1299
1300	spin_lock_irqsave(&port->lock, flags);
1301	s->chan_tx = NULL;
1302	s->cookie_tx = -EINVAL;
1303	spin_unlock_irqrestore(&port->lock, flags);
1304	dmaengine_terminate_all(chan);
1305	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1306			 DMA_TO_DEVICE);
1307	dma_release_channel(chan);
1308	if (enable_pio) {
1309		spin_lock_irqsave(&port->lock, flags);
1310		sci_start_tx(port);
1311		spin_unlock_irqrestore(&port->lock, flags);
1312	}
1313}
1314
1315static void sci_submit_rx(struct sci_port *s)
1316{
1317	struct dma_chan *chan = s->chan_rx;
1318	int i;
1319
1320	for (i = 0; i < 2; i++) {
1321		struct scatterlist *sg = &s->sg_rx[i];
1322		struct dma_async_tx_descriptor *desc;
1323
1324		desc = dmaengine_prep_slave_sg(chan,
1325			sg, 1, DMA_DEV_TO_MEM,
1326			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1327		if (!desc)
1328			goto fail;
1329
1330		desc->callback = sci_dma_rx_complete;
1331		desc->callback_param = s;
1332		s->cookie_rx[i] = dmaengine_submit(desc);
1333		if (dma_submit_error(s->cookie_rx[i]))
1334			goto fail;
1335
1336	}
1337
1338	s->active_rx = s->cookie_rx[0];
1339
1340	dma_async_issue_pending(chan);
1341	return;
1342
1343fail:
1344	if (i)
1345		dmaengine_terminate_all(chan);
1346	for (i = 0; i < 2; i++)
1347		s->cookie_rx[i] = -EINVAL;
1348	s->active_rx = -EINVAL;
1349	sci_rx_dma_release(s, true);
1350}
1351
1352static void work_fn_tx(struct work_struct *work)
1353{
1354	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1355	struct dma_async_tx_descriptor *desc;
1356	struct dma_chan *chan = s->chan_tx;
1357	struct uart_port *port = &s->port;
1358	struct circ_buf *xmit = &port->state->xmit;
1359	dma_addr_t buf;
1360
1361	/*
1362	 * DMA is idle now.
1363	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1364	 * offsets and lengths. Since it is a circular buffer, we have to
1365	 * transmit till the end, and then the rest. Take the port lock to get a
1366	 * consistent xmit buffer state.
1367	 */
1368	spin_lock_irq(&port->lock);
1369	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1370	s->tx_dma_len = min_t(unsigned int,
1371		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1372		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1373	spin_unlock_irq(&port->lock);
1374
1375	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1376					   DMA_MEM_TO_DEV,
1377					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1378	if (!desc) {
1379		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1380		/* switch to PIO */
1381		sci_tx_dma_release(s, true);
1382		return;
1383	}
1384
1385	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1386				   DMA_TO_DEVICE);
1387
1388	spin_lock_irq(&port->lock);
1389	desc->callback = sci_dma_tx_complete;
1390	desc->callback_param = s;
1391	spin_unlock_irq(&port->lock);
1392	s->cookie_tx = dmaengine_submit(desc);
1393	if (dma_submit_error(s->cookie_tx)) {
1394		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1395		/* switch to PIO */
1396		sci_tx_dma_release(s, true);
1397		return;
1398	}
1399
1400	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1401		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1402
1403	dma_async_issue_pending(chan);
1404}
1405
1406static enum hrtimer_restart rx_timer_fn(struct hrtimer *t)
1407{
1408	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1409	struct dma_chan *chan = s->chan_rx;
1410	struct uart_port *port = &s->port;
1411	struct dma_tx_state state;
1412	enum dma_status status;
1413	unsigned long flags;
1414	unsigned int read;
1415	int active, count;
1416	u16 scr;
1417
1418	dev_dbg(port->dev, "DMA Rx timed out\n");
1419
1420	spin_lock_irqsave(&port->lock, flags);
1421
1422	active = sci_dma_rx_find_active(s);
1423	if (active < 0) {
1424		spin_unlock_irqrestore(&port->lock, flags);
1425		return HRTIMER_NORESTART;
1426	}
1427
1428	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1429	if (status == DMA_COMPLETE) {
1430		spin_unlock_irqrestore(&port->lock, flags);
1431		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1432			s->active_rx, active);
1433
1434		/* Let packet complete handler take care of the packet */
1435		return HRTIMER_NORESTART;
1436	}
1437
1438	dmaengine_pause(chan);
1439
1440	/*
1441	 * sometimes DMA transfer doesn't stop even if it is stopped and
1442	 * data keeps on coming until transaction is complete so check
1443	 * for DMA_COMPLETE again
1444	 * Let packet complete handler take care of the packet
1445	 */
1446	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1447	if (status == DMA_COMPLETE) {
1448		spin_unlock_irqrestore(&port->lock, flags);
1449		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1450		return HRTIMER_NORESTART;
1451	}
1452
1453	/* Handle incomplete DMA receive */
1454	dmaengine_terminate_all(s->chan_rx);
1455	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1456
1457	if (read) {
1458		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1459		if (count)
1460			tty_flip_buffer_push(&port->state->port);
1461	}
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1464		sci_submit_rx(s);
1465
1466	/* Direct new serial port interrupts back to CPU */
1467	scr = serial_port_in(port, SCSCR);
1468	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1469		scr &= ~SCSCR_RDRQE;
1470		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1471	}
1472	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1473
1474	spin_unlock_irqrestore(&port->lock, flags);
1475
1476	return HRTIMER_NORESTART;
1477}
1478
1479static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1480					     enum dma_transfer_direction dir)
 
1481{
 
1482	struct dma_chan *chan;
1483	struct dma_slave_config cfg;
1484	int ret;
1485
1486	chan = dma_request_slave_channel(port->dev,
1487					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
 
 
 
 
1488	if (!chan) {
1489		dev_warn(port->dev, "dma_request_slave_channel failed\n");
 
1490		return NULL;
1491	}
1492
1493	memset(&cfg, 0, sizeof(cfg));
1494	cfg.direction = dir;
1495	if (dir == DMA_MEM_TO_DEV) {
1496		cfg.dst_addr = port->mapbase +
1497			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1498		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1499	} else {
1500		cfg.src_addr = port->mapbase +
1501			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1502		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1503	}
1504
1505	ret = dmaengine_slave_config(chan, &cfg);
1506	if (ret) {
1507		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1508		dma_release_channel(chan);
1509		return NULL;
1510	}
1511
1512	return chan;
1513}
1514
1515static void sci_request_dma(struct uart_port *port)
1516{
1517	struct sci_port *s = to_sci_port(port);
1518	struct dma_chan *chan;
1519
1520	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1521
1522	if (!port->dev->of_node)
 
1523		return;
1524
1525	s->cookie_tx = -EINVAL;
1526
1527	/*
1528	 * Don't request a dma channel if no channel was specified
1529	 * in the device tree.
1530	 */
1531	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1532		return;
1533
1534	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1535	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1536	if (chan) {
1537		s->chan_tx = chan;
1538		/* UART circular tx buffer is an aligned page. */
1539		s->tx_dma_addr = dma_map_single(chan->device->dev,
1540						port->state->xmit.buf,
1541						UART_XMIT_SIZE,
1542						DMA_TO_DEVICE);
1543		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1544			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1545			dma_release_channel(chan);
1546			s->chan_tx = NULL;
1547		} else {
1548			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1549				__func__, UART_XMIT_SIZE,
1550				port->state->xmit.buf, &s->tx_dma_addr);
1551		}
1552
1553		INIT_WORK(&s->work_tx, work_fn_tx);
1554	}
1555
1556	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1557	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1558	if (chan) {
1559		unsigned int i;
1560		dma_addr_t dma;
1561		void *buf;
1562
1563		s->chan_rx = chan;
1564
1565		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1566		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1567					 &dma, GFP_KERNEL);
1568		if (!buf) {
1569			dev_warn(port->dev,
1570				 "Failed to allocate Rx dma buffer, using PIO\n");
1571			dma_release_channel(chan);
1572			s->chan_rx = NULL;
1573			return;
1574		}
1575
1576		for (i = 0; i < 2; i++) {
1577			struct scatterlist *sg = &s->sg_rx[i];
1578
1579			sg_init_table(sg, 1);
1580			s->rx_buf[i] = buf;
1581			sg_dma_address(sg) = dma;
1582			sg_dma_len(sg) = s->buf_len_rx;
1583
1584			buf += s->buf_len_rx;
1585			dma += s->buf_len_rx;
1586		}
1587
1588		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1589		s->rx_timer.function = rx_timer_fn;
1590
1591		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1592			sci_submit_rx(s);
1593	}
1594}
1595
1596static void sci_free_dma(struct uart_port *port)
1597{
1598	struct sci_port *s = to_sci_port(port);
1599
1600	if (s->chan_tx)
1601		sci_tx_dma_release(s, false);
1602	if (s->chan_rx)
1603		sci_rx_dma_release(s, false);
1604}
1605
1606static void sci_flush_buffer(struct uart_port *port)
1607{
1608	/*
1609	 * In uart_flush_buffer(), the xmit circular buffer has just been
1610	 * cleared, so we have to reset tx_dma_len accordingly.
1611	 */
1612	to_sci_port(port)->tx_dma_len = 0;
1613}
1614#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1615static inline void sci_request_dma(struct uart_port *port)
1616{
1617}
1618
1619static inline void sci_free_dma(struct uart_port *port)
1620{
1621}
1622
1623#define sci_flush_buffer	NULL
1624#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1625
1626static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1627{
 
1628	struct uart_port *port = ptr;
1629	struct sci_port *s = to_sci_port(port);
1630
1631#ifdef CONFIG_SERIAL_SH_SCI_DMA
1632	if (s->chan_rx) {
1633		u16 scr = serial_port_in(port, SCSCR);
1634		u16 ssr = serial_port_in(port, SCxSR);
1635
1636		/* Disable future Rx interrupts */
1637		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1638			disable_irq_nosync(irq);
1639			scr |= SCSCR_RDRQE;
1640		} else {
1641			scr &= ~SCSCR_RIE;
1642			sci_submit_rx(s);
1643		}
1644		serial_port_out(port, SCSCR, scr);
1645		/* Clear current interrupt */
1646		serial_port_out(port, SCxSR,
1647				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1648		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1649			jiffies, s->rx_timeout);
1650		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1651
1652		return IRQ_HANDLED;
1653	}
1654#endif
1655
1656	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1657		if (!scif_rtrg_enabled(port))
1658			scif_set_rtrg(port, s->rx_trigger);
1659
1660		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1661			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1662	}
1663
1664	/* I think sci_receive_chars has to be called irrespective
1665	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1666	 * to be disabled?
1667	 */
1668	sci_receive_chars(ptr);
1669
1670	return IRQ_HANDLED;
1671}
1672
1673static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1674{
1675	struct uart_port *port = ptr;
1676	unsigned long flags;
1677
1678	spin_lock_irqsave(&port->lock, flags);
1679	sci_transmit_chars(port);
1680	spin_unlock_irqrestore(&port->lock, flags);
1681
1682	return IRQ_HANDLED;
1683}
1684
1685static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1686{
1687	struct uart_port *port = ptr;
1688	struct sci_port *s = to_sci_port(port);
1689
1690	/* Handle errors */
1691	if (port->type == PORT_SCI) {
1692		if (sci_handle_errors(port)) {
1693			/* discard character in rx buffer */
1694			serial_port_in(port, SCxSR);
1695			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1696		}
1697	} else {
1698		sci_handle_fifo_overrun(port);
1699		if (!s->chan_rx)
1700			sci_receive_chars(ptr);
1701	}
1702
1703	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1704
1705	/* Kick the transmission */
1706	if (!s->chan_tx)
1707		sci_tx_interrupt(irq, ptr);
1708
1709	return IRQ_HANDLED;
1710}
1711
1712static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1713{
1714	struct uart_port *port = ptr;
1715
1716	/* Handle BREAKs */
1717	sci_handle_breaks(port);
1718	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1719
1720	return IRQ_HANDLED;
1721}
1722
1723static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1724{
1725	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1726	struct uart_port *port = ptr;
1727	struct sci_port *s = to_sci_port(port);
1728	irqreturn_t ret = IRQ_NONE;
1729
1730	ssr_status = serial_port_in(port, SCxSR);
1731	scr_status = serial_port_in(port, SCSCR);
1732	if (s->params->overrun_reg == SCxSR)
1733		orer_status = ssr_status;
1734	else if (sci_getreg(port, s->params->overrun_reg)->size)
1735		orer_status = serial_port_in(port, s->params->overrun_reg);
 
 
1736
1737	err_enabled = scr_status & port_rx_irq_mask(port);
1738
1739	/* Tx Interrupt */
1740	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1741	    !s->chan_tx)
1742		ret = sci_tx_interrupt(irq, ptr);
1743
1744	/*
1745	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1746	 * DR flags
1747	 */
1748	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1749	    (scr_status & SCSCR_RIE))
1750		ret = sci_rx_interrupt(irq, ptr);
1751
1752	/* Error Interrupt */
1753	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1754		ret = sci_er_interrupt(irq, ptr);
1755
1756	/* Break Interrupt */
1757	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1758		ret = sci_br_interrupt(irq, ptr);
1759
1760	/* Overrun Interrupt */
1761	if (orer_status & s->params->overrun_mask) {
1762		sci_handle_fifo_overrun(port);
1763		ret = IRQ_HANDLED;
1764	}
1765
1766	return ret;
1767}
1768
1769static const struct sci_irq_desc {
1770	const char	*desc;
1771	irq_handler_t	handler;
1772} sci_irq_desc[] = {
1773	/*
1774	 * Split out handlers, the default case.
1775	 */
1776	[SCIx_ERI_IRQ] = {
1777		.desc = "rx err",
1778		.handler = sci_er_interrupt,
1779	},
1780
1781	[SCIx_RXI_IRQ] = {
1782		.desc = "rx full",
1783		.handler = sci_rx_interrupt,
1784	},
1785
1786	[SCIx_TXI_IRQ] = {
1787		.desc = "tx empty",
1788		.handler = sci_tx_interrupt,
1789	},
1790
1791	[SCIx_BRI_IRQ] = {
1792		.desc = "break",
1793		.handler = sci_br_interrupt,
1794	},
1795
1796	/*
1797	 * Special muxed handler.
1798	 */
1799	[SCIx_MUX_IRQ] = {
1800		.desc = "mux",
1801		.handler = sci_mpxed_interrupt,
1802	},
1803};
1804
1805static int sci_request_irq(struct sci_port *port)
1806{
1807	struct uart_port *up = &port->port;
1808	int i, j, ret = 0;
1809
1810	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1811		const struct sci_irq_desc *desc;
1812		int irq;
1813
1814		if (SCIx_IRQ_IS_MUXED(port)) {
1815			i = SCIx_MUX_IRQ;
1816			irq = up->irq;
1817		} else {
1818			irq = port->irqs[i];
1819
1820			/*
1821			 * Certain port types won't support all of the
1822			 * available interrupt sources.
1823			 */
1824			if (unlikely(irq < 0))
1825				continue;
1826		}
1827
1828		desc = sci_irq_desc + i;
1829		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1830					    dev_name(up->dev), desc->desc);
1831		if (!port->irqstr[j]) {
1832			ret = -ENOMEM;
1833			goto out_nomem;
1834		}
1835
1836		ret = request_irq(irq, desc->handler, up->irqflags,
1837				  port->irqstr[j], port);
1838		if (unlikely(ret)) {
1839			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1840			goto out_noirq;
1841		}
1842	}
1843
1844	return 0;
1845
1846out_noirq:
1847	while (--i >= 0)
1848		free_irq(port->irqs[i], port);
1849
1850out_nomem:
1851	while (--j >= 0)
1852		kfree(port->irqstr[j]);
1853
1854	return ret;
1855}
1856
1857static void sci_free_irq(struct sci_port *port)
1858{
1859	int i;
1860
1861	/*
1862	 * Intentionally in reverse order so we iterate over the muxed
1863	 * IRQ first.
1864	 */
1865	for (i = 0; i < SCIx_NR_IRQS; i++) {
1866		int irq = port->irqs[i];
1867
1868		/*
1869		 * Certain port types won't support all of the available
1870		 * interrupt sources.
1871		 */
1872		if (unlikely(irq < 0))
1873			continue;
1874
1875		free_irq(port->irqs[i], port);
1876		kfree(port->irqstr[i]);
1877
1878		if (SCIx_IRQ_IS_MUXED(port)) {
1879			/* If there's only one IRQ, we're done. */
1880			return;
1881		}
1882	}
1883}
1884
1885static unsigned int sci_tx_empty(struct uart_port *port)
1886{
1887	unsigned short status = serial_port_in(port, SCxSR);
1888	unsigned short in_tx_fifo = sci_txfill(port);
1889
1890	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1891}
1892
1893static void sci_set_rts(struct uart_port *port, bool state)
1894{
1895	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1896		u16 data = serial_port_in(port, SCPDR);
1897
1898		/* Active low */
1899		if (state)
1900			data &= ~SCPDR_RTSD;
1901		else
1902			data |= SCPDR_RTSD;
1903		serial_port_out(port, SCPDR, data);
1904
1905		/* RTS# is output */
1906		serial_port_out(port, SCPCR,
1907				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1908	} else if (sci_getreg(port, SCSPTR)->size) {
1909		u16 ctrl = serial_port_in(port, SCSPTR);
1910
1911		/* Active low */
1912		if (state)
1913			ctrl &= ~SCSPTR_RTSDT;
1914		else
1915			ctrl |= SCSPTR_RTSDT;
1916		serial_port_out(port, SCSPTR, ctrl);
1917	}
1918}
1919
1920static bool sci_get_cts(struct uart_port *port)
1921{
1922	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1923		/* Active low */
1924		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1925	} else if (sci_getreg(port, SCSPTR)->size) {
1926		/* Active low */
1927		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1928	}
1929
1930	return true;
1931}
1932
1933/*
1934 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1935 * CTS/RTS is supported in hardware by at least one port and controlled
1936 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1937 * handled via the ->init_pins() op, which is a bit of a one-way street,
1938 * lacking any ability to defer pin control -- this will later be
1939 * converted over to the GPIO framework).
1940 *
1941 * Other modes (such as loopback) are supported generically on certain
1942 * port types, but not others. For these it's sufficient to test for the
1943 * existence of the support register and simply ignore the port type.
1944 */
1945static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1946{
1947	struct sci_port *s = to_sci_port(port);
1948
1949	if (mctrl & TIOCM_LOOP) {
1950		const struct plat_sci_reg *reg;
1951
1952		/*
1953		 * Standard loopback mode for SCFCR ports.
1954		 */
1955		reg = sci_getreg(port, SCFCR);
1956		if (reg->size)
1957			serial_port_out(port, SCFCR,
1958					serial_port_in(port, SCFCR) |
1959					SCFCR_LOOP);
1960	}
1961
1962	mctrl_gpio_set(s->gpios, mctrl);
1963
1964	if (!s->has_rtscts)
1965		return;
1966
1967	if (!(mctrl & TIOCM_RTS)) {
1968		/* Disable Auto RTS */
1969		serial_port_out(port, SCFCR,
1970				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1971
1972		/* Clear RTS */
1973		sci_set_rts(port, 0);
1974	} else if (s->autorts) {
1975		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1976			/* Enable RTS# pin function */
1977			serial_port_out(port, SCPCR,
1978				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1979		}
1980
1981		/* Enable Auto RTS */
1982		serial_port_out(port, SCFCR,
1983				serial_port_in(port, SCFCR) | SCFCR_MCE);
1984	} else {
1985		/* Set RTS */
1986		sci_set_rts(port, 1);
1987	}
1988}
1989
1990static unsigned int sci_get_mctrl(struct uart_port *port)
1991{
1992	struct sci_port *s = to_sci_port(port);
1993	struct mctrl_gpios *gpios = s->gpios;
1994	unsigned int mctrl = 0;
1995
1996	mctrl_gpio_get(gpios, &mctrl);
1997
1998	/*
1999	 * CTS/RTS is handled in hardware when supported, while nothing
2000	 * else is wired up.
2001	 */
2002	if (s->autorts) {
2003		if (sci_get_cts(port))
2004			mctrl |= TIOCM_CTS;
2005	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2006		mctrl |= TIOCM_CTS;
2007	}
2008	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2009		mctrl |= TIOCM_DSR;
2010	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2011		mctrl |= TIOCM_CAR;
2012
2013	return mctrl;
2014}
2015
2016static void sci_enable_ms(struct uart_port *port)
2017{
2018	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2019}
2020
2021static void sci_break_ctl(struct uart_port *port, int break_state)
2022{
2023	unsigned short scscr, scsptr;
2024	unsigned long flags;
2025
2026	/* check wheter the port has SCSPTR */
2027	if (!sci_getreg(port, SCSPTR)->size) {
2028		/*
2029		 * Not supported by hardware. Most parts couple break and rx
2030		 * interrupts together, with break detection always enabled.
2031		 */
2032		return;
2033	}
2034
2035	spin_lock_irqsave(&port->lock, flags);
2036	scsptr = serial_port_in(port, SCSPTR);
2037	scscr = serial_port_in(port, SCSCR);
2038
2039	if (break_state == -1) {
2040		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2041		scscr &= ~SCSCR_TE;
2042	} else {
2043		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2044		scscr |= SCSCR_TE;
2045	}
2046
2047	serial_port_out(port, SCSPTR, scsptr);
2048	serial_port_out(port, SCSCR, scscr);
2049	spin_unlock_irqrestore(&port->lock, flags);
2050}
2051
2052static int sci_startup(struct uart_port *port)
2053{
2054	struct sci_port *s = to_sci_port(port);
2055	int ret;
2056
2057	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2058
2059	sci_request_dma(port);
2060
2061	ret = sci_request_irq(s);
2062	if (unlikely(ret < 0)) {
2063		sci_free_dma(port);
2064		return ret;
2065	}
 
