Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/extable.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 35#include <asm/code-patching.h>
 36#include <asm/cacheflush.h>
 37#include <asm/sstep.h>
 38#include <asm/sections.h>
 39#include <linux/uaccess.h>
 40
 41DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 42DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 43
 44struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 45
 46bool arch_within_kprobe_blacklist(unsigned long addr)
 47{
 48	return  (addr >= (unsigned long)__kprobes_text_start &&
 49		 addr < (unsigned long)__kprobes_text_end) ||
 50		(addr >= (unsigned long)_stext &&
 51		 addr < (unsigned long)__head_end);
 52}
 53
 54kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 55{
 56	kprobe_opcode_t *addr = NULL;
 57
 58#ifdef PPC64_ELF_ABI_v2
 59	/* PPC64 ABIv2 needs local entry point */
 60	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 61	if (addr && !offset) {
 62#ifdef CONFIG_KPROBES_ON_FTRACE
 63		unsigned long faddr;
 64		/*
 65		 * Per livepatch.h, ftrace location is always within the first
 66		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 67		 */
 68		faddr = ftrace_location_range((unsigned long)addr,
 69					      (unsigned long)addr + 16);
 70		if (faddr)
 71			addr = (kprobe_opcode_t *)faddr;
 72		else
 73#endif
 74			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 75	}
 76#elif defined(PPC64_ELF_ABI_v1)
 77	/*
 78	 * 64bit powerpc ABIv1 uses function descriptors:
 79	 * - Check for the dot variant of the symbol first.
 80	 * - If that fails, try looking up the symbol provided.
 81	 *
 82	 * This ensures we always get to the actual symbol and not
 83	 * the descriptor.
 84	 *
 85	 * Also handle <module:symbol> format.
 86	 */
 87	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 88	bool dot_appended = false;
 89	const char *c;
 90	ssize_t ret = 0;
 91	int len = 0;
 92
 93	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 94		c++;
 95		len = c - name;
 96		memcpy(dot_name, name, len);
 97	} else
 98		c = name;
 99
100	if (*c != '\0' && *c != '.') {
101		dot_name[len++] = '.';
102		dot_appended = true;
103	}
104	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
105	if (ret > 0)
106		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
107
108	/* Fallback to the original non-dot symbol lookup */
109	if (!addr && dot_appended)
110		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
111#else
112	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
113#endif
114
115	return addr;
116}
117
118int arch_prepare_kprobe(struct kprobe *p)
119{
120	int ret = 0;
121	kprobe_opcode_t insn = *p->addr;
122
123	if ((unsigned long)p->addr & 0x03) {
124		printk("Attempt to register kprobe at an unaligned address\n");
125		ret = -EINVAL;
126	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
127		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
128		ret = -EINVAL;
129	}
130
131	/* insn must be on a special executable page on ppc64.  This is
132	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
133	if (!ret) {
134		p->ainsn.insn = get_insn_slot();
135		if (!p->ainsn.insn)
136			ret = -ENOMEM;
137	}
138
139	if (!ret) {
140		memcpy(p->ainsn.insn, p->addr,
141				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
142		p->opcode = *p->addr;
143		flush_icache_range((unsigned long)p->ainsn.insn,
144			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
145	}
146
147	p->ainsn.boostable = 0;
148	return ret;
149}
150NOKPROBE_SYMBOL(arch_prepare_kprobe);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
 
 
155}
156NOKPROBE_SYMBOL(arch_arm_kprobe);
157
158void arch_disarm_kprobe(struct kprobe *p)
159{
160	patch_instruction(p->addr, p->opcode);
 
