Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/extable.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 35#include <asm/code-patching.h>
 36#include <asm/cacheflush.h>
 37#include <asm/sstep.h>
 38#include <asm/sections.h>
 39#include <linux/uaccess.h>
 
 
 
 
 
 40
 41DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 42DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 43
 44struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 45
 46bool arch_within_kprobe_blacklist(unsigned long addr)
 47{
 48	return  (addr >= (unsigned long)__kprobes_text_start &&
 49		 addr < (unsigned long)__kprobes_text_end) ||
 50		(addr >= (unsigned long)_stext &&
 51		 addr < (unsigned long)__head_end);
 52}
 53
 54kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 55{
 56	kprobe_opcode_t *addr = NULL;
 57
 58#ifdef PPC64_ELF_ABI_v2
 59	/* PPC64 ABIv2 needs local entry point */
 60	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 61	if (addr && !offset) {
 62#ifdef CONFIG_KPROBES_ON_FTRACE
 63		unsigned long faddr;
 64		/*
 65		 * Per livepatch.h, ftrace location is always within the first
 66		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 67		 */
 68		faddr = ftrace_location_range((unsigned long)addr,
 69					      (unsigned long)addr + 16);
 70		if (faddr)
 71			addr = (kprobe_opcode_t *)faddr;
 72		else
 73#endif
 74			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 75	}
 76#elif defined(PPC64_ELF_ABI_v1)
 77	/*
 78	 * 64bit powerpc ABIv1 uses function descriptors:
 79	 * - Check for the dot variant of the symbol first.
 80	 * - If that fails, try looking up the symbol provided.
 81	 *
 82	 * This ensures we always get to the actual symbol and not
 83	 * the descriptor.
 84	 *
 85	 * Also handle <module:symbol> format.
 86	 */
 87	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 88	bool dot_appended = false;
 89	const char *c;
 90	ssize_t ret = 0;
 91	int len = 0;
 92
 93	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 94		c++;
 95		len = c - name;
 96		memcpy(dot_name, name, len);
 97	} else
 98		c = name;
 99
100	if (*c != '\0' && *c != '.') {
101		dot_name[len++] = '.';
102		dot_appended = true;
103	}
104	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
105	if (ret > 0)
106		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
107
108	/* Fallback to the original non-dot symbol lookup */
109	if (!addr && dot_appended)
110		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
111#else
112	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
113#endif
114
115	return addr;
116}
117
118int arch_prepare_kprobe(struct kprobe *p)
119{
120	int ret = 0;
121	kprobe_opcode_t insn = *p->addr;
122
123	if ((unsigned long)p->addr & 0x03) {
124		printk("Attempt to register kprobe at an unaligned address\n");
125		ret = -EINVAL;
126	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
127		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
128		ret = -EINVAL;
129	}
130
131	/* insn must be on a special executable page on ppc64.  This is
132	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
133	if (!ret) {
134		p->ainsn.insn = get_insn_slot();
135		if (!p->ainsn.insn)
136			ret = -ENOMEM;
137	}
138
139	if (!ret) {
140		memcpy(p->ainsn.insn, p->addr,
141				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
142		p->opcode = *p->addr;
143		flush_icache_range((unsigned long)p->ainsn.insn,
144			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
145	}
146
147	p->ainsn.boostable = 0;
148	return ret;
149}
150NOKPROBE_SYMBOL(arch_prepare_kprobe);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
 
 
155}
156NOKPROBE_SYMBOL(arch_arm_kprobe);
157
158void arch_disarm_kprobe(struct kprobe *p)
159{
160	patch_instruction(p->addr, p->opcode);
 
 
161}
162NOKPROBE_SYMBOL(arch_disarm_kprobe);
163
164void arch_remove_kprobe(struct kprobe *p)
165{
166	if (p->ainsn.insn) {
167		free_insn_slot(p->ainsn.insn, 0);
168		p->ainsn.insn = NULL;
169	}
170}
171NOKPROBE_SYMBOL(arch_remove_kprobe);
172
173static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
174{
175	enable_single_step(regs);
 
 
 
 
 
 
 
 
 
 
 
