Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/extable.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 35#include <asm/code-patching.h>
 36#include <asm/cacheflush.h>
 37#include <asm/sstep.h>
 38#include <asm/sections.h>
 39#include <linux/uaccess.h>
 40
 41DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 42DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 43
 44struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 45
 46bool arch_within_kprobe_blacklist(unsigned long addr)
 47{
 48	return  (addr >= (unsigned long)__kprobes_text_start &&
 49		 addr < (unsigned long)__kprobes_text_end) ||
 50		(addr >= (unsigned long)_stext &&
 51		 addr < (unsigned long)__head_end);
 52}
 53
 54kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 55{
 56	kprobe_opcode_t *addr = NULL;
 57
 58#ifdef PPC64_ELF_ABI_v2
 59	/* PPC64 ABIv2 needs local entry point */
 60	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 61	if (addr && !offset) {
 62#ifdef CONFIG_KPROBES_ON_FTRACE
 63		unsigned long faddr;
 64		/*
 65		 * Per livepatch.h, ftrace location is always within the first
 66		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 67		 */
 68		faddr = ftrace_location_range((unsigned long)addr,
 69					      (unsigned long)addr + 16);
 70		if (faddr)
 71			addr = (kprobe_opcode_t *)faddr;
 72		else
 73#endif
 74			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 75	}
 76#elif defined(PPC64_ELF_ABI_v1)
 77	/*
 78	 * 64bit powerpc ABIv1 uses function descriptors:
 79	 * - Check for the dot variant of the symbol first.
 80	 * - If that fails, try looking up the symbol provided.
 81	 *
 82	 * This ensures we always get to the actual symbol and not
 83	 * the descriptor.
 84	 *
 85	 * Also handle <module:symbol> format.
 86	 */
 87	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 88	bool dot_appended = false;
 89	const char *c;
 90	ssize_t ret = 0;
 91	int len = 0;
 92
 93	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 94		c++;
 95		len = c - name;
 96		memcpy(dot_name, name, len);
 97	} else
 98		c = name;
 99
100	if (*c != '\0' && *c != '.') {
101		dot_name[len++] = '.';
102		dot_appended = true;
103	}
104	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
105	if (ret > 0)
106		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
107
108	/* Fallback to the original non-dot symbol lookup */
109	if (!addr && dot_appended)
110		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
111#else
112	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
113#endif
114
115	return addr;
116}
117
118int arch_prepare_kprobe(struct kprobe *p)
119{
120	int ret = 0;
121	kprobe_opcode_t insn = *p->addr;
122
123	if ((unsigned long)p->addr & 0x03) {
124		printk("Attempt to register kprobe at an unaligned address\n");
125		ret = -EINVAL;
126	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
127		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
128		ret = -EINVAL;
129	}
130
131	/* insn must be on a special executable page on ppc64.  This is
132	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
133	if (!ret) {
134		p->ainsn.insn = get_insn_slot();
135		if (!p->ainsn.insn)
136			ret = -ENOMEM;
137	}
138
139	if (!ret) {
140		memcpy(p->ainsn.insn, p->addr,
141				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
142		p->opcode = *p->addr;
143		flush_icache_range((unsigned long)p->ainsn.insn,
144			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
145	}
146
147	p->ainsn.boostable = 0;
148	return ret;
149}
150NOKPROBE_SYMBOL(arch_prepare_kprobe);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154	patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
 
 
155}
156NOKPROBE_SYMBOL(arch_arm_kprobe);
157
158void arch_disarm_kprobe(struct kprobe *p)
159{
160	patch_instruction(p->addr, p->opcode);
 
