Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
  18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  19#define SUPPORT_SYSRQ
  20#endif
  21
  22#undef DEBUG
  23
  24#include <linux/clk.h>
  25#include <linux/console.h>
  26#include <linux/ctype.h>
  27#include <linux/cpufreq.h>
  28#include <linux/delay.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/err.h>
  32#include <linux/errno.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/ioport.h>
  36#include <linux/ktime.h>
  37#include <linux/major.h>
  38#include <linux/module.h>
  39#include <linux/mm.h>
  40#include <linux/of.h>
  41#include <linux/of_device.h>
  42#include <linux/platform_device.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/scatterlist.h>
  45#include <linux/serial.h>
  46#include <linux/serial_sci.h>
  47#include <linux/sh_dma.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/sysrq.h>
  51#include <linux/timer.h>
  52#include <linux/tty.h>
  53#include <linux/tty_flip.h>
  54
  55#ifdef CONFIG_SUPERH
  56#include <asm/sh_bios.h>
 
  57#endif
  58
  59#include "serial_mctrl_gpio.h"
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
 
 
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct plat_sci_reg {
 104	u8 offset, size;
 105};
 106
 107struct sci_port_params {
 108	const struct plat_sci_reg regs[SCIx_NR_REGS];
 109	unsigned int fifosize;
 110	unsigned int overrun_reg;
 111	unsigned int overrun_mask;
 112	unsigned int sampling_rate_mask;
 113	unsigned int error_mask;
 114	unsigned int error_clear;
 115};
 116
 117struct sci_port {
 118	struct uart_port	port;
 119
 120	/* Platform configuration */
 121	const struct sci_port_params *params;
 122	const struct plat_sci_port *cfg;
 123	unsigned int		sampling_rate_mask;
 124	resource_size_t		reg_size;
 125	struct mctrl_gpios	*gpios;
 126
 127	/* Clocks */
 128	struct clk		*clks[SCI_NUM_CLKS];
 129	unsigned long		clk_rates[SCI_NUM_CLKS];
 130
 131	int			irqs[SCIx_NR_IRQS];
 132	char			*irqstr[SCIx_NR_IRQS];
 133
 134	struct dma_chan			*chan_tx;
 135	struct dma_chan			*chan_rx;
 136
 137#ifdef CONFIG_SERIAL_SH_SCI_DMA
 
 
 138	dma_cookie_t			cookie_tx;
 139	dma_cookie_t			cookie_rx[2];
 140	dma_cookie_t			active_rx;
 141	dma_addr_t			tx_dma_addr;
 142	unsigned int			tx_dma_len;
 143	struct scatterlist		sg_rx[2];
 144	void				*rx_buf[2];
 145	size_t				buf_len_rx;
 146	struct work_struct		work_tx;
 147	struct hrtimer			rx_timer;
 148	unsigned int			rx_timeout;	/* microseconds */
 149#endif
 150	unsigned int			rx_frame;
 151	int				rx_trigger;
 152	struct timer_list		rx_fifo_timer;
 153	int				rx_fifo_timeout;
 154	u16				hscif_tot;
 155
 156	bool has_rtscts;
 157	bool autorts;
 158};
 159
 160#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 161
 162static struct sci_port sci_ports[SCI_NPORTS];
 
 163static struct uart_driver sci_uart_driver;
 164
 165static inline struct sci_port *
 166to_sci_port(struct uart_port *uart)
 167{
 168	return container_of(uart, struct sci_port, port);
 169}
 170
 171static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 172	/*
 173	 * Common SCI definitions, dependent on the port's regshift
 174	 * value.
 175	 */
 176	[SCIx_SCI_REGTYPE] = {
 177		.regs = {
 178			[SCSMR]		= { 0x00,  8 },
 179			[SCBRR]		= { 0x01,  8 },
 180			[SCSCR]		= { 0x02,  8 },
 181			[SCxTDR]	= { 0x03,  8 },
 182			[SCxSR]		= { 0x04,  8 },
 183			[SCxRDR]	= { 0x05,  8 },
 184		},
 185		.fifosize = 1,
 186		.overrun_reg = SCxSR,
 187		.overrun_mask = SCI_ORER,
 188		.sampling_rate_mask = SCI_SR(32),
 189		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 190		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 191	},
 192
 193	/*
 194	 * Common definitions for legacy IrDA ports.
 195	 */
 196	[SCIx_IRDA_REGTYPE] = {
 197		.regs = {
 198			[SCSMR]		= { 0x00,  8 },
 199			[SCBRR]		= { 0x02,  8 },
 200			[SCSCR]		= { 0x04,  8 },
 201			[SCxTDR]	= { 0x06,  8 },
 202			[SCxSR]		= { 0x08, 16 },
 203			[SCxRDR]	= { 0x0a,  8 },
 204			[SCFCR]		= { 0x0c,  8 },
 205			[SCFDR]		= { 0x0e, 16 },
 206		},
 207		.fifosize = 1,
 208		.overrun_reg = SCxSR,
 209		.overrun_mask = SCI_ORER,
 210		.sampling_rate_mask = SCI_SR(32),
 211		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 212		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 213	},
 214
 215	/*
 216	 * Common SCIFA definitions.
 217	 */
 218	[SCIx_SCIFA_REGTYPE] = {
 219		.regs = {
 220			[SCSMR]		= { 0x00, 16 },
 221			[SCBRR]		= { 0x04,  8 },
 222			[SCSCR]		= { 0x08, 16 },
 223			[SCxTDR]	= { 0x20,  8 },
 224			[SCxSR]		= { 0x14, 16 },
 225			[SCxRDR]	= { 0x24,  8 },
 226			[SCFCR]		= { 0x18, 16 },
 227			[SCFDR]		= { 0x1c, 16 },
 228			[SCPCR]		= { 0x30, 16 },
 229			[SCPDR]		= { 0x34, 16 },
 230		},
 231		.fifosize = 64,
 232		.overrun_reg = SCxSR,
 233		.overrun_mask = SCIFA_ORER,
 234		.sampling_rate_mask = SCI_SR_SCIFAB,
 235		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 236		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 237	},
 238
 239	/*
 240	 * Common SCIFB definitions.
 241	 */
 242	[SCIx_SCIFB_REGTYPE] = {
 243		.regs = {
 244			[SCSMR]		= { 0x00, 16 },
 245			[SCBRR]		= { 0x04,  8 },
 246			[SCSCR]		= { 0x08, 16 },
 247			[SCxTDR]	= { 0x40,  8 },
 248			[SCxSR]		= { 0x14, 16 },
 249			[SCxRDR]	= { 0x60,  8 },
 250			[SCFCR]		= { 0x18, 16 },
 251			[SCTFDR]	= { 0x38, 16 },
 252			[SCRFDR]	= { 0x3c, 16 },
 253			[SCPCR]		= { 0x30, 16 },
 254			[SCPDR]		= { 0x34, 16 },
 255		},
 256		.fifosize = 256,
 257		.overrun_reg = SCxSR,
 258		.overrun_mask = SCIFA_ORER,
 259		.sampling_rate_mask = SCI_SR_SCIFAB,
 260		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 261		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 262	},
 263
 264	/*
 265	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 269		.regs = {
 270			[SCSMR]		= { 0x00, 16 },
 271			[SCBRR]		= { 0x04,  8 },
 272			[SCSCR]		= { 0x08, 16 },
 273			[SCxTDR]	= { 0x0c,  8 },
 274			[SCxSR]		= { 0x10, 16 },
 275			[SCxRDR]	= { 0x14,  8 },
 276			[SCFCR]		= { 0x18, 16 },
 277			[SCFDR]		= { 0x1c, 16 },
 278			[SCSPTR]	= { 0x20, 16 },
 279			[SCLSR]		= { 0x24, 16 },
 280		},
 281		.fifosize = 16,
 282		.overrun_reg = SCLSR,
 283		.overrun_mask = SCLSR_ORER,
 284		.sampling_rate_mask = SCI_SR(32),
 285		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 286		.error_clear = SCIF_ERROR_CLEAR,
 287	},
 288
 289	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290	 * Common SH-3 SCIF definitions.
 291	 */
 292	[SCIx_SH3_SCIF_REGTYPE] = {
 293		.regs = {
 294			[SCSMR]		= { 0x00,  8 },
 295			[SCBRR]		= { 0x02,  8 },
 296			[SCSCR]		= { 0x04,  8 },
 297			[SCxTDR]	= { 0x06,  8 },
 298			[SCxSR]		= { 0x08, 16 },
 299			[SCxRDR]	= { 0x0a,  8 },
 300			[SCFCR]		= { 0x0c,  8 },
 301			[SCFDR]		= { 0x0e, 16 },
 302		},
 303		.fifosize = 16,
 304		.overrun_reg = SCLSR,
 305		.overrun_mask = SCLSR_ORER,
 306		.sampling_rate_mask = SCI_SR(32),
 307		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 308		.error_clear = SCIF_ERROR_CLEAR,
 309	},
 310
 311	/*
 312	 * Common SH-4(A) SCIF(B) definitions.
 313	 */
 314	[SCIx_SH4_SCIF_REGTYPE] = {
 315		.regs = {
 316			[SCSMR]		= { 0x00, 16 },
 317			[SCBRR]		= { 0x04,  8 },
 318			[SCSCR]		= { 0x08, 16 },
 319			[SCxTDR]	= { 0x0c,  8 },
 320			[SCxSR]		= { 0x10, 16 },
 321			[SCxRDR]	= { 0x14,  8 },
 322			[SCFCR]		= { 0x18, 16 },
 323			[SCFDR]		= { 0x1c, 16 },
 324			[SCSPTR]	= { 0x20, 16 },
 325			[SCLSR]		= { 0x24, 16 },
 326		},
 327		.fifosize = 16,
 328		.overrun_reg = SCLSR,
 329		.overrun_mask = SCLSR_ORER,
 330		.sampling_rate_mask = SCI_SR(32),
 331		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 332		.error_clear = SCIF_ERROR_CLEAR,
 333	},
 334
 335	/*
 336	 * Common SCIF definitions for ports with a Baud Rate Generator for
 337	 * External Clock (BRG).
 338	 */
 339	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 340		.regs = {
 341			[SCSMR]		= { 0x00, 16 },
 342			[SCBRR]		= { 0x04,  8 },
 343			[SCSCR]		= { 0x08, 16 },
 344			[SCxTDR]	= { 0x0c,  8 },
 345			[SCxSR]		= { 0x10, 16 },
 346			[SCxRDR]	= { 0x14,  8 },
 347			[SCFCR]		= { 0x18, 16 },
 348			[SCFDR]		= { 0x1c, 16 },
 349			[SCSPTR]	= { 0x20, 16 },
 350			[SCLSR]		= { 0x24, 16 },
 351			[SCDL]		= { 0x30, 16 },
 352			[SCCKS]		= { 0x34, 16 },
 353		},
 354		.fifosize = 16,
 355		.overrun_reg = SCLSR,
 356		.overrun_mask = SCLSR_ORER,
 357		.sampling_rate_mask = SCI_SR(32),
 358		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 359		.error_clear = SCIF_ERROR_CLEAR,
 360	},
 361
 362	/*
 363	 * Common HSCIF definitions.
 364	 */
 365	[SCIx_HSCIF_REGTYPE] = {
 366		.regs = {
 367			[SCSMR]		= { 0x00, 16 },
 368			[SCBRR]		= { 0x04,  8 },
 369			[SCSCR]		= { 0x08, 16 },
 370			[SCxTDR]	= { 0x0c,  8 },
 371			[SCxSR]		= { 0x10, 16 },
 372			[SCxRDR]	= { 0x14,  8 },
 373			[SCFCR]		= { 0x18, 16 },
 374			[SCFDR]		= { 0x1c, 16 },
 375			[SCSPTR]	= { 0x20, 16 },
 376			[SCLSR]		= { 0x24, 16 },
 377			[HSSRR]		= { 0x40, 16 },
 378			[SCDL]		= { 0x30, 16 },
 379			[SCCKS]		= { 0x34, 16 },
 380			[HSRTRGR]	= { 0x54, 16 },
 381			[HSTTRGR]	= { 0x58, 16 },
 382		},
 383		.fifosize = 128,
 384		.overrun_reg = SCLSR,
 385		.overrun_mask = SCLSR_ORER,
 386		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 387		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 388		.error_clear = SCIF_ERROR_CLEAR,
 389	},
 390
 391	/*
 392	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 393	 * register.
 394	 */
 395	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 396		.regs = {
 397			[SCSMR]		= { 0x00, 16 },
 398			[SCBRR]		= { 0x04,  8 },
 399			[SCSCR]		= { 0x08, 16 },
 400			[SCxTDR]	= { 0x0c,  8 },
 401			[SCxSR]		= { 0x10, 16 },
 402			[SCxRDR]	= { 0x14,  8 },
 403			[SCFCR]		= { 0x18, 16 },
 404			[SCFDR]		= { 0x1c, 16 },
 405			[SCLSR]		= { 0x24, 16 },
 406		},
 407		.fifosize = 16,
 408		.overrun_reg = SCLSR,
 409		.overrun_mask = SCLSR_ORER,
 410		.sampling_rate_mask = SCI_SR(32),
 411		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 412		.error_clear = SCIF_ERROR_CLEAR,
 413	},
 414
 415	/*
 416	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 417	 * count registers.
 418	 */
 419	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 420		.regs = {
 421			[SCSMR]		= { 0x00, 16 },
 422			[SCBRR]		= { 0x04,  8 },
 423			[SCSCR]		= { 0x08, 16 },
 424			[SCxTDR]	= { 0x0c,  8 },
 425			[SCxSR]		= { 0x10, 16 },
 426			[SCxRDR]	= { 0x14,  8 },
 427			[SCFCR]		= { 0x18, 16 },
 428			[SCFDR]		= { 0x1c, 16 },
 429			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 430			[SCRFDR]	= { 0x20, 16 },
 431			[SCSPTR]	= { 0x24, 16 },
 432			[SCLSR]		= { 0x28, 16 },
 433		},
 434		.fifosize = 16,
 435		.overrun_reg = SCLSR,
 436		.overrun_mask = SCLSR_ORER,
 437		.sampling_rate_mask = SCI_SR(32),
 438		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 439		.error_clear = SCIF_ERROR_CLEAR,
 440	},
 441
 442	/*
 443	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 444	 * registers.
 445	 */
 446	[SCIx_SH7705_SCIF_REGTYPE] = {
 447		.regs = {
 448			[SCSMR]		= { 0x00, 16 },
 449			[SCBRR]		= { 0x04,  8 },
 450			[SCSCR]		= { 0x08, 16 },
 451			[SCxTDR]	= { 0x20,  8 },
 452			[SCxSR]		= { 0x14, 16 },
 453			[SCxRDR]	= { 0x24,  8 },
 454			[SCFCR]		= { 0x18, 16 },
 455			[SCFDR]		= { 0x1c, 16 },
 456		},
 457		.fifosize = 64,
 458		.overrun_reg = SCxSR,
 459		.overrun_mask = SCIFA_ORER,
 460		.sampling_rate_mask = SCI_SR(16),
 461		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 462		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 463	},
 464};
 465
 466#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 467
 468/*
 469 * The "offset" here is rather misleading, in that it refers to an enum
 470 * value relative to the port mapping rather than the fixed offset
 471 * itself, which needs to be manually retrieved from the platform's
 472 * register map for the given port.
 473 */
 474static unsigned int sci_serial_in(struct uart_port *p, int offset)
 475{
 476	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 477
 478	if (reg->size == 8)
 479		return ioread8(p->membase + (reg->offset << p->regshift));
 480	else if (reg->size == 16)
 481		return ioread16(p->membase + (reg->offset << p->regshift));
 482	else
 483		WARN(1, "Invalid register access\n");
 484
 485	return 0;
 486}
 487
 488static void sci_serial_out(struct uart_port *p, int offset, int value)
 489{
 490	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 491
 492	if (reg->size == 8)
 493		iowrite8(value, p->membase + (reg->offset << p->regshift));
 494	else if (reg->size == 16)
 495		iowrite16(value, p->membase + (reg->offset << p->regshift));
 496	else
 497		WARN(1, "Invalid register access\n");
 498}
 499
 500static void sci_port_enable(struct sci_port *sci_port)
 501{
 502	unsigned int i;
 503
 504	if (!sci_port->port.dev)
 505		return;
 506
 507	pm_runtime_get_sync(sci_port->port.dev);
 508
 509	for (i = 0; i < SCI_NUM_CLKS; i++) {
 510		clk_prepare_enable(sci_port->clks[i]);
 511		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 512	}
 513	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 514}
 515
 516static void sci_port_disable(struct sci_port *sci_port)
 517{
 518	unsigned int i;
 519
 520	if (!sci_port->port.dev)
 521		return;
 522
 523	for (i = SCI_NUM_CLKS; i-- > 0; )
 524		clk_disable_unprepare(sci_port->clks[i]);
 525
 526	pm_runtime_put_sync(sci_port->port.dev);
 527}
 528
 529static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 530{
 531	/*
 532	 * Not all ports (such as SCIFA) will support REIE. Rather than
 533	 * special-casing the port type, we check the port initialization
 534	 * IRQ enable mask to see whether the IRQ is desired at all. If
 535	 * it's unset, it's logically inferred that there's no point in
 536	 * testing for it.
 537	 */
 538	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 539}
 540
 541static void sci_start_tx(struct uart_port *port)
 542{
 543	struct sci_port *s = to_sci_port(port);
 544	unsigned short ctrl;
 545
 546#ifdef CONFIG_SERIAL_SH_SCI_DMA
 547	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 548		u16 new, scr = serial_port_in(port, SCSCR);
 549		if (s->chan_tx)
 550			new = scr | SCSCR_TDRQE;
 551		else
 552			new = scr & ~SCSCR_TDRQE;
 553		if (new != scr)
 554			serial_port_out(port, SCSCR, new);
 555	}
 556
 557	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 558	    dma_submit_error(s->cookie_tx)) {
 559		s->cookie_tx = 0;
 560		schedule_work(&s->work_tx);
 561	}
 562#endif
 563
 564	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 565		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 566		ctrl = serial_port_in(port, SCSCR);
 567		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 568	}
 569}
 570
 571static void sci_stop_tx(struct uart_port *port)
 572{
 573	unsigned short ctrl;
 574
 575	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 576	ctrl = serial_port_in(port, SCSCR);
 577
 578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 579		ctrl &= ~SCSCR_TDRQE;
 580
 581	ctrl &= ~SCSCR_TIE;
 582
 583	serial_port_out(port, SCSCR, ctrl);
 
 
 
 
 
 
 
 
 584}
 585
 586static void sci_start_rx(struct uart_port *port)
 587{
 588	unsigned short ctrl;
 589
 590	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 591
 592	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 593		ctrl &= ~SCSCR_RDRQE;
 594
 595	serial_port_out(port, SCSCR, ctrl);
 596}
 597
 598static void sci_stop_rx(struct uart_port *port)
 599{
 600	unsigned short ctrl;
 601
 602	ctrl = serial_port_in(port, SCSCR);
 603
 604	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 605		ctrl &= ~SCSCR_RDRQE;
 606
 607	ctrl &= ~port_rx_irq_mask(port);
 608
 609	serial_port_out(port, SCSCR, ctrl);
 610}
 611
 612static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 613{
 614	if (port->type == PORT_SCI) {
 615		/* Just store the mask */
 616		serial_port_out(port, SCxSR, mask);
 617	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 618		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 619		/* Only clear the status bits we want to clear */
 620		serial_port_out(port, SCxSR,
 621				serial_port_in(port, SCxSR) & mask);
 622	} else {
 623		/* Store the mask, clear parity/framing errors */
 624		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 625	}
 626}
 627
 628#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 629    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 630
 631#ifdef CONFIG_CONSOLE_POLL
 632static int sci_poll_get_char(struct uart_port *port)
 633{
 634	unsigned short status;
 635	int c;
 636
 637	do {
 638		status = serial_port_in(port, SCxSR);
 639		if (status & SCxSR_ERRORS(port)) {
 640			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 641			continue;
 642		}
 643		break;
 644	} while (1);
 645
 646	if (!(status & SCxSR_RDxF(port)))
 647		return NO_POLL_CHAR;
 648
 649	c = serial_port_in(port, SCxRDR);
 650
 651	/* Dummy read */
 652	serial_port_in(port, SCxSR);
 653	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 654
 655	return c;
 656}
 657#endif
 658
 659static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 660{
 661	unsigned short status;
 662
 663	do {
 664		status = serial_port_in(port, SCxSR);
 665	} while (!(status & SCxSR_TDxE(port)));
 666
 667	serial_port_out(port, SCxTDR, c);
 668	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 669}
 670#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 671	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 672
 673static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 674{
 675	struct sci_port *s = to_sci_port(port);
 676
 677	/*
 678	 * Use port-specific handler if provided.
 679	 */
 680	if (s->cfg->ops && s->cfg->ops->init_pins) {
 681		s->cfg->ops->init_pins(port, cflag);
 682		return;
 683	}
 684
 685	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 686		u16 data = serial_port_in(port, SCPDR);
 687		u16 ctrl = serial_port_in(port, SCPCR);
 688
 689		/* Enable RXD and TXD pin functions */
 690		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 691		if (to_sci_port(port)->has_rtscts) {
 692			/* RTS# is output, active low, unless autorts */
 693			if (!(port->mctrl & TIOCM_RTS)) {
 694				ctrl |= SCPCR_RTSC;
 695				data |= SCPDR_RTSD;
 696			} else if (!s->autorts) {
 697				ctrl |= SCPCR_RTSC;
 698				data &= ~SCPDR_RTSD;
 699			} else {
 700				/* Enable RTS# pin function */
 701				ctrl &= ~SCPCR_RTSC;
 702			}
 703			/* Enable CTS# pin function */
 704			ctrl &= ~SCPCR_CTSC;
 705		}
 706		serial_port_out(port, SCPDR, data);
 707		serial_port_out(port, SCPCR, ctrl);
 708	} else if (sci_getreg(port, SCSPTR)->size) {
 709		u16 status = serial_port_in(port, SCSPTR);
 710
 711		/* RTS# is always output; and active low, unless autorts */
 712		status |= SCSPTR_RTSIO;
 713		if (!(port->mctrl & TIOCM_RTS))
 714			status |= SCSPTR_RTSDT;
 715		else if (!s->autorts)
 716			status &= ~SCSPTR_RTSDT;
 717		/* CTS# and SCK are inputs */
 718		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 719		serial_port_out(port, SCSPTR, status);
 720	}
 721}
 722
 723static int sci_txfill(struct uart_port *port)
 724{
 725	struct sci_port *s = to_sci_port(port);
 726	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 727	const struct plat_sci_reg *reg;
 728
 729	reg = sci_getreg(port, SCTFDR);
 730	if (reg->size)
 731		return serial_port_in(port, SCTFDR) & fifo_mask;
 732
 733	reg = sci_getreg(port, SCFDR);
 734	if (reg->size)
 735		return serial_port_in(port, SCFDR) >> 8;
 736
 737	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 738}
 739
 740static int sci_txroom(struct uart_port *port)
 741{
 742	return port->fifosize - sci_txfill(port);
 743}
 744
 745static int sci_rxfill(struct uart_port *port)
 746{
 747	struct sci_port *s = to_sci_port(port);
 748	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 749	const struct plat_sci_reg *reg;
 750
 751	reg = sci_getreg(port, SCRFDR);
 752	if (reg->size)
 753		return serial_port_in(port, SCRFDR) & fifo_mask;
 754
 755	reg = sci_getreg(port, SCFDR);
 756	if (reg->size)
 757		return serial_port_in(port, SCFDR) & fifo_mask;
 758
 759	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 760}
 761
 762/* ********************************************************************** *
 763 *                   the interrupt related routines                       *
 764 * ********************************************************************** */
 765
 766static void sci_transmit_chars(struct uart_port *port)
 767{
 768	struct circ_buf *xmit = &port->state->xmit;
 769	unsigned int stopped = uart_tx_stopped(port);
 770	unsigned short status;
 771	unsigned short ctrl;
 772	int count;
 773
 774	status = serial_port_in(port, SCxSR);
 775	if (!(status & SCxSR_TDxE(port))) {
 776		ctrl = serial_port_in(port, SCSCR);
 777		if (uart_circ_empty(xmit))
 778			ctrl &= ~SCSCR_TIE;
 779		else
 780			ctrl |= SCSCR_TIE;
 781		serial_port_out(port, SCSCR, ctrl);
 782		return;
 783	}
 784
 785	count = sci_txroom(port);
 786
 787	do {
 788		unsigned char c;
 789
 790		if (port->x_char) {
 791			c = port->x_char;
 792			port->x_char = 0;
 793		} else if (!uart_circ_empty(xmit) && !stopped) {
 794			c = xmit->buf[xmit->tail];
 795			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 796		} else {
 797			break;
 798		}
 799
 800		serial_port_out(port, SCxTDR, c);
 801
 802		port->icount.tx++;
 803	} while (--count > 0);
 804
 805	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 806
 807	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 808		uart_write_wakeup(port);
 809	if (uart_circ_empty(xmit)) {
 810		sci_stop_tx(port);
 811	} else {
 812		ctrl = serial_port_in(port, SCSCR);
 813
 814		if (port->type != PORT_SCI) {
 815			serial_port_in(port, SCxSR); /* Dummy read */
 816			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 817		}
 818
 819		ctrl |= SCSCR_TIE;
 820		serial_port_out(port, SCSCR, ctrl);
 821	}
 822}
 823
 824/* On SH3, SCIF may read end-of-break as a space->mark char */
 825#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 826
 827static void sci_receive_chars(struct uart_port *port)
 828{
 829	struct tty_port *tport = &port->state->port;
 830	int i, count, copied = 0;
 831	unsigned short status;
 832	unsigned char flag;
 833
 834	status = serial_port_in(port, SCxSR);
 835	if (!(status & SCxSR_RDxF(port)))
 836		return;
 837
 838	while (1) {
 839		/* Don't copy more bytes than there is room for in the buffer */
 840		count = tty_buffer_request_room(tport, sci_rxfill(port));
 841
 842		/* If for any reason we can't copy more data, we're done! */
 843		if (count == 0)
 844			break;
 845
 846		if (port->type == PORT_SCI) {
 847			char c = serial_port_in(port, SCxRDR);
 848			if (uart_handle_sysrq_char(port, c))
 849				count = 0;
 850			else
 851				tty_insert_flip_char(tport, c, TTY_NORMAL);
 852		} else {
 853			for (i = 0; i < count; i++) {
 854				char c = serial_port_in(port, SCxRDR);
 855
 856				status = serial_port_in(port, SCxSR);
 
