Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/profile.h>
  30#include <linux/export.h>
  31#include <linux/mount.h>
  32#include <linux/mempolicy.h>
  33#include <linux/rmap.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/mmdebug.h>
  36#include <linux/perf_event.h>
  37#include <linux/audit.h>
  38#include <linux/khugepaged.h>
  39#include <linux/uprobes.h>
  40#include <linux/rbtree_augmented.h>
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48
  49#include <linux/uaccess.h>
  50#include <asm/cacheflush.h>
  51#include <asm/tlb.h>
  52#include <asm/mmu_context.h>
  53
  54#include "internal.h"
  55
  56#ifndef arch_mmap_check
  57#define arch_mmap_check(addr, len, flags)	(0)
  58#endif
  59
  60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  61const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  62const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  63int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  64#endif
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  66const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  67const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  68int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  69#endif
  70
  71static bool ignore_rlimit_data;
  72core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  73
  74static void unmap_region(struct mm_struct *mm,
  75		struct vm_area_struct *vma, struct vm_area_struct *prev,
  76		unsigned long start, unsigned long end);
  77
  78/* description of effects of mapping type and prot in current implementation.
  79 * this is due to the limited x86 page protection hardware.  The expected
  80 * behavior is in parens:
  81 *
  82 * map_type	prot
  83 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  84 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  85 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  86 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  87 *
  88 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  89 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  90 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  91 *
  92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  93 * MAP_PRIVATE:
  94 *								r: (no) no
  95 *								w: (no) no
  96 *								x: (yes) yes
  97 */
  98pgprot_t protection_map[16] __ro_after_init = {
  99	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 100	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 101};
 102
 103#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 104static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 105{
 106	return prot;
 107}
 108#endif
 109
 110pgprot_t vm_get_page_prot(unsigned long vm_flags)
 111{
 112	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 113				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 114			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 115
 116	return arch_filter_pgprot(ret);
 117}
 118EXPORT_SYMBOL(vm_get_page_prot);
 119
 120static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121{
 122	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 123}
 
 124
 125/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 126void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127{
 128	unsigned long vm_flags = vma->vm_flags;
 129	pgprot_t vm_page_prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 132	if (vma_wants_writenotify(vma, vm_page_prot)) {
 133		vm_flags &= ~VM_SHARED;
 134		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135	}
 136	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 137	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140/*
 141 * Requires inode->i_mapping->i_mmap_rwsem
 142 */
 143static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 144		struct file *file, struct address_space *mapping)
 145{
 146	if (vma->vm_flags & VM_DENYWRITE)
 147		atomic_inc(&file_inode(file)->i_writecount);
 148	if (vma->vm_flags & VM_SHARED)
 149		mapping_unmap_writable(mapping);
 150
 151	flush_dcache_mmap_lock(mapping);
 152	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 153	flush_dcache_mmap_unlock(mapping);
 154}
 155
 156/*
 157 * Unlink a file-based vm structure from its interval tree, to hide
 158 * vma from rmap and vmtruncate before freeing its page tables.
 159 */
 160void unlink_file_vma(struct vm_area_struct *vma)
 161{
 162	struct file *file = vma->vm_file;
 163
 164	if (file) {
 165		struct address_space *mapping = file->f_mapping;
 166		i_mmap_lock_write(mapping);
 167		__remove_shared_vm_struct(vma, file, mapping);
 168		i_mmap_unlock_write(mapping);
 169	}
 170}
 171
 172/*
 173 * Close a vm structure and free it, returning the next.
 174 */
 175static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 176{
 177	struct vm_area_struct *next = vma->vm_next;
 178
 179	might_sleep();
 180	if (vma->vm_ops && vma->vm_ops->close)
 181		vma->vm_ops->close(vma);
 182	if (vma->vm_file)
 183		fput(vma->vm_file);
 184	mpol_put(vma_policy(vma));
 185	kmem_cache_free(vm_area_cachep, vma);
 186	return next;
 187}
 188
 189static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
 190
 191SYSCALL_DEFINE1(brk, unsigned long, brk)
 192{
 193	unsigned long retval;
 194	unsigned long newbrk, oldbrk;
 195	struct mm_struct *mm = current->mm;
 196	struct vm_area_struct *next;
 197	unsigned long min_brk;
 198	bool populate;
 199	LIST_HEAD(uf);
 200
 201	if (down_write_killable(&mm->mmap_sem))
 202		return -EINTR;
 203
 204#ifdef CONFIG_COMPAT_BRK
 205	/*
 206	 * CONFIG_COMPAT_BRK can still be overridden by setting
 207	 * randomize_va_space to 2, which will still cause mm->start_brk
 208	 * to be arbitrarily shifted
 209	 */
 210	if (current->brk_randomized)
 211		min_brk = mm->start_brk;
 212	else
 213		min_brk = mm->end_data;
 214#else
 215	min_brk = mm->start_brk;
 216#endif
 217	if (brk < min_brk)
 218		goto out;
 219
 220	/*
 221	 * Check against rlimit here. If this check is done later after the test
 222	 * of oldbrk with newbrk then it can escape the test and let the data
 223	 * segment grow beyond its set limit the in case where the limit is
 224	 * not page aligned -Ram Gupta
 225	 */
 226	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 227			      mm->end_data, mm->start_data))
 
 228		goto out;
 229
 230	newbrk = PAGE_ALIGN(brk);
 231	oldbrk = PAGE_ALIGN(mm->brk);
 232	if (oldbrk == newbrk)
 233		goto set_brk;
 234
 235	/* Always allow shrinking brk. */
 236	if (brk <= mm->brk) {
 237		if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
 238			goto set_brk;
 239		goto out;
 240	}
 241
 242	/* Check against existing mmap mappings. */
 243	next = find_vma(mm, oldbrk);
 244	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 245		goto out;
 246
 247	/* Ok, looks good - let it rip. */
 248	if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
 249		goto out;
 250
 251set_brk:
 252	mm->brk = brk;
 253	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 254	up_write(&mm->mmap_sem);
 255	userfaultfd_unmap_complete(mm, &uf);
 256	if (populate)
 257		mm_populate(oldbrk, newbrk - oldbrk);
 258	return brk;
 259
 260out:
 261	retval = mm->brk;
 262	up_write(&mm->mmap_sem);
 263	return retval;
 264}
 265
 266static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 267{
 268	unsigned long max, prev_end, subtree_gap;
 269
 270	/*
 271	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 272	 * allow two stack_guard_gaps between them here, and when choosing
 273	 * an unmapped area; whereas when expanding we only require one.
 274	 * That's a little inconsistent, but keeps the code here simpler.
 275	 */
 276	max = vm_start_gap(vma);
 277	if (vma->vm_prev) {
 278		prev_end = vm_end_gap(vma->vm_prev);
 279		if (max > prev_end)
 280			max -= prev_end;
 281		else
 282			max = 0;
 283	}
 284	if (vma->vm_rb.rb_left) {
 285		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 286				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 287		if (subtree_gap > max)
 288			max = subtree_gap;
 289	}
 290	if (vma->vm_rb.rb_right) {
 291		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 292				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 293		if (subtree_gap > max)
 294			max = subtree_gap;
 295	}
 296	return max;
 297}
 298
 299#ifdef CONFIG_DEBUG_VM_RB
 300static int browse_rb(struct mm_struct *mm)
 301{
 302	struct rb_root *root = &mm->mm_rb;
 303	int i = 0, j, bug = 0;
 304	struct rb_node *nd, *pn = NULL;
 305	unsigned long prev = 0, pend = 0;
 306
 307	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 308		struct vm_area_struct *vma;
 309		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 310		if (vma->vm_start < prev) {
 311			pr_emerg("vm_start %lx < prev %lx\n",
 312				  vma->vm_start, prev);
 313			bug = 1;
 314		}
 315		if (vma->vm_start < pend) {
 316			pr_emerg("vm_start %lx < pend %lx\n",
 317				  vma->vm_start, pend);
 318			bug = 1;
 319		}
 320		if (vma->vm_start > vma->vm_end) {
 321			pr_emerg("vm_start %lx > vm_end %lx\n",
 322				  vma->vm_start, vma->vm_end);
 323			bug = 1;
 324		}
 325		spin_lock(&mm->page_table_lock);
 326		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 327			pr_emerg("free gap %lx, correct %lx\n",
 328			       vma->rb_subtree_gap,
 329			       vma_compute_subtree_gap(vma));
 330			bug = 1;
 331		}
 332		spin_unlock(&mm->page_table_lock);
 333		i++;
 334		pn = nd;
 335		prev = vma->vm_start;
 336		pend = vma->vm_end;
 337	}
 338	j = 0;
 339	for (nd = pn; nd; nd = rb_prev(nd))
 340		j++;
 341	if (i != j) {
 342		pr_emerg("backwards %d, forwards %d\n", j, i);
 343		bug = 1;
 344	}
 345	return bug ? -1 : i;
 346}
 347
 348static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 349{
 350	struct rb_node *nd;
 351
 352	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 353		struct vm_area_struct *vma;
 354		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 355		VM_BUG_ON_VMA(vma != ignore &&
 356			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 357			vma);
 358	}
 359}
 360
 361static void validate_mm(struct mm_struct *mm)
 362{
 363	int bug = 0;
 364	int i = 0;
 365	unsigned long highest_address = 0;
 366	struct vm_area_struct *vma = mm->mmap;
 367
 368	while (vma) {
 369		struct anon_vma *anon_vma = vma->anon_vma;
 370		struct anon_vma_chain *avc;
 371
 372		if (anon_vma) {
 373			anon_vma_lock_read(anon_vma);
 374			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 375				anon_vma_interval_tree_verify(avc);
 376			anon_vma_unlock_read(anon_vma);
 377		}
 378
 379		highest_address = vm_end_gap(vma);
 380		vma = vma->vm_next;
 381		i++;
 382	}
 383	if (i != mm->map_count) {
 384		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 385		bug = 1;
 386	}
 387	if (highest_address != mm->highest_vm_end) {
 388		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 389			  mm->highest_vm_end, highest_address);
 390		bug = 1;
 391	}
 392	i = browse_rb(mm);
 393	if (i != mm->map_count) {
 394		if (i != -1)
 395			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 396		bug = 1;
 397	}
 398	VM_BUG_ON_MM(bug, mm);
 399}
 400#else
 401#define validate_mm_rb(root, ignore) do { } while (0)
 402#define validate_mm(mm) do { } while (0)
 403#endif
 404
 405RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 406		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 407
 408/*
 409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 411 * in the rbtree.
 412 */
 413static void vma_gap_update(struct vm_area_struct *vma)
 414{
 415	/*
 416	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 417	 * function that does exacltly what we want.
 418	 */
 419	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 420}
 421
 422static inline void vma_rb_insert(struct vm_area_struct *vma,
 423				 struct rb_root *root)
 424{
 425	/* All rb_subtree_gap values must be consistent prior to insertion */
 426	validate_mm_rb(root, NULL);
 427
 428	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 429}
 430
 431static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 432{
 433	/*
 434	 * Note rb_erase_augmented is a fairly large inline function,
 435	 * so make sure we instantiate it only once with our desired
 436	 * augmented rbtree callbacks.
 437	 */
 438	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 439}
 440
 441static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 442						struct rb_root *root,
 443						struct vm_area_struct *ignore)
 444{
 445	/*
 446	 * All rb_subtree_gap values must be consistent prior to erase,
 447	 * with the possible exception of the "next" vma being erased if
 448	 * next->vm_start was reduced.
 449	 */
 450	validate_mm_rb(root, ignore);
 451
 452	__vma_rb_erase(vma, root);
 453}
 454
 455static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 456					 struct rb_root *root)
 457{
 458	/*
 459	 * All rb_subtree_gap values must be consistent prior to erase,
 460	 * with the possible exception of the vma being erased.
 461	 */
 462	validate_mm_rb(root, vma);
 463
 464	__vma_rb_erase(vma, root);
 
 
 
 
 
 465}
 466
 467/*
 468 * vma has some anon_vma assigned, and is already inserted on that
 469 * anon_vma's interval trees.
 470 *
 471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 472 * vma must be removed from the anon_vma's interval trees using
 473 * anon_vma_interval_tree_pre_update_vma().
 474 *
 475 * After the update, the vma will be reinserted using
 476 * anon_vma_interval_tree_post_update_vma().
 477 *
 478 * The entire update must be protected by exclusive mmap_sem and by
 479 * the root anon_vma's mutex.
 480 */
 481static inline void
 482anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 483{
 484	struct anon_vma_chain *avc;
 485
 486	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 487		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 488}
 489
 490static inline void
 491anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 492{
 493	struct anon_vma_chain *avc;
 494
 495	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 496		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 497}
 498
 499static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 500		unsigned long end, struct vm_area_struct **pprev,
 501		struct rb_node ***rb_link, struct rb_node **rb_parent)
 502{
 503	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 504
 505	__rb_link = &mm->mm_rb.rb_node;
 506	rb_prev = __rb_parent = NULL;
 507
 508	while (*__rb_link) {
 509		struct vm_area_struct *vma_tmp;
 510
 511		__rb_parent = *__rb_link;
 512		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 513
 514		if (vma_tmp->vm_end > addr) {
 515			/* Fail if an existing vma overlaps the area */
 516			if (vma_tmp->vm_start < end)
 517				return -ENOMEM;
 518			__rb_link = &__rb_parent->rb_left;
 519		} else {
 520			rb_prev = __rb_parent;
 521			__rb_link = &__rb_parent->rb_right;
 522		}
 523	}
 524
 525	*pprev = NULL;
 526	if (rb_prev)
 527		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 528	*rb_link = __rb_link;
 529	*rb_parent = __rb_parent;
 530	return 0;
 531}
 532
 533static unsigned long count_vma_pages_range(struct mm_struct *mm,
 534		unsigned long addr, unsigned long end)
 535{
 536	unsigned long nr_pages = 0;
 537	struct vm_area_struct *vma;
 538
 539	/* Find first overlaping mapping */
 540	vma = find_vma_intersection(mm, addr, end);
 541	if (!vma)
 542		return 0;
 543
 544	nr_pages = (min(end, vma->vm_end) -
 545		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 546
 547	/* Iterate over the rest of the overlaps */
 548	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 549		unsigned long overlap_len;
 550
 551		if (vma->vm_start > end)
 552			break;
 553
 554		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 555		nr_pages += overlap_len >> PAGE_SHIFT;
 556	}
 557
 558	return nr_pages;
 559}
 560
 561void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 562		struct rb_node **rb_link, struct rb_node *rb_parent)
 563{
 564	/* Update tracking information for the gap following the new vma. */
 565	if (vma->vm_next)
 566		vma_gap_update(vma->vm_next);
 567	else
 568		mm->highest_vm_end = vm_end_gap(vma);
 569
 570	/*
 571	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 572	 * correct insertion point for that vma. As a result, we could not
 573	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 574	 * So, we first insert the vma with a zero rb_subtree_gap value
 575	 * (to be consistent with what we did on the way down), and then
 576	 * immediately update the gap to the correct value. Finally we
 577	 * rebalance the rbtree after all augmented values have been set.
 578	 */
 579	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 580	vma->rb_subtree_gap = 0;
 581	vma_gap_update(vma);
 582	vma_rb_insert(vma, &mm->mm_rb);
 583}
 584
 585static void __vma_link_file(struct vm_area_struct *vma)
 586{
 587	struct file *file;
 588
 589	file = vma->vm_file;
 590	if (file) {
 591		struct address_space *mapping = file->f_mapping;
 592
 593		if (vma->vm_flags & VM_DENYWRITE)
 594			atomic_dec(&file_inode(file)->i_writecount);
 595		if (vma->vm_flags & VM_SHARED)
 596			atomic_inc(&mapping->i_mmap_writable);
 597
 598		flush_dcache_mmap_lock(mapping);
 599		vma_interval_tree_insert(vma, &mapping->i_mmap);
 
 
 
 600		flush_dcache_mmap_unlock(mapping);
 601	}
 602}
 603
 604static void
 605__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 606	struct vm_area_struct *prev, struct rb_node **rb_link,
 607	struct rb_node *rb_parent)
 608{
 609	__vma_link_list(mm, vma, prev, rb_parent);
 610	__vma_link_rb(mm, vma, rb_link, rb_parent);
 611}
 612
 613static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 614			struct vm_area_struct *prev, struct rb_node **rb_link,
 615			struct rb_node *rb_parent)
 616{
 617	struct address_space *mapping = NULL;
 618
 619	if (vma->vm_file) {
 620		mapping = vma->vm_file->f_mapping;
 621		i_mmap_lock_write(mapping);
 622	}
 
 623
 624	__vma_link(mm, vma, prev, rb_link, rb_parent);
 625	__vma_link_file(vma);
 626
 627	if (mapping)
 628		i_mmap_unlock_write(mapping);
 629
 630	mm->map_count++;
 631	validate_mm(mm);
 632}
 633
 634/*
 635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 636 * mm's list and rbtree.  It has already been inserted into the interval tree.
 637 */
 638static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 639{
 640	struct vm_area_struct *prev;
 641	struct rb_node **rb_link, *rb_parent;
 642
 643	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 644			   &prev, &rb_link, &rb_parent))
 645		BUG();
 646	__vma_link(mm, vma, prev, rb_link, rb_parent);
 647	mm->map_count++;
 648}
 649
 650static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 651						struct vm_area_struct *vma,
 652						struct vm_area_struct *prev,
 653						bool has_prev,
 654						struct vm_area_struct *ignore)
 655{
 656	struct vm_area_struct *next;
 657
 658	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 659	next = vma->vm_next;
 660	if (has_prev)
 661		prev->vm_next = next;
 662	else {
 663		prev = vma->vm_prev;
 664		if (prev)
 665			prev->vm_next = next;
 666		else
 667			mm->mmap = next;
 668	}
 669	if (next)
 670		next->vm_prev = prev;
 671
 672	/* Kill the cache */
 673	vmacache_invalidate(mm);
 674}
 675
 676static inline void __vma_unlink_prev(struct mm_struct *mm,
 677				     struct vm_area_struct *vma,
 678				     struct vm_area_struct *prev)
 679{
 680	__vma_unlink_common(mm, vma, prev, true, vma);
 681}
 682
 683/*
 684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 685 * is already present in an i_mmap tree without adjusting the tree.
 686 * The following helper function should be used when such adjustments
 687 * are necessary.  The "insert" vma (if any) is to be inserted
 688 * before we drop the necessary locks.
 689 */
 690int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 691	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 692	struct vm_area_struct *expand)
 693{
 694	struct mm_struct *mm = vma->vm_mm;
 695	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 
 696	struct address_space *mapping = NULL;
 697	struct rb_root_cached *root = NULL;
 698	struct anon_vma *anon_vma = NULL;
 699	struct file *file = vma->vm_file;
 700	bool start_changed = false, end_changed = false;
 701	long adjust_next = 0;
 702	int remove_next = 0;
 703
 704	if (next && !insert) {
 705		struct vm_area_struct *exporter = NULL, *importer = NULL;
 706
 707		if (end >= next->vm_end) {
 708			/*
 709			 * vma expands, overlapping all the next, and
 710			 * perhaps the one after too (mprotect case 6).
 711			 * The only other cases that gets here are
 712			 * case 1, case 7 and case 8.
 713			 */
 714			if (next == expand) {
 715				/*
 716				 * The only case where we don't expand "vma"
 717				 * and we expand "next" instead is case 8.
 718				 */
 719				VM_WARN_ON(end != next->vm_end);
 720				/*
 721				 * remove_next == 3 means we're
 722				 * removing "vma" and that to do so we
 723				 * swapped "vma" and "next".
 724				 */
 725				remove_next = 3;
 726				VM_WARN_ON(file != next->vm_file);
 727				swap(vma, next);
 728			} else {
 729				VM_WARN_ON(expand != vma);
 730				/*
 731				 * case 1, 6, 7, remove_next == 2 is case 6,
 732				 * remove_next == 1 is case 1 or 7.
 733				 */
 734				remove_next = 1 + (end > next->vm_end);
 735				VM_WARN_ON(remove_next == 2 &&
 736					   end != next->vm_next->vm_end);
 737				VM_WARN_ON(remove_next == 1 &&
 738					   end != next->vm_end);
 739				/* trim end to next, for case 6 first pass */
 740				end = next->vm_end;
 741			}
 742
 743			exporter = next;
 744			importer = vma;
 745
 746			/*
 747			 * If next doesn't have anon_vma, import from vma after
 748			 * next, if the vma overlaps with it.
 749			 */
 750			if (remove_next == 2 && !next->anon_vma)
 751				exporter = next->vm_next;
 752
 753		} else if (end > next->vm_start) {
 754			/*
 755			 * vma expands, overlapping part of the next:
 756			 * mprotect case 5 shifting the boundary up.
 757			 */
 758			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 759			exporter = next;
 760			importer = vma;
 761			VM_WARN_ON(expand != importer);
 762		} else if (end < vma->vm_end) {
 763			/*
 764			 * vma shrinks, and !insert tells it's not
 765			 * split_vma inserting another: so it must be
 766			 * mprotect case 4 shifting the boundary down.
 767			 */
 768			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 769			exporter = vma;
 770			importer = next;
 771			VM_WARN_ON(expand != importer);
 772		}
 773
 774		/*
 775		 * Easily overlooked: when mprotect shifts the boundary,
 776		 * make sure the expanding vma has anon_vma set if the
 777		 * shrinking vma had, to cover any anon pages imported.
 778		 */
 779		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 780			int error;
 781
 782			importer->anon_vma = exporter->anon_vma;
 783			error = anon_vma_clone(importer, exporter);
 784			if (error)
 785				return error;
 786		}
 787	}
 788again:
 789	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 790
 791	if (file) {
 792		mapping = file->f_mapping;
 793		root = &mapping->i_mmap;
 794		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 
 795
 796		if (adjust_next)
 797			uprobe_munmap(next, next->vm_start, next->vm_end);
 
 
 798
 799		i_mmap_lock_write(mapping);
 800		if (insert) {
 801			/*
 802			 * Put into interval tree now, so instantiated pages
 803			 * are visible to arm/parisc __flush_dcache_page
 804			 * throughout; but we cannot insert into address
 805			 * space until vma start or end is updated.
 806			 */
 807			__vma_link_file(insert);
 808		}
 809	}
 810
 