 
161}
162NOKPROBE_SYMBOL(arch_disarm_kprobe);
163
164void arch_remove_kprobe(struct kprobe *p)
165{
166	if (p->ainsn.insn) {
167		free_insn_slot(p->ainsn.insn, 0);
168		p->ainsn.insn = NULL;
169	}
170}
171NOKPROBE_SYMBOL(arch_remove_kprobe);
172
173static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
174{
175	enable_single_step(regs);
176
177	/*
178	 * On powerpc we should single step on the original
179	 * instruction even if the probed insn is a trap
180	 * variant as values in regs could play a part in
181	 * if the trap is taken or not
182	 */
183	regs->nip = (unsigned long)p->ainsn.insn;
184}
185
186static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
187{
188	kcb->prev_kprobe.kp = kprobe_running();
189	kcb->prev_kprobe.status = kcb->kprobe_status;
190	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
191}
192
193static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
194{
195	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
196	kcb->kprobe_status = kcb->prev_kprobe.status;
197	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
198}
199
200static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
201				struct kprobe_ctlblk *kcb)
202{
203	__this_cpu_write(current_kprobe, p);
204	kcb->kprobe_saved_msr = regs->msr;
205}
206
207bool arch_kprobe_on_func_entry(unsigned long offset)
208{
209#ifdef PPC64_ELF_ABI_v2
210#ifdef CONFIG_KPROBES_ON_FTRACE
211	return offset <= 16;
212#else
213	return offset <= 8;
214#endif
215#else
216	return !offset;
217#endif
218}
219
220void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
221{
222	ri->ret_addr = (kprobe_opcode_t *)regs->link;
223
224	/* Replace the return addr with trampoline addr */
225	regs->link = (unsigned long)kretprobe_trampoline;
226}
227NOKPROBE_SYMBOL(arch_prepare_kretprobe);
228
229static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
230{
231	int ret;
232	unsigned int insn = *p->ainsn.insn;
233
234	/* regs->nip is also adjusted if emulate_step returns 1 */
235	ret = emulate_step(regs, insn);
236	if (ret > 0) {
237		/*
238		 * Once this instruction has been boosted
239		 * successfully, set the boostable flag
240		 */
241		if (unlikely(p->ainsn.boostable == 0))
242			p->ainsn.boostable = 1;
243	} else if (ret < 0) {
244		/*
245		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
246		 * So, we should never get here... but, its still
247		 * good to catch them, just in case...
248		 */
249		printk("Can't step on instruction %x\n", insn);
250		BUG();
251	} else {
252		/*
253		 * If we haven't previously emulated this instruction, then it
254		 * can't be boosted. Note it down so we don't try to do so again.
255		 *
256		 * If, however, we had emulated this instruction in the past,
257		 * then this is just an error with the current run (for
258		 * instance, exceptions due to a load/store). We return 0 so
259		 * that this is now single-stepped, but continue to try
260		 * emulating it in subsequent probe hits.
261		 */
262		if (unlikely(p->ainsn.boostable != 1))
263			p->ainsn.boostable = -1;
264	}
265
266	return ret;
267}
268NOKPROBE_SYMBOL(try_to_emulate);
269
270int kprobe_handler(struct pt_regs *regs)
271{
272	struct kprobe *p;
273	int ret = 0;
274	unsigned int *addr = (unsigned int *)regs->nip;
275	struct kprobe_ctlblk *kcb;
276
277	if (user_mode(regs))
278		return 0;
279
280	/*
281	 * We don't want to be preempted for the entire
282	 * duration of kprobe processing
283	 */
284	preempt_disable();
285	kcb = get_kprobe_ctlblk();
286
287	/* Check we're not actually recursing */
288	if (kprobe_running()) {
289		p = get_kprobe(addr);
290		if (p) {
291			kprobe_opcode_t insn = *p->ainsn.insn;
292			if (kcb->kprobe_status == KPROBE_HIT_SS &&
293					is_trap(insn)) {
294				/* Turn off 'trace' bits */
295				regs->msr &= ~MSR_SINGLESTEP;
296				regs->msr |= kcb->kprobe_saved_msr;
297				goto no_kprobe;
298			}
299			/* We have reentered the kprobe_handler(), since
300			 * another probe was hit while within the handler.
301			 * We here save the original kprobes variables and
302			 * just single step on the instruction of the new probe
303			 * without calling any user handlers.
304			 */
305			save_previous_kprobe(kcb);
306			set_current_kprobe(p, regs, kcb);
 
307			kprobes_inc_nmissed_count(p);
308			kcb->kprobe_status = KPROBE_REENTER;
309			if (p->ainsn.boostable >= 0) {
310				ret = try_to_emulate(p, regs);
311
312				if (ret > 0) {
313					restore_previous_kprobe(kcb);
314					preempt_enable_no_resched();
315					return 1;
316				}
317			}
318			prepare_singlestep(p, regs);
 