 
 
 
 
 
 
 857				if (uart_handle_sysrq_char(port, c)) {
 858					count--; i--;
 859					continue;
 860				}
 861
 862				/* Store data and status */
 863				if (status & SCxSR_FER(port)) {
 864					flag = TTY_FRAME;
 865					port->icount.frame++;
 866					dev_notice(port->dev, "frame error\n");
 867				} else if (status & SCxSR_PER(port)) {
 868					flag = TTY_PARITY;
 869					port->icount.parity++;
 870					dev_notice(port->dev, "parity error\n");
 871				} else
 872					flag = TTY_NORMAL;
 873
 874				tty_insert_flip_char(tport, c, flag);
 875			}
 876		}
 877
 878		serial_port_in(port, SCxSR); /* dummy read */
 879		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 880
 881		copied += count;
 882		port->icount.rx += count;
 883	}
 884
 885	if (copied) {
 886		/* Tell the rest of the system the news. New characters! */
 887		tty_flip_buffer_push(tport);
 888	} else {
 889		/* TTY buffers full; read from RX reg to prevent lockup */
 890		serial_port_in(port, SCxRDR);
 891		serial_port_in(port, SCxSR); /* dummy read */
 892		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 893	}
 894}
 895
 896static int sci_handle_errors(struct uart_port *port)
 897{
 898	int copied = 0;
 899	unsigned short status = serial_port_in(port, SCxSR);
 900	struct tty_port *tport = &port->state->port;
 901	struct sci_port *s = to_sci_port(port);
 902
 903	/* Handle overruns */
 904	if (status & s->params->overrun_mask) {
 905		port->icount.overrun++;
 906
 907		/* overrun error */
 908		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 909			copied++;
 910
 911		dev_notice(port->dev, "overrun error\n");
 912	}
 913
 914	if (status & SCxSR_FER(port)) {
 915		/* frame error */
 916		port->icount.frame++;
 917
 918		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 919			copied++;
 920
 921		dev_notice(port->dev, "frame error\n");
 922	}
 923
 924	if (status & SCxSR_PER(port)) {
 925		/* parity error */
 926		port->icount.parity++;
 927
 928		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 929			copied++;
 930
 931		dev_notice(port->dev, "parity error\n");
 932	}
 933
 934	if (copied)
 935		tty_flip_buffer_push(tport);
 936
 937	return copied;
 938}
 939
 940static int sci_handle_fifo_overrun(struct uart_port *port)
 941{
 942	struct tty_port *tport = &port->state->port;
 943	struct sci_port *s = to_sci_port(port);
 944	const struct plat_sci_reg *reg;
 945	int copied = 0;
 946	u16 status;
 947
 948	reg = sci_getreg(port, s->params->overrun_reg);
 949	if (!reg->size)
 950		return 0;
 951
 952	status = serial_port_in(port, s->params->overrun_reg);
 953	if (status & s->params->overrun_mask) {
 954		status &= ~s->params->overrun_mask;
 955		serial_port_out(port, s->params->overrun_reg, status);
 956
 957		port->icount.overrun++;
 958
 959		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 960		tty_flip_buffer_push(tport);
 961
 962		dev_dbg(port->dev, "overrun error\n");
 963		copied++;
 964	}
 965
 966	return copied;
 967}
 968
 969static int sci_handle_breaks(struct uart_port *port)
 970{
 971	int copied = 0;
 972	unsigned short status = serial_port_in(port, SCxSR);
 973	struct tty_port *tport = &port->state->port;
 974
 975	if (uart_handle_break(port))
 976		return 0;
 977
 978	if (status & SCxSR_BRK(port)) {
 979		port->icount.brk++;
 980
 981		/* Notify of BREAK */
 982		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
 983			copied++;
 984
 985		dev_dbg(port->dev, "BREAK detected\n");
 986	}
 987
 988	if (copied)
 989		tty_flip_buffer_push(tport);
 990
 991	copied += sci_handle_fifo_overrun(port);
 992
 993	return copied;
 994}
 995
 996static int scif_set_rtrg(struct uart_port *port, int rx_trig)
 997{
 998	unsigned int bits;
 999
 
 
1000	if (rx_trig < 1)
1001		rx_trig = 1;
1002	if (rx_trig >= port->fifosize)
1003		rx_trig = port->fifosize;
1004
1005	/* HSCIF can be set to an arbitrary level. */
1006	if (sci_getreg(port, HSRTRGR)->size) {
1007		serial_port_out(port, HSRTRGR, rx_trig);
1008		return rx_trig;
1009	}
1010
1011	switch (port->type) {
1012	case PORT_SCIF:
1013		if (rx_trig < 4) {
1014			bits = 0;
1015			rx_trig = 1;
1016		} else if (rx_trig < 8) {
1017			bits = SCFCR_RTRG0;
1018			rx_trig = 4;
1019		} else if (rx_trig < 14) {
1020			bits = SCFCR_RTRG1;
1021			rx_trig = 8;
1022		} else {
1023			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1024			rx_trig = 14;
1025		}
1026		break;
1027	case PORT_SCIFA:
1028	case PORT_SCIFB:
1029		if (rx_trig < 16) {
1030			bits = 0;
1031			rx_trig = 1;
1032		} else if (rx_trig < 32) {
1033			bits = SCFCR_RTRG0;
1034			rx_trig = 16;
1035		} else if (rx_trig < 48) {
1036			bits = SCFCR_RTRG1;
1037			rx_trig = 32;
1038		} else {
1039			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1040			rx_trig = 48;
1041		}
1042		break;
1043	default:
1044		WARN(1, "unknown FIFO configuration");
1045		return 1;
1046	}
1047
1048	serial_port_out(port, SCFCR,
1049		(serial_port_in(port, SCFCR) &
1050		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1051
1052	return rx_trig;
1053}
1054
1055static int scif_rtrg_enabled(struct uart_port *port)
1056{
1057	if (sci_getreg(port, HSRTRGR)->size)
1058		return serial_port_in(port, HSRTRGR) != 0;
1059	else
1060		return (serial_port_in(port, SCFCR) &
1061			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1062}
1063
1064static void rx_fifo_timer_fn(struct timer_list *t)
1065{
1066	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1067	struct uart_port *port = &s->port;
1068
1069	dev_dbg(port->dev, "Rx timed out\n");
1070	scif_set_rtrg(port, 1);
1071}
1072
1073static ssize_t rx_trigger_show(struct device *dev,
1074			       struct device_attribute *attr,
1075			       char *buf)
1076{
1077	struct uart_port *port = dev_get_drvdata(dev);
1078	struct sci_port *sci = to_sci_port(port);
1079
1080	return sprintf(buf, "%d\n", sci->rx_trigger);
1081}
1082
1083static ssize_t rx_trigger_store(struct device *dev,
1084				struct device_attribute *attr,
1085				const char *buf,
1086				size_t count)
1087{
1088	struct uart_port *port = dev_get_drvdata(dev);
1089	struct sci_port *sci = to_sci_port(port);
1090	int ret;
1091	long r;
1092
1093	ret = kstrtol(buf, 0, &r);
1094	if (ret)
1095		return ret;
1096
1097	sci->rx_trigger = scif_set_rtrg(port, r);
1098	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1099		scif_set_rtrg(port, 1);
1100
1101	return count;
1102}
1103
1104static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1105
1106static ssize_t rx_fifo_timeout_show(struct device *dev,
1107			       struct device_attribute *attr,
1108			       char *buf)
1109{
1110	struct uart_port *port = dev_get_drvdata(dev);
1111	struct sci_port *sci = to_sci_port(port);
1112	int v;
1113
1114	if (port->type == PORT_HSCIF)
1115		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1116	else
1117		v = sci->rx_fifo_timeout;
1118
1119	return sprintf(buf, "%d\n", v);
1120}
1121
1122static ssize_t rx_fifo_timeout_store(struct device *dev,
1123				struct device_attribute *attr,
1124				const char *buf,
1125				size_t count)
1126{
1127	struct uart_port *port = dev_get_drvdata(dev);
1128	struct sci_port *sci = to_sci_port(port);
1129	int ret;
1130	long r;
1131
1132	ret = kstrtol(buf, 0, &r);
1133	if (ret)
1134		return ret;
1135
1136	if (port->type == PORT_HSCIF) {
1137		if (r < 0 || r > 3)
1138			return -EINVAL;
1139		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1140	} else {
1141		sci->rx_fifo_timeout = r;
1142		scif_set_rtrg(port, 1);
1143		if (r > 0)
1144			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1145	}
1146
1147	return count;
1148}
1149
1150static DEVICE_ATTR_RW(rx_fifo_timeout);
1151
1152
1153#ifdef CONFIG_SERIAL_SH_SCI_DMA
1154static void sci_dma_tx_complete(void *arg)
1155{
1156	struct sci_port *s = arg;
1157	struct uart_port *port = &s->port;
1158	struct circ_buf *xmit = &port->state->xmit;
1159	unsigned long flags;
1160
1161	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1162
1163	spin_lock_irqsave(&port->lock, flags);
1164
1165	xmit->tail += s->tx_dma_len;
1166	xmit->tail &= UART_XMIT_SIZE - 1;
1167
1168	port->icount.tx += s->tx_dma_len;
1169
1170	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1171		uart_write_wakeup(port);
1172
1173	if (!uart_circ_empty(xmit)) {
1174		s->cookie_tx = 0;
1175		schedule_work(&s->work_tx);
1176	} else {
1177		s->cookie_tx = -EINVAL;
1178		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1179			u16 ctrl = serial_port_in(port, SCSCR);
1180			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1181		}
1182	}
1183
1184	spin_unlock_irqrestore(&port->lock, flags);
1185}
1186
1187/* Locking: called with port lock held */
1188static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1189{
1190	struct uart_port *port = &s->port;
1191	struct tty_port *tport = &port->state->port;
1192	int copied;
1193
1194	copied = tty_insert_flip_string(tport, buf, count);
1195	if (copied < count)
1196		port->icount.buf_overrun++;
1197
1198	port->icount.rx += copied;
1199
1200	return copied;
1201}
1202
1203static int sci_dma_rx_find_active(struct sci_port *s)
1204{
1205	unsigned int i;
1206
1207	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1208		if (s->active_rx == s->cookie_rx[i])
1209			return i;
1210
1211	return -1;
1212}
1213
1214static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1215{
1216	struct dma_chan *chan = s->chan_rx;
1217	struct uart_port *port = &s->port;
1218	unsigned long flags;
1219
1220	spin_lock_irqsave(&port->lock, flags);
1221	s->chan_rx = NULL;
1222	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1223	spin_unlock_irqrestore(&port->lock, flags);
1224	dmaengine_terminate_all(chan);
 
 
 
 
 
 
 
 
 
1225	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1226			  sg_dma_address(&s->sg_rx[0]));
1227	dma_release_channel(chan);
1228	if (enable_pio) {
1229		spin_lock_irqsave(&port->lock, flags);
1230		sci_start_rx(port);
1231		spin_unlock_irqrestore(&port->lock, flags);
1232	}
1233}
1234
1235static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1236{
1237	long sec = usec / 1000000;
1238	long nsec = (usec % 1000000) * 1000;
1239	ktime_t t = ktime_set(sec, nsec);
1240
1241	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1242}
1243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244static void sci_dma_rx_complete(void *arg)
1245{
1246	struct sci_port *s = arg;
1247	struct dma_chan *chan = s->chan_rx;
1248	struct uart_port *port = &s->port;
1249	struct dma_async_tx_descriptor *desc;
1250	unsigned long flags;
1251	int active, count = 0;
1252
1253	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1254		s->active_rx);
1255
1256	spin_lock_irqsave(&port->lock, flags);
1257
1258	active = sci_dma_rx_find_active(s);
1259	if (active >= 0)
1260		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1261
1262	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1263
1264	if (count)
1265		tty_flip_buffer_push(&port->state->port);
1266
1267	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1268				       DMA_DEV_TO_MEM,
1269				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1270	if (!desc)
1271		goto fail;
1272
1273	desc->callback = sci_dma_rx_complete;
1274	desc->callback_param = s;
1275	s->cookie_rx[active] = dmaengine_submit(desc);
1276	if (dma_submit_error(s->cookie_rx[active]))
1277		goto fail;
1278
1279	s->active_rx = s->cookie_rx[!active];
1280
1281	dma_async_issue_pending(chan);
1282
1283	spin_unlock_irqrestore(&port->lock, flags);
1284	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1285		__func__, s->cookie_rx[active], active, s->active_rx);
1286	return;
1287
1288fail:
1289	spin_unlock_irqrestore(&port->lock, flags);
1290	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1291	sci_rx_dma_release(s, true);
 
 
 
 
 
1292}
1293
1294static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1295{
1296	struct dma_chan *chan = s->chan_tx;
1297	struct uart_port *port = &s->port;
1298	unsigned long flags;
1299
1300	spin_lock_irqsave(&port->lock, flags);
1301	s->chan_tx = NULL;
1302	s->cookie_tx = -EINVAL;
1303	spin_unlock_irqrestore(&port->lock, flags);
1304	dmaengine_terminate_all(chan);
1305	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1306			 DMA_TO_DEVICE);
1307	dma_release_channel(chan);
1308	if (enable_pio) {
1309		spin_lock_irqsave(&port->lock, flags);
1310		sci_start_tx(port);
1311		spin_unlock_irqrestore(&port->lock, flags);
1312	}
1313}
1314
1315static void sci_submit_rx(struct sci_port *s)
1316{
1317	struct dma_chan *chan = s->chan_rx;
 
 
1318	int i;
1319
1320	for (i = 0; i < 2; i++) {
1321		struct scatterlist *sg = &s->sg_rx[i];
1322		struct dma_async_tx_descriptor *desc;
1323
1324		desc = dmaengine_prep_slave_sg(chan,
1325			sg, 1, DMA_DEV_TO_MEM,
1326			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1327		if (!desc)
1328			goto fail;
1329
1330		desc->callback = sci_dma_rx_complete;
1331		desc->callback_param = s;
1332		s->cookie_rx[i] = dmaengine_submit(desc);
1333		if (dma_submit_error(s->cookie_rx[i]))
1334			goto fail;
1335
1336	}
1337
1338	s->active_rx = s->cookie_rx[0];
1339
1340	dma_async_issue_pending(chan);
1341	return;
1342
1343fail:
 
 
 
1344	if (i)
1345		dmaengine_terminate_all(chan);
1346	for (i = 0; i < 2; i++)
1347		s->cookie_rx[i] = -EINVAL;
1348	s->active_rx = -EINVAL;
1349	sci_rx_dma_release(s, true);
 
1350}
1351
1352static void work_fn_tx(struct work_struct *work)
1353{
1354	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1355	struct dma_async_tx_descriptor *desc;
1356	struct dma_chan *chan = s->chan_tx;
1357	struct uart_port *port = &s->port;
1358	struct circ_buf *xmit = &port->state->xmit;
 
1359	dma_addr_t buf;
 
1360
1361	/*
1362	 * DMA is idle now.
1363	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1364	 * offsets and lengths. Since it is a circular buffer, we have to
1365	 * transmit till the end, and then the rest. Take the port lock to get a
1366	 * consistent xmit buffer state.
1367	 */
1368	spin_lock_irq(&port->lock);
1369	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
 
 
1370	s->tx_dma_len = min_t(unsigned int,
1371		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1372		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1373	spin_unlock_irq(&port->lock);
 
 
 
 
1374
1375	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1376					   DMA_MEM_TO_DEV,
1377					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1378	if (!desc) {
 
1379		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1380		/* switch to PIO */
1381		sci_tx_dma_release(s, true);
1382		return;
1383	}
1384
1385	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1386				   DMA_TO_DEVICE);
1387
1388	spin_lock_irq(&port->lock);
1389	desc->callback = sci_dma_tx_complete;
1390	desc->callback_param = s;
1391	spin_unlock_irq(&port->lock);
1392	s->cookie_tx = dmaengine_submit(desc);
1393	if (dma_submit_error(s->cookie_tx)) {
 
1394		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1395		/* switch to PIO */
1396		sci_tx_dma_release(s, true);
1397		return;
1398	}
1399
 
1400	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1401		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1402
1403	dma_async_issue_pending(chan);
 
 
 
 
 
 
 
 
1404}
1405
1406static enum hrtimer_restart rx_timer_fn(struct hrtimer *t)
1407{
1408	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1409	struct dma_chan *chan = s->chan_rx;
1410	struct uart_port *port = &s->port;
1411	struct dma_tx_state state;
1412	enum dma_status status;
1413	unsigned long flags;
1414	unsigned int read;
1415	int active, count;
1416	u16 scr;
1417
1418	dev_dbg(port->dev, "DMA Rx timed out\n");
1419
1420	spin_lock_irqsave(&port->lock, flags);
1421
1422	active = sci_dma_rx_find_active(s);
1423	if (active < 0) {
1424		spin_unlock_irqrestore(&port->lock, flags);
1425		return HRTIMER_NORESTART;
1426	}
1427
1428	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1429	if (status == DMA_COMPLETE) {
1430		spin_unlock_irqrestore(&port->lock, flags);
1431		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1432			s->active_rx, active);
1433
1434		/* Let packet complete handler take care of the packet */
1435		return HRTIMER_NORESTART;
1436	}
1437
1438	dmaengine_pause(chan);
1439
1440	/*
1441	 * sometimes DMA transfer doesn't stop even if it is stopped and
1442	 * data keeps on coming until transaction is complete so check
1443	 * for DMA_COMPLETE again
1444	 * Let packet complete handler take care of the packet
1445	 */
1446	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1447	if (status == DMA_COMPLETE) {
1448		spin_unlock_irqrestore(&port->lock, flags);
1449		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1450		return HRTIMER_NORESTART;
1451	}
1452
1453	/* Handle incomplete DMA receive */
1454	dmaengine_terminate_all(s->chan_rx);
1455	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1456
1457	if (read) {
1458		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1459		if (count)
1460			tty_flip_buffer_push(&port->state->port);
1461	}
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1464		sci_submit_rx(s);
1465
1466	/* Direct new serial port interrupts back to CPU */
1467	scr = serial_port_in(port, SCSCR);
1468	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1469		scr &= ~SCSCR_RDRQE;
1470		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1471	}
1472	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1473
1474	spin_unlock_irqrestore(&port->lock, flags);
1475
1476	return HRTIMER_NORESTART;
1477}
1478
1479static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1480					     enum dma_transfer_direction dir)
1481{
1482	struct dma_chan *chan;
1483	struct dma_slave_config cfg;
1484	int ret;
1485
1486	chan = dma_request_slave_channel(port->dev,
1487					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1488	if (!chan) {
1489		dev_warn(port->dev, "dma_request_slave_channel failed\n");
1490		return NULL;
1491	}
1492
1493	memset(&cfg, 0, sizeof(cfg));
1494	cfg.direction = dir;
1495	if (dir == DMA_MEM_TO_DEV) {
1496		cfg.dst_addr = port->mapbase +
1497			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1498		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1499	} else {
1500		cfg.src_addr = port->mapbase +
1501			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1502		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1503	}
1504
1505	ret = dmaengine_slave_config(chan, &cfg);
1506	if (ret) {
1507		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1508		dma_release_channel(chan);
1509		return NULL;
1510	}
1511
1512	return chan;
1513}
1514
1515static void sci_request_dma(struct uart_port *port)
1516{
1517	struct sci_port *s = to_sci_port(port);
1518	struct dma_chan *chan;
1519
1520	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1521
 
 
 
 
 
 
 
1522	if (!port->dev->of_node)
1523		return;
1524
1525	s->cookie_tx = -EINVAL;
1526
1527	/*
1528	 * Don't request a dma channel if no channel was specified
1529	 * in the device tree.
1530	 */
1531	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1532		return;
1533
1534	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1535	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1536	if (chan) {
1537		s->chan_tx = chan;
1538		/* UART circular tx buffer is an aligned page. */
1539		s->tx_dma_addr = dma_map_single(chan->device->dev,
1540						port->state->xmit.buf,
1541						UART_XMIT_SIZE,
1542						DMA_TO_DEVICE);
1543		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1544			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1545			dma_release_channel(chan);
1546			s->chan_tx = NULL;
1547		} else {
1548			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1549				__func__, UART_XMIT_SIZE,
1550				port->state->xmit.buf, &s->tx_dma_addr);
1551		}
1552
1553		INIT_WORK(&s->work_tx, work_fn_tx);
 
 
1554	}
1555
1556	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1557	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1558	if (chan) {
1559		unsigned int i;
1560		dma_addr_t dma;
1561		void *buf;
1562
1563		s->chan_rx = chan;
1564
1565		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1566		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1567					 &dma, GFP_KERNEL);
1568		if (!buf) {
1569			dev_warn(port->dev,
1570				 "Failed to allocate Rx dma buffer, using PIO\n");
1571			dma_release_channel(chan);
1572			s->chan_rx = NULL;
1573			return;
1574		}
1575
1576		for (i = 0; i < 2; i++) {
1577			struct scatterlist *sg = &s->sg_rx[i];
1578
1579			sg_init_table(sg, 1);
1580			s->rx_buf[i] = buf;
1581			sg_dma_address(sg) = dma;
1582			sg_dma_len(sg) = s->buf_len_rx;
1583
1584			buf += s->buf_len_rx;
1585			dma += s->buf_len_rx;
1586		}
1587
1588		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1589		s->rx_timer.function = rx_timer_fn;
 
 
1590
1591		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1592			sci_submit_rx(s);
1593	}
1594}
1595
1596static void sci_free_dma(struct uart_port *port)
1597{
1598	struct sci_port *s = to_sci_port(port);
1599
1600	if (s->chan_tx)
1601		sci_tx_dma_release(s, false);
1602	if (s->chan_rx)
1603		sci_rx_dma_release(s, false);
1604}
1605
1606static void sci_flush_buffer(struct uart_port *port)
1607{
 
 
1608	/*
1609	 * In uart_flush_buffer(), the xmit circular buffer has just been
1610	 * cleared, so we have to reset tx_dma_len accordingly.
 
