Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
 
 
  23#include <linux/dmaengine.h>
 
 
 
 
 
 
 
 
 
 
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
 
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
 
 
 
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43#include <linux/idr.h>
  44#include <linux/platform_data/x86/apple.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/spi.h>
 
 
 
 
  48
  49static DEFINE_IDR(spi_master_idr);
  50
  51static void spidev_release(struct device *dev)
  52{
  53	struct spi_device	*spi = to_spi_device(dev);
  54
  55	/* spi controllers may cleanup for released devices */
  56	if (spi->controller->cleanup)
  57		spi->controller->cleanup(spi);
  58
  59	spi_controller_put(spi->controller);
 
 
  60	kfree(spi);
  61}
  62
  63static ssize_t
  64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  65{
  66	const struct spi_device	*spi = to_spi_device(dev);
  67	int len;
  68
  69	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  70	if (len != -ENODEV)
  71		return len;
  72
  73	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  74}
  75static DEVICE_ATTR_RO(modalias);
  76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77#define SPI_STATISTICS_ATTRS(field, file)				\
  78static ssize_t spi_controller_##field##_show(struct device *dev,	\
  79					     struct device_attribute *attr, \
  80					     char *buf)			\
  81{									\
  82	struct spi_controller *ctlr = container_of(dev,			\
  83					 struct spi_controller, dev);	\
  84	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
  85}									\
  86static struct device_attribute dev_attr_spi_controller_##field = {	\
  87	.attr = { .name = file, .mode = 0444 },				\
  88	.show = spi_controller_##field##_show,				\
  89};									\
  90static ssize_t spi_device_##field##_show(struct device *dev,		\
  91					 struct device_attribute *attr,	\
  92					char *buf)			\
  93{									\
  94	struct spi_device *spi = to_spi_device(dev);			\
  95	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  96}									\
  97static struct device_attribute dev_attr_spi_device_##field = {		\
  98	.attr = { .name = file, .mode = 0444 },				\
  99	.show = spi_device_##field##_show,				\
 100}
 101
 102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 104					    char *buf)			\
 105{									\
 106	unsigned long flags;						\
 107	ssize_t len;							\
 108	spin_lock_irqsave(&stat->lock, flags);				\
 109	len = sprintf(buf, format_string, stat->field);			\
 110	spin_unlock_irqrestore(&stat->lock, flags);			\
 111	return len;							\
 112}									\
 113SPI_STATISTICS_ATTRS(name, file)
 114
 115#define SPI_STATISTICS_SHOW(field, format_string)			\
 116	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 117				 field, format_string)
 118
 119SPI_STATISTICS_SHOW(messages, "%lu");
 120SPI_STATISTICS_SHOW(transfers, "%lu");
 121SPI_STATISTICS_SHOW(errors, "%lu");
 122SPI_STATISTICS_SHOW(timedout, "%lu");
 123
 124SPI_STATISTICS_SHOW(spi_sync, "%lu");
 125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 126SPI_STATISTICS_SHOW(spi_async, "%lu");
 127
 128SPI_STATISTICS_SHOW(bytes, "%llu");
 129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 131
 132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 133	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 134				 "transfer_bytes_histo_" number,	\
 135				 transfer_bytes_histo[index],  "%lu")
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 153
 154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 155
 156static struct attribute *spi_dev_attrs[] = {
 157	&dev_attr_modalias.attr,
 
 158	NULL,
 159};
 160
 161static const struct attribute_group spi_dev_group = {
 162	.attrs  = spi_dev_attrs,
 163};
 164
 165static struct attribute *spi_device_statistics_attrs[] = {
 166	&dev_attr_spi_device_messages.attr,
 167	&dev_attr_spi_device_transfers.attr,
 168	&dev_attr_spi_device_errors.attr,
 169	&dev_attr_spi_device_timedout.attr,
 170	&dev_attr_spi_device_spi_sync.attr,
 171	&dev_attr_spi_device_spi_sync_immediate.attr,
 172	&dev_attr_spi_device_spi_async.attr,
 173	&dev_attr_spi_device_bytes.attr,
 174	&dev_attr_spi_device_bytes_rx.attr,
 175	&dev_attr_spi_device_bytes_tx.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 186	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 187	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 188	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 189	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 190	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 191	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 192	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 193	&dev_attr_spi_device_transfers_split_maxsize.attr,
 194	NULL,
 195};
 196
 197static const struct attribute_group spi_device_statistics_group = {
 198	.name  = "statistics",
 199	.attrs  = spi_device_statistics_attrs,
 200};
 201
 202static const struct attribute_group *spi_dev_groups[] = {
 203	&spi_dev_group,
 204	&spi_device_statistics_group,
 205	NULL,
 206};
 207
 208static struct attribute *spi_controller_statistics_attrs[] = {
 209	&dev_attr_spi_controller_messages.attr,
 210	&dev_attr_spi_controller_transfers.attr,
 211	&dev_attr_spi_controller_errors.attr,
 212	&dev_attr_spi_controller_timedout.attr,
 213	&dev_attr_spi_controller_spi_sync.attr,
 214	&dev_attr_spi_controller_spi_sync_immediate.attr,
 215	&dev_attr_spi_controller_spi_async.attr,
 216	&dev_attr_spi_controller_bytes.attr,
 217	&dev_attr_spi_controller_bytes_rx.attr,
 218	&dev_attr_spi_controller_bytes_tx.attr,
 219	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 220	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 221	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 222	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 223	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 224	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 225	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 226	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 227	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 228	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 229	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 230	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 231	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 232	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 233	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 234	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 235	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 236	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 237	NULL,
 238};
 239
 240static const struct attribute_group spi_controller_statistics_group = {
 241	.name  = "statistics",
 242	.attrs  = spi_controller_statistics_attrs,
 243};
 244
 245static const struct attribute_group *spi_master_groups[] = {
 246	&spi_controller_statistics_group,
 247	NULL,
 248};
 249
 250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 251				       struct spi_transfer *xfer,
 252				       struct spi_controller *ctlr)
 253{
 254	unsigned long flags;
 255	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 256
 257	if (l2len < 0)
 258		l2len = 0;
 259
 260	spin_lock_irqsave(&stats->lock, flags);
 
 
 261
 262	stats->transfers++;
 263	stats->transfer_bytes_histo[l2len]++;
 264
 265	stats->bytes += xfer->len;
 266	if ((xfer->tx_buf) &&
 267	    (xfer->tx_buf != ctlr->dummy_tx))
 268		stats->bytes_tx += xfer->len;
 269	if ((xfer->rx_buf) &&
 270	    (xfer->rx_buf != ctlr->dummy_rx))
 271		stats->bytes_rx += xfer->len;
 272
 273	spin_unlock_irqrestore(&stats->lock, flags);
 
 274}
 275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 276
 277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 278 * and the sysfs version makes coldplug work too.
 279 */
 280
 281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 282						const struct spi_device *sdev)
 283{
 284	while (id->name[0]) {
 285		if (!strcmp(sdev->modalias, id->name))
 286			return id;
 287		id++;
 288	}
 289	return NULL;
 290}
 291
 292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 293{
 294	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 295
 296	return spi_match_id(sdrv->id_table, sdev);
 297}
 298EXPORT_SYMBOL_GPL(spi_get_device_id);
 299
 
 
 
 
 
 
 
 
 
 
 
 
 300static int spi_match_device(struct device *dev, struct device_driver *drv)
 301{
 302	const struct spi_device	*spi = to_spi_device(dev);
 303	const struct spi_driver	*sdrv = to_spi_driver(drv);
 304
 
 
 
 
 305	/* Attempt an OF style match */
 306	if (of_driver_match_device(dev, drv))
 307		return 1;
 308
 309	/* Then try ACPI */
 310	if (acpi_driver_match_device(dev, drv))
 311		return 1;
 312
 313	if (sdrv->id_table)
 314		return !!spi_match_id(sdrv->id_table, spi);
 315
 316	return strcmp(spi->modalias, drv->name) == 0;
 317}
 318
 319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 320{
 321	const struct spi_device		*spi = to_spi_device(dev);
 322	int rc;
 323
 324	rc = acpi_device_uevent_modalias(dev, env);
 325	if (rc != -ENODEV)
 326		return rc;
 327
 328	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 329}
 330
 331struct bus_type spi_bus_type = {
 332	.name		= "spi",
 333	.dev_groups	= spi_dev_groups,
 334	.match		= spi_match_device,
 335	.uevent		= spi_uevent,
 336};
 337EXPORT_SYMBOL_GPL(spi_bus_type);
 338
 339
 340static int spi_drv_probe(struct device *dev)
 341{
 342	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 343	struct spi_device		*spi = to_spi_device(dev);
 344	int ret;
 345
 346	ret = of_clk_set_defaults(dev->of_node, false);
 347	if (ret)
 348		return ret;
 349
 350	if (dev->of_node) {
 351		spi->irq = of_irq_get(dev->of_node, 0);
 352		if (spi->irq == -EPROBE_DEFER)
 353			return -EPROBE_DEFER;
 354		if (spi->irq < 0)
 355			spi->irq = 0;
 356	}
 357
 358	ret = dev_pm_domain_attach(dev, true);
 359	if (ret != -EPROBE_DEFER) {
 
 
 
 360		ret = sdrv->probe(spi);
 361		if (ret)
 362			dev_pm_domain_detach(dev, true);
 363	}
 364
 365	return ret;
 366}
 367
 368static int spi_drv_remove(struct device *dev)
 369{
 370	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 371	int ret;
 372
 373	ret = sdrv->remove(to_spi_device(dev));
 374	dev_pm_domain_detach(dev, true);
 375
 376	return ret;
 377}
 378
 379static void spi_drv_shutdown(struct device *dev)
 380{
 381	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 382
 383	sdrv->shutdown(to_spi_device(dev));
 
 
 384}
 385
 
 
 
 
 
 
 
 
 
 
 
 386/**
 387 * __spi_register_driver - register a SPI driver
 388 * @owner: owner module of the driver to register
 389 * @sdrv: the driver to register
 390 * Context: can sleep
 391 *
 392 * Return: zero on success, else a negative error code.
 393 */
 394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 395{
 396	sdrv->driver.owner = owner;
 397	sdrv->driver.bus = &spi_bus_type;
 398	if (sdrv->probe)
 399		sdrv->driver.probe = spi_drv_probe;
 400	if (sdrv->remove)
 401		sdrv->driver.remove = spi_drv_remove;
 402	if (sdrv->shutdown)
 403		sdrv->driver.shutdown = spi_drv_shutdown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404	return driver_register(&sdrv->driver);
 405}
 406EXPORT_SYMBOL_GPL(__spi_register_driver);
 407
 408/*-------------------------------------------------------------------------*/
 409
 410/* SPI devices should normally not be created by SPI device drivers; that
 
 411 * would make them board-specific.  Similarly with SPI controller drivers.
 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 413 * with other readonly (flashable) information about mainboard devices.
 414 */
 415
 416struct boardinfo {
 417	struct list_head	list;
 418	struct spi_board_info	board_info;
 419};
 420
 421static LIST_HEAD(board_list);
 422static LIST_HEAD(spi_controller_list);
 423
 424/*
 425 * Used to protect add/del opertion for board_info list and
 426 * spi_controller list, and their matching process
 427 * also used to protect object of type struct idr
 428 */
 429static DEFINE_MUTEX(board_lock);
 430
 431/**
 432 * spi_alloc_device - Allocate a new SPI device
 433 * @ctlr: Controller to which device is connected
 434 * Context: can sleep
 435 *
 436 * Allows a driver to allocate and initialize a spi_device without
 437 * registering it immediately.  This allows a driver to directly
 438 * fill the spi_device with device parameters before calling
 439 * spi_add_device() on it.
 440 *
 441 * Caller is responsible to call spi_add_device() on the returned
 442 * spi_device structure to add it to the SPI controller.  If the caller
 443 * needs to discard the spi_device without adding it, then it should
 444 * call spi_dev_put() on it.
 445 *
 446 * Return: a pointer to the new device, or NULL.
 447 */
 448struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 449{
 450	struct spi_device	*spi;
 451
 452	if (!spi_controller_get(ctlr))
 453		return NULL;
 454
 455	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 456	if (!spi) {
 457		spi_controller_put(ctlr);
 458		return NULL;
 459	}
 460
 461	spi->master = spi->controller = ctlr;
 
 
 
 
 
 
 
 462	spi->dev.parent = &ctlr->dev;
 463	spi->dev.bus = &spi_bus_type;
 464	spi->dev.release = spidev_release;
 465	spi->cs_gpio = -ENOENT;
 466
 467	spin_lock_init(&spi->statistics.lock);
 468
 469	device_initialize(&spi->dev);
 470	return spi;
 471}
 472EXPORT_SYMBOL_GPL(spi_alloc_device);
 473
 474static void spi_dev_set_name(struct spi_device *spi)
 475{
 476	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 477
 478	if (adev) {
 479		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 480		return;
 481	}
 482
 483	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 484		     spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485}
 486
 487static int spi_dev_check(struct device *dev, void *data)
 488{
 489	struct spi_device *spi = to_spi_device(dev);
 490	struct spi_device *new_spi = data;
 
 491
 492	if (spi->controller == new_spi->controller &&
 493	    spi->chip_select == new_spi->chip_select)
 494		return -EBUSY;
 
 
 
 
 495	return 0;
 496}
 497
 498/**
 499 * spi_add_device - Add spi_device allocated with spi_alloc_device
 500 * @spi: spi_device to register
 501 *
 502 * Companion function to spi_alloc_device.  Devices allocated with
 503 * spi_alloc_device can be added onto the spi bus with this function.
 504 *
 505 * Return: 0 on success; negative errno on failure
 506 */
 507int spi_add_device(struct spi_device *spi)
 508{
 509	static DEFINE_MUTEX(spi_add_lock);
 510	struct spi_controller *ctlr = spi->controller;
 511	struct device *dev = ctlr->dev.parent;
 512	int status;
 
 513
 514	/* Chipselects are numbered 0..max; validate. */
 515	if (spi->chip_select >= ctlr->num_chipselect) {
 516		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 517			ctlr->num_chipselect);
 518		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 519	}
 520
 521	/* Set the bus ID string */
 522	spi_dev_set_name(spi);
 523
 524	/* We need to make sure there's no other device with this
 
 525	 * chipselect **BEFORE** we call setup(), else we'll trash
 526	 * its configuration.  Lock against concurrent add() calls.
 527	 */
 528	mutex_lock(&spi_add_lock);
 529
 530	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 531	if (status) {
 532		dev_err(dev, "chipselect %d already in use\n",
 533				spi->chip_select);
 534		goto done;
 
 
 
 535	}
 536
 537	if (ctlr->cs_gpios)
 538		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 
 
 
 
 
 
 
 539
 540	/* Drivers may modify this initial i/o setup, but will
 
 541	 * normally rely on the device being setup.  Devices
 542	 * using SPI_CS_HIGH can't coexist well otherwise...
 543	 */
 544	status = spi_setup(spi);
 545	if (status < 0) {
 546		dev_err(dev, "can't setup %s, status %d\n",
 547				dev_name(&spi->dev), status);
 548		goto done;
 549	}
 550
 551	/* Device may be bound to an active driver when this returns */
 552	status = device_add(&spi->dev);
 553	if (status < 0)
 554		dev_err(dev, "can't add %s, status %d\n",
 555				dev_name(&spi->dev), status);
 556	else
 
 557		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 558
 559done:
 560	mutex_unlock(&spi_add_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561	return status;
 562}
 563EXPORT_SYMBOL_GPL(spi_add_device);
 564
 
 
 
 
 
 
 
 
 565/**
 566 * spi_new_device - instantiate one new SPI device
 567 * @ctlr: Controller to which device is connected
 568 * @chip: Describes the SPI device
 569 * Context: can sleep
 570 *
 571 * On typical mainboards, this is purely internal; and it's not needed
 572 * after board init creates the hard-wired devices.  Some development
 573 * platforms may not be able to use spi_register_board_info though, and
 574 * this is exported so that for example a USB or parport based adapter
 575 * driver could add devices (which it would learn about out-of-band).
 576 *
 577 * Return: the new device, or NULL.
 578 */
 579struct spi_device *spi_new_device(struct spi_controller *ctlr,
 580				  struct spi_board_info *chip)
 581{
 582	struct spi_device	*proxy;
 583	int			status;
 584
 585	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 586	 *
 587	 * Also, unless we change the return value convention to use
 588	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 589	 * suggests syslogged diagnostics are best here (ugh).
 590	 */
 591
 592	proxy = spi_alloc_device(ctlr);
 593	if (!proxy)
 594		return NULL;
 595
 596	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 597
 598	proxy->chip_select = chip->chip_select;
 
 
 
 599	proxy->max_speed_hz = chip->max_speed_hz;
 600	proxy->mode = chip->mode;
 601	proxy->irq = chip->irq;
 602	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 603	proxy->dev.platform_data = (void *) chip->platform_data;
 604	proxy->controller_data = chip->controller_data;
 605	proxy->controller_state = NULL;
 
 
 
 
 
 
 
 
 
 606
 607	if (chip->properties) {
 608		status = device_add_properties(&proxy->dev, chip->properties);
 609		if (status) {
 610			dev_err(&ctlr->dev,
 611				"failed to add properties to '%s': %d\n",
 612				chip->modalias, status);
 613			goto err_dev_put;
 614		}
 615	}
 616
 617	status = spi_add_device(proxy);
 618	if (status < 0)
 619		goto err_remove_props;
 620
 621	return proxy;
 622
 623err_remove_props:
 624	if (chip->properties)
 625		device_remove_properties(&proxy->dev);
 626err_dev_put:
 
 627	spi_dev_put(proxy);
 628	return NULL;
 629}
 630EXPORT_SYMBOL_GPL(spi_new_device);
 631
 632/**
 633 * spi_unregister_device - unregister a single SPI device
 634 * @spi: spi_device to unregister
 635 *
 636 * Start making the passed SPI device vanish. Normally this would be handled
 637 * by spi_unregister_controller().
 638 */
 639void spi_unregister_device(struct spi_device *spi)
 640{
 641	if (!spi)
 642		return;
 643
 644	if (spi->dev.of_node) {
 645		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 646		of_node_put(spi->dev.of_node);
 647	}
 648	if (ACPI_COMPANION(&spi->dev))
 649		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 650	device_unregister(&spi->dev);
 
 
 
