Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
 
 
 
 
  16 */
  17
  18#include <linux/kernel.h>
 
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43#include <linux/idr.h>
  44#include <linux/platform_data/x86/apple.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/spi.h>
  48
  49static DEFINE_IDR(spi_master_idr);
  50
  51static void spidev_release(struct device *dev)
  52{
  53	struct spi_device	*spi = to_spi_device(dev);
  54
  55	/* spi controllers may cleanup for released devices */
  56	if (spi->controller->cleanup)
  57		spi->controller->cleanup(spi);
  58
  59	spi_controller_put(spi->controller);
  60	kfree(spi);
  61}
  62
  63static ssize_t
  64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  65{
  66	const struct spi_device	*spi = to_spi_device(dev);
  67	int len;
  68
  69	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  70	if (len != -ENODEV)
  71		return len;
  72
  73	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  74}
  75static DEVICE_ATTR_RO(modalias);
  76
  77#define SPI_STATISTICS_ATTRS(field, file)				\
  78static ssize_t spi_controller_##field##_show(struct device *dev,	\
  79					     struct device_attribute *attr, \
  80					     char *buf)			\
  81{									\
  82	struct spi_controller *ctlr = container_of(dev,			\
  83					 struct spi_controller, dev);	\
  84	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
  85}									\
  86static struct device_attribute dev_attr_spi_controller_##field = {	\
  87	.attr = { .name = file, .mode = 0444 },				\
  88	.show = spi_controller_##field##_show,				\
  89};									\
  90static ssize_t spi_device_##field##_show(struct device *dev,		\
  91					 struct device_attribute *attr,	\
  92					char *buf)			\
  93{									\
  94	struct spi_device *spi = to_spi_device(dev);			\
  95	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  96}									\
  97static struct device_attribute dev_attr_spi_device_##field = {		\
  98	.attr = { .name = file, .mode = 0444 },				\
  99	.show = spi_device_##field##_show,				\
 100}
 101
 102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 104					    char *buf)			\
 105{									\
 106	unsigned long flags;						\
 107	ssize_t len;							\
 108	spin_lock_irqsave(&stat->lock, flags);				\
 109	len = sprintf(buf, format_string, stat->field);			\
 110	spin_unlock_irqrestore(&stat->lock, flags);			\
 111	return len;							\
 112}									\
 113SPI_STATISTICS_ATTRS(name, file)
 114
 115#define SPI_STATISTICS_SHOW(field, format_string)			\
 116	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 117				 field, format_string)
 118
 119SPI_STATISTICS_SHOW(messages, "%lu");
 120SPI_STATISTICS_SHOW(transfers, "%lu");
 121SPI_STATISTICS_SHOW(errors, "%lu");
 122SPI_STATISTICS_SHOW(timedout, "%lu");
 123
 124SPI_STATISTICS_SHOW(spi_sync, "%lu");
 125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 126SPI_STATISTICS_SHOW(spi_async, "%lu");
 127
 128SPI_STATISTICS_SHOW(bytes, "%llu");
 129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 131
 132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 133	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 134				 "transfer_bytes_histo_" number,	\
 135				 transfer_bytes_histo[index],  "%lu")
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 153
 154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 155
 156static struct attribute *spi_dev_attrs[] = {
 157	&dev_attr_modalias.attr,
 158	NULL,
 159};
 160
 161static const struct attribute_group spi_dev_group = {
 162	.attrs  = spi_dev_attrs,
 163};
 164
 165static struct attribute *spi_device_statistics_attrs[] = {
 166	&dev_attr_spi_device_messages.attr,
 167	&dev_attr_spi_device_transfers.attr,
 168	&dev_attr_spi_device_errors.attr,
 169	&dev_attr_spi_device_timedout.attr,
 170	&dev_attr_spi_device_spi_sync.attr,
 171	&dev_attr_spi_device_spi_sync_immediate.attr,
 172	&dev_attr_spi_device_spi_async.attr,
 173	&dev_attr_spi_device_bytes.attr,
 174	&dev_attr_spi_device_bytes_rx.attr,
 175	&dev_attr_spi_device_bytes_tx.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 186	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 187	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 188	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 189	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 190	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 191	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 192	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 193	&dev_attr_spi_device_transfers_split_maxsize.attr,
 194	NULL,
 195};
 196
 197static const struct attribute_group spi_device_statistics_group = {
 198	.name  = "statistics",
 199	.attrs  = spi_device_statistics_attrs,
 200};
 201
 202static const struct attribute_group *spi_dev_groups[] = {
 203	&spi_dev_group,
 204	&spi_device_statistics_group,
 205	NULL,
 206};
 207
 208static struct attribute *spi_controller_statistics_attrs[] = {
 209	&dev_attr_spi_controller_messages.attr,
 210	&dev_attr_spi_controller_transfers.attr,
 211	&dev_attr_spi_controller_errors.attr,
 212	&dev_attr_spi_controller_timedout.attr,
 213	&dev_attr_spi_controller_spi_sync.attr,
 214	&dev_attr_spi_controller_spi_sync_immediate.attr,
 215	&dev_attr_spi_controller_spi_async.attr,
 216	&dev_attr_spi_controller_bytes.attr,
 217	&dev_attr_spi_controller_bytes_rx.attr,
 218	&dev_attr_spi_controller_bytes_tx.attr,
 219	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 220	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 221	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 222	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 223	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 224	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 225	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 226	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 227	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 228	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 229	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 230	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 231	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 232	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 233	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 234	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 235	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 236	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 237	NULL,
 238};
 239
 240static const struct attribute_group spi_controller_statistics_group = {
 241	.name  = "statistics",
 242	.attrs  = spi_controller_statistics_attrs,
 243};
 244
 245static const struct attribute_group *spi_master_groups[] = {
 246	&spi_controller_statistics_group,
 247	NULL,
 248};
 249
 250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 251				       struct spi_transfer *xfer,
 252				       struct spi_controller *ctlr)
 253{
 254	unsigned long flags;
 255	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 256
 257	if (l2len < 0)
 258		l2len = 0;
 259
 260	spin_lock_irqsave(&stats->lock, flags);
 261
 262	stats->transfers++;
 263	stats->transfer_bytes_histo[l2len]++;
 264
 265	stats->bytes += xfer->len;
 266	if ((xfer->tx_buf) &&
 267	    (xfer->tx_buf != ctlr->dummy_tx))
 268		stats->bytes_tx += xfer->len;
 269	if ((xfer->rx_buf) &&
 270	    (xfer->rx_buf != ctlr->dummy_rx))
 271		stats->bytes_rx += xfer->len;
 272
 273	spin_unlock_irqrestore(&stats->lock, flags);
 274}
 275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 276
 277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 278 * and the sysfs version makes coldplug work too.
 279 */
 280
 281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 282						const struct spi_device *sdev)
 283{
 284	while (id->name[0]) {
 285		if (!strcmp(sdev->modalias, id->name))
 286			return id;
 287		id++;
 288	}
 289	return NULL;
 290}
 291
 292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 293{
 294	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 295
 296	return spi_match_id(sdrv->id_table, sdev);
 297}
 298EXPORT_SYMBOL_GPL(spi_get_device_id);
 299
 300static int spi_match_device(struct device *dev, struct device_driver *drv)
 301{
 302	const struct spi_device	*spi = to_spi_device(dev);
 303	const struct spi_driver	*sdrv = to_spi_driver(drv);
 304
 305	/* Attempt an OF style match */
 306	if (of_driver_match_device(dev, drv))
 307		return 1;
 308
 309	/* Then try ACPI */
 310	if (acpi_driver_match_device(dev, drv))
 311		return 1;
 312
 313	if (sdrv->id_table)
 314		return !!spi_match_id(sdrv->id_table, spi);
 315
 316	return strcmp(spi->modalias, drv->name) == 0;
 317}
 318
 319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 320{
 321	const struct spi_device		*spi = to_spi_device(dev);
 322	int rc;
 323
 324	rc = acpi_device_uevent_modalias(dev, env);
 325	if (rc != -ENODEV)
 326		return rc;
 327
 328	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329}
 330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331struct bus_type spi_bus_type = {
 332	.name		= "spi",
 333	.dev_groups	= spi_dev_groups,
 334	.match		= spi_match_device,
 335	.uevent		= spi_uevent,
 
 336};
 337EXPORT_SYMBOL_GPL(spi_bus_type);
 338
 339
 340static int spi_drv_probe(struct device *dev)
 341{
 342	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 343	struct spi_device		*spi = to_spi_device(dev);
 344	int ret;
 345
 346	ret = of_clk_set_defaults(dev->of_node, false);
 
 347	if (ret)
 348		return ret;
 349
 350	if (dev->of_node) {
 351		spi->irq = of_irq_get(dev->of_node, 0);
 352		if (spi->irq == -EPROBE_DEFER)
 353			return -EPROBE_DEFER;
 354		if (spi->irq < 0)
 355			spi->irq = 0;
 356	}
 357
 358	ret = dev_pm_domain_attach(dev, true);
 359	if (ret != -EPROBE_DEFER) {
 360		ret = sdrv->probe(spi);
 361		if (ret)
 362			dev_pm_domain_detach(dev, true);
 363	}
 364
 365	return ret;
 366}
 367
 368static int spi_drv_remove(struct device *dev)
 369{
 370	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 371	int ret;
 372
 373	ret = sdrv->remove(to_spi_device(dev));
 374	dev_pm_domain_detach(dev, true);
 375
 376	return ret;
 377}
 378
 379static void spi_drv_shutdown(struct device *dev)
 380{
 381	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 382
 383	sdrv->shutdown(to_spi_device(dev));
 384}
 385
 386/**
 387 * __spi_register_driver - register a SPI driver
 388 * @owner: owner module of the driver to register
 389 * @sdrv: the driver to register
 390 * Context: can sleep
 391 *
 392 * Return: zero on success, else a negative error code.
 393 */
 394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 395{
 396	sdrv->driver.owner = owner;
 397	sdrv->driver.bus = &spi_bus_type;
 398	if (sdrv->probe)
 399		sdrv->driver.probe = spi_drv_probe;
 400	if (sdrv->remove)
 401		sdrv->driver.remove = spi_drv_remove;
 402	if (sdrv->shutdown)
 403		sdrv->driver.shutdown = spi_drv_shutdown;
 404	return driver_register(&sdrv->driver);
 405}
 406EXPORT_SYMBOL_GPL(__spi_register_driver);
 407
 408/*-------------------------------------------------------------------------*/
 409
 410/* SPI devices should normally not be created by SPI device drivers; that
 411 * would make them board-specific.  Similarly with SPI controller drivers.
 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 413 * with other readonly (flashable) information about mainboard devices.
 414 */
 415
 416struct boardinfo {
 417	struct list_head	list;
 418	struct spi_board_info	board_info;
 419};
 420
 421static LIST_HEAD(board_list);
 422static LIST_HEAD(spi_controller_list);
 423
 424/*
 425 * Used to protect add/del opertion for board_info list and
 426 * spi_controller list, and their matching process
 427 * also used to protect object of type struct idr
 428 */
 429static DEFINE_MUTEX(board_lock);
 430
 431/**
 432 * spi_alloc_device - Allocate a new SPI device
 433 * @ctlr: Controller to which device is connected
 434 * Context: can sleep
 435 *
 436 * Allows a driver to allocate and initialize a spi_device without
 437 * registering it immediately.  This allows a driver to directly
 438 * fill the spi_device with device parameters before calling
 439 * spi_add_device() on it.
 440 *
 441 * Caller is responsible to call spi_add_device() on the returned
 442 * spi_device structure to add it to the SPI controller.  If the caller
 443 * needs to discard the spi_device without adding it, then it should
 444 * call spi_dev_put() on it.
 445 *
 446 * Return: a pointer to the new device, or NULL.
 447 */
 448struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 449{
 450	struct spi_device	*spi;
 
 451
 452	if (!spi_controller_get(ctlr))
 453		return NULL;
 454
 455	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 456	if (!spi) {
 457		spi_controller_put(ctlr);
 
 458		return NULL;
 459	}
 460
 461	spi->master = spi->controller = ctlr;
 462	spi->dev.parent = &ctlr->dev;
 463	spi->dev.bus = &spi_bus_type;
 464	spi->dev.release = spidev_release;
 465	spi->cs_gpio = -ENOENT;
 466
 467	spin_lock_init(&spi->statistics.lock);
 468
 469	device_initialize(&spi->dev);
 470	return spi;
 471}
 472EXPORT_SYMBOL_GPL(spi_alloc_device);
 473
 474static void spi_dev_set_name(struct spi_device *spi)
 475{
 476	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 477
 478	if (adev) {
 479		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 480		return;
 481	}
 482
 483	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 484		     spi->chip_select);
 485}
 486
 487static int spi_dev_check(struct device *dev, void *data)
 488{
 489	struct spi_device *spi = to_spi_device(dev);
 490	struct spi_device *new_spi = data;
 491
 492	if (spi->controller == new_spi->controller &&
 493	    spi->chip_select == new_spi->chip_select)
 494		return -EBUSY;
 495	return 0;
 496}
 497
 498/**
 499 * spi_add_device - Add spi_device allocated with spi_alloc_device
 500 * @spi: spi_device to register
 501 *
 502 * Companion function to spi_alloc_device.  Devices allocated with
 503 * spi_alloc_device can be added onto the spi bus with this function.
 504 *
 505 * Return: 0 on success; negative errno on failure
 506 */
 507int spi_add_device(struct spi_device *spi)
 508{
 509	static DEFINE_MUTEX(spi_add_lock);
 510	struct spi_controller *ctlr = spi->controller;
 511	struct device *dev = ctlr->dev.parent;
 512	int status;
 513
 514	/* Chipselects are numbered 0..max; validate. */
 515	if (spi->chip_select >= ctlr->num_chipselect) {
 516		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 517			ctlr->num_chipselect);
 
 518		return -EINVAL;
 519	}
 520
 521	/* Set the bus ID string */
 522	spi_dev_set_name(spi);
 523
 524	/* We need to make sure there's no other device with this
 525	 * chipselect **BEFORE** we call setup(), else we'll trash
 526	 * its configuration.  Lock against concurrent add() calls.
 527	 */
 528	mutex_lock(&spi_add_lock);
 529
 530	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 531	if (status) {
 532		dev_err(dev, "chipselect %d already in use\n",
 533				spi->chip_select);
 534		goto done;
 535	}
 536
 537	if (ctlr->cs_gpios)
 538		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 539
 540	/* Drivers may modify this initial i/o setup, but will
 541	 * normally rely on the device being setup.  Devices
 542	 * using SPI_CS_HIGH can't coexist well otherwise...
 543	 */
 544	status = spi_setup(spi);
 545	if (status < 0) {
 546		dev_err(dev, "can't setup %s, status %d\n",
 547				dev_name(&spi->dev), status);
 548		goto done;
 549	}
 550
 551	/* Device may be bound to an active driver when this returns */
 552	status = device_add(&spi->dev);
 553	if (status < 0)
 554		dev_err(dev, "can't add %s, status %d\n",
 555				dev_name(&spi->dev), status);
 556	else
 557		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 558
 559done:
 560	mutex_unlock(&spi_add_lock);
 561	return status;
 562}
 563EXPORT_SYMBOL_GPL(spi_add_device);
 564
 565/**
 566 * spi_new_device - instantiate one new SPI device
 567 * @ctlr: Controller to which device is connected
 568 * @chip: Describes the SPI device
 569 * Context: can sleep
 570 *
 571 * On typical mainboards, this is purely internal; and it's not needed
 572 * after board init creates the hard-wired devices.  Some development
 573 * platforms may not be able to use spi_register_board_info though, and
 574 * this is exported so that for example a USB or parport based adapter
 575 * driver could add devices (which it would learn about out-of-band).
 576 *
 577 * Return: the new device, or NULL.
 578 */
 579struct spi_device *spi_new_device(struct spi_controller *ctlr,
 580				  struct spi_board_info *chip)
 581{
 582	struct spi_device	*proxy;
 583	int			status;
 584
 585	/* NOTE:  caller did any chip->bus_num checks necessary.
 586	 *
 587	 * Also, unless we change the return value convention to use
 588	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 589	 * suggests syslogged diagnostics are best here (ugh).
 590	 */
 591
 592	proxy = spi_alloc_device(ctlr);
 593	if (!proxy)
 594		return NULL;
 595
 596	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 597
 598	proxy->chip_select = chip->chip_select;
 599	proxy->max_speed_hz = chip->max_speed_hz;
 600	proxy->mode = chip->mode;
 601	proxy->irq = chip->irq;
 602	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 603	proxy->dev.platform_data = (void *) chip->platform_data;
 604	proxy->controller_data = chip->controller_data;
 605	proxy->controller_state = NULL;
 606
 607	if (chip->properties) {
 608		status = device_add_properties(&proxy->dev, chip->properties);
 609		if (status) {
 610			dev_err(&ctlr->dev,
 611				"failed to add properties to '%s': %d\n",
 612				chip->modalias, status);
 613			goto err_dev_put;
 614		}
 615	}
 616
 617	status = spi_add_device(proxy);
 618	if (status < 0)
 619		goto err_remove_props;
 
 
 620
 621	return proxy;
 622
 623err_remove_props:
 624	if (chip->properties)
 625		device_remove_properties(&proxy->dev);
 626err_dev_put:
 627	spi_dev_put(proxy);
 628	return NULL;
 629}
 630EXPORT_SYMBOL_GPL(spi_new_device);
 631
 632/**
 633 * spi_unregister_device - unregister a single SPI device
 634 * @spi: spi_device to unregister
 635 *
 636 * Start making the passed SPI device vanish. Normally this would be handled
 637 * by spi_unregister_controller().
 638 */
 639void spi_unregister_device(struct spi_device *spi)
 640{
 641	if (!spi)
 642		return;
 643
 644	if (spi->dev.of_node) {
 645		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 646		of_node_put(spi->dev.of_node);
 647	}
 648	if (ACPI_COMPANION(&spi->dev))
 649		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 650	device_unregister(&spi->dev);
 651}
 652EXPORT_SYMBOL_GPL(spi_unregister_device);
 653
 654static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 655					      struct spi_board_info *bi)
 656{
 657	struct spi_device *dev;
 658
 659	if (ctlr->bus_num != bi->bus_num)
 660		return;
 661
 662	dev = spi_new_device(ctlr, bi);
 663	if (!dev)
 664		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 665			bi->modalias);
 666}
 667
 668/**
 669 * spi_register_board_info - register SPI devices for a given board
 670 * @info: array of chip descriptors
 671 * @n: how many descriptors are provided
 672 * Context: can sleep
 673 *
 674 * Board-specific early init code calls this (probably during arch_initcall)
 675 * with segments of the SPI device table.  Any device nodes are created later,
 676 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 677 * this table of devices forever, so that reloading a controller driver will
 678 * not make Linux forget about these hard-wired devices.
 679 *
 680 * Other code can also call this, e.g. a particular add-on board might provide
 681 * SPI devices through its expansion connector, so code initializing that board
 682 * would naturally declare its SPI devices.
 683 *
 684 * The board info passed can safely be __initdata ... but be careful of
 685 * any embedded pointers (platform_data, etc), they're copied as-is.
 686 * Device properties are deep-copied though.
 687 *
 688 * Return: zero on success, else a negative error code.
 689 */
 690int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 691{
 692	struct boardinfo *bi;
 693	int i;
 694
 695	if (!n)
 696		return 0;
 697
 698	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 699	if (!bi)
 700		return -ENOMEM;
 701
 702	for (i = 0; i < n; i++, bi++, info++) {
 703		struct spi_controller *ctlr;
 704
 705		memcpy(&bi->board_info, info, sizeof(*info));
 706		if (info->properties) {
 707			bi->board_info.properties =
 708					property_entries_dup(info->properties);
 709			if (IS_ERR(bi->board_info.properties))
 710				return PTR_ERR(bi->board_info.properties);
 711		}
 712
 713		mutex_lock(&board_lock);
 714		list_add_tail(&bi->list, &board_list);
 715		list_for_each_entry(ctlr, &spi_controller_list, list)
 716			spi_match_controller_to_boardinfo(ctlr,
 717							  &bi->board_info);
 718		mutex_unlock(&board_lock);
 719	}
 720
 721	return 0;
 722}
 723
 724/*-------------------------------------------------------------------------*/
 725
 726static void spi_set_cs(struct spi_device *spi, bool enable)
 727{
 728	if (spi->mode & SPI_CS_HIGH)
 729		enable = !enable;
 730
 731	if (gpio_is_valid(spi->cs_gpio)) {
 732		gpio_set_value(spi->cs_gpio, !enable);
 733		/* Some SPI masters need both GPIO CS & slave_select */
 734		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 735		    spi->controller->set_cs)
 736			spi->controller->set_cs(spi, !enable);
 737	} else if (spi->controller->set_cs) {
 738		spi->controller->set_cs(spi, !enable);
 739	}
 740}
 741
 742#ifdef CONFIG_HAS_DMA
 743static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 744		       struct sg_table *sgt, void *buf, size_t len,
 745		       enum dma_data_direction dir)
 746{
 747	const bool vmalloced_buf = is_vmalloc_addr(buf);
 748	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 749#ifdef CONFIG_HIGHMEM
 750	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 751				(unsigned long)buf < (PKMAP_BASE +
 752					(LAST_PKMAP * PAGE_SIZE)));
 753#else
 754	const bool kmap_buf = false;
 755#endif
 756	int desc_len;
 757	int sgs;
 758	struct page *vm_page;
 759	struct scatterlist *sg;
 760	void *sg_buf;
 761	size_t min;
 762	int i, ret;
 763
 764	if (vmalloced_buf || kmap_buf) {
 765		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 766		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 767	} else if (virt_addr_valid(buf)) {
 768		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 769		sgs = DIV_ROUND_UP(len, desc_len);
 770	} else {
 771		return -EINVAL;
 772	}
 773
 774	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 775	if (ret != 0)
 776		return ret;
 777
 778	sg = &sgt->sgl[0];
 779	for (i = 0; i < sgs; i++) {
 