2066
2067	return 0;
2068}
2069
2070static void sci_shutdown(struct uart_port *port)
2071{
2072	struct sci_port *s = to_sci_port(port);
2073	unsigned long flags;
2074	u16 scr;
2075
2076	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2077
2078	s->autorts = false;
2079	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2080
2081	spin_lock_irqsave(&port->lock, flags);
2082	sci_stop_rx(port);
2083	sci_stop_tx(port);
2084	/*
2085	 * Stop RX and TX, disable related interrupts, keep clock source
2086	 * and HSCIF TOT bits
2087	 */
2088	scr = serial_port_in(port, SCSCR);
2089	serial_port_out(port, SCSCR, scr &
2090			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2091	spin_unlock_irqrestore(&port->lock, flags);
2092
2093#ifdef CONFIG_SERIAL_SH_SCI_DMA
2094	if (s->chan_rx) {
2095		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2096			port->line);
2097		hrtimer_cancel(&s->rx_timer);
2098	}
2099#endif
2100
2101	sci_free_irq(s);
2102	sci_free_dma(port);
 
2103}
2104
2105static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2106			unsigned int *srr)
2107{
2108	unsigned long freq = s->clk_rates[SCI_SCK];
2109	int err, min_err = INT_MAX;
2110	unsigned int sr;
2111
2112	if (s->port.type != PORT_HSCIF)
2113		freq *= 2;
2114
2115	for_each_sr(sr, s) {
2116		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2117		if (abs(err) >= abs(min_err))
2118			continue;
2119
2120		min_err = err;
2121		*srr = sr - 1;
2122
2123		if (!err)
2124			break;
2125	}
2126
2127	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2128		*srr + 1);
2129	return min_err;
2130}
2131
2132static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2133			unsigned long freq, unsigned int *dlr,
2134			unsigned int *srr)
2135{
2136	int err, min_err = INT_MAX;
2137	unsigned int sr, dl;
2138
2139	if (s->port.type != PORT_HSCIF)
2140		freq *= 2;
2141
2142	for_each_sr(sr, s) {
2143		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2144		dl = clamp(dl, 1U, 65535U);
2145
2146		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2147		if (abs(err) >= abs(min_err))
2148			continue;
2149
2150		min_err = err;
2151		*dlr = dl;
2152		*srr = sr - 1;
2153
2154		if (!err)
2155			break;
2156	}
2157
2158	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2159		min_err, *dlr, *srr + 1);
2160	return min_err;
2161}
2162
2163/* calculate sample rate, BRR, and clock select */
2164static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2165			  unsigned int *brr, unsigned int *srr,
2166			  unsigned int *cks)
2167{
2168	unsigned long freq = s->clk_rates[SCI_FCK];
2169	unsigned int sr, br, prediv, scrate, c;
2170	int err, min_err = INT_MAX;
2171
2172	if (s->port.type != PORT_HSCIF)
2173		freq *= 2;
2174
2175	/*
2176	 * Find the combination of sample rate and clock select with the
2177	 * smallest deviation from the desired baud rate.
2178	 * Prefer high sample rates to maximise the receive margin.
2179	 *
2180	 * M: Receive margin (%)
2181	 * N: Ratio of bit rate to clock (N = sampling rate)
2182	 * D: Clock duty (D = 0 to 1.0)
2183	 * L: Frame length (L = 9 to 12)
2184	 * F: Absolute value of clock frequency deviation
2185	 *
2186	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2187	 *      (|D - 0.5| / N * (1 + F))|
2188	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2189	 */
2190	for_each_sr(sr, s) {
2191		for (c = 0; c <= 3; c++) {
2192			/* integerized formulas from HSCIF documentation */
2193			prediv = sr * (1 << (2 * c + 1));
2194
2195			/*
2196			 * We need to calculate:
2197			 *
2198			 *     br = freq / (prediv * bps) clamped to [1..256]
2199			 *     err = freq / (br * prediv) - bps
2200			 *
2201			 * Watch out for overflow when calculating the desired
2202			 * sampling clock rate!
2203			 */
2204			if (bps > UINT_MAX / prediv)
2205				break;
2206
2207			scrate = prediv * bps;
2208			br = DIV_ROUND_CLOSEST(freq, scrate);
2209			br = clamp(br, 1U, 256U);
2210
2211			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2212			if (abs(err) >= abs(min_err))
2213				continue;
2214
2215			min_err = err;
2216			*brr = br - 1;
2217			*srr = sr - 1;
2218			*cks = c;
2219
2220			if (!err)
2221				goto found;
2222		}
2223	}
2224
2225found:
2226	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2227		min_err, *brr, *srr + 1, *cks);
2228	return min_err;
2229}
2230
2231static void sci_reset(struct uart_port *port)
2232{
2233	const struct plat_sci_reg *reg;
2234	unsigned int status;
2235	struct sci_port *s = to_sci_port(port);
2236
2237	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
 
 
 
 
2238
2239	reg = sci_getreg(port, SCFCR);
2240	if (reg->size)
2241		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2242
2243	sci_clear_SCxSR(port,
2244			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2245			SCxSR_BREAK_CLEAR(port));
2246	if (sci_getreg(port, SCLSR)->size) {
2247		status = serial_port_in(port, SCLSR);
2248		status &= ~(SCLSR_TO | SCLSR_ORER);
2249		serial_port_out(port, SCLSR, status);
2250	}
2251
2252	if (s->rx_trigger > 1) {
2253		if (s->rx_fifo_timeout) {
2254			scif_set_rtrg(port, 1);
2255			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2256		} else {
2257			if (port->type == PORT_SCIFA ||
2258			    port->type == PORT_SCIFB)
2259				scif_set_rtrg(port, 1);
2260			else
2261				scif_set_rtrg(port, s->rx_trigger);
2262		}
2263	}
2264}
2265
2266static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2267			    struct ktermios *old)
2268{
2269	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2270	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2271	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2272	struct sci_port *s = to_sci_port(port);
2273	const struct plat_sci_reg *reg;
2274	int min_err = INT_MAX, err;
2275	unsigned long max_freq = 0;
2276	int best_clk = -1;
2277	unsigned long flags;
2278
2279	if ((termios->c_cflag & CSIZE) == CS7)
2280		smr_val |= SCSMR_CHR;
2281	if (termios->c_cflag & PARENB)
2282		smr_val |= SCSMR_PE;
2283	if (termios->c_cflag & PARODD)
2284		smr_val |= SCSMR_PE | SCSMR_ODD;
2285	if (termios->c_cflag & CSTOPB)
2286		smr_val |= SCSMR_STOP;
2287
2288	/*
2289	 * earlyprintk comes here early on with port->uartclk set to zero.
2290	 * the clock framework is not up and running at this point so here
2291	 * we assume that 115200 is the maximum baud rate. please note that
2292	 * the baud rate is not programmed during earlyprintk - it is assumed
2293	 * that the previous boot loader has enabled required clocks and
2294	 * setup the baud rate generator hardware for us already.
2295	 */
2296	if (!port->uartclk) {
2297		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2298		goto done;
2299	}
2300
2301	for (i = 0; i < SCI_NUM_CLKS; i++)
2302		max_freq = max(max_freq, s->clk_rates[i]);
2303
2304	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2305	if (!baud)
2306		goto done;
2307
2308	/*
2309	 * There can be multiple sources for the sampling clock.  Find the one
2310	 * that gives us the smallest deviation from the desired baud rate.
2311	 */
2312
2313	/* Optional Undivided External Clock */
2314	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2315	    port->type != PORT_SCIFB) {
2316		err = sci_sck_calc(s, baud, &srr1);
2317		if (abs(err) < abs(min_err)) {
2318			best_clk = SCI_SCK;
2319			scr_val = SCSCR_CKE1;
2320			sccks = SCCKS_CKS;
2321			min_err = err;
2322			srr = srr1;
2323			if (!err)
2324				goto done;
2325		}
2326	}
2327
2328	/* Optional BRG Frequency Divided External Clock */
2329	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2330		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2331				   &srr1);
2332		if (abs(err) < abs(min_err)) {
2333			best_clk = SCI_SCIF_CLK;
2334			scr_val = SCSCR_CKE1;
2335			sccks = 0;
2336			min_err = err;
2337			dl = dl1;
2338			srr = srr1;
2339			if (!err)
2340				goto done;
2341		}
2342	}
2343
2344	/* Optional BRG Frequency Divided Internal Clock */
2345	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2346		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2347				   &srr1);
2348		if (abs(err) < abs(min_err)) {
2349			best_clk = SCI_BRG_INT;
2350			scr_val = SCSCR_CKE1;
2351			sccks = SCCKS_XIN;
2352			min_err = err;
2353			dl = dl1;
2354			srr = srr1;
2355			if (!min_err)
2356				goto done;
2357		}
2358	}
2359
2360	/* Divided Functional Clock using standard Bit Rate Register */
2361	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2362	if (abs(err) < abs(min_err)) {
2363		best_clk = SCI_FCK;
2364		scr_val = 0;
2365		min_err = err;
2366		brr = brr1;
2367		srr = srr1;
2368		cks = cks1;
2369	}
2370
2371done:
2372	if (best_clk >= 0)
2373		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2374			s->clks[best_clk], baud, min_err);
2375
2376	sci_port_enable(s);
2377
2378	/*
2379	 * Program the optional External Baud Rate Generator (BRG) first.
2380	 * It controls the mux to select (H)SCK or frequency divided clock.
2381	 */
2382	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2383		serial_port_out(port, SCDL, dl);
2384		serial_port_out(port, SCCKS, sccks);
2385	}
2386
2387	spin_lock_irqsave(&port->lock, flags);
2388
2389	sci_reset(port);
2390
2391	uart_update_timeout(port, termios->c_cflag, baud);
2392
2393	if (best_clk >= 0) {
2394		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2395			switch (srr + 1) {
2396			case 5:  smr_val |= SCSMR_SRC_5;  break;
2397			case 7:  smr_val |= SCSMR_SRC_7;  break;
2398			case 11: smr_val |= SCSMR_SRC_11; break;
2399			case 13: smr_val |= SCSMR_SRC_13; break;
2400			case 16: smr_val |= SCSMR_SRC_16; break;
2401			case 17: smr_val |= SCSMR_SRC_17; break;
2402			case 19: smr_val |= SCSMR_SRC_19; break;
2403			case 27: smr_val |= SCSMR_SRC_27; break;
2404			}
2405		smr_val |= cks;
2406		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
 
 
 
2407		serial_port_out(port, SCSMR, smr_val);
2408		serial_port_out(port, SCBRR, brr);
2409		if (sci_getreg(port, HSSRR)->size)
2410			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2411
2412		/* Wait one bit interval */
2413		udelay((1000000 + (baud - 1)) / baud);
2414	} else {
2415		/* Don't touch the bit rate configuration */
2416		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2417		smr_val |= serial_port_in(port, SCSMR) &
2418			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2419		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
 
2420		serial_port_out(port, SCSMR, smr_val);
2421	}
2422
2423	sci_init_pins(port, termios->c_cflag);
2424
2425	port->status &= ~UPSTAT_AUTOCTS;
2426	s->autorts = false;
2427	reg = sci_getreg(port, SCFCR);
2428	if (reg->size) {
2429		unsigned short ctrl = serial_port_in(port, SCFCR);
2430
2431		if ((port->flags & UPF_HARD_FLOW) &&
2432		    (termios->c_cflag & CRTSCTS)) {
2433			/* There is no CTS interrupt to restart the hardware */
2434			port->status |= UPSTAT_AUTOCTS;
2435			/* MCE is enabled when RTS is raised */
2436			s->autorts = true;
2437		}
2438
2439		/*
2440		 * As we've done a sci_reset() above, ensure we don't
2441		 * interfere with the FIFOs while toggling MCE. As the
2442		 * reset values could still be set, simply mask them out.
2443		 */
2444		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2445
2446		serial_port_out(port, SCFCR, ctrl);
2447	}
2448	if (port->flags & UPF_HARD_FLOW) {
2449		/* Refresh (Auto) RTS */
2450		sci_set_mctrl(port, port->mctrl);
2451	}
2452
2453	scr_val |= SCSCR_RE | SCSCR_TE |
2454		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2455	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2456	if ((srr + 1 == 5) &&
2457	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2458		/*
2459		 * In asynchronous mode, when the sampling rate is 1/5, first
2460		 * received data may become invalid on some SCIFA and SCIFB.
2461		 * To avoid this problem wait more than 1 serial data time (1
2462		 * bit time x serial data number) after setting SCSCR.RE = 1.
2463		 */
2464		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2465	}
2466
 
2467	/*
2468	 * Calculate delay for 2 DMA buffers (4 FIFO).
2469	 * See serial_core.c::uart_update_timeout().
2470	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2471	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2472	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2473	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2474	 * value obtained by this formula is too small. Therefore, if the value
2475	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2476	 */
2477	/* byte size and parity */
2478	switch (termios->c_cflag & CSIZE) {
2479	case CS5:
2480		bits = 7;
2481		break;
2482	case CS6:
2483		bits = 8;
2484		break;
2485	case CS7:
2486		bits = 9;
2487		break;
2488	default:
2489		bits = 10;
2490		break;
2491	}
2492
2493	if (termios->c_cflag & CSTOPB)
2494		bits++;
2495	if (termios->c_cflag & PARENB)
2496		bits++;
 
 
 
 
 
 
 
 
 
 
 
2497
2498	s->rx_frame = (10000 * bits) / (baud / 100);
2499#ifdef CONFIG_SERIAL_SH_SCI_DMA
2500	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2501	if (s->rx_timeout < 20)
2502		s->rx_timeout = 20;
 
 
 
 
 