 651}
 652EXPORT_SYMBOL_GPL(spi_unregister_device);
 653
 654static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 655					      struct spi_board_info *bi)
 656{
 657	struct spi_device *dev;
 658
 659	if (ctlr->bus_num != bi->bus_num)
 660		return;
 661
 662	dev = spi_new_device(ctlr, bi);
 663	if (!dev)
 664		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 665			bi->modalias);
 666}
 667
 668/**
 669 * spi_register_board_info - register SPI devices for a given board
 670 * @info: array of chip descriptors
 671 * @n: how many descriptors are provided
 672 * Context: can sleep
 673 *
 674 * Board-specific early init code calls this (probably during arch_initcall)
 675 * with segments of the SPI device table.  Any device nodes are created later,
 676 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 677 * this table of devices forever, so that reloading a controller driver will
 678 * not make Linux forget about these hard-wired devices.
 679 *
 680 * Other code can also call this, e.g. a particular add-on board might provide
 681 * SPI devices through its expansion connector, so code initializing that board
 682 * would naturally declare its SPI devices.
 683 *
 684 * The board info passed can safely be __initdata ... but be careful of
 685 * any embedded pointers (platform_data, etc), they're copied as-is.
 686 * Device properties are deep-copied though.
 687 *
 688 * Return: zero on success, else a negative error code.
 689 */
 690int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 691{
 692	struct boardinfo *bi;
 693	int i;
 694
 695	if (!n)
 696		return 0;
 697
 698	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 699	if (!bi)
 700		return -ENOMEM;
 701
 702	for (i = 0; i < n; i++, bi++, info++) {
 703		struct spi_controller *ctlr;
 704
 705		memcpy(&bi->board_info, info, sizeof(*info));
 706		if (info->properties) {
 707			bi->board_info.properties =
 708					property_entries_dup(info->properties);
 709			if (IS_ERR(bi->board_info.properties))
 710				return PTR_ERR(bi->board_info.properties);
 711		}
 712
 713		mutex_lock(&board_lock);
 714		list_add_tail(&bi->list, &board_list);
 715		list_for_each_entry(ctlr, &spi_controller_list, list)
 716			spi_match_controller_to_boardinfo(ctlr,
 717							  &bi->board_info);
 718		mutex_unlock(&board_lock);
 719	}
 720
 721	return 0;
 722}
 723
 724/*-------------------------------------------------------------------------*/
 725
 726static void spi_set_cs(struct spi_device *spi, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728	if (spi->mode & SPI_CS_HIGH)
 729		enable = !enable;
 730
 731	if (gpio_is_valid(spi->cs_gpio)) {
 732		gpio_set_value(spi->cs_gpio, !enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733		/* Some SPI masters need both GPIO CS & slave_select */
 734		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 735		    spi->controller->set_cs)
 736			spi->controller->set_cs(spi, !enable);
 737	} else if (spi->controller->set_cs) {
 738		spi->controller->set_cs(spi, !enable);
 739	}
 
 
 
 
 
 
 
 740}
 741
 742#ifdef CONFIG_HAS_DMA
 743static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 744		       struct sg_table *sgt, void *buf, size_t len,
 745		       enum dma_data_direction dir)
 746{
 747	const bool vmalloced_buf = is_vmalloc_addr(buf);
 748	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 749#ifdef CONFIG_HIGHMEM
 750	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 751				(unsigned long)buf < (PKMAP_BASE +
 752					(LAST_PKMAP * PAGE_SIZE)));
 753#else
 754	const bool kmap_buf = false;
 755#endif
 756	int desc_len;
 757	int sgs;
 758	struct page *vm_page;
 759	struct scatterlist *sg;
 760	void *sg_buf;
 761	size_t min;
 762	int i, ret;
 763
 764	if (vmalloced_buf || kmap_buf) {
 765		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 766		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 767	} else if (virt_addr_valid(buf)) {
 768		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 769		sgs = DIV_ROUND_UP(len, desc_len);
 770	} else {
 771		return -EINVAL;
 772	}
 773
 774	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 775	if (ret != 0)
 776		return ret;
 777
 778	sg = &sgt->sgl[0];
 779	for (i = 0; i < sgs; i++) {
 780
 781		if (vmalloced_buf || kmap_buf) {
 782			/*
 783			 * Next scatterlist entry size is the minimum between
 784			 * the desc_len and the remaining buffer length that
 785			 * fits in a page.
 786			 */
 787			min = min_t(size_t, desc_len,
 788				    min_t(size_t, len,
 789					  PAGE_SIZE - offset_in_page(buf)));
 790			if (vmalloced_buf)
 791				vm_page = vmalloc_to_page(buf);
 792			else
 793				vm_page = kmap_to_page(buf);
 794			if (!vm_page) {
 795				sg_free_table(sgt);
 796				return -ENOMEM;
 797			}
 798			sg_set_page(sg, vm_page,
 799				    min, offset_in_page(buf));
 800		} else {
 801			min = min_t(size_t, len, desc_len);
 802			sg_buf = buf;
 803			sg_set_buf(sg, sg_buf, min);
 804		}
 805
 806		buf += min;
 807		len -= min;
 808		sg = sg_next(sg);
 809	}
 810
 811	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 812	if (!ret)
 813		ret = -ENOMEM;
 814	if (ret < 0) {
 815		sg_free_table(sgt);
 816		return ret;
 817	}
 818
 819	sgt->nents = ret;
 820
 821	return 0;
 822}
 823
 824static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 825			  struct sg_table *sgt, enum dma_data_direction dir)
 
 
 
 
 
 
 
 
 
 826{
 827	if (sgt->orig_nents) {
 828		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 829		sg_free_table(sgt);
 
 
 830	}
 831}
 832
 
 
 
 
 
 
 833static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 834{
 835	struct device *tx_dev, *rx_dev;
 836	struct spi_transfer *xfer;
 837	int ret;
 838
 839	if (!ctlr->can_dma)
 840		return 0;
 841
 842	if (ctlr->dma_tx)
 843		tx_dev = ctlr->dma_tx->device->dev;
 
 
 844	else
 845		tx_dev = ctlr->dev.parent;
 846
 847	if (ctlr->dma_rx)
 848		rx_dev = ctlr->dma_rx->device->dev;
 
 
 849	else
 850		rx_dev = ctlr->dev.parent;
 851
 
 852	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 853		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 854			continue;
 855
 856		if (xfer->tx_buf != NULL) {
 857			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 858					  (void *)xfer->tx_buf, xfer->len,
 859					  DMA_TO_DEVICE);
 
 860			if (ret != 0)
 861				return ret;
 862		}
 863
 864		if (xfer->rx_buf != NULL) {
 865			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 866					  xfer->rx_buf, xfer->len,
 867					  DMA_FROM_DEVICE);
 868			if (ret != 0) {
 869				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 870					      DMA_TO_DEVICE);
 
 
 871				return ret;
 872			}
 873		}
 874	}
 
 
 
 875
 
 
 876	ctlr->cur_msg_mapped = true;
 877
 878	return 0;
 879}
 880
 881static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 882{
 
 
 883	struct spi_transfer *xfer;
 884	struct device *tx_dev, *rx_dev;
 885
 886	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 887		return 0;
 888
 889	if (ctlr->dma_tx)
 890		tx_dev = ctlr->dma_tx->device->dev;
 891	else
 892		tx_dev = ctlr->dev.parent;
 893
 894	if (ctlr->dma_rx)
 895		rx_dev = ctlr->dma_rx->device->dev;
 896	else
 897		rx_dev = ctlr->dev.parent;
 898
 899	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 900		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 901			continue;
 902
 903		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 904		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 
 
 905	}
 906
 
 
 907	return 0;
 908}
 909#else /* !CONFIG_HAS_DMA */
 910static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 911			      struct sg_table *sgt, void *buf, size_t len,
 912			      enum dma_data_direction dir)
 913{
 914	return -EINVAL;
 
 
 
 
 
 
 
 
 
 915}
 916
 917static inline void spi_unmap_buf(struct spi_controller *ctlr,
 918				 struct device *dev, struct sg_table *sgt,
 919				 enum dma_data_direction dir)
 920{
 921}
 
 
 
 
 922
 
 
 
 
 
 
 923static inline int __spi_map_msg(struct spi_controller *ctlr,
 924				struct spi_message *msg)
 925{
 926	return 0;
 927}
 928
 929static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 930				  struct spi_message *msg)
 931{
 932	return 0;
 933}
 
 
 
 
 
 
 
 
 
 
 934#endif /* !CONFIG_HAS_DMA */
 935
 936static inline int spi_unmap_msg(struct spi_controller *ctlr,
 937				struct spi_message *msg)
 938{
 939	struct spi_transfer *xfer;
 940
 941	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 942		/*
 943		 * Restore the original value of tx_buf or rx_buf if they are
 944		 * NULL.
 945		 */
 946		if (xfer->tx_buf == ctlr->dummy_tx)
 947			xfer->tx_buf = NULL;
 948		if (xfer->rx_buf == ctlr->dummy_rx)
 949			xfer->rx_buf = NULL;
 950	}
 951
 952	return __spi_unmap_msg(ctlr, msg);
 953}
 954
 955static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 956{
 957	struct spi_transfer *xfer;
 958	void *tmp;
 959	unsigned int max_tx, max_rx;
 960
 961	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 
 962		max_tx = 0;
 963		max_rx = 0;
 964
 965		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
 967			    !xfer->tx_buf)
 968				max_tx = max(xfer->len, max_tx);
 969			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
 970			    !xfer->rx_buf)
 971				max_rx = max(xfer->len, max_rx);
 972		}
 973
 974		if (max_tx) {
 975			tmp = krealloc(ctlr->dummy_tx, max_tx,
 976				       GFP_KERNEL | GFP_DMA);
 977			if (!tmp)
 978				return -ENOMEM;
 979			ctlr->dummy_tx = tmp;
 980			memset(tmp, 0, max_tx);
 981		}
 982
 983		if (max_rx) {
 984			tmp = krealloc(ctlr->dummy_rx, max_rx,
 985				       GFP_KERNEL | GFP_DMA);
 986			if (!tmp)
 987				return -ENOMEM;
 988			ctlr->dummy_rx = tmp;
 989		}
 990
 991		if (max_tx || max_rx) {
 992			list_for_each_entry(xfer, &msg->transfers,
 993					    transfer_list) {
 
 
 994				if (!xfer->tx_buf)
 995					xfer->tx_buf = ctlr->dummy_tx;
 996				if (!xfer->rx_buf)
 997					xfer->rx_buf = ctlr->dummy_rx;
 998			}
 999		}
1000	}
1001
1002	return __spi_map_msg(ctlr, msg);
1003}
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005/*
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1007 *
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation.  It provides
1010 * standard handling of delays and chip select management.
1011 */
1012static int spi_transfer_one_message(struct spi_controller *ctlr,
1013				    struct spi_message *msg)
1014{
1015	struct spi_transfer *xfer;
1016	bool keep_cs = false;
1017	int ret = 0;
1018	unsigned long long ms = 1;
1019	struct spi_statistics *statm = &ctlr->statistics;
1020	struct spi_statistics *stats = &msg->spi->statistics;
1021
1022	spi_set_cs(msg->spi, true);
 
1023
1024	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026
1027	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028		trace_spi_transfer_start(msg, xfer);
1029
1030		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032
1033		if (xfer->tx_buf || xfer->rx_buf) {
 
 
 
 
 
1034			reinit_completion(&ctlr->xfer_completion);
1035
 
 
1036			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1038				SPI_STATISTICS_INCREMENT_FIELD(statm,
1039							       errors);
1040				SPI_STATISTICS_INCREMENT_FIELD(stats,
1041							       errors);
1042				dev_err(&msg->spi->dev,
1043					"SPI transfer failed: %d\n", ret);
1044				goto out;
1045			}
1046
1047			if (ret > 0) {
1048				ret = 0;
1049				ms = 8LL * 1000LL * xfer->len;
1050				do_div(ms, xfer->speed_hz);
1051				ms += ms + 200; /* some tolerance */
1052
1053				if (ms > UINT_MAX)
1054					ms = UINT_MAX;
1055
1056				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057								 msecs_to_jiffies(ms));
1058			}
1059
1060			if (ms == 0) {
1061				SPI_STATISTICS_INCREMENT_FIELD(statm,
1062							       timedout);
1063				SPI_STATISTICS_INCREMENT_FIELD(stats,
1064							       timedout);
1065				dev_err(&msg->spi->dev,
1066					"SPI transfer timed out\n");
1067				msg->status = -ETIMEDOUT;
1068			}
1069		} else {
1070			if (xfer->len)
1071				dev_err(&msg->spi->dev,
1072					"Bufferless transfer has length %u\n",
1073					xfer->len);
1074		}
1075
 
 
 
 
 
1076		trace_spi_transfer_stop(msg, xfer);
1077
1078		if (msg->status != -EINPROGRESS)
1079			goto out;
1080
1081		if (xfer->delay_usecs) {
1082			u16 us = xfer->delay_usecs;
1083
1084			if (us <= 10)
1085				udelay(us);
1086			else
1087				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088		}
1089
1090		if (xfer->cs_change) {
1091			if (list_is_last(&xfer->transfer_list,
1092					 &msg->transfers)) {
1093				keep_cs = true;
1094			} else {
1095				spi_set_cs(msg->spi, false);
1096				udelay(10);
1097				spi_set_cs(msg->spi, true);
 
 
1098			}
 
 
 
1099		}
1100
1101		msg->actual_length += xfer->len;
1102	}
1103
1104out:
1105	if (ret != 0 || !keep_cs)
1106		spi_set_cs(msg->spi, false);
1107
1108	if (msg->status == -EINPROGRESS)
1109		msg->status = ret;
1110
1111	if (msg->status && ctlr->handle_err)
1112		ctlr->handle_err(ctlr, msg);
1113
1114	spi_res_release(ctlr, msg);
1115
1116	spi_finalize_current_message(ctlr);
1117
1118	return ret;
1119}
1120
1121/**
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1124 *
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1128 */
1129void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130{
1131	complete(&ctlr->xfer_completion);
1132}
1133EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135/**
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1139 *
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1143 *
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1147 */
1148static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149{
1150	unsigned long flags;
1151	bool was_busy = false;
 
1152	int ret;
1153
 
 
 
1154	/* Lock queue */
1155	spin_lock_irqsave(&ctlr->queue_lock, flags);
1156
1157	/* Make sure we are not already running a message */
1158	if (ctlr->cur_msg) {
1159		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160		return;
1161	}
1162
1163	/* If another context is idling the device then defer */
1164	if (ctlr->idling) {
1165		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167		return;
1168	}
1169
1170	/* Check if the queue is idle */
1171	if (list_empty(&ctlr->queue) || !ctlr->running) {
1172		if (!ctlr->busy) {
1173			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174			return;
1175		}
1176
1177		/* Only do teardown in the thread */
1178		if (!in_kthread) {
1179			kthread_queue_work(&ctlr->kworker,
1180					   &ctlr->pump_messages);
1181			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182			return;
 
 
 
 
 
 
 
1183		}
1184
1185		ctlr->busy = false;
1186		ctlr->idling = true;
1187		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188
1189		kfree(ctlr->dummy_rx);
1190		ctlr->dummy_rx = NULL;
1191		kfree(ctlr->dummy_tx);
1192		ctlr->dummy_tx = NULL;
1193		if (ctlr->unprepare_transfer_hardware &&
1194		    ctlr->unprepare_transfer_hardware(ctlr))
1195			dev_err(&ctlr->dev,
1196				"failed to unprepare transfer hardware\n");
1197		if (ctlr->auto_runtime_pm) {
1198			pm_runtime_mark_last_busy(ctlr->dev.parent);
1199			pm_runtime_put_autosuspend(ctlr->dev.parent);
1200		}
1201		trace_spi_controller_idle(ctlr);
1202
1203		spin_lock_irqsave(&ctlr->queue_lock, flags);
1204		ctlr->idling = false;
1205		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206		return;
1207	}
1208
1209	/* Extract head of queue */
1210	ctlr->cur_msg =
1211		list_first_entry(&ctlr->queue, struct spi_message, queue);
1212
1213	list_del_init(&ctlr->cur_msg->queue);
1214	if (ctlr->busy)
1215		was_busy = true;
1216	else
1217		ctlr->busy = true;
1218	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219
1220	mutex_lock(&ctlr->io_mutex);
1221
1222	if (!was_busy && ctlr->auto_runtime_pm) {
1223		ret = pm_runtime_get_sync(ctlr->dev.parent);
1224		if (ret < 0) {
1225			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1226				ret);
1227			mutex_unlock(&ctlr->io_mutex);
1228			return;
1229		}
1230	}
1231
1232	if (!was_busy)
1233		trace_spi_controller_busy(ctlr);
1234
1235	if (!was_busy && ctlr->prepare_transfer_hardware) {
1236		ret = ctlr->prepare_transfer_hardware(ctlr);
1237		if (ret) {
1238			dev_err(&ctlr->dev,
1239				"failed to prepare transfer hardware\n");
1240
1241			if (ctlr->auto_runtime_pm)
1242				pm_runtime_put(ctlr->dev.parent);
1243			mutex_unlock(&ctlr->io_mutex);
1244			return;
1245		}
1246	}
1247
1248	trace_spi_message_start(ctlr->cur_msg);
1249
1250	if (ctlr->prepare_message) {
1251		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1252		if (ret) {
1253			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1254				ret);
1255			ctlr->cur_msg->status = ret;
1256			spi_finalize_current_message(ctlr);
1257			goto out;
1258		}
1259		ctlr->cur_msg_prepared = true;
1260	}
1261
1262	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1263	if (ret) {
1264		ctlr->cur_msg->status = ret;
1265		spi_finalize_current_message(ctlr);
1266		goto out;
1267	}
1268
1269	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1270	if (ret) {
1271		dev_err(&ctlr->dev,
1272			"failed to transfer one message from queue\n");
1273		goto out;
1274	}
1275
1276out:
1277	mutex_unlock(&ctlr->io_mutex);
1278
1279	/* Prod the scheduler in case transfer_one() was busy waiting */
1280	if (!ret)
1281		cond_resched();
 
 
 
 
 
1282}
1283
1284/**
1285 * spi_pump_messages - kthread work function which processes spi message queue
1286 * @work: pointer to kthread work struct contained in the controller struct
1287 */
1288static void spi_pump_messages(struct kthread_work *work)
1289{
1290	struct spi_controller *ctlr =
1291		container_of(work, struct spi_controller, pump_messages);
1292
1293	__spi_pump_messages(ctlr, true);
1294}
1295
1296static int spi_init_queue(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297{
1298	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300	ctlr->running = false;
1301	ctlr->busy = false;
 
1302
1303	kthread_init_worker(&ctlr->kworker);
1304	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1305					 "%s", dev_name(&ctlr->dev));
1306	if (IS_ERR(ctlr->kworker_task)) {
1307		dev_err(&ctlr->dev, "failed to create message pump task\n");
1308		return PTR_ERR(ctlr->kworker_task);
1309	}
 