 
176
177	/*
178	 * On powerpc we should single step on the original
179	 * instruction even if the probed insn is a trap
180	 * variant as values in regs could play a part in
181	 * if the trap is taken or not
182	 */
183	regs->nip = (unsigned long)p->ainsn.insn;
184}
185
186static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
187{
188	kcb->prev_kprobe.kp = kprobe_running();
189	kcb->prev_kprobe.status = kcb->kprobe_status;
190	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
191}
192
193static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
194{
195	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
196	kcb->kprobe_status = kcb->prev_kprobe.status;
197	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
198}
199
200static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
201				struct kprobe_ctlblk *kcb)
202{
203	__this_cpu_write(current_kprobe, p);
204	kcb->kprobe_saved_msr = regs->msr;
205}
206
207bool arch_kprobe_on_func_entry(unsigned long offset)
208{
209#ifdef PPC64_ELF_ABI_v2
210#ifdef CONFIG_KPROBES_ON_FTRACE
211	return offset <= 16;
212#else
213	return offset <= 8;
214#endif
215#else
216	return !offset;
217#endif
218}
219
220void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
221{
222	ri->ret_addr = (kprobe_opcode_t *)regs->link;
223
224	/* Replace the return addr with trampoline addr */
225	regs->link = (unsigned long)kretprobe_trampoline;
226}
227NOKPROBE_SYMBOL(arch_prepare_kretprobe);
228
229static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
230{
231	int ret;
232	unsigned int insn = *p->ainsn.insn;
233
234	/* regs->nip is also adjusted if emulate_step returns 1 */
235	ret = emulate_step(regs, insn);
236	if (ret > 0) {
237		/*
238		 * Once this instruction has been boosted
239		 * successfully, set the boostable flag
240		 */
241		if (unlikely(p->ainsn.boostable == 0))
242			p->ainsn.boostable = 1;
243	} else if (ret < 0) {
244		/*
245		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
246		 * So, we should never get here... but, its still
247		 * good to catch them, just in case...
248		 */
249		printk("Can't step on instruction %x\n", insn);
250		BUG();
251	} else {
252		/*
253		 * If we haven't previously emulated this instruction, then it
254		 * can't be boosted. Note it down so we don't try to do so again.
255		 *
256		 * If, however, we had emulated this instruction in the past,
257		 * then this is just an error with the current run (for
258		 * instance, exceptions due to a load/store). We return 0 so
259		 * that this is now single-stepped, but continue to try
260		 * emulating it in subsequent probe hits.
261		 */
262		if (unlikely(p->ainsn.boostable != 1))
263			p->ainsn.boostable = -1;
264	}
265
266	return ret;
267}
268NOKPROBE_SYMBOL(try_to_emulate);
269
270int kprobe_handler(struct pt_regs *regs)
271{
272	struct kprobe *p;
273	int ret = 0;
274	unsigned int *addr = (unsigned int *)regs->nip;
275	struct kprobe_ctlblk *kcb;
276
277	if (user_mode(regs))
278		return 0;
279
280	/*
281	 * We don't want to be preempted for the entire
282	 * duration of kprobe processing
283	 */
284	preempt_disable();
285	kcb = get_kprobe_ctlblk();
286
287	/* Check we're not actually recursing */
288	if (kprobe_running()) {
289		p = get_kprobe(addr);
290		if (p) {
291			kprobe_opcode_t insn = *p->ainsn.insn;
292			if (kcb->kprobe_status == KPROBE_HIT_SS &&
293					is_trap(insn)) {
294				/* Turn off 'trace' bits */
295				regs->msr &= ~MSR_SINGLESTEP;
296				regs->msr |= kcb->kprobe_saved_msr;
297				goto no_kprobe;
298			}
299			/* We have reentered the kprobe_handler(), since
300			 * another probe was hit while within the handler.
301			 * We here save the original kprobes variables and
302			 * just single step on the instruction of the new probe
303			 * without calling any user handlers.
304			 */
305			save_previous_kprobe(kcb);
306			set_current_kprobe(p, regs, kcb);
 
307			kprobes_inc_nmissed_count(p);
308			kcb->kprobe_status = KPROBE_REENTER;
309			if (p->ainsn.boostable >= 0) {
310				ret = try_to_emulate(p, regs);
311
312				if (ret > 0) {
313					restore_previous_kprobe(kcb);
314					preempt_enable_no_resched();
315					return 1;
316				}
317			}
318			prepare_singlestep(p, regs);
 