1611	 */
1612	to_sci_port(port)->tx_dma_len = 0;
 
 
 
 
1613}
1614#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1615static inline void sci_request_dma(struct uart_port *port)
1616{
1617}
1618
1619static inline void sci_free_dma(struct uart_port *port)
1620{
1621}
1622
1623#define sci_flush_buffer	NULL
1624#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1625
1626static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1627{
1628	struct uart_port *port = ptr;
1629	struct sci_port *s = to_sci_port(port);
1630
1631#ifdef CONFIG_SERIAL_SH_SCI_DMA
1632	if (s->chan_rx) {
1633		u16 scr = serial_port_in(port, SCSCR);
1634		u16 ssr = serial_port_in(port, SCxSR);
1635
1636		/* Disable future Rx interrupts */
1637		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1638			disable_irq_nosync(irq);
1639			scr |= SCSCR_RDRQE;
1640		} else {
 
 
 
1641			scr &= ~SCSCR_RIE;
1642			sci_submit_rx(s);
1643		}
1644		serial_port_out(port, SCSCR, scr);
1645		/* Clear current interrupt */
1646		serial_port_out(port, SCxSR,
1647				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1648		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1649			jiffies, s->rx_timeout);
1650		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1651
1652		return IRQ_HANDLED;
1653	}
 
 
1654#endif
1655
1656	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1657		if (!scif_rtrg_enabled(port))
1658			scif_set_rtrg(port, s->rx_trigger);
1659
1660		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1661			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1662	}
1663
1664	/* I think sci_receive_chars has to be called irrespective
1665	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1666	 * to be disabled?
1667	 */
1668	sci_receive_chars(ptr);
1669
1670	return IRQ_HANDLED;
1671}
1672
1673static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1674{
1675	struct uart_port *port = ptr;
1676	unsigned long flags;
1677
1678	spin_lock_irqsave(&port->lock, flags);
1679	sci_transmit_chars(port);
1680	spin_unlock_irqrestore(&port->lock, flags);
1681
1682	return IRQ_HANDLED;
1683}
1684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1686{
1687	struct uart_port *port = ptr;
1688	struct sci_port *s = to_sci_port(port);
1689
 
 
 
 
 
 
 
 
 
 
 
 
 
1690	/* Handle errors */
1691	if (port->type == PORT_SCI) {
1692		if (sci_handle_errors(port)) {
1693			/* discard character in rx buffer */
1694			serial_port_in(port, SCxSR);
1695			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1696		}
1697	} else {
1698		sci_handle_fifo_overrun(port);
1699		if (!s->chan_rx)
1700			sci_receive_chars(ptr);
1701	}
1702
1703	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1704
1705	/* Kick the transmission */
1706	if (!s->chan_tx)
1707		sci_tx_interrupt(irq, ptr);
1708
1709	return IRQ_HANDLED;
1710}
1711
1712static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1713{
1714	struct uart_port *port = ptr;
1715
1716	/* Handle BREAKs */
1717	sci_handle_breaks(port);
1718	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1719
1720	return IRQ_HANDLED;
1721}
1722
1723static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1724{
1725	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1726	struct uart_port *port = ptr;
1727	struct sci_port *s = to_sci_port(port);
1728	irqreturn_t ret = IRQ_NONE;
1729
1730	ssr_status = serial_port_in(port, SCxSR);
1731	scr_status = serial_port_in(port, SCSCR);
1732	if (s->params->overrun_reg == SCxSR)
1733		orer_status = ssr_status;
1734	else if (sci_getreg(port, s->params->overrun_reg)->size)
1735		orer_status = serial_port_in(port, s->params->overrun_reg);
1736
1737	err_enabled = scr_status & port_rx_irq_mask(port);
1738
1739	/* Tx Interrupt */
1740	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1741	    !s->chan_tx)
1742		ret = sci_tx_interrupt(irq, ptr);
1743
1744	/*
1745	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1746	 * DR flags
1747	 */
1748	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1749	    (scr_status & SCSCR_RIE))
1750		ret = sci_rx_interrupt(irq, ptr);
1751
1752	/* Error Interrupt */
1753	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1754		ret = sci_er_interrupt(irq, ptr);
1755
1756	/* Break Interrupt */
1757	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
 
1758		ret = sci_br_interrupt(irq, ptr);
1759
1760	/* Overrun Interrupt */
1761	if (orer_status & s->params->overrun_mask) {
1762		sci_handle_fifo_overrun(port);
1763		ret = IRQ_HANDLED;
1764	}
1765
1766	return ret;
1767}
1768
1769static const struct sci_irq_desc {
1770	const char	*desc;
1771	irq_handler_t	handler;
1772} sci_irq_desc[] = {
1773	/*
1774	 * Split out handlers, the default case.
1775	 */
1776	[SCIx_ERI_IRQ] = {
1777		.desc = "rx err",
1778		.handler = sci_er_interrupt,
1779	},
1780
1781	[SCIx_RXI_IRQ] = {
1782		.desc = "rx full",
1783		.handler = sci_rx_interrupt,
1784	},
1785
1786	[SCIx_TXI_IRQ] = {
1787		.desc = "tx empty",
1788		.handler = sci_tx_interrupt,
1789	},
1790
1791	[SCIx_BRI_IRQ] = {
1792		.desc = "break",
1793		.handler = sci_br_interrupt,
1794	},
1795
 
 
 
 
 
 
 
 
 
 
1796	/*
1797	 * Special muxed handler.
1798	 */
1799	[SCIx_MUX_IRQ] = {
1800		.desc = "mux",
1801		.handler = sci_mpxed_interrupt,
1802	},
1803};
1804
1805static int sci_request_irq(struct sci_port *port)
1806{
1807	struct uart_port *up = &port->port;
1808	int i, j, ret = 0;
1809
1810	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1811		const struct sci_irq_desc *desc;
1812		int irq;
1813
 
 
 
 
 
 
 
1814		if (SCIx_IRQ_IS_MUXED(port)) {
1815			i = SCIx_MUX_IRQ;
1816			irq = up->irq;
1817		} else {
1818			irq = port->irqs[i];
1819
1820			/*
1821			 * Certain port types won't support all of the
1822			 * available interrupt sources.
1823			 */
1824			if (unlikely(irq < 0))
1825				continue;
1826		}
1827
1828		desc = sci_irq_desc + i;
1829		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1830					    dev_name(up->dev), desc->desc);
1831		if (!port->irqstr[j]) {
1832			ret = -ENOMEM;
1833			goto out_nomem;
1834		}
1835
1836		ret = request_irq(irq, desc->handler, up->irqflags,
1837				  port->irqstr[j], port);
1838		if (unlikely(ret)) {
1839			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1840			goto out_noirq;
1841		}
1842	}
1843
1844	return 0;
1845
1846out_noirq:
1847	while (--i >= 0)
1848		free_irq(port->irqs[i], port);
1849
1850out_nomem:
1851	while (--j >= 0)
1852		kfree(port->irqstr[j]);
1853
1854	return ret;
1855}
1856
1857static void sci_free_irq(struct sci_port *port)
1858{
1859	int i;
1860
1861	/*
1862	 * Intentionally in reverse order so we iterate over the muxed
1863	 * IRQ first.
1864	 */
1865	for (i = 0; i < SCIx_NR_IRQS; i++) {
1866		int irq = port->irqs[i];
1867
1868		/*
1869		 * Certain port types won't support all of the available
1870		 * interrupt sources.
1871		 */
1872		if (unlikely(irq < 0))
1873			continue;
1874
 
 
 
 
 
 
 
1875		free_irq(port->irqs[i], port);
1876		kfree(port->irqstr[i]);
1877
1878		if (SCIx_IRQ_IS_MUXED(port)) {
1879			/* If there's only one IRQ, we're done. */
1880			return;
1881		}
1882	}
1883}
1884
1885static unsigned int sci_tx_empty(struct uart_port *port)
1886{
1887	unsigned short status = serial_port_in(port, SCxSR);
1888	unsigned short in_tx_fifo = sci_txfill(port);
1889
1890	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1891}
1892
1893static void sci_set_rts(struct uart_port *port, bool state)
1894{
1895	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1896		u16 data = serial_port_in(port, SCPDR);
1897
1898		/* Active low */
1899		if (state)
1900			data &= ~SCPDR_RTSD;
1901		else
1902			data |= SCPDR_RTSD;
1903		serial_port_out(port, SCPDR, data);
1904
1905		/* RTS# is output */
1906		serial_port_out(port, SCPCR,
1907				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1908	} else if (sci_getreg(port, SCSPTR)->size) {
1909		u16 ctrl = serial_port_in(port, SCSPTR);
1910
1911		/* Active low */
1912		if (state)
1913			ctrl &= ~SCSPTR_RTSDT;
1914		else
1915			ctrl |= SCSPTR_RTSDT;
1916		serial_port_out(port, SCSPTR, ctrl);
1917	}
1918}
1919
1920static bool sci_get_cts(struct uart_port *port)
1921{
1922	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1923		/* Active low */
1924		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1925	} else if (sci_getreg(port, SCSPTR)->size) {
1926		/* Active low */
1927		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1928	}
1929
1930	return true;
1931}
1932
1933/*
1934 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1935 * CTS/RTS is supported in hardware by at least one port and controlled
1936 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1937 * handled via the ->init_pins() op, which is a bit of a one-way street,
1938 * lacking any ability to defer pin control -- this will later be
1939 * converted over to the GPIO framework).
1940 *
1941 * Other modes (such as loopback) are supported generically on certain
1942 * port types, but not others. For these it's sufficient to test for the
1943 * existence of the support register and simply ignore the port type.
1944 */
1945static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1946{
1947	struct sci_port *s = to_sci_port(port);
1948
1949	if (mctrl & TIOCM_LOOP) {
1950		const struct plat_sci_reg *reg;
1951
1952		/*
1953		 * Standard loopback mode for SCFCR ports.
1954		 */
1955		reg = sci_getreg(port, SCFCR);
1956		if (reg->size)
1957			serial_port_out(port, SCFCR,
1958					serial_port_in(port, SCFCR) |
1959					SCFCR_LOOP);
1960	}
1961
1962	mctrl_gpio_set(s->gpios, mctrl);
1963
1964	if (!s->has_rtscts)
1965		return;
1966
1967	if (!(mctrl & TIOCM_RTS)) {
1968		/* Disable Auto RTS */
1969		serial_port_out(port, SCFCR,
1970				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1971
1972		/* Clear RTS */
1973		sci_set_rts(port, 0);
1974	} else if (s->autorts) {
1975		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1976			/* Enable RTS# pin function */
1977			serial_port_out(port, SCPCR,
1978				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1979		}
1980
1981		/* Enable Auto RTS */
1982		serial_port_out(port, SCFCR,
1983				serial_port_in(port, SCFCR) | SCFCR_MCE);
1984	} else {
1985		/* Set RTS */
1986		sci_set_rts(port, 1);
1987	}
1988}
1989
1990static unsigned int sci_get_mctrl(struct uart_port *port)
1991{
1992	struct sci_port *s = to_sci_port(port);
1993	struct mctrl_gpios *gpios = s->gpios;
1994	unsigned int mctrl = 0;
1995
1996	mctrl_gpio_get(gpios, &mctrl);
1997
1998	/*
1999	 * CTS/RTS is handled in hardware when supported, while nothing
2000	 * else is wired up.
2001	 */
2002	if (s->autorts) {
2003		if (sci_get_cts(port))
2004			mctrl |= TIOCM_CTS;
2005	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2006		mctrl |= TIOCM_CTS;
2007	}
2008	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2009		mctrl |= TIOCM_DSR;
2010	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2011		mctrl |= TIOCM_CAR;
2012
2013	return mctrl;
2014}
2015
2016static void sci_enable_ms(struct uart_port *port)
2017{
2018	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2019}
2020
2021static void sci_break_ctl(struct uart_port *port, int break_state)
2022{
2023	unsigned short scscr, scsptr;
2024	unsigned long flags;
2025
2026	/* check wheter the port has SCSPTR */
2027	if (!sci_getreg(port, SCSPTR)->size) {
2028		/*
2029		 * Not supported by hardware. Most parts couple break and rx
2030		 * interrupts together, with break detection always enabled.
2031		 */
2032		return;
2033	}
2034
2035	spin_lock_irqsave(&port->lock, flags);
2036	scsptr = serial_port_in(port, SCSPTR);
2037	scscr = serial_port_in(port, SCSCR);
2038
2039	if (break_state == -1) {
2040		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2041		scscr &= ~SCSCR_TE;
2042	} else {
2043		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2044		scscr |= SCSCR_TE;
2045	}
2046
2047	serial_port_out(port, SCSPTR, scsptr);
2048	serial_port_out(port, SCSCR, scscr);
2049	spin_unlock_irqrestore(&port->lock, flags);
2050}
2051
2052static int sci_startup(struct uart_port *port)
2053{
2054	struct sci_port *s = to_sci_port(port);
2055	int ret;
2056
2057	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2058
2059	sci_request_dma(port);
2060
2061	ret = sci_request_irq(s);
2062	if (unlikely(ret < 0)) {
2063		sci_free_dma(port);
2064		return ret;
2065	}
2066
2067	return 0;
2068}
2069
2070static void sci_shutdown(struct uart_port *port)
2071{
2072	struct sci_port *s = to_sci_port(port);
2073	unsigned long flags;
2074	u16 scr;
2075
2076	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2077
2078	s->autorts = false;
2079	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2080
2081	spin_lock_irqsave(&port->lock, flags);
2082	sci_stop_rx(port);
2083	sci_stop_tx(port);
2084	/*
2085	 * Stop RX and TX, disable related interrupts, keep clock source
2086	 * and HSCIF TOT bits
2087	 */
2088	scr = serial_port_in(port, SCSCR);
2089	serial_port_out(port, SCSCR, scr &
2090			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2091	spin_unlock_irqrestore(&port->lock, flags);
2092
2093#ifdef CONFIG_SERIAL_SH_SCI_DMA
2094	if (s->chan_rx) {
2095		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2096			port->line);
2097		hrtimer_cancel(&s->rx_timer);
2098	}
2099#endif
2100
 
 
2101	sci_free_irq(s);
2102	sci_free_dma(port);
2103}
2104
2105static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2106			unsigned int *srr)
2107{
2108	unsigned long freq = s->clk_rates[SCI_SCK];
2109	int err, min_err = INT_MAX;
2110	unsigned int sr;
2111
2112	if (s->port.type != PORT_HSCIF)
2113		freq *= 2;
2114
2115	for_each_sr(sr, s) {
2116		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2117		if (abs(err) >= abs(min_err))
2118			continue;
2119
2120		min_err = err;
2121		*srr = sr - 1;
2122
2123		if (!err)
2124			break;
2125	}
2126
2127	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2128		*srr + 1);
2129	return min_err;
2130}
2131
2132static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2133			unsigned long freq, unsigned int *dlr,
2134			unsigned int *srr)
2135{
2136	int err, min_err = INT_MAX;
2137	unsigned int sr, dl;
2138
2139	if (s->port.type != PORT_HSCIF)
2140		freq *= 2;
2141
2142	for_each_sr(sr, s) {
2143		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2144		dl = clamp(dl, 1U, 65535U);
2145
2146		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2147		if (abs(err) >= abs(min_err))
2148			continue;
2149
2150		min_err = err;
2151		*dlr = dl;
2152		*srr = sr - 1;
2153
2154		if (!err)
2155			break;
2156	}
2157
2158	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2159		min_err, *dlr, *srr + 1);
2160	return min_err;
2161}
2162
2163/* calculate sample rate, BRR, and clock select */
2164static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2165			  unsigned int *brr, unsigned int *srr,
2166			  unsigned int *cks)
2167{
2168	unsigned long freq = s->clk_rates[SCI_FCK];
2169	unsigned int sr, br, prediv, scrate, c;
2170	int err, min_err = INT_MAX;
2171
2172	if (s->port.type != PORT_HSCIF)
2173		freq *= 2;
2174
2175	/*
2176	 * Find the combination of sample rate and clock select with the
2177	 * smallest deviation from the desired baud rate.
2178	 * Prefer high sample rates to maximise the receive margin.
2179	 *
2180	 * M: Receive margin (%)
2181	 * N: Ratio of bit rate to clock (N = sampling rate)
2182	 * D: Clock duty (D = 0 to 1.0)
2183	 * L: Frame length (L = 9 to 12)
2184	 * F: Absolute value of clock frequency deviation
2185	 *
2186	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2187	 *      (|D - 0.5| / N * (1 + F))|
2188	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2189	 */
2190	for_each_sr(sr, s) {
2191		for (c = 0; c <= 3; c++) {
2192			/* integerized formulas from HSCIF documentation */
2193			prediv = sr * (1 << (2 * c + 1));
2194
2195			/*
2196			 * We need to calculate:
2197			 *
2198			 *     br = freq / (prediv * bps) clamped to [1..256]
2199			 *     err = freq / (br * prediv) - bps
2200			 *
2201			 * Watch out for overflow when calculating the desired
2202			 * sampling clock rate!
2203			 */
2204			if (bps > UINT_MAX / prediv)
2205				break;
2206
2207			scrate = prediv * bps;
2208			br = DIV_ROUND_CLOSEST(freq, scrate);
2209			br = clamp(br, 1U, 256U);
2210
2211			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2212			if (abs(err) >= abs(min_err))
2213				continue;
2214
2215			min_err = err;
2216			*brr = br - 1;
2217			*srr = sr - 1;
2218			*cks = c;
2219
2220			if (!err)
2221				goto found;
2222		}
2223	}
2224
2225found:
2226	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2227		min_err, *brr, *srr + 1, *cks);
2228	return min_err;
2229}
2230
2231static void sci_reset(struct uart_port *port)
2232{
2233	const struct plat_sci_reg *reg;
2234	unsigned int status;
2235	struct sci_port *s = to_sci_port(port);
2236
2237	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2238
2239	reg = sci_getreg(port, SCFCR);
2240	if (reg->size)
2241		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2242
2243	sci_clear_SCxSR(port,
2244			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2245			SCxSR_BREAK_CLEAR(port));
2246	if (sci_getreg(port, SCLSR)->size) {
2247		status = serial_port_in(port, SCLSR);
2248		status &= ~(SCLSR_TO | SCLSR_ORER);
2249		serial_port_out(port, SCLSR, status);
2250	}
2251
2252	if (s->rx_trigger > 1) {
2253		if (s->rx_fifo_timeout) {
2254			scif_set_rtrg(port, 1);
2255			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2256		} else {
2257			if (port->type == PORT_SCIFA ||
2258			    port->type == PORT_SCIFB)
2259				scif_set_rtrg(port, 1);
2260			else
2261				scif_set_rtrg(port, s->rx_trigger);
2262		}
2263	}
2264}
2265
2266static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2267			    struct ktermios *old)
2268{
2269	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2270	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2271	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2272	struct sci_port *s = to_sci_port(port);
2273	const struct plat_sci_reg *reg;
2274	int min_err = INT_MAX, err;
2275	unsigned long max_freq = 0;
2276	int best_clk = -1;
2277	unsigned long flags;
2278
2279	if ((termios->c_cflag & CSIZE) == CS7)
2280		smr_val |= SCSMR_CHR;
2281	if (termios->c_cflag & PARENB)
2282		smr_val |= SCSMR_PE;
2283	if (termios->c_cflag & PARODD)
2284		smr_val |= SCSMR_PE | SCSMR_ODD;
2285	if (termios->c_cflag & CSTOPB)
2286		smr_val |= SCSMR_STOP;
2287
2288	/*
2289	 * earlyprintk comes here early on with port->uartclk set to zero.
2290	 * the clock framework is not up and running at this point so here
2291	 * we assume that 115200 is the maximum baud rate. please note that
2292	 * the baud rate is not programmed during earlyprintk - it is assumed
2293	 * that the previous boot loader has enabled required clocks and
2294	 * setup the baud rate generator hardware for us already.
2295	 */
2296	if (!port->uartclk) {
2297		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2298		goto done;
2299	}
2300
2301	for (i = 0; i < SCI_NUM_CLKS; i++)
2302		max_freq = max(max_freq, s->clk_rates[i]);
2303
2304	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2305	if (!baud)
2306		goto done;
2307
2308	/*
2309	 * There can be multiple sources for the sampling clock.  Find the one
2310	 * that gives us the smallest deviation from the desired baud rate.
2311	 */
2312
2313	/* Optional Undivided External Clock */
2314	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2315	    port->type != PORT_SCIFB) {
2316		err = sci_sck_calc(s, baud, &srr1);
2317		if (abs(err) < abs(min_err)) {
2318			best_clk = SCI_SCK;
2319			scr_val = SCSCR_CKE1;
2320			sccks = SCCKS_CKS;
2321			min_err = err;
2322			srr = srr1;
2323			if (!err)
2324				goto done;
2325		}
2326	}
2327
2328	/* Optional BRG Frequency Divided External Clock */
2329	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2330		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2331				   &srr1);
2332		if (abs(err) < abs(min_err)) {
2333			best_clk = SCI_SCIF_CLK;
2334			scr_val = SCSCR_CKE1;
2335			sccks = 0;
2336			min_err = err;
2337			dl = dl1;
2338			srr = srr1;
2339			if (!err)
2340				goto done;
2341		}
2342	}
2343
2344	/* Optional BRG Frequency Divided Internal Clock */
2345	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2346		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2347				   &srr1);
2348		if (abs(err) < abs(min_err)) {
2349			best_clk = SCI_BRG_INT;
2350			scr_val = SCSCR_CKE1;
2351			sccks = SCCKS_XIN;
2352			min_err = err;
2353			dl = dl1;
2354			srr = srr1;
2355			if (!min_err)
2356				goto done;
2357		}
2358	}
2359
2360	/* Divided Functional Clock using standard Bit Rate Register */
2361	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2362	if (abs(err) < abs(min_err)) {
2363		best_clk = SCI_FCK;
2364		scr_val = 0;
2365		min_err = err;
2366		brr = brr1;
2367		srr = srr1;
2368		cks = cks1;
2369	}
2370
2371done:
2372	if (best_clk >= 0)
2373		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2374			s->clks[best_clk], baud, min_err);
2375
2376	sci_port_enable(s);
2377
2378	/*
2379	 * Program the optional External Baud Rate Generator (BRG) first.
2380	 * It controls the mux to select (H)SCK or frequency divided clock.
2381	 */
2382	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2383		serial_port_out(port, SCDL, dl);
2384		serial_port_out(port, SCCKS, sccks);
2385	}
2386
2387	spin_lock_irqsave(&port->lock, flags);
2388
2389	sci_reset(port);
2390
2391	uart_update_timeout(port, termios->c_cflag, baud);
2392
 
 
 
 
 
 
2393	if (best_clk >= 0) {
2394		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2395			switch (srr + 1) {
2396			case 5:  smr_val |= SCSMR_SRC_5;  break;
2397			case 7:  smr_val |= SCSMR_SRC_7;  break;
2398			case 11: smr_val |= SCSMR_SRC_11; break;
2399			case 13: smr_val |= SCSMR_SRC_13; break;
2400			case 16: smr_val |= SCSMR_SRC_16; break;
2401			case 17: smr_val |= SCSMR_SRC_17; break;
2402			case 19: smr_val |= SCSMR_SRC_19; break;
2403			case 27: smr_val |= SCSMR_SRC_27; break;
2404			}
2405		smr_val |= cks;
2406		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2407		serial_port_out(port, SCSMR, smr_val);
2408		serial_port_out(port, SCBRR, brr);
2409		if (sci_getreg(port, HSSRR)->size)
2410			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411
2412		/* Wait one bit interval */
2413		udelay((1000000 + (baud - 1)) / baud);
2414	} else {
2415		/* Don't touch the bit rate configuration */
2416		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2417		smr_val |= serial_port_in(port, SCSMR) &
2418			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2419		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2420		serial_port_out(port, SCSMR, smr_val);
2421	}
2422
2423	sci_init_pins(port, termios->c_cflag);
2424
2425	port->status &= ~UPSTAT_AUTOCTS;
2426	s->autorts = false;
2427	reg = sci_getreg(port, SCFCR);
2428	if (reg->size) {
2429		unsigned short ctrl = serial_port_in(port, SCFCR);
2430
2431		if ((port->flags & UPF_HARD_FLOW) &&
2432		    (termios->c_cflag & CRTSCTS)) {
2433			/* There is no CTS interrupt to restart the hardware */
2434			port->status |= UPSTAT_AUTOCTS;
2435			/* MCE is enabled when RTS is raised */
2436			s->autorts = true;
2437		}
2438
2439		/*
2440		 * As we've done a sci_reset() above, ensure we don't
2441		 * interfere with the FIFOs while toggling MCE. As the
2442		 * reset values could still be set, simply mask them out.
2443		 */
2444		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2445
2446		serial_port_out(port, SCFCR, ctrl);
2447	}
2448	if (port->flags & UPF_HARD_FLOW) {
2449		/* Refresh (Auto) RTS */
2450		sci_set_mctrl(port, port->mctrl);
2451	}
2452
2453	scr_val |= SCSCR_RE | SCSCR_TE |
2454		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2455	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2456	if ((srr + 1 == 5) &&
2457	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2458		/*
2459		 * In asynchronous mode, when the sampling rate is 1/5, first
2460		 * received data may become invalid on some SCIFA and SCIFB.
2461		 * To avoid this problem wait more than 1 serial data time (1
2462		 * bit time x serial data number) after setting SCSCR.RE = 1.
2463		 */
2464		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2465	}
2466
2467	/*
2468	 * Calculate delay for 2 DMA buffers (4 FIFO).
2469	 * See serial_core.c::uart_update_timeout().
2470	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2471	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2472	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2473	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2474	 * value obtained by this formula is too small. Therefore, if the value
2475	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2476	 */
2477	/* byte size and parity */
2478	switch (termios->c_cflag & CSIZE) {
2479	case CS5:
2480		bits = 7;
2481		break;
2482	case CS6:
2483		bits = 8;
2484		break;
2485	case CS7:
2486		bits = 9;
2487		break;
2488	default:
2489		bits = 10;
2490		break;
2491	}
2492
2493	if (termios->c_cflag & CSTOPB)
2494		bits++;
2495	if (termios->c_cflag & PARENB)
2496		bits++;
2497
2498	s->rx_frame = (10000 * bits) / (baud / 100);
2499#ifdef CONFIG_SERIAL_SH_SCI_DMA
2500	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2501	if (s->rx_timeout < 20)
2502		s->rx_timeout = 20;
2503#endif
2504
2505	if ((termios->c_cflag & CREAD) != 0)
2506		sci_start_rx(port);
2507
2508	spin_unlock_irqrestore(&port->lock, flags);
2509
2510	sci_port_disable(s);
2511
2512	if (UART_ENABLE_MS(port, termios->c_cflag))
2513		sci_enable_ms(port);
2514}
2515
2516static void sci_pm(struct uart_port *port, unsigned int state,
2517		   unsigned int oldstate)
2518{
2519	struct sci_port *sci_port = to_sci_port(port);
2520
2521	switch (state) {
2522	case UART_PM_STATE_OFF:
2523		sci_port_disable(sci_port);
2524		break;
2525	default:
2526		sci_port_enable(sci_port);
2527		break;
2528	}
2529}
2530
2531static const char *sci_type(struct uart_port *port)
2532{
2533	switch (port->type) {
2534	case PORT_IRDA:
2535		return "irda";
2536	case PORT_SCI:
2537		return "sci";
2538	case PORT_SCIF:
2539		return "scif";
2540	case PORT_SCIFA:
2541		return "scifa";
2542	case PORT_SCIFB:
2543		return "scifb";
2544	case PORT_HSCIF:
2545		return "hscif";
2546	}
2547
2548	return NULL;
2549}
2550
2551static int sci_remap_port(struct uart_port *port)
2552{
2553	struct sci_port *sport = to_sci_port(port);
2554
2555	/*
2556	 * Nothing to do if there's already an established membase.
2557	 */
2558	if (port->membase)
2559		return 0;
2560
2561	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2562		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2563		if (unlikely(!port->membase)) {
2564			dev_err(port->dev, "can't remap port#%d\n", port->line);
2565			return -ENXIO;
2566		}
2567	} else {
2568		/*
2569		 * For the simple (and majority of) cases where we don't
2570		 * need to do any remapping, just cast the cookie
2571		 * directly.
2572		 */
2573		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2574	}
2575
2576	return 0;
2577}
2578
2579static void sci_release_port(struct uart_port *port)
2580{
2581	struct sci_port *sport = to_sci_port(port);
2582
2583	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2584		iounmap(port->membase);
2585		port->membase = NULL;
2586	}
2587
2588	release_mem_region(port->mapbase, sport->reg_size);
2589}
2590
2591static int sci_request_port(struct uart_port *port)
2592{
2593	struct resource *res;
2594	struct sci_port *sport = to_sci_port(port);
2595	int ret;
2596
2597	res = request_mem_region(port->mapbase, sport->reg_size,
2598				 dev_name(port->dev));
2599	if (unlikely(res == NULL)) {
2600		dev_err(port->dev, "request_mem_region failed.");
2601		return -EBUSY;
2602	}
2603
2604	ret = sci_remap_port(port);
2605	if (unlikely(ret != 0)) {
2606		release_resource(res);
2607		return ret;
2608	}
2609
2610	return 0;
2611}
2612
2613static void sci_config_port(struct uart_port *port, int flags)
2614{
2615	if (flags & UART_CONFIG_TYPE) {
2616		struct sci_port *sport = to_sci_port(port);
2617
2618		port->type = sport->cfg->type;
2619		sci_request_port(port);
2620	}
2621}
2622
2623static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2624{
2625	if (ser->baud_base < 2400)
2626		/* No paper tape reader for Mitch.. */
2627		return -EINVAL;
2628
2629	return 0;
2630}
2631
2632static const struct uart_ops sci_uart_ops = {
2633	.tx_empty	= sci_tx_empty,
2634	.set_mctrl	= sci_set_mctrl,
2635	.get_mctrl	= sci_get_mctrl,
2636	.start_tx	= sci_start_tx,
2637	.stop_tx	= sci_stop_tx,
2638	.stop_rx	= sci_stop_rx,
2639	.enable_ms	= sci_enable_ms,
2640	.break_ctl	= sci_break_ctl,
2641	.startup	= sci_startup,
2642	.shutdown	= sci_shutdown,
2643	.flush_buffer	= sci_flush_buffer,
2644	.set_termios	= sci_set_termios,
2645	.pm		= sci_pm,
2646	.type		= sci_type,
2647	.release_port	= sci_release_port,
2648	.request_port	= sci_request_port,
2649	.config_port	= sci_config_port,
2650	.verify_port	= sci_verify_port,
2651#ifdef CONFIG_CONSOLE_POLL
2652	.poll_get_char	= sci_poll_get_char,
2653	.poll_put_char	= sci_poll_put_char,
2654#endif
2655};
2656
2657static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2658{
2659	const char *clk_names[] = {
2660		[SCI_FCK] = "fck",
2661		[SCI_SCK] = "sck",
2662		[SCI_BRG_INT] = "brg_int",
2663		[SCI_SCIF_CLK] = "scif_clk",
2664	};
2665	struct clk *clk;
2666	unsigned int i;
2667
2668	if (sci_port->cfg->type == PORT_HSCIF)
2669		clk_names[SCI_SCK] = "hsck";
2670
2671	for (i = 0; i < SCI_NUM_CLKS; i++) {
2672		clk = devm_clk_get(dev, clk_names[i]);
2673		if (PTR_ERR(clk) == -EPROBE_DEFER)
2674			return -EPROBE_DEFER;
2675
2676		if (IS_ERR(clk) && i == SCI_FCK) {
2677			/*
2678			 * "fck" used to be called "sci_ick", and we need to
2679			 * maintain DT backward compatibility.
2680			 */
2681			clk = devm_clk_get(dev, "sci_ick");
2682			if (PTR_ERR(clk) == -EPROBE_DEFER)
2683				return -EPROBE_DEFER;
2684
2685			if (!IS_ERR(clk))
2686				goto found;
2687
2688			/*
2689			 * Not all SH platforms declare a clock lookup entry
2690			 * for SCI devices, in which case we need to get the
2691			 * global "peripheral_clk" clock.
2692			 */
2693			clk = devm_clk_get(dev, "peripheral_clk");
2694			if (!IS_ERR(clk))
2695				goto found;
2696
2697			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2698				PTR_ERR(clk));
2699			return PTR_ERR(clk);
2700		}
2701
2702found:
2703		if (IS_ERR(clk))
2704			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2705				PTR_ERR(clk));
2706		else
2707			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2708				clk, clk);
2709		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2710	}
2711	return 0;
2712}
2713
2714static const struct sci_port_params *
2715sci_probe_regmap(const struct plat_sci_port *cfg)
2716{
2717	unsigned int regtype;
2718
2719	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2720		return &sci_port_params[cfg->regtype];
2721
2722	switch (cfg->type) {
2723	case PORT_SCI:
2724		regtype = SCIx_SCI_REGTYPE;
2725		break;
2726	case PORT_IRDA:
2727		regtype = SCIx_IRDA_REGTYPE;
2728		break;
2729	case PORT_SCIFA:
2730		regtype = SCIx_SCIFA_REGTYPE;
2731		break;
2732	case PORT_SCIFB:
2733		regtype = SCIx_SCIFB_REGTYPE;
2734		break;
2735	case PORT_SCIF:
2736		/*
2737		 * The SH-4 is a bit of a misnomer here, although that's
2738		 * where this particular port layout originated. This
2739		 * configuration (or some slight variation thereof)
2740		 * remains the dominant model for all SCIFs.
2741		 */
2742		regtype = SCIx_SH4_SCIF_REGTYPE;
2743		break;
2744	case PORT_HSCIF:
2745		regtype = SCIx_HSCIF_REGTYPE;
2746		break;
2747	default:
2748		pr_err("Can't probe register map for given port\n");
2749		return NULL;
2750	}
2751
2752	return &sci_port_params[regtype];
2753}
2754
2755static int sci_init_single(struct platform_device *dev,
2756			   struct sci_port *sci_port, unsigned int index,
2757			   const struct plat_sci_port *p, bool early)
2758{
2759	struct uart_port *port = &sci_port->port;
2760	const struct resource *res;
2761	unsigned int i;
2762	int ret;
2763
2764	sci_port->cfg	= p;
2765
2766	port->ops	= &sci_uart_ops;
2767	port->iotype	= UPIO_MEM;
2768	port->line	= index;
 