 
2503#endif
2504
2505	if ((termios->c_cflag & CREAD) != 0)
2506		sci_start_rx(port);
2507
2508	spin_unlock_irqrestore(&port->lock, flags);
2509
2510	sci_port_disable(s);
2511
2512	if (UART_ENABLE_MS(port, termios->c_cflag))
2513		sci_enable_ms(port);
2514}
2515
2516static void sci_pm(struct uart_port *port, unsigned int state,
2517		   unsigned int oldstate)
2518{
2519	struct sci_port *sci_port = to_sci_port(port);
2520
2521	switch (state) {
2522	case UART_PM_STATE_OFF:
2523		sci_port_disable(sci_port);
2524		break;
2525	default:
2526		sci_port_enable(sci_port);
2527		break;
2528	}
2529}
2530
2531static const char *sci_type(struct uart_port *port)
2532{
2533	switch (port->type) {
2534	case PORT_IRDA:
2535		return "irda";
2536	case PORT_SCI:
2537		return "sci";
2538	case PORT_SCIF:
2539		return "scif";
2540	case PORT_SCIFA:
2541		return "scifa";
2542	case PORT_SCIFB:
2543		return "scifb";
2544	case PORT_HSCIF:
2545		return "hscif";
2546	}
2547
2548	return NULL;
2549}
2550
2551static int sci_remap_port(struct uart_port *port)
2552{
2553	struct sci_port *sport = to_sci_port(port);
2554
2555	/*
2556	 * Nothing to do if there's already an established membase.
2557	 */
2558	if (port->membase)
2559		return 0;
2560
2561	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2562		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2563		if (unlikely(!port->membase)) {
2564			dev_err(port->dev, "can't remap port#%d\n", port->line);
2565			return -ENXIO;
2566		}
2567	} else {
2568		/*
2569		 * For the simple (and majority of) cases where we don't
2570		 * need to do any remapping, just cast the cookie
2571		 * directly.
2572		 */
2573		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2574	}
2575
2576	return 0;
2577}
2578
2579static void sci_release_port(struct uart_port *port)
2580{
2581	struct sci_port *sport = to_sci_port(port);
2582
2583	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2584		iounmap(port->membase);
2585		port->membase = NULL;
2586	}
2587
2588	release_mem_region(port->mapbase, sport->reg_size);
2589}
2590
2591static int sci_request_port(struct uart_port *port)
2592{
2593	struct resource *res;
2594	struct sci_port *sport = to_sci_port(port);
2595	int ret;
2596
2597	res = request_mem_region(port->mapbase, sport->reg_size,
2598				 dev_name(port->dev));
2599	if (unlikely(res == NULL)) {
2600		dev_err(port->dev, "request_mem_region failed.");
2601		return -EBUSY;
2602	}
2603
2604	ret = sci_remap_port(port);
2605	if (unlikely(ret != 0)) {
2606		release_resource(res);
2607		return ret;
2608	}
2609
2610	return 0;
2611}
2612
2613static void sci_config_port(struct uart_port *port, int flags)
2614{
2615	if (flags & UART_CONFIG_TYPE) {
2616		struct sci_port *sport = to_sci_port(port);
2617
2618		port->type = sport->cfg->type;
2619		sci_request_port(port);
2620	}
2621}
2622
2623static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2624{
2625	if (ser->baud_base < 2400)
2626		/* No paper tape reader for Mitch.. */
2627		return -EINVAL;
2628
2629	return 0;
2630}
2631
2632static const struct uart_ops sci_uart_ops = {
2633	.tx_empty	= sci_tx_empty,
2634	.set_mctrl	= sci_set_mctrl,
2635	.get_mctrl	= sci_get_mctrl,
2636	.start_tx	= sci_start_tx,
2637	.stop_tx	= sci_stop_tx,
2638	.stop_rx	= sci_stop_rx,
2639	.enable_ms	= sci_enable_ms,
2640	.break_ctl	= sci_break_ctl,
2641	.startup	= sci_startup,
2642	.shutdown	= sci_shutdown,
2643	.flush_buffer	= sci_flush_buffer,
2644	.set_termios	= sci_set_termios,
2645	.pm		= sci_pm,
2646	.type		= sci_type,
2647	.release_port	= sci_release_port,
2648	.request_port	= sci_request_port,
2649	.config_port	= sci_config_port,
2650	.verify_port	= sci_verify_port,
2651#ifdef CONFIG_CONSOLE_POLL
2652	.poll_get_char	= sci_poll_get_char,
2653	.poll_put_char	= sci_poll_put_char,
2654#endif
2655};
2656
2657static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2658{
2659	const char *clk_names[] = {
2660		[SCI_FCK] = "fck",
2661		[SCI_SCK] = "sck",
2662		[SCI_BRG_INT] = "brg_int",
2663		[SCI_SCIF_CLK] = "scif_clk",
2664	};
2665	struct clk *clk;
2666	unsigned int i;
2667
2668	if (sci_port->cfg->type == PORT_HSCIF)
2669		clk_names[SCI_SCK] = "hsck";
2670
2671	for (i = 0; i < SCI_NUM_CLKS; i++) {
2672		clk = devm_clk_get(dev, clk_names[i]);
2673		if (PTR_ERR(clk) == -EPROBE_DEFER)
2674			return -EPROBE_DEFER;
2675
2676		if (IS_ERR(clk) && i == SCI_FCK) {
2677			/*
2678			 * "fck" used to be called "sci_ick", and we need to
2679			 * maintain DT backward compatibility.
2680			 */
2681			clk = devm_clk_get(dev, "sci_ick");
2682			if (PTR_ERR(clk) == -EPROBE_DEFER)
2683				return -EPROBE_DEFER;
2684
2685			if (!IS_ERR(clk))
2686				goto found;
2687
2688			/*
2689			 * Not all SH platforms declare a clock lookup entry
2690			 * for SCI devices, in which case we need to get the
2691			 * global "peripheral_clk" clock.
2692			 */
2693			clk = devm_clk_get(dev, "peripheral_clk");
2694			if (!IS_ERR(clk))
2695				goto found;
2696
2697			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2698				PTR_ERR(clk));
2699			return PTR_ERR(clk);
2700		}
2701
2702found:
2703		if (IS_ERR(clk))
2704			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2705				PTR_ERR(clk));
2706		else
2707			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2708				clk, clk);
2709		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2710	}
2711	return 0;
2712}
2713
2714static const struct sci_port_params *
2715sci_probe_regmap(const struct plat_sci_port *cfg)
2716{
2717	unsigned int regtype;
2718
2719	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2720		return &sci_port_params[cfg->regtype];
2721
2722	switch (cfg->type) {
2723	case PORT_SCI:
2724		regtype = SCIx_SCI_REGTYPE;
2725		break;
2726	case PORT_IRDA:
2727		regtype = SCIx_IRDA_REGTYPE;
2728		break;
2729	case PORT_SCIFA:
2730		regtype = SCIx_SCIFA_REGTYPE;
2731		break;
2732	case PORT_SCIFB:
2733		regtype = SCIx_SCIFB_REGTYPE;
2734		break;
2735	case PORT_SCIF:
2736		/*
2737		 * The SH-4 is a bit of a misnomer here, although that's
2738		 * where this particular port layout originated. This
2739		 * configuration (or some slight variation thereof)
2740		 * remains the dominant model for all SCIFs.
2741		 */
2742		regtype = SCIx_SH4_SCIF_REGTYPE;
2743		break;
2744	case PORT_HSCIF:
2745		regtype = SCIx_HSCIF_REGTYPE;
2746		break;
2747	default:
2748		pr_err("Can't probe register map for given port\n");
2749		return NULL;
2750	}
2751
2752	return &sci_port_params[regtype];
2753}
2754
2755static int sci_init_single(struct platform_device *dev,
2756			   struct sci_port *sci_port, unsigned int index,
2757			   const struct plat_sci_port *p, bool early)
2758{
2759	struct uart_port *port = &sci_port->port;
2760	const struct resource *res;
2761	unsigned int i;
2762	int ret;
2763
2764	sci_port->cfg	= p;
2765
2766	port->ops	= &sci_uart_ops;
2767	port->iotype	= UPIO_MEM;
2768	port->line	= index;
2769
2770	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2771	if (res == NULL)
2772		return -ENOMEM;
2773
2774	port->mapbase = res->start;
2775	sci_port->reg_size = resource_size(res);
2776
2777	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2778		sci_port->irqs[i] = platform_get_irq(dev, i);
2779
2780	/* The SCI generates several interrupts. They can be muxed together or
2781	 * connected to different interrupt lines. In the muxed case only one
2782	 * interrupt resource is specified. In the non-muxed case three or four
2783	 * interrupt resources are specified, as the BRI interrupt is optional.
2784	 */
2785	if (sci_port->irqs[0] < 0)
2786		return -ENXIO;
2787
2788	if (sci_port->irqs[1] < 0) {
2789		sci_port->irqs[1] = sci_port->irqs[0];
2790		sci_port->irqs[2] = sci_port->irqs[0];
2791		sci_port->irqs[3] = sci_port->irqs[0];
2792	}
2793
2794	sci_port->params = sci_probe_regmap(p);
2795	if (unlikely(sci_port->params == NULL))
2796		return -EINVAL;
 
 
2797
2798	switch (p->type) {
2799	case PORT_SCIFB:
2800		sci_port->rx_trigger = 48;
 
 
 
2801		break;
2802	case PORT_HSCIF:
2803		sci_port->rx_trigger = 64;
 
 
 
2804		break;
2805	case PORT_SCIFA:
2806		sci_port->rx_trigger = 32;
 
 
 
2807		break;
2808	case PORT_SCIF:
2809		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2810			/* RX triggering not implemented for this IP */
2811			sci_port->rx_trigger = 1;
2812		else
2813			sci_port->rx_trigger = 8;
 
 
 
 
 
2814		break;
2815	default:
2816		sci_port->rx_trigger = 1;
 
 
 
2817		break;
2818	}
2819
2820	sci_port->rx_fifo_timeout = 0;
2821	sci_port->hscif_tot = 0;
2822
2823	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2824	 * match the SoC datasheet, this should be investigated. Let platform
2825	 * data override the sampling rate for now.
2826	 */
2827	sci_port->sampling_rate_mask = p->sampling_rate
2828				     ? SCI_SR(p->sampling_rate)
2829				     : sci_port->params->sampling_rate_mask;
2830
2831	if (!early) {
2832		ret = sci_init_clocks(sci_port, &dev->dev);
2833		if (ret < 0)
2834			return ret;
2835
2836		port->dev = &dev->dev;
2837
2838		pm_runtime_enable(&dev->dev);
2839	}
2840
2841	port->type		= p->type;
2842	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2843	port->fifosize		= sci_port->params->fifosize;
2844
2845	if (port->type == PORT_SCI) {
2846		if (sci_port->reg_size >= 0x20)
2847			port->regshift = 2;
2848		else
2849			port->regshift = 1;
 
 
 
 
2850	}
2851
2852	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2853	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2854	 * for the multi-IRQ ports, which is where we are primarily
2855	 * concerned with the shutdown path synchronization.
2856	 *
2857	 * For the muxed case there's nothing more to do.
2858	 */
2859	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2860	port->irqflags		= 0;
2861
2862	port->serial_in		= sci_serial_in;
2863	port->serial_out	= sci_serial_out;
2864
 
 
 
 
2865	return 0;
2866}
2867
2868static void sci_cleanup_single(struct sci_port *port)
2869{
2870	pm_runtime_disable(port->port.dev);
2871}
2872
2873#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2874    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2875static void serial_console_putchar(struct uart_port *port, int ch)
2876{
2877	sci_poll_put_char(port, ch);
2878}
2879
2880/*
2881 *	Print a string to the serial port trying not to disturb
2882 *	any possible real use of the port...
2883 */
2884static void serial_console_write(struct console *co, const char *s,
2885				 unsigned count)
2886{
2887	struct sci_port *sci_port = &sci_ports[co->index];
2888	struct uart_port *port = &sci_port->port;
2889	unsigned short bits, ctrl, ctrl_temp;
2890	unsigned long flags;
2891	int locked = 1;
2892
2893	local_irq_save(flags);
2894#if defined(SUPPORT_SYSRQ)
2895	if (port->sysrq)
2896		locked = 0;
2897	else
2898#endif
2899	if (oops_in_progress)
2900		locked = spin_trylock(&port->lock);
2901	else
2902		spin_lock(&port->lock);
2903
2904	/* first save SCSCR then disable interrupts, keep clock source */
2905	ctrl = serial_port_in(port, SCSCR);
2906	ctrl_temp = SCSCR_RE | SCSCR_TE |
2907		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2908		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2909	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2910
2911	uart_console_write(port, s, count, serial_console_putchar);
2912
2913	/* wait until fifo is empty and last bit has been transmitted */
2914	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2915	while ((serial_port_in(port, SCxSR) & bits) != bits)
2916		cpu_relax();
2917
2918	/* restore the SCSCR */
2919	serial_port_out(port, SCSCR, ctrl);
2920
2921	if (locked)
2922		spin_unlock(&port->lock);
2923	local_irq_restore(flags);
2924}
2925
2926static int serial_console_setup(struct console *co, char *options)
2927{
2928	struct sci_port *sci_port;
2929	struct uart_port *port;
2930	int baud = 115200;
2931	int bits = 8;
2932	int parity = 'n';
2933	int flow = 'n';
2934	int ret;
2935
2936	/*
2937	 * Refuse to handle any bogus ports.
2938	 */
2939	if (co->index < 0 || co->index >= SCI_NPORTS)
2940		return -ENODEV;
2941
2942	sci_port = &sci_ports[co->index];
2943	port = &sci_port->port;
2944
2945	/*
2946	 * Refuse to handle uninitialized ports.
2947	 */
2948	if (!port->ops)
2949		return -ENODEV;
2950
2951	ret = sci_remap_port(port);
2952	if (unlikely(ret != 0))
2953		return ret;
2954
2955	if (options)
2956		uart_parse_options(options, &baud, &parity, &bits, &flow);
2957
2958	return uart_set_options(port, co, baud, parity, bits, flow);
2959}
2960
2961static struct console serial_console = {
2962	.name		= "ttySC",
2963	.device		= uart_console_device,
2964	.write		= serial_console_write,
2965	.setup		= serial_console_setup,
2966	.flags		= CON_PRINTBUFFER,
2967	.index		= -1,
2968	.data		= &sci_uart_driver,
2969};
2970
2971static struct console early_serial_console = {
2972	.name           = "early_ttySC",
2973	.write          = serial_console_write,
2974	.flags          = CON_PRINTBUFFER,
2975	.index		= -1,
2976};
2977
2978static char early_serial_buf[32];
2979
2980static int sci_probe_earlyprintk(struct platform_device *pdev)
2981{
2982	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2983
2984	if (early_serial_console.data)
2985		return -EEXIST;
2986
2987	early_serial_console.index = pdev->id;
2988
2989	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2990
2991	serial_console_setup(&early_serial_console, early_serial_buf);
2992
2993	if (!strstr(early_serial_buf, "keep"))
2994		early_serial_console.flags |= CON_BOOT;
2995
2996	register_console(&early_serial_console);
2997	return 0;
2998}
2999
3000#define SCI_CONSOLE	(&serial_console)
3001
3002#else
3003static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3004{
3005	return -EINVAL;
3006}
3007
3008#define SCI_CONSOLE	NULL
3009
3010#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3011
3012static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3013
3014static DEFINE_MUTEX(sci_uart_registration_lock);
3015static struct uart_driver sci_uart_driver = {
3016	.owner		= THIS_MODULE,
3017	.driver_name	= "sci",
3018	.dev_name	= "ttySC",
3019	.major		= SCI_MAJOR,
3020	.minor		= SCI_MINOR_START,
3021	.nr		= SCI_NPORTS,
3022	.cons		= SCI_CONSOLE,
3023};
3024
3025static int sci_remove(struct platform_device *dev)
3026{
3027	struct sci_port *port = platform_get_drvdata(dev);
3028
3029	uart_remove_one_port(&sci_uart_driver, &port->port);
3030
3031	sci_cleanup_single(port);
3032
3033	if (port->port.fifosize > 1) {
3034		sysfs_remove_file(&dev->dev.kobj,
3035				  &dev_attr_rx_fifo_trigger.attr);
3036	}
3037	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3038	    port->port.type == PORT_HSCIF) {
3039		sysfs_remove_file(&dev->dev.kobj,
3040				  &dev_attr_rx_fifo_timeout.attr);
3041	}
3042
3043	return 0;
3044}
3045
3046
3047#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3048#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3049#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3050
3051static const struct of_device_id of_sci_match[] = {
3052	/* SoC-specific types */
3053	{
3054		.compatible = "renesas,scif-r7s72100",
3055		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3056	},
3057	/* Family-specific types */
3058	{
3059		.compatible = "renesas,rcar-gen1-scif",
3060		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3061	}, {
3062		.compatible = "renesas,rcar-gen2-scif",
3063		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3064	}, {
3065		.compatible = "renesas,rcar-gen3-scif",
3066		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3067	},
3068	/* Generic types */
3069	{
3070		.compatible = "renesas,scif",
3071		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3072	}, {
3073		.compatible = "renesas,scifa",
3074		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3075	}, {
3076		.compatible = "renesas,scifb",
3077		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3078	}, {
3079		.compatible = "renesas,hscif",
3080		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3081	}, {
3082		.compatible = "renesas,sci",
3083		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3084	}, {
3085		/* Terminator */
3086	},
3087};
3088MODULE_DEVICE_TABLE(of, of_sci_match);
3089
3090static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3091					  unsigned int *dev_id)
3092{
3093	struct device_node *np = pdev->dev.of_node;
 
3094	struct plat_sci_port *p;
3095	struct sci_port *sp;
3096	const void *data;
3097	int id;
3098
3099	if (!IS_ENABLED(CONFIG_OF) || !np)
3100		return NULL;
3101
3102	data = of_device_get_match_data(&pdev->dev);
 
 
3103
3104	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3105	if (!p)
3106		return NULL;
3107
3108	/* Get the line number from the aliases node. */
3109	id = of_alias_get_id(np, "serial");
3110	if (id < 0) {
3111		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3112		return NULL;
3113	}
3114	if (id >= ARRAY_SIZE(sci_ports)) {
3115		dev_err(&pdev->dev, "serial%d out of range\n", id);
3116		return NULL;
3117	}
3118
3119	sp = &sci_ports[id];
3120	*dev_id = id;
3121
3122	p->type = SCI_OF_TYPE(data);
3123	p->regtype = SCI_OF_REGTYPE(data);
 
 
3124
3125	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
 
3126
3127	return p;
3128}
3129
3130static int sci_probe_single(struct platform_device *dev,
3131				      unsigned int index,
3132				      struct plat_sci_port *p,
3133				      struct sci_port *sciport)
3134{
3135	int ret;
3136
3137	/* Sanity check */
3138	if (unlikely(index >= SCI_NPORTS)) {
3139		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3140			   index+1, SCI_NPORTS);
3141		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3142		return -EINVAL;
3143	}
3144
3145	mutex_lock(&sci_uart_registration_lock);
3146	if (!sci_uart_driver.state) {
3147		ret = uart_register_driver(&sci_uart_driver);
3148		if (ret) {
3149			mutex_unlock(&sci_uart_registration_lock);
3150			return ret;
3151		}
3152	}
3153	mutex_unlock(&sci_uart_registration_lock);
3154
3155	ret = sci_init_single(dev, sciport, index, p, false);
3156	if (ret)
3157		return ret;
3158
3159	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3160	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3161		return PTR_ERR(sciport->gpios);
3162
3163	if (sciport->has_rtscts) {
3164		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3165							UART_GPIO_CTS)) ||
3166		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3167							UART_GPIO_RTS))) {
3168			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3169			return -EINVAL;
3170		}
3171		sciport->port.flags |= UPF_HARD_FLOW;
3172	}
3173
3174	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3175	if (ret) {
3176		sci_cleanup_single(sciport);
3177		return ret;
3178	}
3179
3180	return 0;
3181}
3182
3183static int sci_probe(struct platform_device *dev)
3184{
3185	struct plat_sci_port *p;
3186	struct sci_port *sp;
3187	unsigned int dev_id;
3188	int ret;
3189
3190	/*
3191	 * If we've come here via earlyprintk initialization, head off to
3192	 * the special early probe. We don't have sufficient device state
3193	 * to make it beyond this yet.
3194	 */
3195	if (is_early_platform_device(dev))
3196		return sci_probe_earlyprintk(dev);
3197
3198	if (dev->dev.of_node) {
3199		p = sci_parse_dt(dev, &dev_id);
3200		if (p == NULL)
3201			return -EINVAL;
3202	} else {
3203		p = dev->dev.platform_data;
3204		if (p == NULL) {
3205			dev_err(&dev->dev, "no platform data supplied\n");
3206			return -EINVAL;
3207		}
3208
3209		dev_id = dev->id;
3210	}
3211
3212	sp = &sci_ports[dev_id];
3213	platform_set_drvdata(dev, sp);
3214
3215	ret = sci_probe_single(dev, dev_id, p, sp);
3216	if (ret)
3217		return ret;
3218
3219	if (sp->port.fifosize > 1) {
3220		ret = sysfs_create_file(&dev->dev.kobj,
3221				&dev_attr_rx_fifo_trigger.attr);
3222		if (ret)
3223			return ret;
3224	}
3225	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3226	    sp->port.type == PORT_HSCIF) {
3227		ret = sysfs_create_file(&dev->dev.kobj,
3228				&dev_attr_rx_fifo_timeout.attr);
3229		if (ret) {
3230			if (sp->port.fifosize > 1) {
3231				sysfs_remove_file(&dev->dev.kobj,
3232					&dev_attr_rx_fifo_trigger.attr);
3233			}
3234			return ret;
3235		}
3236	}
3237
3238#ifdef CONFIG_SH_STANDARD_BIOS
3239	sh_bios_gdb_detach();
3240#endif
3241
3242	return 0;
3243}
3244
3245static __maybe_unused int sci_suspend(struct device *dev)
3246{
3247	struct sci_port *sport = dev_get_drvdata(dev);
3248
3249	if (sport)
3250		uart_suspend_port(&sci_uart_driver, &sport->port);
3251
3252	return 0;
3253}
3254
3255static __maybe_unused int sci_resume(struct device *dev)
3256{
3257	struct sci_port *sport = dev_get_drvdata(dev);
3258
3259	if (sport)
3260		uart_resume_port(&sci_uart_driver, &sport->port);
3261
3262	return 0;
3263}
3264
3265static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3266
3267static struct platform_driver sci_driver = {
3268	.probe		= sci_probe,
3269	.remove		= sci_remove,
3270	.driver		= {
3271		.name	= "sh-sci",
3272		.pm	= &sci_dev_pm_ops,
3273		.of_match_table = of_match_ptr(of_sci_match),
3274	},
3275};
3276
3277static int __init sci_init(void)
3278{
 
 
3279	pr_info("%s\n", banner);
3280
3281	return platform_driver_register(&sci_driver);
 
 
 
 
 
 
 
3282}
3283
3284static void __exit sci_exit(void)
3285{
3286	platform_driver_unregister(&sci_driver);
3287
3288	if (sci_uart_driver.state)
3289		uart_unregister_driver(&sci_uart_driver);
3290}
3291
3292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3293early_platform_init_buffer("earlyprintk", &sci_driver,
3294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3295#endif
3296#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3297static struct plat_sci_port port_cfg __initdata;
3298
3299static int __init early_console_setup(struct earlycon_device *device,
3300				      int type)
3301{
3302	if (!device->port.membase)
3303		return -ENODEV;
3304
3305	device->port.serial_in = sci_serial_in;
3306	device->port.serial_out	= sci_serial_out;
3307	device->port.type = type;
3308	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3309	port_cfg.type = type;
3310	sci_ports[0].cfg = &port_cfg;
3311	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3312	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3313	sci_serial_out(&sci_ports[0].port, SCSCR,
3314		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
 