 780
 781		if (vmalloced_buf || kmap_buf) {
 782			/*
 783			 * Next scatterlist entry size is the minimum between
 784			 * the desc_len and the remaining buffer length that
 785			 * fits in a page.
 786			 */
 787			min = min_t(size_t, desc_len,
 788				    min_t(size_t, len,
 789					  PAGE_SIZE - offset_in_page(buf)));
 790			if (vmalloced_buf)
 791				vm_page = vmalloc_to_page(buf);
 792			else
 793				vm_page = kmap_to_page(buf);
 794			if (!vm_page) {
 795				sg_free_table(sgt);
 796				return -ENOMEM;
 797			}
 798			sg_set_page(sg, vm_page,
 799				    min, offset_in_page(buf));
 800		} else {
 801			min = min_t(size_t, len, desc_len);
 802			sg_buf = buf;
 803			sg_set_buf(sg, sg_buf, min);
 804		}
 805
 
 
 806		buf += min;
 807		len -= min;
 808		sg = sg_next(sg);
 809	}
 810
 811	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 812	if (!ret)
 813		ret = -ENOMEM;
 814	if (ret < 0) {
 815		sg_free_table(sgt);
 816		return ret;
 817	}
 818
 819	sgt->nents = ret;
 820
 821	return 0;
 822}
 823
 824static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 825			  struct sg_table *sgt, enum dma_data_direction dir)
 826{
 827	if (sgt->orig_nents) {
 828		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 829		sg_free_table(sgt);
 830	}
 831}
 832
 833static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 834{
 835	struct device *tx_dev, *rx_dev;
 836	struct spi_transfer *xfer;
 837	int ret;
 838
 839	if (!ctlr->can_dma)
 840		return 0;
 841
 842	if (ctlr->dma_tx)
 843		tx_dev = ctlr->dma_tx->device->dev;
 844	else
 845		tx_dev = ctlr->dev.parent;
 846
 847	if (ctlr->dma_rx)
 848		rx_dev = ctlr->dma_rx->device->dev;
 849	else
 850		rx_dev = ctlr->dev.parent;
 851
 852	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 853		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 854			continue;
 855
 856		if (xfer->tx_buf != NULL) {
 857			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 858					  (void *)xfer->tx_buf, xfer->len,
 859					  DMA_TO_DEVICE);
 860			if (ret != 0)
 861				return ret;
 862		}
 863
 864		if (xfer->rx_buf != NULL) {
 865			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 866					  xfer->rx_buf, xfer->len,
 867					  DMA_FROM_DEVICE);
 868			if (ret != 0) {
 869				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 870					      DMA_TO_DEVICE);
 871				return ret;
 872			}
 873		}
 874	}
 875
 876	ctlr->cur_msg_mapped = true;
 877
 878	return 0;
 879}
 880
 881static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 882{
 883	struct spi_transfer *xfer;
 884	struct device *tx_dev, *rx_dev;
 885
 886	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 887		return 0;
 888
 889	if (ctlr->dma_tx)
 890		tx_dev = ctlr->dma_tx->device->dev;
 891	else
 892		tx_dev = ctlr->dev.parent;
 893
 894	if (ctlr->dma_rx)
 895		rx_dev = ctlr->dma_rx->device->dev;
 896	else
 897		rx_dev = ctlr->dev.parent;
 898
 899	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 900		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 901			continue;
 902
 903		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 904		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 905	}
 906
 907	return 0;
 908}
 909#else /* !CONFIG_HAS_DMA */
 910static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 911			      struct sg_table *sgt, void *buf, size_t len,
 912			      enum dma_data_direction dir)
 913{
 914	return -EINVAL;
 915}
 916
 917static inline void spi_unmap_buf(struct spi_controller *ctlr,
 918				 struct device *dev, struct sg_table *sgt,
 919				 enum dma_data_direction dir)
 920{
 921}
 922
 923static inline int __spi_map_msg(struct spi_controller *ctlr,
 924				struct spi_message *msg)
 925{
 926	return 0;
 927}
 928
 929static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 930				  struct spi_message *msg)
 931{
 932	return 0;
 933}
 934#endif /* !CONFIG_HAS_DMA */
 935
 936static inline int spi_unmap_msg(struct spi_controller *ctlr,
 937				struct spi_message *msg)
 938{
 939	struct spi_transfer *xfer;
 940
 941	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 942		/*
 943		 * Restore the original value of tx_buf or rx_buf if they are
 944		 * NULL.
 945		 */
 946		if (xfer->tx_buf == ctlr->dummy_tx)
 947			xfer->tx_buf = NULL;
 948		if (xfer->rx_buf == ctlr->dummy_rx)
 949			xfer->rx_buf = NULL;
 950	}
 951
 952	return __spi_unmap_msg(ctlr, msg);
 953}
 954
 955static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 956{
 957	struct spi_transfer *xfer;
 958	void *tmp;
 959	unsigned int max_tx, max_rx;
 960
 961	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 962		max_tx = 0;
 963		max_rx = 0;
 964
 965		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
 967			    !xfer->tx_buf)
 968				max_tx = max(xfer->len, max_tx);
 969			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
 970			    !xfer->rx_buf)
 971				max_rx = max(xfer->len, max_rx);
 972		}
 973
 974		if (max_tx) {
 975			tmp = krealloc(ctlr->dummy_tx, max_tx,
 976				       GFP_KERNEL | GFP_DMA);
 977			if (!tmp)
 978				return -ENOMEM;
 979			ctlr->dummy_tx = tmp;
 980			memset(tmp, 0, max_tx);
 981		}
 982
 983		if (max_rx) {
 984			tmp = krealloc(ctlr->dummy_rx, max_rx,
 985				       GFP_KERNEL | GFP_DMA);
 986			if (!tmp)
 987				return -ENOMEM;
 988			ctlr->dummy_rx = tmp;
 989		}
 990
 991		if (max_tx || max_rx) {
 992			list_for_each_entry(xfer, &msg->transfers,
 993					    transfer_list) {
 994				if (!xfer->tx_buf)
 995					xfer->tx_buf = ctlr->dummy_tx;
 996				if (!xfer->rx_buf)
 997					xfer->rx_buf = ctlr->dummy_rx;
 998			}
 999		}
1000	}
1001
1002	return __spi_map_msg(ctlr, msg);
1003}
1004
1005/*
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1007 *
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation.  It provides
1010 * standard handling of delays and chip select management.
1011 */
1012static int spi_transfer_one_message(struct spi_controller *ctlr,
1013				    struct spi_message *msg)
1014{
1015	struct spi_transfer *xfer;
1016	bool keep_cs = false;
1017	int ret = 0;
1018	unsigned long long ms = 1;
1019	struct spi_statistics *statm = &ctlr->statistics;
1020	struct spi_statistics *stats = &msg->spi->statistics;
1021
1022	spi_set_cs(msg->spi, true);
1023
1024	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026
1027	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028		trace_spi_transfer_start(msg, xfer);
1029
1030		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032
1033		if (xfer->tx_buf || xfer->rx_buf) {
1034			reinit_completion(&ctlr->xfer_completion);
1035
1036			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037			if (ret < 0) {
1038				SPI_STATISTICS_INCREMENT_FIELD(statm,
1039							       errors);
1040				SPI_STATISTICS_INCREMENT_FIELD(stats,
1041							       errors);
1042				dev_err(&msg->spi->dev,
1043					"SPI transfer failed: %d\n", ret);
1044				goto out;
1045			}
1046
1047			if (ret > 0) {
1048				ret = 0;
1049				ms = 8LL * 1000LL * xfer->len;
1050				do_div(ms, xfer->speed_hz);
1051				ms += ms + 200; /* some tolerance */
1052
1053				if (ms > UINT_MAX)
1054					ms = UINT_MAX;
1055
1056				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057								 msecs_to_jiffies(ms));
1058			}
 
 
 
 
 
1059
1060			if (ms == 0) {
1061				SPI_STATISTICS_INCREMENT_FIELD(statm,
1062							       timedout);
1063				SPI_STATISTICS_INCREMENT_FIELD(stats,
1064							       timedout);
1065				dev_err(&msg->spi->dev,
1066					"SPI transfer timed out\n");
1067				msg->status = -ETIMEDOUT;
1068			}
1069		} else {
1070			if (xfer->len)
1071				dev_err(&msg->spi->dev,
1072					"Bufferless transfer has length %u\n",
1073					xfer->len);
1074		}
1075
1076		trace_spi_transfer_stop(msg, xfer);
1077
1078		if (msg->status != -EINPROGRESS)
1079			goto out;
1080
1081		if (xfer->delay_usecs) {
1082			u16 us = xfer->delay_usecs;
1083
1084			if (us <= 10)
1085				udelay(us);
1086			else
1087				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088		}
1089
1090		if (xfer->cs_change) {
1091			if (list_is_last(&xfer->transfer_list,
1092					 &msg->transfers)) {
1093				keep_cs = true;
1094			} else {
1095				spi_set_cs(msg->spi, false);
1096				udelay(10);
1097				spi_set_cs(msg->spi, true);
1098			}
1099		}
1100
1101		msg->actual_length += xfer->len;
1102	}
1103
1104out:
1105	if (ret != 0 || !keep_cs)
1106		spi_set_cs(msg->spi, false);
1107
1108	if (msg->status == -EINPROGRESS)
1109		msg->status = ret;
1110
1111	if (msg->status && ctlr->handle_err)
1112		ctlr->handle_err(ctlr, msg);
1113
1114	spi_res_release(ctlr, msg);
1115
1116	spi_finalize_current_message(ctlr);
1117
1118	return ret;
1119}
1120
1121/**
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1124 *
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1128 */
1129void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130{
1131	complete(&ctlr->xfer_completion);
1132}
1133EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134
1135/**
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1139 *
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1143 *
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1147 */
1148static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149{
 
 
1150	unsigned long flags;
1151	bool was_busy = false;
1152	int ret;
1153
1154	/* Lock queue */
1155	spin_lock_irqsave(&ctlr->queue_lock, flags);
1156
1157	/* Make sure we are not already running a message */
1158	if (ctlr->cur_msg) {
1159		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160		return;
1161	}
1162
1163	/* If another context is idling the device then defer */
1164	if (ctlr->idling) {
1165		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167		return;
1168	}
1169
1170	/* Check if the queue is idle */
1171	if (list_empty(&ctlr->queue) || !ctlr->running) {
1172		if (!ctlr->busy) {
1173			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174			return;
1175		}
1176
1177		/* Only do teardown in the thread */
1178		if (!in_kthread) {
1179			kthread_queue_work(&ctlr->kworker,
1180					   &ctlr->pump_messages);
1181			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182			return;
1183		}
1184
1185		ctlr->busy = false;
1186		ctlr->idling = true;
1187		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188
1189		kfree(ctlr->dummy_rx);
1190		ctlr->dummy_rx = NULL;
1191		kfree(ctlr->dummy_tx);
1192		ctlr->dummy_tx = NULL;
1193		if (ctlr->unprepare_transfer_hardware &&
1194		    ctlr->unprepare_transfer_hardware(ctlr))
1195			dev_err(&ctlr->dev,
1196				"failed to unprepare transfer hardware\n");
1197		if (ctlr->auto_runtime_pm) {
1198			pm_runtime_mark_last_busy(ctlr->dev.parent);
1199			pm_runtime_put_autosuspend(ctlr->dev.parent);
1200		}
1201		trace_spi_controller_idle(ctlr);
1202
1203		spin_lock_irqsave(&ctlr->queue_lock, flags);
1204		ctlr->idling = false;
1205		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206		return;
1207	}
1208
 
 
 
 
 
1209	/* Extract head of queue */
1210	ctlr->cur_msg =
1211		list_first_entry(&ctlr->queue, struct spi_message, queue);
1212
1213	list_del_init(&ctlr->cur_msg->queue);
1214	if (ctlr->busy)
1215		was_busy = true;
1216	else
1217		ctlr->busy = true;
1218	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219
1220	mutex_lock(&ctlr->io_mutex);
1221
1222	if (!was_busy && ctlr->auto_runtime_pm) {
1223		ret = pm_runtime_get_sync(ctlr->dev.parent);
1224		if (ret < 0) {
1225			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1226				ret);
1227			mutex_unlock(&ctlr->io_mutex);
1228			return;
1229		}
1230	}
1231
1232	if (!was_busy)
1233		trace_spi_controller_busy(ctlr);
1234
1235	if (!was_busy && ctlr->prepare_transfer_hardware) {
1236		ret = ctlr->prepare_transfer_hardware(ctlr);
1237		if (ret) {
1238			dev_err(&ctlr->dev,
1239				"failed to prepare transfer hardware\n");
1240
1241			if (ctlr->auto_runtime_pm)
1242				pm_runtime_put(ctlr->dev.parent);
1243			mutex_unlock(&ctlr->io_mutex);
1244			return;
1245		}
1246	}
1247
1248	trace_spi_message_start(ctlr->cur_msg);
1249
1250	if (ctlr->prepare_message) {
1251		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1252		if (ret) {
1253			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1254				ret);
1255			ctlr->cur_msg->status = ret;
1256			spi_finalize_current_message(ctlr);
1257			goto out;
1258		}
1259		ctlr->cur_msg_prepared = true;
1260	}
1261
1262	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1263	if (ret) {
1264		ctlr->cur_msg->status = ret;
1265		spi_finalize_current_message(ctlr);
1266		goto out;
1267	}
1268
1269	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1270	if (ret) {
1271		dev_err(&ctlr->dev,
1272			"failed to transfer one message from queue\n");
1273		goto out;
1274	}
1275
1276out:
1277	mutex_unlock(&ctlr->io_mutex);
1278
1279	/* Prod the scheduler in case transfer_one() was busy waiting */
1280	if (!ret)
1281		cond_resched();
1282}
1283
1284/**
1285 * spi_pump_messages - kthread work function which processes spi message queue
1286 * @work: pointer to kthread work struct contained in the controller struct
1287 */
1288static void spi_pump_messages(struct kthread_work *work)
1289{
1290	struct spi_controller *ctlr =
1291		container_of(work, struct spi_controller, pump_messages);
1292
1293	__spi_pump_messages(ctlr, true);
1294}
1295
1296static int spi_init_queue(struct spi_controller *ctlr)
1297{
1298	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1299
1300	ctlr->running = false;
1301	ctlr->busy = false;
1302
1303	kthread_init_worker(&ctlr->kworker);
1304	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1305					 "%s", dev_name(&ctlr->dev));
1306	if (IS_ERR(ctlr->kworker_task)) {
1307		dev_err(&ctlr->dev, "failed to create message pump task\n");
1308		return PTR_ERR(ctlr->kworker_task);
 
 
 
 
1309	}
1310	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1311
1312	/*
1313	 * Controller config will indicate if this controller should run the
1314	 * message pump with high (realtime) priority to reduce the transfer
1315	 * latency on the bus by minimising the delay between a transfer
1316	 * request and the scheduling of the message pump thread. Without this
1317	 * setting the message pump thread will remain at default priority.
1318	 */
1319	if (ctlr->rt) {
1320		dev_info(&ctlr->dev,
1321			"will run message pump with realtime priority\n");
1322		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1323	}
1324
1325	return 0;
1326}
1327
1328/**
1329 * spi_get_next_queued_message() - called by driver to check for queued
1330 * messages
1331 * @ctlr: the controller to check for queued messages
1332 *
1333 * If there are more messages in the queue, the next message is returned from
1334 * this call.
1335 *
1336 * Return: the next message in the queue, else NULL if the queue is empty.
1337 */
1338struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1339{
1340	struct spi_message *next;
1341	unsigned long flags;
1342
1343	/* get a pointer to the next message, if any */
1344	spin_lock_irqsave(&ctlr->queue_lock, flags);
1345	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1346					queue);
1347	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348
1349	return next;
1350}
1351EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1352
1353/**
1354 * spi_finalize_current_message() - the current message is complete
1355 * @ctlr: the controller to return the message to
1356 *
1357 * Called by the driver to notify the core that the message in the front of the
1358 * queue is complete and can be removed from the queue.
1359 */
1360void spi_finalize_current_message(struct spi_controller *ctlr)
1361{
1362	struct spi_message *mesg;
1363	unsigned long flags;
1364	int ret;
1365
1366	spin_lock_irqsave(&ctlr->queue_lock, flags);
1367	mesg = ctlr->cur_msg;
1368	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369
1370	spi_unmap_msg(ctlr, mesg);
 
1371
1372	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1373		ret = ctlr->unprepare_message(ctlr, mesg);
 
 
1374		if (ret) {
1375			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1376				ret);
1377		}
1378	}
1379
1380	spin_lock_irqsave(&ctlr->queue_lock, flags);
1381	ctlr->cur_msg = NULL;
1382	ctlr->cur_msg_prepared = false;
1383	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1384	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1385
1386	trace_spi_message_done(mesg);
1387
1388	mesg->state = NULL;
1389	if (mesg->complete)
1390		mesg->complete(mesg->context);
 
 
1391}
1392EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1393
1394static int spi_start_queue(struct spi_controller *ctlr)
1395{
1396	unsigned long flags;
1397
1398	spin_lock_irqsave(&ctlr->queue_lock, flags);
1399
1400	if (ctlr->running || ctlr->busy) {
1401		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402		return -EBUSY;
1403	}
1404
1405	ctlr->running = true;
1406	ctlr->cur_msg = NULL;
1407	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408
1409	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1410
1411	return 0;
1412}
1413
1414static int spi_stop_queue(struct spi_controller *ctlr)
1415{
1416	unsigned long flags;
1417	unsigned limit = 500;
1418	int ret = 0;
1419
1420	spin_lock_irqsave(&ctlr->queue_lock, flags);
1421
1422	/*
1423	 * This is a bit lame, but is optimized for the common execution path.
1424	 * A wait_queue on the ctlr->busy could be used, but then the common
1425	 * execution path (pump_messages) would be required to call wake_up or
1426	 * friends on every SPI message. Do this instead.
1427	 */
1428	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1429		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430		usleep_range(10000, 11000);
1431		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432	}
1433
1434	if (!list_empty(&ctlr->queue) || ctlr->busy)
1435		ret = -EBUSY;
1436	else
1437		ctlr->running = false;
1438
1439	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440
1441	if (ret) {
1442		dev_warn(&ctlr->dev, "could not stop message queue\n");
 
1443		return ret;
1444	}
1445	return ret;
1446}
1447
1448static int spi_destroy_queue(struct spi_controller *ctlr)
1449{
1450	int ret;
1451
1452	ret = spi_stop_queue(ctlr);
1453
1454	/*
1455	 * kthread_flush_worker will block until all work is done.
1456	 * If the reason that stop_queue timed out is that the work will never
1457	 * finish, then it does no good to call flush/stop thread, so
1458	 * return anyway.
1459	 */
1460	if (ret) {
1461		dev_err(&ctlr->dev, "problem destroying queue\n");
1462		return ret;
1463	}
1464
1465	kthread_flush_worker(&ctlr->kworker);
1466	kthread_stop(ctlr->kworker_task);
1467
1468	return 0;
1469}
1470
1471static int __spi_queued_transfer(struct spi_device *spi,
1472				 struct spi_message *msg,
1473				 bool need_pump)
 
 
 
1474{
1475	struct spi_controller *ctlr = spi->controller;
1476	unsigned long flags;
1477
1478	spin_lock_irqsave(&ctlr->queue_lock, flags);
1479
1480	if (!ctlr->running) {
1481		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482		return -ESHUTDOWN;
1483	}
1484	msg->actual_length = 0;
1485	msg->status = -EINPROGRESS;
1486
1487	list_add_tail(&msg->queue, &ctlr->queue);
1488	if (!ctlr->busy && need_pump)
1489		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1490
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492	return 0;
1493}
1494
1495/**
1496 * spi_queued_transfer - transfer function for queued transfers
1497 * @spi: spi device which is requesting transfer
1498 * @msg: spi message which is to handled is queued to driver queue
1499 *
1500 * Return: zero on success, else a negative error code.
1501 */
1502static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1503{
1504	return __spi_queued_transfer(spi, msg, true);
1505}
1506
1507static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1508{
1509	int ret;
1510
1511	ctlr->transfer = spi_queued_transfer;
1512	if (!ctlr->transfer_one_message)
1513		ctlr->transfer_one_message = spi_transfer_one_message;
1514
1515	/* Initialize and start queue */
1516	ret = spi_init_queue(ctlr);
1517	if (ret) {
1518		dev_err(&ctlr->dev, "problem initializing queue\n");
1519		goto err_init_queue;
1520	}
1521	ctlr->queued = true;
1522	ret = spi_start_queue(ctlr);
1523	if (ret) {
1524		dev_err(&ctlr->dev, "problem starting queue\n");
1525		goto err_start_queue;
1526	}
1527
1528	return 0;
1529
1530err_start_queue:
1531	spi_destroy_queue(ctlr);
1532err_init_queue:
1533	return ret;
1534}
1535
1536/*-------------------------------------------------------------------------*/
1537
1538#if defined(CONFIG_OF)
1539static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1540			   struct device_node *nc)
 
 
 
 
 
 
1541{
1542	u32 value;
 
1543	int rc;
 