 
161}
162NOKPROBE_SYMBOL(arch_disarm_kprobe);
163
164void arch_remove_kprobe(struct kprobe *p)
165{
166	if (p->ainsn.insn) {
167		free_insn_slot(p->ainsn.insn, 0);
168		p->ainsn.insn = NULL;
169	}
170}
171NOKPROBE_SYMBOL(arch_remove_kprobe);
172
173static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
174{
175	enable_single_step(regs);
176
177	/*
178	 * On powerpc we should single step on the original
179	 * instruction even if the probed insn is a trap
180	 * variant as values in regs could play a part in
181	 * if the trap is taken or not
182	 */
183	regs->nip = (unsigned long)p->ainsn.insn;
184}
185
186static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
187{
188	kcb->prev_kprobe.kp = kprobe_running();
189	kcb->prev_kprobe.status = kcb->kprobe_status;
190	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
191}
192
193static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
194{
195	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
196	kcb->kprobe_status = kcb->prev_kprobe.status;
197	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
198}
199
200static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
201				struct kprobe_ctlblk *kcb)
202{
203	__this_cpu_write(current_kprobe, p);
204	kcb->kprobe_saved_msr = regs->msr;
205}
206
207bool arch_kprobe_on_func_entry(unsigned long offset)
208{
209#ifdef PPC64_ELF_ABI_v2
210#ifdef CONFIG_KPROBES_ON_FTRACE
211	return offset <= 16;
212#else
213	return offset <= 8;
214#endif
215#else
216	return !offset;
217#endif
218}
219
220void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
221{
222	ri->ret_addr = (kprobe_opcode_t *)regs->link;
223
224	/* Replace the return addr with trampoline addr */
225	regs->link = (unsigned long)kretprobe_trampoline;
226}
227NOKPROBE_SYMBOL(arch_prepare_kretprobe);
228
229static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
230{
231	int ret;
232	unsigned int insn = *p->ainsn.insn;
233
234	/* regs->nip is also adjusted if emulate_step returns 1 */
235	ret = emulate_step(regs, insn);
236	if (ret > 0) {
237		/*
238		 * Once this instruction has been boosted
239		 * successfully, set the boostable flag
240		 */
241		if (unlikely(p->ainsn.boostable == 0))
242			p->ainsn.boostable = 1;
243	} else if (ret < 0) {
244		/*
245		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
246		 * So, we should never get here... but, its still
247		 * good to catch them, just in case...
248		 */
249		printk("Can't step on instruction %x\n", insn);
250		BUG();
251	} else {
252		/*
253		 * If we haven't previously emulated this instruction, then it
254		 * can't be boosted. Note it down so we don't try to do so again.
255		 *
256		 * If, however, we had emulated this instruction in the past,
257		 * then this is just an error with the current run (for
258		 * instance, exceptions due to a load/store). We return 0 so
259		 * that this is now single-stepped, but continue to try
260		 * emulating it in subsequent probe hits.
261		 */
262		if (unlikely(p->ainsn.boostable != 1))
263			p->ainsn.boostable = -1;
264	}
265
266	return ret;
267}
268NOKPROBE_SYMBOL(try_to_emulate);
269
270int kprobe_handler(struct pt_regs *regs)
271{
272	struct kprobe *p;
273	int ret = 0;
274	unsigned int *addr = (unsigned int *)regs->nip;
275	struct kprobe_ctlblk *kcb;
276
277	if (user_mode(regs))
278		return 0;
279
280	/*
281	 * We don't want to be preempted for the entire
282	 * duration of kprobe processing
283	 */
284	preempt_disable();
285	kcb = get_kprobe_ctlblk();
286
287	/* Check we're not actually recursing */
288	if (kprobe_running()) {
289		p = get_kprobe(addr);
290		if (p) {
291			kprobe_opcode_t insn = *p->ainsn.insn;
292			if (kcb->kprobe_status == KPROBE_HIT_SS &&
293					is_trap(insn)) {
294				/* Turn off 'trace' bits */
295				regs->msr &= ~MSR_SINGLESTEP;
296				regs->msr |= kcb->kprobe_saved_msr;
297				goto no_kprobe;
298			}
299			/* We have reentered the kprobe_handler(), since
300			 * another probe was hit while within the handler.
301			 * We here save the original kprobes variables and
302			 * just single step on the instruction of the new probe
303			 * without calling any user handlers.
304			 */
305			save_previous_kprobe(kcb);
306			set_current_kprobe(p, regs, kcb);
 
307			kprobes_inc_nmissed_count(p);
308			kcb->kprobe_status = KPROBE_REENTER;
309			if (p->ainsn.boostable >= 0) {
310				ret = try_to_emulate(p, regs);
311
312				if (ret > 0) {
313					restore_previous_kprobe(kcb);
314					preempt_enable_no_resched();
315					return 1;
316				}
317			}
318			prepare_singlestep(p, regs);
 