2769
2770	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2771	if (res == NULL)
2772		return -ENOMEM;
2773
2774	port->mapbase = res->start;
2775	sci_port->reg_size = resource_size(res);
2776
2777	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2778		sci_port->irqs[i] = platform_get_irq(dev, i);
 
 
 
 
2779
2780	/* The SCI generates several interrupts. They can be muxed together or
2781	 * connected to different interrupt lines. In the muxed case only one
2782	 * interrupt resource is specified. In the non-muxed case three or four
2783	 * interrupt resources are specified, as the BRI interrupt is optional.
 
 
2784	 */
2785	if (sci_port->irqs[0] < 0)
2786		return -ENXIO;
2787
2788	if (sci_port->irqs[1] < 0) {
2789		sci_port->irqs[1] = sci_port->irqs[0];
2790		sci_port->irqs[2] = sci_port->irqs[0];
2791		sci_port->irqs[3] = sci_port->irqs[0];
2792	}
2793
2794	sci_port->params = sci_probe_regmap(p);
2795	if (unlikely(sci_port->params == NULL))
2796		return -EINVAL;
2797
2798	switch (p->type) {
2799	case PORT_SCIFB:
2800		sci_port->rx_trigger = 48;
2801		break;
2802	case PORT_HSCIF:
2803		sci_port->rx_trigger = 64;
2804		break;
2805	case PORT_SCIFA:
2806		sci_port->rx_trigger = 32;
2807		break;
2808	case PORT_SCIF:
2809		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2810			/* RX triggering not implemented for this IP */
2811			sci_port->rx_trigger = 1;
2812		else
2813			sci_port->rx_trigger = 8;
2814		break;
2815	default:
2816		sci_port->rx_trigger = 1;
2817		break;
2818	}
2819
2820	sci_port->rx_fifo_timeout = 0;
2821	sci_port->hscif_tot = 0;
2822
2823	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2824	 * match the SoC datasheet, this should be investigated. Let platform
2825	 * data override the sampling rate for now.
2826	 */
2827	sci_port->sampling_rate_mask = p->sampling_rate
2828				     ? SCI_SR(p->sampling_rate)
2829				     : sci_port->params->sampling_rate_mask;
2830
2831	if (!early) {
2832		ret = sci_init_clocks(sci_port, &dev->dev);
2833		if (ret < 0)
2834			return ret;
2835
2836		port->dev = &dev->dev;
2837
2838		pm_runtime_enable(&dev->dev);
2839	}
2840
2841	port->type		= p->type;
2842	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2843	port->fifosize		= sci_port->params->fifosize;
2844
2845	if (port->type == PORT_SCI) {
2846		if (sci_port->reg_size >= 0x20)
2847			port->regshift = 2;
2848		else
2849			port->regshift = 1;
2850	}
2851
2852	/*
2853	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2854	 * for the multi-IRQ ports, which is where we are primarily
2855	 * concerned with the shutdown path synchronization.
2856	 *
2857	 * For the muxed case there's nothing more to do.
2858	 */
2859	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2860	port->irqflags		= 0;
2861
2862	port->serial_in		= sci_serial_in;
2863	port->serial_out	= sci_serial_out;
2864
2865	return 0;
2866}
2867
2868static void sci_cleanup_single(struct sci_port *port)
2869{
2870	pm_runtime_disable(port->port.dev);
2871}
2872
2873#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2874    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2875static void serial_console_putchar(struct uart_port *port, int ch)
2876{
2877	sci_poll_put_char(port, ch);
2878}
2879
2880/*
2881 *	Print a string to the serial port trying not to disturb
2882 *	any possible real use of the port...
2883 */
2884static void serial_console_write(struct console *co, const char *s,
2885				 unsigned count)
2886{
2887	struct sci_port *sci_port = &sci_ports[co->index];
2888	struct uart_port *port = &sci_port->port;
2889	unsigned short bits, ctrl, ctrl_temp;
2890	unsigned long flags;
2891	int locked = 1;
2892
2893	local_irq_save(flags);
2894#if defined(SUPPORT_SYSRQ)
2895	if (port->sysrq)
2896		locked = 0;
 
 
2897	else
2898#endif
2899	if (oops_in_progress)
2900		locked = spin_trylock(&port->lock);
2901	else
2902		spin_lock(&port->lock);
2903
2904	/* first save SCSCR then disable interrupts, keep clock source */
2905	ctrl = serial_port_in(port, SCSCR);
2906	ctrl_temp = SCSCR_RE | SCSCR_TE |
2907		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2908		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2909	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2910
2911	uart_console_write(port, s, count, serial_console_putchar);
2912
2913	/* wait until fifo is empty and last bit has been transmitted */
2914	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2915	while ((serial_port_in(port, SCxSR) & bits) != bits)
2916		cpu_relax();
2917
2918	/* restore the SCSCR */
2919	serial_port_out(port, SCSCR, ctrl);
2920
2921	if (locked)
2922		spin_unlock(&port->lock);
2923	local_irq_restore(flags);
2924}
2925
2926static int serial_console_setup(struct console *co, char *options)
2927{
2928	struct sci_port *sci_port;
2929	struct uart_port *port;
2930	int baud = 115200;
2931	int bits = 8;
2932	int parity = 'n';
2933	int flow = 'n';
2934	int ret;
2935
2936	/*
2937	 * Refuse to handle any bogus ports.
2938	 */
2939	if (co->index < 0 || co->index >= SCI_NPORTS)
2940		return -ENODEV;
2941
2942	sci_port = &sci_ports[co->index];
2943	port = &sci_port->port;
2944
2945	/*
2946	 * Refuse to handle uninitialized ports.
2947	 */
2948	if (!port->ops)
2949		return -ENODEV;
2950
2951	ret = sci_remap_port(port);
2952	if (unlikely(ret != 0))
2953		return ret;
2954
2955	if (options)
2956		uart_parse_options(options, &baud, &parity, &bits, &flow);
2957
2958	return uart_set_options(port, co, baud, parity, bits, flow);
2959}
2960
2961static struct console serial_console = {
2962	.name		= "ttySC",
2963	.device		= uart_console_device,
2964	.write		= serial_console_write,
2965	.setup		= serial_console_setup,
2966	.flags		= CON_PRINTBUFFER,
2967	.index		= -1,
2968	.data		= &sci_uart_driver,
2969};
2970
 
2971static struct console early_serial_console = {
2972	.name           = "early_ttySC",
2973	.write          = serial_console_write,
2974	.flags          = CON_PRINTBUFFER,
2975	.index		= -1,
2976};
2977
2978static char early_serial_buf[32];
2979
2980static int sci_probe_earlyprintk(struct platform_device *pdev)
2981{
2982	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2983
2984	if (early_serial_console.data)
2985		return -EEXIST;
2986
2987	early_serial_console.index = pdev->id;
2988
2989	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2990
2991	serial_console_setup(&early_serial_console, early_serial_buf);
2992
2993	if (!strstr(early_serial_buf, "keep"))
2994		early_serial_console.flags |= CON_BOOT;
2995
2996	register_console(&early_serial_console);
2997	return 0;
2998}
 
2999
3000#define SCI_CONSOLE	(&serial_console)
3001
3002#else
3003static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3004{
3005	return -EINVAL;
3006}
3007
3008#define SCI_CONSOLE	NULL
3009
3010#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3011
3012static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3013
3014static DEFINE_MUTEX(sci_uart_registration_lock);
3015static struct uart_driver sci_uart_driver = {
3016	.owner		= THIS_MODULE,
3017	.driver_name	= "sci",
3018	.dev_name	= "ttySC",
3019	.major		= SCI_MAJOR,
3020	.minor		= SCI_MINOR_START,
3021	.nr		= SCI_NPORTS,
3022	.cons		= SCI_CONSOLE,
3023};
3024
3025static int sci_remove(struct platform_device *dev)
3026{
3027	struct sci_port *port = platform_get_drvdata(dev);
 
3028
 
3029	uart_remove_one_port(&sci_uart_driver, &port->port);
3030
3031	sci_cleanup_single(port);
3032
3033	if (port->port.fifosize > 1) {
3034		sysfs_remove_file(&dev->dev.kobj,
3035				  &dev_attr_rx_fifo_trigger.attr);
3036	}
3037	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3038	    port->port.type == PORT_HSCIF) {
3039		sysfs_remove_file(&dev->dev.kobj,
3040				  &dev_attr_rx_fifo_timeout.attr);
3041	}
3042
3043	return 0;
3044}
3045
3046
3047#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3048#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3049#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3050
3051static const struct of_device_id of_sci_match[] = {
3052	/* SoC-specific types */
3053	{
3054		.compatible = "renesas,scif-r7s72100",
3055		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3056	},
 
 
 
 
 
 
 
 
3057	/* Family-specific types */
3058	{
3059		.compatible = "renesas,rcar-gen1-scif",
3060		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3061	}, {
3062		.compatible = "renesas,rcar-gen2-scif",
3063		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3064	}, {
3065		.compatible = "renesas,rcar-gen3-scif",
3066		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3067	},
3068	/* Generic types */
3069	{
3070		.compatible = "renesas,scif",
3071		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3072	}, {
3073		.compatible = "renesas,scifa",
3074		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3075	}, {
3076		.compatible = "renesas,scifb",
3077		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3078	}, {
3079		.compatible = "renesas,hscif",
3080		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3081	}, {
3082		.compatible = "renesas,sci",
3083		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3084	}, {
3085		/* Terminator */
3086	},
3087};
3088MODULE_DEVICE_TABLE(of, of_sci_match);
3089
3090static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3091					  unsigned int *dev_id)
3092{
3093	struct device_node *np = pdev->dev.of_node;
3094	struct plat_sci_port *p;
3095	struct sci_port *sp;
3096	const void *data;
3097	int id;
3098
3099	if (!IS_ENABLED(CONFIG_OF) || !np)
3100		return NULL;
3101
3102	data = of_device_get_match_data(&pdev->dev);
3103
3104	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3105	if (!p)
3106		return NULL;
3107
3108	/* Get the line number from the aliases node. */
3109	id = of_alias_get_id(np, "serial");
 
 
3110	if (id < 0) {
3111		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3112		return NULL;
3113	}
3114	if (id >= ARRAY_SIZE(sci_ports)) {
3115		dev_err(&pdev->dev, "serial%d out of range\n", id);
3116		return NULL;
3117	}
3118
3119	sp = &sci_ports[id];
3120	*dev_id = id;
3121
3122	p->type = SCI_OF_TYPE(data);
3123	p->regtype = SCI_OF_REGTYPE(data);
3124
3125	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3126
3127	return p;
3128}
3129
3130static int sci_probe_single(struct platform_device *dev,
3131				      unsigned int index,
3132				      struct plat_sci_port *p,
3133				      struct sci_port *sciport)
3134{
3135	int ret;
3136
3137	/* Sanity check */
3138	if (unlikely(index >= SCI_NPORTS)) {
3139		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3140			   index+1, SCI_NPORTS);
3141		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3142		return -EINVAL;
3143	}
 
 
 
3144
3145	mutex_lock(&sci_uart_registration_lock);
3146	if (!sci_uart_driver.state) {
3147		ret = uart_register_driver(&sci_uart_driver);
3148		if (ret) {
3149			mutex_unlock(&sci_uart_registration_lock);
3150			return ret;
3151		}
3152	}
3153	mutex_unlock(&sci_uart_registration_lock);
3154
3155	ret = sci_init_single(dev, sciport, index, p, false);
3156	if (ret)
3157		return ret;
3158
3159	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3160	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3161		return PTR_ERR(sciport->gpios);
3162
3163	if (sciport->has_rtscts) {
3164		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3165							UART_GPIO_CTS)) ||
3166		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3167							UART_GPIO_RTS))) {
3168			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3169			return -EINVAL;
3170		}
3171		sciport->port.flags |= UPF_HARD_FLOW;
3172	}
3173
3174	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3175	if (ret) {
3176		sci_cleanup_single(sciport);
3177		return ret;
3178	}
3179
3180	return 0;
3181}
3182
3183static int sci_probe(struct platform_device *dev)
3184{
3185	struct plat_sci_port *p;
3186	struct sci_port *sp;
3187	unsigned int dev_id;
3188	int ret;
3189
3190	/*
3191	 * If we've come here via earlyprintk initialization, head off to
3192	 * the special early probe. We don't have sufficient device state
3193	 * to make it beyond this yet.
3194	 */
3195	if (is_early_platform_device(dev))
 
3196		return sci_probe_earlyprintk(dev);
 
3197
3198	if (dev->dev.of_node) {
3199		p = sci_parse_dt(dev, &dev_id);
3200		if (p == NULL)
3201			return -EINVAL;
3202	} else {
3203		p = dev->dev.platform_data;
3204		if (p == NULL) {
3205			dev_err(&dev->dev, "no platform data supplied\n");
3206			return -EINVAL;
3207		}
3208
3209		dev_id = dev->id;
3210	}
3211
3212	sp = &sci_ports[dev_id];
3213	platform_set_drvdata(dev, sp);
3214
3215	ret = sci_probe_single(dev, dev_id, p, sp);
3216	if (ret)
3217		return ret;
3218
3219	if (sp->port.fifosize > 1) {
3220		ret = sysfs_create_file(&dev->dev.kobj,
3221				&dev_attr_rx_fifo_trigger.attr);
3222		if (ret)
3223			return ret;
3224	}
3225	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3226	    sp->port.type == PORT_HSCIF) {
3227		ret = sysfs_create_file(&dev->dev.kobj,
3228				&dev_attr_rx_fifo_timeout.attr);
3229		if (ret) {
3230			if (sp->port.fifosize > 1) {
3231				sysfs_remove_file(&dev->dev.kobj,
3232					&dev_attr_rx_fifo_trigger.attr);
3233			}
3234			return ret;
3235		}
3236	}
3237
3238#ifdef CONFIG_SH_STANDARD_BIOS
3239	sh_bios_gdb_detach();
3240#endif
3241
 
3242	return 0;
3243}
3244
3245static __maybe_unused int sci_suspend(struct device *dev)
3246{
3247	struct sci_port *sport = dev_get_drvdata(dev);
3248
3249	if (sport)
3250		uart_suspend_port(&sci_uart_driver, &sport->port);
3251
3252	return 0;
3253}
3254
3255static __maybe_unused int sci_resume(struct device *dev)
3256{
3257	struct sci_port *sport = dev_get_drvdata(dev);
3258
3259	if (sport)
3260		uart_resume_port(&sci_uart_driver, &sport->port);
3261
3262	return 0;
3263}
3264
3265static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3266
3267static struct platform_driver sci_driver = {
3268	.probe		= sci_probe,
3269	.remove		= sci_remove,
3270	.driver		= {
3271		.name	= "sh-sci",
3272		.pm	= &sci_dev_pm_ops,
3273		.of_match_table = of_match_ptr(of_sci_match),
3274	},
3275};
3276
3277static int __init sci_init(void)
3278{
3279	pr_info("%s\n", banner);
3280
3281	return platform_driver_register(&sci_driver);
3282}
3283
3284static void __exit sci_exit(void)
3285{
3286	platform_driver_unregister(&sci_driver);
3287
3288	if (sci_uart_driver.state)
3289		uart_unregister_driver(&sci_uart_driver);
3290}
3291
3292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3293early_platform_init_buffer("earlyprintk", &sci_driver,
3294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3295#endif
3296#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3297static struct plat_sci_port port_cfg __initdata;
3298
3299static int __init early_console_setup(struct earlycon_device *device,
3300				      int type)
3301{
3302	if (!device->port.membase)
3303		return -ENODEV;
3304
3305	device->port.serial_in = sci_serial_in;
3306	device->port.serial_out	= sci_serial_out;
3307	device->port.type = type;
3308	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3309	port_cfg.type = type;
3310	sci_ports[0].cfg = &port_cfg;
3311	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3312	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3313	sci_serial_out(&sci_ports[0].port, SCSCR,
3314		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3315
3316	device->con->write = serial_console_write;
3317	return 0;
3318}
3319static int __init sci_early_console_setup(struct earlycon_device *device,
3320					  const char *opt)
3321{
3322	return early_console_setup(device, PORT_SCI);
3323}
3324static int __init scif_early_console_setup(struct earlycon_device *device,
3325					  const char *opt)
3326{
3327	return early_console_setup(device, PORT_SCIF);
3328}
 
 
 
 
 
 
 
3329static int __init scifa_early_console_setup(struct earlycon_device *device,
3330					  const char *opt)
3331{
3332	return early_console_setup(device, PORT_SCIFA);
3333}
3334static int __init scifb_early_console_setup(struct earlycon_device *device,
3335					  const char *opt)
3336{
3337	return early_console_setup(device, PORT_SCIFB);
3338}
3339static int __init hscif_early_console_setup(struct earlycon_device *device,
3340					  const char *opt)
3341{
3342	return early_console_setup(device, PORT_HSCIF);
3343}
3344
3345OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3346OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
 
 
3347OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3348OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3349OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3350#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3351
3352module_init(sci_init);
3353module_exit(sci_exit);
3354
3355MODULE_LICENSE("GPL");
3356MODULE_ALIAS("platform:sh-sci");
3357MODULE_AUTHOR("Paul Mundt");
3358MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
 
 
 