319			return 1;
320		} else {
321			if (*addr != BREAKPOINT_INSTRUCTION) {
322				/* If trap variant, then it belongs not to us */
323				kprobe_opcode_t cur_insn = *addr;
324				if (is_trap(cur_insn))
325		       			goto no_kprobe;
326				/* The breakpoint instruction was removed by
327				 * another cpu right after we hit, no further
328				 * handling of this interrupt is appropriate
329				 */
330				ret = 1;
331				goto no_kprobe;
332			}
333			p = __this_cpu_read(current_kprobe);
334			if (p->break_handler && p->break_handler(p, regs)) {
335				if (!skip_singlestep(p, regs, kcb))
336					goto ss_probe;
337				ret = 1;
338			}
339		}
340		goto no_kprobe;
341	}
342
343	p = get_kprobe(addr);
344	if (!p) {
345		if (*addr != BREAKPOINT_INSTRUCTION) {
346			/*
347			 * PowerPC has multiple variants of the "trap"
348			 * instruction. If the current instruction is a
349			 * trap variant, it could belong to someone else
350			 */
351			kprobe_opcode_t cur_insn = *addr;
352			if (is_trap(cur_insn))
353		       		goto no_kprobe;
354			/*
355			 * The breakpoint instruction was removed right
356			 * after we hit it.  Another cpu has removed
357			 * either a probepoint or a debugger breakpoint
358			 * at this address.  In either case, no further
359			 * handling of this interrupt is appropriate.
360			 */
361			ret = 1;
362		}
363		/* Not one of ours: let kernel handle it */
364		goto no_kprobe;
365	}
366
367	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
368	set_current_kprobe(p, regs, kcb);
369	if (p->pre_handler && p->pre_handler(p, regs))
370		/* handler has already set things up, so skip ss setup */
371		return 1;
372
373ss_probe:
374	if (p->ainsn.boostable >= 0) {
375		ret = try_to_emulate(p, regs);
376
 
 
377		if (ret > 0) {
 
 
 
 
 
 
 
378			if (p->post_handler)
379				p->post_handler(p, regs, 0);
380
381			kcb->kprobe_status = KPROBE_HIT_SSDONE;
382			reset_current_kprobe();
383			preempt_enable_no_resched();
384			return 1;
385		}
 
 
 
 
 
 
 
 
 
 
386	}
387	prepare_singlestep(p, regs);
388	kcb->kprobe_status = KPROBE_HIT_SS;
389	return 1;
390
391no_kprobe:
392	preempt_enable_no_resched();
393	return ret;
394}
395NOKPROBE_SYMBOL(kprobe_handler);
396
397/*
398 * Function return probe trampoline:
399 * 	- init_kprobes() establishes a probepoint here
400 * 	- When the probed function returns, this probe
401 * 		causes the handlers to fire
402 */
403asm(".global kretprobe_trampoline\n"
404	".type kretprobe_trampoline, @function\n"
405	"kretprobe_trampoline:\n"
406	"nop\n"
407	"blr\n"
408	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
409
410/*
411 * Called when the probe at kretprobe trampoline is hit
412 */
413static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
414{
415	struct kretprobe_instance *ri = NULL;
416	struct hlist_head *head, empty_rp;
417	struct hlist_node *tmp;
418	unsigned long flags, orig_ret_address = 0;
419	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
420
421	INIT_HLIST_HEAD(&empty_rp);
422	kretprobe_hash_lock(current, &head, &flags);
423
424	/*
425	 * It is possible to have multiple instances associated with a given
426	 * task either because an multiple functions in the call path
427	 * have a return probe installed on them, and/or more than one return
428	 * return probe was registered for a target function.
429	 *
430	 * We can handle this because:
431	 *     - instances are always inserted at the head of the list
432	 *     - when multiple return probes are registered for the same
433	 *       function, the first instance's ret_addr will point to the
434	 *       real return address, and all the rest will point to
435	 *       kretprobe_trampoline
436	 */
437	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
438		if (ri->task != current)
439			/* another task is sharing our hash bucket */
440			continue;
441
442		if (ri->rp && ri->rp->handler)
443			ri->rp->handler(ri, regs);
444
445		orig_ret_address = (unsigned long)ri->ret_addr;
446		recycle_rp_inst(ri, &empty_rp);
447
448		if (orig_ret_address != trampoline_address)
449			/*
450			 * This is the real return address. Any other
451			 * instances associated with this task are for
452			 * other calls deeper on the call stack
453			 */
454			break;
455	}
456
457	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 
458
459	/*
460	 * We get here through one of two paths:
461	 * 1. by taking a trap -> kprobe_handler() -> here
462	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
463	 *
464	 * When going back through (1), we need regs->nip to be setup properly
465	 * as it is used to determine the return address from the trap.
466	 * For (2), since nip is not honoured with optprobes, we instead setup
467	 * the link register properly so that the subsequent 'blr' in
468	 * kretprobe_trampoline jumps back to the right instruction.
469	 *
470	 * For nip, we should set the address to the previous instruction since
471	 * we end up emulating it in kprobe_handler(), which increments the nip
472	 * again.
473	 */
474	regs->nip = orig_ret_address - 4;
475	regs->link = orig_ret_address;
476
477	kretprobe_hash_unlock(current, &flags);
 