 
 811	anon_vma = vma->anon_vma;
 812	if (!anon_vma && adjust_next)
 813		anon_vma = next->anon_vma;
 814	if (anon_vma) {
 815		VM_WARN_ON(adjust_next && next->anon_vma &&
 816			   anon_vma != next->anon_vma);
 817		anon_vma_lock_write(anon_vma);
 818		anon_vma_interval_tree_pre_update_vma(vma);
 819		if (adjust_next)
 820			anon_vma_interval_tree_pre_update_vma(next);
 821	}
 822
 823	if (root) {
 824		flush_dcache_mmap_lock(mapping);
 825		vma_interval_tree_remove(vma, root);
 826		if (adjust_next)
 827			vma_interval_tree_remove(next, root);
 828	}
 829
 830	if (start != vma->vm_start) {
 831		vma->vm_start = start;
 832		start_changed = true;
 833	}
 834	if (end != vma->vm_end) {
 835		vma->vm_end = end;
 836		end_changed = true;
 837	}
 838	vma->vm_pgoff = pgoff;
 839	if (adjust_next) {
 840		next->vm_start += adjust_next << PAGE_SHIFT;
 841		next->vm_pgoff += adjust_next;
 842	}
 843
 844	if (root) {
 845		if (adjust_next)
 846			vma_interval_tree_insert(next, root);
 847		vma_interval_tree_insert(vma, root);
 848		flush_dcache_mmap_unlock(mapping);
 849	}
 850
 851	if (remove_next) {
 852		/*
 853		 * vma_merge has merged next into vma, and needs
 854		 * us to remove next before dropping the locks.
 855		 */
 856		if (remove_next != 3)
 857			__vma_unlink_prev(mm, next, vma);
 858		else
 859			/*
 860			 * vma is not before next if they've been
 861			 * swapped.
 862			 *
 863			 * pre-swap() next->vm_start was reduced so
 864			 * tell validate_mm_rb to ignore pre-swap()
 865			 * "next" (which is stored in post-swap()
 866			 * "vma").
 867			 */
 868			__vma_unlink_common(mm, next, NULL, false, vma);
 869		if (file)
 870			__remove_shared_vm_struct(next, file, mapping);
 871	} else if (insert) {
 872		/*
 873		 * split_vma has split insert from vma, and needs
 874		 * us to insert it before dropping the locks
 875		 * (it may either follow vma or precede it).
 876		 */
 877		__insert_vm_struct(mm, insert);
 878	} else {
 879		if (start_changed)
 880			vma_gap_update(vma);
 881		if (end_changed) {
 882			if (!next)
 883				mm->highest_vm_end = vm_end_gap(vma);
 884			else if (!adjust_next)
 885				vma_gap_update(next);
 886		}
 887	}
 888
 889	if (anon_vma) {
 890		anon_vma_interval_tree_post_update_vma(vma);
 891		if (adjust_next)
 892			anon_vma_interval_tree_post_update_vma(next);
 893		anon_vma_unlock_write(anon_vma);
 894	}
 895	if (mapping)
 896		i_mmap_unlock_write(mapping);
 897
 898	if (root) {
 899		uprobe_mmap(vma);
 900
 901		if (adjust_next)
 902			uprobe_mmap(next);
 903	}
 904
 905	if (remove_next) {
 906		if (file) {
 907			uprobe_munmap(next, next->vm_start, next->vm_end);
 908			fput(file);
 909		}
 910		if (next->anon_vma)
 911			anon_vma_merge(vma, next);
 912		mm->map_count--;
 913		mpol_put(vma_policy(next));
 914		kmem_cache_free(vm_area_cachep, next);
 915		/*
 916		 * In mprotect's case 6 (see comments on vma_merge),
 917		 * we must remove another next too. It would clutter
 918		 * up the code too much to do both in one go.
 919		 */
 920		if (remove_next != 3) {
 921			/*
 922			 * If "next" was removed and vma->vm_end was
 923			 * expanded (up) over it, in turn
 924			 * "next->vm_prev->vm_end" changed and the
 925			 * "vma->vm_next" gap must be updated.
 926			 */
 927			next = vma->vm_next;
 928		} else {
 929			/*
 930			 * For the scope of the comment "next" and
 931			 * "vma" considered pre-swap(): if "vma" was
 932			 * removed, next->vm_start was expanded (down)
 933			 * over it and the "next" gap must be updated.
 934			 * Because of the swap() the post-swap() "vma"
 935			 * actually points to pre-swap() "next"
 936			 * (post-swap() "next" as opposed is now a
 937			 * dangling pointer).
 938			 */
 939			next = vma;
 940		}
 941		if (remove_next == 2) {
 942			remove_next = 1;
 943			end = next->vm_end;
 944			goto again;
 945		}
 946		else if (next)
 947			vma_gap_update(next);
 948		else {
 949			/*
 950			 * If remove_next == 2 we obviously can't
 951			 * reach this path.
 952			 *
 953			 * If remove_next == 3 we can't reach this
 954			 * path because pre-swap() next is always not
 955			 * NULL. pre-swap() "next" is not being
 956			 * removed and its next->vm_end is not altered
 957			 * (and furthermore "end" already matches
 958			 * next->vm_end in remove_next == 3).
 959			 *
 960			 * We reach this only in the remove_next == 1
 961			 * case if the "next" vma that was removed was
 962			 * the highest vma of the mm. However in such
 963			 * case next->vm_end == "end" and the extended
 964			 * "vma" has vma->vm_end == next->vm_end so
 965			 * mm->highest_vm_end doesn't need any update
 966			 * in remove_next == 1 case.
 967			 */
 968			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
 969		}
 970	}
 971	if (insert && file)
 972		uprobe_mmap(insert);
 973
 974	validate_mm(mm);
 975
 976	return 0;
 977}
 978
 979/*
 980 * If the vma has a ->close operation then the driver probably needs to release
 981 * per-vma resources, so we don't attempt to merge those.
 982 */
 983static inline int is_mergeable_vma(struct vm_area_struct *vma,
 984				struct file *file, unsigned long vm_flags,
 985				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 986{
 987	/*
 988	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 989	 * match the flags but dirty bit -- the caller should mark
 990	 * merged VMA as dirty. If dirty bit won't be excluded from
 991	 * comparison, we increase pressue on the memory system forcing
 992	 * the kernel to generate new VMAs when old one could be
 993	 * extended instead.
 994	 */
 995	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 996		return 0;
 997	if (vma->vm_file != file)
 998		return 0;
 999	if (vma->vm_ops && vma->vm_ops->close)
1000		return 0;
1001	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002		return 0;
1003	return 1;
1004}
1005
1006static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007					struct anon_vma *anon_vma2,
1008					struct vm_area_struct *vma)
1009{
1010	/*
1011	 * The list_is_singular() test is to avoid merging VMA cloned from
1012	 * parents. This can improve scalability caused by anon_vma lock.
1013	 */
1014	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015		list_is_singular(&vma->anon_vma_chain)))
1016		return 1;
1017	return anon_vma1 == anon_vma2;
1018}
1019
1020/*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031static int
1032can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033		     struct anon_vma *anon_vma, struct file *file,
1034		     pgoff_t vm_pgoff,
1035		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039		if (vma->vm_pgoff == vm_pgoff)
1040			return 1;
1041	}
1042	return 0;
1043}
1044
1045/*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052static int
1053can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054		    struct anon_vma *anon_vma, struct file *file,
1055		    pgoff_t vm_pgoff,
1056		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057{
1058	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060		pgoff_t vm_pglen;
1061		vm_pglen = vma_pages(vma);
1062		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063			return 1;
1064	}
1065	return 0;
1066}
1067
1068/*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 *     AAAA             AAAA                AAAA          AAAA
1085 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1086 *    cannot merge    might become    might become    might become
1087 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1088 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1089 *    mremap move:                                    PPPPXXXXXXXX 8
1090 *        AAAA
1091 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1092 *    might become    case 1 below    case 2 below    case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109			struct vm_area_struct *prev, unsigned long addr,
1110			unsigned long end, unsigned long vm_flags,
1111			struct anon_vma *anon_vma, struct file *file,
1112			pgoff_t pgoff, struct mempolicy *policy,
1113			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114{
1115	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116	struct vm_area_struct *area, *next;
1117	int err;
1118
1119	/*
1120	 * We later require that vma->vm_flags == vm_flags,
1121	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122	 */
1123	if (vm_flags & VM_SPECIAL)
1124		return NULL;
1125
1126	if (prev)
1127		next = prev->vm_next;
1128	else
1129		next = mm->mmap;
1130	area = next;
1131	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1132		next = next->vm_next;
1133
1134	/* verify some invariant that must be enforced by the caller */
1135	VM_WARN_ON(prev && addr <= prev->vm_start);
1136	VM_WARN_ON(area && end > area->vm_end);
1137	VM_WARN_ON(addr >= end);
1138
1139	/*
1140	 * Can it merge with the predecessor?
1141	 */
1142	if (prev && prev->vm_end == addr &&
1143			mpol_equal(vma_policy(prev), policy) &&
1144			can_vma_merge_after(prev, vm_flags,
1145					    anon_vma, file, pgoff,
1146					    vm_userfaultfd_ctx)) {
1147		/*
1148		 * OK, it can.  Can we now merge in the successor as well?
1149		 */
1150		if (next && end == next->vm_start &&
1151				mpol_equal(policy, vma_policy(next)) &&
1152				can_vma_merge_before(next, vm_flags,
1153						     anon_vma, file,
1154						     pgoff+pglen,
1155						     vm_userfaultfd_ctx) &&
1156				is_mergeable_anon_vma(prev->anon_vma,
1157						      next->anon_vma, NULL)) {
1158							/* cases 1, 6 */
1159			err = __vma_adjust(prev, prev->vm_start,
1160					 next->vm_end, prev->vm_pgoff, NULL,
1161					 prev);
1162		} else					/* cases 2, 5, 7 */
1163			err = __vma_adjust(prev, prev->vm_start,
1164					 end, prev->vm_pgoff, NULL, prev);
1165		if (err)
1166			return NULL;
1167		khugepaged_enter_vma_merge(prev, vm_flags);
1168		return prev;
1169	}
1170
1171	/*
1172	 * Can this new request be merged in front of next?
1173	 */
1174	if (next && end == next->vm_start &&
1175			mpol_equal(policy, vma_policy(next)) &&
1176			can_vma_merge_before(next, vm_flags,
1177					     anon_vma, file, pgoff+pglen,
1178					     vm_userfaultfd_ctx)) {
1179		if (prev && addr < prev->vm_end)	/* case 4 */
1180			err = __vma_adjust(prev, prev->vm_start,
1181					 addr, prev->vm_pgoff, NULL, next);
1182		else {					/* cases 3, 8 */
1183			err = __vma_adjust(area, addr, next->vm_end,
1184					 next->vm_pgoff - pglen, NULL, next);
1185			/*
1186			 * In case 3 area is already equal to next and
1187			 * this is a noop, but in case 8 "area" has
1188			 * been removed and next was expanded over it.
1189			 */
1190			area = next;
1191		}
1192		if (err)
1193			return NULL;
1194		khugepaged_enter_vma_merge(area, vm_flags);
1195		return area;
1196	}
1197
1198	return NULL;
1199}
1200
1201/*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215{
1216	return a->vm_end == b->vm_start &&
1217		mpol_equal(vma_policy(a), vma_policy(b)) &&
1218		a->vm_file == b->vm_file &&
1219		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221}
1222
1223/*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246{
1247	if (anon_vma_compatible(a, b)) {
1248		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251			return anon_vma;
1252	}
1253	return NULL;
1254}
1255
1256/*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma.  It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265{
1266	struct anon_vma *anon_vma;
1267	struct vm_area_struct *near;
1268
1269	near = vma->vm_next;
1270	if (!near)
1271		goto try_prev;
1272
1273	anon_vma = reusable_anon_vma(near, vma, near);
1274	if (anon_vma)
1275		return anon_vma;
1276try_prev:
1277	near = vma->vm_prev;
1278	if (!near)
1279		goto none;
1280
1281	anon_vma = reusable_anon_vma(near, near, vma);
1282	if (anon_vma)
1283		return anon_vma;
1284none:
1285	/*
1286	 * There's no absolute need to look only at touching neighbours:
1287	 * we could search further afield for "compatible" anon_vmas.
1288	 * But it would probably just be a waste of time searching,
1289	 * or lead to too many vmas hanging off the same anon_vma.
1290	 * We're trying to allow mprotect remerging later on,
1291	 * not trying to minimize memory used for anon_vmas.
1292	 */
1293	return NULL;
1294}
1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296/*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300static inline unsigned long round_hint_to_min(unsigned long hint)
1301{
1302	hint &= PAGE_MASK;
1303	if (((void *)hint != NULL) &&
1304	    (hint < mmap_min_addr))
1305		return PAGE_ALIGN(mmap_min_addr);
1306	return hint;
1307}
1308
1309static inline int mlock_future_check(struct mm_struct *mm,
1310				     unsigned long flags,
1311				     unsigned long len)
1312{
1313	unsigned long locked, lock_limit;
1314
1315	/*  mlock MCL_FUTURE? */
1316	if (flags & VM_LOCKED) {
1317		locked = len >> PAGE_SHIFT;
1318		locked += mm->locked_vm;
1319		lock_limit = rlimit(RLIMIT_MEMLOCK);
1320		lock_limit >>= PAGE_SHIFT;
1321		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322			return -EAGAIN;
1323	}
1324	return 0;
1325}
1326
1327static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328{
1329	if (S_ISREG(inode->i_mode))
1330		return MAX_LFS_FILESIZE;
1331
1332	if (S_ISBLK(inode->i_mode))
1333		return MAX_LFS_FILESIZE;
1334
1335	/* Special "we do even unsigned file positions" case */
1336	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337		return 0;
1338
1339	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340	return ULONG_MAX;
1341}
1342
1343static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344				unsigned long pgoff, unsigned long len)
1345{
1346	u64 maxsize = file_mmap_size_max(file, inode);
1347
1348	if (maxsize && len > maxsize)
1349		return false;
1350	maxsize -= len;
1351	if (pgoff > maxsize >> PAGE_SHIFT)
1352		return false;
1353	return true;
1354}
1355
1356/*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359unsigned long do_mmap(struct file *file, unsigned long addr,
 
1360			unsigned long len, unsigned long prot,
1361			unsigned long flags, vm_flags_t vm_flags,
1362			unsigned long pgoff, unsigned long *populate,
1363			struct list_head *uf)
1364{
1365	struct mm_struct *mm = current->mm;
1366	int pkey = 0;
1367
1368	*populate = 0;
1369
1370	if (!len)
1371		return -EINVAL;
1372
1373	/*
1374	 * Does the application expect PROT_READ to imply PROT_EXEC?
1375	 *
1376	 * (the exception is when the underlying filesystem is noexec
1377	 *  mounted, in which case we dont add PROT_EXEC.)
1378	 */
1379	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380		if (!(file && path_noexec(&file->f_path)))
1381			prot |= PROT_EXEC;
1382
1383	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1384	if (flags & MAP_FIXED_NOREPLACE)
1385		flags |= MAP_FIXED;
1386
1387	if (!(flags & MAP_FIXED))
1388		addr = round_hint_to_min(addr);
1389
1390	/* Careful about overflows.. */
1391	len = PAGE_ALIGN(len);
1392	if (!len)
1393		return -ENOMEM;
1394
1395	/* offset overflow? */
1396	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1397		return -EOVERFLOW;
1398
1399	/* Too many mappings? */
1400	if (mm->map_count > sysctl_max_map_count)
1401		return -ENOMEM;
1402
1403	/* Obtain the address to map to. we verify (or select) it and ensure
1404	 * that it represents a valid section of the address space.
1405	 */
1406	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407	if (offset_in_page(addr))
1408		return addr;
1409
1410	if (flags & MAP_FIXED_NOREPLACE) {
1411		struct vm_area_struct *vma = find_vma(mm, addr);
1412
1413		if (vma && vma->vm_start <= addr)
1414			return -EEXIST;
1415	}
1416
1417	if (prot == PROT_EXEC) {
1418		pkey = execute_only_pkey(mm);
1419		if (pkey < 0)
1420			pkey = 0;
1421	}
1422
1423	/* Do simple checking here so the lower-level routines won't have
1424	 * to. we assume access permissions have been handled by the open
1425	 * of the memory object, so we don't do any here.
1426	 */
1427	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1429
1430	if (flags & MAP_LOCKED)
1431		if (!can_do_mlock())
1432			return -EPERM;
1433
1434	if (mlock_future_check(mm, vm_flags, len))
1435		return -EAGAIN;
1436
1437	if (file) {
1438		struct inode *inode = file_inode(file);
1439		unsigned long flags_mask;
1440
1441		if (!file_mmap_ok(file, inode, pgoff, len))
1442			return -EOVERFLOW;
1443
1444		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1445
1446		switch (flags & MAP_TYPE) {
1447		case MAP_SHARED:
1448			/*
1449			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1450			 * flags. E.g. MAP_SYNC is dangerous to use with
1451			 * MAP_SHARED as you don't know which consistency model
1452			 * you will get. We silently ignore unsupported flags
1453			 * with MAP_SHARED to preserve backward compatibility.
1454			 */
1455			flags &= LEGACY_MAP_MASK;
1456			/* fall through */
1457		case MAP_SHARED_VALIDATE:
1458			if (flags & ~flags_mask)
1459				return -EOPNOTSUPP;
1460			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1461				return -EACCES;
1462
1463			/*
1464			 * Make sure we don't allow writing to an append-only
1465			 * file..
1466			 */
1467			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1468				return -EACCES;
1469
1470			/*
1471			 * Make sure there are no mandatory locks on the file.
1472			 */
1473			if (locks_verify_locked(file))
1474				return -EAGAIN;
1475
1476			vm_flags |= VM_SHARED | VM_MAYSHARE;
1477			if (!(file->f_mode & FMODE_WRITE))
1478				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1479
1480			/* fall through */
1481		case MAP_PRIVATE:
1482			if (!(file->f_mode & FMODE_READ))
1483				return -EACCES;
1484			if (path_noexec(&file->f_path)) {
1485				if (vm_flags & VM_EXEC)
1486					return -EPERM;
1487				vm_flags &= ~VM_MAYEXEC;
1488			}
1489
1490			if (!file->f_op->mmap)
1491				return -ENODEV;
1492			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1493				return -EINVAL;
1494			break;
1495
1496		default:
1497			return -EINVAL;
1498		}
1499	} else {
1500		switch (flags & MAP_TYPE) {
1501		case MAP_SHARED:
1502			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503				return -EINVAL;
1504			/*
1505			 * Ignore pgoff.
1506			 */
1507			pgoff = 0;
1508			vm_flags |= VM_SHARED | VM_MAYSHARE;
1509			break;
1510		case MAP_PRIVATE:
1511			/*
1512			 * Set pgoff according to addr for anon_vma.
1513			 */
1514			pgoff = addr >> PAGE_SHIFT;
1515			break;
1516		default:
1517			return -EINVAL;
1518		}
1519	}
1520
1521	/*
1522	 * Set 'VM_NORESERVE' if we should not account for the
1523	 * memory use of this mapping.
1524	 */
1525	if (flags & MAP_NORESERVE) {
1526		/* We honor MAP_NORESERVE if allowed to overcommit */
1527		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528			vm_flags |= VM_NORESERVE;
1529
1530		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531		if (file && is_file_hugepages(file))
1532			vm_flags |= VM_NORESERVE;
1533	}
1534
1535	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536	if (!IS_ERR_VALUE(addr) &&
1537	    ((vm_flags & VM_LOCKED) ||
1538	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1539		*populate = len;
1540	return addr;
1541}
1542
1543unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544			      unsigned long prot, unsigned long flags,
1545			      unsigned long fd, unsigned long pgoff)
1546{
1547	struct file *file = NULL;
1548	unsigned long retval;
1549
1550	if (!(flags & MAP_ANONYMOUS)) {
1551		audit_mmap_fd(fd, flags);
1552		file = fget(fd);
1553		if (!file)
1554			return -EBADF;
1555		if (is_file_hugepages(file))
1556			len = ALIGN(len, huge_page_size(hstate_file(file)));
1557		retval = -EINVAL;
1558		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1559			goto out_fput;
1560	} else if (flags & MAP_HUGETLB) {
1561		struct user_struct *user = NULL;
1562		struct hstate *hs;
1563
1564		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1565		if (!hs)
1566			return -EINVAL;
1567
1568		len = ALIGN(len, huge_page_size(hs));
1569		/*
1570		 * VM_NORESERVE is used because the reservations will be
1571		 * taken when vm_ops->mmap() is called
1572		 * A dummy user value is used because we are not locking
1573		 * memory so no accounting is necessary
1574		 */
1575		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1576				VM_NORESERVE,
1577				&user, HUGETLB_ANONHUGE_INODE,
1578				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1579		if (IS_ERR(file))
1580			return PTR_ERR(file);
1581	}
1582
1583	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1584
1585	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1586out_fput:
1587	if (file)
1588		fput(file);
 
1589	return retval;
1590}
1591
1592SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593		unsigned long, prot, unsigned long, flags,
1594		unsigned long, fd, unsigned long, pgoff)
1595{
1596	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1597}
1598
1599#ifdef __ARCH_WANT_SYS_OLD_MMAP
1600struct mmap_arg_struct {
1601	unsigned long addr;
1602	unsigned long len;
1603	unsigned long prot;
1604	unsigned long flags;
1605	unsigned long fd;
1606	unsigned long offset;
1607};
1608
1609SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1610{
1611	struct mmap_arg_struct a;
1612
1613	if (copy_from_user(&a, arg, sizeof(a)))
1614		return -EFAULT;
1615	if (offset_in_page(a.offset))
1616		return -EINVAL;
1617
1618	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619			       a.offset >> PAGE_SHIFT);
1620}
1621#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1622
1623/*
1624 * Some shared mappigns will want the pages marked read-only
1625 * to track write events. If so, we'll downgrade vm_page_prot
1626 * to the private version (using protection_map[] without the
1627 * VM_SHARED bit).
1628 */
1629int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1630{
1631	vm_flags_t vm_flags = vma->vm_flags;
1632	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1633
1634	/* If it was private or non-writable, the write bit is already clear */
1635	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1636		return 0;
1637
1638	/* The backer wishes to know when pages are first written to? */
1639	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1640		return 1;
1641
1642	/* The open routine did something to the protections that pgprot_modify
1643	 * won't preserve? */
1644	if (pgprot_val(vm_page_prot) !=
1645	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1646		return 0;
1647
1648	/* Do we need to track softdirty? */
1649	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1650		return 1;
1651
1652	/* Specialty mapping? */
1653	if (vm_flags & VM_PFNMAP)
1654		return 0;
1655
1656	/* Can the mapping track the dirty pages? */
1657	return vma->vm_file && vma->vm_file->f_mapping &&
1658		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1659}
1660
1661/*
1662 * We account for memory if it's a private writeable mapping,
1663 * not hugepages and VM_NORESERVE wasn't set.
1664 */
1665static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1666{
1667	/*
1668	 * hugetlb has its own accounting separate from the core VM
1669	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1670	 */
1671	if (file && is_file_hugepages(file))
1672		return 0;
1673
1674	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1675}
1676
1677unsigned long mmap_region(struct file *file, unsigned long addr,
1678		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679		struct list_head *uf)
1680{
1681	struct mm_struct *mm = current->mm;
1682	struct vm_area_struct *vma, *prev;
1683	int error;
1684	struct rb_node **rb_link, *rb_parent;
1685	unsigned long charged = 0;
1686
1687	/* Check against address space limit. */
1688	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689		unsigned long nr_pages;
1690
1691		/*
1692		 * MAP_FIXED may remove pages of mappings that intersects with
1693		 * requested mapping. Account for the pages it would unmap.
1694		 */
 
 
 
1695		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1696
1697		if (!may_expand_vm(mm, vm_flags,
1698					(len >> PAGE_SHIFT) - nr_pages))
1699			return -ENOMEM;
1700	}
1701
1702	/* Clear old maps */
1703	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1704			      &rb_parent)) {
1705		if (do_munmap(mm, addr, len, uf))
 
1706			return -ENOMEM;
 
1707	}
1708
1709	/*
1710	 * Private writable mapping: check memory availability
1711	 */
1712	if (accountable_mapping(file, vm_flags)) {
1713		charged = len >> PAGE_SHIFT;
1714		if (security_vm_enough_memory_mm(mm, charged))
1715			return -ENOMEM;
1716		vm_flags |= VM_ACCOUNT;
1717	}
1718
1719	/*
1720	 * Can we just expand an old mapping?
1721	 */
1722	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1724	if (vma)
1725		goto out;
1726
1727	/*
1728	 * Determine the object being mapped and call the appropriate
1729	 * specific mapper. the address has already been validated, but
1730	 * not unmapped, but the maps are removed from the list.
1731	 */
1732	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1733	if (!vma) {
1734		error = -ENOMEM;
1735		goto unacct_error;
1736	}
1737
1738	vma->vm_mm = mm;
1739	vma->vm_start = addr;
1740	vma->vm_end = addr + len;
1741	vma->vm_flags = vm_flags;
1742	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1743	vma->vm_pgoff = pgoff;
1744	INIT_LIST_HEAD(&vma->anon_vma_chain);
1745
1746	if (file) {
1747		if (vm_flags & VM_DENYWRITE) {
1748			error = deny_write_access(file);
1749			if (error)
1750				goto free_vma;
1751		}
1752		if (vm_flags & VM_SHARED) {
1753			error = mapping_map_writable(file->f_mapping);
1754			if (error)
1755				goto allow_write_and_free_vma;
1756		}
1757
1758		/* ->mmap() can change vma->vm_file, but must guarantee that
1759		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1760		 * and map writably if VM_SHARED is set. This usually means the
1761		 * new file must not have been exposed to user-space, yet.
1762		 */
1763		vma->vm_file = get_file(file);
1764		error = call_mmap(file, vma);
1765		if (error)
1766			goto unmap_and_free_vma;
1767
1768		/* Can addr have changed??
1769		 *
1770		 * Answer: Yes, several device drivers can do it in their
1771		 *         f_op->mmap method. -DaveM
1772		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1773		 *      be updated for vma_link()
1774		 */
1775		WARN_ON_ONCE(addr != vma->vm_start);
1776
1777		addr = vma->vm_start;
1778		vm_flags = vma->vm_flags;
1779	} else if (vm_flags & VM_SHARED) {
1780		error = shmem_zero_setup(vma);
1781		if (error)
1782			goto free_vma;
1783	}
1784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	vma_link(mm, vma, prev, rb_link, rb_parent);
1786	/* Once vma denies write, undo our temporary denial count */
1787	if (file) {
1788		if (vm_flags & VM_SHARED)
1789			mapping_unmap_writable(file->f_mapping);
1790		if (vm_flags & VM_DENYWRITE)
1791			allow_write_access(file);
1792	}
1793	file = vma->vm_file;
1794out:
1795	perf_event_mmap(vma);
1796
1797	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798	if (vm_flags & VM_LOCKED) {
1799		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1800					vma == get_gate_vma(current->mm)))
1801			mm->locked_vm += (len >> PAGE_SHIFT);
1802		else
1803			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1804	}
1805
1806	if (file)
1807		uprobe_mmap(vma);
1808
1809	/*
1810	 * New (or expanded) vma always get soft dirty status.
1811	 * Otherwise user-space soft-dirty page tracker won't
1812	 * be able to distinguish situation when vma area unmapped,
1813	 * then new mapped in-place (which must be aimed as
1814	 * a completely new data area).
1815	 */
1816	vma->vm_flags |= VM_SOFTDIRTY;
1817
1818	vma_set_page_prot(vma);
1819
1820	return addr;
1821
1822unmap_and_free_vma:
 