319			return 1;
320		} else {
321			if (*addr != BREAKPOINT_INSTRUCTION) {
322				/* If trap variant, then it belongs not to us */
323				kprobe_opcode_t cur_insn = *addr;
324				if (is_trap(cur_insn))
325		       			goto no_kprobe;
326				/* The breakpoint instruction was removed by
327				 * another cpu right after we hit, no further
328				 * handling of this interrupt is appropriate
329				 */
330				ret = 1;
331				goto no_kprobe;
332			}
333			p = __this_cpu_read(current_kprobe);
334			if (p->break_handler && p->break_handler(p, regs)) {
335				if (!skip_singlestep(p, regs, kcb))
336					goto ss_probe;
337				ret = 1;
338			}
339		}
340		goto no_kprobe;
341	}
342
343	p = get_kprobe(addr);
344	if (!p) {
345		if (*addr != BREAKPOINT_INSTRUCTION) {
346			/*
347			 * PowerPC has multiple variants of the "trap"
348			 * instruction. If the current instruction is a
349			 * trap variant, it could belong to someone else
350			 */
351			kprobe_opcode_t cur_insn = *addr;
352			if (is_trap(cur_insn))
353		       		goto no_kprobe;
354			/*
355			 * The breakpoint instruction was removed right
356			 * after we hit it.  Another cpu has removed
357			 * either a probepoint or a debugger breakpoint
358			 * at this address.  In either case, no further
359			 * handling of this interrupt is appropriate.
360			 */
361			ret = 1;
362		}
363		/* Not one of ours: let kernel handle it */
364		goto no_kprobe;
365	}
366
367	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
368	set_current_kprobe(p, regs, kcb);
369	if (p->pre_handler && p->pre_handler(p, regs))
370		/* handler has already set things up, so skip ss setup */
371		return 1;
372
373ss_probe:
374	if (p->ainsn.boostable >= 0) {
375		ret = try_to_emulate(p, regs);
376
 
 
377		if (ret > 0) {
 
 
 
 
 
 
 
378			if (p->post_handler)
379				p->post_handler(p, regs, 0);
380
381			kcb->kprobe_status = KPROBE_HIT_SSDONE;
382			reset_current_kprobe();
383			preempt_enable_no_resched();
384			return 1;
385		}
 
 
 
 
 
 
 
 
 
 
386	}
387	prepare_singlestep(p, regs);
388	kcb->kprobe_status = KPROBE_HIT_SS;
389	return 1;
390
391no_kprobe:
392	preempt_enable_no_resched();
393	return ret;
394}
395NOKPROBE_SYMBOL(kprobe_handler);
396
397/*
398 * Function return probe trampoline:
399 * 	- init_kprobes() establishes a probepoint here
400 * 	- When the probed function returns, this probe
401 * 		causes the handlers to fire
402 */
403asm(".global kretprobe_trampoline\n"
404	".type kretprobe_trampoline, @function\n"
405	"kretprobe_trampoline:\n"
406	"nop\n"
407	"blr\n"
408	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
409
410/*
411 * Called when the probe at kretprobe trampoline is hit
412 */
413static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
414{
415	struct kretprobe_instance *ri = NULL;
416	struct hlist_head *head, empty_rp;
417	struct hlist_node *tmp;
418	unsigned long flags, orig_ret_address = 0;
419	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
420
421	INIT_HLIST_HEAD(&empty_rp);
422	kretprobe_hash_lock(current, &head, &flags);
423
424	/*
425	 * It is possible to have multiple instances associated with a given
426	 * task either because an multiple functions in the call path
427	 * have a return probe installed on them, and/or more than one return
428	 * return probe was registered for a target function.
429	 *
430	 * We can handle this because:
431	 *     - instances are always inserted at the head of the list
432	 *     - when multiple return probes are registered for the same
433	 *       function, the first instance's ret_addr will point to the
434	 *       real return address, and all the rest will point to
435	 *       kretprobe_trampoline
436	 */
437	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
438		if (ri->task != current)
439			/* another task is sharing our hash bucket */
440			continue;
441
442		if (ri->rp && ri->rp->handler)
443			ri->rp->handler(ri, regs);
444
445		orig_ret_address = (unsigned long)ri->ret_addr;
446		recycle_rp_inst(ri, &empty_rp);
447
448		if (orig_ret_address != trampoline_address)
449			/*
450			 * This is the real return address. Any other
451			 * instances associated with this task are for
452			 * other calls deeper on the call stack
453			 */
454			break;
455	}
456
457	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 
458
459	/*
460	 * We get here through one of two paths:
461	 * 1. by taking a trap -> kprobe_handler() -> here
462	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
463	 *
464	 * When going back through (1), we need regs->nip to be setup properly
465	 * as it is used to determine the return address from the trap.
466	 * For (2), since nip is not honoured with optprobes, we instead setup
467	 * the link register properly so that the subsequent 'blr' in
468	 * kretprobe_trampoline jumps back to the right instruction.
469	 *
470	 * For nip, we should set the address to the previous instruction since
471	 * we end up emulating it in kprobe_handler(), which increments the nip
472	 * again.
473	 */
474	regs->nip = orig_ret_address - 4;
475	regs->link = orig_ret_address;
476
477	kretprobe_hash_unlock(current, &flags);
 