1310	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1311
1312	/*
1313	 * Controller config will indicate if this controller should run the
1314	 * message pump with high (realtime) priority to reduce the transfer
1315	 * latency on the bus by minimising the delay between a transfer
1316	 * request and the scheduling of the message pump thread. Without this
1317	 * setting the message pump thread will remain at default priority.
1318	 */
1319	if (ctlr->rt) {
1320		dev_info(&ctlr->dev,
1321			"will run message pump with realtime priority\n");
1322		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1323	}
1324
1325	return 0;
1326}
1327
1328/**
1329 * spi_get_next_queued_message() - called by driver to check for queued
1330 * messages
1331 * @ctlr: the controller to check for queued messages
1332 *
1333 * If there are more messages in the queue, the next message is returned from
1334 * this call.
1335 *
1336 * Return: the next message in the queue, else NULL if the queue is empty.
1337 */
1338struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1339{
1340	struct spi_message *next;
1341	unsigned long flags;
1342
1343	/* get a pointer to the next message, if any */
1344	spin_lock_irqsave(&ctlr->queue_lock, flags);
1345	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1346					queue);
1347	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348
1349	return next;
1350}
1351EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353/**
1354 * spi_finalize_current_message() - the current message is complete
1355 * @ctlr: the controller to return the message to
1356 *
1357 * Called by the driver to notify the core that the message in the front of the
1358 * queue is complete and can be removed from the queue.
1359 */
1360void spi_finalize_current_message(struct spi_controller *ctlr)
1361{
 
1362	struct spi_message *mesg;
1363	unsigned long flags;
1364	int ret;
1365
1366	spin_lock_irqsave(&ctlr->queue_lock, flags);
1367	mesg = ctlr->cur_msg;
1368	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
1369
1370	spi_unmap_msg(ctlr, mesg);
1371
1372	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1373		ret = ctlr->unprepare_message(ctlr, mesg);
1374		if (ret) {
1375			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1376				ret);
1377		}
1378	}
1379
1380	spin_lock_irqsave(&ctlr->queue_lock, flags);
1381	ctlr->cur_msg = NULL;
1382	ctlr->cur_msg_prepared = false;
1383	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1384	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
 
1385
1386	trace_spi_message_done(mesg);
1387
1388	mesg->state = NULL;
1389	if (mesg->complete)
1390		mesg->complete(mesg->context);
1391}
1392EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1393
1394static int spi_start_queue(struct spi_controller *ctlr)
1395{
1396	unsigned long flags;
1397
1398	spin_lock_irqsave(&ctlr->queue_lock, flags);
1399
1400	if (ctlr->running || ctlr->busy) {
1401		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402		return -EBUSY;
1403	}
1404
1405	ctlr->running = true;
1406	ctlr->cur_msg = NULL;
1407	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408
1409	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1410
1411	return 0;
1412}
1413
1414static int spi_stop_queue(struct spi_controller *ctlr)
1415{
1416	unsigned long flags;
1417	unsigned limit = 500;
1418	int ret = 0;
1419
1420	spin_lock_irqsave(&ctlr->queue_lock, flags);
1421
1422	/*
1423	 * This is a bit lame, but is optimized for the common execution path.
1424	 * A wait_queue on the ctlr->busy could be used, but then the common
1425	 * execution path (pump_messages) would be required to call wake_up or
1426	 * friends on every SPI message. Do this instead.
1427	 */
1428	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1429		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430		usleep_range(10000, 11000);
1431		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432	}
1433
1434	if (!list_empty(&ctlr->queue) || ctlr->busy)
1435		ret = -EBUSY;
1436	else
1437		ctlr->running = false;
1438
1439	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440
1441	if (ret) {
1442		dev_warn(&ctlr->dev, "could not stop message queue\n");
1443		return ret;
1444	}
1445	return ret;
1446}
1447
1448static int spi_destroy_queue(struct spi_controller *ctlr)
1449{
1450	int ret;
1451
1452	ret = spi_stop_queue(ctlr);
1453
1454	/*
1455	 * kthread_flush_worker will block until all work is done.
1456	 * If the reason that stop_queue timed out is that the work will never
1457	 * finish, then it does no good to call flush/stop thread, so
1458	 * return anyway.
1459	 */
1460	if (ret) {
1461		dev_err(&ctlr->dev, "problem destroying queue\n");
1462		return ret;
1463	}
1464
1465	kthread_flush_worker(&ctlr->kworker);
1466	kthread_stop(ctlr->kworker_task);
1467
1468	return 0;
1469}
1470
1471static int __spi_queued_transfer(struct spi_device *spi,
1472				 struct spi_message *msg,
1473				 bool need_pump)
1474{
1475	struct spi_controller *ctlr = spi->controller;
1476	unsigned long flags;
1477
1478	spin_lock_irqsave(&ctlr->queue_lock, flags);
1479
1480	if (!ctlr->running) {
1481		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482		return -ESHUTDOWN;
1483	}
1484	msg->actual_length = 0;
1485	msg->status = -EINPROGRESS;
1486
1487	list_add_tail(&msg->queue, &ctlr->queue);
 
1488	if (!ctlr->busy && need_pump)
1489		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1490
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492	return 0;
1493}
1494
1495/**
1496 * spi_queued_transfer - transfer function for queued transfers
1497 * @spi: spi device which is requesting transfer
1498 * @msg: spi message which is to handled is queued to driver queue
1499 *
1500 * Return: zero on success, else a negative error code.
1501 */
1502static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1503{
1504	return __spi_queued_transfer(spi, msg, true);
1505}
1506
1507static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1508{
1509	int ret;
1510
1511	ctlr->transfer = spi_queued_transfer;
1512	if (!ctlr->transfer_one_message)
1513		ctlr->transfer_one_message = spi_transfer_one_message;
1514
1515	/* Initialize and start queue */
1516	ret = spi_init_queue(ctlr);
1517	if (ret) {
1518		dev_err(&ctlr->dev, "problem initializing queue\n");
1519		goto err_init_queue;
1520	}
1521	ctlr->queued = true;
1522	ret = spi_start_queue(ctlr);
1523	if (ret) {
1524		dev_err(&ctlr->dev, "problem starting queue\n");
1525		goto err_start_queue;
1526	}
1527
1528	return 0;
1529
1530err_start_queue:
1531	spi_destroy_queue(ctlr);
1532err_init_queue:
1533	return ret;
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/*-------------------------------------------------------------------------*/
1537
1538#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1540			   struct device_node *nc)
1541{
1542	u32 value;
1543	int rc;
1544
1545	/* Mode (clock phase/polarity/etc.) */
1546	if (of_property_read_bool(nc, "spi-cpha"))
1547		spi->mode |= SPI_CPHA;
1548	if (of_property_read_bool(nc, "spi-cpol"))
1549		spi->mode |= SPI_CPOL;
1550	if (of_property_read_bool(nc, "spi-cs-high"))
1551		spi->mode |= SPI_CS_HIGH;
1552	if (of_property_read_bool(nc, "spi-3wire"))
1553		spi->mode |= SPI_3WIRE;
1554	if (of_property_read_bool(nc, "spi-lsb-first"))
1555		spi->mode |= SPI_LSB_FIRST;
 
 
1556
1557	/* Device DUAL/QUAD mode */
1558	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1559		switch (value) {
 
 
 
1560		case 1:
1561			break;
1562		case 2:
1563			spi->mode |= SPI_TX_DUAL;
1564			break;
1565		case 4:
1566			spi->mode |= SPI_TX_QUAD;
1567			break;
 
 
 
1568		default:
1569			dev_warn(&ctlr->dev,
1570				"spi-tx-bus-width %d not supported\n",
1571				value);
1572			break;
1573		}
1574	}
1575
1576	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1577		switch (value) {
 
 
 
1578		case 1:
1579			break;
1580		case 2:
1581			spi->mode |= SPI_RX_DUAL;
1582			break;
1583		case 4:
1584			spi->mode |= SPI_RX_QUAD;
1585			break;
 
 
 
1586		default:
1587			dev_warn(&ctlr->dev,
1588				"spi-rx-bus-width %d not supported\n",
1589				value);
1590			break;
1591		}
1592	}
1593
1594	if (spi_controller_is_slave(ctlr)) {
1595		if (strcmp(nc->name, "slave")) {
1596			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1597				nc);
1598			return -EINVAL;
1599		}
1600		return 0;
1601	}
1602
 
 
 
 
 
 
 
1603	/* Device address */
1604	rc = of_property_read_u32(nc, "reg", &value);
1605	if (rc) {
 
1606		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1607			nc, rc);
1608		return rc;
1609	}
1610	spi->chip_select = value;
1611
1612	/* Device speed */
1613	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1614	if (rc) {
1615		dev_err(&ctlr->dev,
1616			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1617		return rc;
1618	}
1619	spi->max_speed_hz = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620
1621	return 0;
1622}
1623
1624static struct spi_device *
1625of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1626{
1627	struct spi_device *spi;
1628	int rc;
1629
1630	/* Alloc an spi_device */
1631	spi = spi_alloc_device(ctlr);
1632	if (!spi) {
1633		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1634		rc = -ENOMEM;
1635		goto err_out;
1636	}
1637
1638	/* Select device driver */
1639	rc = of_modalias_node(nc, spi->modalias,
1640				sizeof(spi->modalias));
1641	if (rc < 0) {
1642		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1643		goto err_out;
1644	}
1645
1646	rc = of_spi_parse_dt(ctlr, spi, nc);
1647	if (rc)
1648		goto err_out;
1649
1650	/* Store a pointer to the node in the device structure */
1651	of_node_get(nc);
1652	spi->dev.of_node = nc;
 
1653
1654	/* Register the new device */
1655	rc = spi_add_device(spi);
1656	if (rc) {
1657		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1658		goto err_of_node_put;
1659	}
1660
1661	return spi;
1662
1663err_of_node_put:
1664	of_node_put(nc);
1665err_out:
1666	spi_dev_put(spi);
1667	return ERR_PTR(rc);
1668}
1669
1670/**
1671 * of_register_spi_devices() - Register child devices onto the SPI bus
1672 * @ctlr:	Pointer to spi_controller device
1673 *
1674 * Registers an spi_device for each child node of controller node which
1675 * represents a valid SPI slave.
1676 */
1677static void of_register_spi_devices(struct spi_controller *ctlr)
1678{
1679	struct spi_device *spi;
1680	struct device_node *nc;
1681
1682	if (!ctlr->dev.of_node)
1683		return;
1684
1685	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1686		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1687			continue;
1688		spi = of_register_spi_device(ctlr, nc);
1689		if (IS_ERR(spi)) {
1690			dev_warn(&ctlr->dev,
1691				 "Failed to create SPI device for %pOF\n", nc);
1692			of_node_clear_flag(nc, OF_POPULATED);
1693		}
1694	}
1695}
1696#else
1697static void of_register_spi_devices(struct spi_controller *ctlr) { }
1698#endif
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700#ifdef CONFIG_ACPI
1701static void acpi_spi_parse_apple_properties(struct spi_device *spi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702{
1703	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1704	const union acpi_object *obj;
1705
1706	if (!x86_apple_machine)
1707		return;
1708
1709	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1710	    && obj->buffer.length >= 4)
1711		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1712
1713	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1714	    && obj->buffer.length == 8)
1715		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1716
1717	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1718	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1719		spi->mode |= SPI_LSB_FIRST;
1720
1721	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1722	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1723		spi->mode |= SPI_CPOL;
1724
1725	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1726	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1727		spi->mode |= SPI_CPHA;
1728}
1729
1730static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1731{
1732	struct spi_device *spi = data;
1733	struct spi_controller *ctlr = spi->controller;
1734
1735	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1736		struct acpi_resource_spi_serialbus *sb;
 
 
1737
1738		sb = &ares->data.spi_serial_bus;
1739		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740			/*
1741			 * ACPI DeviceSelection numbering is handled by the
1742			 * host controller driver in Windows and can vary
1743			 * from driver to driver. In Linux we always expect
1744			 * 0 .. max - 1 so we need to ask the driver to
1745			 * translate between the two schemes.
1746			 */
1747			if (ctlr->fw_translate_cs) {
1748				int cs = ctlr->fw_translate_cs(ctlr,
1749						sb->device_selection);
1750				if (cs < 0)
1751					return cs;
1752				spi->chip_select = cs;
1753			} else {
1754				spi->chip_select = sb->device_selection;
1755			}
1756
1757			spi->max_speed_hz = sb->connection_speed;
 
1758
1759			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1760				spi->mode |= SPI_CPHA;
1761			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1762				spi->mode |= SPI_CPOL;
1763			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1764				spi->mode |= SPI_CS_HIGH;
1765		}
1766	} else if (spi->irq < 0) {
1767		struct resource r;
1768
1769		if (acpi_dev_resource_interrupt(ares, 0, &r))
1770			spi->irq = r.start;
1771	}
1772
1773	/* Always tell the ACPI core to skip this resource */
1774	return 1;
1775}
1776
1777static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1778					    struct acpi_device *adev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779{
 
1780	struct list_head resource_list;
 
1781	struct spi_device *spi;
1782	int ret;
1783
1784	if (acpi_bus_get_status(adev) || !adev->status.present ||
1785	    acpi_device_enumerated(adev))
1786		return AE_OK;
1787
1788	spi = spi_alloc_device(ctlr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789	if (!spi) {
1790		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1791			dev_name(&adev->dev));
1792		return AE_NO_MEMORY;
1793	}
1794
 
 
 
1795	ACPI_COMPANION_SET(&spi->dev, adev);
1796	spi->irq = -1;
 
 
 
 
 
 
 
 
1797
1798	INIT_LIST_HEAD(&resource_list);
1799	ret = acpi_dev_get_resources(adev, &resource_list,
1800				     acpi_spi_add_resource, spi);
1801	acpi_dev_free_resource_list(&resource_list);
1802
1803	acpi_spi_parse_apple_properties(spi);
 
 
 
1804
1805	if (ret < 0 || !spi->max_speed_hz) {
1806		spi_dev_put(spi);
1807		return AE_OK;
 
 
 
 
 
 
 
1808	}
1809
1810	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1811			  sizeof(spi->modalias));
1812
1813	if (spi->irq < 0)
1814		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1815
1816	acpi_device_set_enumerated(adev);
1817
1818	adev->power.flags.ignore_parent = true;
1819	if (spi_add_device(spi)) {
1820		adev->power.flags.ignore_parent = false;
1821		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1822			dev_name(&adev->dev));
1823		spi_dev_put(spi);
1824	}
1825
1826	return AE_OK;
1827}
1828
1829static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1830				       void *data, void **return_value)
1831{
 
1832	struct spi_controller *ctlr = data;
1833	struct acpi_device *adev;
1834
1835	if (acpi_bus_get_device(handle, &adev))
1836		return AE_OK;
1837
1838	return acpi_register_spi_device(ctlr, adev);
1839}
1840
 
 
1841static void acpi_register_spi_devices(struct spi_controller *ctlr)
1842{
1843	acpi_status status;
1844	acpi_handle handle;
1845
1846	handle = ACPI_HANDLE(ctlr->dev.parent);
1847	if (!handle)
1848		return;
1849
1850	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
 
1851				     acpi_spi_add_device, NULL, ctlr, NULL);
1852	if (ACPI_FAILURE(status))
1853		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1854}
1855#else
1856static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1857#endif /* CONFIG_ACPI */
1858
1859static void spi_controller_release(struct device *dev)
1860{
1861	struct spi_controller *ctlr;
1862
1863	ctlr = container_of(dev, struct spi_controller, dev);
1864	kfree(ctlr);
1865}
1866
1867static struct class spi_master_class = {
1868	.name		= "spi_master",
1869	.owner		= THIS_MODULE,
1870	.dev_release	= spi_controller_release,
1871	.dev_groups	= spi_master_groups,
1872};
1873
1874#ifdef CONFIG_SPI_SLAVE
1875/**
1876 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1877 *		     controller
1878 * @spi: device used for the current transfer
1879 */
1880int spi_slave_abort(struct spi_device *spi)
1881{
1882	struct spi_controller *ctlr = spi->controller;
1883
1884	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1885		return ctlr->slave_abort(ctlr);
1886
1887	return -ENOTSUPP;
1888}
1889EXPORT_SYMBOL_GPL(spi_slave_abort);
1890
1891static int match_true(struct device *dev, void *data)
1892{
1893	return 1;
 
 
 
 
 
1894}
 
1895
1896static ssize_t spi_slave_show(struct device *dev,
1897			      struct device_attribute *attr, char *buf)
1898{
1899	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1900						   dev);
1901	struct device *child;
1902
1903	child = device_find_child(&ctlr->dev, NULL, match_true);
1904	return sprintf(buf, "%s\n",
1905		       child ? to_spi_device(child)->modalias : NULL);
1906}
1907
1908static ssize_t spi_slave_store(struct device *dev,
1909			       struct device_attribute *attr, const char *buf,
1910			       size_t count)
1911{
1912	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1913						   dev);
1914	struct spi_device *spi;
1915	struct device *child;
1916	char name[32];
1917	int rc;
1918
1919	rc = sscanf(buf, "%31s", name);
1920	if (rc != 1 || !name[0])
1921		return -EINVAL;
1922
1923	child = device_find_child(&ctlr->dev, NULL, match_true);
1924	if (child) {
1925		/* Remove registered slave */
1926		device_unregister(child);
1927		put_device(child);
1928	}
1929
1930	if (strcmp(name, "(null)")) {
1931		/* Register new slave */
1932		spi = spi_alloc_device(ctlr);
1933		if (!spi)
1934			return -ENOMEM;
1935
1936		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1937
1938		rc = spi_add_device(spi);
1939		if (rc) {
1940			spi_dev_put(spi);
1941			return rc;
1942		}
1943	}
1944
1945	return count;
1946}
1947
1948static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1949
1950static struct attribute *spi_slave_attrs[] = {
1951	&dev_attr_slave.attr,
1952	NULL,
1953};
1954
1955static const struct attribute_group spi_slave_group = {
1956	.attrs = spi_slave_attrs,
1957};
1958
1959static const struct attribute_group *spi_slave_groups[] = {
1960	&spi_controller_statistics_group,
1961	&spi_slave_group,
1962	NULL,
1963};
1964
1965static struct class spi_slave_class = {
1966	.name		= "spi_slave",
1967	.owner		= THIS_MODULE,
1968	.dev_release	= spi_controller_release,
1969	.dev_groups	= spi_slave_groups,
1970};
1971#else
1972extern struct class spi_slave_class;	/* dummy */
1973#endif
1974
1975/**
1976 * __spi_alloc_controller - allocate an SPI master or slave controller
1977 * @dev: the controller, possibly using the platform_bus
1978 * @size: how much zeroed driver-private data to allocate; the pointer to this
1979 *	memory is in the driver_data field of the returned device,
1980 *	accessible with spi_controller_get_devdata().
 