 
1823	vma->vm_file = NULL;
1824	fput(file);
1825
1826	/* Undo any partial mapping done by a device driver. */
1827	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1828	charged = 0;
1829	if (vm_flags & VM_SHARED)
1830		mapping_unmap_writable(file->f_mapping);
1831allow_write_and_free_vma:
1832	if (vm_flags & VM_DENYWRITE)
1833		allow_write_access(file);
1834free_vma:
1835	kmem_cache_free(vm_area_cachep, vma);
1836unacct_error:
1837	if (charged)
1838		vm_unacct_memory(charged);
1839	return error;
1840}
1841
1842unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1843{
1844	/*
1845	 * We implement the search by looking for an rbtree node that
1846	 * immediately follows a suitable gap. That is,
1847	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1848	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1849	 * - gap_end - gap_start >= length
1850	 */
1851
1852	struct mm_struct *mm = current->mm;
1853	struct vm_area_struct *vma;
1854	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1855
1856	/* Adjust search length to account for worst case alignment overhead */
1857	length = info->length + info->align_mask;
1858	if (length < info->length)
1859		return -ENOMEM;
1860
1861	/* Adjust search limits by the desired length */
1862	if (info->high_limit < length)
1863		return -ENOMEM;
1864	high_limit = info->high_limit - length;
1865
1866	if (info->low_limit > high_limit)
1867		return -ENOMEM;
1868	low_limit = info->low_limit + length;
1869
1870	/* Check if rbtree root looks promising */
1871	if (RB_EMPTY_ROOT(&mm->mm_rb))
1872		goto check_highest;
1873	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1874	if (vma->rb_subtree_gap < length)
1875		goto check_highest;
1876
1877	while (true) {
1878		/* Visit left subtree if it looks promising */
1879		gap_end = vm_start_gap(vma);
1880		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1881			struct vm_area_struct *left =
1882				rb_entry(vma->vm_rb.rb_left,
1883					 struct vm_area_struct, vm_rb);
1884			if (left->rb_subtree_gap >= length) {
1885				vma = left;
1886				continue;
1887			}
1888		}
1889
1890		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1891check_current:
1892		/* Check if current node has a suitable gap */
1893		if (gap_start > high_limit)
1894			return -ENOMEM;
1895		if (gap_end >= low_limit &&
1896		    gap_end > gap_start && gap_end - gap_start >= length)
1897			goto found;
1898
1899		/* Visit right subtree if it looks promising */
1900		if (vma->vm_rb.rb_right) {
1901			struct vm_area_struct *right =
1902				rb_entry(vma->vm_rb.rb_right,
1903					 struct vm_area_struct, vm_rb);
1904			if (right->rb_subtree_gap >= length) {
1905				vma = right;
1906				continue;
1907			}
1908		}
1909
1910		/* Go back up the rbtree to find next candidate node */
1911		while (true) {
1912			struct rb_node *prev = &vma->vm_rb;
1913			if (!rb_parent(prev))
1914				goto check_highest;
1915			vma = rb_entry(rb_parent(prev),
1916				       struct vm_area_struct, vm_rb);
1917			if (prev == vma->vm_rb.rb_left) {
1918				gap_start = vm_end_gap(vma->vm_prev);
1919				gap_end = vm_start_gap(vma);
1920				goto check_current;
1921			}
1922		}
1923	}
1924
1925check_highest:
1926	/* Check highest gap, which does not precede any rbtree node */
1927	gap_start = mm->highest_vm_end;
1928	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1929	if (gap_start > high_limit)
1930		return -ENOMEM;
1931
1932found:
1933	/* We found a suitable gap. Clip it with the original low_limit. */
1934	if (gap_start < info->low_limit)
1935		gap_start = info->low_limit;
1936
1937	/* Adjust gap address to the desired alignment */
1938	gap_start += (info->align_offset - gap_start) & info->align_mask;
1939
1940	VM_BUG_ON(gap_start + info->length > info->high_limit);
1941	VM_BUG_ON(gap_start + info->length > gap_end);
1942	return gap_start;
1943}
1944
1945unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1946{
1947	struct mm_struct *mm = current->mm;
1948	struct vm_area_struct *vma;
1949	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1950
1951	/* Adjust search length to account for worst case alignment overhead */
1952	length = info->length + info->align_mask;
1953	if (length < info->length)
1954		return -ENOMEM;
1955
1956	/*
1957	 * Adjust search limits by the desired length.
1958	 * See implementation comment at top of unmapped_area().
1959	 */
1960	gap_end = info->high_limit;
1961	if (gap_end < length)
1962		return -ENOMEM;
1963	high_limit = gap_end - length;
1964
1965	if (info->low_limit > high_limit)
1966		return -ENOMEM;
1967	low_limit = info->low_limit + length;
1968
1969	/* Check highest gap, which does not precede any rbtree node */
1970	gap_start = mm->highest_vm_end;
1971	if (gap_start <= high_limit)
1972		goto found_highest;
1973
1974	/* Check if rbtree root looks promising */
1975	if (RB_EMPTY_ROOT(&mm->mm_rb))
1976		return -ENOMEM;
1977	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1978	if (vma->rb_subtree_gap < length)
1979		return -ENOMEM;
1980
1981	while (true) {
1982		/* Visit right subtree if it looks promising */
1983		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1984		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1985			struct vm_area_struct *right =
1986				rb_entry(vma->vm_rb.rb_right,
1987					 struct vm_area_struct, vm_rb);
1988			if (right->rb_subtree_gap >= length) {
1989				vma = right;
1990				continue;
1991			}
1992		}
1993
1994check_current:
1995		/* Check if current node has a suitable gap */
1996		gap_end = vm_start_gap(vma);
1997		if (gap_end < low_limit)
1998			return -ENOMEM;
1999		if (gap_start <= high_limit &&
2000		    gap_end > gap_start && gap_end - gap_start >= length)
2001			goto found;
2002
2003		/* Visit left subtree if it looks promising */
2004		if (vma->vm_rb.rb_left) {
2005			struct vm_area_struct *left =
2006				rb_entry(vma->vm_rb.rb_left,
2007					 struct vm_area_struct, vm_rb);
2008			if (left->rb_subtree_gap >= length) {
2009				vma = left;
2010				continue;
2011			}
2012		}
2013
2014		/* Go back up the rbtree to find next candidate node */
2015		while (true) {
2016			struct rb_node *prev = &vma->vm_rb;
2017			if (!rb_parent(prev))
2018				return -ENOMEM;
2019			vma = rb_entry(rb_parent(prev),
2020				       struct vm_area_struct, vm_rb);
2021			if (prev == vma->vm_rb.rb_right) {
2022				gap_start = vma->vm_prev ?
2023					vm_end_gap(vma->vm_prev) : 0;
2024				goto check_current;
2025			}
2026		}
2027	}
2028
2029found:
2030	/* We found a suitable gap. Clip it with the original high_limit. */
2031	if (gap_end > info->high_limit)
2032		gap_end = info->high_limit;
2033
2034found_highest:
2035	/* Compute highest gap address at the desired alignment */
2036	gap_end -= info->length;
2037	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2038
2039	VM_BUG_ON(gap_end < info->low_limit);
2040	VM_BUG_ON(gap_end < gap_start);
2041	return gap_end;
2042}
2043
2044/* Get an address range which is currently unmapped.
2045 * For shmat() with addr=0.
2046 *
2047 * Ugly calling convention alert:
2048 * Return value with the low bits set means error value,
2049 * ie
2050 *	if (ret & ~PAGE_MASK)
2051 *		error = ret;
2052 *
2053 * This function "knows" that -ENOMEM has the bits set.
2054 */
2055#ifndef HAVE_ARCH_UNMAPPED_AREA
2056unsigned long
2057arch_get_unmapped_area(struct file *filp, unsigned long addr,
2058		unsigned long len, unsigned long pgoff, unsigned long flags)
2059{
2060	struct mm_struct *mm = current->mm;
2061	struct vm_area_struct *vma, *prev;
2062	struct vm_unmapped_area_info info;
2063
2064	if (len > TASK_SIZE - mmap_min_addr)
2065		return -ENOMEM;
2066
2067	if (flags & MAP_FIXED)
2068		return addr;
2069
2070	if (addr) {
2071		addr = PAGE_ALIGN(addr);
2072		vma = find_vma_prev(mm, addr, &prev);
2073		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074		    (!vma || addr + len <= vm_start_gap(vma)) &&
2075		    (!prev || addr >= vm_end_gap(prev)))
2076			return addr;
2077	}
2078
2079	info.flags = 0;
2080	info.length = len;
2081	info.low_limit = mm->mmap_base;
2082	info.high_limit = TASK_SIZE;
2083	info.align_mask = 0;
2084	return vm_unmapped_area(&info);
2085}
2086#endif
2087
2088/*
2089 * This mmap-allocator allocates new areas top-down from below the
2090 * stack's low limit (the base):
2091 */
2092#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2093unsigned long
2094arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2095			  const unsigned long len, const unsigned long pgoff,
2096			  const unsigned long flags)
2097{
2098	struct vm_area_struct *vma, *prev;
2099	struct mm_struct *mm = current->mm;
2100	unsigned long addr = addr0;
2101	struct vm_unmapped_area_info info;
2102
2103	/* requested length too big for entire address space */
2104	if (len > TASK_SIZE - mmap_min_addr)
2105		return -ENOMEM;
2106
2107	if (flags & MAP_FIXED)
2108		return addr;
2109
2110	/* requesting a specific address */
2111	if (addr) {
2112		addr = PAGE_ALIGN(addr);
2113		vma = find_vma_prev(mm, addr, &prev);
2114		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2115				(!vma || addr + len <= vm_start_gap(vma)) &&
2116				(!prev || addr >= vm_end_gap(prev)))
2117			return addr;
2118	}
2119
2120	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2121	info.length = len;
2122	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2123	info.high_limit = mm->mmap_base;
2124	info.align_mask = 0;
2125	addr = vm_unmapped_area(&info);
2126
2127	/*
2128	 * A failed mmap() very likely causes application failure,
2129	 * so fall back to the bottom-up function here. This scenario
2130	 * can happen with large stack limits and large mmap()
2131	 * allocations.
2132	 */
2133	if (offset_in_page(addr)) {
2134		VM_BUG_ON(addr != -ENOMEM);
2135		info.flags = 0;
2136		info.low_limit = TASK_UNMAPPED_BASE;
2137		info.high_limit = TASK_SIZE;
2138		addr = vm_unmapped_area(&info);
2139	}
2140
2141	return addr;
2142}
2143#endif
2144
2145unsigned long
2146get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2147		unsigned long pgoff, unsigned long flags)
2148{
2149	unsigned long (*get_area)(struct file *, unsigned long,
2150				  unsigned long, unsigned long, unsigned long);
2151
2152	unsigned long error = arch_mmap_check(addr, len, flags);
2153	if (error)
2154		return error;
2155
2156	/* Careful about overflows.. */
2157	if (len > TASK_SIZE)
2158		return -ENOMEM;
2159
2160	get_area = current->mm->get_unmapped_area;
2161	if (file) {
2162		if (file->f_op->get_unmapped_area)
2163			get_area = file->f_op->get_unmapped_area;
2164	} else if (flags & MAP_SHARED) {
2165		/*
2166		 * mmap_region() will call shmem_zero_setup() to create a file,
2167		 * so use shmem's get_unmapped_area in case it can be huge.
2168		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2169		 */
2170		pgoff = 0;
2171		get_area = shmem_get_unmapped_area;
2172	}
2173
2174	addr = get_area(file, addr, len, pgoff, flags);
2175	if (IS_ERR_VALUE(addr))
2176		return addr;
2177
2178	if (addr > TASK_SIZE - len)
2179		return -ENOMEM;
2180	if (offset_in_page(addr))
2181		return -EINVAL;
2182
 
2183	error = security_mmap_addr(addr);
2184	return error ? error : addr;
2185}
2186
2187EXPORT_SYMBOL(get_unmapped_area);
2188
2189/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2190struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2191{
2192	struct rb_node *rb_node;
2193	struct vm_area_struct *vma;
2194
2195	/* Check the cache first. */
2196	vma = vmacache_find(mm, addr);
2197	if (likely(vma))
2198		return vma;
2199
2200	rb_node = mm->mm_rb.rb_node;
 
2201
2202	while (rb_node) {
2203		struct vm_area_struct *tmp;
2204
2205		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2206
2207		if (tmp->vm_end > addr) {
2208			vma = tmp;
2209			if (tmp->vm_start <= addr)
2210				break;
2211			rb_node = rb_node->rb_left;
2212		} else
2213			rb_node = rb_node->rb_right;
2214	}
2215
2216	if (vma)
2217		vmacache_update(addr, vma);
2218	return vma;
2219}
2220
2221EXPORT_SYMBOL(find_vma);
2222
2223/*
2224 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2225 */
2226struct vm_area_struct *
2227find_vma_prev(struct mm_struct *mm, unsigned long addr,
2228			struct vm_area_struct **pprev)
2229{
2230	struct vm_area_struct *vma;
2231
2232	vma = find_vma(mm, addr);
2233	if (vma) {
2234		*pprev = vma->vm_prev;
2235	} else {
2236		struct rb_node *rb_node = mm->mm_rb.rb_node;
2237		*pprev = NULL;
2238		while (rb_node) {
2239			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2240			rb_node = rb_node->rb_right;
2241		}
2242	}
2243	return vma;
2244}
2245
2246/*
2247 * Verify that the stack growth is acceptable and
2248 * update accounting. This is shared with both the
2249 * grow-up and grow-down cases.
2250 */
2251static int acct_stack_growth(struct vm_area_struct *vma,
2252			     unsigned long size, unsigned long grow)
2253{
2254	struct mm_struct *mm = vma->vm_mm;
 
2255	unsigned long new_start;
2256
2257	/* address space limit tests */
2258	if (!may_expand_vm(mm, vma->vm_flags, grow))
2259		return -ENOMEM;
2260
2261	/* Stack limit test */
2262	if (size > rlimit(RLIMIT_STACK))
2263		return -ENOMEM;
2264
2265	/* mlock limit tests */
2266	if (vma->vm_flags & VM_LOCKED) {
2267		unsigned long locked;
2268		unsigned long limit;
2269		locked = mm->locked_vm + grow;
2270		limit = rlimit(RLIMIT_MEMLOCK);
2271		limit >>= PAGE_SHIFT;
2272		if (locked > limit && !capable(CAP_IPC_LOCK))
2273			return -ENOMEM;
2274	}
2275
2276	/* Check to ensure the stack will not grow into a hugetlb-only region */
2277	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2278			vma->vm_end - size;
2279	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2280		return -EFAULT;
2281
2282	/*
2283	 * Overcommit..  This must be the final test, as it will
2284	 * update security statistics.
2285	 */
2286	if (security_vm_enough_memory_mm(mm, grow))
2287		return -ENOMEM;
2288
 
 
 
 
2289	return 0;
2290}
2291
2292#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2293/*
2294 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2295 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2296 */
2297int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2298{
2299	struct mm_struct *mm = vma->vm_mm;
2300	struct vm_area_struct *next;
2301	unsigned long gap_addr;
2302	int error = 0;
2303
2304	if (!(vma->vm_flags & VM_GROWSUP))
2305		return -EFAULT;
2306
2307	/* Guard against exceeding limits of the address space. */
2308	address &= PAGE_MASK;
2309	if (address >= (TASK_SIZE & PAGE_MASK))
2310		return -ENOMEM;
2311	address += PAGE_SIZE;
2312
2313	/* Enforce stack_guard_gap */
2314	gap_addr = address + stack_guard_gap;
2315
2316	/* Guard against overflow */
2317	if (gap_addr < address || gap_addr > TASK_SIZE)
2318		gap_addr = TASK_SIZE;
2319
2320	next = vma->vm_next;
2321	if (next && next->vm_start < gap_addr &&
2322			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2323		if (!(next->vm_flags & VM_GROWSUP))
2324			return -ENOMEM;
2325		/* Check that both stack segments have the same anon_vma? */
2326	}
2327
2328	/* We must make sure the anon_vma is allocated. */
2329	if (unlikely(anon_vma_prepare(vma)))
2330		return -ENOMEM;
 
2331
2332	/*
2333	 * vma->vm_start/vm_end cannot change under us because the caller
2334	 * is required to hold the mmap_sem in read mode.  We need the
2335	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2336	 */
2337	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2338
2339	/* Somebody else might have raced and expanded it already */
2340	if (address > vma->vm_end) {
2341		unsigned long size, grow;
2342
2343		size = address - vma->vm_start;
2344		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2345
2346		error = -ENOMEM;
2347		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2348			error = acct_stack_growth(vma, size, grow);
2349			if (!error) {
2350				/*
2351				 * vma_gap_update() doesn't support concurrent
2352				 * updates, but we only hold a shared mmap_sem
2353				 * lock here, so we need to protect against
2354				 * concurrent vma expansions.
2355				 * anon_vma_lock_write() doesn't help here, as
2356				 * we don't guarantee that all growable vmas
2357				 * in a mm share the same root anon vma.
2358				 * So, we reuse mm->page_table_lock to guard
2359				 * against concurrent vma expansions.
2360				 */
2361				spin_lock(&mm->page_table_lock);
2362				if (vma->vm_flags & VM_LOCKED)
2363					mm->locked_vm += grow;
2364				vm_stat_account(mm, vma->vm_flags, grow);
2365				anon_vma_interval_tree_pre_update_vma(vma);
2366				vma->vm_end = address;
2367				anon_vma_interval_tree_post_update_vma(vma);
2368				if (vma->vm_next)
2369					vma_gap_update(vma->vm_next);
2370				else
2371					mm->highest_vm_end = vm_end_gap(vma);
2372				spin_unlock(&mm->page_table_lock);
2373
2374				perf_event_mmap(vma);
2375			}
2376		}
2377	}
2378	anon_vma_unlock_write(vma->anon_vma);
2379	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2380	validate_mm(mm);
2381	return error;
2382}
2383#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2384
2385/*
2386 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2387 */
2388int expand_downwards(struct vm_area_struct *vma,
2389				   unsigned long address)
2390{
2391	struct mm_struct *mm = vma->vm_mm;
2392	struct vm_area_struct *prev;
2393	int error;
2394
 
 
 
 
 
 
 
2395	address &= PAGE_MASK;
2396	error = security_mmap_addr(address);
2397	if (error)
2398		return error;
2399
2400	/* Enforce stack_guard_gap */
2401	prev = vma->vm_prev;
2402	/* Check that both stack segments have the same anon_vma? */
2403	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2404			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2405		if (address - prev->vm_end < stack_guard_gap)
2406			return -ENOMEM;
2407	}
2408
2409	/* We must make sure the anon_vma is allocated. */
2410	if (unlikely(anon_vma_prepare(vma)))
2411		return -ENOMEM;
2412
2413	/*
2414	 * vma->vm_start/vm_end cannot change under us because the caller
2415	 * is required to hold the mmap_sem in read mode.  We need the
2416	 * anon_vma lock to serialize against concurrent expand_stacks.
2417	 */
2418	anon_vma_lock_write(vma->anon_vma);
2419
2420	/* Somebody else might have raced and expanded it already */
2421	if (address < vma->vm_start) {
2422		unsigned long size, grow;
2423
2424		size = vma->vm_end - address;
2425		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2426
2427		error = -ENOMEM;
2428		if (grow <= vma->vm_pgoff) {
2429			error = acct_stack_growth(vma, size, grow);
2430			if (!error) {
2431				/*
2432				 * vma_gap_update() doesn't support concurrent
2433				 * updates, but we only hold a shared mmap_sem
2434				 * lock here, so we need to protect against
2435				 * concurrent vma expansions.
2436				 * anon_vma_lock_write() doesn't help here, as
2437				 * we don't guarantee that all growable vmas
2438				 * in a mm share the same root anon vma.
2439				 * So, we reuse mm->page_table_lock to guard
2440				 * against concurrent vma expansions.
2441				 */
2442				spin_lock(&mm->page_table_lock);
2443				if (vma->vm_flags & VM_LOCKED)
2444					mm->locked_vm += grow;
2445				vm_stat_account(mm, vma->vm_flags, grow);
2446				anon_vma_interval_tree_pre_update_vma(vma);
2447				vma->vm_start = address;
2448				vma->vm_pgoff -= grow;
2449				anon_vma_interval_tree_post_update_vma(vma);
2450				vma_gap_update(vma);
2451				spin_unlock(&mm->page_table_lock);
2452
2453				perf_event_mmap(vma);
2454			}
2455		}
2456	}
2457	anon_vma_unlock_write(vma->anon_vma);
2458	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459	validate_mm(mm);
2460	return error;
2461}
2462
2463/* enforced gap between the expanding stack and other mappings. */
2464unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2465
2466static int __init cmdline_parse_stack_guard_gap(char *p)
2467{
2468	unsigned long val;
2469	char *endptr;
2470
2471	val = simple_strtoul(p, &endptr, 10);
2472	if (!*endptr)
2473		stack_guard_gap = val << PAGE_SHIFT;
2474
2475	return 0;
2476}
2477__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2478
2479#ifdef CONFIG_STACK_GROWSUP
2480int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481{
 
 
 
 
 
 
 
 
2482	return expand_upwards(vma, address);
2483}
2484
2485struct vm_area_struct *
2486find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487{
2488	struct vm_area_struct *vma, *prev;
2489
2490	addr &= PAGE_MASK;
2491	vma = find_vma_prev(mm, addr, &prev);
2492	if (vma && (vma->vm_start <= addr))
2493		return vma;
2494	if (!prev || expand_stack(prev, addr))
2495		return NULL;
2496	if (prev->vm_flags & VM_LOCKED)
2497		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2498	return prev;
2499}
2500#else
2501int expand_stack(struct vm_area_struct *vma, unsigned long address)
2502{
 
 
 
 
 
 
 