478
479	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
480		hlist_del(&ri->hlist);
481		kfree(ri);
482	}
483
484	return 0;
 
 
 
 
485}
486NOKPROBE_SYMBOL(trampoline_probe_handler);
487
488/*
489 * Called after single-stepping.  p->addr is the address of the
490 * instruction whose first byte has been replaced by the "breakpoint"
491 * instruction.  To avoid the SMP problems that can occur when we
492 * temporarily put back the original opcode to single-step, we
493 * single-stepped a copy of the instruction.  The address of this
494 * copy is p->ainsn.insn.
495 */
496int kprobe_post_handler(struct pt_regs *regs)
497{
498	struct kprobe *cur = kprobe_running();
499	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
500
501	if (!cur || user_mode(regs))
502		return 0;
503
504	/* make sure we got here for instruction we have a kprobe on */
505	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
506		return 0;
507
508	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
509		kcb->kprobe_status = KPROBE_HIT_SSDONE;
510		cur->post_handler(cur, regs, 0);
511	}
512
513	/* Adjust nip to after the single-stepped instruction */
514	regs->nip = (unsigned long)cur->addr + 4;
515	regs->msr |= kcb->kprobe_saved_msr;
516
517	/*Restore back the original saved kprobes variables and continue. */
518	if (kcb->kprobe_status == KPROBE_REENTER) {
519		restore_previous_kprobe(kcb);
520		goto out;
521	}
522	reset_current_kprobe();
523out:
524	preempt_enable_no_resched();
525
526	/*
527	 * if somebody else is singlestepping across a probe point, msr
528	 * will have DE/SE set, in which case, continue the remaining processing
529	 * of do_debug, as if this is not a probe hit.
530	 */
531	if (regs->msr & MSR_SINGLESTEP)
532		return 0;
533
534	return 1;
535}
536NOKPROBE_SYMBOL(kprobe_post_handler);
537
538int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
539{
540	struct kprobe *cur = kprobe_running();
541	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
542	const struct exception_table_entry *entry;
543
544	switch(kcb->kprobe_status) {
545	case KPROBE_HIT_SS:
546	case KPROBE_REENTER:
547		/*
548		 * We are here because the instruction being single
549		 * stepped caused a page fault. We reset the current
550		 * kprobe and the nip points back to the probe address
551		 * and allow the page fault handler to continue as a
552		 * normal page fault.
553		 */
554		regs->nip = (unsigned long)cur->addr;
555		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
556		regs->msr |= kcb->kprobe_saved_msr;
557		if (kcb->kprobe_status == KPROBE_REENTER)
558			restore_previous_kprobe(kcb);
559		else
560			reset_current_kprobe();
561		preempt_enable_no_resched();
562		break;
563	case KPROBE_HIT_ACTIVE:
564	case KPROBE_HIT_SSDONE:
565		/*
566		 * We increment the nmissed count for accounting,
567		 * we can also use npre/npostfault count for accounting
568		 * these specific fault cases.
569		 */
570		kprobes_inc_nmissed_count(cur);
571
572		/*
573		 * We come here because instructions in the pre/post
574		 * handler caused the page_fault, this could happen
575		 * if handler tries to access user space by
576		 * copy_from_user(), get_user() etc. Let the
577		 * user-specified handler try to fix it first.
578		 */
579		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
580			return 1;
581
582		/*
583		 * In case the user-specified fault handler returned
584		 * zero, try to fix up.
585		 */
586		if ((entry = search_exception_tables(regs->nip)) != NULL) {
587			regs->nip = extable_fixup(entry);
588			return 1;
589		}
590
591		/*
592		 * fixup_exception() could not handle it,
593		 * Let do_page_fault() fix it.
594		 */
595		break;
596	default:
597		break;
598	}
599	return 0;
600}
601NOKPROBE_SYMBOL(kprobe_fault_handler);
602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603unsigned long arch_deref_entry_point(void *entry)
604{
605#ifdef PPC64_ELF_ABI_v1
606	if (!kernel_text_address((unsigned long)entry))
607		return ppc_global_function_entry(entry);
608	else
609#endif
610		return (unsigned long)entry;
611}
612NOKPROBE_SYMBOL(arch_deref_entry_point);
613
614int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615{
616	struct jprobe *jp = container_of(p, struct jprobe, kp);
617	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618
619	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
620
621	/* setup return addr to the jprobe handler routine */
622	regs->nip = arch_deref_entry_point(jp->entry);
623#ifdef PPC64_ELF_ABI_v2
624	regs->gpr[12] = (unsigned long)jp->entry;
625#elif defined(PPC64_ELF_ABI_v1)
626	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
627#endif
628
629	/*
630	 * jprobes use jprobe_return() which skips the normal return
631	 * path of the function, and this messes up the accounting of the
632	 * function graph tracer.
633	 *
634	 * Pause function graph tracing while performing the jprobe function.
635	 */
636	pause_graph_tracing();
637
638	return 1;
639}
640NOKPROBE_SYMBOL(setjmp_pre_handler);
641
642void __used jprobe_return(void)
643{
644	asm volatile("jprobe_return_trap:\n"
645		     "trap\n"
646		     ::: "memory");
647}
648NOKPROBE_SYMBOL(jprobe_return);
649
650int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
651{
652	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
653
654	if (regs->nip != ppc_kallsyms_lookup_name("jprobe_return_trap")) {
655		pr_debug("longjmp_break_handler NIP (0x%lx) does not match jprobe_return_trap (0x%lx)\n",
656				regs->nip, ppc_kallsyms_lookup_name("jprobe_return_trap"));
657		return 0;
658	}
659
 