 
  18#undef DEBUG
  19
  20#include <linux/clk.h>
  21#include <linux/console.h>
  22#include <linux/ctype.h>
  23#include <linux/cpufreq.h>
  24#include <linux/delay.h>
  25#include <linux/dmaengine.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/err.h>
  28#include <linux/errno.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/ioport.h>
  32#include <linux/ktime.h>
  33#include <linux/major.h>
  34#include <linux/module.h>
  35#include <linux/mm.h>
  36#include <linux/of.h>
  37#include <linux/of_device.h>
  38#include <linux/platform_device.h>
  39#include <linux/pm_runtime.h>
  40#include <linux/scatterlist.h>
  41#include <linux/serial.h>
  42#include <linux/serial_sci.h>
  43#include <linux/sh_dma.h>
  44#include <linux/slab.h>
  45#include <linux/string.h>
  46#include <linux/sysrq.h>
  47#include <linux/timer.h>
  48#include <linux/tty.h>
  49#include <linux/tty_flip.h>
  50
  51#ifdef CONFIG_SUPERH
  52#include <asm/sh_bios.h>
  53#include <asm/platform_early.h>
  54#endif
  55
  56#include "serial_mctrl_gpio.h"
  57#include "sh-sci.h"
  58
  59/* Offsets into the sci_port->irqs array */
  60enum {
  61	SCIx_ERI_IRQ,
  62	SCIx_RXI_IRQ,
  63	SCIx_TXI_IRQ,
  64	SCIx_BRI_IRQ,
  65	SCIx_DRI_IRQ,
  66	SCIx_TEI_IRQ,
  67	SCIx_NR_IRQS,
  68
  69	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  70};
  71
  72#define SCIx_IRQ_IS_MUXED(port)			\
  73	((port)->irqs[SCIx_ERI_IRQ] ==	\
  74	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  75	((port)->irqs[SCIx_ERI_IRQ] &&	\
  76	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  77
  78enum SCI_CLKS {
  79	SCI_FCK,		/* Functional Clock */
  80	SCI_SCK,		/* Optional External Clock */
  81	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  82	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  83	SCI_NUM_CLKS
  84};
  85
  86/* Bit x set means sampling rate x + 1 is supported */
  87#define SCI_SR(x)		BIT((x) - 1)
  88#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  89
  90#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  91				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  92				SCI_SR(19) | SCI_SR(27)
  93
  94#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  95#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  96
  97/* Iterate over all supported sampling rates, from high to low */
  98#define for_each_sr(_sr, _port)						\
  99	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 100		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 101
 102struct plat_sci_reg {
 103	u8 offset, size;
 104};
 105
 106struct sci_port_params {
 107	const struct plat_sci_reg regs[SCIx_NR_REGS];
 108	unsigned int fifosize;
 109	unsigned int overrun_reg;
 110	unsigned int overrun_mask;
 111	unsigned int sampling_rate_mask;
 112	unsigned int error_mask;
 113	unsigned int error_clear;
 114};
 115
 116struct sci_port {
 117	struct uart_port	port;
 118
 119	/* Platform configuration */
 120	const struct sci_port_params *params;
 121	const struct plat_sci_port *cfg;
 122	unsigned int		sampling_rate_mask;
 123	resource_size_t		reg_size;
 124	struct mctrl_gpios	*gpios;
 125
 126	/* Clocks */
 127	struct clk		*clks[SCI_NUM_CLKS];
 128	unsigned long		clk_rates[SCI_NUM_CLKS];
 129
 130	int			irqs[SCIx_NR_IRQS];
 131	char			*irqstr[SCIx_NR_IRQS];
 132
 133	struct dma_chan			*chan_tx;
 134	struct dma_chan			*chan_rx;
 135
 136#ifdef CONFIG_SERIAL_SH_SCI_DMA
 137	struct dma_chan			*chan_tx_saved;
 138	struct dma_chan			*chan_rx_saved;
 139	dma_cookie_t			cookie_tx;
 140	dma_cookie_t			cookie_rx[2];
 141	dma_cookie_t			active_rx;
 142	dma_addr_t			tx_dma_addr;
 143	unsigned int			tx_dma_len;
 144	struct scatterlist		sg_rx[2];
 145	void				*rx_buf[2];
 146	size_t				buf_len_rx;
 147	struct work_struct		work_tx;
 148	struct hrtimer			rx_timer;
 149	unsigned int			rx_timeout;	/* microseconds */
 150#endif
 151	unsigned int			rx_frame;
 152	int				rx_trigger;
 153	struct timer_list		rx_fifo_timer;
 154	int				rx_fifo_timeout;
 155	u16				hscif_tot;
 156
 157	bool has_rtscts;
 158	bool autorts;
 159};
 160
 161#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 162
 163static struct sci_port sci_ports[SCI_NPORTS];
 164static unsigned long sci_ports_in_use;
 165static struct uart_driver sci_uart_driver;
 166
 167static inline struct sci_port *
 168to_sci_port(struct uart_port *uart)
 169{
 170	return container_of(uart, struct sci_port, port);
 171}
 172
 173static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 174	/*
 175	 * Common SCI definitions, dependent on the port's regshift
 176	 * value.
 177	 */
 178	[SCIx_SCI_REGTYPE] = {
 179		.regs = {
 180			[SCSMR]		= { 0x00,  8 },
 181			[SCBRR]		= { 0x01,  8 },
 182			[SCSCR]		= { 0x02,  8 },
 183			[SCxTDR]	= { 0x03,  8 },
 184			[SCxSR]		= { 0x04,  8 },
 185			[SCxRDR]	= { 0x05,  8 },
 186		},
 187		.fifosize = 1,
 188		.overrun_reg = SCxSR,
 189		.overrun_mask = SCI_ORER,
 190		.sampling_rate_mask = SCI_SR(32),
 191		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 192		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 193	},
 194
 195	/*
 196	 * Common definitions for legacy IrDA ports.
 197	 */
 198	[SCIx_IRDA_REGTYPE] = {
 199		.regs = {
 200			[SCSMR]		= { 0x00,  8 },
 201			[SCBRR]		= { 0x02,  8 },
 202			[SCSCR]		= { 0x04,  8 },
 203			[SCxTDR]	= { 0x06,  8 },
 204			[SCxSR]		= { 0x08, 16 },
 205			[SCxRDR]	= { 0x0a,  8 },
 206			[SCFCR]		= { 0x0c,  8 },
 207			[SCFDR]		= { 0x0e, 16 },
 208		},
 209		.fifosize = 1,
 210		.overrun_reg = SCxSR,
 211		.overrun_mask = SCI_ORER,
 212		.sampling_rate_mask = SCI_SR(32),
 213		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 214		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 215	},
 216
 217	/*
 218	 * Common SCIFA definitions.
 219	 */
 220	[SCIx_SCIFA_REGTYPE] = {
 221		.regs = {
 222			[SCSMR]		= { 0x00, 16 },
 223			[SCBRR]		= { 0x04,  8 },
 224			[SCSCR]		= { 0x08, 16 },
 225			[SCxTDR]	= { 0x20,  8 },
 226			[SCxSR]		= { 0x14, 16 },
 227			[SCxRDR]	= { 0x24,  8 },
 228			[SCFCR]		= { 0x18, 16 },
 229			[SCFDR]		= { 0x1c, 16 },
 230			[SCPCR]		= { 0x30, 16 },
 231			[SCPDR]		= { 0x34, 16 },
 232		},
 233		.fifosize = 64,
 234		.overrun_reg = SCxSR,
 235		.overrun_mask = SCIFA_ORER,
 236		.sampling_rate_mask = SCI_SR_SCIFAB,
 237		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 238		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 239	},
 240
 241	/*
 242	 * Common SCIFB definitions.
 243	 */
 244	[SCIx_SCIFB_REGTYPE] = {
 245		.regs = {
 246			[SCSMR]		= { 0x00, 16 },
 247			[SCBRR]		= { 0x04,  8 },
 248			[SCSCR]		= { 0x08, 16 },
 249			[SCxTDR]	= { 0x40,  8 },
 250			[SCxSR]		= { 0x14, 16 },
 251			[SCxRDR]	= { 0x60,  8 },
 252			[SCFCR]		= { 0x18, 16 },
 253			[SCTFDR]	= { 0x38, 16 },
 254			[SCRFDR]	= { 0x3c, 16 },
 255			[SCPCR]		= { 0x30, 16 },
 256			[SCPDR]		= { 0x34, 16 },
 257		},
 258		.fifosize = 256,
 259		.overrun_reg = SCxSR,
 260		.overrun_mask = SCIFA_ORER,
 261		.sampling_rate_mask = SCI_SR_SCIFAB,
 262		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 263		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 264	},
 265
 266	/*
 267	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 268	 * count registers.
 269	 */
 270	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 271		.regs = {
 272			[SCSMR]		= { 0x00, 16 },
 273			[SCBRR]		= { 0x04,  8 },
 274			[SCSCR]		= { 0x08, 16 },
 275			[SCxTDR]	= { 0x0c,  8 },
 276			[SCxSR]		= { 0x10, 16 },
 277			[SCxRDR]	= { 0x14,  8 },
 278			[SCFCR]		= { 0x18, 16 },
 279			[SCFDR]		= { 0x1c, 16 },
 280			[SCSPTR]	= { 0x20, 16 },
 281			[SCLSR]		= { 0x24, 16 },
 282		},
 283		.fifosize = 16,
 284		.overrun_reg = SCLSR,
 285		.overrun_mask = SCLSR_ORER,
 286		.sampling_rate_mask = SCI_SR(32),
 287		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 288		.error_clear = SCIF_ERROR_CLEAR,
 289	},
 290
 291	/*
 292	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
 293	 * It looks like a normal SCIF with FIFO data, but with a
 294	 * compressed address space. Also, the break out of interrupts
 295	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
 296	 */
 297	[SCIx_RZ_SCIFA_REGTYPE] = {
 298		.regs = {
 299			[SCSMR]		= { 0x00, 16 },
 300			[SCBRR]		= { 0x02,  8 },
 301			[SCSCR]		= { 0x04, 16 },
 302			[SCxTDR]	= { 0x06,  8 },
 303			[SCxSR]		= { 0x08, 16 },
 304			[SCxRDR]	= { 0x0A,  8 },
 305			[SCFCR]		= { 0x0C, 16 },
 306			[SCFDR]		= { 0x0E, 16 },
 307			[SCSPTR]	= { 0x10, 16 },
 308			[SCLSR]		= { 0x12, 16 },
 309			[SEMR]		= { 0x14, 8 },
 310		},
 311		.fifosize = 16,
 312		.overrun_reg = SCLSR,
 313		.overrun_mask = SCLSR_ORER,
 314		.sampling_rate_mask = SCI_SR(32),
 315		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 316		.error_clear = SCIF_ERROR_CLEAR,
 317	},
 318
 319	/*
 320	 * Common SH-3 SCIF definitions.
 321	 */
 322	[SCIx_SH3_SCIF_REGTYPE] = {
 323		.regs = {
 324			[SCSMR]		= { 0x00,  8 },
 325			[SCBRR]		= { 0x02,  8 },
 326			[SCSCR]		= { 0x04,  8 },
 327			[SCxTDR]	= { 0x06,  8 },
 328			[SCxSR]		= { 0x08, 16 },
 329			[SCxRDR]	= { 0x0a,  8 },
 330			[SCFCR]		= { 0x0c,  8 },
 331			[SCFDR]		= { 0x0e, 16 },
 332		},
 333		.fifosize = 16,
 334		.overrun_reg = SCLSR,
 335		.overrun_mask = SCLSR_ORER,
 336		.sampling_rate_mask = SCI_SR(32),
 337		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 338		.error_clear = SCIF_ERROR_CLEAR,
 339	},
 340
 341	/*
 342	 * Common SH-4(A) SCIF(B) definitions.
 343	 */
 344	[SCIx_SH4_SCIF_REGTYPE] = {
 345		.regs = {
 346			[SCSMR]		= { 0x00, 16 },
 347			[SCBRR]		= { 0x04,  8 },
 348			[SCSCR]		= { 0x08, 16 },
 349			[SCxTDR]	= { 0x0c,  8 },
 350			[SCxSR]		= { 0x10, 16 },
 351			[SCxRDR]	= { 0x14,  8 },
 352			[SCFCR]		= { 0x18, 16 },
 353			[SCFDR]		= { 0x1c, 16 },
 354			[SCSPTR]	= { 0x20, 16 },
 355			[SCLSR]		= { 0x24, 16 },
 356		},
 357		.fifosize = 16,
 358		.overrun_reg = SCLSR,
 359		.overrun_mask = SCLSR_ORER,
 360		.sampling_rate_mask = SCI_SR(32),
 361		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 362		.error_clear = SCIF_ERROR_CLEAR,
 363	},
 364
 365	/*
 366	 * Common SCIF definitions for ports with a Baud Rate Generator for
 367	 * External Clock (BRG).
 368	 */
 369	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 370		.regs = {
 371			[SCSMR]		= { 0x00, 16 },
 372			[SCBRR]		= { 0x04,  8 },
 373			[SCSCR]		= { 0x08, 16 },
 374			[SCxTDR]	= { 0x0c,  8 },
 375			[SCxSR]		= { 0x10, 16 },
 376			[SCxRDR]	= { 0x14,  8 },
 377			[SCFCR]		= { 0x18, 16 },
 378			[SCFDR]		= { 0x1c, 16 },
 379			[SCSPTR]	= { 0x20, 16 },
 380			[SCLSR]		= { 0x24, 16 },
 381			[SCDL]		= { 0x30, 16 },
 382			[SCCKS]		= { 0x34, 16 },
 383		},
 384		.fifosize = 16,
 385		.overrun_reg = SCLSR,
 386		.overrun_mask = SCLSR_ORER,
 387		.sampling_rate_mask = SCI_SR(32),
 388		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 389		.error_clear = SCIF_ERROR_CLEAR,
 390	},
 391
 392	/*
 393	 * Common HSCIF definitions.
 394	 */
 395	[SCIx_HSCIF_REGTYPE] = {
 396		.regs = {
 397			[SCSMR]		= { 0x00, 16 },
 398			[SCBRR]		= { 0x04,  8 },
 399			[SCSCR]		= { 0x08, 16 },
 400			[SCxTDR]	= { 0x0c,  8 },
 401			[SCxSR]		= { 0x10, 16 },
 402			[SCxRDR]	= { 0x14,  8 },
 403			[SCFCR]		= { 0x18, 16 },
 404			[SCFDR]		= { 0x1c, 16 },
 405			[SCSPTR]	= { 0x20, 16 },
 406			[SCLSR]		= { 0x24, 16 },
 407			[HSSRR]		= { 0x40, 16 },
 408			[SCDL]		= { 0x30, 16 },
 409			[SCCKS]		= { 0x34, 16 },
 410			[HSRTRGR]	= { 0x54, 16 },
 411			[HSTTRGR]	= { 0x58, 16 },
 412		},
 413		.fifosize = 128,
 414		.overrun_reg = SCLSR,
 415		.overrun_mask = SCLSR_ORER,
 416		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 417		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 418		.error_clear = SCIF_ERROR_CLEAR,
 419	},
 420
 421	/*
 422	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 423	 * register.
 424	 */
 425	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 426		.regs = {
 427			[SCSMR]		= { 0x00, 16 },
 428			[SCBRR]		= { 0x04,  8 },
 429			[SCSCR]		= { 0x08, 16 },
 430			[SCxTDR]	= { 0x0c,  8 },
 431			[SCxSR]		= { 0x10, 16 },
 432			[SCxRDR]	= { 0x14,  8 },
 433			[SCFCR]		= { 0x18, 16 },
 434			[SCFDR]		= { 0x1c, 16 },
 435			[SCLSR]		= { 0x24, 16 },
 436		},
 437		.fifosize = 16,
 438		.overrun_reg = SCLSR,
 439		.overrun_mask = SCLSR_ORER,
 440		.sampling_rate_mask = SCI_SR(32),
 441		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 442		.error_clear = SCIF_ERROR_CLEAR,
 443	},
 444
 445	/*
 446	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 447	 * count registers.
 448	 */
 449	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 450		.regs = {
 451			[SCSMR]		= { 0x00, 16 },
 452			[SCBRR]		= { 0x04,  8 },
 453			[SCSCR]		= { 0x08, 16 },
 454			[SCxTDR]	= { 0x0c,  8 },
 455			[SCxSR]		= { 0x10, 16 },
 456			[SCxRDR]	= { 0x14,  8 },
 457			[SCFCR]		= { 0x18, 16 },
 458			[SCFDR]		= { 0x1c, 16 },
 459			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 460			[SCRFDR]	= { 0x20, 16 },
 461			[SCSPTR]	= { 0x24, 16 },
 462			[SCLSR]		= { 0x28, 16 },
 463		},
 464		.fifosize = 16,
 465		.overrun_reg = SCLSR,
 466		.overrun_mask = SCLSR_ORER,
 467		.sampling_rate_mask = SCI_SR(32),
 468		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 469		.error_clear = SCIF_ERROR_CLEAR,
 470	},
 471
 472	/*
 473	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 474	 * registers.
 475	 */
 476	[SCIx_SH7705_SCIF_REGTYPE] = {
 477		.regs = {
 478			[SCSMR]		= { 0x00, 16 },
 479			[SCBRR]		= { 0x04,  8 },
 480			[SCSCR]		= { 0x08, 16 },
 481			[SCxTDR]	= { 0x20,  8 },
 482			[SCxSR]		= { 0x14, 16 },
 483			[SCxRDR]	= { 0x24,  8 },
 484			[SCFCR]		= { 0x18, 16 },
 485			[SCFDR]		= { 0x1c, 16 },
 486		},
 487		.fifosize = 64,
 488		.overrun_reg = SCxSR,
 489		.overrun_mask = SCIFA_ORER,
 490		.sampling_rate_mask = SCI_SR(16),
 491		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 492		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 493	},
 494};
 495
 496#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 497
 498/*
 499 * The "offset" here is rather misleading, in that it refers to an enum
 500 * value relative to the port mapping rather than the fixed offset
 501 * itself, which needs to be manually retrieved from the platform's
 502 * register map for the given port.
 503 */
 504static unsigned int sci_serial_in(struct uart_port *p, int offset)
 505{
 506	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 507
 508	if (reg->size == 8)
 509		return ioread8(p->membase + (reg->offset << p->regshift));
 510	else if (reg->size == 16)
 511		return ioread16(p->membase + (reg->offset << p->regshift));
 512	else
 513		WARN(1, "Invalid register access\n");
 514
 515	return 0;
 516}
 517
 518static void sci_serial_out(struct uart_port *p, int offset, int value)
 519{
 520	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 521
 522	if (reg->size == 8)
 523		iowrite8(value, p->membase + (reg->offset << p->regshift));
 524	else if (reg->size == 16)
 525		iowrite16(value, p->membase + (reg->offset << p->regshift));
 526	else
 527		WARN(1, "Invalid register access\n");
 528}
 529
 530static void sci_port_enable(struct sci_port *sci_port)
 531{
 532	unsigned int i;
 533
 534	if (!sci_port->port.dev)
 535		return;
 536
 537	pm_runtime_get_sync(sci_port->port.dev);
 538
 539	for (i = 0; i < SCI_NUM_CLKS; i++) {
 540		clk_prepare_enable(sci_port->clks[i]);
 541		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 542	}
 543	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 544}
 545
 546static void sci_port_disable(struct sci_port *sci_port)
 547{
 548	unsigned int i;
 549
 550	if (!sci_port->port.dev)
 551		return;
 552
 553	for (i = SCI_NUM_CLKS; i-- > 0; )
 554		clk_disable_unprepare(sci_port->clks[i]);
 555
 556	pm_runtime_put_sync(sci_port->port.dev);
 557}
 558
 559static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 560{
 561	/*
 562	 * Not all ports (such as SCIFA) will support REIE. Rather than
 563	 * special-casing the port type, we check the port initialization
 564	 * IRQ enable mask to see whether the IRQ is desired at all. If
 565	 * it's unset, it's logically inferred that there's no point in
 566	 * testing for it.
 567	 */
 568	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 569}
 570
 571static void sci_start_tx(struct uart_port *port)
 572{
 573	struct sci_port *s = to_sci_port(port);
 574	unsigned short ctrl;
 575
 576#ifdef CONFIG_SERIAL_SH_SCI_DMA
 577	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 578		u16 new, scr = serial_port_in(port, SCSCR);
 579		if (s->chan_tx)
 580			new = scr | SCSCR_TDRQE;
 581		else
 582			new = scr & ~SCSCR_TDRQE;
 583		if (new != scr)
 584			serial_port_out(port, SCSCR, new);
 585	}
 586
 587	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 588	    dma_submit_error(s->cookie_tx)) {
 589		s->cookie_tx = 0;
 590		schedule_work(&s->work_tx);
 591	}
 592#endif
 593
 594	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 595		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 596		ctrl = serial_port_in(port, SCSCR);
 597		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 598	}
 599}
 600
 601static void sci_stop_tx(struct uart_port *port)
 602{
 603	unsigned short ctrl;
 604
 605	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 606	ctrl = serial_port_in(port, SCSCR);
 607
 608	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 609		ctrl &= ~SCSCR_TDRQE;
 610
 611	ctrl &= ~SCSCR_TIE;
 612
 613	serial_port_out(port, SCSCR, ctrl);
 614
 615#ifdef CONFIG_SERIAL_SH_SCI_DMA
 616	if (to_sci_port(port)->chan_tx &&
 617	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
 618		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
 619		to_sci_port(port)->cookie_tx = -EINVAL;
 620	}
 621#endif
 622}
 623
 624static void sci_start_rx(struct uart_port *port)
 625{
 626	unsigned short ctrl;
 627
 628	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 629
 630	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 631		ctrl &= ~SCSCR_RDRQE;
 632
 633	serial_port_out(port, SCSCR, ctrl);
 634}
 635
 636static void sci_stop_rx(struct uart_port *port)
 637{
 638	unsigned short ctrl;
 639
 640	ctrl = serial_port_in(port, SCSCR);
 641
 642	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 643		ctrl &= ~SCSCR_RDRQE;
 644
 645	ctrl &= ~port_rx_irq_mask(port);
 646
 647	serial_port_out(port, SCSCR, ctrl);
 648}
 649
 650static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 651{
 652	if (port->type == PORT_SCI) {
 653		/* Just store the mask */
 654		serial_port_out(port, SCxSR, mask);
 655	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 656		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 657		/* Only clear the status bits we want to clear */
 658		serial_port_out(port, SCxSR,
 659				serial_port_in(port, SCxSR) & mask);
 660	} else {
 661		/* Store the mask, clear parity/framing errors */
 662		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 663	}
 664}
 665
 666#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 667    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 668
 669#ifdef CONFIG_CONSOLE_POLL
 670static int sci_poll_get_char(struct uart_port *port)
 671{
 672	unsigned short status;
 673	int c;
 674
 675	do {
 676		status = serial_port_in(port, SCxSR);
 677		if (status & SCxSR_ERRORS(port)) {
 678			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 679			continue;
 680		}
 681		break;
 682	} while (1);
 683
 684	if (!(status & SCxSR_RDxF(port)))
 685		return NO_POLL_CHAR;
 686
 687	c = serial_port_in(port, SCxRDR);
 688
 689	/* Dummy read */
 690	serial_port_in(port, SCxSR);
 691	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 692
 693	return c;
 694}
 695#endif
 696
 697static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 698{
 699	unsigned short status;
 700
 701	do {
 702		status = serial_port_in(port, SCxSR);
 703	} while (!(status & SCxSR_TDxE(port)));
 704
 705	serial_port_out(port, SCxTDR, c);
 706	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 707}
 708#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 709	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 710
 711static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 712{
 713	struct sci_port *s = to_sci_port(port);
 714
 715	/*
 716	 * Use port-specific handler if provided.
 717	 */
 718	if (s->cfg->ops && s->cfg->ops->init_pins) {
 719		s->cfg->ops->init_pins(port, cflag);
 720		return;
 721	}
 722
 723	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 724		u16 data = serial_port_in(port, SCPDR);
 725		u16 ctrl = serial_port_in(port, SCPCR);
 726
 727		/* Enable RXD and TXD pin functions */
 728		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 729		if (to_sci_port(port)->has_rtscts) {
 730			/* RTS# is output, active low, unless autorts */
 731			if (!(port->mctrl & TIOCM_RTS)) {
 732				ctrl |= SCPCR_RTSC;
 733				data |= SCPDR_RTSD;
 734			} else if (!s->autorts) {
 735				ctrl |= SCPCR_RTSC;
 736				data &= ~SCPDR_RTSD;
 737			} else {
 738				/* Enable RTS# pin function */
 739				ctrl &= ~SCPCR_RTSC;
 740			}
 741			/* Enable CTS# pin function */
 742			ctrl &= ~SCPCR_CTSC;
 743		}
 744		serial_port_out(port, SCPDR, data);
 745		serial_port_out(port, SCPCR, ctrl);
 746	} else if (sci_getreg(port, SCSPTR)->size) {
 747		u16 status = serial_port_in(port, SCSPTR);
 748
 749		/* RTS# is always output; and active low, unless autorts */
 750		status |= SCSPTR_RTSIO;
 751		if (!(port->mctrl & TIOCM_RTS))
 752			status |= SCSPTR_RTSDT;
 753		else if (!s->autorts)
 754			status &= ~SCSPTR_RTSDT;
 755		/* CTS# and SCK are inputs */
 756		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 757		serial_port_out(port, SCSPTR, status);
 758	}
 759}
 760
 761static int sci_txfill(struct uart_port *port)
 762{
 763	struct sci_port *s = to_sci_port(port);
 764	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 765	const struct plat_sci_reg *reg;
 766
 767	reg = sci_getreg(port, SCTFDR);
 768	if (reg->size)
 769		return serial_port_in(port, SCTFDR) & fifo_mask;
 770
 771	reg = sci_getreg(port, SCFDR);
 772	if (reg->size)
 773		return serial_port_in(port, SCFDR) >> 8;
 774
 775	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 776}
 777
 778static int sci_txroom(struct uart_port *port)
 779{
 780	return port->fifosize - sci_txfill(port);
 781}
 782
 783static int sci_rxfill(struct uart_port *port)
 784{
 785	struct sci_port *s = to_sci_port(port);
 786	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 787	const struct plat_sci_reg *reg;
 788
 789	reg = sci_getreg(port, SCRFDR);
 790	if (reg->size)
 791		return serial_port_in(port, SCRFDR) & fifo_mask;
 792
 793	reg = sci_getreg(port, SCFDR);
 794	if (reg->size)
 795		return serial_port_in(port, SCFDR) & fifo_mask;
 796
 797	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 798}
 799
 800/* ********************************************************************** *
 801 *                   the interrupt related routines                       *
 802 * ********************************************************************** */
 803
 804static void sci_transmit_chars(struct uart_port *port)
 805{
 806	struct circ_buf *xmit = &port->state->xmit;
 807	unsigned int stopped = uart_tx_stopped(port);
 808	unsigned short status;
 809	unsigned short ctrl;
 810	int count;
 811
 812	status = serial_port_in(port, SCxSR);
 813	if (!(status & SCxSR_TDxE(port))) {
 814		ctrl = serial_port_in(port, SCSCR);
 815		if (uart_circ_empty(xmit))
 816			ctrl &= ~SCSCR_TIE;
 817		else
 818			ctrl |= SCSCR_TIE;
 819		serial_port_out(port, SCSCR, ctrl);
 820		return;
 821	}
 822
 823	count = sci_txroom(port);
 824
 825	do {
 826		unsigned char c;
 827
 828		if (port->x_char) {
 829			c = port->x_char;
 830			port->x_char = 0;
 831		} else if (!uart_circ_empty(xmit) && !stopped) {
 832			c = xmit->buf[xmit->tail];
 833			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 834		} else {
 835			break;
 836		}
 837
 838		serial_port_out(port, SCxTDR, c);
 839
 840		port->icount.tx++;
 841	} while (--count > 0);
 842
 843	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 844
 845	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 846		uart_write_wakeup(port);
 847	if (uart_circ_empty(xmit))
 848		sci_stop_tx(port);
 
 
 
 
 
 
 
 849
 
 
 
 850}
 851
 
 
 