478
479	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
480		hlist_del(&ri->hlist);
481		kfree(ri);
482	}
483
484	return 0;
 
 
 
 
485}
486NOKPROBE_SYMBOL(trampoline_probe_handler);
487
488/*
489 * Called after single-stepping.  p->addr is the address of the
490 * instruction whose first byte has been replaced by the "breakpoint"
491 * instruction.  To avoid the SMP problems that can occur when we
492 * temporarily put back the original opcode to single-step, we
493 * single-stepped a copy of the instruction.  The address of this
494 * copy is p->ainsn.insn.
495 */
496int kprobe_post_handler(struct pt_regs *regs)
497{
498	struct kprobe *cur = kprobe_running();
499	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
500
501	if (!cur || user_mode(regs))
502		return 0;
503
504	/* make sure we got here for instruction we have a kprobe on */
505	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
506		return 0;
507
508	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
509		kcb->kprobe_status = KPROBE_HIT_SSDONE;
510		cur->post_handler(cur, regs, 0);
511	}
512
513	/* Adjust nip to after the single-stepped instruction */
514	regs->nip = (unsigned long)cur->addr + 4;
515	regs->msr |= kcb->kprobe_saved_msr;
516
517	/*Restore back the original saved kprobes variables and continue. */
518	if (kcb->kprobe_status == KPROBE_REENTER) {
519		restore_previous_kprobe(kcb);
520		goto out;
521	}
522	reset_current_kprobe();
523out:
524	preempt_enable_no_resched();
525
526	/*
527	 * if somebody else is singlestepping across a probe point, msr
528	 * will have DE/SE set, in which case, continue the remaining processing
529	 * of do_debug, as if this is not a probe hit.
530	 */
531	if (regs->msr & MSR_SINGLESTEP)
532		return 0;
533
534	return 1;
535}
536NOKPROBE_SYMBOL(kprobe_post_handler);
537
538int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
539{
540	struct kprobe *cur = kprobe_running();
541	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
542	const struct exception_table_entry *entry;
543
544	switch(kcb->kprobe_status) {
545	case KPROBE_HIT_SS:
546	case KPROBE_REENTER:
547		/*
548		 * We are here because the instruction being single
549		 * stepped caused a page fault. We reset the current
550		 * kprobe and the nip points back to the probe address
551		 * and allow the page fault handler to continue as a
552		 * normal page fault.
553		 */
554		regs->nip = (unsigned long)cur->addr;
555		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
556		regs->msr |= kcb->kprobe_saved_msr;
557		if (kcb->kprobe_status == KPROBE_REENTER)
558			restore_previous_kprobe(kcb);
559		else
560			reset_current_kprobe();
561		preempt_enable_no_resched();
562		break;
563	case KPROBE_HIT_ACTIVE:
564	case KPROBE_HIT_SSDONE:
565		/*
566		 * We increment the nmissed count for accounting,
567		 * we can also use npre/npostfault count for accounting
568		 * these specific fault cases.
569		 */
570		kprobes_inc_nmissed_count(cur);
571
572		/*
573		 * We come here because instructions in the pre/post
574		 * handler caused the page_fault, this could happen
575		 * if handler tries to access user space by
576		 * copy_from_user(), get_user() etc. Let the
577		 * user-specified handler try to fix it first.
578		 */
579		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
580			return 1;
581
582		/*
583		 * In case the user-specified fault handler returned
584		 * zero, try to fix up.
585		 */
586		if ((entry = search_exception_tables(regs->nip)) != NULL) {
587			regs->nip = extable_fixup(entry);
588			return 1;
589		}
590
591		/*
592		 * fixup_exception() could not handle it,
593		 * Let do_page_fault() fix it.
594		 */
595		break;
596	default:
597		break;
598	}
599	return 0;
600}
601NOKPROBE_SYMBOL(kprobe_fault_handler);
 
 
 
 
 
 
 