 
2503	return expand_downwards(vma, address);
2504}
2505
2506struct vm_area_struct *
2507find_extend_vma(struct mm_struct *mm, unsigned long addr)
2508{
2509	struct vm_area_struct *vma;
2510	unsigned long start;
2511
2512	addr &= PAGE_MASK;
2513	vma = find_vma(mm, addr);
2514	if (!vma)
2515		return NULL;
2516	if (vma->vm_start <= addr)
2517		return vma;
2518	if (!(vma->vm_flags & VM_GROWSDOWN))
2519		return NULL;
2520	start = vma->vm_start;
2521	if (expand_stack(vma, addr))
2522		return NULL;
2523	if (vma->vm_flags & VM_LOCKED)
2524		populate_vma_page_range(vma, addr, start, NULL);
2525	return vma;
2526}
2527#endif
2528
2529EXPORT_SYMBOL_GPL(find_extend_vma);
2530
2531/*
2532 * Ok - we have the memory areas we should free on the vma list,
2533 * so release them, and do the vma updates.
2534 *
2535 * Called with the mm semaphore held.
2536 */
2537static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538{
2539	unsigned long nr_accounted = 0;
2540
2541	/* Update high watermark before we lower total_vm */
2542	update_hiwater_vm(mm);
2543	do {
2544		long nrpages = vma_pages(vma);
2545
2546		if (vma->vm_flags & VM_ACCOUNT)
2547			nr_accounted += nrpages;
2548		vm_stat_account(mm, vma->vm_flags, -nrpages);
2549		vma = remove_vma(vma);
2550	} while (vma);
2551	vm_unacct_memory(nr_accounted);
2552	validate_mm(mm);
2553}
2554
2555/*
2556 * Get rid of page table information in the indicated region.
2557 *
2558 * Called with the mm semaphore held.
2559 */
2560static void unmap_region(struct mm_struct *mm,
2561		struct vm_area_struct *vma, struct vm_area_struct *prev,
2562		unsigned long start, unsigned long end)
2563{
2564	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2565	struct mmu_gather tlb;
2566
2567	lru_add_drain();
2568	tlb_gather_mmu(&tlb, mm, start, end);
2569	update_hiwater_rss(mm);
2570	unmap_vmas(&tlb, vma, start, end);
2571	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2572				 next ? next->vm_start : USER_PGTABLES_CEILING);
2573	tlb_finish_mmu(&tlb, start, end);
2574}
2575
2576/*
2577 * Create a list of vma's touched by the unmap, removing them from the mm's
2578 * vma list as we go..
2579 */
2580static void
2581detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2582	struct vm_area_struct *prev, unsigned long end)
2583{
2584	struct vm_area_struct **insertion_point;
2585	struct vm_area_struct *tail_vma = NULL;
2586
2587	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2588	vma->vm_prev = NULL;
2589	do {
2590		vma_rb_erase(vma, &mm->mm_rb);
2591		mm->map_count--;
2592		tail_vma = vma;
2593		vma = vma->vm_next;
2594	} while (vma && vma->vm_start < end);
2595	*insertion_point = vma;
2596	if (vma) {
2597		vma->vm_prev = prev;
2598		vma_gap_update(vma);
2599	} else
2600		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2601	tail_vma->vm_next = NULL;
2602
2603	/* Kill the cache */
2604	vmacache_invalidate(mm);
2605}
2606
2607/*
2608 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2609 * has already been checked or doesn't make sense to fail.
2610 */
2611int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2612		unsigned long addr, int new_below)
2613{
2614	struct vm_area_struct *new;
2615	int err;
2616
2617	if (vma->vm_ops && vma->vm_ops->split) {
2618		err = vma->vm_ops->split(vma, addr);
2619		if (err)
2620			return err;
2621	}
2622
2623	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2624	if (!new)
2625		return -ENOMEM;
2626
2627	/* most fields are the same, copy all, and then fixup */
2628	*new = *vma;
2629
2630	INIT_LIST_HEAD(&new->anon_vma_chain);
2631
2632	if (new_below)
2633		new->vm_end = addr;
2634	else {
2635		new->vm_start = addr;
2636		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2637	}
2638
2639	err = vma_dup_policy(vma, new);
2640	if (err)
2641		goto out_free_vma;
2642
2643	err = anon_vma_clone(new, vma);
2644	if (err)
2645		goto out_free_mpol;
2646
2647	if (new->vm_file)
2648		get_file(new->vm_file);
2649
2650	if (new->vm_ops && new->vm_ops->open)
2651		new->vm_ops->open(new);
2652
2653	if (new_below)
2654		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2655			((addr - new->vm_start) >> PAGE_SHIFT), new);
2656	else
2657		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2658
2659	/* Success. */
2660	if (!err)
2661		return 0;
2662
2663	/* Clean everything up if vma_adjust failed. */
2664	if (new->vm_ops && new->vm_ops->close)
2665		new->vm_ops->close(new);
2666	if (new->vm_file)
2667		fput(new->vm_file);
2668	unlink_anon_vmas(new);
2669 out_free_mpol:
2670	mpol_put(vma_policy(new));
2671 out_free_vma:
2672	kmem_cache_free(vm_area_cachep, new);
 
2673	return err;
2674}
2675
2676/*
2677 * Split a vma into two pieces at address 'addr', a new vma is allocated
2678 * either for the first part or the tail.
2679 */
2680int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2681	      unsigned long addr, int new_below)
2682{
2683	if (mm->map_count >= sysctl_max_map_count)
2684		return -ENOMEM;
2685
2686	return __split_vma(mm, vma, addr, new_below);
2687}
2688
2689/* Munmap is split into 2 main parts -- this part which finds
2690 * what needs doing, and the areas themselves, which do the
2691 * work.  This now handles partial unmappings.
2692 * Jeremy Fitzhardinge <jeremy@goop.org>
2693 */
2694int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2695	      struct list_head *uf)
2696{
2697	unsigned long end;
2698	struct vm_area_struct *vma, *prev, *last;
2699
2700	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2701		return -EINVAL;
2702
2703	len = PAGE_ALIGN(len);
2704	if (len == 0)
2705		return -EINVAL;
2706
2707	/* Find the first overlapping VMA */
2708	vma = find_vma(mm, start);
2709	if (!vma)
2710		return 0;
2711	prev = vma->vm_prev;
2712	/* we have  start < vma->vm_end  */
2713
2714	/* if it doesn't overlap, we have nothing.. */
2715	end = start + len;
2716	if (vma->vm_start >= end)
2717		return 0;
2718
2719	/*
2720	 * If we need to split any vma, do it now to save pain later.
2721	 *
2722	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2723	 * unmapped vm_area_struct will remain in use: so lower split_vma
2724	 * places tmp vma above, and higher split_vma places tmp vma below.
2725	 */
2726	if (start > vma->vm_start) {
2727		int error;
2728
2729		/*
2730		 * Make sure that map_count on return from munmap() will
2731		 * not exceed its limit; but let map_count go just above
2732		 * its limit temporarily, to help free resources as expected.
2733		 */
2734		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2735			return -ENOMEM;
2736
2737		error = __split_vma(mm, vma, start, 0);
2738		if (error)
2739			return error;
2740		prev = vma;
2741	}
2742
2743	/* Does it split the last one? */
2744	last = find_vma(mm, end);
2745	if (last && end > last->vm_start) {
2746		int error = __split_vma(mm, last, end, 1);
2747		if (error)
2748			return error;
2749	}
2750	vma = prev ? prev->vm_next : mm->mmap;
2751
2752	if (unlikely(uf)) {
2753		/*
2754		 * If userfaultfd_unmap_prep returns an error the vmas
2755		 * will remain splitted, but userland will get a
2756		 * highly unexpected error anyway. This is no
2757		 * different than the case where the first of the two
2758		 * __split_vma fails, but we don't undo the first
2759		 * split, despite we could. This is unlikely enough
2760		 * failure that it's not worth optimizing it for.
2761		 */
2762		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2763		if (error)
2764			return error;
2765	}
2766
2767	/*
2768	 * unlock any mlock()ed ranges before detaching vmas
2769	 */
2770	if (mm->locked_vm) {
2771		struct vm_area_struct *tmp = vma;
2772		while (tmp && tmp->vm_start < end) {
2773			if (tmp->vm_flags & VM_LOCKED) {
2774				mm->locked_vm -= vma_pages(tmp);
2775				munlock_vma_pages_all(tmp);
2776			}
2777			tmp = tmp->vm_next;
2778		}
2779	}
2780
2781	/*
2782	 * Remove the vma's, and unmap the actual pages
2783	 */
2784	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2785	unmap_region(mm, vma, prev, start, end);
2786
2787	arch_unmap(mm, vma, start, end);
2788
2789	/* Fix up all other VM information */
2790	remove_vma_list(mm, vma);
2791
2792	return 0;
2793}
2794
2795int vm_munmap(unsigned long start, size_t len)
2796{
2797	int ret;
2798	struct mm_struct *mm = current->mm;
2799	LIST_HEAD(uf);
2800
2801	if (down_write_killable(&mm->mmap_sem))
2802		return -EINTR;
2803
2804	ret = do_munmap(mm, start, len, &uf);
 
2805	up_write(&mm->mmap_sem);
2806	userfaultfd_unmap_complete(mm, &uf);
2807	return ret;
2808}
2809EXPORT_SYMBOL(vm_munmap);
2810
2811SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2812{
2813	profile_munmap(addr);
2814	return vm_munmap(addr, len);
2815}
2816
2817
2818/*
2819 * Emulation of deprecated remap_file_pages() syscall.
2820 */
2821SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2822		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2823{
2824
2825	struct mm_struct *mm = current->mm;
2826	struct vm_area_struct *vma;
2827	unsigned long populate = 0;
2828	unsigned long ret = -EINVAL;
2829	struct file *file;
2830
2831	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2832		     current->comm, current->pid);
2833
2834	if (prot)
2835		return ret;
2836	start = start & PAGE_MASK;
2837	size = size & PAGE_MASK;
2838
2839	if (start + size <= start)
2840		return ret;
2841
2842	/* Does pgoff wrap? */
2843	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2844		return ret;
2845
2846	if (down_write_killable(&mm->mmap_sem))
2847		return -EINTR;
2848
2849	vma = find_vma(mm, start);
2850
2851	if (!vma || !(vma->vm_flags & VM_SHARED))
2852		goto out;
2853
2854	if (start < vma->vm_start)
2855		goto out;
2856
2857	if (start + size > vma->vm_end) {
2858		struct vm_area_struct *next;
2859
2860		for (next = vma->vm_next; next; next = next->vm_next) {
2861			/* hole between vmas ? */
2862			if (next->vm_start != next->vm_prev->vm_end)
2863				goto out;
2864
2865			if (next->vm_file != vma->vm_file)
2866				goto out;
2867
2868			if (next->vm_flags != vma->vm_flags)
2869				goto out;
2870
2871			if (start + size <= next->vm_end)
2872				break;
2873		}
2874
2875		if (!next)
2876			goto out;
2877	}
2878
2879	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2880	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2881	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2882
2883	flags &= MAP_NONBLOCK;
2884	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2885	if (vma->vm_flags & VM_LOCKED) {
2886		struct vm_area_struct *tmp;
2887		flags |= MAP_LOCKED;
2888
2889		/* drop PG_Mlocked flag for over-mapped range */
2890		for (tmp = vma; tmp->vm_start >= start + size;
2891				tmp = tmp->vm_next) {
2892			/*
2893			 * Split pmd and munlock page on the border
2894			 * of the range.
2895			 */
2896			vma_adjust_trans_huge(tmp, start, start + size, 0);
2897
2898			munlock_vma_pages_range(tmp,
2899					max(tmp->vm_start, start),
2900					min(tmp->vm_end, start + size));
2901		}
2902	}
2903
2904	file = get_file(vma->vm_file);
2905	ret = do_mmap_pgoff(vma->vm_file, start, size,
2906			prot, flags, pgoff, &populate, NULL);
2907	fput(file);
2908out:
2909	up_write(&mm->mmap_sem);
2910	if (populate)
2911		mm_populate(ret, populate);
2912	if (!IS_ERR_VALUE(ret))
2913		ret = 0;
2914	return ret;
2915}
2916
2917static inline void verify_mm_writelocked(struct mm_struct *mm)
2918{
2919#ifdef CONFIG_DEBUG_VM
2920	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2921		WARN_ON(1);
2922		up_read(&mm->mmap_sem);
2923	}
2924#endif
2925}
2926
2927/*
2928 *  this is really a simplified "do_mmap".  it only handles
2929 *  anonymous maps.  eventually we may be able to do some
2930 *  brk-specific accounting here.
2931 */
2932static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2933{
2934	struct mm_struct *mm = current->mm;
2935	struct vm_area_struct *vma, *prev;
2936	unsigned long len;
2937	struct rb_node **rb_link, *rb_parent;
2938	pgoff_t pgoff = addr >> PAGE_SHIFT;
2939	int error;
2940
2941	len = PAGE_ALIGN(request);
2942	if (len < request)
2943		return -ENOMEM;
2944	if (!len)
2945		return 0;
2946
2947	/* Until we need other flags, refuse anything except VM_EXEC. */
2948	if ((flags & (~VM_EXEC)) != 0)
2949		return -EINVAL;
2950	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2951
2952	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2953	if (offset_in_page(error))
2954		return error;
2955
2956	error = mlock_future_check(mm, mm->def_flags, len);
2957	if (error)
2958		return error;
2959
2960	/*
2961	 * mm->mmap_sem is required to protect against another thread
2962	 * changing the mappings in case we sleep.
2963	 */
2964	verify_mm_writelocked(mm);
2965
2966	/*
2967	 * Clear old maps.  this also does some error checking for us
2968	 */
2969	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2970			      &rb_parent)) {
2971		if (do_munmap(mm, addr, len, uf))
2972			return -ENOMEM;
 
2973	}
2974
2975	/* Check against address space limits *after* clearing old maps... */
2976	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2977		return -ENOMEM;
2978
2979	if (mm->map_count > sysctl_max_map_count)
2980		return -ENOMEM;
2981
2982	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2983		return -ENOMEM;
2984
2985	/* Can we just expand an old private anonymous mapping? */
2986	vma = vma_merge(mm, prev, addr, addr + len, flags,
2987			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2988	if (vma)
2989		goto out;
2990
2991	/*
2992	 * create a vma struct for an anonymous mapping
2993	 */
2994	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2995	if (!vma) {
2996		vm_unacct_memory(len >> PAGE_SHIFT);
2997		return -ENOMEM;
2998	}
2999
3000	INIT_LIST_HEAD(&vma->anon_vma_chain);
3001	vma->vm_mm = mm;
3002	vma->vm_start = addr;
3003	vma->vm_end = addr + len;
3004	vma->vm_pgoff = pgoff;
3005	vma->vm_flags = flags;
3006	vma->vm_page_prot = vm_get_page_prot(flags);
3007	vma_link(mm, vma, prev, rb_link, rb_parent);
3008out:
3009	perf_event_mmap(vma);
3010	mm->total_vm += len >> PAGE_SHIFT;
3011	mm->data_vm += len >> PAGE_SHIFT;
3012	if (flags & VM_LOCKED)
3013		mm->locked_vm += (len >> PAGE_SHIFT);
3014	vma->vm_flags |= VM_SOFTDIRTY;
3015	return 0;
3016}
3017
3018static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
3019{
3020	return do_brk_flags(addr, len, 0, uf);
3021}
3022
3023int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
3024{
3025	struct mm_struct *mm = current->mm;
3026	int ret;
3027	bool populate;
3028	LIST_HEAD(uf);
3029
3030	if (down_write_killable(&mm->mmap_sem))
3031		return -EINTR;
3032
3033	ret = do_brk_flags(addr, len, flags, &uf);
 
3034	populate = ((mm->def_flags & VM_LOCKED) != 0);
3035	up_write(&mm->mmap_sem);
3036	userfaultfd_unmap_complete(mm, &uf);
3037	if (populate && !ret)
3038		mm_populate(addr, len);
3039	return ret;
3040}
3041EXPORT_SYMBOL(vm_brk_flags);
3042
3043int vm_brk(unsigned long addr, unsigned long len)
3044{
3045	return vm_brk_flags(addr, len, 0);
3046}
3047EXPORT_SYMBOL(vm_brk);
3048
3049/* Release all mmaps. */
3050void exit_mmap(struct mm_struct *mm)
3051{
3052	struct mmu_gather tlb;
3053	struct vm_area_struct *vma;
3054	unsigned long nr_accounted = 0;
3055
3056	/* mm's last user has gone, and its about to be pulled down */
3057	mmu_notifier_release(mm);
3058
3059	if (unlikely(mm_is_oom_victim(mm))) {
3060		/*
3061		 * Manually reap the mm to free as much memory as possible.
3062		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3063		 * this mm from further consideration.  Taking mm->mmap_sem for
3064		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3065		 * reaper will not run on this mm again after mmap_sem is
3066		 * dropped.
3067		 *
3068		 * Nothing can be holding mm->mmap_sem here and the above call
3069		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3070		 * __oom_reap_task_mm() will not block.
3071		 *
3072		 * This needs to be done before calling munlock_vma_pages_all(),
3073		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3074		 * reliably test it.
3075		 */
3076		mutex_lock(&oom_lock);
3077		__oom_reap_task_mm(mm);
3078		mutex_unlock(&oom_lock);
3079
3080		set_bit(MMF_OOM_SKIP, &mm->flags);
3081		down_write(&mm->mmap_sem);
3082		up_write(&mm->mmap_sem);
3083	}
3084
3085	if (mm->locked_vm) {
3086		vma = mm->mmap;
3087		while (vma) {
3088			if (vma->vm_flags & VM_LOCKED)
3089				munlock_vma_pages_all(vma);
3090			vma = vma->vm_next;
3091		}
3092	}
3093
3094	arch_exit_mmap(mm);
3095
3096	vma = mm->mmap;
3097	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3098		return;
3099
3100	lru_add_drain();
3101	flush_cache_mm(mm);
3102	tlb_gather_mmu(&tlb, mm, 0, -1);
3103	/* update_hiwater_rss(mm) here? but nobody should be looking */
3104	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3105	unmap_vmas(&tlb, vma, 0, -1);
 
3106	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3107	tlb_finish_mmu(&tlb, 0, -1);
3108
3109	/*
3110	 * Walk the list again, actually closing and freeing it,
3111	 * with preemption enabled, without holding any MM locks.
3112	 */
3113	while (vma) {
3114		if (vma->vm_flags & VM_ACCOUNT)
3115			nr_accounted += vma_pages(vma);
3116		vma = remove_vma(vma);
3117	}
3118	vm_unacct_memory(nr_accounted);
 
 
 
3119}
3120
3121/* Insert vm structure into process list sorted by address
3122 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3123 * then i_mmap_rwsem is taken here.
3124 */
3125int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3126{
3127	struct vm_area_struct *prev;
3128	struct rb_node **rb_link, *rb_parent;
3129
3130	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3131			   &prev, &rb_link, &rb_parent))
3132		return -ENOMEM;
3133	if ((vma->vm_flags & VM_ACCOUNT) &&
3134	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3135		return -ENOMEM;
3136
3137	/*
3138	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3139	 * until its first write fault, when page's anon_vma and index
3140	 * are set.  But now set the vm_pgoff it will almost certainly
3141	 * end up with (unless mremap moves it elsewhere before that
3142	 * first wfault), so /proc/pid/maps tells a consistent story.
3143	 *
3144	 * By setting it to reflect the virtual start address of the
3145	 * vma, merges and splits can happen in a seamless way, just
3146	 * using the existing file pgoff checks and manipulations.
3147	 * Similarly in do_mmap_pgoff and in do_brk.
3148	 */
3149	if (vma_is_anonymous(vma)) {
3150		BUG_ON(vma->anon_vma);
3151		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3152	}
 
 
 
 
 
 
3153
3154	vma_link(mm, vma, prev, rb_link, rb_parent);
3155	return 0;
3156}
3157
3158/*
3159 * Copy the vma structure to a new location in the same mm,
3160 * prior to moving page table entries, to effect an mremap move.
3161 */
3162struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3163	unsigned long addr, unsigned long len, pgoff_t pgoff,
3164	bool *need_rmap_locks)
3165{
3166	struct vm_area_struct *vma = *vmap;
3167	unsigned long vma_start = vma->vm_start;
3168	struct mm_struct *mm = vma->vm_mm;
3169	struct vm_area_struct *new_vma, *prev;
3170	struct rb_node **rb_link, *rb_parent;
3171	bool faulted_in_anon_vma = true;
3172
3173	/*
3174	 * If anonymous vma has not yet been faulted, update new pgoff
3175	 * to match new location, to increase its chance of merging.
3176	 */
3177	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3178		pgoff = addr >> PAGE_SHIFT;
3179		faulted_in_anon_vma = false;
3180	}
3181
3182	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3183		return NULL;	/* should never get here */
3184	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3185			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3186			    vma->vm_userfaultfd_ctx);
3187	if (new_vma) {
3188		/*
3189		 * Source vma may have been merged into new_vma
3190		 */
3191		if (unlikely(vma_start >= new_vma->vm_start &&
3192			     vma_start < new_vma->vm_end)) {
3193			/*
3194			 * The only way we can get a vma_merge with
3195			 * self during an mremap is if the vma hasn't
3196			 * been faulted in yet and we were allowed to
3197			 * reset the dst vma->vm_pgoff to the
3198			 * destination address of the mremap to allow
3199			 * the merge to happen. mremap must change the
3200			 * vm_pgoff linearity between src and dst vmas
3201			 * (in turn preventing a vma_merge) to be
3202			 * safe. It is only safe to keep the vm_pgoff
3203			 * linear if there are no pages mapped yet.
3204			 */
3205			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3206			*vmap = vma = new_vma;
3207		}
3208		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3209	} else {
3210		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3211		if (!new_vma)
3212			goto out;
3213		*new_vma = *vma;
3214		new_vma->vm_start = addr;
3215		new_vma->vm_end = addr + len;
3216		new_vma->vm_pgoff = pgoff;
3217		if (vma_dup_policy(vma, new_vma))
3218			goto out_free_vma;
3219		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3220		if (anon_vma_clone(new_vma, vma))
3221			goto out_free_mempol;
3222		if (new_vma->vm_file)
3223			get_file(new_vma->vm_file);
3224		if (new_vma->vm_ops && new_vma->vm_ops->open)
3225			new_vma->vm_ops->open(new_vma);
3226		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3227		*need_rmap_locks = false;
3228	}
3229	return new_vma;
3230
3231out_free_mempol:
3232	mpol_put(vma_policy(new_vma));
3233out_free_vma:
3234	kmem_cache_free(vm_area_cachep, new_vma);
3235out:
3236	return NULL;
3237}
3238
3239/*
3240 * Return true if the calling process may expand its vm space by the passed
3241 * number of pages
3242 */
3243bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3244{
3245	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3246		return false;
3247
3248	if (is_data_mapping(flags) &&
3249	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3250		/* Workaround for Valgrind */
3251		if (rlimit(RLIMIT_DATA) == 0 &&
3252		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3253			return true;
3254
3255		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3256			     current->comm, current->pid,
3257			     (mm->data_vm + npages) << PAGE_SHIFT,
3258			     rlimit(RLIMIT_DATA),
3259			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3260
3261		if (!ignore_rlimit_data)
3262			return false;
3263	}
3264
3265	return true;
3266}
3267
3268void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3269{
3270	mm->total_vm += npages;
3271
3272	if (is_exec_mapping(flags))
3273		mm->exec_vm += npages;
3274	else if (is_stack_mapping(flags))
3275		mm->stack_vm += npages;
3276	else if (is_data_mapping(flags))
3277		mm->data_vm += npages;
3278}
3279
3280static int special_mapping_fault(struct vm_fault *vmf);
3281
3282/*
3283 * Having a close hook prevents vma merging regardless of flags.
3284 */
3285static void special_mapping_close(struct vm_area_struct *vma)
3286{
3287}
3288
3289static const char *special_mapping_name(struct vm_area_struct *vma)
3290{
3291	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3292}
3293
3294static int special_mapping_mremap(struct vm_area_struct *new_vma)
3295{
3296	struct vm_special_mapping *sm = new_vma->vm_private_data;
3297
3298	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3299		return -EFAULT;
3300
3301	if (sm->mremap)
3302		return sm->mremap(sm, new_vma);
3303
3304	return 0;
3305}
3306
3307static const struct vm_operations_struct special_mapping_vmops = {
3308	.close = special_mapping_close,
3309	.fault = special_mapping_fault,
3310	.mremap = special_mapping_mremap,
3311	.name = special_mapping_name,
3312};
3313
3314static const struct vm_operations_struct legacy_special_mapping_vmops = {
3315	.close = special_mapping_close,
3316	.fault = special_mapping_fault,
3317};
3318
3319static int special_mapping_fault(struct vm_fault *vmf)
 
3320{
3321	struct vm_area_struct *vma = vmf->vma;
3322	pgoff_t pgoff;
3323	struct page **pages;
3324
3325	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3326		pages = vma->vm_private_data;
3327	} else {
3328		struct vm_special_mapping *sm = vma->vm_private_data;
3329
3330		if (sm->fault)
3331			return sm->fault(sm, vmf->vma, vmf);
3332
3333		pages = sm->pages;
3334	}
3335
3336	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3337		pgoff--;
3338
3339	if (*pages) {
3340		struct page *page = *pages;
3341		get_page(page);
3342		vmf->page = page;
3343		return 0;
3344	}
3345
3346	return VM_FAULT_SIGBUS;
3347}
3348
3349static struct vm_area_struct *__install_special_mapping(
3350	struct mm_struct *mm,
3351	unsigned long addr, unsigned long len,
3352	unsigned long vm_flags, void *priv,
3353	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3354{
3355	int ret;
3356	struct vm_area_struct *vma;
3357
3358	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3359	if (unlikely(vma == NULL))
3360		return ERR_PTR(-ENOMEM);
3361
3362	INIT_LIST_HEAD(&vma->anon_vma_chain);
3363	vma->vm_mm = mm;
3364	vma->vm_start = addr;
3365	vma->vm_end = addr + len;
3366
3367	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3368	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3369
3370	vma->vm_ops = ops;
3371	vma->vm_private_data = priv;
3372
3373	ret = insert_vm_struct(mm, vma);
3374	if (ret)
3375		goto out;
3376
3377	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3378
3379	perf_event_mmap(vma);
3380
3381	return vma;
3382
3383out:
3384	kmem_cache_free(vm_area_cachep, vma);
3385	return ERR_PTR(ret);
3386}
3387
3388bool vma_is_special_mapping(const struct vm_area_struct *vma,
3389	const struct vm_special_mapping *sm)
3390{
3391	return vma->vm_private_data == sm &&
3392		(vma->vm_ops == &special_mapping_vmops ||
3393		 vma->vm_ops == &legacy_special_mapping_vmops);
3394}
3395
3396/*
3397 * Called with mm->mmap_sem held for writing.
3398 * Insert a new vma covering the given region, with the given flags.
3399 * Its pages are supplied by the given array of struct page *.
3400 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3401 * The region past the last page supplied will always produce SIGBUS.
3402 * The array pointer and the pages it points to are assumed to stay alive
3403 * for as long as this mapping might exist.
3404 */
3405struct vm_area_struct *_install_special_mapping(
3406	struct mm_struct *mm,
3407	unsigned long addr, unsigned long len,
3408	unsigned long vm_flags, const struct vm_special_mapping *spec)
3409{
3410	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3411					&special_mapping_vmops);
3412}
3413
3414int install_special_mapping(struct mm_struct *mm,
3415			    unsigned long addr, unsigned long len,
3416			    unsigned long vm_flags, struct page **pages)
3417{
3418	struct vm_area_struct *vma = __install_special_mapping(
3419		mm, addr, len, vm_flags, (void *)pages,
3420		&legacy_special_mapping_vmops);
3421
3422	return PTR_ERR_OR_ZERO(vma);
 