319			return 1;
320		} else {
321			if (*addr != BREAKPOINT_INSTRUCTION) {
322				/* If trap variant, then it belongs not to us */
323				kprobe_opcode_t cur_insn = *addr;
324				if (is_trap(cur_insn))
325		       			goto no_kprobe;
326				/* The breakpoint instruction was removed by
327				 * another cpu right after we hit, no further
328				 * handling of this interrupt is appropriate
329				 */
330				ret = 1;
331				goto no_kprobe;
332			}
333			p = __this_cpu_read(current_kprobe);
334			if (p->break_handler && p->break_handler(p, regs)) {
335				if (!skip_singlestep(p, regs, kcb))
336					goto ss_probe;
337				ret = 1;
338			}
339		}
340		goto no_kprobe;
341	}
342
343	p = get_kprobe(addr);
344	if (!p) {
345		if (*addr != BREAKPOINT_INSTRUCTION) {
346			/*
347			 * PowerPC has multiple variants of the "trap"
348			 * instruction. If the current instruction is a
349			 * trap variant, it could belong to someone else
350			 */
351			kprobe_opcode_t cur_insn = *addr;
352			if (is_trap(cur_insn))
353		       		goto no_kprobe;
354			/*
355			 * The breakpoint instruction was removed right
356			 * after we hit it.  Another cpu has removed
357			 * either a probepoint or a debugger breakpoint
358			 * at this address.  In either case, no further
359			 * handling of this interrupt is appropriate.
360			 */
361			ret = 1;
362		}
363		/* Not one of ours: let kernel handle it */
364		goto no_kprobe;
365	}
366
367	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
368	set_current_kprobe(p, regs, kcb);
369	if (p->pre_handler && p->pre_handler(p, regs))
370		/* handler has already set things up, so skip ss setup */
371		return 1;
372
373ss_probe:
374	if (p->ainsn.boostable >= 0) {
375		ret = try_to_emulate(p, regs);
376
 
 
377		if (ret > 0) {
 
 
 
 
 
 
 
378			if (p->post_handler)
379				p->post_handler(p, regs, 0);
380
381			kcb->kprobe_status = KPROBE_HIT_SSDONE;
382			reset_current_kprobe();
383			preempt_enable_no_resched();
384			return 1;
385		}
 
 
 
 
 
 
 
 
 
 
386	}
387	prepare_singlestep(p, regs);
388	kcb->kprobe_status = KPROBE_HIT_SS;
389	return 1;
390
391no_kprobe:
392	preempt_enable_no_resched();
393	return ret;
394}
395NOKPROBE_SYMBOL(kprobe_handler);
396
397/*
398 * Function return probe trampoline:
399 * 	- init_kprobes() establishes a probepoint here
400 * 	- When the probed function returns, this probe
401 * 		causes the handlers to fire
402 */
403asm(".global kretprobe_trampoline\n"
404	".type kretprobe_trampoline, @function\n"
405	"kretprobe_trampoline:\n"
406	"nop\n"
407	"blr\n"
408	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
409
410/*
411 * Called when the probe at kretprobe trampoline is hit
412 */
413static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
414{
415	struct kretprobe_instance *ri = NULL;
416	struct hlist_head *head, empty_rp;
417	struct hlist_node *tmp;
418	unsigned long flags, orig_ret_address = 0;
419	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
420
421	INIT_HLIST_HEAD(&empty_rp);
422	kretprobe_hash_lock(current, &head, &flags);
423
424	/*
425	 * It is possible to have multiple instances associated with a given
426	 * task either because an multiple functions in the call path
427	 * have a return probe installed on them, and/or more than one return
428	 * return probe was registered for a target function.
429	 *
430	 * We can handle this because:
431	 *     - instances are always inserted at the head of the list
432	 *     - when multiple return probes are registered for the same
433	 *       function, the first instance's ret_addr will point to the
434	 *       real return address, and all the rest will point to
435	 *       kretprobe_trampoline
436	 */
437	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
438		if (ri->task != current)
439			/* another task is sharing our hash bucket */
440			continue;
441
442		if (ri->rp && ri->rp->handler)
443			ri->rp->handler(ri, regs);
444
445		orig_ret_address = (unsigned long)ri->ret_addr;
446		recycle_rp_inst(ri, &empty_rp);
447
448		if (orig_ret_address != trampoline_address)
449			/*
450			 * This is the real return address. Any other
451			 * instances associated with this task are for
452			 * other calls deeper on the call stack
453			 */
454			break;
455	}
456
457	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 
458
459	/*
460	 * We get here through one of two paths:
461	 * 1. by taking a trap -> kprobe_handler() -> here
462	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
463	 *
464	 * When going back through (1), we need regs->nip to be setup properly
465	 * as it is used to determine the return address from the trap.
466	 * For (2), since nip is not honoured with optprobes, we instead setup
467	 * the link register properly so that the subsequent 'blr' in
468	 * kretprobe_trampoline jumps back to the right instruction.
469	 *
470	 * For nip, we should set the address to the previous instruction since
471	 * we end up emulating it in kprobe_handler(), which increments the nip
472	 * again.
473	 */
474	regs->nip = orig_ret_address - 4;
475	regs->link = orig_ret_address;
476
477	kretprobe_hash_unlock(current, &flags);
 