 
602
603unsigned long arch_deref_entry_point(void *entry)
604{
605#ifdef PPC64_ELF_ABI_v1
606	if (!kernel_text_address((unsigned long)entry))
607		return ppc_global_function_entry(entry);
608	else
609#endif
610		return (unsigned long)entry;
611}
612NOKPROBE_SYMBOL(arch_deref_entry_point);
613
614int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615{
616	struct jprobe *jp = container_of(p, struct jprobe, kp);
617	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618
619	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
620
621	/* setup return addr to the jprobe handler routine */
622	regs->nip = arch_deref_entry_point(jp->entry);
623#ifdef PPC64_ELF_ABI_v2
624	regs->gpr[12] = (unsigned long)jp->entry;
625#elif defined(PPC64_ELF_ABI_v1)
626	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
627#endif
628
629	/*
630	 * jprobes use jprobe_return() which skips the normal return
631	 * path of the function, and this messes up the accounting of the
632	 * function graph tracer.
633	 *
634	 * Pause function graph tracing while performing the jprobe function.
635	 */
636	pause_graph_tracing();
637
638	return 1;
639}
640NOKPROBE_SYMBOL(setjmp_pre_handler);
641
642void __used jprobe_return(void)
643{
644	asm volatile("jprobe_return_trap:\n"
645		     "trap\n"
646		     ::: "memory");
647}
648NOKPROBE_SYMBOL(jprobe_return);
649
650int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
651{
652	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
653
654	if (regs->nip != ppc_kallsyms_lookup_name("jprobe_return_trap")) {
655		pr_debug("longjmp_break_handler NIP (0x%lx) does not match jprobe_return_trap (0x%lx)\n",
656				regs->nip, ppc_kallsyms_lookup_name("jprobe_return_trap"));
657		return 0;
658	}
659
 
 
 
 
 
660	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
661	/* It's OK to start function graph tracing again */
662	unpause_graph_tracing();
663	preempt_enable_no_resched();
664	return 1;
665}
666NOKPROBE_SYMBOL(longjmp_break_handler);
667
668static struct kprobe trampoline_p = {
669	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
670	.pre_handler = trampoline_probe_handler
671};
672
673int __init arch_init_kprobes(void)
674{
675	return register_kprobe(&trampoline_p);
676}
677
678int arch_trampoline_kprobe(struct kprobe *p)
679{
680	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
681		return 1;
682
683	return 0;
684}
685NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v4.10.11
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/extable.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 35#include <asm/code-patching.h>
 36#include <asm/cacheflush.h>
 37#include <asm/sstep.h>
 
 38#include <linux/uaccess.h>
 39
 40DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 41DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 42
 43struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 44
 45int __kprobes arch_prepare_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46{
 47	int ret = 0;
 48	kprobe_opcode_t insn = *p->addr;
 49
 50	if ((unsigned long)p->addr & 0x03) {
 51		printk("Attempt to register kprobe at an unaligned address\n");
 52		ret = -EINVAL;
 53	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
 54		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
 55		ret = -EINVAL;
 56	}
 57
 58	/* insn must be on a special executable page on ppc64.  This is
 59	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
 60	if (!ret) {
 61		p->ainsn.insn = get_insn_slot();
 62		if (!p->ainsn.insn)
 63			ret = -ENOMEM;
 64	}
 65
 66	if (!ret) {
 67		memcpy(p->ainsn.insn, p->addr,
 68				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 69		p->opcode = *p->addr;
 70		flush_icache_range((unsigned long)p->ainsn.insn,
 71			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
 72	}
 73
 74	p->ainsn.boostable = 0;
 75	return ret;
 76}
 
 77
 78void __kprobes arch_arm_kprobe(struct kprobe *p)
 79{
 80	*p->addr = BREAKPOINT_INSTRUCTION;
 81	flush_icache_range((unsigned long) p->addr,
 82			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 83}
 
 84
 85void __kprobes arch_disarm_kprobe(struct kprobe *p)
 86{
 87	*p->addr = p->opcode;
 88	flush_icache_range((unsigned long) p->addr,
 89			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 90}
 
 91
 92void __kprobes arch_remove_kprobe(struct kprobe *p)
 93{
 94	if (p->ainsn.insn) {
 95		free_insn_slot(p->ainsn.insn, 0);
 96		p->ainsn.insn = NULL;
 97	}
 98}
 