1544
1545	/* Mode (clock phase/polarity/etc.) */
1546	if (of_property_read_bool(nc, "spi-cpha"))
1547		spi->mode |= SPI_CPHA;
1548	if (of_property_read_bool(nc, "spi-cpol"))
1549		spi->mode |= SPI_CPOL;
1550	if (of_property_read_bool(nc, "spi-cs-high"))
1551		spi->mode |= SPI_CS_HIGH;
1552	if (of_property_read_bool(nc, "spi-3wire"))
1553		spi->mode |= SPI_3WIRE;
1554	if (of_property_read_bool(nc, "spi-lsb-first"))
1555		spi->mode |= SPI_LSB_FIRST;
1556
1557	/* Device DUAL/QUAD mode */
1558	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1559		switch (value) {
1560		case 1:
1561			break;
1562		case 2:
1563			spi->mode |= SPI_TX_DUAL;
1564			break;
1565		case 4:
1566			spi->mode |= SPI_TX_QUAD;
1567			break;
1568		default:
1569			dev_warn(&ctlr->dev,
1570				"spi-tx-bus-width %d not supported\n",
1571				value);
1572			break;
1573		}
1574	}
1575
1576	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1577		switch (value) {
1578		case 1:
1579			break;
1580		case 2:
1581			spi->mode |= SPI_RX_DUAL;
1582			break;
1583		case 4:
1584			spi->mode |= SPI_RX_QUAD;
1585			break;
1586		default:
1587			dev_warn(&ctlr->dev,
1588				"spi-rx-bus-width %d not supported\n",
1589				value);
1590			break;
1591		}
1592	}
1593
1594	if (spi_controller_is_slave(ctlr)) {
1595		if (strcmp(nc->name, "slave")) {
1596			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1597				nc);
1598			return -EINVAL;
 
 
1599		}
1600		return 0;
1601	}
1602
1603	/* Device address */
1604	rc = of_property_read_u32(nc, "reg", &value);
1605	if (rc) {
1606		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1607			nc, rc);
1608		return rc;
1609	}
1610	spi->chip_select = value;
1611
1612	/* Device speed */
1613	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1614	if (rc) {
1615		dev_err(&ctlr->dev,
1616			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1617		return rc;
1618	}
1619	spi->max_speed_hz = value;
1620
1621	return 0;
1622}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624static struct spi_device *
1625of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1626{
1627	struct spi_device *spi;
1628	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630	/* Alloc an spi_device */
1631	spi = spi_alloc_device(ctlr);
1632	if (!spi) {
1633		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1634		rc = -ENOMEM;
1635		goto err_out;
1636	}
1637
1638	/* Select device driver */
1639	rc = of_modalias_node(nc, spi->modalias,
1640				sizeof(spi->modalias));
1641	if (rc < 0) {
1642		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1643		goto err_out;
1644	}
1645
1646	rc = of_spi_parse_dt(ctlr, spi, nc);
1647	if (rc)
1648		goto err_out;
1649
1650	/* Store a pointer to the node in the device structure */
1651	of_node_get(nc);
1652	spi->dev.of_node = nc;
1653
1654	/* Register the new device */
1655	rc = spi_add_device(spi);
1656	if (rc) {
1657		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1658		goto err_of_node_put;
1659	}
1660
1661	return spi;
 
1662
1663err_of_node_put:
1664	of_node_put(nc);
1665err_out:
1666	spi_dev_put(spi);
1667	return ERR_PTR(rc);
1668}
1669
1670/**
1671 * of_register_spi_devices() - Register child devices onto the SPI bus
1672 * @ctlr:	Pointer to spi_controller device
1673 *
1674 * Registers an spi_device for each child node of controller node which
1675 * represents a valid SPI slave.
1676 */
1677static void of_register_spi_devices(struct spi_controller *ctlr)
1678{
1679	struct spi_device *spi;
1680	struct device_node *nc;
1681
1682	if (!ctlr->dev.of_node)
1683		return;
1684
1685	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1686		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1687			continue;
1688		spi = of_register_spi_device(ctlr, nc);
1689		if (IS_ERR(spi)) {
1690			dev_warn(&ctlr->dev,
1691				 "Failed to create SPI device for %pOF\n", nc);
1692			of_node_clear_flag(nc, OF_POPULATED);
1693		}
 
1694	}
1695}
1696#else
1697static void of_register_spi_devices(struct spi_controller *ctlr) { }
1698#endif
1699
1700#ifdef CONFIG_ACPI
1701static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1702{
1703	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1704	const union acpi_object *obj;
1705
1706	if (!x86_apple_machine)
1707		return;
1708
1709	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1710	    && obj->buffer.length >= 4)
1711		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1712
1713	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1714	    && obj->buffer.length == 8)
1715		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1716
1717	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1718	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1719		spi->mode |= SPI_LSB_FIRST;
1720
1721	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1722	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1723		spi->mode |= SPI_CPOL;
1724
1725	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1726	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1727		spi->mode |= SPI_CPHA;
1728}
1729
1730static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1731{
1732	struct spi_device *spi = data;
1733	struct spi_controller *ctlr = spi->controller;
1734
1735	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1736		struct acpi_resource_spi_serialbus *sb;
1737
1738		sb = &ares->data.spi_serial_bus;
1739		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1740			/*
1741			 * ACPI DeviceSelection numbering is handled by the
1742			 * host controller driver in Windows and can vary
1743			 * from driver to driver. In Linux we always expect
1744			 * 0 .. max - 1 so we need to ask the driver to
1745			 * translate between the two schemes.
1746			 */
1747			if (ctlr->fw_translate_cs) {
1748				int cs = ctlr->fw_translate_cs(ctlr,
1749						sb->device_selection);
1750				if (cs < 0)
1751					return cs;
1752				spi->chip_select = cs;
1753			} else {
1754				spi->chip_select = sb->device_selection;
1755			}
1756
1757			spi->max_speed_hz = sb->connection_speed;
1758
1759			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1760				spi->mode |= SPI_CPHA;
1761			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1762				spi->mode |= SPI_CPOL;
1763			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1764				spi->mode |= SPI_CS_HIGH;
1765		}
1766	} else if (spi->irq < 0) {
1767		struct resource r;
1768
1769		if (acpi_dev_resource_interrupt(ares, 0, &r))
1770			spi->irq = r.start;
1771	}
1772
1773	/* Always tell the ACPI core to skip this resource */
1774	return 1;
1775}
1776
1777static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1778					    struct acpi_device *adev)
1779{
 
1780	struct list_head resource_list;
 
1781	struct spi_device *spi;
1782	int ret;
1783
1784	if (acpi_bus_get_status(adev) || !adev->status.present ||
1785	    acpi_device_enumerated(adev))
 
1786		return AE_OK;
1787
1788	spi = spi_alloc_device(ctlr);
1789	if (!spi) {
1790		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1791			dev_name(&adev->dev));
1792		return AE_NO_MEMORY;
1793	}
1794
1795	ACPI_COMPANION_SET(&spi->dev, adev);
1796	spi->irq = -1;
1797
1798	INIT_LIST_HEAD(&resource_list);
1799	ret = acpi_dev_get_resources(adev, &resource_list,
1800				     acpi_spi_add_resource, spi);
1801	acpi_dev_free_resource_list(&resource_list);
1802
1803	acpi_spi_parse_apple_properties(spi);
1804
1805	if (ret < 0 || !spi->max_speed_hz) {
1806		spi_dev_put(spi);
1807		return AE_OK;
1808	}
1809
1810	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1811			  sizeof(spi->modalias));
1812
1813	if (spi->irq < 0)
1814		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1815
1816	acpi_device_set_enumerated(adev);
1817
1818	adev->power.flags.ignore_parent = true;
 
1819	if (spi_add_device(spi)) {
1820		adev->power.flags.ignore_parent = false;
1821		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1822			dev_name(&adev->dev));
1823		spi_dev_put(spi);
1824	}
1825
1826	return AE_OK;
1827}
1828
1829static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1830				       void *data, void **return_value)
1831{
1832	struct spi_controller *ctlr = data;
1833	struct acpi_device *adev;
1834
1835	if (acpi_bus_get_device(handle, &adev))
1836		return AE_OK;
1837
1838	return acpi_register_spi_device(ctlr, adev);
1839}
1840
1841static void acpi_register_spi_devices(struct spi_controller *ctlr)
1842{
1843	acpi_status status;
1844	acpi_handle handle;
1845
1846	handle = ACPI_HANDLE(ctlr->dev.parent);
1847	if (!handle)
1848		return;
1849
1850	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1851				     acpi_spi_add_device, NULL, ctlr, NULL);
 
1852	if (ACPI_FAILURE(status))
1853		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1854}
1855#else
1856static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1857#endif /* CONFIG_ACPI */
1858
1859static void spi_controller_release(struct device *dev)
1860{
1861	struct spi_controller *ctlr;
1862
1863	ctlr = container_of(dev, struct spi_controller, dev);
1864	kfree(ctlr);
1865}
1866
1867static struct class spi_master_class = {
1868	.name		= "spi_master",
1869	.owner		= THIS_MODULE,
1870	.dev_release	= spi_controller_release,
1871	.dev_groups	= spi_master_groups,
1872};
1873
1874#ifdef CONFIG_SPI_SLAVE
1875/**
1876 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1877 *		     controller
1878 * @spi: device used for the current transfer
1879 */
1880int spi_slave_abort(struct spi_device *spi)
1881{
1882	struct spi_controller *ctlr = spi->controller;
1883
1884	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1885		return ctlr->slave_abort(ctlr);
1886
1887	return -ENOTSUPP;
1888}
1889EXPORT_SYMBOL_GPL(spi_slave_abort);
1890
1891static int match_true(struct device *dev, void *data)
1892{
1893	return 1;
1894}
1895
1896static ssize_t spi_slave_show(struct device *dev,
1897			      struct device_attribute *attr, char *buf)
1898{
1899	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1900						   dev);
1901	struct device *child;
1902
1903	child = device_find_child(&ctlr->dev, NULL, match_true);
1904	return sprintf(buf, "%s\n",
1905		       child ? to_spi_device(child)->modalias : NULL);
1906}
1907
1908static ssize_t spi_slave_store(struct device *dev,
1909			       struct device_attribute *attr, const char *buf,
1910			       size_t count)
1911{
1912	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1913						   dev);
1914	struct spi_device *spi;
1915	struct device *child;
1916	char name[32];
1917	int rc;
1918
1919	rc = sscanf(buf, "%31s", name);
1920	if (rc != 1 || !name[0])
1921		return -EINVAL;
1922
1923	child = device_find_child(&ctlr->dev, NULL, match_true);
1924	if (child) {
1925		/* Remove registered slave */
1926		device_unregister(child);
1927		put_device(child);
1928	}
1929
1930	if (strcmp(name, "(null)")) {
1931		/* Register new slave */
1932		spi = spi_alloc_device(ctlr);
1933		if (!spi)
1934			return -ENOMEM;
1935
1936		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1937
1938		rc = spi_add_device(spi);
1939		if (rc) {
1940			spi_dev_put(spi);
1941			return rc;
1942		}
1943	}
1944
1945	return count;
1946}
1947
1948static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1949
1950static struct attribute *spi_slave_attrs[] = {
1951	&dev_attr_slave.attr,
1952	NULL,
1953};
1954
1955static const struct attribute_group spi_slave_group = {
1956	.attrs = spi_slave_attrs,
1957};
1958
1959static const struct attribute_group *spi_slave_groups[] = {
1960	&spi_controller_statistics_group,
1961	&spi_slave_group,
1962	NULL,
1963};
1964
1965static struct class spi_slave_class = {
1966	.name		= "spi_slave",
1967	.owner		= THIS_MODULE,
1968	.dev_release	= spi_controller_release,
1969	.dev_groups	= spi_slave_groups,
1970};
1971#else
1972extern struct class spi_slave_class;	/* dummy */
1973#endif
1974
1975/**
1976 * __spi_alloc_controller - allocate an SPI master or slave controller
1977 * @dev: the controller, possibly using the platform_bus
1978 * @size: how much zeroed driver-private data to allocate; the pointer to this
1979 *	memory is in the driver_data field of the returned device,
1980 *	accessible with spi_controller_get_devdata().
1981 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1982 *	slave (true) controller
1983 * Context: can sleep
1984 *
1985 * This call is used only by SPI controller drivers, which are the
1986 * only ones directly touching chip registers.  It's how they allocate
1987 * an spi_controller structure, prior to calling spi_register_controller().
1988 *
1989 * This must be called from context that can sleep.
 
1990 *
1991 * The caller is responsible for assigning the bus number and initializing the
1992 * controller's methods before calling spi_register_controller(); and (after
1993 * errors adding the device) calling spi_controller_put() to prevent a memory
1994 * leak.
1995 *
1996 * Return: the SPI controller structure on success, else NULL.
1997 */
1998struct spi_controller *__spi_alloc_controller(struct device *dev,
1999					      unsigned int size, bool slave)
2000{
2001	struct spi_controller	*ctlr;
2002
2003	if (!dev)
2004		return NULL;
2005
2006	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2007	if (!ctlr)
2008		return NULL;
2009
2010	device_initialize(&ctlr->dev);
2011	ctlr->bus_num = -1;
2012	ctlr->num_chipselect = 1;
2013	ctlr->slave = slave;
2014	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2015		ctlr->dev.class = &spi_slave_class;
2016	else
2017		ctlr->dev.class = &spi_master_class;
2018	ctlr->dev.parent = dev;
2019	pm_suspend_ignore_children(&ctlr->dev, true);
2020	spi_controller_set_devdata(ctlr, &ctlr[1]);
2021
2022	return ctlr;
2023}
2024EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2025
2026#ifdef CONFIG_OF
2027static int of_spi_register_master(struct spi_controller *ctlr)
2028{
2029	int nb, i, *cs;
2030	struct device_node *np = ctlr->dev.of_node;
2031
2032	if (!np)
2033		return 0;
2034
2035	nb = of_gpio_named_count(np, "cs-gpios");
2036	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2037
2038	/* Return error only for an incorrectly formed cs-gpios property */
2039	if (nb == 0 || nb == -ENOENT)
2040		return 0;
2041	else if (nb < 0)
2042		return nb;
2043
2044	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
 
2045			  GFP_KERNEL);
2046	ctlr->cs_gpios = cs;
2047
2048	if (!ctlr->cs_gpios)
2049		return -ENOMEM;
2050
2051	for (i = 0; i < ctlr->num_chipselect; i++)
2052		cs[i] = -ENOENT;
2053
2054	for (i = 0; i < nb; i++)
2055		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2056
2057	return 0;
2058}
2059#else
2060static int of_spi_register_master(struct spi_controller *ctlr)
2061{
2062	return 0;
2063}
2064#endif
2065
2066/**
2067 * spi_register_controller - register SPI master or slave controller
2068 * @ctlr: initialized master, originally from spi_alloc_master() or
2069 *	spi_alloc_slave()
2070 * Context: can sleep
2071 *
2072 * SPI controllers connect to their drivers using some non-SPI bus,
2073 * such as the platform bus.  The final stage of probe() in that code
2074 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2075 *
2076 * SPI controllers use board specific (often SOC specific) bus numbers,
2077 * and board-specific addressing for SPI devices combines those numbers
2078 * with chip select numbers.  Since SPI does not directly support dynamic
2079 * device identification, boards need configuration tables telling which
2080 * chip is at which address.
2081 *
2082 * This must be called from context that can sleep.  It returns zero on
2083 * success, else a negative error code (dropping the controller's refcount).
2084 * After a successful return, the caller is responsible for calling
2085 * spi_unregister_controller().
2086 *
2087 * Return: zero on success, else a negative error code.
2088 */
2089int spi_register_controller(struct spi_controller *ctlr)
2090{
2091	struct device		*dev = ctlr->dev.parent;
 
2092	struct boardinfo	*bi;
2093	int			status = -ENODEV;
2094	int			id, first_dynamic;
2095
2096	if (!dev)
2097		return -ENODEV;
2098
2099	if (!spi_controller_is_slave(ctlr)) {
2100		status = of_spi_register_master(ctlr);
2101		if (status)
2102			return status;
2103	}
2104
2105	/* even if it's just one always-selected device, there must
2106	 * be at least one chipselect
2107	 */
2108	if (ctlr->num_chipselect == 0)
2109		return -EINVAL;
2110	/* allocate dynamic bus number using Linux idr */
2111	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2112		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2113		if (id >= 0) {
2114			ctlr->bus_num = id;
2115			mutex_lock(&board_lock);
2116			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117				       ctlr->bus_num + 1, GFP_KERNEL);
2118			mutex_unlock(&board_lock);
2119			if (WARN(id < 0, "couldn't get idr"))
2120				return id == -ENOSPC ? -EBUSY : id;
2121		}
2122	}
2123	if (ctlr->bus_num < 0) {
2124		first_dynamic = of_alias_get_highest_id("spi");
2125		if (first_dynamic < 0)
2126			first_dynamic = 0;
2127		else
2128			first_dynamic++;
2129
2130		mutex_lock(&board_lock);
2131		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2132			       0, GFP_KERNEL);
2133		mutex_unlock(&board_lock);
2134		if (WARN(id < 0, "couldn't get idr"))
2135			return id;
2136		ctlr->bus_num = id;
 
 
 
2137	}
2138	INIT_LIST_HEAD(&ctlr->queue);
2139	spin_lock_init(&ctlr->queue_lock);
2140	spin_lock_init(&ctlr->bus_lock_spinlock);
2141	mutex_init(&ctlr->bus_lock_mutex);
2142	mutex_init(&ctlr->io_mutex);
2143	ctlr->bus_lock_flag = 0;
2144	init_completion(&ctlr->xfer_completion);
2145	if (!ctlr->max_dma_len)
2146		ctlr->max_dma_len = INT_MAX;
2147
2148	/* register the device, then userspace will see it.
2149	 * registration fails if the bus ID is in use.
2150	 */
2151	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2152	status = device_add(&ctlr->dev);
2153	if (status < 0) {
2154		/* free bus id */
2155		mutex_lock(&board_lock);
2156		idr_remove(&spi_master_idr, ctlr->bus_num);
2157		mutex_unlock(&board_lock);
2158		goto done;
2159	}
2160	dev_dbg(dev, "registered %s %s\n",
2161			spi_controller_is_slave(ctlr) ? "slave" : "master",
2162			dev_name(&ctlr->dev));
2163
2164	/* If we're using a queued driver, start the queue */
2165	if (ctlr->transfer)
2166		dev_info(dev, "controller is unqueued, this is deprecated\n");
2167	else {
2168		status = spi_controller_initialize_queue(ctlr);
2169		if (status) {
2170			device_del(&ctlr->dev);
2171			/* free bus id */
2172			mutex_lock(&board_lock);
2173			idr_remove(&spi_master_idr, ctlr->bus_num);
2174			mutex_unlock(&board_lock);
2175			goto done;
2176		}
2177	}
2178	/* add statistics */
2179	spin_lock_init(&ctlr->statistics.lock);
2180
2181	mutex_lock(&board_lock);
2182	list_add_tail(&ctlr->list, &spi_controller_list);
2183	list_for_each_entry(bi, &board_list, list)
2184		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2185	mutex_unlock(&board_lock);
2186
2187	/* Register devices from the device tree and ACPI */
2188	of_register_spi_devices(ctlr);
2189	acpi_register_spi_devices(ctlr);
2190done:
2191	return status;
2192}
2193EXPORT_SYMBOL_GPL(spi_register_controller);
2194
2195static void devm_spi_unregister(struct device *dev, void *res)
2196{
2197	spi_unregister_controller(*(struct spi_controller **)res);
2198}
2199
2200/**
2201 * devm_spi_register_controller - register managed SPI master or slave
2202 *	controller
2203 * @dev:    device managing SPI controller
2204 * @ctlr: initialized controller, originally from spi_alloc_master() or
2205 *	spi_alloc_slave()
2206 * Context: can sleep
2207 *
2208 * Register a SPI device as with spi_register_controller() which will
2209 * automatically be unregistered and freed.
2210 *
2211 * Return: zero on success, else a negative error code.
2212 */
2213int devm_spi_register_controller(struct device *dev,
2214				 struct spi_controller *ctlr)
2215{
2216	struct spi_controller **ptr;
2217	int ret;
2218
2219	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2220	if (!ptr)
2221		return -ENOMEM;
2222
2223	ret = spi_register_controller(ctlr);
2224	if (!ret) {
2225		*ptr = ctlr;
2226		devres_add(dev, ptr);
2227	} else {
2228		devres_free(ptr);
2229	}
2230
2231	return ret;
2232}
2233EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2234
2235static int __unregister(struct device *dev, void *null)
2236{
2237	spi_unregister_device(to_spi_device(dev));
2238	return 0;
2239}
2240
2241/**
2242 * spi_unregister_controller - unregister SPI master or slave controller
2243 * @ctlr: the controller being unregistered
2244 * Context: can sleep
2245 *
2246 * This call is used only by SPI controller drivers, which are the
2247 * only ones directly touching chip registers.
2248 *
2249 * This must be called from context that can sleep.
2250 *
2251 * Note that this function also drops a reference to the controller.
2252 */
2253void spi_unregister_controller(struct spi_controller *ctlr)
2254{
2255	struct spi_controller *found;
2256	int id = ctlr->bus_num;
2257	int dummy;
2258
2259	/* First make sure that this controller was ever added */
2260	mutex_lock(&board_lock);
2261	found = idr_find(&spi_master_idr, id);
2262	mutex_unlock(&board_lock);
2263	if (ctlr->queued) {
2264		if (spi_destroy_queue(ctlr))
2265			dev_err(&ctlr->dev, "queue remove failed\n");
2266	}
2267	mutex_lock(&board_lock);
2268	list_del(&ctlr->list);
2269	mutex_unlock(&board_lock);
2270
2271	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272	device_unregister(&ctlr->dev);
2273	/* free bus id */
2274	mutex_lock(&board_lock);
2275	if (found == ctlr)
2276		idr_remove(&spi_master_idr, id);
2277	mutex_unlock(&board_lock);
 
 
 