 852static void sci_receive_chars(struct uart_port *port)
 853{
 854	struct tty_port *tport = &port->state->port;
 855	int i, count, copied = 0;
 856	unsigned short status;
 857	unsigned char flag;
 858
 859	status = serial_port_in(port, SCxSR);
 860	if (!(status & SCxSR_RDxF(port)))
 861		return;
 862
 863	while (1) {
 864		/* Don't copy more bytes than there is room for in the buffer */
 865		count = tty_buffer_request_room(tport, sci_rxfill(port));
 866
 867		/* If for any reason we can't copy more data, we're done! */
 868		if (count == 0)
 869			break;
 870
 871		if (port->type == PORT_SCI) {
 872			char c = serial_port_in(port, SCxRDR);
 873			if (uart_handle_sysrq_char(port, c))
 874				count = 0;
 875			else
 876				tty_insert_flip_char(tport, c, TTY_NORMAL);
 877		} else {
 878			for (i = 0; i < count; i++) {
 879				char c;
 880
 881				if (port->type == PORT_SCIF ||
 882				    port->type == PORT_HSCIF) {
 883					status = serial_port_in(port, SCxSR);
 884					c = serial_port_in(port, SCxRDR);
 885				} else {
 886					c = serial_port_in(port, SCxRDR);
 887					status = serial_port_in(port, SCxSR);
 888				}
 889				if (uart_handle_sysrq_char(port, c)) {
 890					count--; i--;
 891					continue;
 892				}
 893
 894				/* Store data and status */
 895				if (status & SCxSR_FER(port)) {
 896					flag = TTY_FRAME;
 897					port->icount.frame++;
 898					dev_notice(port->dev, "frame error\n");
 899				} else if (status & SCxSR_PER(port)) {
 900					flag = TTY_PARITY;
 901					port->icount.parity++;
 902					dev_notice(port->dev, "parity error\n");
 903				} else
 904					flag = TTY_NORMAL;
 905
 906				tty_insert_flip_char(tport, c, flag);
 907			}
 908		}
 909
 910		serial_port_in(port, SCxSR); /* dummy read */
 911		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 912
 913		copied += count;
 914		port->icount.rx += count;
 915	}
 916
 917	if (copied) {
 918		/* Tell the rest of the system the news. New characters! */
 919		tty_flip_buffer_push(tport);
 920	} else {
 921		/* TTY buffers full; read from RX reg to prevent lockup */
 922		serial_port_in(port, SCxRDR);
 923		serial_port_in(port, SCxSR); /* dummy read */
 924		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 925	}
 926}
 927
 928static int sci_handle_errors(struct uart_port *port)
 929{
 930	int copied = 0;
 931	unsigned short status = serial_port_in(port, SCxSR);
 932	struct tty_port *tport = &port->state->port;
 933	struct sci_port *s = to_sci_port(port);
 934
 935	/* Handle overruns */
 936	if (status & s->params->overrun_mask) {
 937		port->icount.overrun++;
 938
 939		/* overrun error */
 940		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 941			copied++;
 942
 943		dev_notice(port->dev, "overrun error\n");
 944	}
 945
 946	if (status & SCxSR_FER(port)) {
 947		/* frame error */
 948		port->icount.frame++;
 949
 950		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 951			copied++;
 952
 953		dev_notice(port->dev, "frame error\n");
 954	}
 955
 956	if (status & SCxSR_PER(port)) {
 957		/* parity error */
 958		port->icount.parity++;
 959
 960		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 961			copied++;
 962
 963		dev_notice(port->dev, "parity error\n");
 964	}
 965
 966	if (copied)
 967		tty_flip_buffer_push(tport);
 968
 969	return copied;
 970}
 971
 972static int sci_handle_fifo_overrun(struct uart_port *port)
 973{
 974	struct tty_port *tport = &port->state->port;
 975	struct sci_port *s = to_sci_port(port);
 976	const struct plat_sci_reg *reg;
 977	int copied = 0;
 978	u16 status;
 979
 980	reg = sci_getreg(port, s->params->overrun_reg);
 981	if (!reg->size)
 982		return 0;
 983
 984	status = serial_port_in(port, s->params->overrun_reg);
 985	if (status & s->params->overrun_mask) {
 986		status &= ~s->params->overrun_mask;
 987		serial_port_out(port, s->params->overrun_reg, status);
 988
 989		port->icount.overrun++;
 990
 991		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 992		tty_flip_buffer_push(tport);
 993
 994		dev_dbg(port->dev, "overrun error\n");
 995		copied++;
 996	}
 997
 998	return copied;
 999}
1000
1001static int sci_handle_breaks(struct uart_port *port)
1002{
1003	int copied = 0;
1004	unsigned short status = serial_port_in(port, SCxSR);
1005	struct tty_port *tport = &port->state->port;
1006
1007	if (uart_handle_break(port))
1008		return 0;
1009
1010	if (status & SCxSR_BRK(port)) {
1011		port->icount.brk++;
1012
1013		/* Notify of BREAK */
1014		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1015			copied++;
1016
1017		dev_dbg(port->dev, "BREAK detected\n");
1018	}
1019
1020	if (copied)
1021		tty_flip_buffer_push(tport);
1022
1023	copied += sci_handle_fifo_overrun(port);
1024
1025	return copied;
1026}
1027
1028static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1029{
1030	unsigned int bits;
1031
1032	if (rx_trig >= port->fifosize)
1033		rx_trig = port->fifosize - 1;
1034	if (rx_trig < 1)
1035		rx_trig = 1;
 
 
1036
1037	/* HSCIF can be set to an arbitrary level. */
1038	if (sci_getreg(port, HSRTRGR)->size) {
1039		serial_port_out(port, HSRTRGR, rx_trig);
1040		return rx_trig;
1041	}
1042
1043	switch (port->type) {
1044	case PORT_SCIF:
1045		if (rx_trig < 4) {
1046			bits = 0;
1047			rx_trig = 1;
1048		} else if (rx_trig < 8) {
1049			bits = SCFCR_RTRG0;
1050			rx_trig = 4;
1051		} else if (rx_trig < 14) {
1052			bits = SCFCR_RTRG1;
1053			rx_trig = 8;
1054		} else {
1055			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1056			rx_trig = 14;
1057		}
1058		break;
1059	case PORT_SCIFA:
1060	case PORT_SCIFB:
1061		if (rx_trig < 16) {
1062			bits = 0;
1063			rx_trig = 1;
1064		} else if (rx_trig < 32) {
1065			bits = SCFCR_RTRG0;
1066			rx_trig = 16;
1067		} else if (rx_trig < 48) {
1068			bits = SCFCR_RTRG1;
1069			rx_trig = 32;
1070		} else {
1071			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1072			rx_trig = 48;
1073		}
1074		break;
1075	default:
1076		WARN(1, "unknown FIFO configuration");
1077		return 1;
1078	}
1079
1080	serial_port_out(port, SCFCR,
1081		(serial_port_in(port, SCFCR) &
1082		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1083
1084	return rx_trig;
1085}
1086
1087static int scif_rtrg_enabled(struct uart_port *port)
1088{
1089	if (sci_getreg(port, HSRTRGR)->size)
1090		return serial_port_in(port, HSRTRGR) != 0;
1091	else
1092		return (serial_port_in(port, SCFCR) &
1093			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1094}
1095
1096static void rx_fifo_timer_fn(struct timer_list *t)
1097{
1098	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1099	struct uart_port *port = &s->port;
1100
1101	dev_dbg(port->dev, "Rx timed out\n");
1102	scif_set_rtrg(port, 1);
1103}
1104
1105static ssize_t rx_fifo_trigger_show(struct device *dev,
1106				    struct device_attribute *attr, char *buf)
 
1107{
1108	struct uart_port *port = dev_get_drvdata(dev);
1109	struct sci_port *sci = to_sci_port(port);
1110
1111	return sprintf(buf, "%d\n", sci->rx_trigger);
1112}
1113
1114static ssize_t rx_fifo_trigger_store(struct device *dev,
1115				     struct device_attribute *attr,
1116				     const char *buf, size_t count)
 
1117{
1118	struct uart_port *port = dev_get_drvdata(dev);
1119	struct sci_port *sci = to_sci_port(port);
1120	int ret;
1121	long r;
1122
1123	ret = kstrtol(buf, 0, &r);
1124	if (ret)
1125		return ret;
1126
1127	sci->rx_trigger = scif_set_rtrg(port, r);
1128	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1129		scif_set_rtrg(port, 1);
1130
1131	return count;
1132}
1133
1134static DEVICE_ATTR_RW(rx_fifo_trigger);
1135
1136static ssize_t rx_fifo_timeout_show(struct device *dev,
1137			       struct device_attribute *attr,
1138			       char *buf)
1139{
1140	struct uart_port *port = dev_get_drvdata(dev);
1141	struct sci_port *sci = to_sci_port(port);
1142	int v;
1143
1144	if (port->type == PORT_HSCIF)
1145		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1146	else
1147		v = sci->rx_fifo_timeout;
1148
1149	return sprintf(buf, "%d\n", v);
1150}
1151
1152static ssize_t rx_fifo_timeout_store(struct device *dev,
1153				struct device_attribute *attr,
1154				const char *buf,
1155				size_t count)
1156{
1157	struct uart_port *port = dev_get_drvdata(dev);
1158	struct sci_port *sci = to_sci_port(port);
1159	int ret;
1160	long r;
1161
1162	ret = kstrtol(buf, 0, &r);
1163	if (ret)
1164		return ret;
1165
1166	if (port->type == PORT_HSCIF) {
1167		if (r < 0 || r > 3)
1168			return -EINVAL;
1169		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1170	} else {
1171		sci->rx_fifo_timeout = r;
1172		scif_set_rtrg(port, 1);
1173		if (r > 0)
1174			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1175	}
1176
1177	return count;
1178}
1179
1180static DEVICE_ATTR_RW(rx_fifo_timeout);
1181
1182
1183#ifdef CONFIG_SERIAL_SH_SCI_DMA
1184static void sci_dma_tx_complete(void *arg)
1185{
1186	struct sci_port *s = arg;
1187	struct uart_port *port = &s->port;
1188	struct circ_buf *xmit = &port->state->xmit;
1189	unsigned long flags;
1190
1191	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1192
1193	spin_lock_irqsave(&port->lock, flags);
1194
1195	xmit->tail += s->tx_dma_len;
1196	xmit->tail &= UART_XMIT_SIZE - 1;
1197
1198	port->icount.tx += s->tx_dma_len;
1199
1200	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1201		uart_write_wakeup(port);
1202
1203	if (!uart_circ_empty(xmit)) {
1204		s->cookie_tx = 0;
1205		schedule_work(&s->work_tx);
1206	} else {
1207		s->cookie_tx = -EINVAL;
1208		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1209			u16 ctrl = serial_port_in(port, SCSCR);
1210			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1211		}
1212	}
1213
1214	spin_unlock_irqrestore(&port->lock, flags);
1215}
1216
1217/* Locking: called with port lock held */
1218static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1219{
1220	struct uart_port *port = &s->port;
1221	struct tty_port *tport = &port->state->port;
1222	int copied;
1223
1224	copied = tty_insert_flip_string(tport, buf, count);
1225	if (copied < count)
1226		port->icount.buf_overrun++;
1227
1228	port->icount.rx += copied;
1229
1230	return copied;
1231}
1232
1233static int sci_dma_rx_find_active(struct sci_port *s)
1234{
1235	unsigned int i;
1236
1237	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1238		if (s->active_rx == s->cookie_rx[i])
1239			return i;
1240
1241	return -1;
1242}
1243
1244static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1245{
1246	unsigned int i;
 
 
1247
 
1248	s->chan_rx = NULL;
1249	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1250		s->cookie_rx[i] = -EINVAL;
1251	s->active_rx = 0;
1252}
1253
1254static void sci_dma_rx_release(struct sci_port *s)
1255{
1256	struct dma_chan *chan = s->chan_rx_saved;
1257
1258	s->chan_rx_saved = NULL;
1259	sci_dma_rx_chan_invalidate(s);
1260	dmaengine_terminate_sync(chan);
1261	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1262			  sg_dma_address(&s->sg_rx[0]));
1263	dma_release_channel(chan);
 
 
 
 
 
1264}
1265
1266static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1267{
1268	long sec = usec / 1000000;
1269	long nsec = (usec % 1000000) * 1000;
1270	ktime_t t = ktime_set(sec, nsec);
1271
1272	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1273}
1274
1275static void sci_dma_rx_reenable_irq(struct sci_port *s)
1276{
1277	struct uart_port *port = &s->port;
1278	u16 scr;
1279
1280	/* Direct new serial port interrupts back to CPU */
1281	scr = serial_port_in(port, SCSCR);
1282	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1283		scr &= ~SCSCR_RDRQE;
1284		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1285	}
1286	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1287}
1288
1289static void sci_dma_rx_complete(void *arg)
1290{
1291	struct sci_port *s = arg;
1292	struct dma_chan *chan = s->chan_rx;
1293	struct uart_port *port = &s->port;
1294	struct dma_async_tx_descriptor *desc;
1295	unsigned long flags;
1296	int active, count = 0;
1297
1298	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1299		s->active_rx);
1300
1301	spin_lock_irqsave(&port->lock, flags);
1302
1303	active = sci_dma_rx_find_active(s);
1304	if (active >= 0)
1305		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1306
1307	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1308
1309	if (count)
1310		tty_flip_buffer_push(&port->state->port);
1311
1312	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1313				       DMA_DEV_TO_MEM,
1314				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1315	if (!desc)
1316		goto fail;
1317
1318	desc->callback = sci_dma_rx_complete;
1319	desc->callback_param = s;
1320	s->cookie_rx[active] = dmaengine_submit(desc);
1321	if (dma_submit_error(s->cookie_rx[active]))
1322		goto fail;
1323
1324	s->active_rx = s->cookie_rx[!active];
1325
1326	dma_async_issue_pending(chan);
1327
1328	spin_unlock_irqrestore(&port->lock, flags);
1329	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1330		__func__, s->cookie_rx[active], active, s->active_rx);
1331	return;
1332
1333fail:
1334	spin_unlock_irqrestore(&port->lock, flags);
1335	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1336	/* Switch to PIO */
1337	spin_lock_irqsave(&port->lock, flags);
1338	dmaengine_terminate_async(chan);
1339	sci_dma_rx_chan_invalidate(s);
1340	sci_dma_rx_reenable_irq(s);
1341	spin_unlock_irqrestore(&port->lock, flags);
1342}
1343
1344static void sci_dma_tx_release(struct sci_port *s)
1345{
1346	struct dma_chan *chan = s->chan_tx_saved;
 
 
1347
1348	cancel_work_sync(&s->work_tx);
1349	s->chan_tx_saved = s->chan_tx = NULL;
1350	s->cookie_tx = -EINVAL;
1351	dmaengine_terminate_sync(chan);
 
1352	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1353			 DMA_TO_DEVICE);
1354	dma_release_channel(chan);
 
 
 
 
 
1355}
1356
1357static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1358{
1359	struct dma_chan *chan = s->chan_rx;
1360	struct uart_port *port = &s->port;
1361	unsigned long flags;
1362	int i;
1363
1364	for (i = 0; i < 2; i++) {
1365		struct scatterlist *sg = &s->sg_rx[i];
1366		struct dma_async_tx_descriptor *desc;
1367
1368		desc = dmaengine_prep_slave_sg(chan,
1369			sg, 1, DMA_DEV_TO_MEM,
1370			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1371		if (!desc)
1372			goto fail;
1373
1374		desc->callback = sci_dma_rx_complete;
1375		desc->callback_param = s;
1376		s->cookie_rx[i] = dmaengine_submit(desc);
1377		if (dma_submit_error(s->cookie_rx[i]))
1378			goto fail;
1379
1380	}
1381
1382	s->active_rx = s->cookie_rx[0];
1383
1384	dma_async_issue_pending(chan);
1385	return 0;
1386
1387fail:
1388	/* Switch to PIO */
1389	if (!port_lock_held)
1390		spin_lock_irqsave(&port->lock, flags);
1391	if (i)
1392		dmaengine_terminate_async(chan);
1393	sci_dma_rx_chan_invalidate(s);
1394	sci_start_rx(port);
1395	if (!port_lock_held)
1396		spin_unlock_irqrestore(&port->lock, flags);
1397	return -EAGAIN;
1398}
1399
1400static void sci_dma_tx_work_fn(struct work_struct *work)
1401{
1402	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1403	struct dma_async_tx_descriptor *desc;
1404	struct dma_chan *chan = s->chan_tx;
1405	struct uart_port *port = &s->port;
1406	struct circ_buf *xmit = &port->state->xmit;
1407	unsigned long flags;
1408	dma_addr_t buf;
1409	int head, tail;
1410
1411	/*
1412	 * DMA is idle now.
1413	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1414	 * offsets and lengths. Since it is a circular buffer, we have to
1415	 * transmit till the end, and then the rest. Take the port lock to get a
1416	 * consistent xmit buffer state.
1417	 */
1418	spin_lock_irq(&port->lock);
1419	head = xmit->head;
1420	tail = xmit->tail;
1421	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1422	s->tx_dma_len = min_t(unsigned int,
1423		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1424		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1425	if (!s->tx_dma_len) {
1426		/* Transmit buffer has been flushed */
1427		spin_unlock_irq(&port->lock);
1428		return;
1429	}
1430
1431	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1432					   DMA_MEM_TO_DEV,
1433					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1434	if (!desc) {
1435		spin_unlock_irq(&port->lock);
1436		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1437		goto switch_to_pio;
 
 
1438	}
1439
1440	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1441				   DMA_TO_DEVICE);
1442
 
1443	desc->callback = sci_dma_tx_complete;
1444	desc->callback_param = s;
 
1445	s->cookie_tx = dmaengine_submit(desc);
1446	if (dma_submit_error(s->cookie_tx)) {
1447		spin_unlock_irq(&port->lock);
1448		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1449		goto switch_to_pio;
 
 
1450	}
1451
1452	spin_unlock_irq(&port->lock);
1453	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1454		__func__, xmit->buf, tail, head, s->cookie_tx);
1455
1456	dma_async_issue_pending(chan);
1457	return;
1458
1459switch_to_pio:
1460	spin_lock_irqsave(&port->lock, flags);
1461	s->chan_tx = NULL;
1462	sci_start_tx(port);
1463	spin_unlock_irqrestore(&port->lock, flags);
1464	return;
1465}
1466
1467static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1468{
1469	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1470	struct dma_chan *chan = s->chan_rx;
1471	struct uart_port *port = &s->port;
1472	struct dma_tx_state state;
1473	enum dma_status status;
1474	unsigned long flags;
1475	unsigned int read;
1476	int active, count;
 
1477
1478	dev_dbg(port->dev, "DMA Rx timed out\n");
1479
1480	spin_lock_irqsave(&port->lock, flags);
1481
1482	active = sci_dma_rx_find_active(s);
1483	if (active < 0) {
1484		spin_unlock_irqrestore(&port->lock, flags);
1485		return HRTIMER_NORESTART;
1486	}
1487
1488	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1489	if (status == DMA_COMPLETE) {
1490		spin_unlock_irqrestore(&port->lock, flags);
1491		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1492			s->active_rx, active);
1493
1494		/* Let packet complete handler take care of the packet */
1495		return HRTIMER_NORESTART;
1496	}
1497
1498	dmaengine_pause(chan);
1499
1500	/*
1501	 * sometimes DMA transfer doesn't stop even if it is stopped and
1502	 * data keeps on coming until transaction is complete so check
1503	 * for DMA_COMPLETE again
1504	 * Let packet complete handler take care of the packet
1505	 */
1506	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1507	if (status == DMA_COMPLETE) {
1508		spin_unlock_irqrestore(&port->lock, flags);
1509		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1510		return HRTIMER_NORESTART;
1511	}
1512
1513	/* Handle incomplete DMA receive */
1514	dmaengine_terminate_async(s->chan_rx);
1515	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1516
1517	if (read) {
1518		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1519		if (count)
1520			tty_flip_buffer_push(&port->state->port);
1521	}
1522
1523	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524		sci_dma_rx_submit(s, true);
1525
1526	sci_dma_rx_reenable_irq(s);
 
 
 
 
 
 
1527
1528	spin_unlock_irqrestore(&port->lock, flags);
1529
1530	return HRTIMER_NORESTART;
1531}
1532
1533static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1534					     enum dma_transfer_direction dir)
1535{
1536	struct dma_chan *chan;
1537	struct dma_slave_config cfg;
1538	int ret;
1539
1540	chan = dma_request_slave_channel(port->dev,
1541					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1542	if (!chan) {
1543		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1544		return NULL;
1545	}
1546
1547	memset(&cfg, 0, sizeof(cfg));
1548	cfg.direction = dir;
1549	if (dir == DMA_MEM_TO_DEV) {
1550		cfg.dst_addr = port->mapbase +
1551			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1552		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1553	} else {
1554		cfg.src_addr = port->mapbase +
1555			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1556		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1557	}
1558
1559	ret = dmaengine_slave_config(chan, &cfg);
1560	if (ret) {
1561		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1562		dma_release_channel(chan);
1563		return NULL;
1564	}
1565
1566	return chan;
1567}
1568
1569static void sci_request_dma(struct uart_port *port)
1570{
1571	struct sci_port *s = to_sci_port(port);
1572	struct dma_chan *chan;
1573
1574	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1575
1576	/*
1577	 * DMA on console may interfere with Kernel log messages which use
1578	 * plain putchar(). So, simply don't use it with a console.
1579	 */
1580	if (uart_console(port))
1581		return;
1582
1583	if (!port->dev->of_node)
1584		return;
1585
1586	s->cookie_tx = -EINVAL;
1587
1588	/*
1589	 * Don't request a dma channel if no channel was specified
1590	 * in the device tree.
1591	 */
1592	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1593		return;
1594
1595	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1596	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1597	if (chan) {
 
1598		/* UART circular tx buffer is an aligned page. */
1599		s->tx_dma_addr = dma_map_single(chan->device->dev,
1600						port->state->xmit.buf,
1601						UART_XMIT_SIZE,
1602						DMA_TO_DEVICE);
1603		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1604			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1605			dma_release_channel(chan);
 
1606		} else {
1607			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1608				__func__, UART_XMIT_SIZE,
1609				port->state->xmit.buf, &s->tx_dma_addr);
 
1610
1611			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1612			s->chan_tx_saved = s->chan_tx = chan;
1613		}
1614	}
1615
1616	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1617	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1618	if (chan) {
1619		unsigned int i;
1620		dma_addr_t dma;
1621		void *buf;
1622
 
 
1623		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1624		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1625					 &dma, GFP_KERNEL);
1626		if (!buf) {
1627			dev_warn(port->dev,
1628				 "Failed to allocate Rx dma buffer, using PIO\n");
1629			dma_release_channel(chan);
 
1630			return;
1631		}
1632
1633		for (i = 0; i < 2; i++) {
1634			struct scatterlist *sg = &s->sg_rx[i];
1635
1636			sg_init_table(sg, 1);
1637			s->rx_buf[i] = buf;
1638			sg_dma_address(sg) = dma;
1639			sg_dma_len(sg) = s->buf_len_rx;
1640
1641			buf += s->buf_len_rx;
1642			dma += s->buf_len_rx;
1643		}
1644
1645		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1646		s->rx_timer.function = sci_dma_rx_timer_fn;
1647
1648		s->chan_rx_saved = s->chan_rx = chan;
1649
1650		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1651			sci_dma_rx_submit(s, false);
1652	}
1653}
1654
1655static void sci_free_dma(struct uart_port *port)
1656{
1657	struct sci_port *s = to_sci_port(port);
1658
1659	if (s->chan_tx_saved)
1660		sci_dma_tx_release(s);
1661	if (s->chan_rx_saved)
1662		sci_dma_rx_release(s);
1663}
1664
1665static void sci_flush_buffer(struct uart_port *port)
1666{
1667	struct sci_port *s = to_sci_port(port);
1668
1669	/*
1670	 * In uart_flush_buffer(), the xmit circular buffer has just been
1671	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1672	 * pending transfers
1673	 */
1674	s->tx_dma_len = 0;
1675	if (s->chan_tx) {
1676		dmaengine_terminate_async(s->chan_tx);
1677		s->cookie_tx = -EINVAL;
1678	}
1679}
1680#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1681static inline void sci_request_dma(struct uart_port *port)
1682{
1683}
1684
1685static inline void sci_free_dma(struct uart_port *port)
1686{
1687}
1688
1689#define sci_flush_buffer	NULL
1690#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1691
1692static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1693{
1694	struct uart_port *port = ptr;
1695	struct sci_port *s = to_sci_port(port);
1696
1697#ifdef CONFIG_SERIAL_SH_SCI_DMA
1698	if (s->chan_rx) {
1699		u16 scr = serial_port_in(port, SCSCR);
1700		u16 ssr = serial_port_in(port, SCxSR);
1701
1702		/* Disable future Rx interrupts */
1703		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1704			disable_irq_nosync(irq);
1705			scr |= SCSCR_RDRQE;
1706		} else {
1707			if (sci_dma_rx_submit(s, false) < 0)
1708				goto handle_pio;
1709
1710			scr &= ~SCSCR_RIE;
 