478
479	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
480		hlist_del(&ri->hlist);
481		kfree(ri);
482	}
483
484	return 0;
 
 
 
 
485}
486NOKPROBE_SYMBOL(trampoline_probe_handler);
487
488/*
489 * Called after single-stepping.  p->addr is the address of the
490 * instruction whose first byte has been replaced by the "breakpoint"
491 * instruction.  To avoid the SMP problems that can occur when we
492 * temporarily put back the original opcode to single-step, we
493 * single-stepped a copy of the instruction.  The address of this
494 * copy is p->ainsn.insn.
495 */
496int kprobe_post_handler(struct pt_regs *regs)
497{
498	struct kprobe *cur = kprobe_running();
499	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
500
501	if (!cur || user_mode(regs))
502		return 0;
503
504	/* make sure we got here for instruction we have a kprobe on */
505	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
506		return 0;
507
508	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
509		kcb->kprobe_status = KPROBE_HIT_SSDONE;
510		cur->post_handler(cur, regs, 0);
511	}
512
513	/* Adjust nip to after the single-stepped instruction */
514	regs->nip = (unsigned long)cur->addr + 4;
515	regs->msr |= kcb->kprobe_saved_msr;
516
517	/*Restore back the original saved kprobes variables and continue. */
518	if (kcb->kprobe_status == KPROBE_REENTER) {
519		restore_previous_kprobe(kcb);
520		goto out;
521	}
522	reset_current_kprobe();
523out:
524	preempt_enable_no_resched();
525
526	/*
527	 * if somebody else is singlestepping across a probe point, msr
528	 * will have DE/SE set, in which case, continue the remaining processing
529	 * of do_debug, as if this is not a probe hit.
530	 */
531	if (regs->msr & MSR_SINGLESTEP)
532		return 0;
533
534	return 1;
535}
536NOKPROBE_SYMBOL(kprobe_post_handler);
537
538int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
539{
540	struct kprobe *cur = kprobe_running();
541	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
542	const struct exception_table_entry *entry;
543
544	switch(kcb->kprobe_status) {
545	case KPROBE_HIT_SS:
546	case KPROBE_REENTER:
547		/*
548		 * We are here because the instruction being single
549		 * stepped caused a page fault. We reset the current
550		 * kprobe and the nip points back to the probe address
551		 * and allow the page fault handler to continue as a
552		 * normal page fault.
553		 */
554		regs->nip = (unsigned long)cur->addr;
555		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
556		regs->msr |= kcb->kprobe_saved_msr;
557		if (kcb->kprobe_status == KPROBE_REENTER)
558			restore_previous_kprobe(kcb);
559		else
560			reset_current_kprobe();
561		preempt_enable_no_resched();
562		break;
563	case KPROBE_HIT_ACTIVE:
564	case KPROBE_HIT_SSDONE:
565		/*
566		 * We increment the nmissed count for accounting,
567		 * we can also use npre/npostfault count for accounting
568		 * these specific fault cases.
569		 */
570		kprobes_inc_nmissed_count(cur);
571
572		/*
573		 * We come here because instructions in the pre/post
574		 * handler caused the page_fault, this could happen
575		 * if handler tries to access user space by
576		 * copy_from_user(), get_user() etc. Let the
577		 * user-specified handler try to fix it first.
578		 */
579		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
580			return 1;
581
582		/*
583		 * In case the user-specified fault handler returned
584		 * zero, try to fix up.
585		 */
586		if ((entry = search_exception_tables(regs->nip)) != NULL) {
587			regs->nip = extable_fixup(entry);
588			return 1;
589		}
590
591		/*
592		 * fixup_exception() could not handle it,
593		 * Let do_page_fault() fix it.
594		 */
595		break;
596	default:
597		break;
598	}
599	return 0;
600}
601NOKPROBE_SYMBOL(kprobe_fault_handler);
602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603unsigned long arch_deref_entry_point(void *entry)
604{
605#ifdef PPC64_ELF_ABI_v1
606	if (!kernel_text_address((unsigned long)entry))
607		return ppc_global_function_entry(entry);
608	else
609#endif
610		return (unsigned long)entry;
611}
612NOKPROBE_SYMBOL(arch_deref_entry_point);
613
614int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615{
616	struct jprobe *jp = container_of(p, struct jprobe, kp);
617	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618
619	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
620
621	/* setup return addr to the jprobe handler routine */
622	regs->nip = arch_deref_entry_point(jp->entry);
623#ifdef PPC64_ELF_ABI_v2
624	regs->gpr[12] = (unsigned long)jp->entry;
625#elif defined(PPC64_ELF_ABI_v1)
626	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
627#endif
628
629	/*
630	 * jprobes use jprobe_return() which skips the normal return
631	 * path of the function, and this messes up the accounting of the
632	 * function graph tracer.
633	 *
634	 * Pause function graph tracing while performing the jprobe function.
635	 */
636	pause_graph_tracing();
637
638	return 1;
639}
640NOKPROBE_SYMBOL(setjmp_pre_handler);
641
642void __used jprobe_return(void)
643{
644	asm volatile("jprobe_return_trap:\n"
645		     "trap\n"
646		     ::: "memory");
647}
648NOKPROBE_SYMBOL(jprobe_return);
649
650int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
651{
652	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
653
654	if (regs->nip != ppc_kallsyms_lookup_name("jprobe_return_trap")) {
655		pr_debug("longjmp_break_handler NIP (0x%lx) does not match jprobe_return_trap (0x%lx)\n",
656				regs->nip, ppc_kallsyms_lookup_name("jprobe_return_trap"));
657		return 0;
658	}
659
 