 
 
 
 
660	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
661	/* It's OK to start function graph tracing again */
662	unpause_graph_tracing();
663	preempt_enable_no_resched();
664	return 1;
665}
666NOKPROBE_SYMBOL(longjmp_break_handler);
667
668static struct kprobe trampoline_p = {
669	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
670	.pre_handler = trampoline_probe_handler
671};
672
673int __init arch_init_kprobes(void)
674{
675	return register_kprobe(&trampoline_p);
676}
677
678int arch_trampoline_kprobe(struct kprobe *p)
679{
680	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
681		return 1;
682
683	return 0;
684}
685NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v3.15
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004
 19 *
 20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 21 *		Probes initial implementation ( includes contributions from
 22 *		Rusty Russell).
 23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 24 *		interface to access function arguments.
 25 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 26 *		for PPC64
 27 */
 28
 29#include <linux/kprobes.h>
 30#include <linux/ptrace.h>
 31#include <linux/preempt.h>
 32#include <linux/module.h>
 33#include <linux/kdebug.h>
 34#include <linux/slab.h>
 
 35#include <asm/cacheflush.h>
 36#include <asm/sstep.h>
 37#include <asm/uaccess.h>
 
 38
 39DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 40DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 41
 42struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 43
 44int __kprobes arch_prepare_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45{
 46	int ret = 0;
 47	kprobe_opcode_t insn = *p->addr;
 48
 49	if ((unsigned long)p->addr & 0x03) {
 50		printk("Attempt to register kprobe at an unaligned address\n");
 51		ret = -EINVAL;
 52	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
 53		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
 54		ret = -EINVAL;
 55	}
 56
 57	/* insn must be on a special executable page on ppc64.  This is
 58	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
 59	if (!ret) {
 60		p->ainsn.insn = get_insn_slot();
 61		if (!p->ainsn.insn)
 62			ret = -ENOMEM;
 63	}
 64
 65	if (!ret) {
 66		memcpy(p->ainsn.insn, p->addr,
 67				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 68		p->opcode = *p->addr;
 69		flush_icache_range((unsigned long)p->ainsn.insn,
 70			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
 71	}
 72
 73	p->ainsn.boostable = 0;
 74	return ret;
 75}
 
 76
 77void __kprobes arch_arm_kprobe(struct kprobe *p)
 78{
 79	*p->addr = BREAKPOINT_INSTRUCTION;
 80	flush_icache_range((unsigned long) p->addr,
 81			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 82}
 
 83
 84void __kprobes arch_disarm_kprobe(struct kprobe *p)
 85{
 86	*p->addr = p->opcode;
 87	flush_icache_range((unsigned long) p->addr,
 88			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 89}
 
 90
 91void __kprobes arch_remove_kprobe(struct kprobe *p)
 92{
 93	if (p->ainsn.insn) {
 94		free_insn_slot(p->ainsn.insn, 0);
 95		p->ainsn.insn = NULL;
 96	}
 97}
 