1711		}
1712		serial_port_out(port, SCSCR, scr);
1713		/* Clear current interrupt */
1714		serial_port_out(port, SCxSR,
1715				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1716		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1717			jiffies, s->rx_timeout);
1718		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1719
1720		return IRQ_HANDLED;
1721	}
1722
1723handle_pio:
1724#endif
1725
1726	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1727		if (!scif_rtrg_enabled(port))
1728			scif_set_rtrg(port, s->rx_trigger);
1729
1730		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1731			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1732	}
1733
1734	/* I think sci_receive_chars has to be called irrespective
1735	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1736	 * to be disabled?
1737	 */
1738	sci_receive_chars(port);
1739
1740	return IRQ_HANDLED;
1741}
1742
1743static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1744{
1745	struct uart_port *port = ptr;
1746	unsigned long flags;
1747
1748	spin_lock_irqsave(&port->lock, flags);
1749	sci_transmit_chars(port);
1750	spin_unlock_irqrestore(&port->lock, flags);
1751
1752	return IRQ_HANDLED;
1753}
1754
1755static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1756{
1757	struct uart_port *port = ptr;
1758
1759	/* Handle BREAKs */
1760	sci_handle_breaks(port);
1761
1762	/* drop invalid character received before break was detected */
1763	serial_port_in(port, SCxRDR);
1764
1765	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1766
1767	return IRQ_HANDLED;
1768}
1769
1770static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1771{
1772	struct uart_port *port = ptr;
1773	struct sci_port *s = to_sci_port(port);
1774
1775	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1776		/* Break and Error interrupts are muxed */
1777		unsigned short ssr_status = serial_port_in(port, SCxSR);
1778
1779		/* Break Interrupt */
1780		if (ssr_status & SCxSR_BRK(port))
1781			sci_br_interrupt(irq, ptr);
1782
1783		/* Break only? */
1784		if (!(ssr_status & SCxSR_ERRORS(port)))
1785			return IRQ_HANDLED;
1786	}
1787
1788	/* Handle errors */
1789	if (port->type == PORT_SCI) {
1790		if (sci_handle_errors(port)) {
1791			/* discard character in rx buffer */
1792			serial_port_in(port, SCxSR);
1793			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1794		}
1795	} else {
1796		sci_handle_fifo_overrun(port);
1797		if (!s->chan_rx)
1798			sci_receive_chars(port);
1799	}
1800
1801	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1802
1803	/* Kick the transmission */
1804	if (!s->chan_tx)
1805		sci_tx_interrupt(irq, ptr);
1806
1807	return IRQ_HANDLED;
1808}
1809
 
 
 
 
 
 
 
 
 
 
 
1810static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1811{
1812	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1813	struct uart_port *port = ptr;
1814	struct sci_port *s = to_sci_port(port);
1815	irqreturn_t ret = IRQ_NONE;
1816
1817	ssr_status = serial_port_in(port, SCxSR);
1818	scr_status = serial_port_in(port, SCSCR);
1819	if (s->params->overrun_reg == SCxSR)
1820		orer_status = ssr_status;
1821	else if (sci_getreg(port, s->params->overrun_reg)->size)
1822		orer_status = serial_port_in(port, s->params->overrun_reg);
1823
1824	err_enabled = scr_status & port_rx_irq_mask(port);
1825
1826	/* Tx Interrupt */
1827	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1828	    !s->chan_tx)
1829		ret = sci_tx_interrupt(irq, ptr);
1830
1831	/*
1832	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1833	 * DR flags
1834	 */
1835	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1836	    (scr_status & SCSCR_RIE))
1837		ret = sci_rx_interrupt(irq, ptr);
1838
1839	/* Error Interrupt */
1840	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1841		ret = sci_er_interrupt(irq, ptr);
1842
1843	/* Break Interrupt */
1844	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1845	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1846		ret = sci_br_interrupt(irq, ptr);
1847
1848	/* Overrun Interrupt */
1849	if (orer_status & s->params->overrun_mask) {
1850		sci_handle_fifo_overrun(port);
1851		ret = IRQ_HANDLED;
1852	}
1853
1854	return ret;
1855}
1856
1857static const struct sci_irq_desc {
1858	const char	*desc;
1859	irq_handler_t	handler;
1860} sci_irq_desc[] = {
1861	/*
1862	 * Split out handlers, the default case.
1863	 */
1864	[SCIx_ERI_IRQ] = {
1865		.desc = "rx err",
1866		.handler = sci_er_interrupt,
1867	},
1868
1869	[SCIx_RXI_IRQ] = {
1870		.desc = "rx full",
1871		.handler = sci_rx_interrupt,
1872	},
1873
1874	[SCIx_TXI_IRQ] = {
1875		.desc = "tx empty",
1876		.handler = sci_tx_interrupt,
1877	},
1878
1879	[SCIx_BRI_IRQ] = {
1880		.desc = "break",
1881		.handler = sci_br_interrupt,
1882	},
1883
1884	[SCIx_DRI_IRQ] = {
1885		.desc = "rx ready",
1886		.handler = sci_rx_interrupt,
1887	},
1888
1889	[SCIx_TEI_IRQ] = {
1890		.desc = "tx end",
1891		.handler = sci_tx_interrupt,
1892	},
1893
1894	/*
1895	 * Special muxed handler.
1896	 */
1897	[SCIx_MUX_IRQ] = {
1898		.desc = "mux",
1899		.handler = sci_mpxed_interrupt,
1900	},
1901};
1902
1903static int sci_request_irq(struct sci_port *port)
1904{
1905	struct uart_port *up = &port->port;
1906	int i, j, w, ret = 0;
1907
1908	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1909		const struct sci_irq_desc *desc;
1910		int irq;
1911
1912		/* Check if already registered (muxed) */
1913		for (w = 0; w < i; w++)
1914			if (port->irqs[w] == port->irqs[i])
1915				w = i + 1;
1916		if (w > i)
1917			continue;
1918
1919		if (SCIx_IRQ_IS_MUXED(port)) {
1920			i = SCIx_MUX_IRQ;
1921			irq = up->irq;
1922		} else {
1923			irq = port->irqs[i];
1924
1925			/*
1926			 * Certain port types won't support all of the
1927			 * available interrupt sources.
1928			 */
1929			if (unlikely(irq < 0))
1930				continue;
1931		}
1932
1933		desc = sci_irq_desc + i;
1934		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1935					    dev_name(up->dev), desc->desc);
1936		if (!port->irqstr[j]) {
1937			ret = -ENOMEM;
1938			goto out_nomem;
1939		}
1940
1941		ret = request_irq(irq, desc->handler, up->irqflags,
1942				  port->irqstr[j], port);
1943		if (unlikely(ret)) {
1944			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1945			goto out_noirq;
1946		}
1947	}
1948
1949	return 0;
1950
1951out_noirq:
1952	while (--i >= 0)
1953		free_irq(port->irqs[i], port);
1954
1955out_nomem:
1956	while (--j >= 0)
1957		kfree(port->irqstr[j]);
1958
1959	return ret;
1960}
1961
1962static void sci_free_irq(struct sci_port *port)
1963{
1964	int i, j;
1965
1966	/*
1967	 * Intentionally in reverse order so we iterate over the muxed
1968	 * IRQ first.
1969	 */
1970	for (i = 0; i < SCIx_NR_IRQS; i++) {
1971		int irq = port->irqs[i];
1972
1973		/*
1974		 * Certain port types won't support all of the available
1975		 * interrupt sources.
1976		 */
1977		if (unlikely(irq < 0))
1978			continue;
1979
1980		/* Check if already freed (irq was muxed) */
1981		for (j = 0; j < i; j++)
1982			if (port->irqs[j] == irq)
1983				j = i + 1;
1984		if (j > i)
1985			continue;
1986
1987		free_irq(port->irqs[i], port);
1988		kfree(port->irqstr[i]);
1989
1990		if (SCIx_IRQ_IS_MUXED(port)) {
1991			/* If there's only one IRQ, we're done. */
1992			return;
1993		}
1994	}
1995}
1996
1997static unsigned int sci_tx_empty(struct uart_port *port)
1998{
1999	unsigned short status = serial_port_in(port, SCxSR);
2000	unsigned short in_tx_fifo = sci_txfill(port);
2001
2002	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2003}
2004
2005static void sci_set_rts(struct uart_port *port, bool state)
2006{
2007	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2008		u16 data = serial_port_in(port, SCPDR);
2009
2010		/* Active low */
2011		if (state)
2012			data &= ~SCPDR_RTSD;
2013		else
2014			data |= SCPDR_RTSD;
2015		serial_port_out(port, SCPDR, data);
2016
2017		/* RTS# is output */
2018		serial_port_out(port, SCPCR,
2019				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2020	} else if (sci_getreg(port, SCSPTR)->size) {
2021		u16 ctrl = serial_port_in(port, SCSPTR);
2022
2023		/* Active low */
2024		if (state)
2025			ctrl &= ~SCSPTR_RTSDT;
2026		else
2027			ctrl |= SCSPTR_RTSDT;
2028		serial_port_out(port, SCSPTR, ctrl);
2029	}
2030}
2031
2032static bool sci_get_cts(struct uart_port *port)
2033{
2034	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2035		/* Active low */
2036		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2037	} else if (sci_getreg(port, SCSPTR)->size) {
2038		/* Active low */
2039		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2040	}
2041
2042	return true;
2043}
2044
2045/*
2046 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2047 * CTS/RTS is supported in hardware by at least one port and controlled
2048 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2049 * handled via the ->init_pins() op, which is a bit of a one-way street,
2050 * lacking any ability to defer pin control -- this will later be
2051 * converted over to the GPIO framework).
2052 *
2053 * Other modes (such as loopback) are supported generically on certain
2054 * port types, but not others. For these it's sufficient to test for the
2055 * existence of the support register and simply ignore the port type.
2056 */
2057static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2058{
2059	struct sci_port *s = to_sci_port(port);
2060
2061	if (mctrl & TIOCM_LOOP) {
2062		const struct plat_sci_reg *reg;
2063
2064		/*
2065		 * Standard loopback mode for SCFCR ports.
2066		 */
2067		reg = sci_getreg(port, SCFCR);
2068		if (reg->size)
2069			serial_port_out(port, SCFCR,
2070					serial_port_in(port, SCFCR) |
2071					SCFCR_LOOP);
2072	}
2073
2074	mctrl_gpio_set(s->gpios, mctrl);
2075
2076	if (!s->has_rtscts)
2077		return;
2078
2079	if (!(mctrl & TIOCM_RTS)) {
2080		/* Disable Auto RTS */
2081		serial_port_out(port, SCFCR,
2082				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2083
2084		/* Clear RTS */
2085		sci_set_rts(port, 0);
2086	} else if (s->autorts) {
2087		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2088			/* Enable RTS# pin function */
2089			serial_port_out(port, SCPCR,
2090				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2091		}
2092
2093		/* Enable Auto RTS */
2094		serial_port_out(port, SCFCR,
2095				serial_port_in(port, SCFCR) | SCFCR_MCE);
2096	} else {
2097		/* Set RTS */
2098		sci_set_rts(port, 1);
2099	}
2100}
2101
2102static unsigned int sci_get_mctrl(struct uart_port *port)
2103{
2104	struct sci_port *s = to_sci_port(port);
2105	struct mctrl_gpios *gpios = s->gpios;
2106	unsigned int mctrl = 0;
2107
2108	mctrl_gpio_get(gpios, &mctrl);
2109
2110	/*
2111	 * CTS/RTS is handled in hardware when supported, while nothing
2112	 * else is wired up.
2113	 */
2114	if (s->autorts) {
2115		if (sci_get_cts(port))
2116			mctrl |= TIOCM_CTS;
2117	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2118		mctrl |= TIOCM_CTS;
2119	}
2120	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2121		mctrl |= TIOCM_DSR;
2122	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2123		mctrl |= TIOCM_CAR;
2124
2125	return mctrl;
2126}
2127
2128static void sci_enable_ms(struct uart_port *port)
2129{
2130	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2131}
2132
2133static void sci_break_ctl(struct uart_port *port, int break_state)
2134{
2135	unsigned short scscr, scsptr;
2136	unsigned long flags;
2137
2138	/* check whether the port has SCSPTR */
2139	if (!sci_getreg(port, SCSPTR)->size) {
2140		/*
2141		 * Not supported by hardware. Most parts couple break and rx
2142		 * interrupts together, with break detection always enabled.
2143		 */
2144		return;
2145	}
2146
2147	spin_lock_irqsave(&port->lock, flags);
2148	scsptr = serial_port_in(port, SCSPTR);
2149	scscr = serial_port_in(port, SCSCR);
2150
2151	if (break_state == -1) {
2152		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2153		scscr &= ~SCSCR_TE;
2154	} else {
2155		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2156		scscr |= SCSCR_TE;
2157	}
2158
2159	serial_port_out(port, SCSPTR, scsptr);
2160	serial_port_out(port, SCSCR, scscr);
2161	spin_unlock_irqrestore(&port->lock, flags);
2162}
2163
2164static int sci_startup(struct uart_port *port)
2165{
2166	struct sci_port *s = to_sci_port(port);
2167	int ret;
2168
2169	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2170
2171	sci_request_dma(port);
2172
2173	ret = sci_request_irq(s);
2174	if (unlikely(ret < 0)) {
2175		sci_free_dma(port);
2176		return ret;
2177	}
2178
2179	return 0;
2180}
2181
2182static void sci_shutdown(struct uart_port *port)
2183{
2184	struct sci_port *s = to_sci_port(port);
2185	unsigned long flags;
2186	u16 scr;
2187
2188	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2189
2190	s->autorts = false;
2191	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2192
2193	spin_lock_irqsave(&port->lock, flags);
2194	sci_stop_rx(port);
2195	sci_stop_tx(port);
2196	/*
2197	 * Stop RX and TX, disable related interrupts, keep clock source
2198	 * and HSCIF TOT bits
2199	 */
2200	scr = serial_port_in(port, SCSCR);
2201	serial_port_out(port, SCSCR, scr &
2202			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2203	spin_unlock_irqrestore(&port->lock, flags);
2204
2205#ifdef CONFIG_SERIAL_SH_SCI_DMA
2206	if (s->chan_rx_saved) {
2207		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2208			port->line);
2209		hrtimer_cancel(&s->rx_timer);
2210	}
2211#endif
2212
2213	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2214		del_timer_sync(&s->rx_fifo_timer);
2215	sci_free_irq(s);
2216	sci_free_dma(port);
2217}
2218
2219static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2220			unsigned int *srr)
2221{
2222	unsigned long freq = s->clk_rates[SCI_SCK];
2223	int err, min_err = INT_MAX;
2224	unsigned int sr;
2225
2226	if (s->port.type != PORT_HSCIF)
2227		freq *= 2;
2228
2229	for_each_sr(sr, s) {
2230		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2231		if (abs(err) >= abs(min_err))
2232			continue;
2233
2234		min_err = err;
2235		*srr = sr - 1;
2236
2237		if (!err)
2238			break;
2239	}
2240
2241	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2242		*srr + 1);
2243	return min_err;
2244}
2245
2246static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2247			unsigned long freq, unsigned int *dlr,
2248			unsigned int *srr)
2249{
2250	int err, min_err = INT_MAX;
2251	unsigned int sr, dl;
2252
2253	if (s->port.type != PORT_HSCIF)
2254		freq *= 2;
2255
2256	for_each_sr(sr, s) {
2257		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2258		dl = clamp(dl, 1U, 65535U);
2259
2260		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2261		if (abs(err) >= abs(min_err))
2262			continue;
2263
2264		min_err = err;
2265		*dlr = dl;
2266		*srr = sr - 1;
2267
2268		if (!err)
2269			break;
2270	}
2271
2272	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2273		min_err, *dlr, *srr + 1);
2274	return min_err;
2275}
2276
2277/* calculate sample rate, BRR, and clock select */
2278static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2279			  unsigned int *brr, unsigned int *srr,
2280			  unsigned int *cks)
2281{
2282	unsigned long freq = s->clk_rates[SCI_FCK];
2283	unsigned int sr, br, prediv, scrate, c;
2284	int err, min_err = INT_MAX;
2285
2286	if (s->port.type != PORT_HSCIF)
2287		freq *= 2;
2288
2289	/*
2290	 * Find the combination of sample rate and clock select with the
2291	 * smallest deviation from the desired baud rate.
2292	 * Prefer high sample rates to maximise the receive margin.
2293	 *
2294	 * M: Receive margin (%)
2295	 * N: Ratio of bit rate to clock (N = sampling rate)
2296	 * D: Clock duty (D = 0 to 1.0)
2297	 * L: Frame length (L = 9 to 12)
2298	 * F: Absolute value of clock frequency deviation
2299	 *
2300	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2301	 *      (|D - 0.5| / N * (1 + F))|
2302	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2303	 */
2304	for_each_sr(sr, s) {
2305		for (c = 0; c <= 3; c++) {
2306			/* integerized formulas from HSCIF documentation */
2307			prediv = sr * (1 << (2 * c + 1));
2308
2309			/*
2310			 * We need to calculate:
2311			 *
2312			 *     br = freq / (prediv * bps) clamped to [1..256]
2313			 *     err = freq / (br * prediv) - bps
2314			 *
2315			 * Watch out for overflow when calculating the desired
2316			 * sampling clock rate!
2317			 */
2318			if (bps > UINT_MAX / prediv)
2319				break;
2320
2321			scrate = prediv * bps;
2322			br = DIV_ROUND_CLOSEST(freq, scrate);
2323			br = clamp(br, 1U, 256U);
2324
2325			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2326			if (abs(err) >= abs(min_err))
2327				continue;
2328
2329			min_err = err;
2330			*brr = br - 1;
2331			*srr = sr - 1;
2332			*cks = c;
2333
2334			if (!err)
2335				goto found;
2336		}
2337	}
2338
2339found:
2340	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2341		min_err, *brr, *srr + 1, *cks);
2342	return min_err;
2343}
2344
2345static void sci_reset(struct uart_port *port)
2346{
2347	const struct plat_sci_reg *reg;
2348	unsigned int status;
2349	struct sci_port *s = to_sci_port(port);
2350
2351	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2352
2353	reg = sci_getreg(port, SCFCR);
2354	if (reg->size)
2355		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2356
2357	sci_clear_SCxSR(port,
2358			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2359			SCxSR_BREAK_CLEAR(port));
2360	if (sci_getreg(port, SCLSR)->size) {
2361		status = serial_port_in(port, SCLSR);
2362		status &= ~(SCLSR_TO | SCLSR_ORER);
2363		serial_port_out(port, SCLSR, status);
2364	}
2365
2366	if (s->rx_trigger > 1) {
2367		if (s->rx_fifo_timeout) {
2368			scif_set_rtrg(port, 1);
2369			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2370		} else {
2371			if (port->type == PORT_SCIFA ||
2372			    port->type == PORT_SCIFB)
2373				scif_set_rtrg(port, 1);
2374			else
2375				scif_set_rtrg(port, s->rx_trigger);
2376		}
2377	}
2378}
2379
2380static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2381			    struct ktermios *old)
2382{
2383	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2384	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2385	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2386	struct sci_port *s = to_sci_port(port);
2387	const struct plat_sci_reg *reg;
2388	int min_err = INT_MAX, err;
2389	unsigned long max_freq = 0;
2390	int best_clk = -1;
2391	unsigned long flags;
2392
2393	if ((termios->c_cflag & CSIZE) == CS7)
2394		smr_val |= SCSMR_CHR;
2395	if (termios->c_cflag & PARENB)
2396		smr_val |= SCSMR_PE;
2397	if (termios->c_cflag & PARODD)
2398		smr_val |= SCSMR_PE | SCSMR_ODD;
2399	if (termios->c_cflag & CSTOPB)
2400		smr_val |= SCSMR_STOP;
2401
2402	/*
2403	 * earlyprintk comes here early on with port->uartclk set to zero.
2404	 * the clock framework is not up and running at this point so here
2405	 * we assume that 115200 is the maximum baud rate. please note that
2406	 * the baud rate is not programmed during earlyprintk - it is assumed
2407	 * that the previous boot loader has enabled required clocks and
2408	 * setup the baud rate generator hardware for us already.
2409	 */
2410	if (!port->uartclk) {
2411		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2412		goto done;
2413	}
2414
2415	for (i = 0; i < SCI_NUM_CLKS; i++)
2416		max_freq = max(max_freq, s->clk_rates[i]);
2417
2418	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2419	if (!baud)
2420		goto done;
2421
2422	/*
2423	 * There can be multiple sources for the sampling clock.  Find the one
2424	 * that gives us the smallest deviation from the desired baud rate.
2425	 */
2426
2427	/* Optional Undivided External Clock */
2428	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2429	    port->type != PORT_SCIFB) {
2430		err = sci_sck_calc(s, baud, &srr1);
2431		if (abs(err) < abs(min_err)) {
2432			best_clk = SCI_SCK;
2433			scr_val = SCSCR_CKE1;
2434			sccks = SCCKS_CKS;
2435			min_err = err;
2436			srr = srr1;
2437			if (!err)
2438				goto done;
2439		}
2440	}
2441
2442	/* Optional BRG Frequency Divided External Clock */
2443	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2444		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2445				   &srr1);
2446		if (abs(err) < abs(min_err)) {
2447			best_clk = SCI_SCIF_CLK;
2448			scr_val = SCSCR_CKE1;
2449			sccks = 0;
2450			min_err = err;
2451			dl = dl1;
2452			srr = srr1;
2453			if (!err)
2454				goto done;
2455		}
2456	}
2457
2458	/* Optional BRG Frequency Divided Internal Clock */
2459	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2460		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2461				   &srr1);
2462		if (abs(err) < abs(min_err)) {
2463			best_clk = SCI_BRG_INT;
2464			scr_val = SCSCR_CKE1;
2465			sccks = SCCKS_XIN;
2466			min_err = err;
2467			dl = dl1;
2468			srr = srr1;
2469			if (!min_err)
2470				goto done;
2471		}
2472	}
2473
2474	/* Divided Functional Clock using standard Bit Rate Register */
2475	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2476	if (abs(err) < abs(min_err)) {
2477		best_clk = SCI_FCK;
2478		scr_val = 0;
2479		min_err = err;
2480		brr = brr1;
2481		srr = srr1;
2482		cks = cks1;
2483	}
2484
2485done:
2486	if (best_clk >= 0)
2487		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2488			s->clks[best_clk], baud, min_err);
2489
2490	sci_port_enable(s);
2491
2492	/*
2493	 * Program the optional External Baud Rate Generator (BRG) first.
2494	 * It controls the mux to select (H)SCK or frequency divided clock.
2495	 */
2496	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2497		serial_port_out(port, SCDL, dl);
2498		serial_port_out(port, SCCKS, sccks);
2499	}
2500
2501	spin_lock_irqsave(&port->lock, flags);
2502
2503	sci_reset(port);
2504
2505	uart_update_timeout(port, termios->c_cflag, baud);
2506
2507	/* byte size and parity */
2508	bits = tty_get_frame_size(termios->c_cflag);
2509
2510	if (sci_getreg(port, SEMR)->size)
2511		serial_port_out(port, SEMR, 0);
2512
2513	if (best_clk >= 0) {
2514		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2515			switch (srr + 1) {
2516			case 5:  smr_val |= SCSMR_SRC_5;  break;
2517			case 7:  smr_val |= SCSMR_SRC_7;  break;
2518			case 11: smr_val |= SCSMR_SRC_11; break;
2519			case 13: smr_val |= SCSMR_SRC_13; break;
2520			case 16: smr_val |= SCSMR_SRC_16; break;
2521			case 17: smr_val |= SCSMR_SRC_17; break;
2522			case 19: smr_val |= SCSMR_SRC_19; break;
2523			case 27: smr_val |= SCSMR_SRC_27; break;
2524			}
2525		smr_val |= cks;
2526		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2527		serial_port_out(port, SCSMR, smr_val);
2528		serial_port_out(port, SCBRR, brr);
2529		if (sci_getreg(port, HSSRR)->size) {
2530			unsigned int hssrr = srr | HSCIF_SRE;
2531			/* Calculate deviation from intended rate at the
2532			 * center of the last stop bit in sampling clocks.
2533			 */
2534			int last_stop = bits * 2 - 1;
2535			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2536							  (int)(srr + 1),
2537							  2 * (int)baud);
2538
2539			if (abs(deviation) >= 2) {
2540				/* At least two sampling clocks off at the
2541				 * last stop bit; we can increase the error
2542				 * margin by shifting the sampling point.
2543				 */
2544				int shift = clamp(deviation / 2, -8, 7);
2545
2546				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2547					 HSCIF_SRHP_MASK;
2548				hssrr |= HSCIF_SRDE;
2549			}
2550			serial_port_out(port, HSSRR, hssrr);
2551		}
2552
2553		/* Wait one bit interval */
2554		udelay((1000000 + (baud - 1)) / baud);
2555	} else {
2556		/* Don't touch the bit rate configuration */
2557		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2558		smr_val |= serial_port_in(port, SCSMR) &
2559			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2560		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2561		serial_port_out(port, SCSMR, smr_val);
2562	}
2563
2564	sci_init_pins(port, termios->c_cflag);
2565
2566	port->status &= ~UPSTAT_AUTOCTS;
2567	s->autorts = false;
2568	reg = sci_getreg(port, SCFCR);
2569	if (reg->size) {
2570		unsigned short ctrl = serial_port_in(port, SCFCR);
2571
2572		if ((port->flags & UPF_HARD_FLOW) &&
2573		    (termios->c_cflag & CRTSCTS)) {
2574			/* There is no CTS interrupt to restart the hardware */
2575			port->status |= UPSTAT_AUTOCTS;
2576			/* MCE is enabled when RTS is raised */
2577			s->autorts = true;
2578		}
2579
2580		/*
2581		 * As we've done a sci_reset() above, ensure we don't
2582		 * interfere with the FIFOs while toggling MCE. As the
2583		 * reset values could still be set, simply mask them out.
2584		 */
2585		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2586
2587		serial_port_out(port, SCFCR, ctrl);
2588	}
2589	if (port->flags & UPF_HARD_FLOW) {
2590		/* Refresh (Auto) RTS */
2591		sci_set_mctrl(port, port->mctrl);
2592	}
2593
2594	scr_val |= SCSCR_RE | SCSCR_TE |
2595		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2596	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2597	if ((srr + 1 == 5) &&
2598	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2599		/*
2600		 * In asynchronous mode, when the sampling rate is 1/5, first
2601		 * received data may become invalid on some SCIFA and SCIFB.
2602		 * To avoid this problem wait more than 1 serial data time (1
2603		 * bit time x serial data number) after setting SCSCR.RE = 1.
2604		 */
2605		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2606	}
2607
2608	/* Calculate delay for 2 DMA buffers (4 FIFO). */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609	s->rx_frame = (10000 * bits) / (baud / 100);
2610#ifdef CONFIG_SERIAL_SH_SCI_DMA
2611	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
 