3315
3316	device->con->write = serial_console_write;
3317	return 0;
3318}
3319static int __init sci_early_console_setup(struct earlycon_device *device,
3320					  const char *opt)
3321{
3322	return early_console_setup(device, PORT_SCI);
3323}
3324static int __init scif_early_console_setup(struct earlycon_device *device,
3325					  const char *opt)
3326{
3327	return early_console_setup(device, PORT_SCIF);
3328}
3329static int __init scifa_early_console_setup(struct earlycon_device *device,
3330					  const char *opt)
3331{
3332	return early_console_setup(device, PORT_SCIFA);
3333}
3334static int __init scifb_early_console_setup(struct earlycon_device *device,
3335					  const char *opt)
3336{
3337	return early_console_setup(device, PORT_SCIFB);
3338}
3339static int __init hscif_early_console_setup(struct earlycon_device *device,
3340					  const char *opt)
3341{
3342	return early_console_setup(device, PORT_HSCIF);
3343}
3344
3345OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3346OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3347OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3348OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3349OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3350#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3351
3352module_init(sci_init);
3353module_exit(sci_exit);
3354
3355MODULE_LICENSE("GPL");
3356MODULE_ALIAS("platform:sh-sci");
3357MODULE_AUTHOR("Paul Mundt");
3358MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
v4.10.11
 
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
   5 *  Copyright (C) 2015 Glider bvba
   6 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   7 *
   8 * based off of the old drivers/char/sh-sci.c by:
   9 *
  10 *   Copyright (C) 1999, 2000  Niibe Yutaka
  11 *   Copyright (C) 2000  Sugioka Toshinobu
  12 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  13 *   Modified to support SecureEdge. David McCullough (2002)
  14 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  15 *   Removed SH7300 support (Jul 2007).
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 */
  21#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  22#define SUPPORT_SYSRQ
  23#endif
  24
  25#undef DEBUG
  26
  27#include <linux/clk.h>
  28#include <linux/console.h>
  29#include <linux/ctype.h>
  30#include <linux/cpufreq.h>
  31#include <linux/delay.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/err.h>
  35#include <linux/errno.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/ioport.h>
 
  39#include <linux/major.h>
  40#include <linux/module.h>
  41#include <linux/mm.h>
  42#include <linux/of.h>
 
  43#include <linux/platform_device.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/scatterlist.h>
  46#include <linux/serial.h>
  47#include <linux/serial_sci.h>
  48#include <linux/sh_dma.h>
  49#include <linux/slab.h>
  50#include <linux/string.h>
  51#include <linux/sysrq.h>
  52#include <linux/timer.h>
  53#include <linux/tty.h>
  54#include <linux/tty_flip.h>
  55
  56#ifdef CONFIG_SUPERH
  57#include <asm/sh_bios.h>
  58#endif
  59
  60#include "serial_mctrl_gpio.h"
  61#include "sh-sci.h"
  62
  63/* Offsets into the sci_port->irqs array */
  64enum {
  65	SCIx_ERI_IRQ,
  66	SCIx_RXI_IRQ,
  67	SCIx_TXI_IRQ,
  68	SCIx_BRI_IRQ,
  69	SCIx_NR_IRQS,
  70
  71	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  72};
  73
  74#define SCIx_IRQ_IS_MUXED(port)			\
  75	((port)->irqs[SCIx_ERI_IRQ] ==	\
  76	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  77	((port)->irqs[SCIx_ERI_IRQ] &&	\
  78	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  79
  80enum SCI_CLKS {
  81	SCI_FCK,		/* Functional Clock */
  82	SCI_SCK,		/* Optional External Clock */
  83	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  84	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  85	SCI_NUM_CLKS
  86};
  87
  88/* Bit x set means sampling rate x + 1 is supported */
  89#define SCI_SR(x)		BIT((x) - 1)
  90#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  91
  92#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  93				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  94				SCI_SR(19) | SCI_SR(27)
  95
  96#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  97#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  98
  99/* Iterate over all supported sampling rates, from high to low */
 100#define for_each_sr(_sr, _port)						\
 101	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 102		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104struct sci_port {
 105	struct uart_port	port;
 106
 107	/* Platform configuration */
 108	struct plat_sci_port	*cfg;
 109	unsigned int		overrun_reg;
 110	unsigned int		overrun_mask;
 111	unsigned int		error_mask;
 112	unsigned int		error_clear;
 113	unsigned int		sampling_rate_mask;
 114	resource_size_t		reg_size;
 115	struct mctrl_gpios	*gpios;
 116
 117	/* Break timer */
 118	struct timer_list	break_timer;
 119	int			break_flag;
 120
 121	/* Clocks */
 122	struct clk		*clks[SCI_NUM_CLKS];
 123	unsigned long		clk_rates[SCI_NUM_CLKS];
 124
 125	int			irqs[SCIx_NR_IRQS];
 126	char			*irqstr[SCIx_NR_IRQS];
 127
 128	struct dma_chan			*chan_tx;
 129	struct dma_chan			*chan_rx;
 130
 131#ifdef CONFIG_SERIAL_SH_SCI_DMA
 132	dma_cookie_t			cookie_tx;
 133	dma_cookie_t			cookie_rx[2];
 134	dma_cookie_t			active_rx;
 135	dma_addr_t			tx_dma_addr;
 136	unsigned int			tx_dma_len;
 137	struct scatterlist		sg_rx[2];
 138	void				*rx_buf[2];
 139	size_t				buf_len_rx;
 140	struct work_struct		work_tx;
 141	struct timer_list		rx_timer;
 142	unsigned int			rx_timeout;
 143#endif
 
 
 
 
 
 144
 
 145	bool autorts;
 146};
 147
 148#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 149
 150static struct sci_port sci_ports[SCI_NPORTS];
 151static struct uart_driver sci_uart_driver;
 152
 153static inline struct sci_port *
 154to_sci_port(struct uart_port *uart)
 155{
 156	return container_of(uart, struct sci_port, port);
 157}
 158
 159struct plat_sci_reg {
 160	u8 offset, size;
 161};
 162
 163/* Helper for invalidating specific entries of an inherited map. */
 164#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 165
 166static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 167	[SCIx_PROBE_REGTYPE] = {
 168		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 169	},
 170
 171	/*
 172	 * Common SCI definitions, dependent on the port's regshift
 173	 * value.
 174	 */
 175	[SCIx_SCI_REGTYPE] = {
 176		[SCSMR]		= { 0x00,  8 },
 177		[SCBRR]		= { 0x01,  8 },
 178		[SCSCR]		= { 0x02,  8 },
 179		[SCxTDR]	= { 0x03,  8 },
 180		[SCxSR]		= { 0x04,  8 },
 181		[SCxRDR]	= { 0x05,  8 },
 182		[SCFCR]		= sci_reg_invalid,
 183		[SCFDR]		= sci_reg_invalid,
 184		[SCTFDR]	= sci_reg_invalid,
 185		[SCRFDR]	= sci_reg_invalid,
 186		[SCSPTR]	= sci_reg_invalid,
 187		[SCLSR]		= sci_reg_invalid,
 188		[HSSRR]		= sci_reg_invalid,
 189		[SCPCR]		= sci_reg_invalid,
 190		[SCPDR]		= sci_reg_invalid,
 191		[SCDL]		= sci_reg_invalid,
 192		[SCCKS]		= sci_reg_invalid,
 193	},
 194
 195	/*
 196	 * Common definitions for legacy IrDA ports, dependent on
 197	 * regshift value.
 198	 */
 199	[SCIx_IRDA_REGTYPE] = {
 200		[SCSMR]		= { 0x00,  8 },
 201		[SCBRR]		= { 0x01,  8 },
 202		[SCSCR]		= { 0x02,  8 },
 203		[SCxTDR]	= { 0x03,  8 },
 204		[SCxSR]		= { 0x04,  8 },
 205		[SCxRDR]	= { 0x05,  8 },
 206		[SCFCR]		= { 0x06,  8 },
 207		[SCFDR]		= { 0x07, 16 },
 208		[SCTFDR]	= sci_reg_invalid,
 209		[SCRFDR]	= sci_reg_invalid,
 210		[SCSPTR]	= sci_reg_invalid,
 211		[SCLSR]		= sci_reg_invalid,
 212		[HSSRR]		= sci_reg_invalid,
 213		[SCPCR]		= sci_reg_invalid,
 214		[SCPDR]		= sci_reg_invalid,
 215		[SCDL]		= sci_reg_invalid,
 216		[SCCKS]		= sci_reg_invalid,
 217	},
 218
 219	/*
 220	 * Common SCIFA definitions.
 221	 */
 222	[SCIx_SCIFA_REGTYPE] = {
 223		[SCSMR]		= { 0x00, 16 },
 224		[SCBRR]		= { 0x04,  8 },
 225		[SCSCR]		= { 0x08, 16 },
 226		[SCxTDR]	= { 0x20,  8 },
 227		[SCxSR]		= { 0x14, 16 },
 228		[SCxRDR]	= { 0x24,  8 },
 229		[SCFCR]		= { 0x18, 16 },
 230		[SCFDR]		= { 0x1c, 16 },
 231		[SCTFDR]	= sci_reg_invalid,
 232		[SCRFDR]	= sci_reg_invalid,
 233		[SCSPTR]	= sci_reg_invalid,
 234		[SCLSR]		= sci_reg_invalid,
 235		[HSSRR]		= sci_reg_invalid,
 236		[SCPCR]		= { 0x30, 16 },
 237		[SCPDR]		= { 0x34, 16 },
 238		[SCDL]		= sci_reg_invalid,
 239		[SCCKS]		= sci_reg_invalid,
 
 240	},
 241
 242	/*
 243	 * Common SCIFB definitions.
 244	 */
 245	[SCIx_SCIFB_REGTYPE] = {
 246		[SCSMR]		= { 0x00, 16 },
 247		[SCBRR]		= { 0x04,  8 },
 248		[SCSCR]		= { 0x08, 16 },
 249		[SCxTDR]	= { 0x40,  8 },
 250		[SCxSR]		= { 0x14, 16 },
 251		[SCxRDR]	= { 0x60,  8 },
 252		[SCFCR]		= { 0x18, 16 },
 253		[SCFDR]		= sci_reg_invalid,
 254		[SCTFDR]	= { 0x38, 16 },
 255		[SCRFDR]	= { 0x3c, 16 },
 256		[SCSPTR]	= sci_reg_invalid,
 257		[SCLSR]		= sci_reg_invalid,
 258		[HSSRR]		= sci_reg_invalid,
 259		[SCPCR]		= { 0x30, 16 },
 260		[SCPDR]		= { 0x34, 16 },
 261		[SCDL]		= sci_reg_invalid,
 262		[SCCKS]		= sci_reg_invalid,
 
 
 263	},
 264
 265	/*
 266	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 267	 * count registers.
 268	 */
 269	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 270		[SCSMR]		= { 0x00, 16 },
 271		[SCBRR]		= { 0x04,  8 },
 272		[SCSCR]		= { 0x08, 16 },
 273		[SCxTDR]	= { 0x0c,  8 },
 274		[SCxSR]		= { 0x10, 16 },
 275		[SCxRDR]	= { 0x14,  8 },
 276		[SCFCR]		= { 0x18, 16 },
 277		[SCFDR]		= { 0x1c, 16 },
 278		[SCTFDR]	= sci_reg_invalid,
 279		[SCRFDR]	= sci_reg_invalid,
 280		[SCSPTR]	= { 0x20, 16 },
 281		[SCLSR]		= { 0x24, 16 },
 282		[HSSRR]		= sci_reg_invalid,
 283		[SCPCR]		= sci_reg_invalid,
 284		[SCPDR]		= sci_reg_invalid,
 285		[SCDL]		= sci_reg_invalid,
 286		[SCCKS]		= sci_reg_invalid,
 
 287	},
 288
 289	/*
 290	 * Common SH-3 SCIF definitions.
 291	 */
 292	[SCIx_SH3_SCIF_REGTYPE] = {
 293		[SCSMR]		= { 0x00,  8 },
 294		[SCBRR]		= { 0x02,  8 },
 295		[SCSCR]		= { 0x04,  8 },
 296		[SCxTDR]	= { 0x06,  8 },
 297		[SCxSR]		= { 0x08, 16 },
 298		[SCxRDR]	= { 0x0a,  8 },
 299		[SCFCR]		= { 0x0c,  8 },
 300		[SCFDR]		= { 0x0e, 16 },
 301		[SCTFDR]	= sci_reg_invalid,
 302		[SCRFDR]	= sci_reg_invalid,
 303		[SCSPTR]	= sci_reg_invalid,
 304		[SCLSR]		= sci_reg_invalid,
 305		[HSSRR]		= sci_reg_invalid,
 306		[SCPCR]		= sci_reg_invalid,
 307		[SCPDR]		= sci_reg_invalid,
 308		[SCDL]		= sci_reg_invalid,
 309		[SCCKS]		= sci_reg_invalid,
 310	},
 311
 312	/*
 313	 * Common SH-4(A) SCIF(B) definitions.
 314	 */
 315	[SCIx_SH4_SCIF_REGTYPE] = {
 316		[SCSMR]		= { 0x00, 16 },
 317		[SCBRR]		= { 0x04,  8 },
 318		[SCSCR]		= { 0x08, 16 },
 319		[SCxTDR]	= { 0x0c,  8 },
 320		[SCxSR]		= { 0x10, 16 },
 321		[SCxRDR]	= { 0x14,  8 },
 322		[SCFCR]		= { 0x18, 16 },
 323		[SCFDR]		= { 0x1c, 16 },
 324		[SCTFDR]	= sci_reg_invalid,
 325		[SCRFDR]	= sci_reg_invalid,
 326		[SCSPTR]	= { 0x20, 16 },
 327		[SCLSR]		= { 0x24, 16 },
 328		[HSSRR]		= sci_reg_invalid,
 329		[SCPCR]		= sci_reg_invalid,
 330		[SCPDR]		= sci_reg_invalid,
 331		[SCDL]		= sci_reg_invalid,
 332		[SCCKS]		= sci_reg_invalid,
 
 333	},
 334
 335	/*
 336	 * Common SCIF definitions for ports with a Baud Rate Generator for
 337	 * External Clock (BRG).
 338	 */
 339	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 340		[SCSMR]		= { 0x00, 16 },
 341		[SCBRR]		= { 0x04,  8 },
 342		[SCSCR]		= { 0x08, 16 },
 343		[SCxTDR]	= { 0x0c,  8 },
 344		[SCxSR]		= { 0x10, 16 },
 345		[SCxRDR]	= { 0x14,  8 },
 346		[SCFCR]		= { 0x18, 16 },
 347		[SCFDR]		= { 0x1c, 16 },
 348		[SCTFDR]	= sci_reg_invalid,
 349		[SCRFDR]	= sci_reg_invalid,
 350		[SCSPTR]	= { 0x20, 16 },
 351		[SCLSR]		= { 0x24, 16 },
 352		[HSSRR]		= sci_reg_invalid,
 353		[SCPCR]		= sci_reg_invalid,
 354		[SCPDR]		= sci_reg_invalid,
 355		[SCDL]		= { 0x30, 16 },
 356		[SCCKS]		= { 0x34, 16 },
 
 
 
 357	},
 358
 359	/*
 360	 * Common HSCIF definitions.
 361	 */
 362	[SCIx_HSCIF_REGTYPE] = {
 363		[SCSMR]		= { 0x00, 16 },
 364		[SCBRR]		= { 0x04,  8 },
 365		[SCSCR]		= { 0x08, 16 },
 366		[SCxTDR]	= { 0x0c,  8 },
 367		[SCxSR]		= { 0x10, 16 },
 368		[SCxRDR]	= { 0x14,  8 },
 369		[SCFCR]		= { 0x18, 16 },
 370		[SCFDR]		= { 0x1c, 16 },
 371		[SCTFDR]	= sci_reg_invalid,
 372		[SCRFDR]	= sci_reg_invalid,
 373		[SCSPTR]	= { 0x20, 16 },
 374		[SCLSR]		= { 0x24, 16 },
 375		[HSSRR]		= { 0x40, 16 },
 376		[SCPCR]		= sci_reg_invalid,
 377		[SCPDR]		= sci_reg_invalid,
 378		[SCDL]		= { 0x30, 16 },
 379		[SCCKS]		= { 0x34, 16 },
 
 
 
 
 
 
 380	},
 381
 382	/*
 383	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 384	 * register.
 385	 */
 386	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 387		[SCSMR]		= { 0x00, 16 },
 388		[SCBRR]		= { 0x04,  8 },
 389		[SCSCR]		= { 0x08, 16 },
 390		[SCxTDR]	= { 0x0c,  8 },
 391		[SCxSR]		= { 0x10, 16 },
 392		[SCxRDR]	= { 0x14,  8 },
 393		[SCFCR]		= { 0x18, 16 },
 394		[SCFDR]		= { 0x1c, 16 },
 395		[SCTFDR]	= sci_reg_invalid,
 396		[SCRFDR]	= sci_reg_invalid,
 397		[SCSPTR]	= sci_reg_invalid,
 398		[SCLSR]		= { 0x24, 16 },
 399		[HSSRR]		= sci_reg_invalid,
 400		[SCPCR]		= sci_reg_invalid,
 401		[SCPDR]		= sci_reg_invalid,
 402		[SCDL]		= sci_reg_invalid,
 403		[SCCKS]		= sci_reg_invalid,
 404	},
 405
 406	/*
 407	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 408	 * count registers.
 409	 */
 410	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 411		[SCSMR]		= { 0x00, 16 },
 412		[SCBRR]		= { 0x04,  8 },
 413		[SCSCR]		= { 0x08, 16 },
 414		[SCxTDR]	= { 0x0c,  8 },
 415		[SCxSR]		= { 0x10, 16 },
 416		[SCxRDR]	= { 0x14,  8 },
 417		[SCFCR]		= { 0x18, 16 },
 418		[SCFDR]		= { 0x1c, 16 },
 419		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 420		[SCRFDR]	= { 0x20, 16 },
 421		[SCSPTR]	= { 0x24, 16 },
 422		[SCLSR]		= { 0x28, 16 },
 423		[HSSRR]		= sci_reg_invalid,
 424		[SCPCR]		= sci_reg_invalid,
 425		[SCPDR]		= sci_reg_invalid,
 426		[SCDL]		= sci_reg_invalid,
 427		[SCCKS]		= sci_reg_invalid,
 
 
 