 
1981 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1982 *	slave (true) controller
1983 * Context: can sleep
1984 *
1985 * This call is used only by SPI controller drivers, which are the
1986 * only ones directly touching chip registers.  It's how they allocate
1987 * an spi_controller structure, prior to calling spi_register_controller().
1988 *
1989 * This must be called from context that can sleep.
1990 *
1991 * The caller is responsible for assigning the bus number and initializing the
1992 * controller's methods before calling spi_register_controller(); and (after
1993 * errors adding the device) calling spi_controller_put() to prevent a memory
1994 * leak.
1995 *
1996 * Return: the SPI controller structure on success, else NULL.
1997 */
1998struct spi_controller *__spi_alloc_controller(struct device *dev,
1999					      unsigned int size, bool slave)
2000{
2001	struct spi_controller	*ctlr;
 
2002
2003	if (!dev)
2004		return NULL;
2005
2006	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2007	if (!ctlr)
2008		return NULL;
2009
2010	device_initialize(&ctlr->dev);
 
 
 
 
 
 
2011	ctlr->bus_num = -1;
2012	ctlr->num_chipselect = 1;
2013	ctlr->slave = slave;
2014	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2015		ctlr->dev.class = &spi_slave_class;
2016	else
2017		ctlr->dev.class = &spi_master_class;
2018	ctlr->dev.parent = dev;
2019	pm_suspend_ignore_children(&ctlr->dev, true);
2020	spi_controller_set_devdata(ctlr, &ctlr[1]);
2021
2022	return ctlr;
2023}
2024EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2025
2026#ifdef CONFIG_OF
2027static int of_spi_register_master(struct spi_controller *ctlr)
2028{
2029	int nb, i, *cs;
2030	struct device_node *np = ctlr->dev.of_node;
2031
2032	if (!np)
2033		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034
2035	nb = of_gpio_named_count(np, "cs-gpios");
2036	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
 
 
2037
2038	/* Return error only for an incorrectly formed cs-gpios property */
2039	if (nb == 0 || nb == -ENOENT)
2040		return 0;
2041	else if (nb < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042		return nb;
 
2043
2044	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2045			  GFP_KERNEL);
2046	ctlr->cs_gpios = cs;
2047
2048	if (!ctlr->cs_gpios)
 
 
2049		return -ENOMEM;
 
2050
2051	for (i = 0; i < ctlr->num_chipselect; i++)
2052		cs[i] = -ENOENT;
 
 
 
 
 
 
 
 
 
 
2053
2054	for (i = 0; i < nb; i++)
2055		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057	return 0;
2058}
2059#else
2060static int of_spi_register_master(struct spi_controller *ctlr)
2061{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062	return 0;
2063}
2064#endif
2065
2066/**
2067 * spi_register_controller - register SPI master or slave controller
2068 * @ctlr: initialized master, originally from spi_alloc_master() or
2069 *	spi_alloc_slave()
2070 * Context: can sleep
2071 *
2072 * SPI controllers connect to their drivers using some non-SPI bus,
2073 * such as the platform bus.  The final stage of probe() in that code
2074 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2075 *
2076 * SPI controllers use board specific (often SOC specific) bus numbers,
2077 * and board-specific addressing for SPI devices combines those numbers
2078 * with chip select numbers.  Since SPI does not directly support dynamic
2079 * device identification, boards need configuration tables telling which
2080 * chip is at which address.
2081 *
2082 * This must be called from context that can sleep.  It returns zero on
2083 * success, else a negative error code (dropping the controller's refcount).
2084 * After a successful return, the caller is responsible for calling
2085 * spi_unregister_controller().
2086 *
2087 * Return: zero on success, else a negative error code.
2088 */
2089int spi_register_controller(struct spi_controller *ctlr)
2090{
2091	struct device		*dev = ctlr->dev.parent;
2092	struct boardinfo	*bi;
2093	int			status = -ENODEV;
2094	int			id, first_dynamic;
 
2095
2096	if (!dev)
2097		return -ENODEV;
2098
2099	if (!spi_controller_is_slave(ctlr)) {
2100		status = of_spi_register_master(ctlr);
 
 
 
 
 
 
 
 
 
 
 
2101		if (status)
2102			return status;
2103	}
2104
2105	/* even if it's just one always-selected device, there must
2106	 * be at least one chipselect
2107	 */
2108	if (ctlr->num_chipselect == 0)
2109		return -EINVAL;
2110	/* allocate dynamic bus number using Linux idr */
2111	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2112		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2113		if (id >= 0) {
2114			ctlr->bus_num = id;
2115			mutex_lock(&board_lock);
2116			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117				       ctlr->bus_num + 1, GFP_KERNEL);
2118			mutex_unlock(&board_lock);
2119			if (WARN(id < 0, "couldn't get idr"))
2120				return id == -ENOSPC ? -EBUSY : id;
2121		}
2122	}
2123	if (ctlr->bus_num < 0) {
2124		first_dynamic = of_alias_get_highest_id("spi");
2125		if (first_dynamic < 0)
2126			first_dynamic = 0;
2127		else
2128			first_dynamic++;
2129
2130		mutex_lock(&board_lock);
2131		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2132			       0, GFP_KERNEL);
2133		mutex_unlock(&board_lock);
2134		if (WARN(id < 0, "couldn't get idr"))
2135			return id;
2136		ctlr->bus_num = id;
2137	}
2138	INIT_LIST_HEAD(&ctlr->queue);
2139	spin_lock_init(&ctlr->queue_lock);
2140	spin_lock_init(&ctlr->bus_lock_spinlock);
2141	mutex_init(&ctlr->bus_lock_mutex);
2142	mutex_init(&ctlr->io_mutex);
2143	ctlr->bus_lock_flag = 0;
2144	init_completion(&ctlr->xfer_completion);
 
2145	if (!ctlr->max_dma_len)
2146		ctlr->max_dma_len = INT_MAX;
2147
2148	/* register the device, then userspace will see it.
2149	 * registration fails if the bus ID is in use.
 
2150	 */
2151	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2152	status = device_add(&ctlr->dev);
2153	if (status < 0) {
2154		/* free bus id */
2155		mutex_lock(&board_lock);
2156		idr_remove(&spi_master_idr, ctlr->bus_num);
2157		mutex_unlock(&board_lock);
2158		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
2159	}
 
 
 
 
 
 
 
 
2160	dev_dbg(dev, "registered %s %s\n",
2161			spi_controller_is_slave(ctlr) ? "slave" : "master",
2162			dev_name(&ctlr->dev));
2163
2164	/* If we're using a queued driver, start the queue */
2165	if (ctlr->transfer)
 
 
 
 
2166		dev_info(dev, "controller is unqueued, this is deprecated\n");
2167	else {
2168		status = spi_controller_initialize_queue(ctlr);
2169		if (status) {
2170			device_del(&ctlr->dev);
2171			/* free bus id */
2172			mutex_lock(&board_lock);
2173			idr_remove(&spi_master_idr, ctlr->bus_num);
2174			mutex_unlock(&board_lock);
2175			goto done;
2176		}
2177	}
2178	/* add statistics */
2179	spin_lock_init(&ctlr->statistics.lock);
 
 
 
 
 
2180
2181	mutex_lock(&board_lock);
2182	list_add_tail(&ctlr->list, &spi_controller_list);
2183	list_for_each_entry(bi, &board_list, list)
2184		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2185	mutex_unlock(&board_lock);
2186
2187	/* Register devices from the device tree and ACPI */
2188	of_register_spi_devices(ctlr);
2189	acpi_register_spi_devices(ctlr);
2190done:
 
 
 
 
 
 
 
2191	return status;
2192}
2193EXPORT_SYMBOL_GPL(spi_register_controller);
2194
2195static void devm_spi_unregister(struct device *dev, void *res)
2196{
2197	spi_unregister_controller(*(struct spi_controller **)res);
2198}
2199
2200/**
2201 * devm_spi_register_controller - register managed SPI master or slave
2202 *	controller
2203 * @dev:    device managing SPI controller
2204 * @ctlr: initialized controller, originally from spi_alloc_master() or
2205 *	spi_alloc_slave()
2206 * Context: can sleep
2207 *
2208 * Register a SPI device as with spi_register_controller() which will
2209 * automatically be unregistered and freed.
2210 *
2211 * Return: zero on success, else a negative error code.
2212 */
2213int devm_spi_register_controller(struct device *dev,
2214				 struct spi_controller *ctlr)
2215{
2216	struct spi_controller **ptr;
2217	int ret;
2218
2219	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2220	if (!ptr)
2221		return -ENOMEM;
2222
2223	ret = spi_register_controller(ctlr);
2224	if (!ret) {
2225		*ptr = ctlr;
2226		devres_add(dev, ptr);
2227	} else {
2228		devres_free(ptr);
2229	}
2230
2231	return ret;
2232}
2233EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2234
2235static int __unregister(struct device *dev, void *null)
2236{
2237	spi_unregister_device(to_spi_device(dev));
2238	return 0;
2239}
2240
2241/**
2242 * spi_unregister_controller - unregister SPI master or slave controller
2243 * @ctlr: the controller being unregistered
2244 * Context: can sleep
2245 *
2246 * This call is used only by SPI controller drivers, which are the
2247 * only ones directly touching chip registers.
2248 *
2249 * This must be called from context that can sleep.
2250 *
2251 * Note that this function also drops a reference to the controller.
2252 */
2253void spi_unregister_controller(struct spi_controller *ctlr)
2254{
2255	struct spi_controller *found;
2256	int id = ctlr->bus_num;
2257	int dummy;
 
 
 
 
 
2258
2259	/* First make sure that this controller was ever added */
2260	mutex_lock(&board_lock);
2261	found = idr_find(&spi_master_idr, id);
2262	mutex_unlock(&board_lock);
2263	if (ctlr->queued) {
2264		if (spi_destroy_queue(ctlr))
2265			dev_err(&ctlr->dev, "queue remove failed\n");
2266	}
2267	mutex_lock(&board_lock);
2268	list_del(&ctlr->list);
2269	mutex_unlock(&board_lock);
2270
2271	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272	device_unregister(&ctlr->dev);
2273	/* free bus id */
2274	mutex_lock(&board_lock);
2275	if (found == ctlr)
2276		idr_remove(&spi_master_idr, id);
2277	mutex_unlock(&board_lock);
2278}
2279EXPORT_SYMBOL_GPL(spi_unregister_controller);
2280
2281int spi_controller_suspend(struct spi_controller *ctlr)
2282{
2283	int ret;
2284
2285	/* Basically no-ops for non-queued controllers */
2286	if (!ctlr->queued)
2287		return 0;
2288
2289	ret = spi_stop_queue(ctlr);
2290	if (ret)
2291		dev_err(&ctlr->dev, "queue stop failed\n");
2292
2293	return ret;
2294}
2295EXPORT_SYMBOL_GPL(spi_controller_suspend);
2296
2297int spi_controller_resume(struct spi_controller *ctlr)
2298{
2299	int ret;
2300
2301	if (!ctlr->queued)
2302		return 0;
2303
2304	ret = spi_start_queue(ctlr);
2305	if (ret)
2306		dev_err(&ctlr->dev, "queue restart failed\n");
2307
2308	return ret;
2309}
2310EXPORT_SYMBOL_GPL(spi_controller_resume);
2311
2312static int __spi_controller_match(struct device *dev, const void *data)
2313{
2314	struct spi_controller *ctlr;
2315	const u16 *bus_num = data;
2316
2317	ctlr = container_of(dev, struct spi_controller, dev);
2318	return ctlr->bus_num == *bus_num;
2319}
2320
2321/**
2322 * spi_busnum_to_master - look up master associated with bus_num
2323 * @bus_num: the master's bus number
2324 * Context: can sleep
2325 *
2326 * This call may be used with devices that are registered after
2327 * arch init time.  It returns a refcounted pointer to the relevant
2328 * spi_controller (which the caller must release), or NULL if there is
2329 * no such master registered.
2330 *
2331 * Return: the SPI master structure on success, else NULL.
2332 */
2333struct spi_controller *spi_busnum_to_master(u16 bus_num)
2334{
2335	struct device		*dev;
2336	struct spi_controller	*ctlr = NULL;
2337
2338	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2339				__spi_controller_match);
2340	if (dev)
2341		ctlr = container_of(dev, struct spi_controller, dev);
2342	/* reference got in class_find_device */
2343	return ctlr;
2344}
2345EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2346
2347/*-------------------------------------------------------------------------*/
2348
2349/* Core methods for SPI resource management */
2350
2351/**
2352 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2353 *                 during the processing of a spi_message while using
2354 *                 spi_transfer_one
2355 * @spi:     the spi device for which we allocate memory
2356 * @release: the release code to execute for this resource
2357 * @size:    size to alloc and return
2358 * @gfp:     GFP allocation flags
2359 *
2360 * Return: the pointer to the allocated data
2361 *
2362 * This may get enhanced in the future to allocate from a memory pool
2363 * of the @spi_device or @spi_controller to avoid repeated allocations.
2364 */
2365void *spi_res_alloc(struct spi_device *spi,
2366		    spi_res_release_t release,
2367		    size_t size, gfp_t gfp)
2368{
2369	struct spi_res *sres;
2370
2371	sres = kzalloc(sizeof(*sres) + size, gfp);
2372	if (!sres)
2373		return NULL;
2374
2375	INIT_LIST_HEAD(&sres->entry);
2376	sres->release = release;
2377
2378	return sres->data;
2379}
2380EXPORT_SYMBOL_GPL(spi_res_alloc);
2381
2382/**
2383 * spi_res_free - free an spi resource
2384 * @res: pointer to the custom data of a resource
2385 *
2386 */
2387void spi_res_free(void *res)
2388{
2389	struct spi_res *sres = container_of(res, struct spi_res, data);
2390
2391	if (!res)
2392		return;
2393
2394	WARN_ON(!list_empty(&sres->entry));
2395	kfree(sres);
2396}
2397EXPORT_SYMBOL_GPL(spi_res_free);
2398
2399/**
2400 * spi_res_add - add a spi_res to the spi_message
2401 * @message: the spi message
2402 * @res:     the spi_resource
2403 */
2404void spi_res_add(struct spi_message *message, void *res)
2405{
2406	struct spi_res *sres = container_of(res, struct spi_res, data);
2407
2408	WARN_ON(!list_empty(&sres->entry));
2409	list_add_tail(&sres->entry, &message->resources);
2410}
2411EXPORT_SYMBOL_GPL(spi_res_add);
2412
2413/**
2414 * spi_res_release - release all spi resources for this message
2415 * @ctlr:  the @spi_controller
2416 * @message: the @spi_message
2417 */
2418void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2419{
2420	struct spi_res *res;
2421
2422	while (!list_empty(&message->resources)) {
2423		res = list_last_entry(&message->resources,
2424				      struct spi_res, entry);
2425
2426		if (res->release)
2427			res->release(ctlr, message, res->data);
2428
2429		list_del(&res->entry);
2430
2431		kfree(res);
 
 
 
2432	}
 
2433}
2434EXPORT_SYMBOL_GPL(spi_res_release);
2435
2436/*-------------------------------------------------------------------------*/
2437
2438/* Core methods for spi_message alterations */
2439
2440static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2441					    struct spi_message *msg,
2442					    void *res)
2443{
2444	struct spi_replaced_transfers *rxfer = res;
2445	size_t i;
2446
2447	/* call extra callback if requested */
2448	if (rxfer->release)
2449		rxfer->release(ctlr, msg, res);
2450
2451	/* insert replaced transfers back into the message */
2452	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2453
2454	/* remove the formerly inserted entries */
2455	for (i = 0; i < rxfer->inserted; i++)
2456		list_del(&rxfer->inserted_transfers[i].transfer_list);
2457}
2458
2459/**
2460 * spi_replace_transfers - replace transfers with several transfers
2461 *                         and register change with spi_message.resources
2462 * @msg:           the spi_message we work upon
2463 * @xfer_first:    the first spi_transfer we want to replace
2464 * @remove:        number of transfers to remove
2465 * @insert:        the number of transfers we want to insert instead
2466 * @release:       extra release code necessary in some circumstances
2467 * @extradatasize: extra data to allocate (with alignment guarantees
2468 *                 of struct @spi_transfer)
2469 * @gfp:           gfp flags
2470 *
2471 * Returns: pointer to @spi_replaced_transfers,
2472 *          PTR_ERR(...) in case of errors.
2473 */
2474struct spi_replaced_transfers *spi_replace_transfers(
2475	struct spi_message *msg,
2476	struct spi_transfer *xfer_first,
2477	size_t remove,
2478	size_t insert,
2479	spi_replaced_release_t release,
2480	size_t extradatasize,
2481	gfp_t gfp)
2482{
2483	struct spi_replaced_transfers *rxfer;
2484	struct spi_transfer *xfer;
2485	size_t i;
2486
2487	/* allocate the structure using spi_res */
2488	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2489			      insert * sizeof(struct spi_transfer)
2490			      + sizeof(struct spi_replaced_transfers)
2491			      + extradatasize,
2492			      gfp);
2493	if (!rxfer)
2494		return ERR_PTR(-ENOMEM);
2495
2496	/* the release code to invoke before running the generic release */
2497	rxfer->release = release;
2498
2499	/* assign extradata */
2500	if (extradatasize)
2501		rxfer->extradata =
2502			&rxfer->inserted_transfers[insert];
2503
2504	/* init the replaced_transfers list */
2505	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2506
2507	/* assign the list_entry after which we should reinsert
 
2508	 * the @replaced_transfers - it may be spi_message.messages!
2509	 */
2510	rxfer->replaced_after = xfer_first->transfer_list.prev;
2511
2512	/* remove the requested number of transfers */
2513	for (i = 0; i < remove; i++) {
2514		/* if the entry after replaced_after it is msg->transfers
 
2515		 * then we have been requested to remove more transfers
2516		 * than are in the list
2517		 */
2518		if (rxfer->replaced_after->next == &msg->transfers) {
2519			dev_err(&msg->spi->dev,
2520				"requested to remove more spi_transfers than are available\n");
2521			/* insert replaced transfers back into the message */
2522			list_splice(&rxfer->replaced_transfers,
2523				    rxfer->replaced_after);
2524
2525			/* free the spi_replace_transfer structure */
2526			spi_res_free(rxfer);
2527
2528			/* and return with an error */
2529			return ERR_PTR(-EINVAL);
2530		}
2531
2532		/* remove the entry after replaced_after from list of
2533		 * transfers and add it to list of replaced_transfers
 
2534		 */
2535		list_move_tail(rxfer->replaced_after->next,
2536			       &rxfer->replaced_transfers);
2537	}
2538
2539	/* create copy of the given xfer with identical settings
2540	 * based on the first transfer to get removed
 