 
2612#endif
2613
2614	if ((termios->c_cflag & CREAD) != 0)
2615		sci_start_rx(port);
2616
2617	spin_unlock_irqrestore(&port->lock, flags);
2618
2619	sci_port_disable(s);
2620
2621	if (UART_ENABLE_MS(port, termios->c_cflag))
2622		sci_enable_ms(port);
2623}
2624
2625static void sci_pm(struct uart_port *port, unsigned int state,
2626		   unsigned int oldstate)
2627{
2628	struct sci_port *sci_port = to_sci_port(port);
2629
2630	switch (state) {
2631	case UART_PM_STATE_OFF:
2632		sci_port_disable(sci_port);
2633		break;
2634	default:
2635		sci_port_enable(sci_port);
2636		break;
2637	}
2638}
2639
2640static const char *sci_type(struct uart_port *port)
2641{
2642	switch (port->type) {
2643	case PORT_IRDA:
2644		return "irda";
2645	case PORT_SCI:
2646		return "sci";
2647	case PORT_SCIF:
2648		return "scif";
2649	case PORT_SCIFA:
2650		return "scifa";
2651	case PORT_SCIFB:
2652		return "scifb";
2653	case PORT_HSCIF:
2654		return "hscif";
2655	}
2656
2657	return NULL;
2658}
2659
2660static int sci_remap_port(struct uart_port *port)
2661{
2662	struct sci_port *sport = to_sci_port(port);
2663
2664	/*
2665	 * Nothing to do if there's already an established membase.
2666	 */
2667	if (port->membase)
2668		return 0;
2669
2670	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2671		port->membase = ioremap(port->mapbase, sport->reg_size);
2672		if (unlikely(!port->membase)) {
2673			dev_err(port->dev, "can't remap port#%d\n", port->line);
2674			return -ENXIO;
2675		}
2676	} else {
2677		/*
2678		 * For the simple (and majority of) cases where we don't
2679		 * need to do any remapping, just cast the cookie
2680		 * directly.
2681		 */
2682		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2683	}
2684
2685	return 0;
2686}
2687
2688static void sci_release_port(struct uart_port *port)
2689{
2690	struct sci_port *sport = to_sci_port(port);
2691
2692	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2693		iounmap(port->membase);
2694		port->membase = NULL;
2695	}
2696
2697	release_mem_region(port->mapbase, sport->reg_size);
2698}
2699
2700static int sci_request_port(struct uart_port *port)
2701{
2702	struct resource *res;
2703	struct sci_port *sport = to_sci_port(port);
2704	int ret;
2705
2706	res = request_mem_region(port->mapbase, sport->reg_size,
2707				 dev_name(port->dev));
2708	if (unlikely(res == NULL)) {
2709		dev_err(port->dev, "request_mem_region failed.");
2710		return -EBUSY;
2711	}
2712
2713	ret = sci_remap_port(port);
2714	if (unlikely(ret != 0)) {
2715		release_resource(res);
2716		return ret;
2717	}
2718
2719	return 0;
2720}
2721
2722static void sci_config_port(struct uart_port *port, int flags)
2723{
2724	if (flags & UART_CONFIG_TYPE) {
2725		struct sci_port *sport = to_sci_port(port);
2726
2727		port->type = sport->cfg->type;
2728		sci_request_port(port);
2729	}
2730}
2731
2732static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2733{
2734	if (ser->baud_base < 2400)
2735		/* No paper tape reader for Mitch.. */
2736		return -EINVAL;
2737
2738	return 0;
2739}
2740
2741static const struct uart_ops sci_uart_ops = {
2742	.tx_empty	= sci_tx_empty,
2743	.set_mctrl	= sci_set_mctrl,
2744	.get_mctrl	= sci_get_mctrl,
2745	.start_tx	= sci_start_tx,
2746	.stop_tx	= sci_stop_tx,
2747	.stop_rx	= sci_stop_rx,
2748	.enable_ms	= sci_enable_ms,
2749	.break_ctl	= sci_break_ctl,
2750	.startup	= sci_startup,
2751	.shutdown	= sci_shutdown,
2752	.flush_buffer	= sci_flush_buffer,
2753	.set_termios	= sci_set_termios,
2754	.pm		= sci_pm,
2755	.type		= sci_type,
2756	.release_port	= sci_release_port,
2757	.request_port	= sci_request_port,
2758	.config_port	= sci_config_port,
2759	.verify_port	= sci_verify_port,
2760#ifdef CONFIG_CONSOLE_POLL
2761	.poll_get_char	= sci_poll_get_char,
2762	.poll_put_char	= sci_poll_put_char,
2763#endif
2764};
2765
2766static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2767{
2768	const char *clk_names[] = {
2769		[SCI_FCK] = "fck",
2770		[SCI_SCK] = "sck",
2771		[SCI_BRG_INT] = "brg_int",
2772		[SCI_SCIF_CLK] = "scif_clk",
2773	};
2774	struct clk *clk;
2775	unsigned int i;
2776
2777	if (sci_port->cfg->type == PORT_HSCIF)
2778		clk_names[SCI_SCK] = "hsck";
2779
2780	for (i = 0; i < SCI_NUM_CLKS; i++) {
2781		clk = devm_clk_get(dev, clk_names[i]);
2782		if (PTR_ERR(clk) == -EPROBE_DEFER)
2783			return -EPROBE_DEFER;
2784
2785		if (IS_ERR(clk) && i == SCI_FCK) {
2786			/*
2787			 * "fck" used to be called "sci_ick", and we need to
2788			 * maintain DT backward compatibility.
2789			 */
2790			clk = devm_clk_get(dev, "sci_ick");
2791			if (PTR_ERR(clk) == -EPROBE_DEFER)
2792				return -EPROBE_DEFER;
2793
2794			if (!IS_ERR(clk))
2795				goto found;
2796
2797			/*
2798			 * Not all SH platforms declare a clock lookup entry
2799			 * for SCI devices, in which case we need to get the
2800			 * global "peripheral_clk" clock.
2801			 */
2802			clk = devm_clk_get(dev, "peripheral_clk");
2803			if (!IS_ERR(clk))
2804				goto found;
2805
2806			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2807				PTR_ERR(clk));
2808			return PTR_ERR(clk);
2809		}
2810
2811found:
2812		if (IS_ERR(clk))
2813			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2814				PTR_ERR(clk));
2815		else
2816			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2817				clk, clk_get_rate(clk));
2818		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2819	}
2820	return 0;
2821}
2822
2823static const struct sci_port_params *
2824sci_probe_regmap(const struct plat_sci_port *cfg)
2825{
2826	unsigned int regtype;
2827
2828	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2829		return &sci_port_params[cfg->regtype];
2830
2831	switch (cfg->type) {
2832	case PORT_SCI:
2833		regtype = SCIx_SCI_REGTYPE;
2834		break;
2835	case PORT_IRDA:
2836		regtype = SCIx_IRDA_REGTYPE;
2837		break;
2838	case PORT_SCIFA:
2839		regtype = SCIx_SCIFA_REGTYPE;
2840		break;
2841	case PORT_SCIFB:
2842		regtype = SCIx_SCIFB_REGTYPE;
2843		break;
2844	case PORT_SCIF:
2845		/*
2846		 * The SH-4 is a bit of a misnomer here, although that's
2847		 * where this particular port layout originated. This
2848		 * configuration (or some slight variation thereof)
2849		 * remains the dominant model for all SCIFs.
2850		 */
2851		regtype = SCIx_SH4_SCIF_REGTYPE;
2852		break;
2853	case PORT_HSCIF:
2854		regtype = SCIx_HSCIF_REGTYPE;
2855		break;
2856	default:
2857		pr_err("Can't probe register map for given port\n");
2858		return NULL;
2859	}
2860
2861	return &sci_port_params[regtype];
2862}
2863
2864static int sci_init_single(struct platform_device *dev,
2865			   struct sci_port *sci_port, unsigned int index,
2866			   const struct plat_sci_port *p, bool early)
2867{
2868	struct uart_port *port = &sci_port->port;
2869	const struct resource *res;
2870	unsigned int i;
2871	int ret;
2872
2873	sci_port->cfg	= p;
2874
2875	port->ops	= &sci_uart_ops;
2876	port->iotype	= UPIO_MEM;
2877	port->line	= index;
2878	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2879
2880	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2881	if (res == NULL)
2882		return -ENOMEM;
2883
2884	port->mapbase = res->start;
2885	sci_port->reg_size = resource_size(res);
2886
2887	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2888		if (i)
2889			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2890		else
2891			sci_port->irqs[i] = platform_get_irq(dev, i);
2892	}
2893
2894	/* The SCI generates several interrupts. They can be muxed together or
2895	 * connected to different interrupt lines. In the muxed case only one
2896	 * interrupt resource is specified as there is only one interrupt ID.
2897	 * In the non-muxed case, up to 6 interrupt signals might be generated
2898	 * from the SCI, however those signals might have their own individual
2899	 * interrupt ID numbers, or muxed together with another interrupt.
2900	 */
2901	if (sci_port->irqs[0] < 0)
2902		return -ENXIO;
2903
2904	if (sci_port->irqs[1] < 0)
2905		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2906			sci_port->irqs[i] = sci_port->irqs[0];
 
 
2907
2908	sci_port->params = sci_probe_regmap(p);
2909	if (unlikely(sci_port->params == NULL))
2910		return -EINVAL;
2911
2912	switch (p->type) {
2913	case PORT_SCIFB:
2914		sci_port->rx_trigger = 48;
2915		break;
2916	case PORT_HSCIF:
2917		sci_port->rx_trigger = 64;
2918		break;
2919	case PORT_SCIFA:
2920		sci_port->rx_trigger = 32;
2921		break;
2922	case PORT_SCIF:
2923		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2924			/* RX triggering not implemented for this IP */
2925			sci_port->rx_trigger = 1;
2926		else
2927			sci_port->rx_trigger = 8;
2928		break;
2929	default:
2930		sci_port->rx_trigger = 1;
2931		break;
2932	}
2933
2934	sci_port->rx_fifo_timeout = 0;
2935	sci_port->hscif_tot = 0;
2936
2937	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2938	 * match the SoC datasheet, this should be investigated. Let platform
2939	 * data override the sampling rate for now.
2940	 */
2941	sci_port->sampling_rate_mask = p->sampling_rate
2942				     ? SCI_SR(p->sampling_rate)
2943				     : sci_port->params->sampling_rate_mask;
2944
2945	if (!early) {
2946		ret = sci_init_clocks(sci_port, &dev->dev);
2947		if (ret < 0)
2948			return ret;
2949
2950		port->dev = &dev->dev;
2951
2952		pm_runtime_enable(&dev->dev);
2953	}
2954
2955	port->type		= p->type;
2956	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2957	port->fifosize		= sci_port->params->fifosize;
2958
2959	if (port->type == PORT_SCI) {
2960		if (sci_port->reg_size >= 0x20)
2961			port->regshift = 2;
2962		else
2963			port->regshift = 1;
2964	}
2965
2966	/*
2967	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2968	 * for the multi-IRQ ports, which is where we are primarily
2969	 * concerned with the shutdown path synchronization.
2970	 *
2971	 * For the muxed case there's nothing more to do.
2972	 */
2973	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2974	port->irqflags		= 0;
2975
2976	port->serial_in		= sci_serial_in;
2977	port->serial_out	= sci_serial_out;
2978
2979	return 0;
2980}
2981
2982static void sci_cleanup_single(struct sci_port *port)
2983{
2984	pm_runtime_disable(port->port.dev);
2985}
2986
2987#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2988    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2989static void serial_console_putchar(struct uart_port *port, int ch)
2990{
2991	sci_poll_put_char(port, ch);
2992}
2993
2994/*
2995 *	Print a string to the serial port trying not to disturb
2996 *	any possible real use of the port...
2997 */
2998static void serial_console_write(struct console *co, const char *s,
2999				 unsigned count)
3000{
3001	struct sci_port *sci_port = &sci_ports[co->index];
3002	struct uart_port *port = &sci_port->port;
3003	unsigned short bits, ctrl, ctrl_temp;
3004	unsigned long flags;
3005	int locked = 1;
3006
 
 
3007	if (port->sysrq)
3008		locked = 0;
3009	else if (oops_in_progress)
3010		locked = spin_trylock_irqsave(&port->lock, flags);
3011	else
3012		spin_lock_irqsave(&port->lock, flags);
 
 
 
 
3013
3014	/* first save SCSCR then disable interrupts, keep clock source */
3015	ctrl = serial_port_in(port, SCSCR);
3016	ctrl_temp = SCSCR_RE | SCSCR_TE |
3017		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3018		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3019	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3020
3021	uart_console_write(port, s, count, serial_console_putchar);
3022
3023	/* wait until fifo is empty and last bit has been transmitted */
3024	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3025	while ((serial_port_in(port, SCxSR) & bits) != bits)
3026		cpu_relax();
3027
3028	/* restore the SCSCR */
3029	serial_port_out(port, SCSCR, ctrl);
3030
3031	if (locked)
3032		spin_unlock_irqrestore(&port->lock, flags);
 
3033}
3034
3035static int serial_console_setup(struct console *co, char *options)
3036{
3037	struct sci_port *sci_port;
3038	struct uart_port *port;
3039	int baud = 115200;
3040	int bits = 8;
3041	int parity = 'n';
3042	int flow = 'n';
3043	int ret;
3044
3045	/*
3046	 * Refuse to handle any bogus ports.
3047	 */
3048	if (co->index < 0 || co->index >= SCI_NPORTS)
3049		return -ENODEV;
3050
3051	sci_port = &sci_ports[co->index];
3052	port = &sci_port->port;
3053
3054	/*
3055	 * Refuse to handle uninitialized ports.
3056	 */
3057	if (!port->ops)
3058		return -ENODEV;
3059
3060	ret = sci_remap_port(port);
3061	if (unlikely(ret != 0))
3062		return ret;
3063
3064	if (options)
3065		uart_parse_options(options, &baud, &parity, &bits, &flow);
3066
3067	return uart_set_options(port, co, baud, parity, bits, flow);
3068}
3069
3070static struct console serial_console = {
3071	.name		= "ttySC",
3072	.device		= uart_console_device,
3073	.write		= serial_console_write,
3074	.setup		= serial_console_setup,
3075	.flags		= CON_PRINTBUFFER,
3076	.index		= -1,
3077	.data		= &sci_uart_driver,
3078};
3079
3080#ifdef CONFIG_SUPERH
3081static struct console early_serial_console = {
3082	.name           = "early_ttySC",
3083	.write          = serial_console_write,
3084	.flags          = CON_PRINTBUFFER,
3085	.index		= -1,
3086};
3087
3088static char early_serial_buf[32];
3089
3090static int sci_probe_earlyprintk(struct platform_device *pdev)
3091{
3092	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3093
3094	if (early_serial_console.data)
3095		return -EEXIST;
3096
3097	early_serial_console.index = pdev->id;
3098
3099	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3100
3101	serial_console_setup(&early_serial_console, early_serial_buf);
3102
3103	if (!strstr(early_serial_buf, "keep"))
3104		early_serial_console.flags |= CON_BOOT;
3105
3106	register_console(&early_serial_console);
3107	return 0;
3108}
3109#endif
3110
3111#define SCI_CONSOLE	(&serial_console)
3112
3113#else
3114static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3115{
3116	return -EINVAL;
3117}
3118
3119#define SCI_CONSOLE	NULL
3120
3121#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3122
3123static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3124
3125static DEFINE_MUTEX(sci_uart_registration_lock);
3126static struct uart_driver sci_uart_driver = {
3127	.owner		= THIS_MODULE,
3128	.driver_name	= "sci",
3129	.dev_name	= "ttySC",
3130	.major		= SCI_MAJOR,
3131	.minor		= SCI_MINOR_START,
3132	.nr		= SCI_NPORTS,
3133	.cons		= SCI_CONSOLE,
3134};
3135
3136static int sci_remove(struct platform_device *dev)
3137{
3138	struct sci_port *port = platform_get_drvdata(dev);
3139	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3140
3141	sci_ports_in_use &= ~BIT(port->port.line);
3142	uart_remove_one_port(&sci_uart_driver, &port->port);
3143
3144	sci_cleanup_single(port);
3145
3146	if (port->port.fifosize > 1)
3147		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3148	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3149		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
 
 
 
 
 
3150
3151	return 0;
3152}
3153
3154
3155#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3156#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3157#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3158
3159static const struct of_device_id of_sci_match[] = {
3160	/* SoC-specific types */
3161	{
3162		.compatible = "renesas,scif-r7s72100",
3163		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3164	},
3165	{
3166		.compatible = "renesas,scif-r7s9210",
3167		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3168	},
3169	{
3170		.compatible = "renesas,scif-r9a07g044",
3171		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3172	},
3173	/* Family-specific types */
3174	{
3175		.compatible = "renesas,rcar-gen1-scif",
3176		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3177	}, {
3178		.compatible = "renesas,rcar-gen2-scif",
3179		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3180	}, {
3181		.compatible = "renesas,rcar-gen3-scif",
3182		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3183	},
3184	/* Generic types */
3185	{
3186		.compatible = "renesas,scif",
3187		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3188	}, {
3189		.compatible = "renesas,scifa",
3190		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3191	}, {
3192		.compatible = "renesas,scifb",
3193		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3194	}, {
3195		.compatible = "renesas,hscif",
3196		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3197	}, {
3198		.compatible = "renesas,sci",
3199		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3200	}, {
3201		/* Terminator */
3202	},
3203};
3204MODULE_DEVICE_TABLE(of, of_sci_match);
3205
3206static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3207					  unsigned int *dev_id)
3208{
3209	struct device_node *np = pdev->dev.of_node;
3210	struct plat_sci_port *p;
3211	struct sci_port *sp;
3212	const void *data;
3213	int id;
3214
3215	if (!IS_ENABLED(CONFIG_OF) || !np)
3216		return NULL;
3217
3218	data = of_device_get_match_data(&pdev->dev);
3219
3220	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3221	if (!p)
3222		return NULL;
3223
3224	/* Get the line number from the aliases node. */
3225	id = of_alias_get_id(np, "serial");
3226	if (id < 0 && ~sci_ports_in_use)
3227		id = ffz(sci_ports_in_use);
3228	if (id < 0) {
3229		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3230		return NULL;
3231	}
3232	if (id >= ARRAY_SIZE(sci_ports)) {
3233		dev_err(&pdev->dev, "serial%d out of range\n", id);
3234		return NULL;
3235	}
3236
3237	sp = &sci_ports[id];
3238	*dev_id = id;
3239
3240	p->type = SCI_OF_TYPE(data);
3241	p->regtype = SCI_OF_REGTYPE(data);
3242
3243	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3244
3245	return p;
3246}
3247
3248static int sci_probe_single(struct platform_device *dev,
3249				      unsigned int index,
3250				      struct plat_sci_port *p,
3251				      struct sci_port *sciport)
3252{
3253	int ret;
3254
3255	/* Sanity check */
3256	if (unlikely(index >= SCI_NPORTS)) {
3257		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3258			   index+1, SCI_NPORTS);
3259		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3260		return -EINVAL;
3261	}
3262	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3263	if (sci_ports_in_use & BIT(index))
3264		return -EBUSY;
3265
3266	mutex_lock(&sci_uart_registration_lock);
3267	if (!sci_uart_driver.state) {
3268		ret = uart_register_driver(&sci_uart_driver);
3269		if (ret) {
3270			mutex_unlock(&sci_uart_registration_lock);
3271			return ret;
3272		}
3273	}
3274	mutex_unlock(&sci_uart_registration_lock);
3275
3276	ret = sci_init_single(dev, sciport, index, p, false);
3277	if (ret)
3278		return ret;
3279
3280	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3281	if (IS_ERR(sciport->gpios))
3282		return PTR_ERR(sciport->gpios);
3283
3284	if (sciport->has_rtscts) {
3285		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3286		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
 
 
3287			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3288			return -EINVAL;
3289		}
3290		sciport->port.flags |= UPF_HARD_FLOW;
3291	}
3292
3293	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3294	if (ret) {
3295		sci_cleanup_single(sciport);
3296		return ret;
3297	}
3298
3299	return 0;
3300}
3301
3302static int sci_probe(struct platform_device *dev)
3303{
3304	struct plat_sci_port *p;
3305	struct sci_port *sp;
3306	unsigned int dev_id;
3307	int ret;
3308
3309	/*
3310	 * If we've come here via earlyprintk initialization, head off to
3311	 * the special early probe. We don't have sufficient device state
3312	 * to make it beyond this yet.
3313	 */
3314#ifdef CONFIG_SUPERH
3315	if (is_sh_early_platform_device(dev))
3316		return sci_probe_earlyprintk(dev);
3317#endif
3318
3319	if (dev->dev.of_node) {
3320		p = sci_parse_dt(dev, &dev_id);
3321		if (p == NULL)
3322			return -EINVAL;
3323	} else {
3324		p = dev->dev.platform_data;
3325		if (p == NULL) {
3326			dev_err(&dev->dev, "no platform data supplied\n");
3327			return -EINVAL;
3328		}
3329
3330		dev_id = dev->id;
3331	}
3332
3333	sp = &sci_ports[dev_id];
3334	platform_set_drvdata(dev, sp);
3335
3336	ret = sci_probe_single(dev, dev_id, p, sp);
3337	if (ret)
3338		return ret;
3339
3340	if (sp->port.fifosize > 1) {
3341		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
 
3342		if (ret)
3343			return ret;
3344	}
3345	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3346	    sp->port.type == PORT_HSCIF) {
3347		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
 
3348		if (ret) {
3349			if (sp->port.fifosize > 1) {
3350				device_remove_file(&dev->dev,
3351						   &dev_attr_rx_fifo_trigger);
3352			}
3353			return ret;
3354		}
3355	}
3356
3357#ifdef CONFIG_SH_STANDARD_BIOS
3358	sh_bios_gdb_detach();
3359#endif
3360
3361	sci_ports_in_use |= BIT(dev_id);
3362	return 0;
3363}
3364
3365static __maybe_unused int sci_suspend(struct device *dev)
3366{
3367	struct sci_port *sport = dev_get_drvdata(dev);
3368
3369	if (sport)
3370		uart_suspend_port(&sci_uart_driver, &sport->port);
3371
3372	return 0;
3373}
3374
3375static __maybe_unused int sci_resume(struct device *dev)
3376{
3377	struct sci_port *sport = dev_get_drvdata(dev);
3378
3379	if (sport)
3380		uart_resume_port(&sci_uart_driver, &sport->port);
3381
3382	return 0;
3383}
3384
3385static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3386
3387static struct platform_driver sci_driver = {
3388	.probe		= sci_probe,
3389	.remove		= sci_remove,
3390	.driver		= {
3391		.name	= "sh-sci",
3392		.pm	= &sci_dev_pm_ops,
3393		.of_match_table = of_match_ptr(of_sci_match),
3394	},
3395};
3396
3397static int __init sci_init(void)
3398{
3399	pr_info("%s\n", banner);
3400
3401	return platform_driver_register(&sci_driver);
3402}
3403
3404static void __exit sci_exit(void)
3405{
3406	platform_driver_unregister(&sci_driver);
3407
3408	if (sci_uart_driver.state)
3409		uart_unregister_driver(&sci_uart_driver);
3410}
3411
3412#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3413sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3414			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3415#endif
3416#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3417static struct plat_sci_port port_cfg __initdata;
3418
3419static int __init early_console_setup(struct earlycon_device *device,
3420				      int type)
3421{
3422	if (!device->port.membase)
3423		return -ENODEV;
3424
3425	device->port.serial_in = sci_serial_in;
3426	device->port.serial_out	= sci_serial_out;
3427	device->port.type = type;
3428	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3429	port_cfg.type = type;
3430	sci_ports[0].cfg = &port_cfg;
3431	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3432	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3433	sci_serial_out(&sci_ports[0].port, SCSCR,
3434		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3435
3436	device->con->write = serial_console_write;
3437	return 0;
3438}
3439static int __init sci_early_console_setup(struct earlycon_device *device,
3440					  const char *opt)
3441{
3442	return early_console_setup(device, PORT_SCI);
3443}
3444static int __init scif_early_console_setup(struct earlycon_device *device,
3445					  const char *opt)
3446{
3447	return early_console_setup(device, PORT_SCIF);
3448}
3449static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3450					  const char *opt)
3451{
3452	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3453	return early_console_setup(device, PORT_SCIF);
3454}
3455
3456static int __init scifa_early_console_setup(struct earlycon_device *device,
3457					  const char *opt)
3458{
3459	return early_console_setup(device, PORT_SCIFA);
3460}
3461static int __init scifb_early_console_setup(struct earlycon_device *device,
3462					  const char *opt)
3463{
3464	return early_console_setup(device, PORT_SCIFB);
3465}
3466static int __init hscif_early_console_setup(struct earlycon_device *device,
3467					  const char *opt)
3468{
3469	return early_console_setup(device, PORT_HSCIF);
3470}
3471
3472OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3473OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3474OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3475OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3476OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3477OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3478OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3479#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3480
3481module_init(sci_init);
3482module_exit(sci_exit);
3483
3484MODULE_LICENSE("GPL");
3485MODULE_ALIAS("platform:sh-sci");
3486MODULE_AUTHOR("Paul Mundt");
3487MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");