 428	},
 429
 430	/*
 431	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 432	 * registers.
 433	 */
 434	[SCIx_SH7705_SCIF_REGTYPE] = {
 435		[SCSMR]		= { 0x00, 16 },
 436		[SCBRR]		= { 0x04,  8 },
 437		[SCSCR]		= { 0x08, 16 },
 438		[SCxTDR]	= { 0x20,  8 },
 439		[SCxSR]		= { 0x14, 16 },
 440		[SCxRDR]	= { 0x24,  8 },
 441		[SCFCR]		= { 0x18, 16 },
 442		[SCFDR]		= { 0x1c, 16 },
 443		[SCTFDR]	= sci_reg_invalid,
 444		[SCRFDR]	= sci_reg_invalid,
 445		[SCSPTR]	= sci_reg_invalid,
 446		[SCLSR]		= sci_reg_invalid,
 447		[HSSRR]		= sci_reg_invalid,
 448		[SCPCR]		= sci_reg_invalid,
 449		[SCPDR]		= sci_reg_invalid,
 450		[SCDL]		= sci_reg_invalid,
 451		[SCCKS]		= sci_reg_invalid,
 452	},
 453};
 454
 455#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 456
 457/*
 458 * The "offset" here is rather misleading, in that it refers to an enum
 459 * value relative to the port mapping rather than the fixed offset
 460 * itself, which needs to be manually retrieved from the platform's
 461 * register map for the given port.
 462 */
 463static unsigned int sci_serial_in(struct uart_port *p, int offset)
 464{
 465	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 466
 467	if (reg->size == 8)
 468		return ioread8(p->membase + (reg->offset << p->regshift));
 469	else if (reg->size == 16)
 470		return ioread16(p->membase + (reg->offset << p->regshift));
 471	else
 472		WARN(1, "Invalid register access\n");
 473
 474	return 0;
 475}
 476
 477static void sci_serial_out(struct uart_port *p, int offset, int value)
 478{
 479	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 480
 481	if (reg->size == 8)
 482		iowrite8(value, p->membase + (reg->offset << p->regshift));
 483	else if (reg->size == 16)
 484		iowrite16(value, p->membase + (reg->offset << p->regshift));
 485	else
 486		WARN(1, "Invalid register access\n");
 487}
 488
 489static int sci_probe_regmap(struct plat_sci_port *cfg)
 490{
 491	switch (cfg->type) {
 492	case PORT_SCI:
 493		cfg->regtype = SCIx_SCI_REGTYPE;
 494		break;
 495	case PORT_IRDA:
 496		cfg->regtype = SCIx_IRDA_REGTYPE;
 497		break;
 498	case PORT_SCIFA:
 499		cfg->regtype = SCIx_SCIFA_REGTYPE;
 500		break;
 501	case PORT_SCIFB:
 502		cfg->regtype = SCIx_SCIFB_REGTYPE;
 503		break;
 504	case PORT_SCIF:
 505		/*
 506		 * The SH-4 is a bit of a misnomer here, although that's
 507		 * where this particular port layout originated. This
 508		 * configuration (or some slight variation thereof)
 509		 * remains the dominant model for all SCIFs.
 510		 */
 511		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 512		break;
 513	case PORT_HSCIF:
 514		cfg->regtype = SCIx_HSCIF_REGTYPE;
 515		break;
 516	default:
 517		pr_err("Can't probe register map for given port\n");
 518		return -EINVAL;
 519	}
 520
 521	return 0;
 522}
 523
 524static void sci_port_enable(struct sci_port *sci_port)
 525{
 526	unsigned int i;
 527
 528	if (!sci_port->port.dev)
 529		return;
 530
 531	pm_runtime_get_sync(sci_port->port.dev);
 532
 533	for (i = 0; i < SCI_NUM_CLKS; i++) {
 534		clk_prepare_enable(sci_port->clks[i]);
 535		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 536	}
 537	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 538}
 539
 540static void sci_port_disable(struct sci_port *sci_port)
 541{
 542	unsigned int i;
 543
 544	if (!sci_port->port.dev)
 545		return;
 546
 547	/* Cancel the break timer to ensure that the timer handler will not try
 548	 * to access the hardware with clocks and power disabled. Reset the
 549	 * break flag to make the break debouncing state machine ready for the
 550	 * next break.
 551	 */
 552	del_timer_sync(&sci_port->break_timer);
 553	sci_port->break_flag = 0;
 554
 555	for (i = SCI_NUM_CLKS; i-- > 0; )
 556		clk_disable_unprepare(sci_port->clks[i]);
 557
 558	pm_runtime_put_sync(sci_port->port.dev);
 559}
 560
 561static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 562{
 563	/*
 564	 * Not all ports (such as SCIFA) will support REIE. Rather than
 565	 * special-casing the port type, we check the port initialization
 566	 * IRQ enable mask to see whether the IRQ is desired at all. If
 567	 * it's unset, it's logically inferred that there's no point in
 568	 * testing for it.
 569	 */
 570	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 571}
 572
 573static void sci_start_tx(struct uart_port *port)
 574{
 575	struct sci_port *s = to_sci_port(port);
 576	unsigned short ctrl;
 577
 578#ifdef CONFIG_SERIAL_SH_SCI_DMA
 579	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 580		u16 new, scr = serial_port_in(port, SCSCR);
 581		if (s->chan_tx)
 582			new = scr | SCSCR_TDRQE;
 583		else
 584			new = scr & ~SCSCR_TDRQE;
 585		if (new != scr)
 586			serial_port_out(port, SCSCR, new);
 587	}
 588
 589	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 590	    dma_submit_error(s->cookie_tx)) {
 591		s->cookie_tx = 0;
 592		schedule_work(&s->work_tx);
 593	}
 594#endif
 595
 596	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 597		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 598		ctrl = serial_port_in(port, SCSCR);
 599		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 600	}
 601}
 602
 603static void sci_stop_tx(struct uart_port *port)
 604{
 605	unsigned short ctrl;
 606
 607	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 608	ctrl = serial_port_in(port, SCSCR);
 609
 610	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 611		ctrl &= ~SCSCR_TDRQE;
 612
 613	ctrl &= ~SCSCR_TIE;
 614
 615	serial_port_out(port, SCSCR, ctrl);
 616}
 617
 618static void sci_start_rx(struct uart_port *port)
 619{
 620	unsigned short ctrl;
 621
 622	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 623
 624	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 625		ctrl &= ~SCSCR_RDRQE;
 626
 627	serial_port_out(port, SCSCR, ctrl);
 628}
 629
 630static void sci_stop_rx(struct uart_port *port)
 631{
 632	unsigned short ctrl;
 633
 634	ctrl = serial_port_in(port, SCSCR);
 635
 636	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 637		ctrl &= ~SCSCR_RDRQE;
 638
 639	ctrl &= ~port_rx_irq_mask(port);
 640
 641	serial_port_out(port, SCSCR, ctrl);
 642}
 643
 644static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 645{
 646	if (port->type == PORT_SCI) {
 647		/* Just store the mask */
 648		serial_port_out(port, SCxSR, mask);
 649	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
 650		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 651		/* Only clear the status bits we want to clear */
 652		serial_port_out(port, SCxSR,
 653				serial_port_in(port, SCxSR) & mask);
 654	} else {
 655		/* Store the mask, clear parity/framing errors */
 656		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 657	}
 658}
 659
 660#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 661    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 662
 663#ifdef CONFIG_CONSOLE_POLL
 664static int sci_poll_get_char(struct uart_port *port)
 665{
 666	unsigned short status;
 667	int c;
 668
 669	do {
 670		status = serial_port_in(port, SCxSR);
 671		if (status & SCxSR_ERRORS(port)) {
 672			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 673			continue;
 674		}
 675		break;
 676	} while (1);
 677
 678	if (!(status & SCxSR_RDxF(port)))
 679		return NO_POLL_CHAR;
 680
 681	c = serial_port_in(port, SCxRDR);
 682
 683	/* Dummy read */
 684	serial_port_in(port, SCxSR);
 685	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 686
 687	return c;
 688}
 689#endif
 690
 691static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 692{
 693	unsigned short status;
 694
 695	do {
 696		status = serial_port_in(port, SCxSR);
 697	} while (!(status & SCxSR_TDxE(port)));
 698
 699	serial_port_out(port, SCxTDR, c);
 700	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 701}
 702#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 703	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 704
 705static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 706{
 707	struct sci_port *s = to_sci_port(port);
 708
 709	/*
 710	 * Use port-specific handler if provided.
 711	 */
 712	if (s->cfg->ops && s->cfg->ops->init_pins) {
 713		s->cfg->ops->init_pins(port, cflag);
 714		return;
 715	}
 716
 717	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 
 718		u16 ctrl = serial_port_in(port, SCPCR);
 719
 720		/* Enable RXD and TXD pin functions */
 721		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 722		if (to_sci_port(port)->cfg->capabilities & SCIx_HAVE_RTSCTS) {
 723			/* RTS# is output, driven 1 */
 724			ctrl |= SCPCR_RTSC;
 725			serial_port_out(port, SCPDR,
 726				serial_port_in(port, SCPDR) | SCPDR_RTSD);
 
 
 
 
 
 
 
 727			/* Enable CTS# pin function */
 728			ctrl &= ~SCPCR_CTSC;
 729		}
 
 730		serial_port_out(port, SCPCR, ctrl);
 731	} else if (sci_getreg(port, SCSPTR)->size) {
 732		u16 status = serial_port_in(port, SCSPTR);
 733
 734		/* RTS# is output, driven 1 */
 735		status |= SCSPTR_RTSIO | SCSPTR_RTSDT;
 
 
 
 
 736		/* CTS# and SCK are inputs */
 737		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 738		serial_port_out(port, SCSPTR, status);
 739	}
 740}
 741
 742static int sci_txfill(struct uart_port *port)
 743{
 
 
 744	const struct plat_sci_reg *reg;
 745
 746	reg = sci_getreg(port, SCTFDR);
 747	if (reg->size)
 748		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
 749
 750	reg = sci_getreg(port, SCFDR);
 751	if (reg->size)
 752		return serial_port_in(port, SCFDR) >> 8;
 753
 754	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 755}
 756
 757static int sci_txroom(struct uart_port *port)
 758{
 759	return port->fifosize - sci_txfill(port);
 760}
 761
 762static int sci_rxfill(struct uart_port *port)
 763{
 
 
 764	const struct plat_sci_reg *reg;
 765
 766	reg = sci_getreg(port, SCRFDR);
 767	if (reg->size)
 768		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
 769
 770	reg = sci_getreg(port, SCFDR);
 771	if (reg->size)
 772		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 773
 774	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 775}
 776
 777/*
 778 * SCI helper for checking the state of the muxed port/RXD pins.
 779 */
 780static inline int sci_rxd_in(struct uart_port *port)
 781{
 782	struct sci_port *s = to_sci_port(port);
 783
 784	if (s->cfg->port_reg <= 0)
 785		return 1;
 786
 787	/* Cast for ARM damage */
 788	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
 789}
 790
 791/* ********************************************************************** *
 792 *                   the interrupt related routines                       *
 793 * ********************************************************************** */
 794
 795static void sci_transmit_chars(struct uart_port *port)
 796{
 797	struct circ_buf *xmit = &port->state->xmit;
 798	unsigned int stopped = uart_tx_stopped(port);
 799	unsigned short status;
 800	unsigned short ctrl;
 801	int count;
 802
 803	status = serial_port_in(port, SCxSR);
 804	if (!(status & SCxSR_TDxE(port))) {
 805		ctrl = serial_port_in(port, SCSCR);
 806		if (uart_circ_empty(xmit))
 807			ctrl &= ~SCSCR_TIE;
 808		else
 809			ctrl |= SCSCR_TIE;
 810		serial_port_out(port, SCSCR, ctrl);
 811		return;
 812	}
 813
 814	count = sci_txroom(port);
 815
 816	do {
 817		unsigned char c;
 818
 819		if (port->x_char) {
 820			c = port->x_char;
 821			port->x_char = 0;
 822		} else if (!uart_circ_empty(xmit) && !stopped) {
 823			c = xmit->buf[xmit->tail];
 824			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 825		} else {
 826			break;
 827		}
 828
 829		serial_port_out(port, SCxTDR, c);
 830
 831		port->icount.tx++;
 832	} while (--count > 0);
 833
 834	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 835
 836	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 837		uart_write_wakeup(port);
 838	if (uart_circ_empty(xmit)) {
 839		sci_stop_tx(port);
 840	} else {
 841		ctrl = serial_port_in(port, SCSCR);
 842
 843		if (port->type != PORT_SCI) {
 844			serial_port_in(port, SCxSR); /* Dummy read */
 845			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 846		}
 847
 848		ctrl |= SCSCR_TIE;
 849		serial_port_out(port, SCSCR, ctrl);
 850	}
 851}
 852
 853/* On SH3, SCIF may read end-of-break as a space->mark char */
 854#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 855
 856static void sci_receive_chars(struct uart_port *port)
 857{
 858	struct sci_port *sci_port = to_sci_port(port);
 859	struct tty_port *tport = &port->state->port;
 860	int i, count, copied = 0;
 861	unsigned short status;
 862	unsigned char flag;
 863
 864	status = serial_port_in(port, SCxSR);
 865	if (!(status & SCxSR_RDxF(port)))
 866		return;
 867
 868	while (1) {
 869		/* Don't copy more bytes than there is room for in the buffer */
 870		count = tty_buffer_request_room(tport, sci_rxfill(port));
 871
 872		/* If for any reason we can't copy more data, we're done! */
 873		if (count == 0)
 874			break;
 875
 876		if (port->type == PORT_SCI) {
 877			char c = serial_port_in(port, SCxRDR);
 878			if (uart_handle_sysrq_char(port, c) ||
 879			    sci_port->break_flag)
 880				count = 0;
 881			else
 882				tty_insert_flip_char(tport, c, TTY_NORMAL);
 883		} else {
 884			for (i = 0; i < count; i++) {
 885				char c = serial_port_in(port, SCxRDR);
 886
 887				status = serial_port_in(port, SCxSR);
 888#if defined(CONFIG_CPU_SH3)
 889				/* Skip "chars" during break */
 890				if (sci_port->break_flag) {
 891					if ((c == 0) &&
 892					    (status & SCxSR_FER(port))) {
 893						count--; i--;
 894						continue;
 895					}
 896
 897					/* Nonzero => end-of-break */
 898					dev_dbg(port->dev, "debounce<%02x>\n", c);
 899					sci_port->break_flag = 0;
 900
 901					if (STEPFN(c)) {
 902						count--; i--;
 903						continue;
 904					}
 905				}
 906#endif /* CONFIG_CPU_SH3 */
 907				if (uart_handle_sysrq_char(port, c)) {
 908					count--; i--;
 909					continue;
 910				}
 911
 912				/* Store data and status */
 913				if (status & SCxSR_FER(port)) {
 914					flag = TTY_FRAME;
 915					port->icount.frame++;
 916					dev_notice(port->dev, "frame error\n");
 917				} else if (status & SCxSR_PER(port)) {
 918					flag = TTY_PARITY;
 919					port->icount.parity++;
 920					dev_notice(port->dev, "parity error\n");
 921				} else
 922					flag = TTY_NORMAL;
 923
 924				tty_insert_flip_char(tport, c, flag);
 925			}
 926		}
 927
 928		serial_port_in(port, SCxSR); /* dummy read */
 929		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 930
 931		copied += count;
 932		port->icount.rx += count;
 933	}
 934
 935	if (copied) {
 936		/* Tell the rest of the system the news. New characters! */
 937		tty_flip_buffer_push(tport);
 938	} else {
 
 
 939		serial_port_in(port, SCxSR); /* dummy read */
 940		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 941	}
 942}
 943
 944#define SCI_BREAK_JIFFIES (HZ/20)
 945
 946/*
 947 * The sci generates interrupts during the break,
 948 * 1 per millisecond or so during the break period, for 9600 baud.
 949 * So dont bother disabling interrupts.
 950 * But dont want more than 1 break event.
 951 * Use a kernel timer to periodically poll the rx line until
 952 * the break is finished.
 953 */
 954static inline void sci_schedule_break_timer(struct sci_port *port)
 955{
 956	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 957}
 958
 959/* Ensure that two consecutive samples find the break over. */
 960static void sci_break_timer(unsigned long data)
 961{
 962	struct sci_port *port = (struct sci_port *)data;
 963
 964	if (sci_rxd_in(&port->port) == 0) {
 965		port->break_flag = 1;
 966		sci_schedule_break_timer(port);
 967	} else if (port->break_flag == 1) {
 968		/* break is over. */
 969		port->break_flag = 2;
 970		sci_schedule_break_timer(port);
 971	} else
 972		port->break_flag = 0;
 973}
 974
 975static int sci_handle_errors(struct uart_port *port)
 976{
 977	int copied = 0;
 978	unsigned short status = serial_port_in(port, SCxSR);
 979	struct tty_port *tport = &port->state->port;
 980	struct sci_port *s = to_sci_port(port);
 981
 982	/* Handle overruns */
 983	if (status & s->overrun_mask) {
 984		port->icount.overrun++;
 985
 986		/* overrun error */
 987		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 988			copied++;
 989
 990		dev_notice(port->dev, "overrun error\n");
 991	}
 992
 993	if (status & SCxSR_FER(port)) {
 994		if (sci_rxd_in(port) == 0) {
 995			/* Notify of BREAK */
 996			struct sci_port *sci_port = to_sci_port(port);
 997
 998			if (!sci_port->break_flag) {
 999				port->icount.brk++;
1000
1001				sci_port->break_flag = 1;
1002				sci_schedule_break_timer(sci_port);
1003
1004				/* Do sysrq handling. */
1005				if (uart_handle_break(port))
1006					return 0;
1007
1008				dev_dbg(port->dev, "BREAK detected\n");
1009
1010				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1011					copied++;
1012			}
1013
1014		} else {
1015			/* frame error */
1016			port->icount.frame++;
1017
1018			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1019				copied++;
1020
1021			dev_notice(port->dev, "frame error\n");
1022		}
1023	}
1024
1025	if (status & SCxSR_PER(port)) {
1026		/* parity error */
1027		port->icount.parity++;
1028
1029		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1030			copied++;
1031
1032		dev_notice(port->dev, "parity error\n");
1033	}
1034
1035	if (copied)
1036		tty_flip_buffer_push(tport);
1037
1038	return copied;
1039}
1040
1041static int sci_handle_fifo_overrun(struct uart_port *port)
1042{
1043	struct tty_port *tport = &port->state->port;
1044	struct sci_port *s = to_sci_port(port);
1045	const struct plat_sci_reg *reg;
1046	int copied = 0;
1047	u16 status;
1048
1049	reg = sci_getreg(port, s->overrun_reg);
1050	if (!reg->size)
1051		return 0;
1052
1053	status = serial_port_in(port, s->overrun_reg);
1054	if (status & s->overrun_mask) {
1055		status &= ~s->overrun_mask;
1056		serial_port_out(port, s->overrun_reg, status);
1057
1058		port->icount.overrun++;
1059
1060		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1061		tty_flip_buffer_push(tport);
1062
1063		dev_dbg(port->dev, "overrun error\n");
1064		copied++;
1065	}
1066
1067	return copied;
1068}
1069
1070static int sci_handle_breaks(struct uart_port *port)
1071{
1072	int copied = 0;
1073	unsigned short status = serial_port_in(port, SCxSR);
1074	struct tty_port *tport = &port->state->port;
1075	struct sci_port *s = to_sci_port(port);
1076
1077	if (uart_handle_break(port))
1078		return 0;
1079
1080	if (!s->break_flag && status & SCxSR_BRK(port)) {
1081#if defined(CONFIG_CPU_SH3)
1082		/* Debounce break */
1083		s->break_flag = 1;
1084#endif
1085
1086		port->icount.brk++;
1087
1088		/* Notify of BREAK */
1089		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1090			copied++;
1091
1092		dev_dbg(port->dev, "BREAK detected\n");
1093	}
1094
1095	if (copied)
1096		tty_flip_buffer_push(tport);
1097
1098	copied += sci_handle_fifo_overrun(port);
1099
1100	return copied;
1101}
1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103#ifdef CONFIG_SERIAL_SH_SCI_DMA
1104static void sci_dma_tx_complete(void *arg)
1105{
1106	struct sci_port *s = arg;
1107	struct uart_port *port = &s->port;
1108	struct circ_buf *xmit = &port->state->xmit;
1109	unsigned long flags;
1110
1111	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1112
1113	spin_lock_irqsave(&port->lock, flags);
1114
1115	xmit->tail += s->tx_dma_len;
1116	xmit->tail &= UART_XMIT_SIZE - 1;
1117
1118	port->icount.tx += s->tx_dma_len;
1119
1120	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1121		uart_write_wakeup(port);
1122
1123	if (!uart_circ_empty(xmit)) {
1124		s->cookie_tx = 0;
1125		schedule_work(&s->work_tx);
1126	} else {
1127		s->cookie_tx = -EINVAL;
1128		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1129			u16 ctrl = serial_port_in(port, SCSCR);
1130			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1131		}
1132	}
1133
1134	spin_unlock_irqrestore(&port->lock, flags);
1135}
1136
1137/* Locking: called with port lock held */
1138static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1139{
1140	struct uart_port *port = &s->port;
1141	struct tty_port *tport = &port->state->port;
1142	int copied;
1143
1144	copied = tty_insert_flip_string(tport, buf, count);
1145	if (copied < count)
1146		port->icount.buf_overrun++;
1147
1148	port->icount.rx += copied;
1149
1150	return copied;
1151}
1152
1153static int sci_dma_rx_find_active(struct sci_port *s)
1154{
1155	unsigned int i;
1156
1157	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1158		if (s->active_rx == s->cookie_rx[i])
1159			return i;
1160
1161	return -1;
1162}
1163
1164static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1165{
1166	struct dma_chan *chan = s->chan_rx;
1167	struct uart_port *port = &s->port;
1168	unsigned long flags;
1169
1170	spin_lock_irqsave(&port->lock, flags);
1171	s->chan_rx = NULL;
1172	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1173	spin_unlock_irqrestore(&port->lock, flags);
1174	dmaengine_terminate_all(chan);
1175	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1176			  sg_dma_address(&s->sg_rx[0]));
1177	dma_release_channel(chan);
1178	if (enable_pio)
 