2541	 */
2542	for (i = 0; i < insert; i++) {
2543		/* we need to run in reverse order */
2544		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2545
2546		/* copy all spi_transfer data */
2547		memcpy(xfer, xfer_first, sizeof(*xfer));
2548
2549		/* add to list */
2550		list_add(&xfer->transfer_list, rxfer->replaced_after);
2551
2552		/* clear cs_change and delay_usecs for all but the last */
2553		if (i) {
2554			xfer->cs_change = false;
2555			xfer->delay_usecs = 0;
2556		}
2557	}
2558
2559	/* set up inserted */
2560	rxfer->inserted = insert;
2561
2562	/* and register it with spi_res/spi_message */
2563	spi_res_add(msg, rxfer);
2564
2565	return rxfer;
2566}
2567EXPORT_SYMBOL_GPL(spi_replace_transfers);
2568
2569static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2570					struct spi_message *msg,
2571					struct spi_transfer **xferp,
2572					size_t maxsize,
2573					gfp_t gfp)
2574{
2575	struct spi_transfer *xfer = *xferp, *xfers;
2576	struct spi_replaced_transfers *srt;
2577	size_t offset;
2578	size_t count, i;
2579
2580	/* warn once about this fact that we are splitting a transfer */
2581	dev_warn_once(&msg->spi->dev,
2582		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2583		      xfer->len, maxsize);
2584
2585	/* calculate how many we have to replace */
2586	count = DIV_ROUND_UP(xfer->len, maxsize);
2587
2588	/* create replacement */
2589	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2590	if (IS_ERR(srt))
2591		return PTR_ERR(srt);
2592	xfers = srt->inserted_transfers;
2593
2594	/* now handle each of those newly inserted spi_transfers
2595	 * note that the replacements spi_transfers all are preset
 
2596	 * to the same values as *xferp, so tx_buf, rx_buf and len
2597	 * are all identical (as well as most others)
2598	 * so we just have to fix up len and the pointers.
2599	 *
2600	 * this also includes support for the depreciated
2601	 * spi_message.is_dma_mapped interface
2602	 */
2603
2604	/* the first transfer just needs the length modified, so we
2605	 * run it outside the loop
 
2606	 */
2607	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2608
2609	/* all the others need rx_buf/tx_buf also set */
2610	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2611		/* update rx_buf, tx_buf and dma */
2612		if (xfers[i].rx_buf)
2613			xfers[i].rx_buf += offset;
2614		if (xfers[i].rx_dma)
2615			xfers[i].rx_dma += offset;
2616		if (xfers[i].tx_buf)
2617			xfers[i].tx_buf += offset;
2618		if (xfers[i].tx_dma)
2619			xfers[i].tx_dma += offset;
2620
2621		/* update length */
2622		xfers[i].len = min(maxsize, xfers[i].len - offset);
2623	}
2624
2625	/* we set up xferp to the last entry we have inserted,
2626	 * so that we skip those already split transfers
 
2627	 */
2628	*xferp = &xfers[count - 1];
2629
2630	/* increment statistics counters */
2631	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2632				       transfers_split_maxsize);
2633	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2634				       transfers_split_maxsize);
2635
2636	return 0;
2637}
2638
2639/**
2640 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2641 *                              when an individual transfer exceeds a
2642 *                              certain size
2643 * @ctlr:    the @spi_controller for this transfer
2644 * @msg:   the @spi_message to transform
2645 * @maxsize:  the maximum when to apply this
2646 * @gfp: GFP allocation flags
 
 
 
2647 *
2648 * Return: status of transformation
2649 */
2650int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2651				struct spi_message *msg,
2652				size_t maxsize,
2653				gfp_t gfp)
2654{
2655	struct spi_transfer *xfer;
2656	int ret;
2657
2658	/* iterate over the transfer_list,
 
2659	 * but note that xfer is advanced to the last transfer inserted
2660	 * to avoid checking sizes again unnecessarily (also xfer does
2661	 * potentiall belong to a different list by the time the
2662	 * replacement has happened
2663	 */
2664	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2665		if (xfer->len > maxsize) {
2666			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2667							   maxsize, gfp);
2668			if (ret)
2669				return ret;
2670		}
2671	}
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677/*-------------------------------------------------------------------------*/
2678
2679/* Core methods for SPI controller protocol drivers.  Some of the
 
2680 * other core methods are currently defined as inline functions.
2681 */
2682
2683static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2684					u8 bits_per_word)
2685{
2686	if (ctlr->bits_per_word_mask) {
2687		/* Only 32 bits fit in the mask */
2688		if (bits_per_word > 32)
2689			return -EINVAL;
2690		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2691			return -EINVAL;
2692	}
2693
2694	return 0;
2695}
2696
2697/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698 * spi_setup - setup SPI mode and clock rate
2699 * @spi: the device whose settings are being modified
2700 * Context: can sleep, and no requests are queued to the device
2701 *
2702 * SPI protocol drivers may need to update the transfer mode if the
2703 * device doesn't work with its default.  They may likewise need
2704 * to update clock rates or word sizes from initial values.  This function
2705 * changes those settings, and must be called from a context that can sleep.
2706 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2707 * effect the next time the device is selected and data is transferred to
2708 * or from it.  When this function returns, the spi device is deselected.
2709 *
2710 * Note that this call will fail if the protocol driver specifies an option
2711 * that the underlying controller or its driver does not support.  For
2712 * example, not all hardware supports wire transfers using nine bit words,
2713 * LSB-first wire encoding, or active-high chipselects.
2714 *
2715 * Return: zero on success, else a negative error code.
2716 */
2717int spi_setup(struct spi_device *spi)
2718{
2719	unsigned	bad_bits, ugly_bits;
2720	int		status;
2721
2722	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
2723	 */
2724	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2725		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
2726		dev_err(&spi->dev,
2727		"setup: can not select dual and quad at the same time\n");
2728		return -EINVAL;
2729	}
2730	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2731	 */
2732	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2733		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
 
2734		return -EINVAL;
2735	/* help drivers fail *cleanly* when they need options
2736	 * that aren't supported with their current controller
 
 
 
2737	 */
2738	bad_bits = spi->mode & ~spi->controller->mode_bits;
 
2739	ugly_bits = bad_bits &
2740		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
 
2741	if (ugly_bits) {
2742		dev_warn(&spi->dev,
2743			 "setup: ignoring unsupported mode bits %x\n",
2744			 ugly_bits);
2745		spi->mode &= ~ugly_bits;
2746		bad_bits &= ~ugly_bits;
2747	}
2748	if (bad_bits) {
2749		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2750			bad_bits);
2751		return -EINVAL;
2752	}
2753
2754	if (!spi->bits_per_word)
2755		spi->bits_per_word = 8;
 
 
 
 
 
 
 
 
 
 
2756
2757	status = __spi_validate_bits_per_word(spi->controller,
2758					      spi->bits_per_word);
2759	if (status)
2760		return status;
2761
2762	if (!spi->max_speed_hz)
2763		spi->max_speed_hz = spi->controller->max_speed_hz;
2764
2765	if (spi->controller->setup)
 
 
2766		status = spi->controller->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
2767
2768	spi_set_cs(spi, false);
 
 
 
 
 
 
 
2769
2770	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2771			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2773			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2774			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2775			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2776			spi->bits_per_word, spi->max_speed_hz,
2777			status);
2778
2779	return status;
2780}
2781EXPORT_SYMBOL_GPL(spi_setup);
2782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2784{
2785	struct spi_controller *ctlr = spi->controller;
2786	struct spi_transfer *xfer;
2787	int w_size;
2788
2789	if (list_empty(&message->transfers))
2790		return -EINVAL;
2791
2792	/* Half-duplex links include original MicroWire, and ones with
 
 
 
2793	 * only one data pin like SPI_3WIRE (switches direction) or where
2794	 * either MOSI or MISO is missing.  They can also be caused by
2795	 * software limitations.
2796	 */
2797	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2798	    (spi->mode & SPI_3WIRE)) {
2799		unsigned flags = ctlr->flags;
2800
2801		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2802			if (xfer->rx_buf && xfer->tx_buf)
2803				return -EINVAL;
2804			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2805				return -EINVAL;
2806			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2807				return -EINVAL;
2808		}
2809	}
2810
2811	/**
2812	 * Set transfer bits_per_word and max speed as spi device default if
2813	 * it is not set for this transfer.
2814	 * Set transfer tx_nbits and rx_nbits as single transfer default
2815	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
 
 
2816	 */
2817	message->frame_length = 0;
2818	list_for_each_entry(xfer, &message->transfers, transfer_list) {
 
2819		message->frame_length += xfer->len;
2820		if (!xfer->bits_per_word)
2821			xfer->bits_per_word = spi->bits_per_word;
2822
2823		if (!xfer->speed_hz)
2824			xfer->speed_hz = spi->max_speed_hz;
2825		if (!xfer->speed_hz)
2826			xfer->speed_hz = ctlr->max_speed_hz;
2827
2828		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2829			xfer->speed_hz = ctlr->max_speed_hz;
2830
2831		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2832			return -EINVAL;
2833
2834		/*
2835		 * SPI transfer length should be multiple of SPI word size
2836		 * where SPI word size should be power-of-two multiple
2837		 */
2838		if (xfer->bits_per_word <= 8)
2839			w_size = 1;
2840		else if (xfer->bits_per_word <= 16)
2841			w_size = 2;
2842		else
2843			w_size = 4;
2844
2845		/* No partial transfers accepted */
2846		if (xfer->len % w_size)
2847			return -EINVAL;
2848
2849		if (xfer->speed_hz && ctlr->min_speed_hz &&
2850		    xfer->speed_hz < ctlr->min_speed_hz)
2851			return -EINVAL;
2852
2853		if (xfer->tx_buf && !xfer->tx_nbits)
2854			xfer->tx_nbits = SPI_NBITS_SINGLE;
2855		if (xfer->rx_buf && !xfer->rx_nbits)
2856			xfer->rx_nbits = SPI_NBITS_SINGLE;
2857		/* check transfer tx/rx_nbits:
 
2858		 * 1. check the value matches one of single, dual and quad
2859		 * 2. check tx/rx_nbits match the mode in spi_device
2860		 */
2861		if (xfer->tx_buf) {
 
 
2862			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2863				xfer->tx_nbits != SPI_NBITS_DUAL &&
2864				xfer->tx_nbits != SPI_NBITS_QUAD)
2865				return -EINVAL;
2866			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2867				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2868				return -EINVAL;
2869			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2870				!(spi->mode & SPI_TX_QUAD))
2871				return -EINVAL;
2872		}
2873		/* check transfer rx_nbits */
2874		if (xfer->rx_buf) {
 
 
2875			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2876				xfer->rx_nbits != SPI_NBITS_DUAL &&
2877				xfer->rx_nbits != SPI_NBITS_QUAD)
2878				return -EINVAL;
2879			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2880				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2881				return -EINVAL;
2882			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2883				!(spi->mode & SPI_RX_QUAD))
2884				return -EINVAL;
2885		}
 
 
 
2886	}
2887
2888	message->status = -EINPROGRESS;
2889
2890	return 0;
2891}
2892
2893static int __spi_async(struct spi_device *spi, struct spi_message *message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2894{
2895	struct spi_controller *ctlr = spi->controller;
 
 
2896
2897	message->spi = spi;
 
 
 
 
 
 
 
 
 
 
 
2898
2899	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2900	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
 
 
2901
2902	trace_spi_message_submit(message);
 
 
 
 
 
 
 
2903
2904	return ctlr->transfer(spi, message);
2905}
2906
2907/**
2908 * spi_async - asynchronous SPI transfer
2909 * @spi: device with which data will be exchanged
2910 * @message: describes the data transfers, including completion callback
2911 * Context: any (irqs may be blocked, etc)
2912 *
2913 * This call may be used in_irq and other contexts which can't sleep,
2914 * as well as from task contexts which can sleep.
2915 *
2916 * The completion callback is invoked in a context which can't sleep.
2917 * Before that invocation, the value of message->status is undefined.
2918 * When the callback is issued, message->status holds either zero (to
2919 * indicate complete success) or a negative error code.  After that
2920 * callback returns, the driver which issued the transfer request may
2921 * deallocate the associated memory; it's no longer in use by any SPI
2922 * core or controller driver code.
2923 *
2924 * Note that although all messages to a spi_device are handled in
2925 * FIFO order, messages may go to different devices in other orders.
2926 * Some device might be higher priority, or have various "hard" access
2927 * time requirements, for example.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928 *
2929 * On detection of any fault during the transfer, processing of
2930 * the entire message is aborted, and the device is deselected.
2931 * Until returning from the associated message completion callback,
2932 * no other spi_message queued to that device will be processed.
2933 * (This rule applies equally to all the synchronous transfer calls,
2934 * which are wrappers around this core asynchronous primitive.)
2935 *
2936 * Return: zero on success, else a negative error code.
 
2937 */
2938int spi_async(struct spi_device *spi, struct spi_message *message)
2939{
2940	struct spi_controller *ctlr = spi->controller;
2941	int ret;
2942	unsigned long flags;
2943
2944	ret = __spi_validate(spi, message);
2945	if (ret != 0)
2946		return ret;
2947
2948	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
 
 
 
 
 
2949
2950	if (ctlr->bus_lock_flag)
2951		ret = -EBUSY;
2952	else
2953		ret = __spi_async(spi, message);
2954
2955	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
2956
2957	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2958}
2959EXPORT_SYMBOL_GPL(spi_async);
2960
2961/**
2962 * spi_async_locked - version of spi_async with exclusive bus usage
2963 * @spi: device with which data will be exchanged
2964 * @message: describes the data transfers, including completion callback
2965 * Context: any (irqs may be blocked, etc)
2966 *
2967 * This call may be used in_irq and other contexts which can't sleep,
2968 * as well as from task contexts which can sleep.
2969 *
2970 * The completion callback is invoked in a context which can't sleep.
2971 * Before that invocation, the value of message->status is undefined.
2972 * When the callback is issued, message->status holds either zero (to
2973 * indicate complete success) or a negative error code.  After that
2974 * callback returns, the driver which issued the transfer request may
2975 * deallocate the associated memory; it's no longer in use by any SPI
2976 * core or controller driver code.
2977 *
2978 * Note that although all messages to a spi_device are handled in
2979 * FIFO order, messages may go to different devices in other orders.
2980 * Some device might be higher priority, or have various "hard" access
2981 * time requirements, for example.
2982 *
2983 * On detection of any fault during the transfer, processing of
2984 * the entire message is aborted, and the device is deselected.
2985 * Until returning from the associated message completion callback,
2986 * no other spi_message queued to that device will be processed.
2987 * (This rule applies equally to all the synchronous transfer calls,
2988 * which are wrappers around this core asynchronous primitive.)
2989 *
2990 * Return: zero on success, else a negative error code.
2991 */
2992int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2993{
2994	struct spi_controller *ctlr = spi->controller;
2995	int ret;
2996	unsigned long flags;
2997
2998	ret = __spi_validate(spi, message);
2999	if (ret != 0)
3000		return ret;
3001
3002	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3003
3004	ret = __spi_async(spi, message);
 
 
 
3005
3006	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3007
3008	return ret;
3009
 
3010}
3011EXPORT_SYMBOL_GPL(spi_async_locked);
3012
3013
3014int spi_flash_read(struct spi_device *spi,
3015		   struct spi_flash_read_message *msg)
3016
 
3017{
3018	struct spi_controller *master = spi->controller;
3019	struct device *rx_dev = NULL;
3020	int ret;
3021
3022	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3023	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3024	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3025		return -EINVAL;
3026	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3027	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3028	    !(spi->mode & SPI_TX_QUAD))
3029		return -EINVAL;
3030	if (msg->data_nbits == SPI_NBITS_DUAL &&
3031	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3032		return -EINVAL;
3033	if (msg->data_nbits == SPI_NBITS_QUAD &&
3034	    !(spi->mode &  SPI_RX_QUAD))
3035		return -EINVAL;
3036
3037	if (master->auto_runtime_pm) {
3038		ret = pm_runtime_get_sync(master->dev.parent);
3039		if (ret < 0) {
3040			dev_err(&master->dev, "Failed to power device: %d\n",
3041				ret);
3042			return ret;
3043		}
3044	}
3045
3046	mutex_lock(&master->bus_lock_mutex);
3047	mutex_lock(&master->io_mutex);
3048	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3049		rx_dev = master->dma_rx->device->dev;
3050		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3051				  msg->buf, msg->len,
3052				  DMA_FROM_DEVICE);
3053		if (!ret)
3054			msg->cur_msg_mapped = true;
3055	}
3056	ret = master->spi_flash_read(spi, msg);
3057	if (msg->cur_msg_mapped)
3058		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3059			      DMA_FROM_DEVICE);
3060	mutex_unlock(&master->io_mutex);
3061	mutex_unlock(&master->bus_lock_mutex);
3062
3063	if (master->auto_runtime_pm)
3064		pm_runtime_put(master->dev.parent);
 
 
 
 
 
 
 
 
 
3065
3066	return ret;
3067}
3068EXPORT_SYMBOL_GPL(spi_flash_read);
3069
3070/*-------------------------------------------------------------------------*/
3071
3072/* Utility methods for SPI protocol drivers, layered on
 
3073 * top of the core.  Some other utility methods are defined as
3074 * inline functions.
3075 */
3076
3077static void spi_complete(void *arg)
3078{
3079	complete(arg);
3080}
3081
3082static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3083{
3084	DECLARE_COMPLETION_ONSTACK(done);
 
3085	int status;
3086	struct spi_controller *ctlr = spi->controller;
3087	unsigned long flags;
3088
3089	status = __spi_validate(spi, message);
3090	if (status != 0)
3091		return status;
 
3092
3093	message->complete = spi_complete;
3094	message->context = &done;
3095	message->spi = spi;
3096
3097	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3098	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3099
3100	/* If we're not using the legacy transfer method then we will
3101	 * try to transfer in the calling context so special case.
3102	 * This code would be less tricky if we could remove the
3103	 * support for driver implemented message queues.
 