2278}
2279EXPORT_SYMBOL_GPL(spi_unregister_controller);
2280
2281int spi_controller_suspend(struct spi_controller *ctlr)
2282{
2283	int ret;
2284
2285	/* Basically no-ops for non-queued controllers */
2286	if (!ctlr->queued)
2287		return 0;
2288
2289	ret = spi_stop_queue(ctlr);
2290	if (ret)
2291		dev_err(&ctlr->dev, "queue stop failed\n");
2292
2293	return ret;
2294}
2295EXPORT_SYMBOL_GPL(spi_controller_suspend);
2296
2297int spi_controller_resume(struct spi_controller *ctlr)
2298{
2299	int ret;
2300
2301	if (!ctlr->queued)
2302		return 0;
2303
2304	ret = spi_start_queue(ctlr);
2305	if (ret)
2306		dev_err(&ctlr->dev, "queue restart failed\n");
2307
2308	return ret;
2309}
2310EXPORT_SYMBOL_GPL(spi_controller_resume);
2311
2312static int __spi_controller_match(struct device *dev, const void *data)
2313{
2314	struct spi_controller *ctlr;
2315	const u16 *bus_num = data;
2316
2317	ctlr = container_of(dev, struct spi_controller, dev);
2318	return ctlr->bus_num == *bus_num;
2319}
2320
2321/**
2322 * spi_busnum_to_master - look up master associated with bus_num
2323 * @bus_num: the master's bus number
2324 * Context: can sleep
2325 *
2326 * This call may be used with devices that are registered after
2327 * arch init time.  It returns a refcounted pointer to the relevant
2328 * spi_controller (which the caller must release), or NULL if there is
2329 * no such master registered.
2330 *
2331 * Return: the SPI master structure on success, else NULL.
2332 */
2333struct spi_controller *spi_busnum_to_master(u16 bus_num)
2334{
2335	struct device		*dev;
2336	struct spi_controller	*ctlr = NULL;
2337
2338	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2339				__spi_controller_match);
2340	if (dev)
2341		ctlr = container_of(dev, struct spi_controller, dev);
2342	/* reference got in class_find_device */
2343	return ctlr;
2344}
2345EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2346
2347/*-------------------------------------------------------------------------*/
2348
2349/* Core methods for SPI resource management */
2350
2351/**
2352 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2353 *                 during the processing of a spi_message while using
2354 *                 spi_transfer_one
2355 * @spi:     the spi device for which we allocate memory
2356 * @release: the release code to execute for this resource
2357 * @size:    size to alloc and return
2358 * @gfp:     GFP allocation flags
2359 *
2360 * Return: the pointer to the allocated data
2361 *
2362 * This may get enhanced in the future to allocate from a memory pool
2363 * of the @spi_device or @spi_controller to avoid repeated allocations.
2364 */
2365void *spi_res_alloc(struct spi_device *spi,
2366		    spi_res_release_t release,
2367		    size_t size, gfp_t gfp)
2368{
2369	struct spi_res *sres;
2370
2371	sres = kzalloc(sizeof(*sres) + size, gfp);
2372	if (!sres)
2373		return NULL;
2374
2375	INIT_LIST_HEAD(&sres->entry);
2376	sres->release = release;
2377
2378	return sres->data;
2379}
2380EXPORT_SYMBOL_GPL(spi_res_alloc);
2381
2382/**
2383 * spi_res_free - free an spi resource
2384 * @res: pointer to the custom data of a resource
2385 *
2386 */
2387void spi_res_free(void *res)
2388{
2389	struct spi_res *sres = container_of(res, struct spi_res, data);
2390
2391	if (!res)
2392		return;
2393
2394	WARN_ON(!list_empty(&sres->entry));
2395	kfree(sres);
2396}
2397EXPORT_SYMBOL_GPL(spi_res_free);
2398
2399/**
2400 * spi_res_add - add a spi_res to the spi_message
2401 * @message: the spi message
2402 * @res:     the spi_resource
2403 */
2404void spi_res_add(struct spi_message *message, void *res)
2405{
2406	struct spi_res *sres = container_of(res, struct spi_res, data);
2407
2408	WARN_ON(!list_empty(&sres->entry));
2409	list_add_tail(&sres->entry, &message->resources);
2410}
2411EXPORT_SYMBOL_GPL(spi_res_add);
2412
2413/**
2414 * spi_res_release - release all spi resources for this message
2415 * @ctlr:  the @spi_controller
2416 * @message: the @spi_message
2417 */
2418void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2419{
2420	struct spi_res *res;
2421
2422	while (!list_empty(&message->resources)) {
2423		res = list_last_entry(&message->resources,
2424				      struct spi_res, entry);
2425
2426		if (res->release)
2427			res->release(ctlr, message, res->data);
2428
2429		list_del(&res->entry);
2430
2431		kfree(res);
2432	}
2433}
2434EXPORT_SYMBOL_GPL(spi_res_release);
2435
2436/*-------------------------------------------------------------------------*/
2437
2438/* Core methods for spi_message alterations */
2439
2440static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2441					    struct spi_message *msg,
2442					    void *res)
2443{
2444	struct spi_replaced_transfers *rxfer = res;
2445	size_t i;
2446
2447	/* call extra callback if requested */
2448	if (rxfer->release)
2449		rxfer->release(ctlr, msg, res);
2450
2451	/* insert replaced transfers back into the message */
2452	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2453
2454	/* remove the formerly inserted entries */
2455	for (i = 0; i < rxfer->inserted; i++)
2456		list_del(&rxfer->inserted_transfers[i].transfer_list);
2457}
2458
2459/**
2460 * spi_replace_transfers - replace transfers with several transfers
2461 *                         and register change with spi_message.resources
2462 * @msg:           the spi_message we work upon
2463 * @xfer_first:    the first spi_transfer we want to replace
2464 * @remove:        number of transfers to remove
2465 * @insert:        the number of transfers we want to insert instead
2466 * @release:       extra release code necessary in some circumstances
2467 * @extradatasize: extra data to allocate (with alignment guarantees
2468 *                 of struct @spi_transfer)
2469 * @gfp:           gfp flags
2470 *
2471 * Returns: pointer to @spi_replaced_transfers,
2472 *          PTR_ERR(...) in case of errors.
2473 */
2474struct spi_replaced_transfers *spi_replace_transfers(
2475	struct spi_message *msg,
2476	struct spi_transfer *xfer_first,
2477	size_t remove,
2478	size_t insert,
2479	spi_replaced_release_t release,
2480	size_t extradatasize,
2481	gfp_t gfp)
2482{
2483	struct spi_replaced_transfers *rxfer;
2484	struct spi_transfer *xfer;
2485	size_t i;
2486
2487	/* allocate the structure using spi_res */
2488	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2489			      insert * sizeof(struct spi_transfer)
2490			      + sizeof(struct spi_replaced_transfers)
2491			      + extradatasize,
2492			      gfp);
2493	if (!rxfer)
2494		return ERR_PTR(-ENOMEM);
2495
2496	/* the release code to invoke before running the generic release */
2497	rxfer->release = release;
2498
2499	/* assign extradata */
2500	if (extradatasize)
2501		rxfer->extradata =
2502			&rxfer->inserted_transfers[insert];
2503
2504	/* init the replaced_transfers list */
2505	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2506
2507	/* assign the list_entry after which we should reinsert
2508	 * the @replaced_transfers - it may be spi_message.messages!
2509	 */
2510	rxfer->replaced_after = xfer_first->transfer_list.prev;
2511
2512	/* remove the requested number of transfers */
2513	for (i = 0; i < remove; i++) {
2514		/* if the entry after replaced_after it is msg->transfers
2515		 * then we have been requested to remove more transfers
2516		 * than are in the list
2517		 */
2518		if (rxfer->replaced_after->next == &msg->transfers) {
2519			dev_err(&msg->spi->dev,
2520				"requested to remove more spi_transfers than are available\n");
2521			/* insert replaced transfers back into the message */
2522			list_splice(&rxfer->replaced_transfers,
2523				    rxfer->replaced_after);
2524
2525			/* free the spi_replace_transfer structure */
2526			spi_res_free(rxfer);
2527
2528			/* and return with an error */
2529			return ERR_PTR(-EINVAL);
2530		}
2531
2532		/* remove the entry after replaced_after from list of
2533		 * transfers and add it to list of replaced_transfers
2534		 */
2535		list_move_tail(rxfer->replaced_after->next,
2536			       &rxfer->replaced_transfers);
2537	}
2538
2539	/* create copy of the given xfer with identical settings
2540	 * based on the first transfer to get removed
2541	 */
2542	for (i = 0; i < insert; i++) {
2543		/* we need to run in reverse order */
2544		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2545
2546		/* copy all spi_transfer data */
2547		memcpy(xfer, xfer_first, sizeof(*xfer));
2548
2549		/* add to list */
2550		list_add(&xfer->transfer_list, rxfer->replaced_after);
2551
2552		/* clear cs_change and delay_usecs for all but the last */
2553		if (i) {
2554			xfer->cs_change = false;
2555			xfer->delay_usecs = 0;
2556		}
2557	}
2558
2559	/* set up inserted */
2560	rxfer->inserted = insert;
2561
2562	/* and register it with spi_res/spi_message */
2563	spi_res_add(msg, rxfer);
2564
2565	return rxfer;
2566}
2567EXPORT_SYMBOL_GPL(spi_replace_transfers);
2568
2569static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2570					struct spi_message *msg,
2571					struct spi_transfer **xferp,
2572					size_t maxsize,
2573					gfp_t gfp)
2574{
2575	struct spi_transfer *xfer = *xferp, *xfers;
2576	struct spi_replaced_transfers *srt;
2577	size_t offset;
2578	size_t count, i;
2579
2580	/* warn once about this fact that we are splitting a transfer */
2581	dev_warn_once(&msg->spi->dev,
2582		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2583		      xfer->len, maxsize);
2584
2585	/* calculate how many we have to replace */
2586	count = DIV_ROUND_UP(xfer->len, maxsize);
2587
2588	/* create replacement */
2589	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2590	if (IS_ERR(srt))
2591		return PTR_ERR(srt);
2592	xfers = srt->inserted_transfers;
2593
2594	/* now handle each of those newly inserted spi_transfers
2595	 * note that the replacements spi_transfers all are preset
2596	 * to the same values as *xferp, so tx_buf, rx_buf and len
2597	 * are all identical (as well as most others)
2598	 * so we just have to fix up len and the pointers.
2599	 *
2600	 * this also includes support for the depreciated
2601	 * spi_message.is_dma_mapped interface
2602	 */
2603
2604	/* the first transfer just needs the length modified, so we
2605	 * run it outside the loop
2606	 */
2607	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2608
2609	/* all the others need rx_buf/tx_buf also set */
2610	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2611		/* update rx_buf, tx_buf and dma */
2612		if (xfers[i].rx_buf)
2613			xfers[i].rx_buf += offset;
2614		if (xfers[i].rx_dma)
2615			xfers[i].rx_dma += offset;
2616		if (xfers[i].tx_buf)
2617			xfers[i].tx_buf += offset;
2618		if (xfers[i].tx_dma)
2619			xfers[i].tx_dma += offset;
2620
2621		/* update length */
2622		xfers[i].len = min(maxsize, xfers[i].len - offset);
2623	}
2624
2625	/* we set up xferp to the last entry we have inserted,
2626	 * so that we skip those already split transfers
2627	 */
2628	*xferp = &xfers[count - 1];
2629
2630	/* increment statistics counters */
2631	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2632				       transfers_split_maxsize);
2633	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2634				       transfers_split_maxsize);
2635
2636	return 0;
2637}
2638
2639/**
2640 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2641 *                              when an individual transfer exceeds a
2642 *                              certain size
2643 * @ctlr:    the @spi_controller for this transfer
2644 * @msg:   the @spi_message to transform
2645 * @maxsize:  the maximum when to apply this
2646 * @gfp: GFP allocation flags
2647 *
2648 * Return: status of transformation
2649 */
2650int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2651				struct spi_message *msg,
2652				size_t maxsize,
2653				gfp_t gfp)
2654{
2655	struct spi_transfer *xfer;
2656	int ret;
2657
2658	/* iterate over the transfer_list,
2659	 * but note that xfer is advanced to the last transfer inserted
2660	 * to avoid checking sizes again unnecessarily (also xfer does
2661	 * potentiall belong to a different list by the time the
2662	 * replacement has happened
2663	 */
2664	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2665		if (xfer->len > maxsize) {
2666			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2667							   maxsize, gfp);
2668			if (ret)
2669				return ret;
2670		}
2671	}
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2676
2677/*-------------------------------------------------------------------------*/
2678
2679/* Core methods for SPI controller protocol drivers.  Some of the
2680 * other core methods are currently defined as inline functions.
2681 */
2682
2683static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2684					u8 bits_per_word)
2685{
2686	if (ctlr->bits_per_word_mask) {
2687		/* Only 32 bits fit in the mask */
2688		if (bits_per_word > 32)
2689			return -EINVAL;
2690		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2691			return -EINVAL;
2692	}
2693
2694	return 0;
2695}
2696
2697/**
2698 * spi_setup - setup SPI mode and clock rate
2699 * @spi: the device whose settings are being modified
2700 * Context: can sleep, and no requests are queued to the device
2701 *
2702 * SPI protocol drivers may need to update the transfer mode if the
2703 * device doesn't work with its default.  They may likewise need
2704 * to update clock rates or word sizes from initial values.  This function
2705 * changes those settings, and must be called from a context that can sleep.
2706 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2707 * effect the next time the device is selected and data is transferred to
2708 * or from it.  When this function returns, the spi device is deselected.
2709 *
2710 * Note that this call will fail if the protocol driver specifies an option
2711 * that the underlying controller or its driver does not support.  For
2712 * example, not all hardware supports wire transfers using nine bit words,
2713 * LSB-first wire encoding, or active-high chipselects.
2714 *
2715 * Return: zero on success, else a negative error code.
2716 */
2717int spi_setup(struct spi_device *spi)
2718{
2719	unsigned	bad_bits, ugly_bits;
2720	int		status;
2721
2722	/* check mode to prevent that DUAL and QUAD set at the same time
2723	 */
2724	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2725		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2726		dev_err(&spi->dev,
2727		"setup: can not select dual and quad at the same time\n");
2728		return -EINVAL;
2729	}
2730	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2731	 */
2732	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2733		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2734		return -EINVAL;
2735	/* help drivers fail *cleanly* when they need options
2736	 * that aren't supported with their current controller
2737	 */
2738	bad_bits = spi->mode & ~spi->controller->mode_bits;
2739	ugly_bits = bad_bits &
2740		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2741	if (ugly_bits) {
2742		dev_warn(&spi->dev,
2743			 "setup: ignoring unsupported mode bits %x\n",
2744			 ugly_bits);
2745		spi->mode &= ~ugly_bits;
2746		bad_bits &= ~ugly_bits;
2747	}
2748	if (bad_bits) {
2749		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2750			bad_bits);
2751		return -EINVAL;
2752	}
2753
2754	if (!spi->bits_per_word)
2755		spi->bits_per_word = 8;
2756
2757	status = __spi_validate_bits_per_word(spi->controller,
2758					      spi->bits_per_word);
2759	if (status)
2760		return status;
2761
2762	if (!spi->max_speed_hz)
2763		spi->max_speed_hz = spi->controller->max_speed_hz;
2764
2765	if (spi->controller->setup)
2766		status = spi->controller->setup(spi);
2767
2768	spi_set_cs(spi, false);
 