 98
 99static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
100{
101	enable_single_step(regs);
102
103	/*
104	 * On powerpc we should single step on the original
105	 * instruction even if the probed insn is a trap
106	 * variant as values in regs could play a part in
107	 * if the trap is taken or not
108	 */
109	regs->nip = (unsigned long)p->ainsn.insn;
110}
111
112static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
113{
114	kcb->prev_kprobe.kp = kprobe_running();
115	kcb->prev_kprobe.status = kcb->kprobe_status;
116	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
117}
118
119static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
120{
121	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
122	kcb->kprobe_status = kcb->prev_kprobe.status;
123	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
124}
125
126static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
127				struct kprobe_ctlblk *kcb)
128{
129	__get_cpu_var(current_kprobe) = p;
130	kcb->kprobe_saved_msr = regs->msr;
131}
132
133void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
134				      struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
135{
136	ri->ret_addr = (kprobe_opcode_t *)regs->link;
137
138	/* Replace the return addr with trampoline addr */
139	regs->link = (unsigned long)kretprobe_trampoline;
140}
 
141
142static int __kprobes kprobe_handler(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143{
144	struct kprobe *p;
145	int ret = 0;
146	unsigned int *addr = (unsigned int *)regs->nip;
147	struct kprobe_ctlblk *kcb;
148
 
 
 
149	/*
150	 * We don't want to be preempted for the entire
151	 * duration of kprobe processing
152	 */
153	preempt_disable();
154	kcb = get_kprobe_ctlblk();
155
156	/* Check we're not actually recursing */
157	if (kprobe_running()) {
158		p = get_kprobe(addr);
159		if (p) {
160			kprobe_opcode_t insn = *p->ainsn.insn;
161			if (kcb->kprobe_status == KPROBE_HIT_SS &&
162					is_trap(insn)) {
163				/* Turn off 'trace' bits */
164				regs->msr &= ~MSR_SINGLESTEP;
165				regs->msr |= kcb->kprobe_saved_msr;
166				goto no_kprobe;
167			}
168			/* We have reentered the kprobe_handler(), since
169			 * another probe was hit while within the handler.
170			 * We here save the original kprobes variables and
171			 * just single step on the instruction of the new probe
172			 * without calling any user handlers.
173			 */
174			save_previous_kprobe(kcb);
175			set_current_kprobe(p, regs, kcb);
176			kcb->kprobe_saved_msr = regs->msr;
177			kprobes_inc_nmissed_count(p);
 
 
 
 
 
 
 
 
 
 
178			prepare_singlestep(p, regs);
179			kcb->kprobe_status = KPROBE_REENTER;
180			return 1;
181		} else {
182			if (*addr != BREAKPOINT_INSTRUCTION) {
183				/* If trap variant, then it belongs not to us */
184				kprobe_opcode_t cur_insn = *addr;
185				if (is_trap(cur_insn))
186		       			goto no_kprobe;
187				/* The breakpoint instruction was removed by
188				 * another cpu right after we hit, no further
189				 * handling of this interrupt is appropriate
190				 */
191				ret = 1;
192				goto no_kprobe;
193			}
194			p = __get_cpu_var(current_kprobe);
195			if (p->break_handler && p->break_handler(p, regs)) {
196				goto ss_probe;
 
 
197			}
198		}
199		goto no_kprobe;
200	}
201
202	p = get_kprobe(addr);
203	if (!p) {
204		if (*addr != BREAKPOINT_INSTRUCTION) {
205			/*
206			 * PowerPC has multiple variants of the "trap"
207			 * instruction. If the current instruction is a
208			 * trap variant, it could belong to someone else
209			 */
210			kprobe_opcode_t cur_insn = *addr;
211			if (is_trap(cur_insn))
212		       		goto no_kprobe;
213			/*
214			 * The breakpoint instruction was removed right
215			 * after we hit it.  Another cpu has removed
216			 * either a probepoint or a debugger breakpoint
217			 * at this address.  In either case, no further
218			 * handling of this interrupt is appropriate.
219			 */
220			ret = 1;
221		}
222		/* Not one of ours: let kernel handle it */
223		goto no_kprobe;
224	}
225
226	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
227	set_current_kprobe(p, regs, kcb);
228	if (p->pre_handler && p->pre_handler(p, regs))
229		/* handler has already set things up, so skip ss setup */
230		return 1;
231
232ss_probe:
233	if (p->ainsn.boostable >= 0) {
234		unsigned int insn = *p->ainsn.insn;
235
236		/* regs->nip is also adjusted if emulate_step returns 1 */
237		ret = emulate_step(regs, insn);
238		if (ret > 0) {
239			/*
240			 * Once this instruction has been boosted
241			 * successfully, set the boostable flag
242			 */
243			if (unlikely(p->ainsn.boostable == 0))
244				p->ainsn.boostable = 1;
245
246			if (p->post_handler)
247				p->post_handler(p, regs, 0);
248
249			kcb->kprobe_status = KPROBE_HIT_SSDONE;
250			reset_current_kprobe();
251			preempt_enable_no_resched();
252			return 1;
253		} else if (ret < 0) {
254			/*
255			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
256			 * So, we should never get here... but, its still
257			 * good to catch them, just in case...
258			 */
259			printk("Can't step on instruction %x\n", insn);
260			BUG();
261		} else if (ret == 0)
262			/* This instruction can't be boosted */
263			p->ainsn.boostable = -1;
264	}
265	prepare_singlestep(p, regs);
266	kcb->kprobe_status = KPROBE_HIT_SS;
267	return 1;
268
269no_kprobe:
270	preempt_enable_no_resched();
271	return ret;
272}
 