 
3423}
3424
3425static DEFINE_MUTEX(mm_all_locks_mutex);
3426
3427static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3428{
3429	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3430		/*
3431		 * The LSB of head.next can't change from under us
3432		 * because we hold the mm_all_locks_mutex.
3433		 */
3434		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3435		/*
3436		 * We can safely modify head.next after taking the
3437		 * anon_vma->root->rwsem. If some other vma in this mm shares
3438		 * the same anon_vma we won't take it again.
3439		 *
3440		 * No need of atomic instructions here, head.next
3441		 * can't change from under us thanks to the
3442		 * anon_vma->root->rwsem.
3443		 */
3444		if (__test_and_set_bit(0, (unsigned long *)
3445				       &anon_vma->root->rb_root.rb_root.rb_node))
3446			BUG();
3447	}
3448}
3449
3450static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3451{
3452	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3453		/*
3454		 * AS_MM_ALL_LOCKS can't change from under us because
3455		 * we hold the mm_all_locks_mutex.
3456		 *
3457		 * Operations on ->flags have to be atomic because
3458		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3459		 * mm_all_locks_mutex, there may be other cpus
3460		 * changing other bitflags in parallel to us.
3461		 */
3462		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3463			BUG();
3464		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3465	}
3466}
3467
3468/*
3469 * This operation locks against the VM for all pte/vma/mm related
3470 * operations that could ever happen on a certain mm. This includes
3471 * vmtruncate, try_to_unmap, and all page faults.
3472 *
3473 * The caller must take the mmap_sem in write mode before calling
3474 * mm_take_all_locks(). The caller isn't allowed to release the
3475 * mmap_sem until mm_drop_all_locks() returns.
3476 *
3477 * mmap_sem in write mode is required in order to block all operations
3478 * that could modify pagetables and free pages without need of
3479 * altering the vma layout. It's also needed in write mode to avoid new
 
3480 * anon_vmas to be associated with existing vmas.
3481 *
3482 * A single task can't take more than one mm_take_all_locks() in a row
3483 * or it would deadlock.
3484 *
3485 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3486 * mapping->flags avoid to take the same lock twice, if more than one
3487 * vma in this mm is backed by the same anon_vma or address_space.
3488 *
3489 * We take locks in following order, accordingly to comment at beginning
3490 * of mm/rmap.c:
3491 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3492 *     hugetlb mapping);
3493 *   - all i_mmap_rwsem locks;
3494 *   - all anon_vma->rwseml
3495 *
3496 * We can take all locks within these types randomly because the VM code
3497 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3498 * mm_all_locks_mutex.
3499 *
3500 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3501 * that may have to take thousand of locks.
3502 *
3503 * mm_take_all_locks() can fail if it's interrupted by signals.
3504 */
3505int mm_take_all_locks(struct mm_struct *mm)
3506{
3507	struct vm_area_struct *vma;
3508	struct anon_vma_chain *avc;
3509
3510	BUG_ON(down_read_trylock(&mm->mmap_sem));
3511
3512	mutex_lock(&mm_all_locks_mutex);
3513
3514	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3515		if (signal_pending(current))
3516			goto out_unlock;
3517		if (vma->vm_file && vma->vm_file->f_mapping &&
3518				is_vm_hugetlb_page(vma))
3519			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3520	}
3521
3522	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3523		if (signal_pending(current))
3524			goto out_unlock;
3525		if (vma->vm_file && vma->vm_file->f_mapping &&
3526				!is_vm_hugetlb_page(vma))
3527			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3528	}
3529
3530	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3531		if (signal_pending(current))
3532			goto out_unlock;
3533		if (vma->anon_vma)
3534			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3535				vm_lock_anon_vma(mm, avc->anon_vma);
3536	}
3537
3538	return 0;
3539
3540out_unlock:
3541	mm_drop_all_locks(mm);
3542	return -EINTR;
3543}
3544
3545static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3546{
3547	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3548		/*
3549		 * The LSB of head.next can't change to 0 from under
3550		 * us because we hold the mm_all_locks_mutex.
3551		 *
3552		 * We must however clear the bitflag before unlocking
3553		 * the vma so the users using the anon_vma->rb_root will
3554		 * never see our bitflag.
3555		 *
3556		 * No need of atomic instructions here, head.next
3557		 * can't change from under us until we release the
3558		 * anon_vma->root->rwsem.
3559		 */
3560		if (!__test_and_clear_bit(0, (unsigned long *)
3561					  &anon_vma->root->rb_root.rb_root.rb_node))
3562			BUG();
3563		anon_vma_unlock_write(anon_vma);
3564	}
3565}
3566
3567static void vm_unlock_mapping(struct address_space *mapping)
3568{
3569	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3570		/*
3571		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3572		 * because we hold the mm_all_locks_mutex.
3573		 */
3574		i_mmap_unlock_write(mapping);
3575		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3576					&mapping->flags))
3577			BUG();
3578	}
3579}
3580
3581/*
3582 * The mmap_sem cannot be released by the caller until
3583 * mm_drop_all_locks() returns.
3584 */
3585void mm_drop_all_locks(struct mm_struct *mm)
3586{
3587	struct vm_area_struct *vma;
3588	struct anon_vma_chain *avc;
3589
3590	BUG_ON(down_read_trylock(&mm->mmap_sem));
3591	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3592
3593	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3594		if (vma->anon_vma)
3595			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3596				vm_unlock_anon_vma(avc->anon_vma);
3597		if (vma->vm_file && vma->vm_file->f_mapping)
3598			vm_unlock_mapping(vma->vm_file->f_mapping);
3599	}
3600
3601	mutex_unlock(&mm_all_locks_mutex);
3602}
3603
3604/*
3605 * initialise the percpu counter for VM
3606 */
3607void __init mmap_init(void)
3608{
3609	int ret;
3610
3611	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3612	VM_BUG_ON(ret);
3613}
3614
3615/*
3616 * Initialise sysctl_user_reserve_kbytes.
3617 *
3618 * This is intended to prevent a user from starting a single memory hogging
3619 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3620 * mode.
3621 *
3622 * The default value is min(3% of free memory, 128MB)
3623 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3624 */
3625static int init_user_reserve(void)
3626{
3627	unsigned long free_kbytes;
3628
3629	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3630
3631	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3632	return 0;
3633}
3634subsys_initcall(init_user_reserve);
3635
3636/*
3637 * Initialise sysctl_admin_reserve_kbytes.
3638 *
3639 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3640 * to log in and kill a memory hogging process.
3641 *
3642 * Systems with more than 256MB will reserve 8MB, enough to recover
3643 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3644 * only reserve 3% of free pages by default.
3645 */
3646static int init_admin_reserve(void)
3647{
3648	unsigned long free_kbytes;
3649
3650	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3651
3652	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3653	return 0;
3654}
3655subsys_initcall(init_admin_reserve);
3656
3657/*
3658 * Reinititalise user and admin reserves if memory is added or removed.
3659 *
3660 * The default user reserve max is 128MB, and the default max for the
3661 * admin reserve is 8MB. These are usually, but not always, enough to
3662 * enable recovery from a memory hogging process using login/sshd, a shell,
3663 * and tools like top. It may make sense to increase or even disable the
3664 * reserve depending on the existence of swap or variations in the recovery
3665 * tools. So, the admin may have changed them.
3666 *
3667 * If memory is added and the reserves have been eliminated or increased above
3668 * the default max, then we'll trust the admin.
3669 *
3670 * If memory is removed and there isn't enough free memory, then we
3671 * need to reset the reserves.
3672 *
3673 * Otherwise keep the reserve set by the admin.
3674 */
3675static int reserve_mem_notifier(struct notifier_block *nb,
3676			     unsigned long action, void *data)
3677{
3678	unsigned long tmp, free_kbytes;
3679
3680	switch (action) {
3681	case MEM_ONLINE:
3682		/* Default max is 128MB. Leave alone if modified by operator. */
3683		tmp = sysctl_user_reserve_kbytes;
3684		if (0 < tmp && tmp < (1UL << 17))
3685			init_user_reserve();
3686
3687		/* Default max is 8MB.  Leave alone if modified by operator. */
3688		tmp = sysctl_admin_reserve_kbytes;
3689		if (0 < tmp && tmp < (1UL << 13))
3690			init_admin_reserve();
3691
3692		break;
3693	case MEM_OFFLINE:
3694		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695
3696		if (sysctl_user_reserve_kbytes > free_kbytes) {
3697			init_user_reserve();
3698			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3699				sysctl_user_reserve_kbytes);
3700		}
3701
3702		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3703			init_admin_reserve();
3704			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3705				sysctl_admin_reserve_kbytes);
3706		}
3707		break;
3708	default:
3709		break;
3710	}
3711	return NOTIFY_OK;
3712}
3713
3714static struct notifier_block reserve_mem_nb = {
3715	.notifier_call = reserve_mem_notifier,
3716};
3717
3718static int __meminit init_reserve_notifier(void)
3719{
3720	if (register_hotmemory_notifier(&reserve_mem_nb))
3721		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3722
3723	return 0;
3724}
3725subsys_initcall(init_reserve_notifier);
v3.15
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/backing-dev.h>
  12#include <linux/mm.h>
  13#include <linux/vmacache.h>
  14#include <linux/shm.h>
  15#include <linux/mman.h>
  16#include <linux/pagemap.h>
  17#include <linux/swap.h>
  18#include <linux/syscalls.h>
  19#include <linux/capability.h>
  20#include <linux/init.h>
  21#include <linux/file.h>
  22#include <linux/fs.h>
  23#include <linux/personality.h>
  24#include <linux/security.h>
  25#include <linux/hugetlb.h>
 
  26#include <linux/profile.h>
  27#include <linux/export.h>
  28#include <linux/mount.h>
  29#include <linux/mempolicy.h>
  30#include <linux/rmap.h>
  31#include <linux/mmu_notifier.h>
 
  32#include <linux/perf_event.h>
  33#include <linux/audit.h>
  34#include <linux/khugepaged.h>
  35#include <linux/uprobes.h>
  36#include <linux/rbtree_augmented.h>
  37#include <linux/sched/sysctl.h>
  38#include <linux/notifier.h>
  39#include <linux/memory.h>
 
 
 
 
 
  40
  41#include <asm/uaccess.h>
  42#include <asm/cacheflush.h>
  43#include <asm/tlb.h>
  44#include <asm/mmu_context.h>
  45
  46#include "internal.h"
  47
  48#ifndef arch_mmap_check
  49#define arch_mmap_check(addr, len, flags)	(0)
  50#endif
  51
  52#ifndef arch_rebalance_pgtables
  53#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
 
 
 
 
 
  54#endif
  55
 
 
 
  56static void unmap_region(struct mm_struct *mm,
  57		struct vm_area_struct *vma, struct vm_area_struct *prev,
  58		unsigned long start, unsigned long end);
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
 
 
 
 
 
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
 
 
 
 
 
 
 
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 
 
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90unsigned long sysctl_overcommit_kbytes __read_mostly;
  91int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  92unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  93unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  94/*
  95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  96 * other variables. It can be updated by several CPUs frequently.
  97 */
  98struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  99
 100/*
 101 * The global memory commitment made in the system can be a metric
 102 * that can be used to drive ballooning decisions when Linux is hosted
 103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 104 * balancing memory across competing virtual machines that are hosted.
 105 * Several metrics drive this policy engine including the guest reported
 106 * memory commitment.
 107 */
 108unsigned long vm_memory_committed(void)
 109{
 110	return percpu_counter_read_positive(&vm_committed_as);
 111}
 112EXPORT_SYMBOL_GPL(vm_memory_committed);
 113
 114/*
 115 * Check that a process has enough memory to allocate a new virtual
 116 * mapping. 0 means there is enough memory for the allocation to
 117 * succeed and -ENOMEM implies there is not.
 118 *
 119 * We currently support three overcommit policies, which are set via the
 120 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 121 *
 122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 123 * Additional code 2002 Jul 20 by Robert Love.
 124 *
 125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 126 *
 127 * Note this is a helper function intended to be used by LSMs which
 128 * wish to use this logic.
 129 */
 130int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 131{
 132	unsigned long free, allowed, reserve;
 133
 134	vm_acct_memory(pages);
 135
 136	/*
 137	 * Sometimes we want to use more memory than we have
 138	 */
 139	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 140		return 0;
 141
 142	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 143		free = global_page_state(NR_FREE_PAGES);
 144		free += global_page_state(NR_FILE_PAGES);
 145
 146		/*
 147		 * shmem pages shouldn't be counted as free in this
 148		 * case, they can't be purged, only swapped out, and
 149		 * that won't affect the overall amount of available
 150		 * memory in the system.
 151		 */
 152		free -= global_page_state(NR_SHMEM);
 153
 154		free += get_nr_swap_pages();
 155
 156		/*
 157		 * Any slabs which are created with the
 158		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 159		 * which are reclaimable, under pressure.  The dentry
 160		 * cache and most inode caches should fall into this
 161		 */
 162		free += global_page_state(NR_SLAB_RECLAIMABLE);
 163
 164		/*
 165		 * Leave reserved pages. The pages are not for anonymous pages.
 166		 */
 167		if (free <= totalreserve_pages)
 168			goto error;
 169		else
 170			free -= totalreserve_pages;
 171
 172		/*
 173		 * Reserve some for root
 174		 */
 175		if (!cap_sys_admin)
 176			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 177
 178		if (free > pages)
 179			return 0;
 180
 181		goto error;
 182	}
 183
 184	allowed = vm_commit_limit();
 185	/*
 186	 * Reserve some for root
 187	 */
 188	if (!cap_sys_admin)
 189		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 190
 191	/*
 192	 * Don't let a single process grow so big a user can't recover
 193	 */
 194	if (mm) {
 195		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 196		allowed -= min(mm->total_vm / 32, reserve);
 197	}
 198
 199	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 200		return 0;
 201error:
 202	vm_unacct_memory(pages);
 203
 204	return -ENOMEM;
 205}
 206
 207/*
 208 * Requires inode->i_mapping->i_mmap_mutex
 209 */
 210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 211		struct file *file, struct address_space *mapping)
 212{
 213	if (vma->vm_flags & VM_DENYWRITE)
 214		atomic_inc(&file_inode(file)->i_writecount);
 215	if (vma->vm_flags & VM_SHARED)
 216		mapping->i_mmap_writable--;
 217
 218	flush_dcache_mmap_lock(mapping);
 219	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 220		list_del_init(&vma->shared.nonlinear);
 221	else
 222		vma_interval_tree_remove(vma, &mapping->i_mmap);
 223	flush_dcache_mmap_unlock(mapping);
 224}
 225
 226/*
 227 * Unlink a file-based vm structure from its interval tree, to hide
 228 * vma from rmap and vmtruncate before freeing its page tables.
 229 */
 230void unlink_file_vma(struct vm_area_struct *vma)
 231{
 232	struct file *file = vma->vm_file;
 233
 234	if (file) {
 235		struct address_space *mapping = file->f_mapping;
 236		mutex_lock(&mapping->i_mmap_mutex);
 237		__remove_shared_vm_struct(vma, file, mapping);
 238		mutex_unlock(&mapping->i_mmap_mutex);
 239	}
 240}
 241
 242/*
 243 * Close a vm structure and free it, returning the next.
 244 */
 245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 246{
 247	struct vm_area_struct *next = vma->vm_next;
 248
 249	might_sleep();
 250	if (vma->vm_ops && vma->vm_ops->close)
 251		vma->vm_ops->close(vma);
 252	if (vma->vm_file)
 253		fput(vma->vm_file);
 254	mpol_put(vma_policy(vma));
 255	kmem_cache_free(vm_area_cachep, vma);
 256	return next;
 257}
 258
 259static unsigned long do_brk(unsigned long addr, unsigned long len);
 260
 261SYSCALL_DEFINE1(brk, unsigned long, brk)
 262{
 263	unsigned long rlim, retval;
 264	unsigned long newbrk, oldbrk;
 265	struct mm_struct *mm = current->mm;
 
 266	unsigned long min_brk;
 267	bool populate;
 
 268
 269	down_write(&mm->mmap_sem);
 
 270
 271#ifdef CONFIG_COMPAT_BRK
 272	/*
 273	 * CONFIG_COMPAT_BRK can still be overridden by setting
 274	 * randomize_va_space to 2, which will still cause mm->start_brk
 275	 * to be arbitrarily shifted
 276	 */
 277	if (current->brk_randomized)
 278		min_brk = mm->start_brk;
 279	else
 280		min_brk = mm->end_data;
 281#else
 282	min_brk = mm->start_brk;
 283#endif
 284	if (brk < min_brk)
 285		goto out;
 286
 287	/*
 288	 * Check against rlimit here. If this check is done later after the test
 289	 * of oldbrk with newbrk then it can escape the test and let the data
 290	 * segment grow beyond its set limit the in case where the limit is
 291	 * not page aligned -Ram Gupta
 292	 */
 293	rlim = rlimit(RLIMIT_DATA);
 294	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 295			(mm->end_data - mm->start_data) > rlim)
 296		goto out;
 297
 298	newbrk = PAGE_ALIGN(brk);
 299	oldbrk = PAGE_ALIGN(mm->brk);
 300	if (oldbrk == newbrk)
 301		goto set_brk;
 302
 303	/* Always allow shrinking brk. */
 304	if (brk <= mm->brk) {
 305		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 306			goto set_brk;
 307		goto out;
 308	}
 309
 310	/* Check against existing mmap mappings. */
 311	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 312		goto out;
 313
 314	/* Ok, looks good - let it rip. */
 315	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 316		goto out;
 317
 318set_brk:
 319	mm->brk = brk;
 320	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 321	up_write(&mm->mmap_sem);
 
 322	if (populate)
 323		mm_populate(oldbrk, newbrk - oldbrk);
 324	return brk;
 325
 326out:
 327	retval = mm->brk;
 328	up_write(&mm->mmap_sem);
 329	return retval;
 330}
 331
 332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 333{
 334	unsigned long max, subtree_gap;
 335	max = vma->vm_start;
 336	if (vma->vm_prev)
 337		max -= vma->vm_prev->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 338	if (vma->vm_rb.rb_left) {
 339		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 340				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 341		if (subtree_gap > max)
 342			max = subtree_gap;
 343	}
 344	if (vma->vm_rb.rb_right) {
 345		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 346				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 347		if (subtree_gap > max)
 348			max = subtree_gap;
 349	}
 350	return max;
 351}
 352
 353#ifdef CONFIG_DEBUG_VM_RB
 354static int browse_rb(struct rb_root *root)
 355{
 
 356	int i = 0, j, bug = 0;
 357	struct rb_node *nd, *pn = NULL;
 358	unsigned long prev = 0, pend = 0;
 359
 360	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 361		struct vm_area_struct *vma;
 362		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 363		if (vma->vm_start < prev) {
 364			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
 
 365			bug = 1;
 366		}
 367		if (vma->vm_start < pend) {
 368			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 
 369			bug = 1;
 370		}
 371		if (vma->vm_start > vma->vm_end) {
 372			printk("vm_end %lx < vm_start %lx\n",
 373				vma->vm_end, vma->vm_start);
 374			bug = 1;
 375		}
 
 376		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 377			printk("free gap %lx, correct %lx\n",
 378			       vma->rb_subtree_gap,
 379			       vma_compute_subtree_gap(vma));
 380			bug = 1;
 381		}
 
 382		i++;
 383		pn = nd;
 384		prev = vma->vm_start;
 385		pend = vma->vm_end;
 386	}
 387	j = 0;
 388	for (nd = pn; nd; nd = rb_prev(nd))
 389		j++;
 390	if (i != j) {
 391		printk("backwards %d, forwards %d\n", j, i);
 392		bug = 1;
 393	}
 394	return bug ? -1 : i;
 395}
 396
 397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 398{
 399	struct rb_node *nd;
 400
 401	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 402		struct vm_area_struct *vma;
 403		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 404		BUG_ON(vma != ignore &&
 405		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
 
 406	}
 407}
 408
 409static void validate_mm(struct mm_struct *mm)
 410{
 411	int bug = 0;
 412	int i = 0;
 413	unsigned long highest_address = 0;
 414	struct vm_area_struct *vma = mm->mmap;
 
 415	while (vma) {
 
 416		struct anon_vma_chain *avc;
 417		vma_lock_anon_vma(vma);
 418		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 419			anon_vma_interval_tree_verify(avc);
 420		vma_unlock_anon_vma(vma);
 421		highest_address = vma->vm_end;
 
 
 
 
 422		vma = vma->vm_next;
 423		i++;
 424	}
 425	if (i != mm->map_count) {
 426		printk("map_count %d vm_next %d\n", mm->map_count, i);
 427		bug = 1;
 428	}
 429	if (highest_address != mm->highest_vm_end) {
 430		printk("mm->highest_vm_end %lx, found %lx\n",
 431		       mm->highest_vm_end, highest_address);
 432		bug = 1;
 433	}
 434	i = browse_rb(&mm->mm_rb);
 435	if (i != mm->map_count) {
 436		printk("map_count %d rb %d\n", mm->map_count, i);
 