2769
2770	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2771			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2772			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2773			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2774			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2775			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2776			spi->bits_per_word, spi->max_speed_hz,
2777			status);
2778
2779	return status;
2780}
2781EXPORT_SYMBOL_GPL(spi_setup);
2782
2783static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2784{
2785	struct spi_controller *ctlr = spi->controller;
2786	struct spi_transfer *xfer;
2787	int w_size;
2788
2789	if (list_empty(&message->transfers))
2790		return -EINVAL;
2791
2792	/* Half-duplex links include original MicroWire, and ones with
2793	 * only one data pin like SPI_3WIRE (switches direction) or where
2794	 * either MOSI or MISO is missing.  They can also be caused by
2795	 * software limitations.
2796	 */
2797	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2798	    (spi->mode & SPI_3WIRE)) {
2799		unsigned flags = ctlr->flags;
2800
2801		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2802			if (xfer->rx_buf && xfer->tx_buf)
2803				return -EINVAL;
2804			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2805				return -EINVAL;
2806			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2807				return -EINVAL;
2808		}
2809	}
2810
2811	/**
2812	 * Set transfer bits_per_word and max speed as spi device default if
2813	 * it is not set for this transfer.
2814	 * Set transfer tx_nbits and rx_nbits as single transfer default
2815	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2816	 */
2817	message->frame_length = 0;
2818	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2819		message->frame_length += xfer->len;
2820		if (!xfer->bits_per_word)
2821			xfer->bits_per_word = spi->bits_per_word;
2822
2823		if (!xfer->speed_hz)
2824			xfer->speed_hz = spi->max_speed_hz;
2825		if (!xfer->speed_hz)
2826			xfer->speed_hz = ctlr->max_speed_hz;
2827
2828		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2829			xfer->speed_hz = ctlr->max_speed_hz;
2830
2831		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2832			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
2833
2834		/*
2835		 * SPI transfer length should be multiple of SPI word size
2836		 * where SPI word size should be power-of-two multiple
2837		 */
2838		if (xfer->bits_per_word <= 8)
2839			w_size = 1;
2840		else if (xfer->bits_per_word <= 16)
2841			w_size = 2;
2842		else
2843			w_size = 4;
2844
2845		/* No partial transfers accepted */
2846		if (xfer->len % w_size)
2847			return -EINVAL;
2848
2849		if (xfer->speed_hz && ctlr->min_speed_hz &&
2850		    xfer->speed_hz < ctlr->min_speed_hz)
2851			return -EINVAL;
2852
2853		if (xfer->tx_buf && !xfer->tx_nbits)
2854			xfer->tx_nbits = SPI_NBITS_SINGLE;
2855		if (xfer->rx_buf && !xfer->rx_nbits)
2856			xfer->rx_nbits = SPI_NBITS_SINGLE;
2857		/* check transfer tx/rx_nbits:
2858		 * 1. check the value matches one of single, dual and quad
2859		 * 2. check tx/rx_nbits match the mode in spi_device
2860		 */
2861		if (xfer->tx_buf) {
2862			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2863				xfer->tx_nbits != SPI_NBITS_DUAL &&
2864				xfer->tx_nbits != SPI_NBITS_QUAD)
2865				return -EINVAL;
2866			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2867				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2868				return -EINVAL;
2869			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2870				!(spi->mode & SPI_TX_QUAD))
2871				return -EINVAL;
2872		}
2873		/* check transfer rx_nbits */
2874		if (xfer->rx_buf) {
2875			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2876				xfer->rx_nbits != SPI_NBITS_DUAL &&
2877				xfer->rx_nbits != SPI_NBITS_QUAD)
2878				return -EINVAL;
2879			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2880				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2881				return -EINVAL;
2882			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2883				!(spi->mode & SPI_RX_QUAD))
2884				return -EINVAL;
2885		}
2886	}
2887
2888	message->status = -EINPROGRESS;
2889
2890	return 0;
2891}
2892
2893static int __spi_async(struct spi_device *spi, struct spi_message *message)
2894{
2895	struct spi_controller *ctlr = spi->controller;
2896
2897	message->spi = spi;
2898
2899	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2900	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2901
2902	trace_spi_message_submit(message);
2903
2904	return ctlr->transfer(spi, message);
2905}
2906
2907/**
2908 * spi_async - asynchronous SPI transfer
2909 * @spi: device with which data will be exchanged
2910 * @message: describes the data transfers, including completion callback
2911 * Context: any (irqs may be blocked, etc)
2912 *
2913 * This call may be used in_irq and other contexts which can't sleep,
2914 * as well as from task contexts which can sleep.
2915 *
2916 * The completion callback is invoked in a context which can't sleep.
2917 * Before that invocation, the value of message->status is undefined.
2918 * When the callback is issued, message->status holds either zero (to
2919 * indicate complete success) or a negative error code.  After that
2920 * callback returns, the driver which issued the transfer request may
2921 * deallocate the associated memory; it's no longer in use by any SPI
2922 * core or controller driver code.
2923 *
2924 * Note that although all messages to a spi_device are handled in
2925 * FIFO order, messages may go to different devices in other orders.
2926 * Some device might be higher priority, or have various "hard" access
2927 * time requirements, for example.
2928 *
2929 * On detection of any fault during the transfer, processing of
2930 * the entire message is aborted, and the device is deselected.
2931 * Until returning from the associated message completion callback,
2932 * no other spi_message queued to that device will be processed.
2933 * (This rule applies equally to all the synchronous transfer calls,
2934 * which are wrappers around this core asynchronous primitive.)
2935 *
2936 * Return: zero on success, else a negative error code.
2937 */
2938int spi_async(struct spi_device *spi, struct spi_message *message)
2939{
2940	struct spi_controller *ctlr = spi->controller;
2941	int ret;
2942	unsigned long flags;
2943
2944	ret = __spi_validate(spi, message);
2945	if (ret != 0)
2946		return ret;
2947
2948	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2949
2950	if (ctlr->bus_lock_flag)
2951		ret = -EBUSY;
2952	else
2953		ret = __spi_async(spi, message);
2954
2955	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2956
2957	return ret;
2958}
2959EXPORT_SYMBOL_GPL(spi_async);
2960
2961/**
2962 * spi_async_locked - version of spi_async with exclusive bus usage
2963 * @spi: device with which data will be exchanged
2964 * @message: describes the data transfers, including completion callback
2965 * Context: any (irqs may be blocked, etc)
2966 *
2967 * This call may be used in_irq and other contexts which can't sleep,
2968 * as well as from task contexts which can sleep.
2969 *
2970 * The completion callback is invoked in a context which can't sleep.
2971 * Before that invocation, the value of message->status is undefined.
2972 * When the callback is issued, message->status holds either zero (to
2973 * indicate complete success) or a negative error code.  After that
2974 * callback returns, the driver which issued the transfer request may
2975 * deallocate the associated memory; it's no longer in use by any SPI
2976 * core or controller driver code.
2977 *
2978 * Note that although all messages to a spi_device are handled in
2979 * FIFO order, messages may go to different devices in other orders.
2980 * Some device might be higher priority, or have various "hard" access
2981 * time requirements, for example.
2982 *
2983 * On detection of any fault during the transfer, processing of
2984 * the entire message is aborted, and the device is deselected.
2985 * Until returning from the associated message completion callback,
2986 * no other spi_message queued to that device will be processed.
2987 * (This rule applies equally to all the synchronous transfer calls,
2988 * which are wrappers around this core asynchronous primitive.)
2989 *
2990 * Return: zero on success, else a negative error code.
2991 */
2992int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2993{
2994	struct spi_controller *ctlr = spi->controller;
2995	int ret;
2996	unsigned long flags;
2997
2998	ret = __spi_validate(spi, message);
2999	if (ret != 0)
3000		return ret;
3001
3002	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3003
3004	ret = __spi_async(spi, message);
3005
3006	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3007
3008	return ret;
3009
3010}
3011EXPORT_SYMBOL_GPL(spi_async_locked);
3012
3013
3014int spi_flash_read(struct spi_device *spi,
3015		   struct spi_flash_read_message *msg)
3016
3017{
3018	struct spi_controller *master = spi->controller;
3019	struct device *rx_dev = NULL;
3020	int ret;
3021
3022	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3023	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3024	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3025		return -EINVAL;
3026	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3027	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3028	    !(spi->mode & SPI_TX_QUAD))
3029		return -EINVAL;
3030	if (msg->data_nbits == SPI_NBITS_DUAL &&
3031	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3032		return -EINVAL;
3033	if (msg->data_nbits == SPI_NBITS_QUAD &&
3034	    !(spi->mode &  SPI_RX_QUAD))
3035		return -EINVAL;
3036
3037	if (master->auto_runtime_pm) {
3038		ret = pm_runtime_get_sync(master->dev.parent);
3039		if (ret < 0) {
3040			dev_err(&master->dev, "Failed to power device: %d\n",
3041				ret);
3042			return ret;
3043		}
3044	}
3045
3046	mutex_lock(&master->bus_lock_mutex);
3047	mutex_lock(&master->io_mutex);
3048	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3049		rx_dev = master->dma_rx->device->dev;
3050		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3051				  msg->buf, msg->len,
3052				  DMA_FROM_DEVICE);
3053		if (!ret)
3054			msg->cur_msg_mapped = true;
3055	}
3056	ret = master->spi_flash_read(spi, msg);
3057	if (msg->cur_msg_mapped)
3058		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3059			      DMA_FROM_DEVICE);
3060	mutex_unlock(&master->io_mutex);
3061	mutex_unlock(&master->bus_lock_mutex);
3062
3063	if (master->auto_runtime_pm)
3064		pm_runtime_put(master->dev.parent);
3065
3066	return ret;
3067}
3068EXPORT_SYMBOL_GPL(spi_flash_read);
3069
3070/*-------------------------------------------------------------------------*/
3071
3072/* Utility methods for SPI protocol drivers, layered on
3073 * top of the core.  Some other utility methods are defined as
3074 * inline functions.
3075 */
3076
3077static void spi_complete(void *arg)
3078{
3079	complete(arg);
3080}
3081
3082static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
3083{
3084	DECLARE_COMPLETION_ONSTACK(done);
3085	int status;
3086	struct spi_controller *ctlr = spi->controller;
3087	unsigned long flags;
3088
3089	status = __spi_validate(spi, message);
3090	if (status != 0)
3091		return status;
3092
3093	message->complete = spi_complete;
3094	message->context = &done;
3095	message->spi = spi;
3096
3097	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3098	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3099
3100	/* If we're not using the legacy transfer method then we will
3101	 * try to transfer in the calling context so special case.
3102	 * This code would be less tricky if we could remove the
3103	 * support for driver implemented message queues.
3104	 */
3105	if (ctlr->transfer == spi_queued_transfer) {
3106		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3107
3108		trace_spi_message_submit(message);
3109
3110		status = __spi_queued_transfer(spi, message, false);
3111
3112		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3113	} else {
3114		status = spi_async_locked(spi, message);
3115	}
3116
3117	if (status == 0) {
3118		/* Push out the messages in the calling context if we
3119		 * can.
3120		 */
3121		if (ctlr->transfer == spi_queued_transfer) {
3122			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3123						       spi_sync_immediate);
3124			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3125						       spi_sync_immediate);
3126			__spi_pump_messages(ctlr, false);
3127		}
3128
3129		wait_for_completion(&done);
3130		status = message->status;
3131	}
3132	message->context = NULL;
3133	return status;
3134}
3135
3136/**
3137 * spi_sync - blocking/synchronous SPI data transfers
3138 * @spi: device with which data will be exchanged
3139 * @message: describes the data transfers
3140 * Context: can sleep
3141 *
3142 * This call may only be used from a context that may sleep.  The sleep
3143 * is non-interruptible, and has no timeout.  Low-overhead controller
3144 * drivers may DMA directly into and out of the message buffers.
3145 *
3146 * Note that the SPI device's chip select is active during the message,
3147 * and then is normally disabled between messages.  Drivers for some
3148 * frequently-used devices may want to minimize costs of selecting a chip,
3149 * by leaving it selected in anticipation that the next message will go
3150 * to the same chip.  (That may increase power usage.)
3151 *
3152 * Also, the caller is guaranteeing that the memory associated with the
3153 * message will not be freed before this call returns.
3154 *
3155 * Return: zero on success, else a negative error code.
3156 */
3157int spi_sync(struct spi_device *spi, struct spi_message *message)
3158{
3159	int ret;
3160
3161	mutex_lock(&spi->controller->bus_lock_mutex);
3162	ret = __spi_sync(spi, message);
3163	mutex_unlock(&spi->controller->bus_lock_mutex);
3164
3165	return ret;
3166}
3167EXPORT_SYMBOL_GPL(spi_sync);
3168
3169/**
3170 * spi_sync_locked - version of spi_sync with exclusive bus usage
3171 * @spi: device with which data will be exchanged
3172 * @message: describes the data transfers
3173 * Context: can sleep
3174 *
3175 * This call may only be used from a context that may sleep.  The sleep
3176 * is non-interruptible, and has no timeout.  Low-overhead controller
3177 * drivers may DMA directly into and out of the message buffers.
3178 *
3179 * This call should be used by drivers that require exclusive access to the
3180 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3181 * be released by a spi_bus_unlock call when the exclusive access is over.
3182 *
3183 * Return: zero on success, else a negative error code.
3184 */
3185int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3186{
3187	return __spi_sync(spi, message);
3188}
3189EXPORT_SYMBOL_GPL(spi_sync_locked);
3190
3191/**
3192 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3193 * @ctlr: SPI bus master that should be locked for exclusive bus access
3194 * Context: can sleep
3195 *
3196 * This call may only be used from a context that may sleep.  The sleep
3197 * is non-interruptible, and has no timeout.
3198 *
3199 * This call should be used by drivers that require exclusive access to the
3200 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3201 * exclusive access is over. Data transfer must be done by spi_sync_locked
3202 * and spi_async_locked calls when the SPI bus lock is held.
3203 *
3204 * Return: always zero.
3205 */
3206int spi_bus_lock(struct spi_controller *ctlr)
3207{
3208	unsigned long flags;
3209
3210	mutex_lock(&ctlr->bus_lock_mutex);
3211
3212	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3213	ctlr->bus_lock_flag = 1;
3214	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3215
3216	/* mutex remains locked until spi_bus_unlock is called */
3217
3218	return 0;
3219}
3220EXPORT_SYMBOL_GPL(spi_bus_lock);
3221
3222/**
3223 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3224 * @ctlr: SPI bus master that was locked for exclusive bus access
3225 * Context: can sleep
3226 *
3227 * This call may only be used from a context that may sleep.  The sleep
3228 * is non-interruptible, and has no timeout.
3229 *
3230 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3231 * call.
3232 *
3233 * Return: always zero.
3234 */
3235int spi_bus_unlock(struct spi_controller *ctlr)
3236{
3237	ctlr->bus_lock_flag = 0;
3238
3239	mutex_unlock(&ctlr->bus_lock_mutex);
3240
3241	return 0;
3242}
3243EXPORT_SYMBOL_GPL(spi_bus_unlock);
3244
3245/* portable code must never pass more than 32 bytes */
3246#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3247
3248static u8	*buf;
3249
3250/**
3251 * spi_write_then_read - SPI synchronous write followed by read
3252 * @spi: device with which data will be exchanged
3253 * @txbuf: data to be written (need not be dma-safe)
3254 * @n_tx: size of txbuf, in bytes
3255 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3256 * @n_rx: size of rxbuf, in bytes
3257 * Context: can sleep
3258 *
3259 * This performs a half duplex MicroWire style transaction with the
3260 * device, sending txbuf and then reading rxbuf.  The return value
3261 * is zero for success, else a negative errno status code.
3262 * This call may only be used from a context that may sleep.
3263 *
3264 * Parameters to this routine are always copied using a small buffer;
3265 * portable code should never use this for more than 32 bytes.
3266 * Performance-sensitive or bulk transfer code should instead use
3267 * spi_{async,sync}() calls with dma-safe buffers.
3268 *
3269 * Return: zero on success, else a negative error code.
3270 */
3271int spi_write_then_read(struct spi_device *spi,
3272		const void *txbuf, unsigned n_tx,
3273		void *rxbuf, unsigned n_rx)
3274{
3275	static DEFINE_MUTEX(lock);
3276
3277	int			status;
3278	struct spi_message	message;
3279	struct spi_transfer	x[2];
3280	u8			*local_buf;
3281
3282	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3283	 * copying here, (as a pure convenience thing), but we can
3284	 * keep heap costs out of the hot path unless someone else is
3285	 * using the pre-allocated buffer or the transfer is too large.
3286	 */
3287	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3288		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3289				    GFP_KERNEL | GFP_DMA);
3290		if (!local_buf)
3291			return -ENOMEM;
3292	} else {
3293		local_buf = buf;
3294	}
3295
3296	spi_message_init(&message);
3297	memset(x, 0, sizeof(x));
3298	if (n_tx) {
3299		x[0].len = n_tx;
3300		spi_message_add_tail(&x[0], &message);
3301	}
3302	if (n_rx) {
3303		x[1].len = n_rx;
3304		spi_message_add_tail(&x[1], &message);
3305	}
3306
3307	memcpy(local_buf, txbuf, n_tx);
3308	x[0].tx_buf = local_buf;
3309	x[1].rx_buf = local_buf + n_tx;
3310
3311	/* do the i/o */
3312	status = spi_sync(spi, &message);
3313	if (status == 0)
3314		memcpy(rxbuf, x[1].rx_buf, n_rx);
3315
3316	if (x[0].tx_buf == buf)
3317		mutex_unlock(&lock);
3318	else
3319		kfree(local_buf);
3320
3321	return status;
3322}
3323EXPORT_SYMBOL_GPL(spi_write_then_read);
3324
3325/*-------------------------------------------------------------------------*/
3326
3327#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3328static int __spi_of_device_match(struct device *dev, void *data)
3329{
3330	return dev->of_node == data;
3331}
3332
3333/* must call put_device() when done with returned spi_device device */
3334static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3335{
3336	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3337						__spi_of_device_match);
3338	return dev ? to_spi_device(dev) : NULL;
3339}
3340
3341static int __spi_of_controller_match(struct device *dev, const void *data)
3342{
3343	return dev->of_node == data;
3344}
3345
3346/* the spi controllers are not using spi_bus, so we find it with another way */
3347static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3348{
3349	struct device *dev;
3350
3351	dev = class_find_device(&spi_master_class, NULL, node,
3352				__spi_of_controller_match);
3353	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3354		dev = class_find_device(&spi_slave_class, NULL, node,
3355					__spi_of_controller_match);
3356	if (!dev)
3357		return NULL;
3358
3359	/* reference got in class_find_device */
3360	return container_of(dev, struct spi_controller, dev);
3361}
3362
3363static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3364			 void *arg)
3365{
3366	struct of_reconfig_data *rd = arg;
3367	struct spi_controller *ctlr;
3368	struct spi_device *spi;
3369
3370	switch (of_reconfig_get_state_change(action, arg)) {
3371	case OF_RECONFIG_CHANGE_ADD:
3372		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3373		if (ctlr == NULL)
3374			return NOTIFY_OK;	/* not for us */
3375
3376		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3377			put_device(&ctlr->dev);
3378			return NOTIFY_OK;
3379		}
3380
3381		spi = of_register_spi_device(ctlr, rd->dn);
3382		put_device(&ctlr->dev);
3383
3384		if (IS_ERR(spi)) {
3385			pr_err("%s: failed to create for '%pOF'\n",
3386					__func__, rd->dn);
3387			of_node_clear_flag(rd->dn, OF_POPULATED);
3388			return notifier_from_errno(PTR_ERR(spi));
3389		}
3390		break;
3391
3392	case OF_RECONFIG_CHANGE_REMOVE:
3393		/* already depopulated? */
3394		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3395			return NOTIFY_OK;
3396
3397		/* find our device by node */
3398		spi = of_find_spi_device_by_node(rd->dn);
3399		if (spi == NULL)
3400			return NOTIFY_OK;	/* no? not meant for us */
3401
3402		/* unregister takes one ref away */
3403		spi_unregister_device(spi);
3404
3405		/* and put the reference of the find */
3406		put_device(&spi->dev);
3407		break;
3408	}
3409
3410	return NOTIFY_OK;
3411}
3412
3413static struct notifier_block spi_of_notifier = {
3414	.notifier_call = of_spi_notify,
3415};
3416#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3417extern struct notifier_block spi_of_notifier;
3418#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3419
3420#if IS_ENABLED(CONFIG_ACPI)
3421static int spi_acpi_controller_match(struct device *dev, const void *data)
3422{
3423	return ACPI_COMPANION(dev->parent) == data;
3424}
3425
3426static int spi_acpi_device_match(struct device *dev, void *data)
3427{
3428	return ACPI_COMPANION(dev) == data;
3429}
3430
3431static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3432{
3433	struct device *dev;
3434
3435	dev = class_find_device(&spi_master_class, NULL, adev,
3436				spi_acpi_controller_match);
3437	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3438		dev = class_find_device(&spi_slave_class, NULL, adev,
3439					spi_acpi_controller_match);
3440	if (!dev)
3441		return NULL;
3442
3443	return container_of(dev, struct spi_controller, dev);
3444}
3445
3446static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3447{
3448	struct device *dev;
3449
3450	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3451
3452	return dev ? to_spi_device(dev) : NULL;
3453}
3454
3455static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3456			   void *arg)
3457{
3458	struct acpi_device *adev = arg;
3459	struct spi_controller *ctlr;
3460	struct spi_device *spi;
3461
3462	switch (value) {
3463	case ACPI_RECONFIG_DEVICE_ADD:
3464		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3465		if (!ctlr)
3466			break;
3467
3468		acpi_register_spi_device(ctlr, adev);
3469		put_device(&ctlr->dev);
3470		break;
3471	case ACPI_RECONFIG_DEVICE_REMOVE:
3472		if (!acpi_device_enumerated(adev))
3473			break;
3474
3475		spi = acpi_spi_find_device_by_adev(adev);
3476		if (!spi)
3477			break;
3478
3479		spi_unregister_device(spi);
3480		put_device(&spi->dev);
3481		break;
3482	}
3483
3484	return NOTIFY_OK;
3485}
3486
3487static struct notifier_block spi_acpi_notifier = {
3488	.notifier_call = acpi_spi_notify,
3489};
3490#else
3491extern struct notifier_block spi_acpi_notifier;
3492#endif
3493
3494static int __init spi_init(void)
3495{
3496	int	status;
3497
3498	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3499	if (!buf) {
3500		status = -ENOMEM;
3501		goto err0;
3502	}
3503
3504	status = bus_register(&spi_bus_type);
3505	if (status < 0)
3506		goto err1;
3507
3508	status = class_register(&spi_master_class);
3509	if (status < 0)
3510		goto err2;
3511
3512	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3513		status = class_register(&spi_slave_class);
3514		if (status < 0)
3515			goto err3;
3516	}
3517
3518	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3519		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3520	if (IS_ENABLED(CONFIG_ACPI))
3521		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3522
3523	return 0;
3524
3525err3:
3526	class_unregister(&spi_master_class);
3527err2:
3528	bus_unregister(&spi_bus_type);
3529err1:
3530	kfree(buf);
3531	buf = NULL;
3532err0:
3533	return status;
3534}
3535
3536/* board_info is normally registered in arch_initcall(),
3537 * but even essential drivers wait till later
3538 *
3539 * REVISIT only boardinfo really needs static linking. the rest (device and
3540 * driver registration) _could_ be dynamically linked (modular) ... costs
3541 * include needing to have boardinfo data structures be much more public.
3542 */
3543postcore_initcall(spi_init);
3544
v3.15
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kmod.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/cache.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dmaengine.h>
  29#include <linux/mutex.h>
  30#include <linux/of_device.h>
  31#include <linux/of_irq.h>
 
  32#include <linux/slab.h>
  33#include <linux/mod_devicetable.h>
  34#include <linux/spi/spi.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pm_runtime.h>
 
 
  37#include <linux/export.h>
  38#include <linux/sched/rt.h>
 
  39#include <linux/delay.h>
  40#include <linux/kthread.h>
  41#include <linux/ioport.h>
  42#include <linux/acpi.h>
 
 
 
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/spi.h>
  46
 
 
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	/* spi masters may cleanup for released devices */
  52	if (spi->master->cleanup)
  53		spi->master->cleanup(spi);
  54
  55	spi_master_put(spi->master);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73static struct attribute *spi_dev_attrs[] = {
  74	&dev_attr_modalias.attr,
  75	NULL,
  76};
  77ATTRIBUTE_GROUPS(spi_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  80 * and the sysfs version makes coldplug work too.
  81 */
  82
  83static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  84						const struct spi_device *sdev)
  85{
  86	while (id->name[0]) {
  87		if (!strcmp(sdev->modalias, id->name))
  88			return id;
  89		id++;
  90	}
  91	return NULL;
  92}
  93
  94const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  95{
  96	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  97
  98	return spi_match_id(sdrv->id_table, sdev);
  99}
 100EXPORT_SYMBOL_GPL(spi_get_device_id);
 101
 102static int spi_match_device(struct device *dev, struct device_driver *drv)
 103{
 104	const struct spi_device	*spi = to_spi_device(dev);
 105	const struct spi_driver	*sdrv = to_spi_driver(drv);
 106
 107	/* Attempt an OF style match */
 108	if (of_driver_match_device(dev, drv))
 109		return 1;
 110
 111	/* Then try ACPI */
 112	if (acpi_driver_match_device(dev, drv))
 113		return 1;
 114
 115	if (sdrv->id_table)
 116		return !!spi_match_id(sdrv->id_table, spi);
 117
 118	return strcmp(spi->modalias, drv->name) == 0;
 119}
 120
 121static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 122{
 123	const struct spi_device		*spi = to_spi_device(dev);
 124	int rc;
 125
 126	rc = acpi_device_uevent_modalias(dev, env);
 127	if (rc != -ENODEV)
 128		return rc;
 129
 130	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 131	return 0;
 132}
 133
 134#ifdef CONFIG_PM_SLEEP
 135static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 136{
 137	int			value = 0;
 138	struct spi_driver	*drv = to_spi_driver(dev->driver);
 139
 140	/* suspend will stop irqs and dma; no more i/o */
 141	if (drv) {
 142		if (drv->suspend)
 143			value = drv->suspend(to_spi_device(dev), message);
 144		else
 145			dev_dbg(dev, "... can't suspend\n");
 146	}
 147	return value;
 148}
 149
 150static int spi_legacy_resume(struct device *dev)
 151{
 152	int			value = 0;
 153	struct spi_driver	*drv = to_spi_driver(dev->driver);
 154
 155	/* resume may restart the i/o queue */
 156	if (drv) {
 157		if (drv->resume)
 158			value = drv->resume(to_spi_device(dev));
 159		else
 160			dev_dbg(dev, "... can't resume\n");
 161	}
 162	return value;
 163}
 164
 165static int spi_pm_suspend(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_suspend(dev);
 171	else
 172		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 173}
 174
 175static int spi_pm_resume(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_resume(dev);
 181	else
 182		return spi_legacy_resume(dev);
 183}
 184
 185static int spi_pm_freeze(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_freeze(dev);
 191	else
 192		return spi_legacy_suspend(dev, PMSG_FREEZE);
 193}
 194
 195static int spi_pm_thaw(struct device *dev)
 196{
 197	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 198
 199	if (pm)
 200		return pm_generic_thaw(dev);
 201	else
 202		return spi_legacy_resume(dev);
 203}
 204
 205static int spi_pm_poweroff(struct device *dev)
 206{
 207	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 208
 209	if (pm)
 210		return pm_generic_poweroff(dev);
 211	else
 212		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 213}
 214
 215static int spi_pm_restore(struct device *dev)
 216{
 217	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 218
 219	if (pm)
 220		return pm_generic_restore(dev);
 221	else
 222		return spi_legacy_resume(dev);
 223}
 224#else
 225#define spi_pm_suspend	NULL
 226#define spi_pm_resume	NULL
 227#define spi_pm_freeze	NULL
 228#define spi_pm_thaw	NULL
 229#define spi_pm_poweroff	NULL
 230#define spi_pm_restore	NULL
 231#endif
 232
 233static const struct dev_pm_ops spi_pm = {
 234	.suspend = spi_pm_suspend,
 235	.resume = spi_pm_resume,
 236	.freeze = spi_pm_freeze,
 237	.thaw = spi_pm_thaw,
 238	.poweroff = spi_pm_poweroff,
 239	.restore = spi_pm_restore,
 240	SET_RUNTIME_PM_OPS(
 241		pm_generic_runtime_suspend,
 242		pm_generic_runtime_resume,
 243		NULL
 244	)
 245};
 246
 247struct bus_type spi_bus_type = {
 248	.name		= "spi",
 249	.dev_groups	= spi_dev_groups,
 250	.match		= spi_match_device,
 251	.uevent		= spi_uevent,
 252	.pm		= &spi_pm,
 253};
 254EXPORT_SYMBOL_GPL(spi_bus_type);
 255
 256
 257static int spi_drv_probe(struct device *dev)
 258{
 259	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 260	int ret;
 261
 262	acpi_dev_pm_attach(dev, true);
 263	ret = sdrv->probe(to_spi_device(dev));
 264	if (ret)
 265		acpi_dev_pm_detach(dev, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266
 267	return ret;
 268}
 269
 270static int spi_drv_remove(struct device *dev)
 271{
 272	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 273	int ret;
 274
 275	ret = sdrv->remove(to_spi_device(dev));
 276	acpi_dev_pm_detach(dev, true);
 277
 278	return ret;
 279}
 280
 281static void spi_drv_shutdown(struct device *dev)
 282{
 283	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 284
 285	sdrv->shutdown(to_spi_device(dev));
 286}
 287
 288/**
 289 * spi_register_driver - register a SPI driver
 