273
274/*
275 * Function return probe trampoline:
276 * 	- init_kprobes() establishes a probepoint here
277 * 	- When the probed function returns, this probe
278 * 		causes the handlers to fire
279 */
280static void __used kretprobe_trampoline_holder(void)
281{
282	asm volatile(".global kretprobe_trampoline\n"
283			"kretprobe_trampoline:\n"
284			"nop\n");
285}
286
287/*
288 * Called when the probe at kretprobe trampoline is hit
289 */
290static int __kprobes trampoline_probe_handler(struct kprobe *p,
291						struct pt_regs *regs)
292{
293	struct kretprobe_instance *ri = NULL;
294	struct hlist_head *head, empty_rp;
295	struct hlist_node *tmp;
296	unsigned long flags, orig_ret_address = 0;
297	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
298
299	INIT_HLIST_HEAD(&empty_rp);
300	kretprobe_hash_lock(current, &head, &flags);
301
302	/*
303	 * It is possible to have multiple instances associated with a given
304	 * task either because an multiple functions in the call path
305	 * have a return probe installed on them, and/or more than one return
306	 * return probe was registered for a target function.
307	 *
308	 * We can handle this because:
309	 *     - instances are always inserted at the head of the list
310	 *     - when multiple return probes are registered for the same
311	 *       function, the first instance's ret_addr will point to the
312	 *       real return address, and all the rest will point to
313	 *       kretprobe_trampoline
314	 */
315	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
316		if (ri->task != current)
317			/* another task is sharing our hash bucket */
318			continue;
319
320		if (ri->rp && ri->rp->handler)
321			ri->rp->handler(ri, regs);
322
323		orig_ret_address = (unsigned long)ri->ret_addr;
324		recycle_rp_inst(ri, &empty_rp);
325
326		if (orig_ret_address != trampoline_address)
327			/*
328			 * This is the real return address. Any other
329			 * instances associated with this task are for
330			 * other calls deeper on the call stack
331			 */
332			break;
333	}
334
335	kretprobe_assert(ri, orig_ret_address, trampoline_address);
336	regs->nip = orig_ret_address;
337
338	reset_current_kprobe();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339	kretprobe_hash_unlock(current, &flags);
340	preempt_enable_no_resched();
341
342	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
343		hlist_del(&ri->hlist);
344		kfree(ri);
345	}
346	/*
347	 * By returning a non-zero value, we are telling
348	 * kprobe_handler() that we don't want the post_handler
349	 * to run (and have re-enabled preemption)
350	 */
351	return 1;
352}
 
353
354/*
355 * Called after single-stepping.  p->addr is the address of the
356 * instruction whose first byte has been replaced by the "breakpoint"
357 * instruction.  To avoid the SMP problems that can occur when we
358 * temporarily put back the original opcode to single-step, we
359 * single-stepped a copy of the instruction.  The address of this
360 * copy is p->ainsn.insn.
361 */
362static int __kprobes post_kprobe_handler(struct pt_regs *regs)
363{
364	struct kprobe *cur = kprobe_running();
365	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
366
367	if (!cur)
368		return 0;
369
370	/* make sure we got here for instruction we have a kprobe on */
371	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
372		return 0;
373
374	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
375		kcb->kprobe_status = KPROBE_HIT_SSDONE;
376		cur->post_handler(cur, regs, 0);
377	}
378
379	/* Adjust nip to after the single-stepped instruction */
380	regs->nip = (unsigned long)cur->addr + 4;
381	regs->msr |= kcb->kprobe_saved_msr;
382
383	/*Restore back the original saved kprobes variables and continue. */
384	if (kcb->kprobe_status == KPROBE_REENTER) {
385		restore_previous_kprobe(kcb);
386		goto out;
387	}
388	reset_current_kprobe();
389out:
390	preempt_enable_no_resched();
391
392	/*
393	 * if somebody else is singlestepping across a probe point, msr
394	 * will have DE/SE set, in which case, continue the remaining processing
395	 * of do_debug, as if this is not a probe hit.
396	 */
397	if (regs->msr & MSR_SINGLESTEP)
398		return 0;
399
400	return 1;
401}
 