1179		sci_start_rx(port);
 
 
 
 
 
 
 
 
 
 
 
1180}
1181
1182static void sci_dma_rx_complete(void *arg)
1183{
1184	struct sci_port *s = arg;
1185	struct dma_chan *chan = s->chan_rx;
1186	struct uart_port *port = &s->port;
1187	struct dma_async_tx_descriptor *desc;
1188	unsigned long flags;
1189	int active, count = 0;
1190
1191	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1192		s->active_rx);
1193
1194	spin_lock_irqsave(&port->lock, flags);
1195
1196	active = sci_dma_rx_find_active(s);
1197	if (active >= 0)
1198		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1199
1200	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1201
1202	if (count)
1203		tty_flip_buffer_push(&port->state->port);
1204
1205	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1206				       DMA_DEV_TO_MEM,
1207				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1208	if (!desc)
1209		goto fail;
1210
1211	desc->callback = sci_dma_rx_complete;
1212	desc->callback_param = s;
1213	s->cookie_rx[active] = dmaengine_submit(desc);
1214	if (dma_submit_error(s->cookie_rx[active]))
1215		goto fail;
1216
1217	s->active_rx = s->cookie_rx[!active];
1218
1219	dma_async_issue_pending(chan);
1220
1221	spin_unlock_irqrestore(&port->lock, flags);
1222	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1223		__func__, s->cookie_rx[active], active, s->active_rx);
1224	return;
1225
1226fail:
1227	spin_unlock_irqrestore(&port->lock, flags);
1228	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1229	sci_rx_dma_release(s, true);
1230}
1231
1232static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1233{
1234	struct dma_chan *chan = s->chan_tx;
1235	struct uart_port *port = &s->port;
1236	unsigned long flags;
1237
1238	spin_lock_irqsave(&port->lock, flags);
1239	s->chan_tx = NULL;
1240	s->cookie_tx = -EINVAL;
1241	spin_unlock_irqrestore(&port->lock, flags);
1242	dmaengine_terminate_all(chan);
1243	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1244			 DMA_TO_DEVICE);
1245	dma_release_channel(chan);
1246	if (enable_pio)
 
1247		sci_start_tx(port);
 
 
1248}
1249
1250static void sci_submit_rx(struct sci_port *s)
1251{
1252	struct dma_chan *chan = s->chan_rx;
1253	int i;
1254
1255	for (i = 0; i < 2; i++) {
1256		struct scatterlist *sg = &s->sg_rx[i];
1257		struct dma_async_tx_descriptor *desc;
1258
1259		desc = dmaengine_prep_slave_sg(chan,
1260			sg, 1, DMA_DEV_TO_MEM,
1261			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1262		if (!desc)
1263			goto fail;
1264
1265		desc->callback = sci_dma_rx_complete;
1266		desc->callback_param = s;
1267		s->cookie_rx[i] = dmaengine_submit(desc);
1268		if (dma_submit_error(s->cookie_rx[i]))
1269			goto fail;
1270
1271	}
1272
1273	s->active_rx = s->cookie_rx[0];
1274
1275	dma_async_issue_pending(chan);
1276	return;
1277
1278fail:
1279	if (i)
1280		dmaengine_terminate_all(chan);
1281	for (i = 0; i < 2; i++)
1282		s->cookie_rx[i] = -EINVAL;
1283	s->active_rx = -EINVAL;
1284	sci_rx_dma_release(s, true);
1285}
1286
1287static void work_fn_tx(struct work_struct *work)
1288{
1289	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1290	struct dma_async_tx_descriptor *desc;
1291	struct dma_chan *chan = s->chan_tx;
1292	struct uart_port *port = &s->port;
1293	struct circ_buf *xmit = &port->state->xmit;
1294	dma_addr_t buf;
1295
1296	/*
1297	 * DMA is idle now.
1298	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1299	 * offsets and lengths. Since it is a circular buffer, we have to
1300	 * transmit till the end, and then the rest. Take the port lock to get a
1301	 * consistent xmit buffer state.
1302	 */
1303	spin_lock_irq(&port->lock);
1304	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1305	s->tx_dma_len = min_t(unsigned int,
1306		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1307		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1308	spin_unlock_irq(&port->lock);
1309
1310	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1311					   DMA_MEM_TO_DEV,
1312					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1313	if (!desc) {
1314		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1315		/* switch to PIO */
1316		sci_tx_dma_release(s, true);
1317		return;
1318	}
1319
1320	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1321				   DMA_TO_DEVICE);
1322
1323	spin_lock_irq(&port->lock);
1324	desc->callback = sci_dma_tx_complete;
1325	desc->callback_param = s;
1326	spin_unlock_irq(&port->lock);
1327	s->cookie_tx = dmaengine_submit(desc);
1328	if (dma_submit_error(s->cookie_tx)) {
1329		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1330		/* switch to PIO */
1331		sci_tx_dma_release(s, true);
1332		return;
1333	}
1334
1335	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1336		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1337
1338	dma_async_issue_pending(chan);
1339}
1340
1341static void rx_timer_fn(unsigned long arg)
1342{
1343	struct sci_port *s = (struct sci_port *)arg;
1344	struct dma_chan *chan = s->chan_rx;
1345	struct uart_port *port = &s->port;
1346	struct dma_tx_state state;
1347	enum dma_status status;
1348	unsigned long flags;
1349	unsigned int read;
1350	int active, count;
1351	u16 scr;
1352
1353	dev_dbg(port->dev, "DMA Rx timed out\n");
1354
1355	spin_lock_irqsave(&port->lock, flags);
1356
1357	active = sci_dma_rx_find_active(s);
1358	if (active < 0) {
1359		spin_unlock_irqrestore(&port->lock, flags);
1360		return;
1361	}
1362
1363	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1364	if (status == DMA_COMPLETE) {
1365		spin_unlock_irqrestore(&port->lock, flags);
1366		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1367			s->active_rx, active);
1368
1369		/* Let packet complete handler take care of the packet */
1370		return;
1371	}
1372
1373	dmaengine_pause(chan);
1374
1375	/*
1376	 * sometimes DMA transfer doesn't stop even if it is stopped and
1377	 * data keeps on coming until transaction is complete so check
1378	 * for DMA_COMPLETE again
1379	 * Let packet complete handler take care of the packet
1380	 */
1381	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1382	if (status == DMA_COMPLETE) {
1383		spin_unlock_irqrestore(&port->lock, flags);
1384		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1385		return;
1386	}
1387
1388	/* Handle incomplete DMA receive */
1389	dmaengine_terminate_all(s->chan_rx);
1390	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1391
1392	if (read) {
1393		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1394		if (count)
1395			tty_flip_buffer_push(&port->state->port);
1396	}
1397
1398	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1399		sci_submit_rx(s);
1400
1401	/* Direct new serial port interrupts back to CPU */
1402	scr = serial_port_in(port, SCSCR);
1403	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1404		scr &= ~SCSCR_RDRQE;
1405		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1406	}
1407	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1408
1409	spin_unlock_irqrestore(&port->lock, flags);
 
 
1410}
1411
1412static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1413					     enum dma_transfer_direction dir,
1414					     unsigned int id)
1415{
1416	dma_cap_mask_t mask;
1417	struct dma_chan *chan;
1418	struct dma_slave_config cfg;
1419	int ret;
1420
1421	dma_cap_zero(mask);
1422	dma_cap_set(DMA_SLAVE, mask);
1423
1424	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1425					(void *)(unsigned long)id, port->dev,
1426					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1427	if (!chan) {
1428		dev_warn(port->dev,
1429			 "dma_request_slave_channel_compat failed\n");
1430		return NULL;
1431	}
1432
1433	memset(&cfg, 0, sizeof(cfg));
1434	cfg.direction = dir;
1435	if (dir == DMA_MEM_TO_DEV) {
1436		cfg.dst_addr = port->mapbase +
1437			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1438		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1439	} else {
1440		cfg.src_addr = port->mapbase +
1441			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1442		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1443	}
1444
1445	ret = dmaengine_slave_config(chan, &cfg);
1446	if (ret) {
1447		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1448		dma_release_channel(chan);
1449		return NULL;
1450	}
1451
1452	return chan;
1453}
1454
1455static void sci_request_dma(struct uart_port *port)
1456{
1457	struct sci_port *s = to_sci_port(port);
1458	struct dma_chan *chan;
1459
1460	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1461
1462	if (!port->dev->of_node &&
1463	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1464		return;
1465
1466	s->cookie_tx = -EINVAL;
1467	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
 
 
 
 
 
 
 
 
1468	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1469	if (chan) {
1470		s->chan_tx = chan;
1471		/* UART circular tx buffer is an aligned page. */
1472		s->tx_dma_addr = dma_map_single(chan->device->dev,
1473						port->state->xmit.buf,
1474						UART_XMIT_SIZE,
1475						DMA_TO_DEVICE);
1476		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1477			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1478			dma_release_channel(chan);
1479			s->chan_tx = NULL;
1480		} else {
1481			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1482				__func__, UART_XMIT_SIZE,
1483				port->state->xmit.buf, &s->tx_dma_addr);
1484		}
1485
1486		INIT_WORK(&s->work_tx, work_fn_tx);
1487	}
1488
1489	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1490	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1491	if (chan) {
1492		unsigned int i;
1493		dma_addr_t dma;
1494		void *buf;
1495
1496		s->chan_rx = chan;
1497
1498		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1499		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1500					 &dma, GFP_KERNEL);
1501		if (!buf) {
1502			dev_warn(port->dev,
1503				 "Failed to allocate Rx dma buffer, using PIO\n");
1504			dma_release_channel(chan);
1505			s->chan_rx = NULL;
1506			return;
1507		}
1508
1509		for (i = 0; i < 2; i++) {
1510			struct scatterlist *sg = &s->sg_rx[i];
1511
1512			sg_init_table(sg, 1);
1513			s->rx_buf[i] = buf;
1514			sg_dma_address(sg) = dma;
1515			sg_dma_len(sg) = s->buf_len_rx;
1516
1517			buf += s->buf_len_rx;
1518			dma += s->buf_len_rx;
1519		}
1520
1521		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
 
1522
1523		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524			sci_submit_rx(s);
1525	}
1526}
1527
1528static void sci_free_dma(struct uart_port *port)
1529{
1530	struct sci_port *s = to_sci_port(port);
1531
1532	if (s->chan_tx)
1533		sci_tx_dma_release(s, false);
1534	if (s->chan_rx)
1535		sci_rx_dma_release(s, false);
1536}
1537#else
 
 
 
 
 
 
 
 
 
1538static inline void sci_request_dma(struct uart_port *port)
1539{
1540}
1541
1542static inline void sci_free_dma(struct uart_port *port)
1543{
1544}
1545#endif
 
 
1546
1547static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1548{
1549#ifdef CONFIG_SERIAL_SH_SCI_DMA
1550	struct uart_port *port = ptr;
1551	struct sci_port *s = to_sci_port(port);
1552
 
1553	if (s->chan_rx) {
1554		u16 scr = serial_port_in(port, SCSCR);
1555		u16 ssr = serial_port_in(port, SCxSR);
1556
1557		/* Disable future Rx interrupts */
1558		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1559			disable_irq_nosync(irq);
1560			scr |= SCSCR_RDRQE;
1561		} else {
1562			scr &= ~SCSCR_RIE;
1563			sci_submit_rx(s);
1564		}
1565		serial_port_out(port, SCSCR, scr);
1566		/* Clear current interrupt */
1567		serial_port_out(port, SCxSR,
1568				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1569		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1570			jiffies, s->rx_timeout);
1571		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1572
1573		return IRQ_HANDLED;
1574	}
1575#endif
1576
 
 
 
 
 
 
 
 
1577	/* I think sci_receive_chars has to be called irrespective
1578	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1579	 * to be disabled?
1580	 */
1581	sci_receive_chars(ptr);
1582
1583	return IRQ_HANDLED;
1584}
1585
1586static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1587{
1588	struct uart_port *port = ptr;
1589	unsigned long flags;
1590
1591	spin_lock_irqsave(&port->lock, flags);
1592	sci_transmit_chars(port);
1593	spin_unlock_irqrestore(&port->lock, flags);
1594
1595	return IRQ_HANDLED;
1596}
1597
1598static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1599{
1600	struct uart_port *port = ptr;
1601	struct sci_port *s = to_sci_port(port);
1602
1603	/* Handle errors */
1604	if (port->type == PORT_SCI) {
1605		if (sci_handle_errors(port)) {
1606			/* discard character in rx buffer */
1607			serial_port_in(port, SCxSR);
1608			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1609		}
1610	} else {
1611		sci_handle_fifo_overrun(port);
1612		if (!s->chan_rx)
1613			sci_receive_chars(ptr);
1614	}
1615
1616	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1617
1618	/* Kick the transmission */
1619	if (!s->chan_tx)
1620		sci_tx_interrupt(irq, ptr);
1621
1622	return IRQ_HANDLED;
1623}
1624
1625static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1626{
1627	struct uart_port *port = ptr;
1628
1629	/* Handle BREAKs */
1630	sci_handle_breaks(port);
1631	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1632
1633	return IRQ_HANDLED;
1634}
1635
1636static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1637{
1638	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1639	struct uart_port *port = ptr;
1640	struct sci_port *s = to_sci_port(port);
1641	irqreturn_t ret = IRQ_NONE;
1642
1643	ssr_status = serial_port_in(port, SCxSR);
1644	scr_status = serial_port_in(port, SCSCR);
1645	if (s->overrun_reg == SCxSR)
1646		orer_status = ssr_status;
1647	else {
1648		if (sci_getreg(port, s->overrun_reg)->size)
1649			orer_status = serial_port_in(port, s->overrun_reg);
1650	}
1651
1652	err_enabled = scr_status & port_rx_irq_mask(port);
1653
1654	/* Tx Interrupt */
1655	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1656	    !s->chan_tx)
1657		ret = sci_tx_interrupt(irq, ptr);
1658
1659	/*
1660	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1661	 * DR flags
1662	 */
1663	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1664	    (scr_status & SCSCR_RIE))
1665		ret = sci_rx_interrupt(irq, ptr);
1666
1667	/* Error Interrupt */
1668	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1669		ret = sci_er_interrupt(irq, ptr);
1670
1671	/* Break Interrupt */
1672	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1673		ret = sci_br_interrupt(irq, ptr);
1674
1675	/* Overrun Interrupt */
1676	if (orer_status & s->overrun_mask) {
1677		sci_handle_fifo_overrun(port);
1678		ret = IRQ_HANDLED;
1679	}
1680
1681	return ret;
1682}
1683
1684static const struct sci_irq_desc {
1685	const char	*desc;
1686	irq_handler_t	handler;
1687} sci_irq_desc[] = {
1688	/*
1689	 * Split out handlers, the default case.
1690	 */
1691	[SCIx_ERI_IRQ] = {
1692		.desc = "rx err",
1693		.handler = sci_er_interrupt,
1694	},
1695
1696	[SCIx_RXI_IRQ] = {
1697		.desc = "rx full",
1698		.handler = sci_rx_interrupt,
1699	},
1700
1701	[SCIx_TXI_IRQ] = {
1702		.desc = "tx empty",
1703		.handler = sci_tx_interrupt,
1704	},
1705
1706	[SCIx_BRI_IRQ] = {
1707		.desc = "break",
1708		.handler = sci_br_interrupt,
1709	},
1710
1711	/*
1712	 * Special muxed handler.
1713	 */
1714	[SCIx_MUX_IRQ] = {
1715		.desc = "mux",
1716		.handler = sci_mpxed_interrupt,
1717	},
1718};
1719
1720static int sci_request_irq(struct sci_port *port)
1721{
1722	struct uart_port *up = &port->port;
1723	int i, j, ret = 0;
1724
1725	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1726		const struct sci_irq_desc *desc;
1727		int irq;
1728
1729		if (SCIx_IRQ_IS_MUXED(port)) {
1730			i = SCIx_MUX_IRQ;
1731			irq = up->irq;
1732		} else {
1733			irq = port->irqs[i];
1734
1735			/*
1736			 * Certain port types won't support all of the
1737			 * available interrupt sources.
1738			 */
1739			if (unlikely(irq < 0))
1740				continue;
1741		}
1742
1743		desc = sci_irq_desc + i;
1744		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1745					    dev_name(up->dev), desc->desc);
1746		if (!port->irqstr[j])
 
1747			goto out_nomem;
 
1748
1749		ret = request_irq(irq, desc->handler, up->irqflags,
1750				  port->irqstr[j], port);
1751		if (unlikely(ret)) {
1752			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1753			goto out_noirq;
1754		}
1755	}
1756
1757	return 0;
1758
1759out_noirq:
1760	while (--i >= 0)
1761		free_irq(port->irqs[i], port);
1762
1763out_nomem:
1764	while (--j >= 0)
1765		kfree(port->irqstr[j]);
1766
1767	return ret;
1768}
1769
1770static void sci_free_irq(struct sci_port *port)
1771{
1772	int i;
1773
1774	/*
1775	 * Intentionally in reverse order so we iterate over the muxed
1776	 * IRQ first.
1777	 */
1778	for (i = 0; i < SCIx_NR_IRQS; i++) {
1779		int irq = port->irqs[i];
1780
1781		/*
1782		 * Certain port types won't support all of the available
1783		 * interrupt sources.
1784		 */
1785		if (unlikely(irq < 0))
1786			continue;
1787
1788		free_irq(port->irqs[i], port);
1789		kfree(port->irqstr[i]);
1790
1791		if (SCIx_IRQ_IS_MUXED(port)) {
1792			/* If there's only one IRQ, we're done. */
1793			return;
1794		}
1795	}
1796}
1797
1798static unsigned int sci_tx_empty(struct uart_port *port)
1799{
1800	unsigned short status = serial_port_in(port, SCxSR);
1801	unsigned short in_tx_fifo = sci_txfill(port);
1802
1803	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1804}
1805
1806static void sci_set_rts(struct uart_port *port, bool state)
1807{
1808	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1809		u16 data = serial_port_in(port, SCPDR);
1810
1811		/* Active low */
1812		if (state)
1813			data &= ~SCPDR_RTSD;
1814		else
1815			data |= SCPDR_RTSD;
1816		serial_port_out(port, SCPDR, data);
1817
1818		/* RTS# is output */
1819		serial_port_out(port, SCPCR,
1820				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1821	} else if (sci_getreg(port, SCSPTR)->size) {
1822		u16 ctrl = serial_port_in(port, SCSPTR);
1823
1824		/* Active low */
1825		if (state)
1826			ctrl &= ~SCSPTR_RTSDT;
1827		else
1828			ctrl |= SCSPTR_RTSDT;
1829		serial_port_out(port, SCSPTR, ctrl);
1830	}
1831}
1832
1833static bool sci_get_cts(struct uart_port *port)
1834{
1835	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1836		/* Active low */
1837		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1838	} else if (sci_getreg(port, SCSPTR)->size) {
1839		/* Active low */
1840		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1841	}
1842
1843	return true;
1844}
1845
1846/*
1847 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1848 * CTS/RTS is supported in hardware by at least one port and controlled
1849 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1850 * handled via the ->init_pins() op, which is a bit of a one-way street,
1851 * lacking any ability to defer pin control -- this will later be
1852 * converted over to the GPIO framework).
1853 *
1854 * Other modes (such as loopback) are supported generically on certain
1855 * port types, but not others. For these it's sufficient to test for the
1856 * existence of the support register and simply ignore the port type.
1857 */
1858static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1859{
1860	struct sci_port *s = to_sci_port(port);
1861
1862	if (mctrl & TIOCM_LOOP) {
1863		const struct plat_sci_reg *reg;
1864
1865		/*
1866		 * Standard loopback mode for SCFCR ports.
1867		 */
1868		reg = sci_getreg(port, SCFCR);
1869		if (reg->size)
1870			serial_port_out(port, SCFCR,
1871					serial_port_in(port, SCFCR) |
1872					SCFCR_LOOP);
1873	}
1874
1875	mctrl_gpio_set(s->gpios, mctrl);
1876
1877	if (!(s->cfg->capabilities & SCIx_HAVE_RTSCTS))
1878		return;
1879
1880	if (!(mctrl & TIOCM_RTS)) {
1881		/* Disable Auto RTS */
1882		serial_port_out(port, SCFCR,
1883				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1884
1885		/* Clear RTS */
1886		sci_set_rts(port, 0);
1887	} else if (s->autorts) {
1888		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1889			/* Enable RTS# pin function */
1890			serial_port_out(port, SCPCR,
1891				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1892		}
1893
1894		/* Enable Auto RTS */
1895		serial_port_out(port, SCFCR,
1896				serial_port_in(port, SCFCR) | SCFCR_MCE);
1897	} else {
1898		/* Set RTS */
1899		sci_set_rts(port, 1);
1900	}
1901}
1902
1903static unsigned int sci_get_mctrl(struct uart_port *port)
1904{
1905	struct sci_port *s = to_sci_port(port);
1906	struct mctrl_gpios *gpios = s->gpios;
1907	unsigned int mctrl = 0;
1908
1909	mctrl_gpio_get(gpios, &mctrl);
1910
1911	/*
1912	 * CTS/RTS is handled in hardware when supported, while nothing
1913	 * else is wired up.
1914	 */
1915	if (s->autorts) {
1916		if (sci_get_cts(port))
1917			mctrl |= TIOCM_CTS;
1918	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1919		mctrl |= TIOCM_CTS;
1920	}
1921	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1922		mctrl |= TIOCM_DSR;
1923	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1924		mctrl |= TIOCM_CAR;
1925
1926	return mctrl;
1927}
1928
1929static void sci_enable_ms(struct uart_port *port)
1930{
1931	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
1932}
1933
1934static void sci_break_ctl(struct uart_port *port, int break_state)
1935{
1936	unsigned short scscr, scsptr;
 