 290 * @sdrv: the driver to register
 291 * Context: can sleep
 
 
 292 */
 293int spi_register_driver(struct spi_driver *sdrv)
 294{
 
 295	sdrv->driver.bus = &spi_bus_type;
 296	if (sdrv->probe)
 297		sdrv->driver.probe = spi_drv_probe;
 298	if (sdrv->remove)
 299		sdrv->driver.remove = spi_drv_remove;
 300	if (sdrv->shutdown)
 301		sdrv->driver.shutdown = spi_drv_shutdown;
 302	return driver_register(&sdrv->driver);
 303}
 304EXPORT_SYMBOL_GPL(spi_register_driver);
 305
 306/*-------------------------------------------------------------------------*/
 307
 308/* SPI devices should normally not be created by SPI device drivers; that
 309 * would make them board-specific.  Similarly with SPI master drivers.
 310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 311 * with other readonly (flashable) information about mainboard devices.
 312 */
 313
 314struct boardinfo {
 315	struct list_head	list;
 316	struct spi_board_info	board_info;
 317};
 318
 319static LIST_HEAD(board_list);
 320static LIST_HEAD(spi_master_list);
 321
 322/*
 323 * Used to protect add/del opertion for board_info list and
 324 * spi_master list, and their matching process
 
 325 */
 326static DEFINE_MUTEX(board_lock);
 327
 328/**
 329 * spi_alloc_device - Allocate a new SPI device
 330 * @master: Controller to which device is connected
 331 * Context: can sleep
 332 *
 333 * Allows a driver to allocate and initialize a spi_device without
 334 * registering it immediately.  This allows a driver to directly
 335 * fill the spi_device with device parameters before calling
 336 * spi_add_device() on it.
 337 *
 338 * Caller is responsible to call spi_add_device() on the returned
 339 * spi_device structure to add it to the SPI master.  If the caller
 340 * needs to discard the spi_device without adding it, then it should
 341 * call spi_dev_put() on it.
 342 *
 343 * Returns a pointer to the new device, or NULL.
 344 */
 345struct spi_device *spi_alloc_device(struct spi_master *master)
 346{
 347	struct spi_device	*spi;
 348	struct device		*dev = master->dev.parent;
 349
 350	if (!spi_master_get(master))
 351		return NULL;
 352
 353	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 354	if (!spi) {
 355		dev_err(dev, "cannot alloc spi_device\n");
 356		spi_master_put(master);
 357		return NULL;
 358	}
 359
 360	spi->master = master;
 361	spi->dev.parent = &master->dev;
 362	spi->dev.bus = &spi_bus_type;
 363	spi->dev.release = spidev_release;
 364	spi->cs_gpio = -ENOENT;
 
 
 
 365	device_initialize(&spi->dev);
 366	return spi;
 367}
 368EXPORT_SYMBOL_GPL(spi_alloc_device);
 369
 370static void spi_dev_set_name(struct spi_device *spi)
 371{
 372	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 373
 374	if (adev) {
 375		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 376		return;
 377	}
 378
 379	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 380		     spi->chip_select);
 381}
 382
 383static int spi_dev_check(struct device *dev, void *data)
 384{
 385	struct spi_device *spi = to_spi_device(dev);
 386	struct spi_device *new_spi = data;
 387
 388	if (spi->master == new_spi->master &&
 389	    spi->chip_select == new_spi->chip_select)
 390		return -EBUSY;
 391	return 0;
 392}
 393
 394/**
 395 * spi_add_device - Add spi_device allocated with spi_alloc_device
 396 * @spi: spi_device to register
 397 *
 398 * Companion function to spi_alloc_device.  Devices allocated with
 399 * spi_alloc_device can be added onto the spi bus with this function.
 400 *
 401 * Returns 0 on success; negative errno on failure
 402 */
 403int spi_add_device(struct spi_device *spi)
 404{
 405	static DEFINE_MUTEX(spi_add_lock);
 406	struct spi_master *master = spi->master;
 407	struct device *dev = master->dev.parent;
 408	int status;
 409
 410	/* Chipselects are numbered 0..max; validate. */
 411	if (spi->chip_select >= master->num_chipselect) {
 412		dev_err(dev, "cs%d >= max %d\n",
 413			spi->chip_select,
 414			master->num_chipselect);
 415		return -EINVAL;
 416	}
 417
 418	/* Set the bus ID string */
 419	spi_dev_set_name(spi);
 420
 421	/* We need to make sure there's no other device with this
 422	 * chipselect **BEFORE** we call setup(), else we'll trash
 423	 * its configuration.  Lock against concurrent add() calls.
 424	 */
 425	mutex_lock(&spi_add_lock);
 426
 427	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 428	if (status) {
 429		dev_err(dev, "chipselect %d already in use\n",
 430				spi->chip_select);
 431		goto done;
 432	}
 433
 434	if (master->cs_gpios)
 435		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 436
 437	/* Drivers may modify this initial i/o setup, but will
 438	 * normally rely on the device being setup.  Devices
 439	 * using SPI_CS_HIGH can't coexist well otherwise...
 440	 */
 441	status = spi_setup(spi);
 442	if (status < 0) {
 443		dev_err(dev, "can't setup %s, status %d\n",
 444				dev_name(&spi->dev), status);
 445		goto done;
 446	}
 447
 448	/* Device may be bound to an active driver when this returns */
 449	status = device_add(&spi->dev);
 450	if (status < 0)
 451		dev_err(dev, "can't add %s, status %d\n",
 452				dev_name(&spi->dev), status);
 453	else
 454		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 455
 456done:
 457	mutex_unlock(&spi_add_lock);
 458	return status;
 459}
 460EXPORT_SYMBOL_GPL(spi_add_device);
 461
 462/**
 463 * spi_new_device - instantiate one new SPI device
 464 * @master: Controller to which device is connected
 465 * @chip: Describes the SPI device
 466 * Context: can sleep
 467 *
 468 * On typical mainboards, this is purely internal; and it's not needed
 469 * after board init creates the hard-wired devices.  Some development
 470 * platforms may not be able to use spi_register_board_info though, and
 471 * this is exported so that for example a USB or parport based adapter
 472 * driver could add devices (which it would learn about out-of-band).
 473 *
 474 * Returns the new device, or NULL.
 475 */
 476struct spi_device *spi_new_device(struct spi_master *master,
 477				  struct spi_board_info *chip)
 478{
 479	struct spi_device	*proxy;
 480	int			status;
 481
 482	/* NOTE:  caller did any chip->bus_num checks necessary.
 483	 *
 484	 * Also, unless we change the return value convention to use
 485	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 486	 * suggests syslogged diagnostics are best here (ugh).
 487	 */
 488
 489	proxy = spi_alloc_device(master);
 490	if (!proxy)
 491		return NULL;
 492
 493	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 494
 495	proxy->chip_select = chip->chip_select;
 496	proxy->max_speed_hz = chip->max_speed_hz;
 497	proxy->mode = chip->mode;
 498	proxy->irq = chip->irq;
 499	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 500	proxy->dev.platform_data = (void *) chip->platform_data;
 501	proxy->controller_data = chip->controller_data;
 502	proxy->controller_state = NULL;
 503
 
 
 
 
 
 
 
 
 
 
 504	status = spi_add_device(proxy);
 505	if (status < 0) {
 506		spi_dev_put(proxy);
 507		return NULL;
 508	}
 509
 510	return proxy;
 
 
 
 
 
 
 
 511}
 512EXPORT_SYMBOL_GPL(spi_new_device);
 513
 514static void spi_match_master_to_boardinfo(struct spi_master *master,
 515				struct spi_board_info *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516{
 517	struct spi_device *dev;
 518
 519	if (master->bus_num != bi->bus_num)
 520		return;
 521
 522	dev = spi_new_device(master, bi);
 523	if (!dev)
 524		dev_err(master->dev.parent, "can't create new device for %s\n",
 525			bi->modalias);
 526}
 527
 528/**
 529 * spi_register_board_info - register SPI devices for a given board
 530 * @info: array of chip descriptors
 531 * @n: how many descriptors are provided
 532 * Context: can sleep
 533 *
 534 * Board-specific early init code calls this (probably during arch_initcall)
 535 * with segments of the SPI device table.  Any device nodes are created later,
 536 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 537 * this table of devices forever, so that reloading a controller driver will
 538 * not make Linux forget about these hard-wired devices.
 539 *
 540 * Other code can also call this, e.g. a particular add-on board might provide
 541 * SPI devices through its expansion connector, so code initializing that board
 542 * would naturally declare its SPI devices.
 543 *
 544 * The board info passed can safely be __initdata ... but be careful of
 545 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 
 
 546 */
 547int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 548{
 549	struct boardinfo *bi;
 550	int i;
 551
 552	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 
 
 
 553	if (!bi)
 554		return -ENOMEM;
 555
 556	for (i = 0; i < n; i++, bi++, info++) {
 557		struct spi_master *master;
 558
 559		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 
 560		mutex_lock(&board_lock);
 561		list_add_tail(&bi->list, &board_list);
 562		list_for_each_entry(master, &spi_master_list, list)
 563			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 564		mutex_unlock(&board_lock);
 565	}
 566
 567	return 0;
 568}
 569
 570/*-------------------------------------------------------------------------*/
 571
 572static void spi_set_cs(struct spi_device *spi, bool enable)
 573{
 574	if (spi->mode & SPI_CS_HIGH)
 575		enable = !enable;
 576
 577	if (spi->cs_gpio >= 0)
 578		gpio_set_value(spi->cs_gpio, !enable);
 579	else if (spi->master->set_cs)
 580		spi->master->set_cs(spi, !enable);
 
 
 
 
 
 581}
 582
 583#ifdef CONFIG_HAS_DMA
 584static int spi_map_buf(struct spi_master *master, struct device *dev,
 585		       struct sg_table *sgt, void *buf, size_t len,
 586		       enum dma_data_direction dir)
 587{
 588	const bool vmalloced_buf = is_vmalloc_addr(buf);
 589	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
 590	const int sgs = DIV_ROUND_UP(len, desc_len);
 
 
 
 
 
 
 
 
 591	struct page *vm_page;
 
 592	void *sg_buf;
 593	size_t min;
 594	int i, ret;
 595
 
 
 
 
 
 
 
 
 
 
 596	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 597	if (ret != 0)
 598		return ret;
 599
 
 600	for (i = 0; i < sgs; i++) {
 601		min = min_t(size_t, len, desc_len);
 602
 603		if (vmalloced_buf) {
 604			vm_page = vmalloc_to_page(buf);
 
 
 
 
 
 
 
 
 
 
 
 605			if (!vm_page) {
 606				sg_free_table(sgt);
 607				return -ENOMEM;
 608			}
 609			sg_buf = page_address(vm_page) +
 610				((size_t)buf & ~PAGE_MASK);
 611		} else {
 
 612			sg_buf = buf;
 
 613		}
 614
 615		sg_set_buf(&sgt->sgl[i], sg_buf, min);
 616
 617		buf += min;
 618		len -= min;
 
 619	}
 620
 621	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 
 
 622	if (ret < 0) {
 623		sg_free_table(sgt);
 624		return ret;
 625	}
 626
 627	sgt->nents = ret;
 628
 629	return 0;
 630}
 631
 632static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 633			  struct sg_table *sgt, enum dma_data_direction dir)
 634{
 635	if (sgt->orig_nents) {
 636		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 637		sg_free_table(sgt);
 638	}
 639}
 640
 641static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 642{
 643	struct device *tx_dev, *rx_dev;
 644	struct spi_transfer *xfer;
 645	int ret;
 646
 647	if (!master->can_dma)
 648		return 0;
 649
 650	tx_dev = &master->dma_tx->dev->device;
 651	rx_dev = &master->dma_rx->dev->device;
 
 
 
 
 
 
 
 652
 653	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 654		if (!master->can_dma(master, msg->spi, xfer))
 655			continue;
 656
 657		if (xfer->tx_buf != NULL) {
 658			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 659					  (void *)xfer->tx_buf, xfer->len,
 660					  DMA_TO_DEVICE);
 661			if (ret != 0)
 662				return ret;
 663		}
 664
 665		if (xfer->rx_buf != NULL) {
 666			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 667					  xfer->rx_buf, xfer->len,
 668					  DMA_FROM_DEVICE);
 669			if (ret != 0) {
 670				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 671					      DMA_TO_DEVICE);
 672				return ret;
 673			}
 674		}
 675	}
 676
 677	master->cur_msg_mapped = true;
 678
 679	return 0;
 680}
 681
 682static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 683{
 684	struct spi_transfer *xfer;
 685	struct device *tx_dev, *rx_dev;
 686
 687	if (!master->cur_msg_mapped || !master->can_dma)
 688		return 0;
 689
 690	tx_dev = &master->dma_tx->dev->device;
 691	rx_dev = &master->dma_rx->dev->device;
 
 
 
 
 
 
 
 692
 693	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 694		if (!master->can_dma(master, msg->spi, xfer))
 695			continue;
 696
 697		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 698		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 699	}
 700
 701	return 0;
 702}
 703#else /* !CONFIG_HAS_DMA */
 704static inline int __spi_map_msg(struct spi_master *master,
 
 
 
 
 
 
 
 
 
 
 
 
 
 705				struct spi_message *msg)
 706{
 707	return 0;
 708}
 709
 710static inline int spi_unmap_msg(struct spi_master *master,
 711				struct spi_message *msg)
 712{
 713	return 0;
 714}
 715#endif /* !CONFIG_HAS_DMA */
 716
 717static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718{
 719	struct spi_transfer *xfer;
 720	void *tmp;
 721	unsigned int max_tx, max_rx;
 722
 723	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 724		max_tx = 0;
 725		max_rx = 0;
 726
 727		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 728			if ((master->flags & SPI_MASTER_MUST_TX) &&
 729			    !xfer->tx_buf)
 730				max_tx = max(xfer->len, max_tx);
 731			if ((master->flags & SPI_MASTER_MUST_RX) &&
 732			    !xfer->rx_buf)
 733				max_rx = max(xfer->len, max_rx);
 734		}
 735
 736		if (max_tx) {
 737			tmp = krealloc(master->dummy_tx, max_tx,
 738				       GFP_KERNEL | GFP_DMA);
 739			if (!tmp)
 740				return -ENOMEM;
 741			master->dummy_tx = tmp;
 742			memset(tmp, 0, max_tx);
 743		}
 744
 745		if (max_rx) {
 746			tmp = krealloc(master->dummy_rx, max_rx,
 747				       GFP_KERNEL | GFP_DMA);
 748			if (!tmp)
 749				return -ENOMEM;
 750			master->dummy_rx = tmp;
 751		}
 752
 753		if (max_tx || max_rx) {
 754			list_for_each_entry(xfer, &msg->transfers,
 755					    transfer_list) {
 756				if (!xfer->tx_buf)
 757					xfer->tx_buf = master->dummy_tx;
 758				if (!xfer->rx_buf)
 759					xfer->rx_buf = master->dummy_rx;
 760			}
 761		}
 762	}
 763
 764	return __spi_map_msg(master, msg);
 765}
 766
 767/*
 768 * spi_transfer_one_message - Default implementation of transfer_one_message()
 769 *
 770 * This is a standard implementation of transfer_one_message() for
 771 * drivers which impelment a transfer_one() operation.  It provides
 772 * standard handling of delays and chip select management.
 773 */
 774static int spi_transfer_one_message(struct spi_master *master,
 775				    struct spi_message *msg)
 776{
 777	struct spi_transfer *xfer;
 778	bool keep_cs = false;
 779	int ret = 0;
 780	int ms = 1;
 
 
 781
 782	spi_set_cs(msg->spi, true);
 783
 
 
 
 784	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 785		trace_spi_transfer_start(msg, xfer);
 786
 787		reinit_completion(&master->xfer_completion);
 
 788
 789		ret = master->transfer_one(master, msg->spi, xfer);
 790		if (ret < 0) {
 791			dev_err(&msg->spi->dev,
 792				"SPI transfer failed: %d\n", ret);
 793			goto out;
 794		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795
 796		if (ret > 0) {
 797			ret = 0;
 798			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 799			ms += 10; /* some tolerance */
 800
 801			ms = wait_for_completion_timeout(&master->xfer_completion,
 802							 msecs_to_jiffies(ms));
 803		}
 804
 805		if (ms == 0) {
 806			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
 807			msg->status = -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 808		}
 809
 810		trace_spi_transfer_stop(msg, xfer);
 811
 812		if (msg->status != -EINPROGRESS)
 813			goto out;
 814
 815		if (xfer->delay_usecs)
 816			udelay(xfer->delay_usecs);
 
 
 
 
 
 
 817
 818		if (xfer->cs_change) {
 819			if (list_is_last(&xfer->transfer_list,
 820					 &msg->transfers)) {
 821				keep_cs = true;
 822			} else {
 823				spi_set_cs(msg->spi, false);
 824				udelay(10);
 825				spi_set_cs(msg->spi, true);
 826			}
 827		}
 828
 829		msg->actual_length += xfer->len;
 830	}
 831
 832out:
 833	if (ret != 0 || !keep_cs)
 834		spi_set_cs(msg->spi, false);
 835
 836	if (msg->status == -EINPROGRESS)
 837		msg->status = ret;
 838
 839	spi_finalize_current_message(master);
 
 
 
 
 
 840
 841	return ret;
 842}
 843
 844/**
 845 * spi_finalize_current_transfer - report completion of a transfer
 
 846 *
 847 * Called by SPI drivers using the core transfer_one_message()
 848 * implementation to notify it that the current interrupt driven
 849 * transfer has finished and the next one may be scheduled.
 850 */
 851void spi_finalize_current_transfer(struct spi_master *master)
 852{
 853	complete(&master->xfer_completion);
 854}
 855EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
 856
 857/**
 858 * spi_pump_messages - kthread work function which processes spi message queue
 859 * @work: pointer to kthread work struct contained in the master struct
 
 860 *
 861 * This function checks if there is any spi message in the queue that
 862 * needs processing and if so call out to the driver to initialize hardware
 863 * and transfer each message.
 864 *
 
 
 
 865 */
 866static void spi_pump_messages(struct kthread_work *work)
 867{
 868	struct spi_master *master =
 869		container_of(work, struct spi_master, pump_messages);
 870	unsigned long flags;
 871	bool was_busy = false;
 872	int ret;
 873
 874	/* Lock queue and check for queue work */
 875	spin_lock_irqsave(&master->queue_lock, flags);
 876	if (list_empty(&master->queue) || !master->running) {
 877		if (!master->busy) {
 878			spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879			return;
 880		}
 881		master->busy = false;
 882		spin_unlock_irqrestore(&master->queue_lock, flags);
 883		kfree(master->dummy_rx);
 884		master->dummy_rx = NULL;
 885		kfree(master->dummy_tx);
 886		master->dummy_tx = NULL;
 887		if (master->unprepare_transfer_hardware &&
 888		    master->unprepare_transfer_hardware(master))
 889			dev_err(&master->dev,
 
 
 
 890				"failed to unprepare transfer hardware\n");
 891		if (master->auto_runtime_pm) {
 892			pm_runtime_mark_last_busy(master->dev.parent);
 893			pm_runtime_put_autosuspend(master->dev.parent);
 894		}
 895		trace_spi_master_idle(master);
 
 
 
 
 896		return;
 897	}
 898
 899	/* Make sure we are not already running a message */
 900	if (master->cur_msg) {
 901		spin_unlock_irqrestore(&master->queue_lock, flags);
 902		return;
 903	}
 904	/* Extract head of queue */
 905	master->cur_msg =
 906		list_first_entry(&master->queue, struct spi_message, queue);
 907
 908	list_del_init(&master->cur_msg->queue);
 909	if (master->busy)
 910		was_busy = true;
 911	else
 912		master->busy = true;
 913	spin_unlock_irqrestore(&master->queue_lock, flags);
 914
 915	if (!was_busy && master->auto_runtime_pm) {
 916		ret = pm_runtime_get_sync(master->dev.parent);
 
 
 917		if (ret < 0) {
 918			dev_err(&master->dev, "Failed to power device: %d\n",
 919				ret);
 
 920			return;
 921		}
 922	}
 923
 924	if (!was_busy)
 925		trace_spi_master_busy(master);
 926
 927	if (!was_busy && master->prepare_transfer_hardware) {
 928		ret = master->prepare_transfer_hardware(master);
 929		if (ret) {
 930			dev_err(&master->dev,
 931				"failed to prepare transfer hardware\n");
 932
 933			if (master->auto_runtime_pm)
 934				pm_runtime_put(master->dev.parent);
 
 935			return;
 936		}
 937	}
 938
 939	trace_spi_message_start(master->cur_msg);
 940
 941	if (master->prepare_message) {
 942		ret = master->prepare_message(master, master->cur_msg);
 943		if (ret) {
 944			dev_err(&master->dev,
 945				"failed to prepare message: %d\n", ret);
 946			master->cur_msg->status = ret;
 947			spi_finalize_current_message(master);
 948			return;
 949		}
 950		master->cur_msg_prepared = true;
 951	}
 952
 953	ret = spi_map_msg(master, master->cur_msg);
 954	if (ret) {
 955		master->cur_msg->status = ret;
 956		spi_finalize_current_message(master);
 957		return;
 958	}
 959
 960	ret = master->transfer_one_message(master, master->cur_msg);
 961	if (ret) {
 962		dev_err(&master->dev,
 963			"failed to transfer one message from queue\n");
 964		return;
 965	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966}
 967
 968static int spi_init_queue(struct spi_master *master)
 969{
 970	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 971
 972	INIT_LIST_HEAD(&master->queue);
 973	spin_lock_init(&master->queue_lock);
 974
 975	master->running = false;
 976	master->busy = false;
 977
 978	init_kthread_worker(&master->kworker);
 979	master->kworker_task = kthread_run(kthread_worker_fn,
 980					   &master->kworker, "%s",
 981					   dev_name(&master->dev));
 982	if (IS_ERR(master->kworker_task)) {
 983		dev_err(&master->dev, "failed to create message pump task\n");
 984		return -ENOMEM;
 985	}
 986	init_kthread_work(&master->pump_messages, spi_pump_messages);
 987
 988	/*
 989	 * Master config will indicate if this controller should run the
 990	 * message pump with high (realtime) priority to reduce the transfer
 991	 * latency on the bus by minimising the delay between a transfer
 992	 * request and the scheduling of the message pump thread. Without this
 993	 * setting the message pump thread will remain at default priority.
 994	 */
 995	if (master->rt) {
 996		dev_info(&master->dev,
 997			"will run message pump with realtime priority\n");
 998		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
 999	}
1000
1001	return 0;
1002}
1003
1004/**
1005 * spi_get_next_queued_message() - called by driver to check for queued
1006 * messages
1007 * @master: the master to check for queued messages
1008 *
1009 * If there are more messages in the queue, the next message is returned from
1010 * this call.
 