 99
100static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
101{
102	enable_single_step(regs);
103
104	/*
105	 * On powerpc we should single step on the original
106	 * instruction even if the probed insn is a trap
107	 * variant as values in regs could play a part in
108	 * if the trap is taken or not
109	 */
110	regs->nip = (unsigned long)p->ainsn.insn;
111}
112
113static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
114{
115	kcb->prev_kprobe.kp = kprobe_running();
116	kcb->prev_kprobe.status = kcb->kprobe_status;
117	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
118}
119
120static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
121{
122	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
123	kcb->kprobe_status = kcb->prev_kprobe.status;
124	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
125}
126
127static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
128				struct kprobe_ctlblk *kcb)
129{
130	__this_cpu_write(current_kprobe, p);
131	kcb->kprobe_saved_msr = regs->msr;
132}
133
134void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
135				      struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
136{
137	ri->ret_addr = (kprobe_opcode_t *)regs->link;
138
139	/* Replace the return addr with trampoline addr */
140	regs->link = (unsigned long)kretprobe_trampoline;
141}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
143int __kprobes kprobe_handler(struct pt_regs *regs)
144{
145	struct kprobe *p;
146	int ret = 0;
147	unsigned int *addr = (unsigned int *)regs->nip;
148	struct kprobe_ctlblk *kcb;
149
150	if (user_mode(regs))
151		return 0;
152
153	/*
154	 * We don't want to be preempted for the entire
155	 * duration of kprobe processing
156	 */
157	preempt_disable();
158	kcb = get_kprobe_ctlblk();
159
160	/* Check we're not actually recursing */
161	if (kprobe_running()) {
162		p = get_kprobe(addr);
163		if (p) {
164			kprobe_opcode_t insn = *p->ainsn.insn;
165			if (kcb->kprobe_status == KPROBE_HIT_SS &&
166					is_trap(insn)) {
167				/* Turn off 'trace' bits */
168				regs->msr &= ~MSR_SINGLESTEP;
169				regs->msr |= kcb->kprobe_saved_msr;
170				goto no_kprobe;
171			}
172			/* We have reentered the kprobe_handler(), since
173			 * another probe was hit while within the handler.
174			 * We here save the original kprobes variables and
175			 * just single step on the instruction of the new probe
176			 * without calling any user handlers.
177			 */
178			save_previous_kprobe(kcb);
179			set_current_kprobe(p, regs, kcb);
180			kcb->kprobe_saved_msr = regs->msr;
181			kprobes_inc_nmissed_count(p);
 
 
 
 
 
 
 
 
 
 
182			prepare_singlestep(p, regs);
183			kcb->kprobe_status = KPROBE_REENTER;
184			return 1;
185		} else {
186			if (*addr != BREAKPOINT_INSTRUCTION) {
187				/* If trap variant, then it belongs not to us */
188				kprobe_opcode_t cur_insn = *addr;
189				if (is_trap(cur_insn))
190		       			goto no_kprobe;
191				/* The breakpoint instruction was removed by
192				 * another cpu right after we hit, no further
193				 * handling of this interrupt is appropriate
194				 */
195				ret = 1;
196				goto no_kprobe;
197			}
198			p = __this_cpu_read(current_kprobe);
199			if (p->break_handler && p->break_handler(p, regs)) {
200				goto ss_probe;
 
 
201			}
202		}
203		goto no_kprobe;
204	}
205
206	p = get_kprobe(addr);
207	if (!p) {
208		if (*addr != BREAKPOINT_INSTRUCTION) {
209			/*
210			 * PowerPC has multiple variants of the "trap"
211			 * instruction. If the current instruction is a
212			 * trap variant, it could belong to someone else
213			 */
214			kprobe_opcode_t cur_insn = *addr;
215			if (is_trap(cur_insn))
216		       		goto no_kprobe;
217			/*
218			 * The breakpoint instruction was removed right
219			 * after we hit it.  Another cpu has removed
220			 * either a probepoint or a debugger breakpoint
221			 * at this address.  In either case, no further
222			 * handling of this interrupt is appropriate.
223			 */
224			ret = 1;
225		}
226		/* Not one of ours: let kernel handle it */
227		goto no_kprobe;
228	}
229
230	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
231	set_current_kprobe(p, regs, kcb);
232	if (p->pre_handler && p->pre_handler(p, regs))
233		/* handler has already set things up, so skip ss setup */
234		return 1;
235
236ss_probe:
237	if (p->ainsn.boostable >= 0) {
238		unsigned int insn = *p->ainsn.insn;
239
240		/* regs->nip is also adjusted if emulate_step returns 1 */
241		ret = emulate_step(regs, insn);
242		if (ret > 0) {
243			/*
244			 * Once this instruction has been boosted
245			 * successfully, set the boostable flag
246			 */
247			if (unlikely(p->ainsn.boostable == 0))
248				p->ainsn.boostable = 1;
249
250			if (p->post_handler)
251				p->post_handler(p, regs, 0);
252
253			kcb->kprobe_status = KPROBE_HIT_SSDONE;
254			reset_current_kprobe();
255			preempt_enable_no_resched();
256			return 1;
257		} else if (ret < 0) {
258			/*
259			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
260			 * So, we should never get here... but, its still
261			 * good to catch them, just in case...
262			 */
263			printk("Can't step on instruction %x\n", insn);
264			BUG();
265		} else if (ret == 0)
266			/* This instruction can't be boosted */
267			p->ainsn.boostable = -1;
268	}
269	prepare_singlestep(p, regs);
270	kcb->kprobe_status = KPROBE_HIT_SS;
271	return 1;
272
273no_kprobe:
274	preempt_enable_no_resched();
275	return ret;
276}
 