1937
1938	/* check wheter the port has SCSPTR */
1939	if (!sci_getreg(port, SCSPTR)->size) {
1940		/*
1941		 * Not supported by hardware. Most parts couple break and rx
1942		 * interrupts together, with break detection always enabled.
1943		 */
1944		return;
1945	}
1946
 
1947	scsptr = serial_port_in(port, SCSPTR);
1948	scscr = serial_port_in(port, SCSCR);
1949
1950	if (break_state == -1) {
1951		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1952		scscr &= ~SCSCR_TE;
1953	} else {
1954		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1955		scscr |= SCSCR_TE;
1956	}
1957
1958	serial_port_out(port, SCSPTR, scsptr);
1959	serial_port_out(port, SCSCR, scscr);
 
1960}
1961
1962static int sci_startup(struct uart_port *port)
1963{
1964	struct sci_port *s = to_sci_port(port);
1965	int ret;
1966
1967	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1968
 
 
1969	ret = sci_request_irq(s);
1970	if (unlikely(ret < 0))
 
1971		return ret;
1972
1973	sci_request_dma(port);
1974
1975	return 0;
1976}
1977
1978static void sci_shutdown(struct uart_port *port)
1979{
1980	struct sci_port *s = to_sci_port(port);
1981	unsigned long flags;
1982	u16 scr;
1983
1984	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1985
1986	s->autorts = false;
1987	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
1988
1989	spin_lock_irqsave(&port->lock, flags);
1990	sci_stop_rx(port);
1991	sci_stop_tx(port);
1992	/* Stop RX and TX, disable related interrupts, keep clock source */
 
 
 
1993	scr = serial_port_in(port, SCSCR);
1994	serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0));
 
1995	spin_unlock_irqrestore(&port->lock, flags);
1996
1997#ifdef CONFIG_SERIAL_SH_SCI_DMA
1998	if (s->chan_rx) {
1999		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2000			port->line);
2001		del_timer_sync(&s->rx_timer);
2002	}
2003#endif
2004
 
2005	sci_free_dma(port);
2006	sci_free_irq(s);
2007}
2008
2009static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2010			unsigned int *srr)
2011{
2012	unsigned long freq = s->clk_rates[SCI_SCK];
2013	int err, min_err = INT_MAX;
2014	unsigned int sr;
2015
2016	if (s->port.type != PORT_HSCIF)
2017		freq *= 2;
2018
2019	for_each_sr(sr, s) {
2020		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2021		if (abs(err) >= abs(min_err))
2022			continue;
2023
2024		min_err = err;
2025		*srr = sr - 1;
2026
2027		if (!err)
2028			break;
2029	}
2030
2031	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2032		*srr + 1);
2033	return min_err;
2034}
2035
2036static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2037			unsigned long freq, unsigned int *dlr,
2038			unsigned int *srr)
2039{
2040	int err, min_err = INT_MAX;
2041	unsigned int sr, dl;
2042
2043	if (s->port.type != PORT_HSCIF)
2044		freq *= 2;
2045
2046	for_each_sr(sr, s) {
2047		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2048		dl = clamp(dl, 1U, 65535U);
2049
2050		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2051		if (abs(err) >= abs(min_err))
2052			continue;
2053
2054		min_err = err;
2055		*dlr = dl;
2056		*srr = sr - 1;
2057
2058		if (!err)
2059			break;
2060	}
2061
2062	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2063		min_err, *dlr, *srr + 1);
2064	return min_err;
2065}
2066
2067/* calculate sample rate, BRR, and clock select */
2068static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2069			  unsigned int *brr, unsigned int *srr,
2070			  unsigned int *cks)
2071{
2072	unsigned long freq = s->clk_rates[SCI_FCK];
2073	unsigned int sr, br, prediv, scrate, c;
2074	int err, min_err = INT_MAX;
2075
2076	if (s->port.type != PORT_HSCIF)
2077		freq *= 2;
2078
2079	/*
2080	 * Find the combination of sample rate and clock select with the
2081	 * smallest deviation from the desired baud rate.
2082	 * Prefer high sample rates to maximise the receive margin.
2083	 *
2084	 * M: Receive margin (%)
2085	 * N: Ratio of bit rate to clock (N = sampling rate)
2086	 * D: Clock duty (D = 0 to 1.0)
2087	 * L: Frame length (L = 9 to 12)
2088	 * F: Absolute value of clock frequency deviation
2089	 *
2090	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2091	 *      (|D - 0.5| / N * (1 + F))|
2092	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2093	 */
2094	for_each_sr(sr, s) {
2095		for (c = 0; c <= 3; c++) {
2096			/* integerized formulas from HSCIF documentation */
2097			prediv = sr * (1 << (2 * c + 1));
2098
2099			/*
2100			 * We need to calculate:
2101			 *
2102			 *     br = freq / (prediv * bps) clamped to [1..256]
2103			 *     err = freq / (br * prediv) - bps
2104			 *
2105			 * Watch out for overflow when calculating the desired
2106			 * sampling clock rate!
2107			 */
2108			if (bps > UINT_MAX / prediv)
2109				break;
2110
2111			scrate = prediv * bps;
2112			br = DIV_ROUND_CLOSEST(freq, scrate);
2113			br = clamp(br, 1U, 256U);
2114
2115			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2116			if (abs(err) >= abs(min_err))
2117				continue;
2118
2119			min_err = err;
2120			*brr = br - 1;
2121			*srr = sr - 1;
2122			*cks = c;
2123
2124			if (!err)
2125				goto found;
2126		}
2127	}
2128
2129found:
2130	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2131		min_err, *brr, *srr + 1, *cks);
2132	return min_err;
2133}
2134
2135static void sci_reset(struct uart_port *port)
2136{
2137	const struct plat_sci_reg *reg;
2138	unsigned int status;
 
2139
2140	do {
2141		status = serial_port_in(port, SCxSR);
2142	} while (!(status & SCxSR_TEND(port)));
2143
2144	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2145
2146	reg = sci_getreg(port, SCFCR);
2147	if (reg->size)
2148		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2149
2150	sci_clear_SCxSR(port,
2151			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2152			SCxSR_BREAK_CLEAR(port));
2153	if (sci_getreg(port, SCLSR)->size) {
2154		status = serial_port_in(port, SCLSR);
2155		status &= ~(SCLSR_TO | SCLSR_ORER);
2156		serial_port_out(port, SCLSR, status);
2157	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2158}
2159
2160static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2161			    struct ktermios *old)
2162{
2163	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2164	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2165	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2166	struct sci_port *s = to_sci_port(port);
2167	const struct plat_sci_reg *reg;
2168	int min_err = INT_MAX, err;
2169	unsigned long max_freq = 0;
2170	int best_clk = -1;
 
2171
2172	if ((termios->c_cflag & CSIZE) == CS7)
2173		smr_val |= SCSMR_CHR;
2174	if (termios->c_cflag & PARENB)
2175		smr_val |= SCSMR_PE;
2176	if (termios->c_cflag & PARODD)
2177		smr_val |= SCSMR_PE | SCSMR_ODD;
2178	if (termios->c_cflag & CSTOPB)
2179		smr_val |= SCSMR_STOP;
2180
2181	/*
2182	 * earlyprintk comes here early on with port->uartclk set to zero.
2183	 * the clock framework is not up and running at this point so here
2184	 * we assume that 115200 is the maximum baud rate. please note that
2185	 * the baud rate is not programmed during earlyprintk - it is assumed
2186	 * that the previous boot loader has enabled required clocks and
2187	 * setup the baud rate generator hardware for us already.
2188	 */
2189	if (!port->uartclk) {
2190		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2191		goto done;
2192	}
2193
2194	for (i = 0; i < SCI_NUM_CLKS; i++)
2195		max_freq = max(max_freq, s->clk_rates[i]);
2196
2197	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2198	if (!baud)
2199		goto done;
2200
2201	/*
2202	 * There can be multiple sources for the sampling clock.  Find the one
2203	 * that gives us the smallest deviation from the desired baud rate.
2204	 */
2205
2206	/* Optional Undivided External Clock */
2207	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2208	    port->type != PORT_SCIFB) {
2209		err = sci_sck_calc(s, baud, &srr1);
2210		if (abs(err) < abs(min_err)) {
2211			best_clk = SCI_SCK;
2212			scr_val = SCSCR_CKE1;
2213			sccks = SCCKS_CKS;
2214			min_err = err;
2215			srr = srr1;
2216			if (!err)
2217				goto done;
2218		}
2219	}
2220
2221	/* Optional BRG Frequency Divided External Clock */
2222	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2223		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2224				   &srr1);
2225		if (abs(err) < abs(min_err)) {
2226			best_clk = SCI_SCIF_CLK;
2227			scr_val = SCSCR_CKE1;
2228			sccks = 0;
2229			min_err = err;
2230			dl = dl1;
2231			srr = srr1;
2232			if (!err)
2233				goto done;
2234		}
2235	}
2236
2237	/* Optional BRG Frequency Divided Internal Clock */
2238	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2239		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2240				   &srr1);
2241		if (abs(err) < abs(min_err)) {
2242			best_clk = SCI_BRG_INT;
2243			scr_val = SCSCR_CKE1;
2244			sccks = SCCKS_XIN;
2245			min_err = err;
2246			dl = dl1;
2247			srr = srr1;
2248			if (!min_err)
2249				goto done;
2250		}
2251	}
2252
2253	/* Divided Functional Clock using standard Bit Rate Register */
2254	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2255	if (abs(err) < abs(min_err)) {
2256		best_clk = SCI_FCK;
2257		scr_val = 0;
2258		min_err = err;
2259		brr = brr1;
2260		srr = srr1;
2261		cks = cks1;
2262	}
2263
2264done:
2265	if (best_clk >= 0)
2266		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2267			s->clks[best_clk], baud, min_err);
2268
2269	sci_port_enable(s);
2270
2271	/*
2272	 * Program the optional External Baud Rate Generator (BRG) first.
2273	 * It controls the mux to select (H)SCK or frequency divided clock.
2274	 */
2275	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2276		serial_port_out(port, SCDL, dl);
2277		serial_port_out(port, SCCKS, sccks);
2278	}
2279
 
 
2280	sci_reset(port);
2281
2282	uart_update_timeout(port, termios->c_cflag, baud);
2283
2284	if (best_clk >= 0) {
2285		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2286			switch (srr + 1) {
2287			case 5:  smr_val |= SCSMR_SRC_5;  break;
2288			case 7:  smr_val |= SCSMR_SRC_7;  break;
2289			case 11: smr_val |= SCSMR_SRC_11; break;
2290			case 13: smr_val |= SCSMR_SRC_13; break;
2291			case 16: smr_val |= SCSMR_SRC_16; break;
2292			case 17: smr_val |= SCSMR_SRC_17; break;
2293			case 19: smr_val |= SCSMR_SRC_19; break;
2294			case 27: smr_val |= SCSMR_SRC_27; break;
2295			}
2296		smr_val |= cks;
2297		dev_dbg(port->dev,
2298			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2299			 scr_val, smr_val, brr, sccks, dl, srr);
2300		serial_port_out(port, SCSCR, scr_val);
2301		serial_port_out(port, SCSMR, smr_val);
2302		serial_port_out(port, SCBRR, brr);
2303		if (sci_getreg(port, HSSRR)->size)
2304			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2305
2306		/* Wait one bit interval */
2307		udelay((1000000 + (baud - 1)) / baud);
2308	} else {
2309		/* Don't touch the bit rate configuration */
2310		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2311		smr_val |= serial_port_in(port, SCSMR) &
2312			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2313		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2314		serial_port_out(port, SCSCR, scr_val);
2315		serial_port_out(port, SCSMR, smr_val);
2316	}
2317
2318	sci_init_pins(port, termios->c_cflag);
2319
2320	port->status &= ~UPSTAT_AUTOCTS;
2321	s->autorts = false;
2322	reg = sci_getreg(port, SCFCR);
2323	if (reg->size) {
2324		unsigned short ctrl = serial_port_in(port, SCFCR);
2325
2326		if ((port->flags & UPF_HARD_FLOW) &&
2327		    (termios->c_cflag & CRTSCTS)) {
2328			/* There is no CTS interrupt to restart the hardware */
2329			port->status |= UPSTAT_AUTOCTS;
2330			/* MCE is enabled when RTS is raised */
2331			s->autorts = true;
2332		}
2333
2334		/*
2335		 * As we've done a sci_reset() above, ensure we don't
2336		 * interfere with the FIFOs while toggling MCE. As the
2337		 * reset values could still be set, simply mask them out.
2338		 */
2339		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2340
2341		serial_port_out(port, SCFCR, ctrl);
2342	}
 
 
 
 
2343
2344	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2345	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2346	serial_port_out(port, SCSCR, scr_val);
2347	if ((srr + 1 == 5) &&
2348	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2349		/*
2350		 * In asynchronous mode, when the sampling rate is 1/5, first
2351		 * received data may become invalid on some SCIFA and SCIFB.
2352		 * To avoid this problem wait more than 1 serial data time (1
2353		 * bit time x serial data number) after setting SCSCR.RE = 1.
2354		 */
2355		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2356	}
2357
2358#ifdef CONFIG_SERIAL_SH_SCI_DMA
2359	/*
2360	 * Calculate delay for 2 DMA buffers (4 FIFO).
2361	 * See serial_core.c::uart_update_timeout().
2362	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2363	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2364	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2365	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2366	 * value obtained by this formula is too small. Therefore, if the value
2367	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2368	 */
2369	if (s->chan_rx) {
2370		unsigned int bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
2371
2372		/* byte size and parity */
2373		switch (termios->c_cflag & CSIZE) {
2374		case CS5:
2375			bits = 7;
2376			break;
2377		case CS6:
2378			bits = 8;
2379			break;
2380		case CS7:
2381			bits = 9;
2382			break;
2383		default:
2384			bits = 10;
2385			break;
2386		}
2387
2388		if (termios->c_cflag & CSTOPB)
2389			bits++;
2390		if (termios->c_cflag & PARENB)
2391			bits++;
2392		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2393					     (baud / 10), 10);
2394		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2395			s->rx_timeout * 1000 / HZ, port->timeout);
2396		if (s->rx_timeout < msecs_to_jiffies(20))
2397			s->rx_timeout = msecs_to_jiffies(20);
2398	}
2399#endif
2400
2401	if ((termios->c_cflag & CREAD) != 0)
2402		sci_start_rx(port);
2403
 
 
2404	sci_port_disable(s);
2405
2406	if (UART_ENABLE_MS(port, termios->c_cflag))
2407		sci_enable_ms(port);
2408}
2409
2410static void sci_pm(struct uart_port *port, unsigned int state,
2411		   unsigned int oldstate)
2412{
2413	struct sci_port *sci_port = to_sci_port(port);
2414
2415	switch (state) {
2416	case UART_PM_STATE_OFF:
2417		sci_port_disable(sci_port);
2418		break;
2419	default:
2420		sci_port_enable(sci_port);
2421		break;
2422	}
2423}
2424
2425static const char *sci_type(struct uart_port *port)
2426{
2427	switch (port->type) {
2428	case PORT_IRDA:
2429		return "irda";
2430	case PORT_SCI:
2431		return "sci";
2432	case PORT_SCIF:
2433		return "scif";
2434	case PORT_SCIFA:
2435		return "scifa";
2436	case PORT_SCIFB:
2437		return "scifb";
2438	case PORT_HSCIF:
2439		return "hscif";
2440	}
2441
2442	return NULL;
2443}
2444
2445static int sci_remap_port(struct uart_port *port)
2446{
2447	struct sci_port *sport = to_sci_port(port);
2448
2449	/*
2450	 * Nothing to do if there's already an established membase.
2451	 */
2452	if (port->membase)
2453		return 0;
2454
2455	if (port->flags & UPF_IOREMAP) {
2456		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2457		if (unlikely(!port->membase)) {
2458			dev_err(port->dev, "can't remap port#%d\n", port->line);
2459			return -ENXIO;
2460		}
2461	} else {
2462		/*
2463		 * For the simple (and majority of) cases where we don't
2464		 * need to do any remapping, just cast the cookie
2465		 * directly.
2466		 */
2467		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2468	}
2469
2470	return 0;
2471}
2472
2473static void sci_release_port(struct uart_port *port)
2474{
2475	struct sci_port *sport = to_sci_port(port);
2476
2477	if (port->flags & UPF_IOREMAP) {
2478		iounmap(port->membase);
2479		port->membase = NULL;
2480	}
2481
2482	release_mem_region(port->mapbase, sport->reg_size);
2483}
2484
2485static int sci_request_port(struct uart_port *port)
2486{
2487	struct resource *res;
2488	struct sci_port *sport = to_sci_port(port);
2489	int ret;
2490
2491	res = request_mem_region(port->mapbase, sport->reg_size,
2492				 dev_name(port->dev));
2493	if (unlikely(res == NULL)) {
2494		dev_err(port->dev, "request_mem_region failed.");
2495		return -EBUSY;
2496	}
2497
2498	ret = sci_remap_port(port);
2499	if (unlikely(ret != 0)) {
2500		release_resource(res);
2501		return ret;
2502	}
2503
2504	return 0;
2505}
2506
2507static void sci_config_port(struct uart_port *port, int flags)
2508{
2509	if (flags & UART_CONFIG_TYPE) {
2510		struct sci_port *sport = to_sci_port(port);
2511
2512		port->type = sport->cfg->type;
2513		sci_request_port(port);
2514	}
2515}
2516
2517static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2518{
2519	if (ser->baud_base < 2400)
2520		/* No paper tape reader for Mitch.. */
2521		return -EINVAL;
2522
2523	return 0;
2524}
2525
2526static const struct uart_ops sci_uart_ops = {
2527	.tx_empty	= sci_tx_empty,
2528	.set_mctrl	= sci_set_mctrl,
2529	.get_mctrl	= sci_get_mctrl,
2530	.start_tx	= sci_start_tx,
2531	.stop_tx	= sci_stop_tx,
2532	.stop_rx	= sci_stop_rx,
2533	.enable_ms	= sci_enable_ms,
2534	.break_ctl	= sci_break_ctl,
2535	.startup	= sci_startup,
2536	.shutdown	= sci_shutdown,
 