3104	 */
3105	if (ctlr->transfer == spi_queued_transfer) {
3106		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
3107
3108		trace_spi_message_submit(message);
3109
3110		status = __spi_queued_transfer(spi, message, false);
 
3111
3112		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3113	} else {
3114		status = spi_async_locked(spi, message);
3115	}
3116
3117	if (status == 0) {
3118		/* Push out the messages in the calling context if we
3119		 * can.
3120		 */
3121		if (ctlr->transfer == spi_queued_transfer) {
3122			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3123						       spi_sync_immediate);
3124			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3125						       spi_sync_immediate);
3126			__spi_pump_messages(ctlr, false);
3127		}
 
3128
 
3129		wait_for_completion(&done);
3130		status = message->status;
3131	}
 
3132	message->context = NULL;
 
3133	return status;
3134}
3135
3136/**
3137 * spi_sync - blocking/synchronous SPI data transfers
3138 * @spi: device with which data will be exchanged
3139 * @message: describes the data transfers
3140 * Context: can sleep
3141 *
3142 * This call may only be used from a context that may sleep.  The sleep
3143 * is non-interruptible, and has no timeout.  Low-overhead controller
3144 * drivers may DMA directly into and out of the message buffers.
3145 *
3146 * Note that the SPI device's chip select is active during the message,
3147 * and then is normally disabled between messages.  Drivers for some
3148 * frequently-used devices may want to minimize costs of selecting a chip,
3149 * by leaving it selected in anticipation that the next message will go
3150 * to the same chip.  (That may increase power usage.)
3151 *
3152 * Also, the caller is guaranteeing that the memory associated with the
3153 * message will not be freed before this call returns.
3154 *
3155 * Return: zero on success, else a negative error code.
3156 */
3157int spi_sync(struct spi_device *spi, struct spi_message *message)
3158{
3159	int ret;
3160
3161	mutex_lock(&spi->controller->bus_lock_mutex);
3162	ret = __spi_sync(spi, message);
3163	mutex_unlock(&spi->controller->bus_lock_mutex);
3164
3165	return ret;
3166}
3167EXPORT_SYMBOL_GPL(spi_sync);
3168
3169/**
3170 * spi_sync_locked - version of spi_sync with exclusive bus usage
3171 * @spi: device with which data will be exchanged
3172 * @message: describes the data transfers
3173 * Context: can sleep
3174 *
3175 * This call may only be used from a context that may sleep.  The sleep
3176 * is non-interruptible, and has no timeout.  Low-overhead controller
3177 * drivers may DMA directly into and out of the message buffers.
3178 *
3179 * This call should be used by drivers that require exclusive access to the
3180 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3181 * be released by a spi_bus_unlock call when the exclusive access is over.
3182 *
3183 * Return: zero on success, else a negative error code.
3184 */
3185int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3186{
3187	return __spi_sync(spi, message);
3188}
3189EXPORT_SYMBOL_GPL(spi_sync_locked);
3190
3191/**
3192 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3193 * @ctlr: SPI bus master that should be locked for exclusive bus access
3194 * Context: can sleep
3195 *
3196 * This call may only be used from a context that may sleep.  The sleep
3197 * is non-interruptible, and has no timeout.
3198 *
3199 * This call should be used by drivers that require exclusive access to the
3200 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3201 * exclusive access is over. Data transfer must be done by spi_sync_locked
3202 * and spi_async_locked calls when the SPI bus lock is held.
3203 *
3204 * Return: always zero.
3205 */
3206int spi_bus_lock(struct spi_controller *ctlr)
3207{
3208	unsigned long flags;
3209
3210	mutex_lock(&ctlr->bus_lock_mutex);
3211
3212	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3213	ctlr->bus_lock_flag = 1;
3214	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3215
3216	/* mutex remains locked until spi_bus_unlock is called */
3217
3218	return 0;
3219}
3220EXPORT_SYMBOL_GPL(spi_bus_lock);
3221
3222/**
3223 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3224 * @ctlr: SPI bus master that was locked for exclusive bus access
3225 * Context: can sleep
3226 *
3227 * This call may only be used from a context that may sleep.  The sleep
3228 * is non-interruptible, and has no timeout.
3229 *
3230 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3231 * call.
3232 *
3233 * Return: always zero.
3234 */
3235int spi_bus_unlock(struct spi_controller *ctlr)
3236{
3237	ctlr->bus_lock_flag = 0;
3238
3239	mutex_unlock(&ctlr->bus_lock_mutex);
3240
3241	return 0;
3242}
3243EXPORT_SYMBOL_GPL(spi_bus_unlock);
3244
3245/* portable code must never pass more than 32 bytes */
3246#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3247
3248static u8	*buf;
3249
3250/**
3251 * spi_write_then_read - SPI synchronous write followed by read
3252 * @spi: device with which data will be exchanged
3253 * @txbuf: data to be written (need not be dma-safe)
3254 * @n_tx: size of txbuf, in bytes
3255 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3256 * @n_rx: size of rxbuf, in bytes
3257 * Context: can sleep
3258 *
3259 * This performs a half duplex MicroWire style transaction with the
3260 * device, sending txbuf and then reading rxbuf.  The return value
3261 * is zero for success, else a negative errno status code.
3262 * This call may only be used from a context that may sleep.
3263 *
3264 * Parameters to this routine are always copied using a small buffer;
3265 * portable code should never use this for more than 32 bytes.
3266 * Performance-sensitive or bulk transfer code should instead use
3267 * spi_{async,sync}() calls with dma-safe buffers.
3268 *
3269 * Return: zero on success, else a negative error code.
3270 */
3271int spi_write_then_read(struct spi_device *spi,
3272		const void *txbuf, unsigned n_tx,
3273		void *rxbuf, unsigned n_rx)
3274{
3275	static DEFINE_MUTEX(lock);
3276
3277	int			status;
3278	struct spi_message	message;
3279	struct spi_transfer	x[2];
3280	u8			*local_buf;
3281
3282	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
3283	 * copying here, (as a pure convenience thing), but we can
3284	 * keep heap costs out of the hot path unless someone else is
3285	 * using the pre-allocated buffer or the transfer is too large.
3286	 */
3287	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3288		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3289				    GFP_KERNEL | GFP_DMA);
3290		if (!local_buf)
3291			return -ENOMEM;
3292	} else {
3293		local_buf = buf;
3294	}
3295
3296	spi_message_init(&message);
3297	memset(x, 0, sizeof(x));
3298	if (n_tx) {
3299		x[0].len = n_tx;
3300		spi_message_add_tail(&x[0], &message);
3301	}
3302	if (n_rx) {
3303		x[1].len = n_rx;
3304		spi_message_add_tail(&x[1], &message);
3305	}
3306
3307	memcpy(local_buf, txbuf, n_tx);
3308	x[0].tx_buf = local_buf;
3309	x[1].rx_buf = local_buf + n_tx;
3310
3311	/* do the i/o */
3312	status = spi_sync(spi, &message);
3313	if (status == 0)
3314		memcpy(rxbuf, x[1].rx_buf, n_rx);
3315
3316	if (x[0].tx_buf == buf)
3317		mutex_unlock(&lock);
3318	else
3319		kfree(local_buf);
3320
3321	return status;
3322}
3323EXPORT_SYMBOL_GPL(spi_write_then_read);
3324
3325/*-------------------------------------------------------------------------*/
3326
3327#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3328static int __spi_of_device_match(struct device *dev, void *data)
3329{
3330	return dev->of_node == data;
3331}
3332
3333/* must call put_device() when done with returned spi_device device */
3334static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3335{
3336	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3337						__spi_of_device_match);
3338	return dev ? to_spi_device(dev) : NULL;
3339}
3340
3341static int __spi_of_controller_match(struct device *dev, const void *data)
3342{
3343	return dev->of_node == data;
3344}
3345
3346/* the spi controllers are not using spi_bus, so we find it with another way */
3347static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3348{
3349	struct device *dev;
3350
3351	dev = class_find_device(&spi_master_class, NULL, node,
3352				__spi_of_controller_match);
3353	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3354		dev = class_find_device(&spi_slave_class, NULL, node,
3355					__spi_of_controller_match);
3356	if (!dev)
3357		return NULL;
3358
3359	/* reference got in class_find_device */
3360	return container_of(dev, struct spi_controller, dev);
3361}
3362
3363static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3364			 void *arg)
3365{
3366	struct of_reconfig_data *rd = arg;
3367	struct spi_controller *ctlr;
3368	struct spi_device *spi;
3369
3370	switch (of_reconfig_get_state_change(action, arg)) {
3371	case OF_RECONFIG_CHANGE_ADD:
3372		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3373		if (ctlr == NULL)
3374			return NOTIFY_OK;	/* not for us */
3375
3376		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3377			put_device(&ctlr->dev);
3378			return NOTIFY_OK;
3379		}
3380
 
 
 
 
 
3381		spi = of_register_spi_device(ctlr, rd->dn);
3382		put_device(&ctlr->dev);
3383
3384		if (IS_ERR(spi)) {
3385			pr_err("%s: failed to create for '%pOF'\n",
3386					__func__, rd->dn);
3387			of_node_clear_flag(rd->dn, OF_POPULATED);
3388			return notifier_from_errno(PTR_ERR(spi));
3389		}
3390		break;
3391
3392	case OF_RECONFIG_CHANGE_REMOVE:
3393		/* already depopulated? */
3394		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3395			return NOTIFY_OK;
3396
3397		/* find our device by node */
3398		spi = of_find_spi_device_by_node(rd->dn);
3399		if (spi == NULL)
3400			return NOTIFY_OK;	/* no? not meant for us */
3401
3402		/* unregister takes one ref away */
3403		spi_unregister_device(spi);
3404
3405		/* and put the reference of the find */
3406		put_device(&spi->dev);
3407		break;
3408	}
3409
3410	return NOTIFY_OK;
3411}
3412
3413static struct notifier_block spi_of_notifier = {
3414	.notifier_call = of_spi_notify,
3415};
3416#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3417extern struct notifier_block spi_of_notifier;
3418#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3419
3420#if IS_ENABLED(CONFIG_ACPI)
3421static int spi_acpi_controller_match(struct device *dev, const void *data)
3422{
3423	return ACPI_COMPANION(dev->parent) == data;
3424}
3425
3426static int spi_acpi_device_match(struct device *dev, void *data)
3427{
3428	return ACPI_COMPANION(dev) == data;
3429}
3430
3431static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3432{
3433	struct device *dev;
3434
3435	dev = class_find_device(&spi_master_class, NULL, adev,
3436				spi_acpi_controller_match);
3437	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3438		dev = class_find_device(&spi_slave_class, NULL, adev,
3439					spi_acpi_controller_match);
3440	if (!dev)
3441		return NULL;
3442
3443	return container_of(dev, struct spi_controller, dev);
3444}
 
3445
3446static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3447{
3448	struct device *dev;
3449
3450	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3451
3452	return dev ? to_spi_device(dev) : NULL;
3453}
3454
3455static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3456			   void *arg)
3457{
3458	struct acpi_device *adev = arg;
3459	struct spi_controller *ctlr;
3460	struct spi_device *spi;
3461
3462	switch (value) {
3463	case ACPI_RECONFIG_DEVICE_ADD:
3464		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3465		if (!ctlr)
3466			break;
3467
3468		acpi_register_spi_device(ctlr, adev);
3469		put_device(&ctlr->dev);
3470		break;
3471	case ACPI_RECONFIG_DEVICE_REMOVE:
3472		if (!acpi_device_enumerated(adev))
3473			break;
3474
3475		spi = acpi_spi_find_device_by_adev(adev);
3476		if (!spi)
3477			break;
3478
3479		spi_unregister_device(spi);
3480		put_device(&spi->dev);
3481		break;
3482	}
3483
3484	return NOTIFY_OK;
3485}
3486
3487static struct notifier_block spi_acpi_notifier = {
3488	.notifier_call = acpi_spi_notify,
3489};
3490#else
3491extern struct notifier_block spi_acpi_notifier;
3492#endif
3493
3494static int __init spi_init(void)
3495{
3496	int	status;
3497
3498	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3499	if (!buf) {
3500		status = -ENOMEM;
3501		goto err0;
3502	}
3503
3504	status = bus_register(&spi_bus_type);
3505	if (status < 0)
3506		goto err1;
3507
3508	status = class_register(&spi_master_class);
3509	if (status < 0)
3510		goto err2;
3511
3512	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3513		status = class_register(&spi_slave_class);
3514		if (status < 0)
3515			goto err3;
3516	}
3517
3518	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3519		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3520	if (IS_ENABLED(CONFIG_ACPI))
3521		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3522
3523	return 0;
3524
3525err3:
3526	class_unregister(&spi_master_class);
3527err2:
3528	bus_unregister(&spi_bus_type);
3529err1:
3530	kfree(buf);
3531	buf = NULL;
3532err0:
3533	return status;
3534}
3535
3536/* board_info is normally registered in arch_initcall(),
3537 * but even essential drivers wait till later
 
3538 *
3539 * REVISIT only boardinfo really needs static linking. the rest (device and
3540 * driver registration) _could_ be dynamically linked (modular) ... costs
3541 * include needing to have boardinfo data structures be much more public.
3542 */
3543postcore_initcall(spi_init);
3544
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/acpi.h>
 
 
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
 
 
 
 
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
  36#include <uapi/linux/sched/types.h>
 
 
 
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
 
 
 
 
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 
 
 
 
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_controller *ctlr)
 316{
 
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if ((xfer->tx_buf) &&
 332	    (xfer->tx_buf != ctlr->dummy_tx))
 333		u64_stats_add(&stats->bytes_tx, xfer->len);
 334	if ((xfer->rx_buf) &&
 335	    (xfer->rx_buf != ctlr->dummy_rx))
 336		u64_stats_add(&stats->bytes_rx, xfer->len);
 337
 338	u64_stats_update_end(&stats->syncp);
 339	put_cpu();
 340}
 
 341
 342/*
 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 344 * and the sysfs version makes coldplug work too.
 345 */
 346static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 347{
 348	while (id->name[0]) {
 349		if (!strcmp(name, id->name))
 350			return id;
 351		id++;
 352	}
 353	return NULL;
 354}
 355
 356const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 357{
 358	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 359
 360	return spi_match_id(sdrv->id_table, sdev->modalias);
 361}
 362EXPORT_SYMBOL_GPL(spi_get_device_id);
 363
 364const void *spi_get_device_match_data(const struct spi_device *sdev)
 365{
 366	const void *match;
 367
 368	match = device_get_match_data(&sdev->dev);
 369	if (match)
 370		return match;
 371
 372	return (const void *)spi_get_device_id(sdev)->driver_data;
 373}
 374EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 375
 376static int spi_match_device(struct device *dev, struct device_driver *drv)
 377{
 378	const struct spi_device	*spi = to_spi_device(dev);
 379	const struct spi_driver	*sdrv = to_spi_driver(drv);
 380
 381	/* Check override first, and if set, only use the named driver */
 382	if (spi->driver_override)
 383		return strcmp(spi->driver_override, drv->name) == 0;
 384
 385	/* Attempt an OF style match */
 386	if (of_driver_match_device(dev, drv))
 387		return 1;
 388
 389	/* Then try ACPI */
 390	if (acpi_driver_match_device(dev, drv))
 391		return 1;
 392
 393	if (sdrv->id_table)
 394		return !!spi_match_id(sdrv->id_table, spi->modalias);
 395
 396	return strcmp(spi->modalias, drv->name) == 0;
 397}
 398
 399static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 400{
 401	const struct spi_device		*spi = to_spi_device(dev);
 402	int rc;
 403
 404	rc = acpi_device_uevent_modalias(dev, env);
 405	if (rc != -ENODEV)
 406		return rc;
 407
 408	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 409}
 410
 411static int spi_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 412{
 413	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 414	struct spi_device		*spi = to_spi_device(dev);
 415	int ret;
 416
 417	ret = of_clk_set_defaults(dev->of_node, false);
 418	if (ret)
 419		return ret;
 420
 421	if (dev->of_node) {
 422		spi->irq = of_irq_get(dev->of_node, 0);
 423		if (spi->irq == -EPROBE_DEFER)
 424			return -EPROBE_DEFER;
 425		if (spi->irq < 0)
 426			spi->irq = 0;
 427	}
 428
 429	ret = dev_pm_domain_attach(dev, true);
 430	if (ret)
 431		return ret;
 432
 433	if (sdrv->probe) {
 434		ret = sdrv->probe(spi);
 435		if (ret)
 436			dev_pm_domain_detach(dev, true);
 437	}
 438
 439	return ret;
 440}
 441
 442static void spi_remove(struct device *dev)
 443{
 444	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 445
 446	if (sdrv->remove)
 447		sdrv->remove(to_spi_device(dev));
 448
 449	dev_pm_domain_detach(dev, true);
 450}
 451
 452static void spi_shutdown(struct device *dev)
 453{
 454	if (dev->driver) {
 455		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 456
 457		if (sdrv->shutdown)
 458			sdrv->shutdown(to_spi_device(dev));
 459	}
 460}
 461
 462const struct bus_type spi_bus_type = {
 463	.name		= "spi",
 464	.dev_groups	= spi_dev_groups,
 465	.match		= spi_match_device,
 466	.uevent		= spi_uevent,
 467	.probe		= spi_probe,
 468	.remove		= spi_remove,
 469	.shutdown	= spi_shutdown,
 470};
 471EXPORT_SYMBOL_GPL(spi_bus_type);
 472
 473/**
 474 * __spi_register_driver - register a SPI driver
 475 * @owner: owner module of the driver to register
 476 * @sdrv: the driver to register
 477 * Context: can sleep
 478 *
 479 * Return: zero on success, else a negative error code.
 480 */
 481int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 482{
 483	sdrv->driver.owner = owner;
 484	sdrv->driver.bus = &spi_bus_type;
 485
 486	/*
 487	 * For Really Good Reasons we use spi: modaliases not of:
 488	 * modaliases for DT so module autoloading won't work if we
 489	 * don't have a spi_device_id as well as a compatible string.
 490	 */
 491	if (sdrv->driver.of_match_table) {
 492		const struct of_device_id *of_id;
 493
 494		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 495		     of_id++) {
 496			const char *of_name;
 497
 498			/* Strip off any vendor prefix */
 499			of_name = strnchr(of_id->compatible,
 500					  sizeof(of_id->compatible), ',');
 501			if (of_name)
 502				of_name++;
 503			else
 504				of_name = of_id->compatible;
 505
 506			if (sdrv->id_table) {
 507				const struct spi_device_id *spi_id;
 508
 509				spi_id = spi_match_id(sdrv->id_table, of_name);
 510				if (spi_id)
 511					continue;
 512			} else {
 513				if (strcmp(sdrv->driver.name, of_name) == 0)
 514					continue;
 515			}
 516
 517			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 518				sdrv->driver.name, of_id->compatible);
 519		}
 520	}
 521
 522	return driver_register(&sdrv->driver);
 523}
 524EXPORT_SYMBOL_GPL(__spi_register_driver);
 525
 526/*-------------------------------------------------------------------------*/
 527
 528/*
 529 * SPI devices should normally not be created by SPI device drivers; that
 530 * would make them board-specific.  Similarly with SPI controller drivers.
 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 532 * with other readonly (flashable) information about mainboard devices.
 533 */
 534
 535struct boardinfo {
 536	struct list_head	list;
 537	struct spi_board_info	board_info;
 538};
 539
 540static LIST_HEAD(board_list);
 541static LIST_HEAD(spi_controller_list);
 542
 543/*
 544 * Used to protect add/del operation for board_info list and
 545 * spi_controller list, and their matching process also used
 546 * to protect object of type struct idr.
 547 */
 548static DEFINE_MUTEX(board_lock);
 549
 550/**
 551 * spi_alloc_device - Allocate a new SPI device
 552 * @ctlr: Controller to which device is connected
 553 * Context: can sleep
 554 *
 555 * Allows a driver to allocate and initialize a spi_device without
 556 * registering it immediately.  This allows a driver to directly
 557 * fill the spi_device with device parameters before calling
 558 * spi_add_device() on it.
 559 *
 560 * Caller is responsible to call spi_add_device() on the returned
 561 * spi_device structure to add it to the SPI controller.  If the caller
 562 * needs to discard the spi_device without adding it, then it should
 563 * call spi_dev_put() on it.
 564 *
 565 * Return: a pointer to the new device, or NULL.
 566 */
 567struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 568{
 569	struct spi_device	*spi;
 570
 571	if (!spi_controller_get(ctlr))
 572		return NULL;
 573
 574	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 575	if (!spi) {
 576		spi_controller_put(ctlr);
 577		return NULL;
 578	}
 579
 580	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 581	if (!spi->pcpu_statistics) {
 582		kfree(spi);
 583		spi_controller_put(ctlr);
 584		return NULL;
 585	}
 586
 587	spi->controller = ctlr;
 588	spi->dev.parent = &ctlr->dev;
 589	spi->dev.bus = &spi_bus_type;
 590	spi->dev.release = spidev_release;
 591	spi->mode = ctlr->buswidth_override_bits;
 