 
 
 
 
660	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
661	/* It's OK to start function graph tracing again */
662	unpause_graph_tracing();
663	preempt_enable_no_resched();
664	return 1;
665}
666NOKPROBE_SYMBOL(longjmp_break_handler);
667
668static struct kprobe trampoline_p = {
669	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
670	.pre_handler = trampoline_probe_handler
671};
672
673int __init arch_init_kprobes(void)
674{
675	return register_kprobe(&trampoline_p);
676}
677
678int arch_trampoline_kprobe(struct kprobe *p)
679{
680	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
681		return 1;
682
683	return 0;
684}
685NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v3.5.6
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/module.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 
 35#include <asm/cacheflush.h>
 36#include <asm/sstep.h>
 37#include <asm/uaccess.h>
 38
 39#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 40#define MSR_SINGLESTEP	(MSR_DE)
 41#else
 42#define MSR_SINGLESTEP	(MSR_SE)
 43#endif
 44
 45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 47
 48struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 49
 50int __kprobes arch_prepare_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51{
 52	int ret = 0;
 53	kprobe_opcode_t insn = *p->addr;
 54
 55	if ((unsigned long)p->addr & 0x03) {
 56		printk("Attempt to register kprobe at an unaligned address\n");
 57		ret = -EINVAL;
 58	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
 59		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
 60		ret = -EINVAL;
 61	}
 62
 63	/* insn must be on a special executable page on ppc64.  This is
 64	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
 65	if (!ret) {
 66		p->ainsn.insn = get_insn_slot();
 67		if (!p->ainsn.insn)
 68			ret = -ENOMEM;
 69	}
 70
 71	if (!ret) {
 72		memcpy(p->ainsn.insn, p->addr,
 73				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 74		p->opcode = *p->addr;
 75		flush_icache_range((unsigned long)p->ainsn.insn,
 76			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
 77	}
 78
 79	p->ainsn.boostable = 0;
 80	return ret;
 81}
 
 82
 83void __kprobes arch_arm_kprobe(struct kprobe *p)
 84{
 85	*p->addr = BREAKPOINT_INSTRUCTION;
 86	flush_icache_range((unsigned long) p->addr,
 87			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 88}
 
 89
 90void __kprobes arch_disarm_kprobe(struct kprobe *p)
 91{
 92	*p->addr = p->opcode;
 93	flush_icache_range((unsigned long) p->addr,
 94			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 95}
 
 96
 97void __kprobes arch_remove_kprobe(struct kprobe *p)
 98{
 99	if (p->ainsn.insn) {
100		free_insn_slot(p->ainsn.insn, 0);
101		p->ainsn.insn = NULL;
102	}
103}
 