 437		bug = 1;
 438	}
 439	BUG_ON(bug);
 440}
 441#else
 442#define validate_mm_rb(root, ignore) do { } while (0)
 443#define validate_mm(mm) do { } while (0)
 444#endif
 445
 446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 447		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 448
 449/*
 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 452 * in the rbtree.
 453 */
 454static void vma_gap_update(struct vm_area_struct *vma)
 455{
 456	/*
 457	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 458	 * function that does exacltly what we want.
 459	 */
 460	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 461}
 462
 463static inline void vma_rb_insert(struct vm_area_struct *vma,
 464				 struct rb_root *root)
 465{
 466	/* All rb_subtree_gap values must be consistent prior to insertion */
 467	validate_mm_rb(root, NULL);
 468
 469	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 470}
 471
 472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473{
 474	/*
 475	 * All rb_subtree_gap values must be consistent prior to erase,
 476	 * with the possible exception of the vma being erased.
 477	 */
 478	validate_mm_rb(root, vma);
 479
 480	/*
 481	 * Note rb_erase_augmented is a fairly large inline function,
 482	 * so make sure we instantiate it only once with our desired
 483	 * augmented rbtree callbacks.
 484	 */
 485	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 486}
 487
 488/*
 489 * vma has some anon_vma assigned, and is already inserted on that
 490 * anon_vma's interval trees.
 491 *
 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 493 * vma must be removed from the anon_vma's interval trees using
 494 * anon_vma_interval_tree_pre_update_vma().
 495 *
 496 * After the update, the vma will be reinserted using
 497 * anon_vma_interval_tree_post_update_vma().
 498 *
 499 * The entire update must be protected by exclusive mmap_sem and by
 500 * the root anon_vma's mutex.
 501 */
 502static inline void
 503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 504{
 505	struct anon_vma_chain *avc;
 506
 507	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 508		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 509}
 510
 511static inline void
 512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 513{
 514	struct anon_vma_chain *avc;
 515
 516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 521		unsigned long end, struct vm_area_struct **pprev,
 522		struct rb_node ***rb_link, struct rb_node **rb_parent)
 523{
 524	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 525
 526	__rb_link = &mm->mm_rb.rb_node;
 527	rb_prev = __rb_parent = NULL;
 528
 529	while (*__rb_link) {
 530		struct vm_area_struct *vma_tmp;
 531
 532		__rb_parent = *__rb_link;
 533		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 534
 535		if (vma_tmp->vm_end > addr) {
 536			/* Fail if an existing vma overlaps the area */
 537			if (vma_tmp->vm_start < end)
 538				return -ENOMEM;
 539			__rb_link = &__rb_parent->rb_left;
 540		} else {
 541			rb_prev = __rb_parent;
 542			__rb_link = &__rb_parent->rb_right;
 543		}
 544	}
 545
 546	*pprev = NULL;
 547	if (rb_prev)
 548		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 549	*rb_link = __rb_link;
 550	*rb_parent = __rb_parent;
 551	return 0;
 552}
 553
 554static unsigned long count_vma_pages_range(struct mm_struct *mm,
 555		unsigned long addr, unsigned long end)
 556{
 557	unsigned long nr_pages = 0;
 558	struct vm_area_struct *vma;
 559
 560	/* Find first overlaping mapping */
 561	vma = find_vma_intersection(mm, addr, end);
 562	if (!vma)
 563		return 0;
 564
 565	nr_pages = (min(end, vma->vm_end) -
 566		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 567
 568	/* Iterate over the rest of the overlaps */
 569	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 570		unsigned long overlap_len;
 571
 572		if (vma->vm_start > end)
 573			break;
 574
 575		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 576		nr_pages += overlap_len >> PAGE_SHIFT;
 577	}
 578
 579	return nr_pages;
 580}
 581
 582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 583		struct rb_node **rb_link, struct rb_node *rb_parent)
 584{
 585	/* Update tracking information for the gap following the new vma. */
 586	if (vma->vm_next)
 587		vma_gap_update(vma->vm_next);
 588	else
 589		mm->highest_vm_end = vma->vm_end;
 590
 591	/*
 592	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 593	 * correct insertion point for that vma. As a result, we could not
 594	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 595	 * So, we first insert the vma with a zero rb_subtree_gap value
 596	 * (to be consistent with what we did on the way down), and then
 597	 * immediately update the gap to the correct value. Finally we
 598	 * rebalance the rbtree after all augmented values have been set.
 599	 */
 600	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 601	vma->rb_subtree_gap = 0;
 602	vma_gap_update(vma);
 603	vma_rb_insert(vma, &mm->mm_rb);
 604}
 605
 606static void __vma_link_file(struct vm_area_struct *vma)
 607{
 608	struct file *file;
 609
 610	file = vma->vm_file;
 611	if (file) {
 612		struct address_space *mapping = file->f_mapping;
 613
 614		if (vma->vm_flags & VM_DENYWRITE)
 615			atomic_dec(&file_inode(file)->i_writecount);
 616		if (vma->vm_flags & VM_SHARED)
 617			mapping->i_mmap_writable++;
 618
 619		flush_dcache_mmap_lock(mapping);
 620		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 621			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 622		else
 623			vma_interval_tree_insert(vma, &mapping->i_mmap);
 624		flush_dcache_mmap_unlock(mapping);
 625	}
 626}
 627
 628static void
 629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 630	struct vm_area_struct *prev, struct rb_node **rb_link,
 631	struct rb_node *rb_parent)
 632{
 633	__vma_link_list(mm, vma, prev, rb_parent);
 634	__vma_link_rb(mm, vma, rb_link, rb_parent);
 635}
 636
 637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 638			struct vm_area_struct *prev, struct rb_node **rb_link,
 639			struct rb_node *rb_parent)
 640{
 641	struct address_space *mapping = NULL;
 642
 643	if (vma->vm_file)
 644		mapping = vma->vm_file->f_mapping;
 645
 646	if (mapping)
 647		mutex_lock(&mapping->i_mmap_mutex);
 648
 649	__vma_link(mm, vma, prev, rb_link, rb_parent);
 650	__vma_link_file(vma);
 651
 652	if (mapping)
 653		mutex_unlock(&mapping->i_mmap_mutex);
 654
 655	mm->map_count++;
 656	validate_mm(mm);
 657}
 658
 659/*
 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 661 * mm's list and rbtree.  It has already been inserted into the interval tree.
 662 */
 663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 664{
 665	struct vm_area_struct *prev;
 666	struct rb_node **rb_link, *rb_parent;
 667
 668	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 669			   &prev, &rb_link, &rb_parent))
 670		BUG();
 671	__vma_link(mm, vma, prev, rb_link, rb_parent);
 672	mm->map_count++;
 673}
 674
 675static inline void
 676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 677		struct vm_area_struct *prev)
 
 
 678{
 679	struct vm_area_struct *next;
 680
 681	vma_rb_erase(vma, &mm->mm_rb);
 682	prev->vm_next = next = vma->vm_next;
 
 
 
 
 
 
 
 
 
 683	if (next)
 684		next->vm_prev = prev;
 685
 686	/* Kill the cache */
 687	vmacache_invalidate(mm);
 688}
 689
 
 
 
 
 
 
 
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 
 699{
 700	struct mm_struct *mm = vma->vm_mm;
 701	struct vm_area_struct *next = vma->vm_next;
 702	struct vm_area_struct *importer = NULL;
 703	struct address_space *mapping = NULL;
 704	struct rb_root *root = NULL;
 705	struct anon_vma *anon_vma = NULL;
 706	struct file *file = vma->vm_file;
 707	bool start_changed = false, end_changed = false;
 708	long adjust_next = 0;
 709	int remove_next = 0;
 710
 711	if (next && !insert) {
 712		struct vm_area_struct *exporter = NULL;
 713
 714		if (end >= next->vm_end) {
 715			/*
 716			 * vma expands, overlapping all the next, and
 717			 * perhaps the one after too (mprotect case 6).
 
 
 718			 */
 719again:			remove_next = 1 + (end > next->vm_end);
 720			end = next->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721			exporter = next;
 722			importer = vma;
 
 
 
 
 
 
 
 
 723		} else if (end > next->vm_start) {
 724			/*
 725			 * vma expands, overlapping part of the next:
 726			 * mprotect case 5 shifting the boundary up.
 727			 */
 728			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 729			exporter = next;
 730			importer = vma;
 
 731		} else if (end < vma->vm_end) {
 732			/*
 733			 * vma shrinks, and !insert tells it's not
 734			 * split_vma inserting another: so it must be
 735			 * mprotect case 4 shifting the boundary down.
 736			 */
 737			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 738			exporter = vma;
 739			importer = next;
 
 740		}
 741
 742		/*
 743		 * Easily overlooked: when mprotect shifts the boundary,
 744		 * make sure the expanding vma has anon_vma set if the
 745		 * shrinking vma had, to cover any anon pages imported.
 746		 */
 747		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 748			if (anon_vma_clone(importer, exporter))
 749				return -ENOMEM;
 750			importer->anon_vma = exporter->anon_vma;
 
 
 
 751		}
 752	}
 
 
 753
 754	if (file) {
 755		mapping = file->f_mapping;
 756		if (!(vma->vm_flags & VM_NONLINEAR)) {
 757			root = &mapping->i_mmap;
 758			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 759
 760			if (adjust_next)
 761				uprobe_munmap(next, next->vm_start,
 762							next->vm_end);
 763		}
 764
 765		mutex_lock(&mapping->i_mmap_mutex);
 766		if (insert) {
 767			/*
 768			 * Put into interval tree now, so instantiated pages
 769			 * are visible to arm/parisc __flush_dcache_page
 770			 * throughout; but we cannot insert into address
 771			 * space until vma start or end is updated.
 772			 */
 773			__vma_link_file(insert);
 774		}
 775	}
 776
 777	vma_adjust_trans_huge(vma, start, end, adjust_next);
 778
 779	anon_vma = vma->anon_vma;
 780	if (!anon_vma && adjust_next)
 781		anon_vma = next->anon_vma;
 782	if (anon_vma) {
 783		VM_BUG_ON(adjust_next && next->anon_vma &&
 784			  anon_vma != next->anon_vma);
 785		anon_vma_lock_write(anon_vma);
 786		anon_vma_interval_tree_pre_update_vma(vma);
 787		if (adjust_next)
 788			anon_vma_interval_tree_pre_update_vma(next);
 789	}
 790
 791	if (root) {
 792		flush_dcache_mmap_lock(mapping);
 793		vma_interval_tree_remove(vma, root);
 794		if (adjust_next)
 795			vma_interval_tree_remove(next, root);
 796	}
 797
 798	if (start != vma->vm_start) {
 799		vma->vm_start = start;
 800		start_changed = true;
 801	}
 802	if (end != vma->vm_end) {
 803		vma->vm_end = end;
 804		end_changed = true;
 805	}
 806	vma->vm_pgoff = pgoff;
 807	if (adjust_next) {
 808		next->vm_start += adjust_next << PAGE_SHIFT;
 809		next->vm_pgoff += adjust_next;
 810	}
 811
 812	if (root) {
 813		if (adjust_next)
 814			vma_interval_tree_insert(next, root);
 815		vma_interval_tree_insert(vma, root);
 816		flush_dcache_mmap_unlock(mapping);
 817	}
 818
 819	if (remove_next) {
 820		/*
 821		 * vma_merge has merged next into vma, and needs
 822		 * us to remove next before dropping the locks.
 823		 */
 824		__vma_unlink(mm, next, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 825		if (file)
 826			__remove_shared_vm_struct(next, file, mapping);
 827	} else if (insert) {
 828		/*
 829		 * split_vma has split insert from vma, and needs
 830		 * us to insert it before dropping the locks
 831		 * (it may either follow vma or precede it).
 832		 */
 833		__insert_vm_struct(mm, insert);
 834	} else {
 835		if (start_changed)
 836			vma_gap_update(vma);
 837		if (end_changed) {
 838			if (!next)
 839				mm->highest_vm_end = end;
 840			else if (!adjust_next)
 841				vma_gap_update(next);
 842		}
 843	}
 844
 845	if (anon_vma) {
 846		anon_vma_interval_tree_post_update_vma(vma);
 847		if (adjust_next)
 848			anon_vma_interval_tree_post_update_vma(next);
 849		anon_vma_unlock_write(anon_vma);
 850	}
 851	if (mapping)
 852		mutex_unlock(&mapping->i_mmap_mutex);
 853
 854	if (root) {
 855		uprobe_mmap(vma);
 856
 857		if (adjust_next)
 858			uprobe_mmap(next);
 859	}
 860
 861	if (remove_next) {
 862		if (file) {
 863			uprobe_munmap(next, next->vm_start, next->vm_end);
 864			fput(file);
 865		}
 866		if (next->anon_vma)
 867			anon_vma_merge(vma, next);
 868		mm->map_count--;
 869		mpol_put(vma_policy(next));
 870		kmem_cache_free(vm_area_cachep, next);
 871		/*
 872		 * In mprotect's case 6 (see comments on vma_merge),
 873		 * we must remove another next too. It would clutter
 874		 * up the code too much to do both in one go.
 875		 */
 876		next = vma->vm_next;
 877		if (remove_next == 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878			goto again;
 
 879		else if (next)
 880			vma_gap_update(next);
 881		else
 882			mm->highest_vm_end = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883	}
 884	if (insert && file)
 885		uprobe_mmap(insert);
 886
 887	validate_mm(mm);
 888
 889	return 0;
 890}
 891
 892/*
 893 * If the vma has a ->close operation then the driver probably needs to release
 894 * per-vma resources, so we don't attempt to merge those.
 895 */
 896static inline int is_mergeable_vma(struct vm_area_struct *vma,
 897			struct file *file, unsigned long vm_flags)
 
 898{
 899	/*
 900	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 901	 * match the flags but dirty bit -- the caller should mark
 902	 * merged VMA as dirty. If dirty bit won't be excluded from
 903	 * comparison, we increase pressue on the memory system forcing
 904	 * the kernel to generate new VMAs when old one could be
 905	 * extended instead.
 906	 */
 907	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 908		return 0;
 909	if (vma->vm_file != file)
 910		return 0;
 911	if (vma->vm_ops && vma->vm_ops->close)
 912		return 0;
 
 
 913	return 1;
 914}
 915
 916static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 917					struct anon_vma *anon_vma2,
 918					struct vm_area_struct *vma)
 919{
 920	/*
 921	 * The list_is_singular() test is to avoid merging VMA cloned from
 922	 * parents. This can improve scalability caused by anon_vma lock.
 923	 */
 924	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 925		list_is_singular(&vma->anon_vma_chain)))
 926		return 1;
 927	return anon_vma1 == anon_vma2;
 928}
 929
 930/*
 931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 932 * in front of (at a lower virtual address and file offset than) the vma.
 933 *
 934 * We cannot merge two vmas if they have differently assigned (non-NULL)
 935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 936 *
 937 * We don't check here for the merged mmap wrapping around the end of pagecache
 938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 939 * wrap, nor mmaps which cover the final page at index -1UL.
 940 */
 941static int
 942can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 943	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 944{
 945	if (is_mergeable_vma(vma, file, vm_flags) &&
 946	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 947		if (vma->vm_pgoff == vm_pgoff)
 948			return 1;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 955 * beyond (at a higher virtual address and file offset than) the vma.
 956 *
 957 * We cannot merge two vmas if they have differently assigned (non-NULL)
 958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 959 */
 960static int
 961can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 962	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 963{
 964	if (is_mergeable_vma(vma, file, vm_flags) &&
 965	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 966		pgoff_t vm_pglen;
 967		vm_pglen = vma_pages(vma);
 968		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 969			return 1;
 970	}
 971	return 0;
 972}
 973
 974/*
 975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 976 * whether that can be merged with its predecessor or its successor.
 977 * Or both (it neatly fills a hole).
 978 *
 979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 980 * certain not to be mapped by the time vma_merge is called; but when
 981 * called for mprotect, it is certain to be already mapped (either at
 982 * an offset within prev, or at the start of next), and the flags of
 983 * this area are about to be changed to vm_flags - and the no-change
 984 * case has already been eliminated.
 985 *
 986 * The following mprotect cases have to be considered, where AAAA is
 987 * the area passed down from mprotect_fixup, never extending beyond one
 988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 989 *
 990 *     AAAA             AAAA                AAAA          AAAA
 991 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 992 *    cannot merge    might become    might become    might become
 993 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 994 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 995 *    mremap move:                                    PPPPNNNNNNNN 8
 996 *        AAAA
 997 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 998 *    might become    case 1 below    case 2 below    case 3 below
 999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 
 
 
 
 
 
 
 
 
 
 
1002 */
1003struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004			struct vm_area_struct *prev, unsigned long addr,
1005			unsigned long end, unsigned long vm_flags,
1006		     	struct anon_vma *anon_vma, struct file *file,
1007			pgoff_t pgoff, struct mempolicy *policy)
 
1008{
1009	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010	struct vm_area_struct *area, *next;
1011	int err;
1012
1013	/*
1014	 * We later require that vma->vm_flags == vm_flags,
1015	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016	 */
1017	if (vm_flags & VM_SPECIAL)
1018		return NULL;
1019
1020	if (prev)
1021		next = prev->vm_next;
1022	else
1023		next = mm->mmap;
1024	area = next;
1025	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1026		next = next->vm_next;
1027
 
 
 
 
 
1028	/*
1029	 * Can it merge with the predecessor?
1030	 */
1031	if (prev && prev->vm_end == addr &&
1032  			mpol_equal(vma_policy(prev), policy) &&
1033			can_vma_merge_after(prev, vm_flags,
1034						anon_vma, file, pgoff)) {
 
1035		/*
1036		 * OK, it can.  Can we now merge in the successor as well?
1037		 */
1038		if (next && end == next->vm_start &&
1039				mpol_equal(policy, vma_policy(next)) &&
1040				can_vma_merge_before(next, vm_flags,
1041					anon_vma, file, pgoff+pglen) &&
 
 
1042				is_mergeable_anon_vma(prev->anon_vma,
1043						      next->anon_vma, NULL)) {
1044							/* cases 1, 6 */
1045			err = vma_adjust(prev, prev->vm_start,
1046				next->vm_end, prev->vm_pgoff, NULL);
 
1047		} else					/* cases 2, 5, 7 */
1048			err = vma_adjust(prev, prev->vm_start,
1049				end, prev->vm_pgoff, NULL);
1050		if (err)
1051			return NULL;
1052		khugepaged_enter_vma_merge(prev);
1053		return prev;
1054	}
1055
1056	/*
1057	 * Can this new request be merged in front of next?
1058	 */
1059	if (next && end == next->vm_start &&
1060 			mpol_equal(policy, vma_policy(next)) &&
1061			can_vma_merge_before(next, vm_flags,
1062					anon_vma, file, pgoff+pglen)) {
 
1063		if (prev && addr < prev->vm_end)	/* case 4 */
1064			err = vma_adjust(prev, prev->vm_start,
1065				addr, prev->vm_pgoff, NULL);
1066		else					/* cases 3, 8 */
1067			err = vma_adjust(area, addr, next->vm_end,
1068				next->vm_pgoff - pglen, NULL);
 
 
 
 
 
 
 
1069		if (err)
1070			return NULL;
1071		khugepaged_enter_vma_merge(area);
1072		return area;
1073	}
1074
1075	return NULL;
1076}
1077
1078/*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092{
1093	return a->vm_end == b->vm_start &&
1094		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095		a->vm_file == b->vm_file &&
1096		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098}
1099
1100/*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123{
1124	if (anon_vma_compatible(a, b)) {
1125		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128			return anon_vma;
1129	}
1130	return NULL;
1131}
1132
1133/*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma.  It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142{
1143	struct anon_vma *anon_vma;
1144	struct vm_area_struct *near;
1145
1146	near = vma->vm_next;
1147	if (!near)
1148		goto try_prev;
1149
1150	anon_vma = reusable_anon_vma(near, vma, near);
1151	if (anon_vma)
1152		return anon_vma;
1153try_prev:
1154	near = vma->vm_prev;
1155	if (!near)
1156		goto none;
1157
1158	anon_vma = reusable_anon_vma(near, near, vma);
1159	if (anon_vma)
1160		return anon_vma;
1161none:
1162	/*
1163	 * There's no absolute need to look only at touching neighbours:
1164	 * we could search further afield for "compatible" anon_vmas.
1165	 * But it would probably just be a waste of time searching,
1166	 * or lead to too many vmas hanging off the same anon_vma.
1167	 * We're trying to allow mprotect remerging later on,
1168	 * not trying to minimize memory used for anon_vmas.
1169	 */
1170	return NULL;
1171}
1172
1173#ifdef CONFIG_PROC_FS
1174void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175						struct file *file, long pages)
1176{
1177	const unsigned long stack_flags
1178		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180	mm->total_vm += pages;
1181
1182	if (file) {
1183		mm->shared_vm += pages;
1184		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185			mm->exec_vm += pages;
1186	} else if (flags & stack_flags)
1187		mm->stack_vm += pages;
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1191/*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195static inline unsigned long round_hint_to_min(unsigned long hint)
1196{
1197	hint &= PAGE_MASK;
1198	if (((void *)hint != NULL) &&
1199	    (hint < mmap_min_addr))
1200		return PAGE_ALIGN(mmap_min_addr);
1201	return hint;
1202}
1203
1204static inline int mlock_future_check(struct mm_struct *mm,
1205				     unsigned long flags,
1206				     unsigned long len)
1207{
1208	unsigned long locked, lock_limit;
1209
1210	/*  mlock MCL_FUTURE? */
1211	if (flags & VM_LOCKED) {
1212		locked = len >> PAGE_SHIFT;
1213		locked += mm->locked_vm;
1214		lock_limit = rlimit(RLIMIT_MEMLOCK);
1215		lock_limit >>= PAGE_SHIFT;
1216		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217			return -EAGAIN;
1218	}
1219	return 0;
1220}
1221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222/*
1223 * The caller must hold down_write(&current->mm->mmap_sem).
1224 */
1225
1226unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227			unsigned long len, unsigned long prot,
1228			unsigned long flags, unsigned long pgoff,
1229			unsigned long *populate)
 
1230{
1231	struct mm_struct * mm = current->mm;
1232	vm_flags_t vm_flags;
1233
1234	*populate = 0;
1235
 
 
 
1236	/*
1237	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238	 *
1239	 * (the exception is when the underlying filesystem is noexec
1240	 *  mounted, in which case we dont add PROT_EXEC.)
1241	 */
1242	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244			prot |= PROT_EXEC;
1245
1246	if (!len)
1247		return -EINVAL;
 
1248
1249	if (!(flags & MAP_FIXED))
1250		addr = round_hint_to_min(addr);
1251
1252	/* Careful about overflows.. */
1253	len = PAGE_ALIGN(len);
1254	if (!len)
1255		return -ENOMEM;
1256
1257	/* offset overflow? */
1258	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259               return -EOVERFLOW;
1260
1261	/* Too many mappings? */
1262	if (mm->map_count > sysctl_max_map_count)
1263		return -ENOMEM;
1264
1265	/* Obtain the address to map to. we verify (or select) it and ensure
1266	 * that it represents a valid section of the address space.
1267	 */
1268	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269	if (addr & ~PAGE_MASK)
1270		return addr;
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
1272	/* Do simple checking here so the lower-level routines won't have
1273	 * to. we assume access permissions have been handled by the open
1274	 * of the memory object, so we don't do any here.
1275	 */
1276	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279	if (flags & MAP_LOCKED)
1280		if (!can_do_mlock())
1281			return -EPERM;
1282
1283	if (mlock_future_check(mm, vm_flags, len))
1284		return -EAGAIN;
1285
1286	if (file) {
1287		struct inode *inode = file_inode(file);
 
 
 
 
 
 
1288
1289		switch (flags & MAP_TYPE) {
1290		case MAP_SHARED:
 
 
 
 
 
 
 
 
 
 
 
 
1291			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292				return -EACCES;
1293
1294			/*
1295			 * Make sure we don't allow writing to an append-only
1296			 * file..
1297			 */
1298			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299				return -EACCES;
1300
1301			/*
1302			 * Make sure there are no mandatory locks on the file.
1303			 */
1304			if (locks_verify_locked(file))
1305				return -EAGAIN;
1306
1307			vm_flags |= VM_SHARED | VM_MAYSHARE;
1308			if (!(file->f_mode & FMODE_WRITE))
1309				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311			/* fall through */
1312		case MAP_PRIVATE:
1313			if (!(file->f_mode & FMODE_READ))
1314				return -EACCES;
1315			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316				if (vm_flags & VM_EXEC)
1317					return -EPERM;
1318				vm_flags &= ~VM_MAYEXEC;
1319			}
1320
1321			if (!file->f_op->mmap)
1322				return -ENODEV;
1323			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324				return -EINVAL;
1325			break;
1326
1327		default:
1328			return -EINVAL;
1329		}
1330	} else {
1331		switch (flags & MAP_TYPE) {
1332		case MAP_SHARED:
1333			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334				return -EINVAL;
1335			/*
1336			 * Ignore pgoff.
1337			 */
1338			pgoff = 0;
1339			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340			break;
1341		case MAP_PRIVATE:
1342			/*
1343			 * Set pgoff according to addr for anon_vma.
1344			 */
1345			pgoff = addr >> PAGE_SHIFT;
1346			break;
1347		default:
1348			return -EINVAL;
1349		}
1350	}
1351
1352	/*
1353	 * Set 'VM_NORESERVE' if we should not account for the
1354	 * memory use of this mapping.
1355	 */
1356	if (flags & MAP_NORESERVE) {
1357		/* We honor MAP_NORESERVE if allowed to overcommit */
1358		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359			vm_flags |= VM_NORESERVE;
1360
1361		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362		if (file && is_file_hugepages(file))
1363			vm_flags |= VM_NORESERVE;
1364	}
1365
1366	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367	if (!IS_ERR_VALUE(addr) &&
1368	    ((vm_flags & VM_LOCKED) ||
1369	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370		*populate = len;
1371	return addr;
1372}
1373
1374SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375		unsigned long, prot, unsigned long, flags,
1376		unsigned long, fd, unsigned long, pgoff)
1377{
1378	struct file *file = NULL;
1379	unsigned long retval = -EBADF;
1380
1381	if (!(flags & MAP_ANONYMOUS)) {
1382		audit_mmap_fd(fd, flags);
1383		file = fget(fd);
1384		if (!file)
1385			goto out;
1386		if (is_file_hugepages(file))
1387			len = ALIGN(len, huge_page_size(hstate_file(file)));
1388		retval = -EINVAL;
1389		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390			goto out_fput;
1391	} else if (flags & MAP_HUGETLB) {
1392		struct user_struct *user = NULL;
1393		struct hstate *hs;
1394
1395		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396		if (!hs)
1397			return -EINVAL;
1398
1399		len = ALIGN(len, huge_page_size(hs));
1400		/*
1401		 * VM_NORESERVE is used because the reservations will be
1402		 * taken when vm_ops->mmap() is called
1403		 * A dummy user value is used because we are not locking
1404		 * memory so no accounting is necessary
1405		 */
1406		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407				VM_NORESERVE,
1408				&user, HUGETLB_ANONHUGE_INODE,
1409				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410		if (IS_ERR(file))
1411			return PTR_ERR(file);
1412	}
1413
1414	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417out_fput:
1418	if (file)
1419		fput(file);
1420out:
1421	return retval;
1422}
1423
 
 
 
 
 
 
 