277
278/*
279 * Function return probe trampoline:
280 * 	- init_kprobes() establishes a probepoint here
281 * 	- When the probed function returns, this probe
282 * 		causes the handlers to fire
283 */
284asm(".global kretprobe_trampoline\n"
285	".type kretprobe_trampoline, @function\n"
286	"kretprobe_trampoline:\n"
287	"nop\n"
 
288	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
289
290/*
291 * Called when the probe at kretprobe trampoline is hit
292 */
293static int __kprobes trampoline_probe_handler(struct kprobe *p,
294						struct pt_regs *regs)
295{
296	struct kretprobe_instance *ri = NULL;
297	struct hlist_head *head, empty_rp;
298	struct hlist_node *tmp;
299	unsigned long flags, orig_ret_address = 0;
300	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
301
302	INIT_HLIST_HEAD(&empty_rp);
303	kretprobe_hash_lock(current, &head, &flags);
304
305	/*
306	 * It is possible to have multiple instances associated with a given
307	 * task either because an multiple functions in the call path
308	 * have a return probe installed on them, and/or more than one return
309	 * return probe was registered for a target function.
310	 *
311	 * We can handle this because:
312	 *     - instances are always inserted at the head of the list
313	 *     - when multiple return probes are registered for the same
314	 *       function, the first instance's ret_addr will point to the
315	 *       real return address, and all the rest will point to
316	 *       kretprobe_trampoline
317	 */
318	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
319		if (ri->task != current)
320			/* another task is sharing our hash bucket */
321			continue;
322
323		if (ri->rp && ri->rp->handler)
324			ri->rp->handler(ri, regs);
325
326		orig_ret_address = (unsigned long)ri->ret_addr;
327		recycle_rp_inst(ri, &empty_rp);
328
329		if (orig_ret_address != trampoline_address)
330			/*
331			 * This is the real return address. Any other
332			 * instances associated with this task are for
333			 * other calls deeper on the call stack
334			 */
335			break;
336	}
337
338	kretprobe_assert(ri, orig_ret_address, trampoline_address);
339	regs->nip = orig_ret_address;
340
341	reset_current_kprobe();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342	kretprobe_hash_unlock(current, &flags);
343	preempt_enable_no_resched();
344
345	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
346		hlist_del(&ri->hlist);
347		kfree(ri);
348	}
349	/*
350	 * By returning a non-zero value, we are telling
351	 * kprobe_handler() that we don't want the post_handler
352	 * to run (and have re-enabled preemption)
353	 */
354	return 1;
355}
 