104
105static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
106{
107	/* We turn off async exceptions to ensure that the single step will
108	 * be for the instruction we have the kprobe on, if we dont its
109	 * possible we'd get the single step reported for an exception handler
110	 * like Decrementer or External Interrupt */
111	regs->msr &= ~MSR_EE;
112	regs->msr |= MSR_SINGLESTEP;
113#ifdef CONFIG_PPC_ADV_DEBUG_REGS
114	regs->msr &= ~MSR_CE;
115	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
116#ifdef CONFIG_PPC_47x
117	isync();
118#endif
119#endif
120
121	/*
122	 * On powerpc we should single step on the original
123	 * instruction even if the probed insn is a trap
124	 * variant as values in regs could play a part in
125	 * if the trap is taken or not
126	 */
127	regs->nip = (unsigned long)p->ainsn.insn;
128}
129
130static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
131{
132	kcb->prev_kprobe.kp = kprobe_running();
133	kcb->prev_kprobe.status = kcb->kprobe_status;
134	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
135}
136
137static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
138{
139	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
140	kcb->kprobe_status = kcb->prev_kprobe.status;
141	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
142}
143
144static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
145				struct kprobe_ctlblk *kcb)
146{
147	__get_cpu_var(current_kprobe) = p;
148	kcb->kprobe_saved_msr = regs->msr;
149}
150
151void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
152				      struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
153{
154	ri->ret_addr = (kprobe_opcode_t *)regs->link;
155
156	/* Replace the return addr with trampoline addr */
157	regs->link = (unsigned long)kretprobe_trampoline;
158}
 
159
160static int __kprobes kprobe_handler(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161{
162	struct kprobe *p;
163	int ret = 0;
164	unsigned int *addr = (unsigned int *)regs->nip;
165	struct kprobe_ctlblk *kcb;
166
 
 
 
167	/*
168	 * We don't want to be preempted for the entire
169	 * duration of kprobe processing
170	 */
171	preempt_disable();
172	kcb = get_kprobe_ctlblk();
173
174	/* Check we're not actually recursing */
175	if (kprobe_running()) {
176		p = get_kprobe(addr);
177		if (p) {
178			kprobe_opcode_t insn = *p->ainsn.insn;
179			if (kcb->kprobe_status == KPROBE_HIT_SS &&
180					is_trap(insn)) {
181				/* Turn off 'trace' bits */
182				regs->msr &= ~MSR_SINGLESTEP;
183				regs->msr |= kcb->kprobe_saved_msr;
184				goto no_kprobe;
185			}
186			/* We have reentered the kprobe_handler(), since
187			 * another probe was hit while within the handler.
188			 * We here save the original kprobes variables and
189			 * just single step on the instruction of the new probe
190			 * without calling any user handlers.
191			 */
192			save_previous_kprobe(kcb);
193			set_current_kprobe(p, regs, kcb);
194			kcb->kprobe_saved_msr = regs->msr;
195			kprobes_inc_nmissed_count(p);
 
 
 
 
 
 
 
 
 
 
196			prepare_singlestep(p, regs);
197			kcb->kprobe_status = KPROBE_REENTER;
198			return 1;
199		} else {
200			if (*addr != BREAKPOINT_INSTRUCTION) {
201				/* If trap variant, then it belongs not to us */
202				kprobe_opcode_t cur_insn = *addr;
203				if (is_trap(cur_insn))
204		       			goto no_kprobe;
205				/* The breakpoint instruction was removed by
206				 * another cpu right after we hit, no further
207				 * handling of this interrupt is appropriate
208				 */
209				ret = 1;
210				goto no_kprobe;
211			}
212			p = __get_cpu_var(current_kprobe);
213			if (p->break_handler && p->break_handler(p, regs)) {
214				goto ss_probe;
 
 
215			}
216		}
217		goto no_kprobe;
218	}
219
220	p = get_kprobe(addr);
221	if (!p) {
222		if (*addr != BREAKPOINT_INSTRUCTION) {
223			/*
224			 * PowerPC has multiple variants of the "trap"
225			 * instruction. If the current instruction is a
226			 * trap variant, it could belong to someone else
227			 */
228			kprobe_opcode_t cur_insn = *addr;
229			if (is_trap(cur_insn))
230		       		goto no_kprobe;
231			/*
232			 * The breakpoint instruction was removed right
233			 * after we hit it.  Another cpu has removed
234			 * either a probepoint or a debugger breakpoint
235			 * at this address.  In either case, no further
236			 * handling of this interrupt is appropriate.
237			 */
238			ret = 1;
239		}
240		/* Not one of ours: let kernel handle it */
241		goto no_kprobe;
242	}
243
244	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
245	set_current_kprobe(p, regs, kcb);
246	if (p->pre_handler && p->pre_handler(p, regs))
247		/* handler has already set things up, so skip ss setup */
248		return 1;
249
250ss_probe:
251	if (p->ainsn.boostable >= 0) {
252		unsigned int insn = *p->ainsn.insn;
253
254		/* regs->nip is also adjusted if emulate_step returns 1 */
255		ret = emulate_step(regs, insn);
256		if (ret > 0) {
257			/*
258			 * Once this instruction has been boosted
259			 * successfully, set the boostable flag
260			 */
261			if (unlikely(p->ainsn.boostable == 0))
262				p->ainsn.boostable = 1;
263
264			if (p->post_handler)
265				p->post_handler(p, regs, 0);
266
267			kcb->kprobe_status = KPROBE_HIT_SSDONE;
268			reset_current_kprobe();
269			preempt_enable_no_resched();
270			return 1;
271		} else if (ret < 0) {
272			/*
273			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
274			 * So, we should never get here... but, its still
275			 * good to catch them, just in case...
276			 */
277			printk("Can't step on instruction %x\n", insn);
278			BUG();
279		} else if (ret == 0)
280			/* This instruction can't be boosted */
281			p->ainsn.boostable = -1;
282	}
283	prepare_singlestep(p, regs);
284	kcb->kprobe_status = KPROBE_HIT_SS;
285	return 1;
286
287no_kprobe:
288	preempt_enable_no_resched();
289	return ret;
290}
 