2537	.set_termios	= sci_set_termios,
2538	.pm		= sci_pm,
2539	.type		= sci_type,
2540	.release_port	= sci_release_port,
2541	.request_port	= sci_request_port,
2542	.config_port	= sci_config_port,
2543	.verify_port	= sci_verify_port,
2544#ifdef CONFIG_CONSOLE_POLL
2545	.poll_get_char	= sci_poll_get_char,
2546	.poll_put_char	= sci_poll_put_char,
2547#endif
2548};
2549
2550static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2551{
2552	const char *clk_names[] = {
2553		[SCI_FCK] = "fck",
2554		[SCI_SCK] = "sck",
2555		[SCI_BRG_INT] = "brg_int",
2556		[SCI_SCIF_CLK] = "scif_clk",
2557	};
2558	struct clk *clk;
2559	unsigned int i;
2560
2561	if (sci_port->cfg->type == PORT_HSCIF)
2562		clk_names[SCI_SCK] = "hsck";
2563
2564	for (i = 0; i < SCI_NUM_CLKS; i++) {
2565		clk = devm_clk_get(dev, clk_names[i]);
2566		if (PTR_ERR(clk) == -EPROBE_DEFER)
2567			return -EPROBE_DEFER;
2568
2569		if (IS_ERR(clk) && i == SCI_FCK) {
2570			/*
2571			 * "fck" used to be called "sci_ick", and we need to
2572			 * maintain DT backward compatibility.
2573			 */
2574			clk = devm_clk_get(dev, "sci_ick");
2575			if (PTR_ERR(clk) == -EPROBE_DEFER)
2576				return -EPROBE_DEFER;
2577
2578			if (!IS_ERR(clk))
2579				goto found;
2580
2581			/*
2582			 * Not all SH platforms declare a clock lookup entry
2583			 * for SCI devices, in which case we need to get the
2584			 * global "peripheral_clk" clock.
2585			 */
2586			clk = devm_clk_get(dev, "peripheral_clk");
2587			if (!IS_ERR(clk))
2588				goto found;
2589
2590			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2591				PTR_ERR(clk));
2592			return PTR_ERR(clk);
2593		}
2594
2595found:
2596		if (IS_ERR(clk))
2597			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2598				PTR_ERR(clk));
2599		else
2600			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2601				clk, clk);
2602		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2603	}
2604	return 0;
2605}
2606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607static int sci_init_single(struct platform_device *dev,
2608			   struct sci_port *sci_port, unsigned int index,
2609			   struct plat_sci_port *p, bool early)
2610{
2611	struct uart_port *port = &sci_port->port;
2612	const struct resource *res;
2613	unsigned int i;
2614	int ret;
2615
2616	sci_port->cfg	= p;
2617
2618	port->ops	= &sci_uart_ops;
2619	port->iotype	= UPIO_MEM;
2620	port->line	= index;
2621
2622	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2623	if (res == NULL)
2624		return -ENOMEM;
2625
2626	port->mapbase = res->start;
2627	sci_port->reg_size = resource_size(res);
2628
2629	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2630		sci_port->irqs[i] = platform_get_irq(dev, i);
2631
2632	/* The SCI generates several interrupts. They can be muxed together or
2633	 * connected to different interrupt lines. In the muxed case only one
2634	 * interrupt resource is specified. In the non-muxed case three or four
2635	 * interrupt resources are specified, as the BRI interrupt is optional.
2636	 */
2637	if (sci_port->irqs[0] < 0)
2638		return -ENXIO;
2639
2640	if (sci_port->irqs[1] < 0) {
2641		sci_port->irqs[1] = sci_port->irqs[0];
2642		sci_port->irqs[2] = sci_port->irqs[0];
2643		sci_port->irqs[3] = sci_port->irqs[0];
2644	}
2645
2646	if (p->regtype == SCIx_PROBE_REGTYPE) {
2647		ret = sci_probe_regmap(p);
2648		if (unlikely(ret))
2649			return ret;
2650	}
2651
2652	switch (p->type) {
2653	case PORT_SCIFB:
2654		port->fifosize = 256;
2655		sci_port->overrun_reg = SCxSR;
2656		sci_port->overrun_mask = SCIFA_ORER;
2657		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2658		break;
2659	case PORT_HSCIF:
2660		port->fifosize = 128;
2661		sci_port->overrun_reg = SCLSR;
2662		sci_port->overrun_mask = SCLSR_ORER;
2663		sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2664		break;
2665	case PORT_SCIFA:
2666		port->fifosize = 64;
2667		sci_port->overrun_reg = SCxSR;
2668		sci_port->overrun_mask = SCIFA_ORER;
2669		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2670		break;
2671	case PORT_SCIF:
2672		port->fifosize = 16;
2673		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2674			sci_port->overrun_reg = SCxSR;
2675			sci_port->overrun_mask = SCIFA_ORER;
2676			sci_port->sampling_rate_mask = SCI_SR(16);
2677		} else {
2678			sci_port->overrun_reg = SCLSR;
2679			sci_port->overrun_mask = SCLSR_ORER;
2680			sci_port->sampling_rate_mask = SCI_SR(32);
2681		}
2682		break;
2683	default:
2684		port->fifosize = 1;
2685		sci_port->overrun_reg = SCxSR;
2686		sci_port->overrun_mask = SCI_ORER;
2687		sci_port->sampling_rate_mask = SCI_SR(32);
2688		break;
2689	}
2690
 
 
 
2691	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2692	 * match the SoC datasheet, this should be investigated. Let platform
2693	 * data override the sampling rate for now.
2694	 */
2695	if (p->sampling_rate)
2696		sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
 
2697
2698	if (!early) {
2699		ret = sci_init_clocks(sci_port, &dev->dev);
2700		if (ret < 0)
2701			return ret;
2702
2703		port->dev = &dev->dev;
2704
2705		pm_runtime_enable(&dev->dev);
2706	}
2707
2708	sci_port->break_timer.data = (unsigned long)sci_port;
2709	sci_port->break_timer.function = sci_break_timer;
2710	init_timer(&sci_port->break_timer);
2711
2712	/*
2713	 * Establish some sensible defaults for the error detection.
2714	 */
2715	if (p->type == PORT_SCI) {
2716		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2717		sci_port->error_clear = SCI_ERROR_CLEAR;
2718	} else {
2719		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2720		sci_port->error_clear = SCIF_ERROR_CLEAR;
2721	}
2722
2723	/*
2724	 * Make the error mask inclusive of overrun detection, if
2725	 * supported.
2726	 */
2727	if (sci_port->overrun_reg == SCxSR) {
2728		sci_port->error_mask |= sci_port->overrun_mask;
2729		sci_port->error_clear &= ~sci_port->overrun_mask;
2730	}
2731
2732	port->type		= p->type;
2733	port->flags		= UPF_FIXED_PORT | p->flags;
2734	port->regshift		= p->regshift;
2735
2736	/*
2737	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2738	 * for the multi-IRQ ports, which is where we are primarily
2739	 * concerned with the shutdown path synchronization.
2740	 *
2741	 * For the muxed case there's nothing more to do.
2742	 */
2743	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2744	port->irqflags		= 0;
2745
2746	port->serial_in		= sci_serial_in;
2747	port->serial_out	= sci_serial_out;
2748
2749	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2750		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2751			p->dma_slave_tx, p->dma_slave_rx);
2752
2753	return 0;
2754}
2755
2756static void sci_cleanup_single(struct sci_port *port)
2757{
2758	pm_runtime_disable(port->port.dev);
2759}
2760
2761#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2762    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2763static void serial_console_putchar(struct uart_port *port, int ch)
2764{
2765	sci_poll_put_char(port, ch);
2766}
2767
2768/*
2769 *	Print a string to the serial port trying not to disturb
2770 *	any possible real use of the port...
2771 */
2772static void serial_console_write(struct console *co, const char *s,
2773				 unsigned count)
2774{
2775	struct sci_port *sci_port = &sci_ports[co->index];
2776	struct uart_port *port = &sci_port->port;
2777	unsigned short bits, ctrl, ctrl_temp;
2778	unsigned long flags;
2779	int locked = 1;
2780
2781	local_irq_save(flags);
2782#if defined(SUPPORT_SYSRQ)
2783	if (port->sysrq)
2784		locked = 0;
2785	else
2786#endif
2787	if (oops_in_progress)
2788		locked = spin_trylock(&port->lock);
2789	else
2790		spin_lock(&port->lock);
2791
2792	/* first save SCSCR then disable interrupts, keep clock source */
2793	ctrl = serial_port_in(port, SCSCR);
2794	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
 
2795		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2796	serial_port_out(port, SCSCR, ctrl_temp);
2797
2798	uart_console_write(port, s, count, serial_console_putchar);
2799
2800	/* wait until fifo is empty and last bit has been transmitted */
2801	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2802	while ((serial_port_in(port, SCxSR) & bits) != bits)
2803		cpu_relax();
2804
2805	/* restore the SCSCR */
2806	serial_port_out(port, SCSCR, ctrl);
2807
2808	if (locked)
2809		spin_unlock(&port->lock);
2810	local_irq_restore(flags);
2811}
2812
2813static int serial_console_setup(struct console *co, char *options)
2814{
2815	struct sci_port *sci_port;
2816	struct uart_port *port;
2817	int baud = 115200;
2818	int bits = 8;
2819	int parity = 'n';
2820	int flow = 'n';
2821	int ret;
2822
2823	/*
2824	 * Refuse to handle any bogus ports.
2825	 */
2826	if (co->index < 0 || co->index >= SCI_NPORTS)
2827		return -ENODEV;
2828
2829	sci_port = &sci_ports[co->index];
2830	port = &sci_port->port;
2831
2832	/*
2833	 * Refuse to handle uninitialized ports.
2834	 */
2835	if (!port->ops)
2836		return -ENODEV;
2837
2838	ret = sci_remap_port(port);
2839	if (unlikely(ret != 0))
2840		return ret;
2841
2842	if (options)
2843		uart_parse_options(options, &baud, &parity, &bits, &flow);
2844
2845	return uart_set_options(port, co, baud, parity, bits, flow);
2846}
2847
2848static struct console serial_console = {
2849	.name		= "ttySC",
2850	.device		= uart_console_device,
2851	.write		= serial_console_write,
2852	.setup		= serial_console_setup,
2853	.flags		= CON_PRINTBUFFER,
2854	.index		= -1,
2855	.data		= &sci_uart_driver,
2856};
2857
2858static struct console early_serial_console = {
2859	.name           = "early_ttySC",
2860	.write          = serial_console_write,
2861	.flags          = CON_PRINTBUFFER,
2862	.index		= -1,
2863};
2864
2865static char early_serial_buf[32];
2866
2867static int sci_probe_earlyprintk(struct platform_device *pdev)
2868{
2869	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2870
2871	if (early_serial_console.data)
2872		return -EEXIST;
2873
2874	early_serial_console.index = pdev->id;
2875
2876	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2877
2878	serial_console_setup(&early_serial_console, early_serial_buf);
2879
2880	if (!strstr(early_serial_buf, "keep"))
2881		early_serial_console.flags |= CON_BOOT;
2882
2883	register_console(&early_serial_console);
2884	return 0;
2885}
2886
2887#define SCI_CONSOLE	(&serial_console)
2888
2889#else
2890static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2891{
2892	return -EINVAL;
2893}
2894
2895#define SCI_CONSOLE	NULL
2896
2897#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2898
2899static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2900
 
2901static struct uart_driver sci_uart_driver = {
2902	.owner		= THIS_MODULE,
2903	.driver_name	= "sci",
2904	.dev_name	= "ttySC",
2905	.major		= SCI_MAJOR,
2906	.minor		= SCI_MINOR_START,
2907	.nr		= SCI_NPORTS,
2908	.cons		= SCI_CONSOLE,
2909};
2910
2911static int sci_remove(struct platform_device *dev)
2912{
2913	struct sci_port *port = platform_get_drvdata(dev);
2914
2915	uart_remove_one_port(&sci_uart_driver, &port->port);
2916
2917	sci_cleanup_single(port);
2918
 
 
 
 
 
 
 
 
 
 
2919	return 0;
2920}
2921
2922
2923#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2924#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2925#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2926
2927static const struct of_device_id of_sci_match[] = {
2928	/* SoC-specific types */
2929	{
2930		.compatible = "renesas,scif-r7s72100",
2931		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2932	},
2933	/* Family-specific types */
2934	{
2935		.compatible = "renesas,rcar-gen1-scif",
2936		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2937	}, {
2938		.compatible = "renesas,rcar-gen2-scif",
2939		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2940	}, {
2941		.compatible = "renesas,rcar-gen3-scif",
2942		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2943	},
2944	/* Generic types */
2945	{
2946		.compatible = "renesas,scif",
2947		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2948	}, {
2949		.compatible = "renesas,scifa",
2950		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2951	}, {
2952		.compatible = "renesas,scifb",
2953		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2954	}, {
2955		.compatible = "renesas,hscif",
2956		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2957	}, {
2958		.compatible = "renesas,sci",
2959		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2960	}, {
2961		/* Terminator */
2962	},
2963};
2964MODULE_DEVICE_TABLE(of, of_sci_match);
2965
2966static struct plat_sci_port *
2967sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2968{
2969	struct device_node *np = pdev->dev.of_node;
2970	const struct of_device_id *match;
2971	struct plat_sci_port *p;
 
 
2972	int id;
2973
2974	if (!IS_ENABLED(CONFIG_OF) || !np)
2975		return NULL;
2976
2977	match = of_match_node(of_sci_match, np);
2978	if (!match)
2979		return NULL;
2980
2981	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2982	if (!p)
2983		return NULL;
2984
2985	/* Get the line number from the aliases node. */
2986	id = of_alias_get_id(np, "serial");
2987	if (id < 0) {
2988		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2989		return NULL;
2990	}
 
 
 
 
2991
 
2992	*dev_id = id;
2993
2994	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2995	p->type = SCI_OF_TYPE(match->data);
2996	p->regtype = SCI_OF_REGTYPE(match->data);
2997	p->scscr = SCSCR_RE | SCSCR_TE;
2998
2999	if (of_find_property(np, "uart-has-rtscts", NULL))
3000		p->capabilities |= SCIx_HAVE_RTSCTS;
3001
3002	return p;
3003}
3004
3005static int sci_probe_single(struct platform_device *dev,
3006				      unsigned int index,
3007				      struct plat_sci_port *p,
3008				      struct sci_port *sciport)
3009{
3010	int ret;
3011
3012	/* Sanity check */
3013	if (unlikely(index >= SCI_NPORTS)) {
3014		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3015			   index+1, SCI_NPORTS);
3016		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3017		return -EINVAL;
3018	}
3019
 
 
 
 
 
 
 
 
 
 
3020	ret = sci_init_single(dev, sciport, index, p, false);
3021	if (ret)
3022		return ret;
3023
3024	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3025	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3026		return PTR_ERR(sciport->gpios);
3027
3028	if (p->capabilities & SCIx_HAVE_RTSCTS) {
3029		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3030							UART_GPIO_CTS)) ||
3031		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3032							UART_GPIO_RTS))) {
3033			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3034			return -EINVAL;
3035		}
3036		sciport->port.flags |= UPF_HARD_FLOW;
3037	}
3038
3039	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3040	if (ret) {
3041		sci_cleanup_single(sciport);
3042		return ret;
3043	}
3044
3045	return 0;
3046}
3047
3048static int sci_probe(struct platform_device *dev)
3049{
3050	struct plat_sci_port *p;
3051	struct sci_port *sp;
3052	unsigned int dev_id;
3053	int ret;
3054
3055	/*
3056	 * If we've come here via earlyprintk initialization, head off to
3057	 * the special early probe. We don't have sufficient device state
3058	 * to make it beyond this yet.
3059	 */
3060	if (is_early_platform_device(dev))
3061		return sci_probe_earlyprintk(dev);
3062
3063	if (dev->dev.of_node) {
3064		p = sci_parse_dt(dev, &dev_id);
3065		if (p == NULL)
3066			return -EINVAL;
3067	} else {
3068		p = dev->dev.platform_data;
3069		if (p == NULL) {
3070			dev_err(&dev->dev, "no platform data supplied\n");
3071			return -EINVAL;
3072		}
3073
3074		dev_id = dev->id;
3075	}
3076
3077	sp = &sci_ports[dev_id];
3078	platform_set_drvdata(dev, sp);
3079
3080	ret = sci_probe_single(dev, dev_id, p, sp);
3081	if (ret)
3082		return ret;
3083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3084#ifdef CONFIG_SH_STANDARD_BIOS
3085	sh_bios_gdb_detach();
3086#endif
3087
3088	return 0;
3089}
3090
3091static __maybe_unused int sci_suspend(struct device *dev)
3092{
3093	struct sci_port *sport = dev_get_drvdata(dev);
3094
3095	if (sport)
3096		uart_suspend_port(&sci_uart_driver, &sport->port);
3097
3098	return 0;
3099}
3100
3101static __maybe_unused int sci_resume(struct device *dev)
3102{
3103	struct sci_port *sport = dev_get_drvdata(dev);
3104
3105	if (sport)
3106		uart_resume_port(&sci_uart_driver, &sport->port);
3107
3108	return 0;
3109}
3110
3111static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3112
3113static struct platform_driver sci_driver = {
3114	.probe		= sci_probe,
3115	.remove		= sci_remove,
3116	.driver		= {
3117		.name	= "sh-sci",
3118		.pm	= &sci_dev_pm_ops,
3119		.of_match_table = of_match_ptr(of_sci_match),
3120	},
3121};
3122
3123static int __init sci_init(void)
3124{
3125	int ret;
3126
3127	pr_info("%s\n", banner);
3128
3129	ret = uart_register_driver(&sci_uart_driver);
3130	if (likely(ret == 0)) {
3131		ret = platform_driver_register(&sci_driver);
3132		if (unlikely(ret))
3133			uart_unregister_driver(&sci_uart_driver);
3134	}
3135
3136	return ret;
3137}
3138
3139static void __exit sci_exit(void)
3140{
3141	platform_driver_unregister(&sci_driver);
3142	uart_unregister_driver(&sci_uart_driver);
 
 
3143}
3144
3145#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3146early_platform_init_buffer("earlyprintk", &sci_driver,
3147			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3148#endif
3149#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3150static struct __init plat_sci_port port_cfg;
3151
3152static int __init early_console_setup(struct earlycon_device *device,
3153				      int type)
3154{
3155	if (!device->port.membase)
3156		return -ENODEV;
3157
3158	device->port.serial_in = sci_serial_in;
3159	device->port.serial_out	= sci_serial_out;
3160	device->port.type = type;
3161	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
 
3162	sci_ports[0].cfg = &port_cfg;
3163	sci_ports[0].cfg->type = type;
3164	sci_probe_regmap(sci_ports[0].cfg);
3165	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3166			 SCSCR_RE | SCSCR_TE;
3167	sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3168
3169	device->con->write = serial_console_write;
3170	return 0;
3171}
3172static int __init sci_early_console_setup(struct earlycon_device *device,
3173					  const char *opt)
3174{
3175	return early_console_setup(device, PORT_SCI);
3176}
3177static int __init scif_early_console_setup(struct earlycon_device *device,
3178					  const char *opt)
3179{
3180	return early_console_setup(device, PORT_SCIF);
3181}
3182static int __init scifa_early_console_setup(struct earlycon_device *device,
3183					  const char *opt)
3184{
3185	return early_console_setup(device, PORT_SCIFA);
3186}
3187static int __init scifb_early_console_setup(struct earlycon_device *device,
3188					  const char *opt)
3189{
3190	return early_console_setup(device, PORT_SCIFB);
3191}
3192static int __init hscif_early_console_setup(struct earlycon_device *device,
3193					  const char *opt)
3194{
3195	return early_console_setup(device, PORT_HSCIF);
3196}
3197
3198OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3199OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3200OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3201OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3202OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3203#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3204
3205module_init(sci_init);
3206module_exit(sci_exit);
3207
3208MODULE_LICENSE("GPL");
3209MODULE_ALIAS("platform:sh-sci");
3210MODULE_AUTHOR("Paul Mundt");
3211MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");