 
1011 */
1012struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1013{
1014	struct spi_message *next;
1015	unsigned long flags;
1016
1017	/* get a pointer to the next message, if any */
1018	spin_lock_irqsave(&master->queue_lock, flags);
1019	next = list_first_entry_or_null(&master->queue, struct spi_message,
1020					queue);
1021	spin_unlock_irqrestore(&master->queue_lock, flags);
1022
1023	return next;
1024}
1025EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1026
1027/**
1028 * spi_finalize_current_message() - the current message is complete
1029 * @master: the master to return the message to
1030 *
1031 * Called by the driver to notify the core that the message in the front of the
1032 * queue is complete and can be removed from the queue.
1033 */
1034void spi_finalize_current_message(struct spi_master *master)
1035{
1036	struct spi_message *mesg;
1037	unsigned long flags;
1038	int ret;
1039
1040	spin_lock_irqsave(&master->queue_lock, flags);
1041	mesg = master->cur_msg;
1042	master->cur_msg = NULL;
1043
1044	queue_kthread_work(&master->kworker, &master->pump_messages);
1045	spin_unlock_irqrestore(&master->queue_lock, flags);
1046
1047	spi_unmap_msg(master, mesg);
1048
1049	if (master->cur_msg_prepared && master->unprepare_message) {
1050		ret = master->unprepare_message(master, mesg);
1051		if (ret) {
1052			dev_err(&master->dev,
1053				"failed to unprepare message: %d\n", ret);
1054		}
1055	}
1056	master->cur_msg_prepared = false;
 
 
 
 
 
 
 
1057
1058	mesg->state = NULL;
1059	if (mesg->complete)
1060		mesg->complete(mesg->context);
1061
1062	trace_spi_message_done(mesg);
1063}
1064EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1065
1066static int spi_start_queue(struct spi_master *master)
1067{
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&master->queue_lock, flags);
1071
1072	if (master->running || master->busy) {
1073		spin_unlock_irqrestore(&master->queue_lock, flags);
1074		return -EBUSY;
1075	}
1076
1077	master->running = true;
1078	master->cur_msg = NULL;
1079	spin_unlock_irqrestore(&master->queue_lock, flags);
1080
1081	queue_kthread_work(&master->kworker, &master->pump_messages);
1082
1083	return 0;
1084}
1085
1086static int spi_stop_queue(struct spi_master *master)
1087{
1088	unsigned long flags;
1089	unsigned limit = 500;
1090	int ret = 0;
1091
1092	spin_lock_irqsave(&master->queue_lock, flags);
1093
1094	/*
1095	 * This is a bit lame, but is optimized for the common execution path.
1096	 * A wait_queue on the master->busy could be used, but then the common
1097	 * execution path (pump_messages) would be required to call wake_up or
1098	 * friends on every SPI message. Do this instead.
1099	 */
1100	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1101		spin_unlock_irqrestore(&master->queue_lock, flags);
1102		usleep_range(10000, 11000);
1103		spin_lock_irqsave(&master->queue_lock, flags);
1104	}
1105
1106	if (!list_empty(&master->queue) || master->busy)
1107		ret = -EBUSY;
1108	else
1109		master->running = false;
1110
1111	spin_unlock_irqrestore(&master->queue_lock, flags);
1112
1113	if (ret) {
1114		dev_warn(&master->dev,
1115			 "could not stop message queue\n");
1116		return ret;
1117	}
1118	return ret;
1119}
1120
1121static int spi_destroy_queue(struct spi_master *master)
1122{
1123	int ret;
1124
1125	ret = spi_stop_queue(master);
1126
1127	/*
1128	 * flush_kthread_worker will block until all work is done.
1129	 * If the reason that stop_queue timed out is that the work will never
1130	 * finish, then it does no good to call flush/stop thread, so
1131	 * return anyway.
1132	 */
1133	if (ret) {
1134		dev_err(&master->dev, "problem destroying queue\n");
1135		return ret;
1136	}
1137
1138	flush_kthread_worker(&master->kworker);
1139	kthread_stop(master->kworker_task);
1140
1141	return 0;
1142}
1143
1144/**
1145 * spi_queued_transfer - transfer function for queued transfers
1146 * @spi: spi device which is requesting transfer
1147 * @msg: spi message which is to handled is queued to driver queue
1148 */
1149static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1150{
1151	struct spi_master *master = spi->master;
1152	unsigned long flags;
1153
1154	spin_lock_irqsave(&master->queue_lock, flags);
1155
1156	if (!master->running) {
1157		spin_unlock_irqrestore(&master->queue_lock, flags);
1158		return -ESHUTDOWN;
1159	}
1160	msg->actual_length = 0;
1161	msg->status = -EINPROGRESS;
1162
1163	list_add_tail(&msg->queue, &master->queue);
1164	if (!master->busy)
1165		queue_kthread_work(&master->kworker, &master->pump_messages);
1166
1167	spin_unlock_irqrestore(&master->queue_lock, flags);
1168	return 0;
1169}
1170
1171static int spi_master_initialize_queue(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
1172{
1173	int ret;
1174
1175	master->transfer = spi_queued_transfer;
1176	if (!master->transfer_one_message)
1177		master->transfer_one_message = spi_transfer_one_message;
1178
1179	/* Initialize and start queue */
1180	ret = spi_init_queue(master);
1181	if (ret) {
1182		dev_err(&master->dev, "problem initializing queue\n");
1183		goto err_init_queue;
1184	}
1185	master->queued = true;
1186	ret = spi_start_queue(master);
1187	if (ret) {
1188		dev_err(&master->dev, "problem starting queue\n");
1189		goto err_start_queue;
1190	}
1191
1192	return 0;
1193
1194err_start_queue:
1195	spi_destroy_queue(master);
1196err_init_queue:
1197	return ret;
1198}
1199
1200/*-------------------------------------------------------------------------*/
1201
1202#if defined(CONFIG_OF)
1203/**
1204 * of_register_spi_devices() - Register child devices onto the SPI bus
1205 * @master:	Pointer to spi_master device
1206 *
1207 * Registers an spi_device for each child node of master node which has a 'reg'
1208 * property.
1209 */
1210static void of_register_spi_devices(struct spi_master *master)
1211{
1212	struct spi_device *spi;
1213	struct device_node *nc;
1214	int rc;
1215	u32 value;
1216
1217	if (!master->dev.of_node)
1218		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219
1220	for_each_available_child_of_node(master->dev.of_node, nc) {
1221		/* Alloc an spi_device */
1222		spi = spi_alloc_device(master);
1223		if (!spi) {
1224			dev_err(&master->dev, "spi_device alloc error for %s\n",
1225				nc->full_name);
1226			spi_dev_put(spi);
1227			continue;
 
 
 
 
 
 
 
1228		}
 
1229
1230		/* Select device driver */
1231		if (of_modalias_node(nc, spi->modalias,
1232				     sizeof(spi->modalias)) < 0) {
1233			dev_err(&master->dev, "cannot find modalias for %s\n",
1234				nc->full_name);
1235			spi_dev_put(spi);
1236			continue;
1237		}
 
 
1238
1239		/* Device address */
1240		rc = of_property_read_u32(nc, "reg", &value);
1241		if (rc) {
1242			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1243				nc->full_name, rc);
1244			spi_dev_put(spi);
1245			continue;
1246		}
1247		spi->chip_select = value;
 
 
 
 
 
 
 
 
1248
1249		/* Mode (clock phase/polarity/etc.) */
1250		if (of_find_property(nc, "spi-cpha", NULL))
1251			spi->mode |= SPI_CPHA;
1252		if (of_find_property(nc, "spi-cpol", NULL))
1253			spi->mode |= SPI_CPOL;
1254		if (of_find_property(nc, "spi-cs-high", NULL))
1255			spi->mode |= SPI_CS_HIGH;
1256		if (of_find_property(nc, "spi-3wire", NULL))
1257			spi->mode |= SPI_3WIRE;
1258
1259		/* Device DUAL/QUAD mode */
1260		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1261			switch (value) {
1262			case 1:
1263				break;
1264			case 2:
1265				spi->mode |= SPI_TX_DUAL;
1266				break;
1267			case 4:
1268				spi->mode |= SPI_TX_QUAD;
1269				break;
1270			default:
1271				dev_err(&master->dev,
1272					"spi-tx-bus-width %d not supported\n",
1273					value);
1274				spi_dev_put(spi);
1275				continue;
1276			}
1277		}
1278
1279		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1280			switch (value) {
1281			case 1:
1282				break;
1283			case 2:
1284				spi->mode |= SPI_RX_DUAL;
1285				break;
1286			case 4:
1287				spi->mode |= SPI_RX_QUAD;
1288				break;
1289			default:
1290				dev_err(&master->dev,
1291					"spi-rx-bus-width %d not supported\n",
1292					value);
1293				spi_dev_put(spi);
1294				continue;
1295			}
1296		}
1297
1298		/* Device speed */
1299		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1300		if (rc) {
1301			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1302				nc->full_name, rc);
1303			spi_dev_put(spi);
1304			continue;
1305		}
1306		spi->max_speed_hz = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307
1308		/* IRQ */
1309		spi->irq = irq_of_parse_and_map(nc, 0);
1310
1311		/* Store a pointer to the node in the device structure */
1312		of_node_get(nc);
1313		spi->dev.of_node = nc;
 
 
 
1314
1315		/* Register the new device */
1316		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1317		rc = spi_add_device(spi);
1318		if (rc) {
1319			dev_err(&master->dev, "spi_device register error %s\n",
1320				nc->full_name);
1321			spi_dev_put(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322		}
1323
1324	}
1325}
1326#else
1327static void of_register_spi_devices(struct spi_master *master) { }
1328#endif
1329
1330#ifdef CONFIG_ACPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1332{
1333	struct spi_device *spi = data;
 
1334
1335	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1336		struct acpi_resource_spi_serialbus *sb;
1337
1338		sb = &ares->data.spi_serial_bus;
1339		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1340			spi->chip_select = sb->device_selection;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341			spi->max_speed_hz = sb->connection_speed;
1342
1343			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1344				spi->mode |= SPI_CPHA;
1345			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1346				spi->mode |= SPI_CPOL;
1347			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1348				spi->mode |= SPI_CS_HIGH;
1349		}
1350	} else if (spi->irq < 0) {
1351		struct resource r;
1352
1353		if (acpi_dev_resource_interrupt(ares, 0, &r))
1354			spi->irq = r.start;
1355	}
1356
1357	/* Always tell the ACPI core to skip this resource */
1358	return 1;
1359}
1360
1361static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1362				       void *data, void **return_value)
1363{
1364	struct spi_master *master = data;
1365	struct list_head resource_list;
1366	struct acpi_device *adev;
1367	struct spi_device *spi;
1368	int ret;
1369
1370	if (acpi_bus_get_device(handle, &adev))
1371		return AE_OK;
1372	if (acpi_bus_get_status(adev) || !adev->status.present)
1373		return AE_OK;
1374
1375	spi = spi_alloc_device(master);
1376	if (!spi) {
1377		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1378			dev_name(&adev->dev));
1379		return AE_NO_MEMORY;
1380	}
1381
1382	ACPI_COMPANION_SET(&spi->dev, adev);
1383	spi->irq = -1;
1384
1385	INIT_LIST_HEAD(&resource_list);
1386	ret = acpi_dev_get_resources(adev, &resource_list,
1387				     acpi_spi_add_resource, spi);
1388	acpi_dev_free_resource_list(&resource_list);
1389
 
 
1390	if (ret < 0 || !spi->max_speed_hz) {
1391		spi_dev_put(spi);
1392		return AE_OK;
1393	}
1394
 
 
 
 
 
 
 
 
1395	adev->power.flags.ignore_parent = true;
1396	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1397	if (spi_add_device(spi)) {
1398		adev->power.flags.ignore_parent = false;
1399		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1400			dev_name(&adev->dev));
1401		spi_dev_put(spi);
1402	}
1403
1404	return AE_OK;
1405}
1406
1407static void acpi_register_spi_devices(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
1408{
1409	acpi_status status;
1410	acpi_handle handle;
1411
1412	handle = ACPI_HANDLE(master->dev.parent);
1413	if (!handle)
1414		return;
1415
1416	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1417				     acpi_spi_add_device, NULL,
1418				     master, NULL);
1419	if (ACPI_FAILURE(status))
1420		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1421}
1422#else
1423static inline void acpi_register_spi_devices(struct spi_master *master) {}
1424#endif /* CONFIG_ACPI */
1425
1426static void spi_master_release(struct device *dev)
1427{
1428	struct spi_master *master;
1429
1430	master = container_of(dev, struct spi_master, dev);
1431	kfree(master);
1432}
1433
1434static struct class spi_master_class = {
1435	.name		= "spi_master",
1436	.owner		= THIS_MODULE,
1437	.dev_release	= spi_master_release,
 
1438};
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440
 
 
 
 
 
 
 
 
 
1441
1442/**
1443 * spi_alloc_master - allocate SPI master controller
1444 * @dev: the controller, possibly using the platform_bus
1445 * @size: how much zeroed driver-private data to allocate; the pointer to this
1446 *	memory is in the driver_data field of the returned device,
1447 *	accessible with spi_master_get_devdata().
 
 
1448 * Context: can sleep
1449 *
1450 * This call is used only by SPI master controller drivers, which are the
1451 * only ones directly touching chip registers.  It's how they allocate
1452 * an spi_master structure, prior to calling spi_register_master().
1453 *
1454 * This must be called from context that can sleep.  It returns the SPI
1455 * master structure on success, else NULL.
1456 *
1457 * The caller is responsible for assigning the bus number and initializing
1458 * the master's methods before calling spi_register_master(); and (after errors
1459 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1460 * leak.
 
 
1461 */
1462struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
1463{
1464	struct spi_master	*master;
1465
1466	if (!dev)
1467		return NULL;
1468
1469	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1470	if (!master)
1471		return NULL;
1472
1473	device_initialize(&master->dev);
1474	master->bus_num = -1;
1475	master->num_chipselect = 1;
1476	master->dev.class = &spi_master_class;
1477	master->dev.parent = get_device(dev);
1478	spi_master_set_devdata(master, &master[1]);
 
 
 
 
 
1479
1480	return master;
1481}
1482EXPORT_SYMBOL_GPL(spi_alloc_master);
1483
1484#ifdef CONFIG_OF
1485static int of_spi_register_master(struct spi_master *master)
1486{
1487	int nb, i, *cs;
1488	struct device_node *np = master->dev.of_node;
1489
1490	if (!np)
1491		return 0;
1492
1493	nb = of_gpio_named_count(np, "cs-gpios");
1494	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1495
1496	/* Return error only for an incorrectly formed cs-gpios property */
1497	if (nb == 0 || nb == -ENOENT)
1498		return 0;
1499	else if (nb < 0)
1500		return nb;
1501
1502	cs = devm_kzalloc(&master->dev,
1503			  sizeof(int) * master->num_chipselect,
1504			  GFP_KERNEL);
1505	master->cs_gpios = cs;
1506
1507	if (!master->cs_gpios)
1508		return -ENOMEM;
1509
1510	for (i = 0; i < master->num_chipselect; i++)
1511		cs[i] = -ENOENT;
1512
1513	for (i = 0; i < nb; i++)
1514		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1515
1516	return 0;
1517}
1518#else
1519static int of_spi_register_master(struct spi_master *master)
1520{
1521	return 0;
1522}
1523#endif
1524
1525/**
1526 * spi_register_master - register SPI master controller
1527 * @master: initialized master, originally from spi_alloc_master()
 
1528 * Context: can sleep
1529 *
1530 * SPI master controllers connect to their drivers using some non-SPI bus,
1531 * such as the platform bus.  The final stage of probe() in that code
1532 * includes calling spi_register_master() to hook up to this SPI bus glue.
1533 *
1534 * SPI controllers use board specific (often SOC specific) bus numbers,
1535 * and board-specific addressing for SPI devices combines those numbers
1536 * with chip select numbers.  Since SPI does not directly support dynamic
1537 * device identification, boards need configuration tables telling which
1538 * chip is at which address.
1539 *
1540 * This must be called from context that can sleep.  It returns zero on
1541 * success, else a negative error code (dropping the master's refcount).
1542 * After a successful return, the caller is responsible for calling
1543 * spi_unregister_master().
 
 
1544 */
1545int spi_register_master(struct spi_master *master)
1546{
1547	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1548	struct device		*dev = master->dev.parent;
1549	struct boardinfo	*bi;
1550	int			status = -ENODEV;
1551	int			dynamic = 0;
1552
1553	if (!dev)
1554		return -ENODEV;
1555
1556	status = of_spi_register_master(master);
1557	if (status)
1558		return status;
 
 
1559
1560	/* even if it's just one always-selected device, there must
1561	 * be at least one chipselect
1562	 */
1563	if (master->num_chipselect == 0)
1564		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565
1566	if ((master->bus_num < 0) && master->dev.of_node)
1567		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1568
1569	/* convention:  dynamically assigned bus IDs count down from the max */
1570	if (master->bus_num < 0) {
1571		/* FIXME switch to an IDR based scheme, something like
1572		 * I2C now uses, so we can't run out of "dynamic" IDs
1573		 */
1574		master->bus_num = atomic_dec_return(&dyn_bus_id);
1575		dynamic = 1;
1576	}
1577
1578	spin_lock_init(&master->bus_lock_spinlock);
1579	mutex_init(&master->bus_lock_mutex);
1580	master->bus_lock_flag = 0;
1581	init_completion(&master->xfer_completion);
1582	if (!master->max_dma_len)
1583		master->max_dma_len = INT_MAX;
 
 
1584
1585	/* register the device, then userspace will see it.
1586	 * registration fails if the bus ID is in use.
1587	 */
1588	dev_set_name(&master->dev, "spi%u", master->bus_num);
1589	status = device_add(&master->dev);
1590	if (status < 0)
 
 
 
 
1591		goto done;
1592	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1593			dynamic ? " (dynamic)" : "");
 
 
1594
1595	/* If we're using a queued driver, start the queue */
1596	if (master->transfer)
1597		dev_info(dev, "master is unqueued, this is deprecated\n");
1598	else {
1599		status = spi_master_initialize_queue(master);
1600		if (status) {
1601			device_del(&master->dev);
 
 
 
 
1602			goto done;
1603		}
1604	}
 
 
1605
1606	mutex_lock(&board_lock);
1607	list_add_tail(&master->list, &spi_master_list);
1608	list_for_each_entry(bi, &board_list, list)
1609		spi_match_master_to_boardinfo(master, &bi->board_info);
1610	mutex_unlock(&board_lock);
1611
1612	/* Register devices from the device tree and ACPI */
1613	of_register_spi_devices(master);
1614	acpi_register_spi_devices(master);
1615done:
1616	return status;
1617}
1618EXPORT_SYMBOL_GPL(spi_register_master);
1619
1620static void devm_spi_unregister(struct device *dev, void *res)
1621{
1622	spi_unregister_master(*(struct spi_master **)res);
1623}
1624
1625/**
1626 * dev_spi_register_master - register managed SPI master controller
1627 * @dev:    device managing SPI master
1628 * @master: initialized master, originally from spi_alloc_master()
 
 
1629 * Context: can sleep
1630 *
1631 * Register a SPI device as with spi_register_master() which will
1632 * automatically be unregister
 
 
1633 */
1634int devm_spi_register_master(struct device *dev, struct spi_master *master)
 
1635{
1636	struct spi_master **ptr;
1637	int ret;
1638
1639	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1640	if (!ptr)
1641		return -ENOMEM;
1642
1643	ret = spi_register_master(master);
1644	if (!ret) {
1645		*ptr = master;
1646		devres_add(dev, ptr);
1647	} else {
1648		devres_free(ptr);
1649	}
1650
1651	return ret;
1652}
1653EXPORT_SYMBOL_GPL(devm_spi_register_master);
1654
1655static int __unregister(struct device *dev, void *null)
1656{
1657	spi_unregister_device(to_spi_device(dev));
1658	return 0;
1659}
1660
1661/**
1662 * spi_unregister_master - unregister SPI master controller
1663 * @master: the master being unregistered
1664 * Context: can sleep
1665 *
1666 * This call is used only by SPI master controller drivers, which are the
1667 * only ones directly touching chip registers.
1668 *
1669 * This must be called from context that can sleep.
 