1424#ifdef __ARCH_WANT_SYS_OLD_MMAP
1425struct mmap_arg_struct {
1426	unsigned long addr;
1427	unsigned long len;
1428	unsigned long prot;
1429	unsigned long flags;
1430	unsigned long fd;
1431	unsigned long offset;
1432};
1433
1434SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435{
1436	struct mmap_arg_struct a;
1437
1438	if (copy_from_user(&a, arg, sizeof(a)))
1439		return -EFAULT;
1440	if (a.offset & ~PAGE_MASK)
1441		return -EINVAL;
1442
1443	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444			      a.offset >> PAGE_SHIFT);
1445}
1446#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448/*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454int vma_wants_writenotify(struct vm_area_struct *vma)
1455{
1456	vm_flags_t vm_flags = vma->vm_flags;
 
1457
1458	/* If it was private or non-writable, the write bit is already clear */
1459	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460		return 0;
1461
1462	/* The backer wishes to know when pages are first written to? */
1463	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464		return 1;
1465
1466	/* The open routine did something to the protections already? */
1467	if (pgprot_val(vma->vm_page_prot) !=
1468	    pgprot_val(vm_get_page_prot(vm_flags)))
 
1469		return 0;
1470
 
 
 
 
1471	/* Specialty mapping? */
1472	if (vm_flags & VM_PFNMAP)
1473		return 0;
1474
1475	/* Can the mapping track the dirty pages? */
1476	return vma->vm_file && vma->vm_file->f_mapping &&
1477		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478}
1479
1480/*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485{
1486	/*
1487	 * hugetlb has its own accounting separate from the core VM
1488	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489	 */
1490	if (file && is_file_hugepages(file))
1491		return 0;
1492
1493	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494}
1495
1496unsigned long mmap_region(struct file *file, unsigned long addr,
1497		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
 
1498{
1499	struct mm_struct *mm = current->mm;
1500	struct vm_area_struct *vma, *prev;
1501	int error;
1502	struct rb_node **rb_link, *rb_parent;
1503	unsigned long charged = 0;
1504
1505	/* Check against address space limit. */
1506	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507		unsigned long nr_pages;
1508
1509		/*
1510		 * MAP_FIXED may remove pages of mappings that intersects with
1511		 * requested mapping. Account for the pages it would unmap.
1512		 */
1513		if (!(vm_flags & MAP_FIXED))
1514			return -ENOMEM;
1515
1516		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
 
1519			return -ENOMEM;
1520	}
1521
1522	/* Clear old maps */
1523	error = -ENOMEM;
1524munmap_back:
1525	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526		if (do_munmap(mm, addr, len))
1527			return -ENOMEM;
1528		goto munmap_back;
1529	}
1530
1531	/*
1532	 * Private writable mapping: check memory availability
1533	 */
1534	if (accountable_mapping(file, vm_flags)) {
1535		charged = len >> PAGE_SHIFT;
1536		if (security_vm_enough_memory_mm(mm, charged))
1537			return -ENOMEM;
1538		vm_flags |= VM_ACCOUNT;
1539	}
1540
1541	/*
1542	 * Can we just expand an old mapping?
1543	 */
1544	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 
1545	if (vma)
1546		goto out;
1547
1548	/*
1549	 * Determine the object being mapped and call the appropriate
1550	 * specific mapper. the address has already been validated, but
1551	 * not unmapped, but the maps are removed from the list.
1552	 */
1553	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554	if (!vma) {
1555		error = -ENOMEM;
1556		goto unacct_error;
1557	}
1558
1559	vma->vm_mm = mm;
1560	vma->vm_start = addr;
1561	vma->vm_end = addr + len;
1562	vma->vm_flags = vm_flags;
1563	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564	vma->vm_pgoff = pgoff;
1565	INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567	if (file) {
1568		if (vm_flags & VM_DENYWRITE) {
1569			error = deny_write_access(file);
1570			if (error)
1571				goto free_vma;
1572		}
 
 
 
 
 
 
 
 
 
 
 
1573		vma->vm_file = get_file(file);
1574		error = file->f_op->mmap(file, vma);
1575		if (error)
1576			goto unmap_and_free_vma;
1577
1578		/* Can addr have changed??
1579		 *
1580		 * Answer: Yes, several device drivers can do it in their
1581		 *         f_op->mmap method. -DaveM
1582		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583		 *      be updated for vma_link()
1584		 */
1585		WARN_ON_ONCE(addr != vma->vm_start);
1586
1587		addr = vma->vm_start;
1588		vm_flags = vma->vm_flags;
1589	} else if (vm_flags & VM_SHARED) {
1590		error = shmem_zero_setup(vma);
1591		if (error)
1592			goto free_vma;
1593	}
1594
1595	if (vma_wants_writenotify(vma)) {
1596		pgprot_t pprot = vma->vm_page_prot;
1597
1598		/* Can vma->vm_page_prot have changed??
1599		 *
1600		 * Answer: Yes, drivers may have changed it in their
1601		 *         f_op->mmap method.
1602		 *
1603		 * Ensures that vmas marked as uncached stay that way.
1604		 */
1605		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608	}
1609
1610	vma_link(mm, vma, prev, rb_link, rb_parent);
1611	/* Once vma denies write, undo our temporary denial count */
1612	if (vm_flags & VM_DENYWRITE)
1613		allow_write_access(file);
 
 
 
 
1614	file = vma->vm_file;
1615out:
1616	perf_event_mmap(vma);
1617
1618	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619	if (vm_flags & VM_LOCKED) {
1620		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621					vma == get_gate_vma(current->mm)))
1622			mm->locked_vm += (len >> PAGE_SHIFT);
1623		else
1624			vma->vm_flags &= ~VM_LOCKED;
1625	}
1626
1627	if (file)
1628		uprobe_mmap(vma);
1629
1630	/*
1631	 * New (or expanded) vma always get soft dirty status.
1632	 * Otherwise user-space soft-dirty page tracker won't
1633	 * be able to distinguish situation when vma area unmapped,
1634	 * then new mapped in-place (which must be aimed as
1635	 * a completely new data area).
1636	 */
1637	vma->vm_flags |= VM_SOFTDIRTY;
1638
 
 
1639	return addr;
1640
1641unmap_and_free_vma:
1642	if (vm_flags & VM_DENYWRITE)
1643		allow_write_access(file);
1644	vma->vm_file = NULL;
1645	fput(file);
1646
1647	/* Undo any partial mapping done by a device driver. */
1648	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649	charged = 0;
 
 
 
 
 
1650free_vma:
1651	kmem_cache_free(vm_area_cachep, vma);
1652unacct_error:
1653	if (charged)
1654		vm_unacct_memory(charged);
1655	return error;
1656}
1657
1658unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659{
1660	/*
1661	 * We implement the search by looking for an rbtree node that
1662	 * immediately follows a suitable gap. That is,
1663	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665	 * - gap_end - gap_start >= length
1666	 */
1667
1668	struct mm_struct *mm = current->mm;
1669	struct vm_area_struct *vma;
1670	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672	/* Adjust search length to account for worst case alignment overhead */
1673	length = info->length + info->align_mask;
1674	if (length < info->length)
1675		return -ENOMEM;
1676
1677	/* Adjust search limits by the desired length */
1678	if (info->high_limit < length)
1679		return -ENOMEM;
1680	high_limit = info->high_limit - length;
1681
1682	if (info->low_limit > high_limit)
1683		return -ENOMEM;
1684	low_limit = info->low_limit + length;
1685
1686	/* Check if rbtree root looks promising */
1687	if (RB_EMPTY_ROOT(&mm->mm_rb))
1688		goto check_highest;
1689	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690	if (vma->rb_subtree_gap < length)
1691		goto check_highest;
1692
1693	while (true) {
1694		/* Visit left subtree if it looks promising */
1695		gap_end = vma->vm_start;
1696		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697			struct vm_area_struct *left =
1698				rb_entry(vma->vm_rb.rb_left,
1699					 struct vm_area_struct, vm_rb);
1700			if (left->rb_subtree_gap >= length) {
1701				vma = left;
1702				continue;
1703			}
1704		}
1705
1706		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707check_current:
1708		/* Check if current node has a suitable gap */
1709		if (gap_start > high_limit)
1710			return -ENOMEM;
1711		if (gap_end >= low_limit && gap_end - gap_start >= length)
 
1712			goto found;
1713
1714		/* Visit right subtree if it looks promising */
1715		if (vma->vm_rb.rb_right) {
1716			struct vm_area_struct *right =
1717				rb_entry(vma->vm_rb.rb_right,
1718					 struct vm_area_struct, vm_rb);
1719			if (right->rb_subtree_gap >= length) {
1720				vma = right;
1721				continue;
1722			}
1723		}
1724
1725		/* Go back up the rbtree to find next candidate node */
1726		while (true) {
1727			struct rb_node *prev = &vma->vm_rb;
1728			if (!rb_parent(prev))
1729				goto check_highest;
1730			vma = rb_entry(rb_parent(prev),
1731				       struct vm_area_struct, vm_rb);
1732			if (prev == vma->vm_rb.rb_left) {
1733				gap_start = vma->vm_prev->vm_end;
1734				gap_end = vma->vm_start;
1735				goto check_current;
1736			}
1737		}
1738	}
1739
1740check_highest:
1741	/* Check highest gap, which does not precede any rbtree node */
1742	gap_start = mm->highest_vm_end;
1743	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744	if (gap_start > high_limit)
1745		return -ENOMEM;
1746
1747found:
1748	/* We found a suitable gap. Clip it with the original low_limit. */
1749	if (gap_start < info->low_limit)
1750		gap_start = info->low_limit;
1751
1752	/* Adjust gap address to the desired alignment */
1753	gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755	VM_BUG_ON(gap_start + info->length > info->high_limit);
1756	VM_BUG_ON(gap_start + info->length > gap_end);
1757	return gap_start;
1758}
1759
1760unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761{
1762	struct mm_struct *mm = current->mm;
1763	struct vm_area_struct *vma;
1764	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766	/* Adjust search length to account for worst case alignment overhead */
1767	length = info->length + info->align_mask;
1768	if (length < info->length)
1769		return -ENOMEM;
1770
1771	/*
1772	 * Adjust search limits by the desired length.
1773	 * See implementation comment at top of unmapped_area().
1774	 */
1775	gap_end = info->high_limit;
1776	if (gap_end < length)
1777		return -ENOMEM;
1778	high_limit = gap_end - length;
1779
1780	if (info->low_limit > high_limit)
1781		return -ENOMEM;
1782	low_limit = info->low_limit + length;
1783
1784	/* Check highest gap, which does not precede any rbtree node */
1785	gap_start = mm->highest_vm_end;
1786	if (gap_start <= high_limit)
1787		goto found_highest;
1788
1789	/* Check if rbtree root looks promising */
1790	if (RB_EMPTY_ROOT(&mm->mm_rb))
1791		return -ENOMEM;
1792	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793	if (vma->rb_subtree_gap < length)
1794		return -ENOMEM;
1795
1796	while (true) {
1797		/* Visit right subtree if it looks promising */
1798		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800			struct vm_area_struct *right =
1801				rb_entry(vma->vm_rb.rb_right,
1802					 struct vm_area_struct, vm_rb);
1803			if (right->rb_subtree_gap >= length) {
1804				vma = right;
1805				continue;
1806			}
1807		}
1808
1809check_current:
1810		/* Check if current node has a suitable gap */
1811		gap_end = vma->vm_start;
1812		if (gap_end < low_limit)
1813			return -ENOMEM;
1814		if (gap_start <= high_limit && gap_end - gap_start >= length)
 
1815			goto found;
1816
1817		/* Visit left subtree if it looks promising */
1818		if (vma->vm_rb.rb_left) {
1819			struct vm_area_struct *left =
1820				rb_entry(vma->vm_rb.rb_left,
1821					 struct vm_area_struct, vm_rb);
1822			if (left->rb_subtree_gap >= length) {
1823				vma = left;
1824				continue;
1825			}
1826		}
1827
1828		/* Go back up the rbtree to find next candidate node */
1829		while (true) {
1830			struct rb_node *prev = &vma->vm_rb;
1831			if (!rb_parent(prev))
1832				return -ENOMEM;
1833			vma = rb_entry(rb_parent(prev),
1834				       struct vm_area_struct, vm_rb);
1835			if (prev == vma->vm_rb.rb_right) {
1836				gap_start = vma->vm_prev ?
1837					vma->vm_prev->vm_end : 0;
1838				goto check_current;
1839			}
1840		}
1841	}
1842
1843found:
1844	/* We found a suitable gap. Clip it with the original high_limit. */
1845	if (gap_end > info->high_limit)
1846		gap_end = info->high_limit;
1847
1848found_highest:
1849	/* Compute highest gap address at the desired alignment */
1850	gap_end -= info->length;
1851	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853	VM_BUG_ON(gap_end < info->low_limit);
1854	VM_BUG_ON(gap_end < gap_start);
1855	return gap_end;
1856}
1857
1858/* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 *	if (ret & ~PAGE_MASK)
1865 *		error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869#ifndef HAVE_ARCH_UNMAPPED_AREA
1870unsigned long
1871arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872		unsigned long len, unsigned long pgoff, unsigned long flags)
1873{
1874	struct mm_struct *mm = current->mm;
1875	struct vm_area_struct *vma;
1876	struct vm_unmapped_area_info info;
1877
1878	if (len > TASK_SIZE - mmap_min_addr)
1879		return -ENOMEM;
1880
1881	if (flags & MAP_FIXED)
1882		return addr;
1883
1884	if (addr) {
1885		addr = PAGE_ALIGN(addr);
1886		vma = find_vma(mm, addr);
1887		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888		    (!vma || addr + len <= vma->vm_start))
 
1889			return addr;
1890	}
1891
1892	info.flags = 0;
1893	info.length = len;
1894	info.low_limit = mm->mmap_base;
1895	info.high_limit = TASK_SIZE;
1896	info.align_mask = 0;
1897	return vm_unmapped_area(&info);
1898}
1899#endif	
1900
1901/*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906unsigned long
1907arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908			  const unsigned long len, const unsigned long pgoff,
1909			  const unsigned long flags)
1910{
1911	struct vm_area_struct *vma;
1912	struct mm_struct *mm = current->mm;
1913	unsigned long addr = addr0;
1914	struct vm_unmapped_area_info info;
1915
1916	/* requested length too big for entire address space */
1917	if (len > TASK_SIZE - mmap_min_addr)
1918		return -ENOMEM;
1919
1920	if (flags & MAP_FIXED)
1921		return addr;
1922
1923	/* requesting a specific address */
1924	if (addr) {
1925		addr = PAGE_ALIGN(addr);
1926		vma = find_vma(mm, addr);
1927		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928				(!vma || addr + len <= vma->vm_start))
 
1929			return addr;
1930	}
1931
1932	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933	info.length = len;
1934	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935	info.high_limit = mm->mmap_base;
1936	info.align_mask = 0;
1937	addr = vm_unmapped_area(&info);
1938
1939	/*
1940	 * A failed mmap() very likely causes application failure,
1941	 * so fall back to the bottom-up function here. This scenario
1942	 * can happen with large stack limits and large mmap()
1943	 * allocations.
1944	 */
1945	if (addr & ~PAGE_MASK) {
1946		VM_BUG_ON(addr != -ENOMEM);
1947		info.flags = 0;
1948		info.low_limit = TASK_UNMAPPED_BASE;
1949		info.high_limit = TASK_SIZE;
1950		addr = vm_unmapped_area(&info);
1951	}
1952
1953	return addr;
1954}
1955#endif
1956
1957unsigned long
1958get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959		unsigned long pgoff, unsigned long flags)
1960{
1961	unsigned long (*get_area)(struct file *, unsigned long,
1962				  unsigned long, unsigned long, unsigned long);
1963
1964	unsigned long error = arch_mmap_check(addr, len, flags);
1965	if (error)
1966		return error;
1967
1968	/* Careful about overflows.. */
1969	if (len > TASK_SIZE)
1970		return -ENOMEM;
1971
1972	get_area = current->mm->get_unmapped_area;
1973	if (file && file->f_op->get_unmapped_area)
1974		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
1975	addr = get_area(file, addr, len, pgoff, flags);
1976	if (IS_ERR_VALUE(addr))
1977		return addr;
1978
1979	if (addr > TASK_SIZE - len)
1980		return -ENOMEM;
1981	if (addr & ~PAGE_MASK)
1982		return -EINVAL;
1983
1984	addr = arch_rebalance_pgtables(addr, len);
1985	error = security_mmap_addr(addr);
1986	return error ? error : addr;
1987}
1988
1989EXPORT_SYMBOL(get_unmapped_area);
1990
1991/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993{
1994	struct rb_node *rb_node;
1995	struct vm_area_struct *vma;
1996
1997	/* Check the cache first. */
1998	vma = vmacache_find(mm, addr);
1999	if (likely(vma))
2000		return vma;
2001
2002	rb_node = mm->mm_rb.rb_node;
2003	vma = NULL;
2004
2005	while (rb_node) {
2006		struct vm_area_struct *tmp;
2007
2008		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010		if (tmp->vm_end > addr) {
2011			vma = tmp;
2012			if (tmp->vm_start <= addr)
2013				break;
2014			rb_node = rb_node->rb_left;
2015		} else
2016			rb_node = rb_node->rb_right;
2017	}
2018
2019	if (vma)
2020		vmacache_update(addr, vma);
2021	return vma;
2022}
2023
2024EXPORT_SYMBOL(find_vma);
2025
2026/*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 */
2029struct vm_area_struct *
2030find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031			struct vm_area_struct **pprev)
2032{
2033	struct vm_area_struct *vma;
2034
2035	vma = find_vma(mm, addr);
2036	if (vma) {
2037		*pprev = vma->vm_prev;
2038	} else {
2039		struct rb_node *rb_node = mm->mm_rb.rb_node;
2040		*pprev = NULL;
2041		while (rb_node) {
2042			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043			rb_node = rb_node->rb_right;
2044		}
2045	}
2046	return vma;
2047}
2048
2049/*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	struct rlimit *rlim = current->signal->rlim;
2058	unsigned long new_start;
2059
2060	/* address space limit tests */
2061	if (!may_expand_vm(mm, grow))
2062		return -ENOMEM;
2063
2064	/* Stack limit test */
2065	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066		return -ENOMEM;
2067
2068	/* mlock limit tests */
2069	if (vma->vm_flags & VM_LOCKED) {
2070		unsigned long locked;
2071		unsigned long limit;
2072		locked = mm->locked_vm + grow;
2073		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074		limit >>= PAGE_SHIFT;
2075		if (locked > limit && !capable(CAP_IPC_LOCK))
2076			return -ENOMEM;
2077	}
2078
2079	/* Check to ensure the stack will not grow into a hugetlb-only region */
2080	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081			vma->vm_end - size;
2082	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083		return -EFAULT;
2084
2085	/*
2086	 * Overcommit..  This must be the final test, as it will
2087	 * update security statistics.
2088	 */
2089	if (security_vm_enough_memory_mm(mm, grow))
2090		return -ENOMEM;
2091
2092	/* Ok, everything looks good - let it rip */
2093	if (vma->vm_flags & VM_LOCKED)
2094		mm->locked_vm += grow;
2095	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096	return 0;
2097}
2098
2099#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100/*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103 */
2104int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105{
2106	int error;
 
 
 
2107
2108	if (!(vma->vm_flags & VM_GROWSUP))
2109		return -EFAULT;
2110
2111	/*
2112	 * We must make sure the anon_vma is allocated
2113	 * so that the anon_vma locking is not a noop.
2114	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115	if (unlikely(anon_vma_prepare(vma)))
2116		return -ENOMEM;
2117	vma_lock_anon_vma(vma);
2118
2119	/*
2120	 * vma->vm_start/vm_end cannot change under us because the caller
2121	 * is required to hold the mmap_sem in read mode.  We need the
2122	 * anon_vma lock to serialize against concurrent expand_stacks.
2123	 * Also guard against wrapping around to address 0.
2124	 */
2125	if (address < PAGE_ALIGN(address+4))
2126		address = PAGE_ALIGN(address+4);
2127	else {
2128		vma_unlock_anon_vma(vma);
2129		return -ENOMEM;
2130	}
2131	error = 0;
2132
2133	/* Somebody else might have raced and expanded it already */
2134	if (address > vma->vm_end) {
2135		unsigned long size, grow;
2136
2137		size = address - vma->vm_start;
2138		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140		error = -ENOMEM;
2141		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142			error = acct_stack_growth(vma, size, grow);
2143			if (!error) {
2144				/*
2145				 * vma_gap_update() doesn't support concurrent
2146				 * updates, but we only hold a shared mmap_sem
2147				 * lock here, so we need to protect against
2148				 * concurrent vma expansions.
2149				 * vma_lock_anon_vma() doesn't help here, as
2150				 * we don't guarantee that all growable vmas
2151				 * in a mm share the same root anon vma.
2152				 * So, we reuse mm->page_table_lock to guard
2153				 * against concurrent vma expansions.
2154				 */
2155				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2156				anon_vma_interval_tree_pre_update_vma(vma);
2157				vma->vm_end = address;
2158				anon_vma_interval_tree_post_update_vma(vma);
2159				if (vma->vm_next)
2160					vma_gap_update(vma->vm_next);
2161				else
2162					vma->vm_mm->highest_vm_end = address;
2163				spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165				perf_event_mmap(vma);
2166			}
2167		}
2168	}
2169	vma_unlock_anon_vma(vma);
2170	khugepaged_enter_vma_merge(vma);
2171	validate_mm(vma->vm_mm);
2172	return error;
2173}
2174#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176/*
2177 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2178 */
2179int expand_downwards(struct vm_area_struct *vma,
2180				   unsigned long address)
2181{
 
 
2182	int error;
2183
2184	/*
2185	 * We must make sure the anon_vma is allocated
2186	 * so that the anon_vma locking is not a noop.
2187	 */
2188	if (unlikely(anon_vma_prepare(vma)))
2189		return -ENOMEM;
2190
2191	address &= PAGE_MASK;
2192	error = security_mmap_addr(address);
2193	if (error)
2194		return error;
2195
2196	vma_lock_anon_vma(vma);
 
 
 
 
 
 
 
 
 
 
 
2197
2198	/*
2199	 * vma->vm_start/vm_end cannot change under us because the caller
2200	 * is required to hold the mmap_sem in read mode.  We need the
2201	 * anon_vma lock to serialize against concurrent expand_stacks.
2202	 */
 
2203
2204	/* Somebody else might have raced and expanded it already */
2205	if (address < vma->vm_start) {
2206		unsigned long size, grow;
2207
2208		size = vma->vm_end - address;
2209		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211		error = -ENOMEM;
2212		if (grow <= vma->vm_pgoff) {
2213			error = acct_stack_growth(vma, size, grow);
2214			if (!error) {
2215				/*
2216				 * vma_gap_update() doesn't support concurrent
2217				 * updates, but we only hold a shared mmap_sem
2218				 * lock here, so we need to protect against
2219				 * concurrent vma expansions.
2220				 * vma_lock_anon_vma() doesn't help here, as
2221				 * we don't guarantee that all growable vmas
2222				 * in a mm share the same root anon vma.
2223				 * So, we reuse mm->page_table_lock to guard
2224				 * against concurrent vma expansions.
2225				 */
2226				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2227				anon_vma_interval_tree_pre_update_vma(vma);
2228				vma->vm_start = address;
2229				vma->vm_pgoff -= grow;
2230				anon_vma_interval_tree_post_update_vma(vma);
2231				vma_gap_update(vma);
2232				spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234				perf_event_mmap(vma);
2235			}
2236		}
2237	}
2238	vma_unlock_anon_vma(vma);
2239	khugepaged_enter_vma_merge(vma);
2240	validate_mm(vma->vm_mm);
2241	return error;
2242}
2243
2244/*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
 
 
 
 
 
2255#ifdef CONFIG_STACK_GROWSUP
2256int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257{
2258	struct vm_area_struct *next;
2259
2260	address &= PAGE_MASK;
2261	next = vma->vm_next;
2262	if (next && next->vm_start == address + PAGE_SIZE) {
2263		if (!(next->vm_flags & VM_GROWSUP))
2264			return -ENOMEM;
2265	}
2266	return expand_upwards(vma, address);
2267}
2268
2269struct vm_area_struct *
2270find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271{
2272	struct vm_area_struct *vma, *prev;
2273
2274	addr &= PAGE_MASK;
2275	vma = find_vma_prev(mm, addr, &prev);
2276	if (vma && (vma->vm_start <= addr))
2277		return vma;
2278	if (!prev || expand_stack(prev, addr))
2279		return NULL;
2280	if (prev->vm_flags & VM_LOCKED)
2281		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282	return prev;
2283}
2284#else
2285int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286{
2287	struct vm_area_struct *prev;
2288
2289	address &= PAGE_MASK;
2290	prev = vma->vm_prev;
2291	if (prev && prev->vm_end == address) {
2292		if (!(prev->vm_flags & VM_GROWSDOWN))
2293			return -ENOMEM;
2294	}
2295	return expand_downwards(vma, address);
2296}
2297
2298struct vm_area_struct *
2299find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300{
2301	struct vm_area_struct * vma;
2302	unsigned long start;
2303
2304	addr &= PAGE_MASK;
2305	vma = find_vma(mm,addr);
2306	if (!vma)
2307		return NULL;
2308	if (vma->vm_start <= addr)
2309		return vma;
2310	if (!(vma->vm_flags & VM_GROWSDOWN))
2311		return NULL;
2312	start = vma->vm_start;
2313	if (expand_stack(vma, addr))
2314		return NULL;
2315	if (vma->vm_flags & VM_LOCKED)
2316		__mlock_vma_pages_range(vma, addr, start, NULL);
2317	return vma;
2318}
2319#endif
2320
 