291
292/*
293 * Function return probe trampoline:
294 * 	- init_kprobes() establishes a probepoint here
295 * 	- When the probed function returns, this probe
296 * 		causes the handlers to fire
297 */
298static void __used kretprobe_trampoline_holder(void)
299{
300	asm volatile(".global kretprobe_trampoline\n"
301			"kretprobe_trampoline:\n"
302			"nop\n");
303}
304
305/*
306 * Called when the probe at kretprobe trampoline is hit
307 */
308static int __kprobes trampoline_probe_handler(struct kprobe *p,
309						struct pt_regs *regs)
310{
311	struct kretprobe_instance *ri = NULL;
312	struct hlist_head *head, empty_rp;
313	struct hlist_node *node, *tmp;
314	unsigned long flags, orig_ret_address = 0;
315	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
316
317	INIT_HLIST_HEAD(&empty_rp);
318	kretprobe_hash_lock(current, &head, &flags);
319
320	/*
321	 * It is possible to have multiple instances associated with a given
322	 * task either because an multiple functions in the call path
323	 * have a return probe installed on them, and/or more than one return
324	 * return probe was registered for a target function.
325	 *
326	 * We can handle this because:
327	 *     - instances are always inserted at the head of the list
328	 *     - when multiple return probes are registered for the same
329	 *       function, the first instance's ret_addr will point to the
330	 *       real return address, and all the rest will point to
331	 *       kretprobe_trampoline
332	 */
333	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
334		if (ri->task != current)
335			/* another task is sharing our hash bucket */
336			continue;
337
338		if (ri->rp && ri->rp->handler)
339			ri->rp->handler(ri, regs);
340
341		orig_ret_address = (unsigned long)ri->ret_addr;
342		recycle_rp_inst(ri, &empty_rp);
343
344		if (orig_ret_address != trampoline_address)
345			/*
346			 * This is the real return address. Any other
347			 * instances associated with this task are for
348			 * other calls deeper on the call stack
349			 */
350			break;
351	}
352
353	kretprobe_assert(ri, orig_ret_address, trampoline_address);
354	regs->nip = orig_ret_address;
355
356	reset_current_kprobe();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357	kretprobe_hash_unlock(current, &flags);
358	preempt_enable_no_resched();
359
360	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
361		hlist_del(&ri->hlist);
362		kfree(ri);
363	}
364	/*
365	 * By returning a non-zero value, we are telling
366	 * kprobe_handler() that we don't want the post_handler
367	 * to run (and have re-enabled preemption)
368	 */
369	return 1;
370}
 
371
372/*
373 * Called after single-stepping.  p->addr is the address of the
374 * instruction whose first byte has been replaced by the "breakpoint"
375 * instruction.  To avoid the SMP problems that can occur when we
376 * temporarily put back the original opcode to single-step, we
377 * single-stepped a copy of the instruction.  The address of this
378 * copy is p->ainsn.insn.
379 */
380static int __kprobes post_kprobe_handler(struct pt_regs *regs)
381{
382	struct kprobe *cur = kprobe_running();
383	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
384
385	if (!cur)
386		return 0;
387
388	/* make sure we got here for instruction we have a kprobe on */
389	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
390		return 0;
391
392	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
393		kcb->kprobe_status = KPROBE_HIT_SSDONE;
394		cur->post_handler(cur, regs, 0);
395	}
396
397	/* Adjust nip to after the single-stepped instruction */
398	regs->nip = (unsigned long)cur->addr + 4;
399	regs->msr |= kcb->kprobe_saved_msr;
400
401	/*Restore back the original saved kprobes variables and continue. */
402	if (kcb->kprobe_status == KPROBE_REENTER) {
403		restore_previous_kprobe(kcb);
404		goto out;
405	}
406	reset_current_kprobe();
407out:
408	preempt_enable_no_resched();
409
410	/*
411	 * if somebody else is singlestepping across a probe point, msr
412	 * will have DE/SE set, in which case, continue the remaining processing
413	 * of do_debug, as if this is not a probe hit.
414	 */
415	if (regs->msr & MSR_SINGLESTEP)
416		return 0;
417
418	return 1;
419}
 