 
 592
 593	device_initialize(&spi->dev);
 594	return spi;
 595}
 596EXPORT_SYMBOL_GPL(spi_alloc_device);
 597
 598static void spi_dev_set_name(struct spi_device *spi)
 599{
 600	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 601
 602	if (adev) {
 603		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 604		return;
 605	}
 606
 607	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 608		     spi_get_chipselect(spi, 0));
 609}
 610
 611/*
 612 * Zero(0) is a valid physical CS value and can be located at any
 613 * logical CS in the spi->chip_select[]. If all the physical CS
 614 * are initialized to 0 then It would be difficult to differentiate
 615 * between a valid physical CS 0 & an unused logical CS whose physical
 616 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 617 * Now all the unused logical CS will have -1 physical CS value & can be
 618 * ignored while performing physical CS validity checks.
 619 */
 620#define SPI_INVALID_CS		((s8)-1)
 621
 622static inline bool is_valid_cs(s8 chip_select)
 623{
 624	return chip_select != SPI_INVALID_CS;
 625}
 626
 627static inline int spi_dev_check_cs(struct device *dev,
 628				   struct spi_device *spi, u8 idx,
 629				   struct spi_device *new_spi, u8 new_idx)
 630{
 631	u8 cs, cs_new;
 632	u8 idx_new;
 633
 634	cs = spi_get_chipselect(spi, idx);
 635	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 636		cs_new = spi_get_chipselect(new_spi, idx_new);
 637		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 638			dev_err(dev, "chipselect %u already in use\n", cs_new);
 639			return -EBUSY;
 640		}
 641	}
 642	return 0;
 643}
 644
 645static int spi_dev_check(struct device *dev, void *data)
 646{
 647	struct spi_device *spi = to_spi_device(dev);
 648	struct spi_device *new_spi = data;
 649	int status, idx;
 650
 651	if (spi->controller == new_spi->controller) {
 652		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 653			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 654			if (status)
 655				return status;
 656		}
 657	}
 658	return 0;
 659}
 660
 661static void spi_cleanup(struct spi_device *spi)
 662{
 663	if (spi->controller->cleanup)
 664		spi->controller->cleanup(spi);
 665}
 666
 667static int __spi_add_device(struct spi_device *spi)
 
 
 
 668{
 
 669	struct spi_controller *ctlr = spi->controller;
 670	struct device *dev = ctlr->dev.parent;
 671	int status, idx;
 672	u8 cs;
 673
 674	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 675		/* Chipselects are numbered 0..max; validate. */
 676		cs = spi_get_chipselect(spi, idx);
 677		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 678			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 679				ctlr->num_chipselect);
 680			return -EINVAL;
 681		}
 682	}
 683
 684	/*
 685	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 686	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 687	 */
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 690		if (status)
 691			return status;
 692	}
 693
 694	/* Set the bus ID string */
 695	spi_dev_set_name(spi);
 696
 697	/*
 698	 * We need to make sure there's no other device with this
 699	 * chipselect **BEFORE** we call setup(), else we'll trash
 700	 * its configuration.
 701	 */
 
 
 702	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 703	if (status)
 704		return status;
 705
 706	/* Controller may unregister concurrently */
 707	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 708	    !device_is_registered(&ctlr->dev)) {
 709		return -ENODEV;
 710	}
 711
 712	if (ctlr->cs_gpiods) {
 713		u8 cs;
 714
 715		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 716			cs = spi_get_chipselect(spi, idx);
 717			if (is_valid_cs(cs))
 718				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 719		}
 720	}
 721
 722	/*
 723	 * Drivers may modify this initial i/o setup, but will
 724	 * normally rely on the device being setup.  Devices
 725	 * using SPI_CS_HIGH can't coexist well otherwise...
 726	 */
 727	status = spi_setup(spi);
 728	if (status < 0) {
 729		dev_err(dev, "can't setup %s, status %d\n",
 730				dev_name(&spi->dev), status);
 731		return status;
 732	}
 733
 734	/* Device may be bound to an active driver when this returns */
 735	status = device_add(&spi->dev);
 736	if (status < 0) {
 737		dev_err(dev, "can't add %s, status %d\n",
 738				dev_name(&spi->dev), status);
 739		spi_cleanup(spi);
 740	} else {
 741		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 742	}
 743
 744	return status;
 745}
 746
 747/**
 748 * spi_add_device - Add spi_device allocated with spi_alloc_device
 749 * @spi: spi_device to register
 750 *
 751 * Companion function to spi_alloc_device.  Devices allocated with
 752 * spi_alloc_device can be added onto the SPI bus with this function.
 753 *
 754 * Return: 0 on success; negative errno on failure
 755 */
 756int spi_add_device(struct spi_device *spi)
 757{
 758	struct spi_controller *ctlr = spi->controller;
 759	int status;
 760
 761	/* Set the bus ID string */
 762	spi_dev_set_name(spi);
 763
 764	mutex_lock(&ctlr->add_lock);
 765	status = __spi_add_device(spi);
 766	mutex_unlock(&ctlr->add_lock);
 767	return status;
 768}
 769EXPORT_SYMBOL_GPL(spi_add_device);
 770
 771static void spi_set_all_cs_unused(struct spi_device *spi)
 772{
 773	u8 idx;
 774
 775	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 776		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 777}
 778
 779/**
 780 * spi_new_device - instantiate one new SPI device
 781 * @ctlr: Controller to which device is connected
 782 * @chip: Describes the SPI device
 783 * Context: can sleep
 784 *
 785 * On typical mainboards, this is purely internal; and it's not needed
 786 * after board init creates the hard-wired devices.  Some development
 787 * platforms may not be able to use spi_register_board_info though, and
 788 * this is exported so that for example a USB or parport based adapter
 789 * driver could add devices (which it would learn about out-of-band).
 790 *
 791 * Return: the new device, or NULL.
 792 */
 793struct spi_device *spi_new_device(struct spi_controller *ctlr,
 794				  struct spi_board_info *chip)
 795{
 796	struct spi_device	*proxy;
 797	int			status;
 798
 799	/*
 800	 * NOTE:  caller did any chip->bus_num checks necessary.
 801	 *
 802	 * Also, unless we change the return value convention to use
 803	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 804	 * suggests syslogged diagnostics are best here (ugh).
 805	 */
 806
 807	proxy = spi_alloc_device(ctlr);
 808	if (!proxy)
 809		return NULL;
 810
 811	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 812
 813	/* Use provided chip-select for proxy device */
 814	spi_set_all_cs_unused(proxy);
 815	spi_set_chipselect(proxy, 0, chip->chip_select);
 816
 817	proxy->max_speed_hz = chip->max_speed_hz;
 818	proxy->mode = chip->mode;
 819	proxy->irq = chip->irq;
 820	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 821	proxy->dev.platform_data = (void *) chip->platform_data;
 822	proxy->controller_data = chip->controller_data;
 823	proxy->controller_state = NULL;
 824	/*
 825	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
 826	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
 827	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
 828	 * spi->chip_select[0] will give the physical CS.
 829	 * By default spi->chip_select[0] will hold the physical CS number so, set
 830	 * spi->cs_index_mask as 0x01.
 831	 */
 832	proxy->cs_index_mask = 0x01;
 833
 834	if (chip->swnode) {
 835		status = device_add_software_node(&proxy->dev, chip->swnode);
 836		if (status) {
 837			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 
 838				chip->modalias, status);
 839			goto err_dev_put;
 840		}
 841	}
 842
 843	status = spi_add_device(proxy);
 844	if (status < 0)
 845		goto err_dev_put;
 846
 847	return proxy;
 848
 
 
 
 849err_dev_put:
 850	device_remove_software_node(&proxy->dev);
 851	spi_dev_put(proxy);
 852	return NULL;
 853}
 854EXPORT_SYMBOL_GPL(spi_new_device);
 855
 856/**
 857 * spi_unregister_device - unregister a single SPI device
 858 * @spi: spi_device to unregister
 859 *
 860 * Start making the passed SPI device vanish. Normally this would be handled
 861 * by spi_unregister_controller().
 862 */
 863void spi_unregister_device(struct spi_device *spi)
 864{
 865	if (!spi)
 866		return;
 867
 868	if (spi->dev.of_node) {
 869		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 870		of_node_put(spi->dev.of_node);
 871	}
 872	if (ACPI_COMPANION(&spi->dev))
 873		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 874	device_remove_software_node(&spi->dev);
 875	device_del(&spi->dev);
 876	spi_cleanup(spi);
 877	put_device(&spi->dev);
 878}
 879EXPORT_SYMBOL_GPL(spi_unregister_device);
 880
 881static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 882					      struct spi_board_info *bi)
 883{
 884	struct spi_device *dev;
 885
 886	if (ctlr->bus_num != bi->bus_num)
 887		return;
 888
 889	dev = spi_new_device(ctlr, bi);
 890	if (!dev)
 891		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 892			bi->modalias);
 893}
 894
 895/**
 896 * spi_register_board_info - register SPI devices for a given board
 897 * @info: array of chip descriptors
 898 * @n: how many descriptors are provided
 899 * Context: can sleep
 900 *
 901 * Board-specific early init code calls this (probably during arch_initcall)
 902 * with segments of the SPI device table.  Any device nodes are created later,
 903 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 904 * this table of devices forever, so that reloading a controller driver will
 905 * not make Linux forget about these hard-wired devices.
 906 *
 907 * Other code can also call this, e.g. a particular add-on board might provide
 908 * SPI devices through its expansion connector, so code initializing that board
 909 * would naturally declare its SPI devices.
 910 *
 911 * The board info passed can safely be __initdata ... but be careful of
 912 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 913 *
 914 * Return: zero on success, else a negative error code.
 915 */
 916int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 917{
 918	struct boardinfo *bi;
 919	int i;
 920
 921	if (!n)
 922		return 0;
 923
 924	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 925	if (!bi)
 926		return -ENOMEM;
 927
 928	for (i = 0; i < n; i++, bi++, info++) {
 929		struct spi_controller *ctlr;
 930
 931		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 932
 933		mutex_lock(&board_lock);
 934		list_add_tail(&bi->list, &board_list);
 935		list_for_each_entry(ctlr, &spi_controller_list, list)
 936			spi_match_controller_to_boardinfo(ctlr,
 937							  &bi->board_info);
 938		mutex_unlock(&board_lock);
 939	}
 940
 941	return 0;
 942}
 943
 944/*-------------------------------------------------------------------------*/
 945
 946/* Core methods for SPI resource management */
 947
 948/**
 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 950 *                 during the processing of a spi_message while using
 951 *                 spi_transfer_one
 952 * @spi:     the SPI device for which we allocate memory
 953 * @release: the release code to execute for this resource
 954 * @size:    size to alloc and return
 955 * @gfp:     GFP allocation flags
 956 *
 957 * Return: the pointer to the allocated data
 958 *
 959 * This may get enhanced in the future to allocate from a memory pool
 960 * of the @spi_device or @spi_controller to avoid repeated allocations.
 961 */
 962static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 963			   size_t size, gfp_t gfp)
 964{
 965	struct spi_res *sres;
 966
 967	sres = kzalloc(sizeof(*sres) + size, gfp);
 968	if (!sres)
 969		return NULL;
 970
 971	INIT_LIST_HEAD(&sres->entry);
 972	sres->release = release;
 973
 974	return sres->data;
 975}
 976
 977/**
 978 * spi_res_free - free an SPI resource
 979 * @res: pointer to the custom data of a resource
 980 */
 981static void spi_res_free(void *res)
 982{
 983	struct spi_res *sres = container_of(res, struct spi_res, data);
 984
 985	if (!res)
 986		return;
 987
 988	WARN_ON(!list_empty(&sres->entry));
 989	kfree(sres);
 990}
 991
 992/**
 993 * spi_res_add - add a spi_res to the spi_message
 994 * @message: the SPI message
 995 * @res:     the spi_resource
 996 */
 997static void spi_res_add(struct spi_message *message, void *res)
 998{
 999	struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001	WARN_ON(!list_empty(&sres->entry));
1002	list_add_tail(&sres->entry, &message->resources);
1003}
1004
1005/**
1006 * spi_res_release - release all SPI resources for this message
1007 * @ctlr:  the @spi_controller
1008 * @message: the @spi_message
1009 */
1010static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011{
1012	struct spi_res *res, *tmp;
1013
1014	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015		if (res->release)
1016			res->release(ctlr, message, res->data);
1017
1018		list_del(&res->entry);
1019
1020		kfree(res);
1021	}
1022}
1023
1024/*-------------------------------------------------------------------------*/
1025static inline bool spi_is_last_cs(struct spi_device *spi)
1026{
1027	u8 idx;
1028	bool last = false;
1029
1030	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031		if (spi->cs_index_mask & BIT(idx)) {
1032			if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033				last = true;
1034		}
1035	}
1036	return last;
1037}
1038
1039
1040static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041{
1042	bool activate = enable;
1043	u8 idx;
1044
1045	/*
1046	 * Avoid calling into the driver (or doing delays) if the chip select
1047	 * isn't actually changing from the last time this was called.
1048	 */
1049	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050			spi_is_last_cs(spi)) ||
1051		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052			!spi_is_last_cs(spi))) &&
1053	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054		return;
1055
1056	trace_spi_set_cs(spi, activate);
1057
1058	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062
1063	if (spi->mode & SPI_CS_HIGH)
1064		enable = !enable;
1065
1066	/*
1067	 * Handle chip select delays for GPIO based CS or controllers without
1068	 * programmable chip select timing.
1069	 */
1070	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1071		spi_delay_exec(&spi->cs_hold, NULL);
1072
1073	if (spi_is_csgpiod(spi)) {
1074		if (!(spi->mode & SPI_NO_CS)) {
1075			/*
1076			 * Historically ACPI has no means of the GPIO polarity and
1077			 * thus the SPISerialBus() resource defines it on the per-chip
1078			 * basis. In order to avoid a chain of negations, the GPIO
1079			 * polarity is considered being Active High. Even for the cases
1080			 * when _DSD() is involved (in the updated versions of ACPI)
1081			 * the GPIO CS polarity must be defined Active High to avoid
1082			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1083			 * into account.
1084			 */
1085			for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1086				if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1087					if (has_acpi_companion(&spi->dev))
1088						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089									 !enable);
1090					else
1091						/* Polarity handled by GPIO library */
1092						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1093									 activate);
1094
1095					if (activate)
1096						spi_delay_exec(&spi->cs_setup, NULL);
1097					else
1098						spi_delay_exec(&spi->cs_inactive, NULL);
1099				}
1100			}
1101		}
1102		/* Some SPI masters need both GPIO CS & slave_select */
1103		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1104		    spi->controller->set_cs)
1105			spi->controller->set_cs(spi, !enable);
1106	} else if (spi->controller->set_cs) {
1107		spi->controller->set_cs(spi, !enable);
1108	}
1109
1110	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1111		if (activate)
1112			spi_delay_exec(&spi->cs_setup, NULL);
1113		else
1114			spi_delay_exec(&spi->cs_inactive, NULL);
1115	}
1116}
1117
1118#ifdef CONFIG_HAS_DMA
1119static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1120			     struct sg_table *sgt, void *buf, size_t len,
1121			     enum dma_data_direction dir, unsigned long attrs)
1122{
1123	const bool vmalloced_buf = is_vmalloc_addr(buf);
1124	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1125#ifdef CONFIG_HIGHMEM
1126	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1127				(unsigned long)buf < (PKMAP_BASE +
1128					(LAST_PKMAP * PAGE_SIZE)));
1129#else
1130	const bool kmap_buf = false;
1131#endif
1132	int desc_len;
1133	int sgs;
1134	struct page *vm_page;
1135	struct scatterlist *sg;
1136	void *sg_buf;
1137	size_t min;
1138	int i, ret;
1139
1140	if (vmalloced_buf || kmap_buf) {
1141		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1142		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1143	} else if (virt_addr_valid(buf)) {
1144		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1145		sgs = DIV_ROUND_UP(len, desc_len);
1146	} else {
1147		return -EINVAL;
1148	}
1149
1150	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151	if (ret != 0)
1152		return ret;
1153
1154	sg = &sgt->sgl[0];
1155	for (i = 0; i < sgs; i++) {
1156
1157		if (vmalloced_buf || kmap_buf) {
1158			/*
1159			 * Next scatterlist entry size is the minimum between
1160			 * the desc_len and the remaining buffer length that
1161			 * fits in a page.
1162			 */
1163			min = min_t(size_t, desc_len,
1164				    min_t(size_t, len,
1165					  PAGE_SIZE - offset_in_page(buf)));
1166			if (vmalloced_buf)
1167				vm_page = vmalloc_to_page(buf);
1168			else
1169				vm_page = kmap_to_page(buf);
1170			if (!vm_page) {
1171				sg_free_table(sgt);
1172				return -ENOMEM;
1173			}
1174			sg_set_page(sg, vm_page,
1175				    min, offset_in_page(buf));
1176		} else {
1177			min = min_t(size_t, len, desc_len);
1178			sg_buf = buf;
1179			sg_set_buf(sg, sg_buf, min);
1180		}
1181
1182		buf += min;
1183		len -= min;
1184		sg = sg_next(sg);
1185	}
1186
1187	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1188	if (ret < 0) {
1189		sg_free_table(sgt);
1190		return ret;
1191	}
1192
 