 
2321/*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
2324 *
2325 * Called with the mm semaphore held.
2326 */
2327static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328{
2329	unsigned long nr_accounted = 0;
2330
2331	/* Update high watermark before we lower total_vm */
2332	update_hiwater_vm(mm);
2333	do {
2334		long nrpages = vma_pages(vma);
2335
2336		if (vma->vm_flags & VM_ACCOUNT)
2337			nr_accounted += nrpages;
2338		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339		vma = remove_vma(vma);
2340	} while (vma);
2341	vm_unacct_memory(nr_accounted);
2342	validate_mm(mm);
2343}
2344
2345/*
2346 * Get rid of page table information in the indicated region.
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350static void unmap_region(struct mm_struct *mm,
2351		struct vm_area_struct *vma, struct vm_area_struct *prev,
2352		unsigned long start, unsigned long end)
2353{
2354	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355	struct mmu_gather tlb;
2356
2357	lru_add_drain();
2358	tlb_gather_mmu(&tlb, mm, start, end);
2359	update_hiwater_rss(mm);
2360	unmap_vmas(&tlb, vma, start, end);
2361	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362				 next ? next->vm_start : USER_PGTABLES_CEILING);
2363	tlb_finish_mmu(&tlb, start, end);
2364}
2365
2366/*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
2369 */
2370static void
2371detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372	struct vm_area_struct *prev, unsigned long end)
2373{
2374	struct vm_area_struct **insertion_point;
2375	struct vm_area_struct *tail_vma = NULL;
2376
2377	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378	vma->vm_prev = NULL;
2379	do {
2380		vma_rb_erase(vma, &mm->mm_rb);
2381		mm->map_count--;
2382		tail_vma = vma;
2383		vma = vma->vm_next;
2384	} while (vma && vma->vm_start < end);
2385	*insertion_point = vma;
2386	if (vma) {
2387		vma->vm_prev = prev;
2388		vma_gap_update(vma);
2389	} else
2390		mm->highest_vm_end = prev ? prev->vm_end : 0;
2391	tail_vma->vm_next = NULL;
2392
2393	/* Kill the cache */
2394	vmacache_invalidate(mm);
2395}
2396
2397/*
2398 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402	      unsigned long addr, int new_below)
2403{
2404	struct vm_area_struct *new;
2405	int err = -ENOMEM;
2406
2407	if (is_vm_hugetlb_page(vma) && (addr &
2408					~(huge_page_mask(hstate_vma(vma)))))
2409		return -EINVAL;
 
 
2410
2411	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412	if (!new)
2413		goto out_err;
2414
2415	/* most fields are the same, copy all, and then fixup */
2416	*new = *vma;
2417
2418	INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420	if (new_below)
2421		new->vm_end = addr;
2422	else {
2423		new->vm_start = addr;
2424		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425	}
2426
2427	err = vma_dup_policy(vma, new);
2428	if (err)
2429		goto out_free_vma;
2430
2431	if (anon_vma_clone(new, vma))
 
2432		goto out_free_mpol;
2433
2434	if (new->vm_file)
2435		get_file(new->vm_file);
2436
2437	if (new->vm_ops && new->vm_ops->open)
2438		new->vm_ops->open(new);
2439
2440	if (new_below)
2441		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442			((addr - new->vm_start) >> PAGE_SHIFT), new);
2443	else
2444		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446	/* Success. */
2447	if (!err)
2448		return 0;
2449
2450	/* Clean everything up if vma_adjust failed. */
2451	if (new->vm_ops && new->vm_ops->close)
2452		new->vm_ops->close(new);
2453	if (new->vm_file)
2454		fput(new->vm_file);
2455	unlink_anon_vmas(new);
2456 out_free_mpol:
2457	mpol_put(vma_policy(new));
2458 out_free_vma:
2459	kmem_cache_free(vm_area_cachep, new);
2460 out_err:
2461	return err;
2462}
2463
2464/*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469	      unsigned long addr, int new_below)
2470{
2471	if (mm->map_count >= sysctl_max_map_count)
2472		return -ENOMEM;
2473
2474	return __split_vma(mm, vma, addr, new_below);
2475}
2476
2477/* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work.  This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 */
2482int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
2483{
2484	unsigned long end;
2485	struct vm_area_struct *vma, *prev, *last;
2486
2487	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488		return -EINVAL;
2489
2490	if ((len = PAGE_ALIGN(len)) == 0)
 
2491		return -EINVAL;
2492
2493	/* Find the first overlapping VMA */
2494	vma = find_vma(mm, start);
2495	if (!vma)
2496		return 0;
2497	prev = vma->vm_prev;
2498	/* we have  start < vma->vm_end  */
2499
2500	/* if it doesn't overlap, we have nothing.. */
2501	end = start + len;
2502	if (vma->vm_start >= end)
2503		return 0;
2504
2505	/*
2506	 * If we need to split any vma, do it now to save pain later.
2507	 *
2508	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509	 * unmapped vm_area_struct will remain in use: so lower split_vma
2510	 * places tmp vma above, and higher split_vma places tmp vma below.
2511	 */
2512	if (start > vma->vm_start) {
2513		int error;
2514
2515		/*
2516		 * Make sure that map_count on return from munmap() will
2517		 * not exceed its limit; but let map_count go just above
2518		 * its limit temporarily, to help free resources as expected.
2519		 */
2520		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521			return -ENOMEM;
2522
2523		error = __split_vma(mm, vma, start, 0);
2524		if (error)
2525			return error;
2526		prev = vma;
2527	}
2528
2529	/* Does it split the last one? */
2530	last = find_vma(mm, end);
2531	if (last && end > last->vm_start) {
2532		int error = __split_vma(mm, last, end, 1);
2533		if (error)
2534			return error;
2535	}
2536	vma = prev? prev->vm_next: mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538	/*
2539	 * unlock any mlock()ed ranges before detaching vmas
2540	 */
2541	if (mm->locked_vm) {
2542		struct vm_area_struct *tmp = vma;
2543		while (tmp && tmp->vm_start < end) {
2544			if (tmp->vm_flags & VM_LOCKED) {
2545				mm->locked_vm -= vma_pages(tmp);
2546				munlock_vma_pages_all(tmp);
2547			}
2548			tmp = tmp->vm_next;
2549		}
2550	}
2551
2552	/*
2553	 * Remove the vma's, and unmap the actual pages
2554	 */
2555	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556	unmap_region(mm, vma, prev, start, end);
2557
 
 
2558	/* Fix up all other VM information */
2559	remove_vma_list(mm, vma);
2560
2561	return 0;
2562}
2563
2564int vm_munmap(unsigned long start, size_t len)
2565{
2566	int ret;
2567	struct mm_struct *mm = current->mm;
 
 
 
 
2568
2569	down_write(&mm->mmap_sem);
2570	ret = do_munmap(mm, start, len);
2571	up_write(&mm->mmap_sem);
 
2572	return ret;
2573}
2574EXPORT_SYMBOL(vm_munmap);
2575
2576SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577{
2578	profile_munmap(addr);
2579	return vm_munmap(addr, len);
2580}
2581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582static inline void verify_mm_writelocked(struct mm_struct *mm)
2583{
2584#ifdef CONFIG_DEBUG_VM
2585	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586		WARN_ON(1);
2587		up_read(&mm->mmap_sem);
2588	}
2589#endif
2590}
2591
2592/*
2593 *  this is really a simplified "do_mmap".  it only handles
2594 *  anonymous maps.  eventually we may be able to do some
2595 *  brk-specific accounting here.
2596 */
2597static unsigned long do_brk(unsigned long addr, unsigned long len)
2598{
2599	struct mm_struct * mm = current->mm;
2600	struct vm_area_struct * vma, * prev;
2601	unsigned long flags;
2602	struct rb_node ** rb_link, * rb_parent;
2603	pgoff_t pgoff = addr >> PAGE_SHIFT;
2604	int error;
2605
2606	len = PAGE_ALIGN(len);
 
 
2607	if (!len)
2608		return addr;
2609
2610	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
2611
2612	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613	if (error & ~PAGE_MASK)
2614		return error;
2615
2616	error = mlock_future_check(mm, mm->def_flags, len);
2617	if (error)
2618		return error;
2619
2620	/*
2621	 * mm->mmap_sem is required to protect against another thread
2622	 * changing the mappings in case we sleep.
2623	 */
2624	verify_mm_writelocked(mm);
2625
2626	/*
2627	 * Clear old maps.  this also does some error checking for us
2628	 */
2629 munmap_back:
2630	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631		if (do_munmap(mm, addr, len))
2632			return -ENOMEM;
2633		goto munmap_back;
2634	}
2635
2636	/* Check against address space limits *after* clearing old maps... */
2637	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638		return -ENOMEM;
2639
2640	if (mm->map_count > sysctl_max_map_count)
2641		return -ENOMEM;
2642
2643	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644		return -ENOMEM;
2645
2646	/* Can we just expand an old private anonymous mapping? */
2647	vma = vma_merge(mm, prev, addr, addr + len, flags,
2648					NULL, NULL, pgoff, NULL);
2649	if (vma)
2650		goto out;
2651
2652	/*
2653	 * create a vma struct for an anonymous mapping
2654	 */
2655	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656	if (!vma) {
2657		vm_unacct_memory(len >> PAGE_SHIFT);
2658		return -ENOMEM;
2659	}
2660
2661	INIT_LIST_HEAD(&vma->anon_vma_chain);
2662	vma->vm_mm = mm;
2663	vma->vm_start = addr;
2664	vma->vm_end = addr + len;
2665	vma->vm_pgoff = pgoff;
2666	vma->vm_flags = flags;
2667	vma->vm_page_prot = vm_get_page_prot(flags);
2668	vma_link(mm, vma, prev, rb_link, rb_parent);
2669out:
2670	perf_event_mmap(vma);
2671	mm->total_vm += len >> PAGE_SHIFT;
 
2672	if (flags & VM_LOCKED)
2673		mm->locked_vm += (len >> PAGE_SHIFT);
2674	vma->vm_flags |= VM_SOFTDIRTY;
2675	return addr;
 
 
 
 
 
2676}
2677
2678unsigned long vm_brk(unsigned long addr, unsigned long len)
2679{
2680	struct mm_struct *mm = current->mm;
2681	unsigned long ret;
2682	bool populate;
 
 
 
 
2683
2684	down_write(&mm->mmap_sem);
2685	ret = do_brk(addr, len);
2686	populate = ((mm->def_flags & VM_LOCKED) != 0);
2687	up_write(&mm->mmap_sem);
2688	if (populate)
 
2689		mm_populate(addr, len);
2690	return ret;
2691}
 
 
 
 
 
 
2692EXPORT_SYMBOL(vm_brk);
2693
2694/* Release all mmaps. */
2695void exit_mmap(struct mm_struct *mm)
2696{
2697	struct mmu_gather tlb;
2698	struct vm_area_struct *vma;
2699	unsigned long nr_accounted = 0;
2700
2701	/* mm's last user has gone, and its about to be pulled down */
2702	mmu_notifier_release(mm);
2703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	if (mm->locked_vm) {
2705		vma = mm->mmap;
2706		while (vma) {
2707			if (vma->vm_flags & VM_LOCKED)
2708				munlock_vma_pages_all(vma);
2709			vma = vma->vm_next;
2710		}
2711	}
2712
2713	arch_exit_mmap(mm);
2714
2715	vma = mm->mmap;
2716	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2717		return;
2718
2719	lru_add_drain();
2720	flush_cache_mm(mm);
2721	tlb_gather_mmu(&tlb, mm, 0, -1);
2722	/* update_hiwater_rss(mm) here? but nobody should be looking */
2723	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2724	unmap_vmas(&tlb, vma, 0, -1);
2725
2726	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727	tlb_finish_mmu(&tlb, 0, -1);
2728
2729	/*
2730	 * Walk the list again, actually closing and freeing it,
2731	 * with preemption enabled, without holding any MM locks.
2732	 */
2733	while (vma) {
2734		if (vma->vm_flags & VM_ACCOUNT)
2735			nr_accounted += vma_pages(vma);
2736		vma = remove_vma(vma);
2737	}
2738	vm_unacct_memory(nr_accounted);
2739
2740	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742}
2743
2744/* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749{
2750	struct vm_area_struct *prev;
2751	struct rb_node **rb_link, *rb_parent;
2752
 
 
 
 
 
 
 
2753	/*
2754	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755	 * until its first write fault, when page's anon_vma and index
2756	 * are set.  But now set the vm_pgoff it will almost certainly
2757	 * end up with (unless mremap moves it elsewhere before that
2758	 * first wfault), so /proc/pid/maps tells a consistent story.
2759	 *
2760	 * By setting it to reflect the virtual start address of the
2761	 * vma, merges and splits can happen in a seamless way, just
2762	 * using the existing file pgoff checks and manipulations.
2763	 * Similarly in do_mmap_pgoff and in do_brk.
2764	 */
2765	if (!vma->vm_file) {
2766		BUG_ON(vma->anon_vma);
2767		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768	}
2769	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770			   &prev, &rb_link, &rb_parent))
2771		return -ENOMEM;
2772	if ((vma->vm_flags & VM_ACCOUNT) &&
2773	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774		return -ENOMEM;
2775
2776	vma_link(mm, vma, prev, rb_link, rb_parent);
2777	return 0;
2778}
2779
2780/*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785	unsigned long addr, unsigned long len, pgoff_t pgoff,
2786	bool *need_rmap_locks)
2787{
2788	struct vm_area_struct *vma = *vmap;
2789	unsigned long vma_start = vma->vm_start;
2790	struct mm_struct *mm = vma->vm_mm;
2791	struct vm_area_struct *new_vma, *prev;
2792	struct rb_node **rb_link, *rb_parent;
2793	bool faulted_in_anon_vma = true;
2794
2795	/*
2796	 * If anonymous vma has not yet been faulted, update new pgoff
2797	 * to match new location, to increase its chance of merging.
2798	 */
2799	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800		pgoff = addr >> PAGE_SHIFT;
2801		faulted_in_anon_vma = false;
2802	}
2803
2804	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805		return NULL;	/* should never get here */
2806	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
2808	if (new_vma) {
2809		/*
2810		 * Source vma may have been merged into new_vma
2811		 */
2812		if (unlikely(vma_start >= new_vma->vm_start &&
2813			     vma_start < new_vma->vm_end)) {
2814			/*
2815			 * The only way we can get a vma_merge with
2816			 * self during an mremap is if the vma hasn't
2817			 * been faulted in yet and we were allowed to
2818			 * reset the dst vma->vm_pgoff to the
2819			 * destination address of the mremap to allow
2820			 * the merge to happen. mremap must change the
2821			 * vm_pgoff linearity between src and dst vmas
2822			 * (in turn preventing a vma_merge) to be
2823			 * safe. It is only safe to keep the vm_pgoff
2824			 * linear if there are no pages mapped yet.
2825			 */
2826			VM_BUG_ON(faulted_in_anon_vma);
2827			*vmap = vma = new_vma;
2828		}
2829		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830	} else {
2831		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832		if (new_vma) {
2833			*new_vma = *vma;
2834			new_vma->vm_start = addr;
2835			new_vma->vm_end = addr + len;
2836			new_vma->vm_pgoff = pgoff;
2837			if (vma_dup_policy(vma, new_vma))
2838				goto out_free_vma;
2839			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840			if (anon_vma_clone(new_vma, vma))
2841				goto out_free_mempol;
2842			if (new_vma->vm_file)
2843				get_file(new_vma->vm_file);
2844			if (new_vma->vm_ops && new_vma->vm_ops->open)
2845				new_vma->vm_ops->open(new_vma);
2846			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847			*need_rmap_locks = false;
2848		}
2849	}
2850	return new_vma;
2851
2852 out_free_mempol:
2853	mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855	kmem_cache_free(vm_area_cachep, new_vma);
 
2856	return NULL;
2857}
2858
2859/*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
2862 */
2863int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864{
2865	unsigned long cur = mm->total_vm;	/* pages */
2866	unsigned long lim;
 
 
 
 
 
 
 
2867
2868	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
 
 
2869
2870	if (cur + npages > lim)
2871		return 0;
2872	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873}
2874
 
 
 
 
 
 
 
 
 
 
 
2875
2876static int special_mapping_fault(struct vm_area_struct *vma,
2877				struct vm_fault *vmf)
2878{
 
2879	pgoff_t pgoff;
2880	struct page **pages;
2881
2882	/*
2883	 * special mappings have no vm_file, and in that case, the mm
2884	 * uses vm_pgoff internally. So we have to subtract it from here.
2885	 * We are allowed to do this because we are the mm; do not copy
2886	 * this code into drivers!
2887	 */
2888	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
2889
2890	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891		pgoff--;
2892
2893	if (*pages) {
2894		struct page *page = *pages;
2895		get_page(page);
2896		vmf->page = page;
2897		return 0;
2898	}
2899
2900	return VM_FAULT_SIGBUS;
2901}
2902
2903/*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906static void special_mapping_close(struct vm_area_struct *vma)
2907{
2908}
2909
2910static const struct vm_operations_struct special_mapping_vmops = {
2911	.close = special_mapping_close,
2912	.fault = special_mapping_fault,
2913};
2914
2915/*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925			    unsigned long addr, unsigned long len,
2926			    unsigned long vm_flags, struct page **pages)
2927{
2928	int ret;
2929	struct vm_area_struct *vma;
2930
2931	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932	if (unlikely(vma == NULL))
2933		return ERR_PTR(-ENOMEM);
2934
2935	INIT_LIST_HEAD(&vma->anon_vma_chain);
2936	vma->vm_mm = mm;
2937	vma->vm_start = addr;
2938	vma->vm_end = addr + len;
2939
2940	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943	vma->vm_ops = &special_mapping_vmops;
2944	vma->vm_private_data = pages;
2945
2946	ret = insert_vm_struct(mm, vma);
2947	if (ret)
2948		goto out;
2949
2950	mm->total_vm += len >> PAGE_SHIFT;
2951
2952	perf_event_mmap(vma);
2953
2954	return vma;
2955
2956out:
2957	kmem_cache_free(vm_area_cachep, vma);
2958	return ERR_PTR(ret);
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int install_special_mapping(struct mm_struct *mm,
2962			    unsigned long addr, unsigned long len,
2963			    unsigned long vm_flags, struct page **pages)
2964{
2965	struct vm_area_struct *vma = _install_special_mapping(mm,
2966			    addr, len, vm_flags, pages);
 
2967
2968	if (IS_ERR(vma))
2969		return PTR_ERR(vma);
2970	return 0;
2971}
2972
2973static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976{
2977	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978		/*
2979		 * The LSB of head.next can't change from under us
2980		 * because we hold the mm_all_locks_mutex.
2981		 */
2982		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983		/*
2984		 * We can safely modify head.next after taking the
2985		 * anon_vma->root->rwsem. If some other vma in this mm shares
2986		 * the same anon_vma we won't take it again.
2987		 *
2988		 * No need of atomic instructions here, head.next
2989		 * can't change from under us thanks to the
2990		 * anon_vma->root->rwsem.
2991		 */
2992		if (__test_and_set_bit(0, (unsigned long *)
2993				       &anon_vma->root->rb_root.rb_node))
2994			BUG();
2995	}
2996}
2997
2998static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999{
3000	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001		/*
3002		 * AS_MM_ALL_LOCKS can't change from under us because
3003		 * we hold the mm_all_locks_mutex.
3004		 *
3005		 * Operations on ->flags have to be atomic because
3006		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007		 * mm_all_locks_mutex, there may be other cpus
3008		 * changing other bitflags in parallel to us.
3009		 */
3010		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011			BUG();
3012		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013	}
3014}
3015
3016/*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048int mm_take_all_locks(struct mm_struct *mm)
3049{
3050	struct vm_area_struct *vma;
3051	struct anon_vma_chain *avc;
3052
3053	BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055	mutex_lock(&mm_all_locks_mutex);
3056
3057	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058		if (signal_pending(current))
3059			goto out_unlock;
3060		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
3061			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062	}
3063
3064	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065		if (signal_pending(current))
3066			goto out_unlock;
3067		if (vma->anon_vma)
3068			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069				vm_lock_anon_vma(mm, avc->anon_vma);
3070	}
3071
3072	return 0;
3073
3074out_unlock:
3075	mm_drop_all_locks(mm);
3076	return -EINTR;
3077}
3078
3079static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080{
3081	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082		/*
3083		 * The LSB of head.next can't change to 0 from under
3084		 * us because we hold the mm_all_locks_mutex.
3085		 *
3086		 * We must however clear the bitflag before unlocking
3087		 * the vma so the users using the anon_vma->rb_root will
3088		 * never see our bitflag.
3089		 *
3090		 * No need of atomic instructions here, head.next
3091		 * can't change from under us until we release the
3092		 * anon_vma->root->rwsem.
3093		 */
3094		if (!__test_and_clear_bit(0, (unsigned long *)
3095					  &anon_vma->root->rb_root.rb_node))
3096			BUG();
3097		anon_vma_unlock_write(anon_vma);
3098	}
3099}
3100
3101static void vm_unlock_mapping(struct address_space *mapping)
3102{
3103	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104		/*
3105		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106		 * because we hold the mm_all_locks_mutex.
3107		 */
3108		mutex_unlock(&mapping->i_mmap_mutex);
3109		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110					&mapping->flags))
3111			BUG();
3112	}
3113}
3114
3115/*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119void mm_drop_all_locks(struct mm_struct *mm)
3120{
3121	struct vm_area_struct *vma;
3122	struct anon_vma_chain *avc;
3123
3124	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128		if (vma->anon_vma)
3129			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130				vm_unlock_anon_vma(avc->anon_vma);
3131		if (vma->vm_file && vma->vm_file->f_mapping)
3132			vm_unlock_mapping(vma->vm_file->f_mapping);
3133	}
3134
3135	mutex_unlock(&mm_all_locks_mutex);
3136}
3137
3138/*
3139 * initialise the VMA slab
3140 */
3141void __init mmap_init(void)
3142{
3143	int ret;
3144
3145	ret = percpu_counter_init(&vm_committed_as, 0);
3146	VM_BUG_ON(ret);
3147}
3148
3149/*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159static int init_user_reserve(void)
3160{
3161	unsigned long free_kbytes;
3162
3163	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166	return 0;
3167}
3168subsys_initcall(init_user_reserve);
3169
3170/*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180static int init_admin_reserve(void)
3181{
3182	unsigned long free_kbytes;
3183
3184	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187	return 0;
3188}
3189subsys_initcall(init_admin_reserve);
3190
3191/*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209static int reserve_mem_notifier(struct notifier_block *nb,
3210			     unsigned long action, void *data)
3211{
3212	unsigned long tmp, free_kbytes;
3213
3214	switch (action) {
3215	case MEM_ONLINE:
3216		/* Default max is 128MB. Leave alone if modified by operator. */
3217		tmp = sysctl_user_reserve_kbytes;
3218		if (0 < tmp && tmp < (1UL << 17))
3219			init_user_reserve();
3220
3221		/* Default max is 8MB.  Leave alone if modified by operator. */
3222		tmp = sysctl_admin_reserve_kbytes;
3223		if (0 < tmp && tmp < (1UL << 13))
3224			init_admin_reserve();
3225
3226		break;
3227	case MEM_OFFLINE:
3228		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230		if (sysctl_user_reserve_kbytes > free_kbytes) {
3231			init_user_reserve();
3232			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233				sysctl_user_reserve_kbytes);
3234		}
3235
3236		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237			init_admin_reserve();
3238			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239				sysctl_admin_reserve_kbytes);
3240		}
3241		break;
3242	default:
3243		break;
3244	}
3245	return NOTIFY_OK;
3246}
3247
3248static struct notifier_block reserve_mem_nb = {
3249	.notifier_call = reserve_mem_notifier,
3250};
3251
3252static int __meminit init_reserve_notifier(void)
3253{
3254	if (register_hotmemory_notifier(&reserve_mem_nb))
3255		printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257	return 0;
3258}
3259subsys_initcall(init_reserve_notifier);