 
1670 */
1671void spi_unregister_master(struct spi_master *master)
1672{
 
 
1673	int dummy;
1674
1675	if (master->queued) {
1676		if (spi_destroy_queue(master))
1677			dev_err(&master->dev, "queue remove failed\n");
 
 
 
 
1678	}
 
 
 
1679
 
 
 
1680	mutex_lock(&board_lock);
1681	list_del(&master->list);
 
1682	mutex_unlock(&board_lock);
1683
1684	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1685	device_unregister(&master->dev);
1686}
1687EXPORT_SYMBOL_GPL(spi_unregister_master);
1688
1689int spi_master_suspend(struct spi_master *master)
1690{
1691	int ret;
1692
1693	/* Basically no-ops for non-queued masters */
1694	if (!master->queued)
1695		return 0;
1696
1697	ret = spi_stop_queue(master);
1698	if (ret)
1699		dev_err(&master->dev, "queue stop failed\n");
1700
1701	return ret;
1702}
1703EXPORT_SYMBOL_GPL(spi_master_suspend);
1704
1705int spi_master_resume(struct spi_master *master)
1706{
1707	int ret;
1708
1709	if (!master->queued)
1710		return 0;
1711
1712	ret = spi_start_queue(master);
1713	if (ret)
1714		dev_err(&master->dev, "queue restart failed\n");
1715
1716	return ret;
1717}
1718EXPORT_SYMBOL_GPL(spi_master_resume);
1719
1720static int __spi_master_match(struct device *dev, const void *data)
1721{
1722	struct spi_master *m;
1723	const u16 *bus_num = data;
1724
1725	m = container_of(dev, struct spi_master, dev);
1726	return m->bus_num == *bus_num;
1727}
1728
1729/**
1730 * spi_busnum_to_master - look up master associated with bus_num
1731 * @bus_num: the master's bus number
1732 * Context: can sleep
1733 *
1734 * This call may be used with devices that are registered after
1735 * arch init time.  It returns a refcounted pointer to the relevant
1736 * spi_master (which the caller must release), or NULL if there is
1737 * no such master registered.
 
 
1738 */
1739struct spi_master *spi_busnum_to_master(u16 bus_num)
1740{
1741	struct device		*dev;
1742	struct spi_master	*master = NULL;
1743
1744	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1745				__spi_master_match);
1746	if (dev)
1747		master = container_of(dev, struct spi_master, dev);
1748	/* reference got in class_find_device */
1749	return master;
1750}
1751EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753
1754/*-------------------------------------------------------------------------*/
1755
1756/* Core methods for SPI master protocol drivers.  Some of the
1757 * other core methods are currently defined as inline functions.
1758 */
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760/**
1761 * spi_setup - setup SPI mode and clock rate
1762 * @spi: the device whose settings are being modified
1763 * Context: can sleep, and no requests are queued to the device
1764 *
1765 * SPI protocol drivers may need to update the transfer mode if the
1766 * device doesn't work with its default.  They may likewise need
1767 * to update clock rates or word sizes from initial values.  This function
1768 * changes those settings, and must be called from a context that can sleep.
1769 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1770 * effect the next time the device is selected and data is transferred to
1771 * or from it.  When this function returns, the spi device is deselected.
1772 *
1773 * Note that this call will fail if the protocol driver specifies an option
1774 * that the underlying controller or its driver does not support.  For
1775 * example, not all hardware supports wire transfers using nine bit words,
1776 * LSB-first wire encoding, or active-high chipselects.
 
 
1777 */
1778int spi_setup(struct spi_device *spi)
1779{
1780	unsigned	bad_bits, ugly_bits;
1781	int		status = 0;
1782
1783	/* check mode to prevent that DUAL and QUAD set at the same time
1784	 */
1785	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1786		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1787		dev_err(&spi->dev,
1788		"setup: can not select dual and quad at the same time\n");
1789		return -EINVAL;
1790	}
1791	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1792	 */
1793	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1794		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1795		return -EINVAL;
1796	/* help drivers fail *cleanly* when they need options
1797	 * that aren't supported with their current master
1798	 */
1799	bad_bits = spi->mode & ~spi->master->mode_bits;
1800	ugly_bits = bad_bits &
1801		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1802	if (ugly_bits) {
1803		dev_warn(&spi->dev,
1804			 "setup: ignoring unsupported mode bits %x\n",
1805			 ugly_bits);
1806		spi->mode &= ~ugly_bits;
1807		bad_bits &= ~ugly_bits;
1808	}
1809	if (bad_bits) {
1810		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1811			bad_bits);
1812		return -EINVAL;
1813	}
1814
1815	if (!spi->bits_per_word)
1816		spi->bits_per_word = 8;
1817
 
 
 
 
 
1818	if (!spi->max_speed_hz)
1819		spi->max_speed_hz = spi->master->max_speed_hz;
 
 
 
1820
1821	if (spi->master->setup)
1822		status = spi->master->setup(spi);
1823
1824	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1825			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1826			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1827			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1828			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1829			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1830			spi->bits_per_word, spi->max_speed_hz,
1831			status);
1832
1833	return status;
1834}
1835EXPORT_SYMBOL_GPL(spi_setup);
1836
1837static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1838{
1839	struct spi_master *master = spi->master;
1840	struct spi_transfer *xfer;
1841	int w_size;
1842
1843	if (list_empty(&message->transfers))
1844		return -EINVAL;
1845
1846	/* Half-duplex links include original MicroWire, and ones with
1847	 * only one data pin like SPI_3WIRE (switches direction) or where
1848	 * either MOSI or MISO is missing.  They can also be caused by
1849	 * software limitations.
1850	 */
1851	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1852			|| (spi->mode & SPI_3WIRE)) {
1853		unsigned flags = master->flags;
1854
1855		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1856			if (xfer->rx_buf && xfer->tx_buf)
1857				return -EINVAL;
1858			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1859				return -EINVAL;
1860			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1861				return -EINVAL;
1862		}
1863	}
1864
1865	/**
1866	 * Set transfer bits_per_word and max speed as spi device default if
1867	 * it is not set for this transfer.
1868	 * Set transfer tx_nbits and rx_nbits as single transfer default
1869	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1870	 */
 
1871	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1872		message->frame_length += xfer->len;
1873		if (!xfer->bits_per_word)
1874			xfer->bits_per_word = spi->bits_per_word;
1875
1876		if (!xfer->speed_hz)
1877			xfer->speed_hz = spi->max_speed_hz;
 
 
 
 
 
1878
1879		if (master->max_speed_hz &&
1880		    xfer->speed_hz > master->max_speed_hz)
1881			xfer->speed_hz = master->max_speed_hz;
1882
1883		if (master->bits_per_word_mask) {
1884			/* Only 32 bits fit in the mask */
1885			if (xfer->bits_per_word > 32)
1886				return -EINVAL;
1887			if (!(master->bits_per_word_mask &
1888					BIT(xfer->bits_per_word - 1)))
1889				return -EINVAL;
1890		}
1891
1892		/*
1893		 * SPI transfer length should be multiple of SPI word size
1894		 * where SPI word size should be power-of-two multiple
1895		 */
1896		if (xfer->bits_per_word <= 8)
1897			w_size = 1;
1898		else if (xfer->bits_per_word <= 16)
1899			w_size = 2;
1900		else
1901			w_size = 4;
1902
1903		/* No partial transfers accepted */
1904		if (xfer->len % w_size)
1905			return -EINVAL;
1906
1907		if (xfer->speed_hz && master->min_speed_hz &&
1908		    xfer->speed_hz < master->min_speed_hz)
1909			return -EINVAL;
1910
1911		if (xfer->tx_buf && !xfer->tx_nbits)
1912			xfer->tx_nbits = SPI_NBITS_SINGLE;
1913		if (xfer->rx_buf && !xfer->rx_nbits)
1914			xfer->rx_nbits = SPI_NBITS_SINGLE;
1915		/* check transfer tx/rx_nbits:
1916		 * 1. check the value matches one of single, dual and quad
1917		 * 2. check tx/rx_nbits match the mode in spi_device
1918		 */
1919		if (xfer->tx_buf) {
1920			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1921				xfer->tx_nbits != SPI_NBITS_DUAL &&
1922				xfer->tx_nbits != SPI_NBITS_QUAD)
1923				return -EINVAL;
1924			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1925				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1926				return -EINVAL;
1927			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1928				!(spi->mode & SPI_TX_QUAD))
1929				return -EINVAL;
1930		}
1931		/* check transfer rx_nbits */
1932		if (xfer->rx_buf) {
1933			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1934				xfer->rx_nbits != SPI_NBITS_DUAL &&
1935				xfer->rx_nbits != SPI_NBITS_QUAD)
1936				return -EINVAL;
1937			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1938				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1939				return -EINVAL;
1940			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1941				!(spi->mode & SPI_RX_QUAD))
1942				return -EINVAL;
1943		}
1944	}
1945
1946	message->status = -EINPROGRESS;
1947
1948	return 0;
1949}
1950
1951static int __spi_async(struct spi_device *spi, struct spi_message *message)
1952{
1953	struct spi_master *master = spi->master;
1954
1955	message->spi = spi;
1956
 
 
 
1957	trace_spi_message_submit(message);
1958
1959	return master->transfer(spi, message);
1960}
1961
1962/**
1963 * spi_async - asynchronous SPI transfer
1964 * @spi: device with which data will be exchanged
1965 * @message: describes the data transfers, including completion callback
1966 * Context: any (irqs may be blocked, etc)
1967 *
1968 * This call may be used in_irq and other contexts which can't sleep,
1969 * as well as from task contexts which can sleep.
1970 *
1971 * The completion callback is invoked in a context which can't sleep.
1972 * Before that invocation, the value of message->status is undefined.
1973 * When the callback is issued, message->status holds either zero (to
1974 * indicate complete success) or a negative error code.  After that
1975 * callback returns, the driver which issued the transfer request may
1976 * deallocate the associated memory; it's no longer in use by any SPI
1977 * core or controller driver code.
1978 *
1979 * Note that although all messages to a spi_device are handled in
1980 * FIFO order, messages may go to different devices in other orders.
1981 * Some device might be higher priority, or have various "hard" access
1982 * time requirements, for example.
1983 *
1984 * On detection of any fault during the transfer, processing of
1985 * the entire message is aborted, and the device is deselected.
1986 * Until returning from the associated message completion callback,
1987 * no other spi_message queued to that device will be processed.
1988 * (This rule applies equally to all the synchronous transfer calls,
1989 * which are wrappers around this core asynchronous primitive.)
 
 
1990 */
1991int spi_async(struct spi_device *spi, struct spi_message *message)
1992{
1993	struct spi_master *master = spi->master;
1994	int ret;
1995	unsigned long flags;
1996
1997	ret = __spi_validate(spi, message);
1998	if (ret != 0)
1999		return ret;
2000
2001	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2002
2003	if (master->bus_lock_flag)
2004		ret = -EBUSY;
2005	else
2006		ret = __spi_async(spi, message);
2007
2008	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL_GPL(spi_async);
2013
2014/**
2015 * spi_async_locked - version of spi_async with exclusive bus usage
2016 * @spi: device with which data will be exchanged
2017 * @message: describes the data transfers, including completion callback
2018 * Context: any (irqs may be blocked, etc)
2019 *
2020 * This call may be used in_irq and other contexts which can't sleep,
2021 * as well as from task contexts which can sleep.
2022 *
2023 * The completion callback is invoked in a context which can't sleep.
2024 * Before that invocation, the value of message->status is undefined.
2025 * When the callback is issued, message->status holds either zero (to
2026 * indicate complete success) or a negative error code.  After that
2027 * callback returns, the driver which issued the transfer request may
2028 * deallocate the associated memory; it's no longer in use by any SPI
2029 * core or controller driver code.
2030 *
2031 * Note that although all messages to a spi_device are handled in
2032 * FIFO order, messages may go to different devices in other orders.
2033 * Some device might be higher priority, or have various "hard" access
2034 * time requirements, for example.
2035 *
2036 * On detection of any fault during the transfer, processing of
2037 * the entire message is aborted, and the device is deselected.
2038 * Until returning from the associated message completion callback,
2039 * no other spi_message queued to that device will be processed.
2040 * (This rule applies equally to all the synchronous transfer calls,
2041 * which are wrappers around this core asynchronous primitive.)
 
 
2042 */
2043int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2044{
2045	struct spi_master *master = spi->master;
2046	int ret;
2047	unsigned long flags;
2048
2049	ret = __spi_validate(spi, message);
2050	if (ret != 0)
2051		return ret;
2052
2053	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2054
2055	ret = __spi_async(spi, message);
2056
2057	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2058
2059	return ret;
2060
2061}
2062EXPORT_SYMBOL_GPL(spi_async_locked);
2063
2064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065/*-------------------------------------------------------------------------*/
2066
2067/* Utility methods for SPI master protocol drivers, layered on
2068 * top of the core.  Some other utility methods are defined as
2069 * inline functions.
2070 */
2071
2072static void spi_complete(void *arg)
2073{
2074	complete(arg);
2075}
2076
2077static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2078		      int bus_locked)
2079{
2080	DECLARE_COMPLETION_ONSTACK(done);
2081	int status;
2082	struct spi_master *master = spi->master;
 
 
 
 
 
2083
2084	message->complete = spi_complete;
2085	message->context = &done;
 
2086
2087	if (!bus_locked)
2088		mutex_lock(&master->bus_lock_mutex);
2089
2090	status = spi_async_locked(spi, message);
 
 
 
 
 
 
 
 
 
 
2091
2092	if (!bus_locked)
2093		mutex_unlock(&master->bus_lock_mutex);
 
 
2094
2095	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
2096		wait_for_completion(&done);
2097		status = message->status;
2098	}
2099	message->context = NULL;
2100	return status;
2101}
2102
2103/**
2104 * spi_sync - blocking/synchronous SPI data transfers
2105 * @spi: device with which data will be exchanged
2106 * @message: describes the data transfers
2107 * Context: can sleep
2108 *
2109 * This call may only be used from a context that may sleep.  The sleep
2110 * is non-interruptible, and has no timeout.  Low-overhead controller
2111 * drivers may DMA directly into and out of the message buffers.
2112 *
2113 * Note that the SPI device's chip select is active during the message,
2114 * and then is normally disabled between messages.  Drivers for some
2115 * frequently-used devices may want to minimize costs of selecting a chip,
2116 * by leaving it selected in anticipation that the next message will go
2117 * to the same chip.  (That may increase power usage.)
2118 *
2119 * Also, the caller is guaranteeing that the memory associated with the
2120 * message will not be freed before this call returns.
2121 *
2122 * It returns zero on success, else a negative error code.
2123 */
2124int spi_sync(struct spi_device *spi, struct spi_message *message)
2125{
2126	return __spi_sync(spi, message, 0);
 
 
 
 
 
 
2127}
2128EXPORT_SYMBOL_GPL(spi_sync);
2129
2130/**
2131 * spi_sync_locked - version of spi_sync with exclusive bus usage
2132 * @spi: device with which data will be exchanged
2133 * @message: describes the data transfers
2134 * Context: can sleep
2135 *
2136 * This call may only be used from a context that may sleep.  The sleep
2137 * is non-interruptible, and has no timeout.  Low-overhead controller
2138 * drivers may DMA directly into and out of the message buffers.
2139 *
2140 * This call should be used by drivers that require exclusive access to the
2141 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2142 * be released by a spi_bus_unlock call when the exclusive access is over.
2143 *
2144 * It returns zero on success, else a negative error code.
2145 */
2146int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2147{
2148	return __spi_sync(spi, message, 1);
2149}
2150EXPORT_SYMBOL_GPL(spi_sync_locked);
2151
2152/**
2153 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2154 * @master: SPI bus master that should be locked for exclusive bus access
2155 * Context: can sleep
2156 *
2157 * This call may only be used from a context that may sleep.  The sleep
2158 * is non-interruptible, and has no timeout.
2159 *
2160 * This call should be used by drivers that require exclusive access to the
2161 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2162 * exclusive access is over. Data transfer must be done by spi_sync_locked
2163 * and spi_async_locked calls when the SPI bus lock is held.
2164 *
2165 * It returns zero on success, else a negative error code.
2166 */
2167int spi_bus_lock(struct spi_master *master)
2168{
2169	unsigned long flags;
2170
2171	mutex_lock(&master->bus_lock_mutex);
2172
2173	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2174	master->bus_lock_flag = 1;
2175	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2176
2177	/* mutex remains locked until spi_bus_unlock is called */
2178
2179	return 0;
2180}
2181EXPORT_SYMBOL_GPL(spi_bus_lock);
2182
2183/**
2184 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2185 * @master: SPI bus master that was locked for exclusive bus access
2186 * Context: can sleep
2187 *
2188 * This call may only be used from a context that may sleep.  The sleep
2189 * is non-interruptible, and has no timeout.
2190 *
2191 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2192 * call.
2193 *
2194 * It returns zero on success, else a negative error code.
2195 */
2196int spi_bus_unlock(struct spi_master *master)
2197{
2198	master->bus_lock_flag = 0;
2199
2200	mutex_unlock(&master->bus_lock_mutex);
2201
2202	return 0;
2203}
2204EXPORT_SYMBOL_GPL(spi_bus_unlock);
2205
2206/* portable code must never pass more than 32 bytes */
2207#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2208
2209static u8	*buf;
2210
2211/**
2212 * spi_write_then_read - SPI synchronous write followed by read
2213 * @spi: device with which data will be exchanged
2214 * @txbuf: data to be written (need not be dma-safe)
2215 * @n_tx: size of txbuf, in bytes
2216 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2217 * @n_rx: size of rxbuf, in bytes
2218 * Context: can sleep
2219 *
2220 * This performs a half duplex MicroWire style transaction with the
2221 * device, sending txbuf and then reading rxbuf.  The return value
2222 * is zero for success, else a negative errno status code.
2223 * This call may only be used from a context that may sleep.
2224 *
2225 * Parameters to this routine are always copied using a small buffer;
2226 * portable code should never use this for more than 32 bytes.
2227 * Performance-sensitive or bulk transfer code should instead use
2228 * spi_{async,sync}() calls with dma-safe buffers.
 
 
2229 */
2230int spi_write_then_read(struct spi_device *spi,
2231		const void *txbuf, unsigned n_tx,
2232		void *rxbuf, unsigned n_rx)
2233{
2234	static DEFINE_MUTEX(lock);
2235
2236	int			status;
2237	struct spi_message	message;
2238	struct spi_transfer	x[2];
2239	u8			*local_buf;
2240
2241	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2242	 * copying here, (as a pure convenience thing), but we can
2243	 * keep heap costs out of the hot path unless someone else is
2244	 * using the pre-allocated buffer or the transfer is too large.
2245	 */
2246	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2247		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2248				    GFP_KERNEL | GFP_DMA);
2249		if (!local_buf)
2250			return -ENOMEM;
2251	} else {
2252		local_buf = buf;
2253	}
2254
2255	spi_message_init(&message);
2256	memset(x, 0, sizeof(x));
2257	if (n_tx) {
2258		x[0].len = n_tx;
2259		spi_message_add_tail(&x[0], &message);
2260	}
2261	if (n_rx) {
2262		x[1].len = n_rx;
2263		spi_message_add_tail(&x[1], &message);
2264	}
2265
2266	memcpy(local_buf, txbuf, n_tx);
2267	x[0].tx_buf = local_buf;
2268	x[1].rx_buf = local_buf + n_tx;
2269
2270	/* do the i/o */
2271	status = spi_sync(spi, &message);
2272	if (status == 0)
2273		memcpy(rxbuf, x[1].rx_buf, n_rx);
2274
2275	if (x[0].tx_buf == buf)
2276		mutex_unlock(&lock);
2277	else
2278		kfree(local_buf);
2279
2280	return status;
2281}
2282EXPORT_SYMBOL_GPL(spi_write_then_read);
2283
2284/*-------------------------------------------------------------------------*/
2285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286static int __init spi_init(void)
2287{
2288	int	status;
2289
2290	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2291	if (!buf) {
2292		status = -ENOMEM;
2293		goto err0;
2294	}
2295
2296	status = bus_register(&spi_bus_type);
2297	if (status < 0)
2298		goto err1;
2299
2300	status = class_register(&spi_master_class);
2301	if (status < 0)
2302		goto err2;
 
 
 
 
 
 
 
 
 
 
 
 
2303	return 0;
2304
 
 
2305err2:
2306	bus_unregister(&spi_bus_type);
2307err1:
2308	kfree(buf);
2309	buf = NULL;
2310err0:
2311	return status;
2312}
2313
2314/* board_info is normally registered in arch_initcall(),
2315 * but even essential drivers wait till later
2316 *
2317 * REVISIT only boardinfo really needs static linking. the rest (device and
2318 * driver registration) _could_ be dynamically linked (modular) ... costs
2319 * include needing to have boardinfo data structures be much more public.
2320 */
2321postcore_initcall(spi_init);
2322