356
357/*
358 * Called after single-stepping.  p->addr is the address of the
359 * instruction whose first byte has been replaced by the "breakpoint"
360 * instruction.  To avoid the SMP problems that can occur when we
361 * temporarily put back the original opcode to single-step, we
362 * single-stepped a copy of the instruction.  The address of this
363 * copy is p->ainsn.insn.
364 */
365int __kprobes kprobe_post_handler(struct pt_regs *regs)
366{
367	struct kprobe *cur = kprobe_running();
368	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
369
370	if (!cur || user_mode(regs))
371		return 0;
372
373	/* make sure we got here for instruction we have a kprobe on */
374	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
375		return 0;
376
377	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
378		kcb->kprobe_status = KPROBE_HIT_SSDONE;
379		cur->post_handler(cur, regs, 0);
380	}
381
382	/* Adjust nip to after the single-stepped instruction */
383	regs->nip = (unsigned long)cur->addr + 4;
384	regs->msr |= kcb->kprobe_saved_msr;
385
386	/*Restore back the original saved kprobes variables and continue. */
387	if (kcb->kprobe_status == KPROBE_REENTER) {
388		restore_previous_kprobe(kcb);
389		goto out;
390	}
391	reset_current_kprobe();
392out:
393	preempt_enable_no_resched();
394
395	/*
396	 * if somebody else is singlestepping across a probe point, msr
397	 * will have DE/SE set, in which case, continue the remaining processing
398	 * of do_debug, as if this is not a probe hit.
399	 */
400	if (regs->msr & MSR_SINGLESTEP)
401		return 0;
402
403	return 1;
404}
 
405
406int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
407{
408	struct kprobe *cur = kprobe_running();
409	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
410	const struct exception_table_entry *entry;
411
412	switch(kcb->kprobe_status) {
413	case KPROBE_HIT_SS:
414	case KPROBE_REENTER:
415		/*
416		 * We are here because the instruction being single
417		 * stepped caused a page fault. We reset the current
418		 * kprobe and the nip points back to the probe address
419		 * and allow the page fault handler to continue as a
420		 * normal page fault.
421		 */
422		regs->nip = (unsigned long)cur->addr;
423		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
424		regs->msr |= kcb->kprobe_saved_msr;
425		if (kcb->kprobe_status == KPROBE_REENTER)
426			restore_previous_kprobe(kcb);
427		else
428			reset_current_kprobe();
429		preempt_enable_no_resched();
430		break;
431	case KPROBE_HIT_ACTIVE:
432	case KPROBE_HIT_SSDONE:
433		/*
434		 * We increment the nmissed count for accounting,
435		 * we can also use npre/npostfault count for accounting
436		 * these specific fault cases.
437		 */
438		kprobes_inc_nmissed_count(cur);
439
440		/*
441		 * We come here because instructions in the pre/post
442		 * handler caused the page_fault, this could happen
443		 * if handler tries to access user space by
444		 * copy_from_user(), get_user() etc. Let the
445		 * user-specified handler try to fix it first.
446		 */
447		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
448			return 1;
449
450		/*
451		 * In case the user-specified fault handler returned
452		 * zero, try to fix up.
453		 */
454		if ((entry = search_exception_tables(regs->nip)) != NULL) {
455			regs->nip = extable_fixup(entry);
456			return 1;
457		}
458
459		/*
460		 * fixup_exception() could not handle it,
461		 * Let do_page_fault() fix it.
462		 */
463		break;
464	default:
465		break;
466	}
467	return 0;
468}
469
470/*
471 * Wrapper routine to for handling exceptions.
472 */
473int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
474				       unsigned long val, void *data)
475{
476	return NOTIFY_DONE;
477}
478
479unsigned long arch_deref_entry_point(void *entry)
480{
481	return ppc_global_function_entry(entry);
 
 
 
 
 
482}
 
483
484int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
485{
486	struct jprobe *jp = container_of(p, struct jprobe, kp);
487	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
488
489	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
490
491	/* setup return addr to the jprobe handler routine */
492	regs->nip = arch_deref_entry_point(jp->entry);
493#ifdef PPC64_ELF_ABI_v2
494	regs->gpr[12] = (unsigned long)jp->entry;
495#elif defined(PPC64_ELF_ABI_v1)
496	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
497#endif
498
 
 
 
 
 
 
 
 
 
499	return 1;
500}
 
501
502void __used __kprobes jprobe_return(void)
503{
504	asm volatile("trap" ::: "memory");
 
 
505}
 
506
507static void __used __kprobes jprobe_return_end(void)
508{
509};
510
511int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
512{
513	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 
514
515	/*
516	 * FIXME - we should ideally be validating that we got here 'cos
517	 * of the "trap" in jprobe_return() above, before restoring the
518	 * saved regs...
519	 */
520	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 
 
521	preempt_enable_no_resched();
522	return 1;
523}
 
524
525static struct kprobe trampoline_p = {
526	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
527	.pre_handler = trampoline_probe_handler
528};
529
530int __init arch_init_kprobes(void)
531{
532	return register_kprobe(&trampoline_p);
533}
534
535int __kprobes arch_trampoline_kprobe(struct kprobe *p)
536{
537	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
538		return 1;
539
540	return 0;
541}