420
421int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
422{
423	struct kprobe *cur = kprobe_running();
424	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
425	const struct exception_table_entry *entry;
426
427	switch(kcb->kprobe_status) {
428	case KPROBE_HIT_SS:
429	case KPROBE_REENTER:
430		/*
431		 * We are here because the instruction being single
432		 * stepped caused a page fault. We reset the current
433		 * kprobe and the nip points back to the probe address
434		 * and allow the page fault handler to continue as a
435		 * normal page fault.
436		 */
437		regs->nip = (unsigned long)cur->addr;
438		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
439		regs->msr |= kcb->kprobe_saved_msr;
440		if (kcb->kprobe_status == KPROBE_REENTER)
441			restore_previous_kprobe(kcb);
442		else
443			reset_current_kprobe();
444		preempt_enable_no_resched();
445		break;
446	case KPROBE_HIT_ACTIVE:
447	case KPROBE_HIT_SSDONE:
448		/*
449		 * We increment the nmissed count for accounting,
450		 * we can also use npre/npostfault count for accouting
451		 * these specific fault cases.
452		 */
453		kprobes_inc_nmissed_count(cur);
454
455		/*
456		 * We come here because instructions in the pre/post
457		 * handler caused the page_fault, this could happen
458		 * if handler tries to access user space by
459		 * copy_from_user(), get_user() etc. Let the
460		 * user-specified handler try to fix it first.
461		 */
462		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
463			return 1;
464
465		/*
466		 * In case the user-specified fault handler returned
467		 * zero, try to fix up.
468		 */
469		if ((entry = search_exception_tables(regs->nip)) != NULL) {
470			regs->nip = entry->fixup;
471			return 1;
472		}
473
474		/*
475		 * fixup_exception() could not handle it,
476		 * Let do_page_fault() fix it.
477		 */
478		break;
479	default:
480		break;
481	}
482	return 0;
483}
 
484
485/*
486 * Wrapper routine to for handling exceptions.
487 */
488int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
489				       unsigned long val, void *data)
490{
491	struct die_args *args = (struct die_args *)data;
492	int ret = NOTIFY_DONE;
493
494	if (args->regs && user_mode(args->regs))
495		return ret;
496
497	switch (val) {
498	case DIE_BPT:
499		if (kprobe_handler(args->regs))
500			ret = NOTIFY_STOP;
501		break;
502	case DIE_SSTEP:
503		if (post_kprobe_handler(args->regs))
504			ret = NOTIFY_STOP;
505		break;
506	default:
507		break;
508	}
509	return ret;
510}
511
512#ifdef CONFIG_PPC64
513unsigned long arch_deref_entry_point(void *entry)
514{
515	return ((func_descr_t *)entry)->entry;
 
 
 
 
 
516}
517#endif
518
519int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
520{
521	struct jprobe *jp = container_of(p, struct jprobe, kp);
522	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
523
524	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
525
526	/* setup return addr to the jprobe handler routine */
527	regs->nip = arch_deref_entry_point(jp->entry);
528#ifdef CONFIG_PPC64
 
 
529	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
530#endif
531
 
 
 
 
 
 
 
 
 
532	return 1;
533}
 
534
535void __used __kprobes jprobe_return(void)
536{
537	asm volatile("trap" ::: "memory");
 
 
538}
 
539
540static void __used __kprobes jprobe_return_end(void)
541{
542};
543
544int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
545{
546	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 
547
548	/*
549	 * FIXME - we should ideally be validating that we got here 'cos
550	 * of the "trap" in jprobe_return() above, before restoring the
551	 * saved regs...
552	 */
553	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 
 
554	preempt_enable_no_resched();
555	return 1;
556}
 
557
558static struct kprobe trampoline_p = {
559	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
560	.pre_handler = trampoline_probe_handler
561};
562
563int __init arch_init_kprobes(void)
564{
565	return register_kprobe(&trampoline_p);
566}
567
568int __kprobes arch_trampoline_kprobe(struct kprobe *p)
569{
570	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
571		return 1;
572
573	return 0;
574}