402
403int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
404{
405	struct kprobe *cur = kprobe_running();
406	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
407	const struct exception_table_entry *entry;
408
409	switch(kcb->kprobe_status) {
410	case KPROBE_HIT_SS:
411	case KPROBE_REENTER:
412		/*
413		 * We are here because the instruction being single
414		 * stepped caused a page fault. We reset the current
415		 * kprobe and the nip points back to the probe address
416		 * and allow the page fault handler to continue as a
417		 * normal page fault.
418		 */
419		regs->nip = (unsigned long)cur->addr;
420		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
421		regs->msr |= kcb->kprobe_saved_msr;
422		if (kcb->kprobe_status == KPROBE_REENTER)
423			restore_previous_kprobe(kcb);
424		else
425			reset_current_kprobe();
426		preempt_enable_no_resched();
427		break;
428	case KPROBE_HIT_ACTIVE:
429	case KPROBE_HIT_SSDONE:
430		/*
431		 * We increment the nmissed count for accounting,
432		 * we can also use npre/npostfault count for accounting
433		 * these specific fault cases.
434		 */
435		kprobes_inc_nmissed_count(cur);
436
437		/*
438		 * We come here because instructions in the pre/post
439		 * handler caused the page_fault, this could happen
440		 * if handler tries to access user space by
441		 * copy_from_user(), get_user() etc. Let the
442		 * user-specified handler try to fix it first.
443		 */
444		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
445			return 1;
446
447		/*
448		 * In case the user-specified fault handler returned
449		 * zero, try to fix up.
450		 */
451		if ((entry = search_exception_tables(regs->nip)) != NULL) {
452			regs->nip = entry->fixup;
453			return 1;
454		}
455
456		/*
457		 * fixup_exception() could not handle it,
458		 * Let do_page_fault() fix it.
459		 */
460		break;
461	default:
462		break;
463	}
464	return 0;
465}
 
466
467/*
468 * Wrapper routine to for handling exceptions.
469 */
470int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
471				       unsigned long val, void *data)
472{
473	struct die_args *args = (struct die_args *)data;
474	int ret = NOTIFY_DONE;
475
476	if (args->regs && user_mode(args->regs))
477		return ret;
478
479	switch (val) {
480	case DIE_BPT:
481		if (kprobe_handler(args->regs))
482			ret = NOTIFY_STOP;
483		break;
484	case DIE_SSTEP:
485		if (post_kprobe_handler(args->regs))
486			ret = NOTIFY_STOP;
487		break;
488	default:
489		break;
490	}
491	return ret;
492}
493
494#ifdef CONFIG_PPC64
495unsigned long arch_deref_entry_point(void *entry)
496{
497	return ((func_descr_t *)entry)->entry;
 
 
 
 
 
498}
499#endif
500
501int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
502{
503	struct jprobe *jp = container_of(p, struct jprobe, kp);
504	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
505
506	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
507
508	/* setup return addr to the jprobe handler routine */
509	regs->nip = arch_deref_entry_point(jp->entry);
510#ifdef CONFIG_PPC64
 
 
511	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
512#endif
513
 
 
 
 
 
 
 
 
 
514	return 1;
515}
 
516
517void __used __kprobes jprobe_return(void)
518{
519	asm volatile("trap" ::: "memory");
 
 
520}
 
521
522static void __used __kprobes jprobe_return_end(void)
523{
524};
525
526int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
527{
528	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 
529
530	/*
531	 * FIXME - we should ideally be validating that we got here 'cos
532	 * of the "trap" in jprobe_return() above, before restoring the
533	 * saved regs...
534	 */
535	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 
 
536	preempt_enable_no_resched();
537	return 1;
538}
 
539
540static struct kprobe trampoline_p = {
541	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
542	.pre_handler = trampoline_probe_handler
543};
544
545int __init arch_init_kprobes(void)
546{
547	return register_kprobe(&trampoline_p);
548}
549
550int __kprobes arch_trampoline_kprobe(struct kprobe *p)
551{
552	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
553		return 1;
554
555	return 0;
556}