 
1193	return 0;
1194}
1195
1196int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1197		struct sg_table *sgt, void *buf, size_t len,
1198		enum dma_data_direction dir)
1199{
1200	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1201}
1202
1203static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1204				struct device *dev, struct sg_table *sgt,
1205				enum dma_data_direction dir,
1206				unsigned long attrs)
1207{
1208	if (sgt->orig_nents) {
1209		dma_unmap_sgtable(dev, sgt, dir, attrs);
1210		sg_free_table(sgt);
1211		sgt->orig_nents = 0;
1212		sgt->nents = 0;
1213	}
1214}
1215
1216void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217		   struct sg_table *sgt, enum dma_data_direction dir)
1218{
1219	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1220}
1221
1222static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223{
1224	struct device *tx_dev, *rx_dev;
1225	struct spi_transfer *xfer;
1226	int ret;
1227
1228	if (!ctlr->can_dma)
1229		return 0;
1230
1231	if (ctlr->dma_tx)
1232		tx_dev = ctlr->dma_tx->device->dev;
1233	else if (ctlr->dma_map_dev)
1234		tx_dev = ctlr->dma_map_dev;
1235	else
1236		tx_dev = ctlr->dev.parent;
1237
1238	if (ctlr->dma_rx)
1239		rx_dev = ctlr->dma_rx->device->dev;
1240	else if (ctlr->dma_map_dev)
1241		rx_dev = ctlr->dma_map_dev;
1242	else
1243		rx_dev = ctlr->dev.parent;
1244
1245	ret = -ENOMSG;
1246	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247		/* The sync is done before each transfer. */
1248		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1249
1250		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1251			continue;
1252
1253		if (xfer->tx_buf != NULL) {
1254			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1255						(void *)xfer->tx_buf,
1256						xfer->len, DMA_TO_DEVICE,
1257						attrs);
1258			if (ret != 0)
1259				return ret;
1260		}
1261
1262		if (xfer->rx_buf != NULL) {
1263			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1264						xfer->rx_buf, xfer->len,
1265						DMA_FROM_DEVICE, attrs);
1266			if (ret != 0) {
1267				spi_unmap_buf_attrs(ctlr, tx_dev,
1268						&xfer->tx_sg, DMA_TO_DEVICE,
1269						attrs);
1270
1271				return ret;
1272			}
1273		}
1274	}
1275	/* No transfer has been mapped, bail out with success */
1276	if (ret)
1277		return 0;
1278
1279	ctlr->cur_rx_dma_dev = rx_dev;
1280	ctlr->cur_tx_dma_dev = tx_dev;
1281	ctlr->cur_msg_mapped = true;
1282
1283	return 0;
1284}
1285
1286static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287{
1288	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1289	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1290	struct spi_transfer *xfer;
 
1291
1292	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1293		return 0;
1294
 
 
 
 
 
 
 
 
 
 
1295	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1296		/* The sync has already been done after each transfer. */
1297		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1298
1299		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1300			continue;
1301
1302		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1303				    DMA_FROM_DEVICE, attrs);
1304		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1305				    DMA_TO_DEVICE, attrs);
1306	}
1307
1308	ctlr->cur_msg_mapped = false;
1309
1310	return 0;
1311}
1312
1313static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1314				    struct spi_transfer *xfer)
 
1315{
1316	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1317	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1318
1319	if (!ctlr->cur_msg_mapped)
1320		return;
1321
1322	if (xfer->tx_sg.orig_nents)
1323		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1324	if (xfer->rx_sg.orig_nents)
1325		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1326}
1327
1328static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1329				 struct spi_transfer *xfer)
 
1330{
1331	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1332	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1333
1334	if (!ctlr->cur_msg_mapped)
1335		return;
1336
1337	if (xfer->rx_sg.orig_nents)
1338		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339	if (xfer->tx_sg.orig_nents)
1340		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1341}
1342#else /* !CONFIG_HAS_DMA */
1343static inline int __spi_map_msg(struct spi_controller *ctlr,
1344				struct spi_message *msg)
1345{
1346	return 0;
1347}
1348
1349static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1350				  struct spi_message *msg)
1351{
1352	return 0;
1353}
1354
1355static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1356				    struct spi_transfer *xfer)
1357{
1358}
1359
1360static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1361				 struct spi_transfer *xfer)
1362{
1363}
1364#endif /* !CONFIG_HAS_DMA */
1365
1366static inline int spi_unmap_msg(struct spi_controller *ctlr,
1367				struct spi_message *msg)
1368{
1369	struct spi_transfer *xfer;
1370
1371	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1372		/*
1373		 * Restore the original value of tx_buf or rx_buf if they are
1374		 * NULL.
1375		 */
1376		if (xfer->tx_buf == ctlr->dummy_tx)
1377			xfer->tx_buf = NULL;
1378		if (xfer->rx_buf == ctlr->dummy_rx)
1379			xfer->rx_buf = NULL;
1380	}
1381
1382	return __spi_unmap_msg(ctlr, msg);
1383}
1384
1385static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1386{
1387	struct spi_transfer *xfer;
1388	void *tmp;
1389	unsigned int max_tx, max_rx;
1390
1391	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1392		&& !(msg->spi->mode & SPI_3WIRE)) {
1393		max_tx = 0;
1394		max_rx = 0;
1395
1396		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1397			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1398			    !xfer->tx_buf)
1399				max_tx = max(xfer->len, max_tx);
1400			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1401			    !xfer->rx_buf)
1402				max_rx = max(xfer->len, max_rx);
1403		}
1404
1405		if (max_tx) {
1406			tmp = krealloc(ctlr->dummy_tx, max_tx,
1407				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1408			if (!tmp)
1409				return -ENOMEM;
1410			ctlr->dummy_tx = tmp;
 
1411		}
1412
1413		if (max_rx) {
1414			tmp = krealloc(ctlr->dummy_rx, max_rx,
1415				       GFP_KERNEL | GFP_DMA);
1416			if (!tmp)
1417				return -ENOMEM;
1418			ctlr->dummy_rx = tmp;
1419		}
1420
1421		if (max_tx || max_rx) {
1422			list_for_each_entry(xfer, &msg->transfers,
1423					    transfer_list) {
1424				if (!xfer->len)
1425					continue;
1426				if (!xfer->tx_buf)
1427					xfer->tx_buf = ctlr->dummy_tx;
1428				if (!xfer->rx_buf)
1429					xfer->rx_buf = ctlr->dummy_rx;
1430			}
1431		}
1432	}
1433
1434	return __spi_map_msg(ctlr, msg);
1435}
1436
1437static int spi_transfer_wait(struct spi_controller *ctlr,
1438			     struct spi_message *msg,
1439			     struct spi_transfer *xfer)
1440{
1441	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1442	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1443	u32 speed_hz = xfer->speed_hz;
1444	unsigned long long ms;
1445
1446	if (spi_controller_is_slave(ctlr)) {
1447		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1448			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1449			return -EINTR;
1450		}
1451	} else {
1452		if (!speed_hz)
1453			speed_hz = 100000;
1454
1455		/*
1456		 * For each byte we wait for 8 cycles of the SPI clock.
1457		 * Since speed is defined in Hz and we want milliseconds,
1458		 * use respective multiplier, but before the division,
1459		 * otherwise we may get 0 for short transfers.
1460		 */
1461		ms = 8LL * MSEC_PER_SEC * xfer->len;
1462		do_div(ms, speed_hz);
1463
1464		/*
1465		 * Increase it twice and add 200 ms tolerance, use
1466		 * predefined maximum in case of overflow.
1467		 */
1468		ms += ms + 200;
1469		if (ms > UINT_MAX)
1470			ms = UINT_MAX;
1471
1472		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1473						 msecs_to_jiffies(ms));
1474
1475		if (ms == 0) {
1476			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1477			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1478			dev_err(&msg->spi->dev,
1479				"SPI transfer timed out\n");
1480			return -ETIMEDOUT;
1481		}
1482
1483		if (xfer->error & SPI_TRANS_FAIL_IO)
1484			return -EIO;
1485	}
1486
1487	return 0;
1488}
1489
1490static void _spi_transfer_delay_ns(u32 ns)
1491{
1492	if (!ns)
1493		return;
1494	if (ns <= NSEC_PER_USEC) {
1495		ndelay(ns);
1496	} else {
1497		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1498
1499		if (us <= 10)
1500			udelay(us);
1501		else
1502			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1503	}
1504}
1505
1506int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1507{
1508	u32 delay = _delay->value;
1509	u32 unit = _delay->unit;
1510	u32 hz;
1511
1512	if (!delay)
1513		return 0;
1514
1515	switch (unit) {
1516	case SPI_DELAY_UNIT_USECS:
1517		delay *= NSEC_PER_USEC;
1518		break;
1519	case SPI_DELAY_UNIT_NSECS:
1520		/* Nothing to do here */
1521		break;
1522	case SPI_DELAY_UNIT_SCK:
1523		/* Clock cycles need to be obtained from spi_transfer */
1524		if (!xfer)
1525			return -EINVAL;
1526		/*
1527		 * If there is unknown effective speed, approximate it
1528		 * by underestimating with half of the requested Hz.
1529		 */
1530		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1531		if (!hz)
1532			return -EINVAL;
1533
1534		/* Convert delay to nanoseconds */
1535		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1536		break;
1537	default:
1538		return -EINVAL;
1539	}
1540
1541	return delay;
1542}
1543EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1544
1545int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1546{
1547	int delay;
1548
1549	might_sleep();
1550
1551	if (!_delay)
1552		return -EINVAL;
1553
1554	delay = spi_delay_to_ns(_delay, xfer);
1555	if (delay < 0)
1556		return delay;
1557
1558	_spi_transfer_delay_ns(delay);
1559
1560	return 0;
1561}
1562EXPORT_SYMBOL_GPL(spi_delay_exec);
1563
1564static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1565					  struct spi_transfer *xfer)
1566{
1567	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1568	u32 delay = xfer->cs_change_delay.value;
1569	u32 unit = xfer->cs_change_delay.unit;
1570	int ret;
1571
1572	/* Return early on "fast" mode - for everything but USECS */
1573	if (!delay) {
1574		if (unit == SPI_DELAY_UNIT_USECS)
1575			_spi_transfer_delay_ns(default_delay_ns);
1576		return;
1577	}
1578
1579	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1580	if (ret) {
1581		dev_err_once(&msg->spi->dev,
1582			     "Use of unsupported delay unit %i, using default of %luus\n",
1583			     unit, default_delay_ns / NSEC_PER_USEC);
1584		_spi_transfer_delay_ns(default_delay_ns);
1585	}
1586}
1587
1588void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1589						  struct spi_transfer *xfer)
1590{
1591	_spi_transfer_cs_change_delay(msg, xfer);
1592}
1593EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1594
1595/*
1596 * spi_transfer_one_message - Default implementation of transfer_one_message()
1597 *
1598 * This is a standard implementation of transfer_one_message() for
1599 * drivers which implement a transfer_one() operation.  It provides
1600 * standard handling of delays and chip select management.
1601 */
1602static int spi_transfer_one_message(struct spi_controller *ctlr,
1603				    struct spi_message *msg)
1604{
1605	struct spi_transfer *xfer;
1606	bool keep_cs = false;
1607	int ret = 0;
1608	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1609	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
 
1610
1611	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1612	spi_set_cs(msg->spi, !xfer->cs_off, false);
1613
1614	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1615	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1616
1617	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1618		trace_spi_transfer_start(msg, xfer);
1619
1620		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1621		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1622
1623		if (!ctlr->ptp_sts_supported) {
1624			xfer->ptp_sts_word_pre = 0;
1625			ptp_read_system_prets(xfer->ptp_sts);
1626		}
1627
1628		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1629			reinit_completion(&ctlr->xfer_completion);
1630
1631fallback_pio:
1632			spi_dma_sync_for_device(ctlr, xfer);
1633			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1634			if (ret < 0) {
1635				spi_dma_sync_for_cpu(ctlr, xfer);
1636
1637				if (ctlr->cur_msg_mapped &&
1638				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1639					__spi_unmap_msg(ctlr, msg);
1640					ctlr->fallback = true;
1641					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1642					goto fallback_pio;
1643				}
1644
1645				SPI_STATISTICS_INCREMENT_FIELD(statm,
1646							       errors);
1647				SPI_STATISTICS_INCREMENT_FIELD(stats,
1648							       errors);
1649				dev_err(&msg->spi->dev,
1650					"SPI transfer failed: %d\n", ret);
1651				goto out;
1652			}
1653
1654			if (ret > 0) {
1655				ret = spi_transfer_wait(ctlr, msg, xfer);
1656				if (ret < 0)
1657					msg->status = ret;
 
 
 
 
 
 
 
1658			}
1659
1660			spi_dma_sync_for_cpu(ctlr, xfer);
 
 
 
 
 
 
 
 
1661		} else {
1662			if (xfer->len)
1663				dev_err(&msg->spi->dev,
1664					"Bufferless transfer has length %u\n",
1665					xfer->len);
1666		}
1667
1668		if (!ctlr->ptp_sts_supported) {
1669			ptp_read_system_postts(xfer->ptp_sts);
1670			xfer->ptp_sts_word_post = xfer->len;
1671		}
1672
1673		trace_spi_transfer_stop(msg, xfer);
1674
1675		if (msg->status != -EINPROGRESS)
1676			goto out;
1677
1678		spi_transfer_delay_exec(xfer);
 
 
 
 
 
 
 
1679
1680		if (xfer->cs_change) {
1681			if (list_is_last(&xfer->transfer_list,
1682					 &msg->transfers)) {
1683				keep_cs = true;
1684			} else {
1685				if (!xfer->cs_off)
1686					spi_set_cs(msg->spi, false, false);
1687				_spi_transfer_cs_change_delay(msg, xfer);
1688				if (!list_next_entry(xfer, transfer_list)->cs_off)
1689					spi_set_cs(msg->spi, true, false);
1690			}
1691		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1692			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1693			spi_set_cs(msg->spi, xfer->cs_off, false);
1694		}
1695
1696		msg->actual_length += xfer->len;
1697	}
1698
1699out:
1700	if (ret != 0 || !keep_cs)
1701		spi_set_cs(msg->spi, false, false);
1702
1703	if (msg->status == -EINPROGRESS)
1704		msg->status = ret;
1705
1706	if (msg->status && ctlr->handle_err)
1707		ctlr->handle_err(ctlr, msg);
1708
 
 
1709	spi_finalize_current_message(ctlr);
1710
1711	return ret;
1712}
1713
1714/**
1715 * spi_finalize_current_transfer - report completion of a transfer
1716 * @ctlr: the controller reporting completion
1717 *
1718 * Called by SPI drivers using the core transfer_one_message()
1719 * implementation to notify it that the current interrupt driven
1720 * transfer has finished and the next one may be scheduled.
1721 */
1722void spi_finalize_current_transfer(struct spi_controller *ctlr)
1723{
1724	complete(&ctlr->xfer_completion);
1725}
1726EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1727
1728static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1729{
1730	if (ctlr->auto_runtime_pm) {
1731		pm_runtime_mark_last_busy(ctlr->dev.parent);
1732		pm_runtime_put_autosuspend(ctlr->dev.parent);
1733	}
1734}
1735
1736static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1737		struct spi_message *msg, bool was_busy)
1738{
1739	struct spi_transfer *xfer;
1740	int ret;
1741
1742	if (!was_busy && ctlr->auto_runtime_pm) {
1743		ret = pm_runtime_get_sync(ctlr->dev.parent);
1744		if (ret < 0) {
1745			pm_runtime_put_noidle(ctlr->dev.parent);
1746			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1747				ret);
1748
1749			msg->status = ret;
1750			spi_finalize_current_message(ctlr);
1751
1752			return ret;
1753		}
1754	}
1755
1756	if (!was_busy)
1757		trace_spi_controller_busy(ctlr);
1758
1759	if (!was_busy && ctlr->prepare_transfer_hardware) {
1760		ret = ctlr->prepare_transfer_hardware(ctlr);
1761		if (ret) {
1762			dev_err(&ctlr->dev,
1763				"failed to prepare transfer hardware: %d\n",
1764				ret);
1765
1766			if (ctlr->auto_runtime_pm)
1767				pm_runtime_put(ctlr->dev.parent);
1768
1769			msg->status = ret;
1770			spi_finalize_current_message(ctlr);
1771
1772			return ret;
1773		}
1774	}
1775
1776	trace_spi_message_start(msg);
1777
1778	if (ctlr->prepare_message) {
1779		ret = ctlr->prepare_message(ctlr, msg);
1780		if (ret) {
1781			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1782				ret);
1783			msg->status = ret;
1784			spi_finalize_current_message(ctlr);
1785			return ret;
1786		}
1787		msg->prepared = true;
1788	}
1789
1790	ret = spi_map_msg(ctlr, msg);
1791	if (ret) {
1792		msg->status = ret;
1793		spi_finalize_current_message(ctlr);
1794		return ret;
1795	}
1796
1797	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1798		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1799			xfer->ptp_sts_word_pre = 0;
1800			ptp_read_system_prets(xfer->ptp_sts);
1801		}
1802	}
1803
1804	/*
1805	 * Drivers implementation of transfer_one_message() must arrange for
1806	 * spi_finalize_current_message() to get called. Most drivers will do
1807	 * this in the calling context, but some don't. For those cases, a
1808	 * completion is used to guarantee that this function does not return
1809	 * until spi_finalize_current_message() is done accessing
1810	 * ctlr->cur_msg.
1811	 * Use of the following two flags enable to opportunistically skip the
1812	 * use of the completion since its use involves expensive spin locks.
1813	 * In case of a race with the context that calls
1814	 * spi_finalize_current_message() the completion will always be used,
1815	 * due to strict ordering of these flags using barriers.
1816	 */
1817	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1818	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1819	reinit_completion(&ctlr->cur_msg_completion);
1820	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1821
1822	ret = ctlr->transfer_one_message(ctlr, msg);
1823	if (ret) {
1824		dev_err(&ctlr->dev,
1825			"failed to transfer one message from queue\n");
1826		return ret;
1827	}
1828
1829	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1830	smp_mb(); /* See spi_finalize_current_message()... */
1831	if (READ_ONCE(ctlr->cur_msg_incomplete))
1832		wait_for_completion(&ctlr->cur_msg_completion);
1833
1834	return 0;
1835}
1836
1837/**
1838 * __spi_pump_messages - function which processes SPI message queue
1839 * @ctlr: controller to process queue for
1840 * @in_kthread: true if we are in the context of the message pump thread
1841 *
1842 * This function checks if there is any SPI message in the queue that
1843 * needs processing and if so call out to the driver to initialize hardware
1844 * and transfer each message.
1845 *
1846 * Note that it is called both from the kthread itself and also from
1847 * inside spi_sync(); the queue extraction handling at the top of the
1848 * function should deal with this safely.
1849 */
1850static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1851{
1852	struct spi_message *msg;
1853	bool was_busy = false;
1854	unsigned long flags;
1855	int ret;
1856
1857	/* Take the I/O mutex */
1858	mutex_lock(&ctlr->io_mutex);
1859
1860	/* Lock queue */
1861	spin_lock_irqsave(&ctlr->queue_lock, flags);
1862
1863	/* Make sure we are not already running a message */
1864	if (ctlr->cur_msg)
1865		goto out_unlock;
 
 
 
 
 
 
 
 
 
1866
1867	/* Check if the queue is idle */
1868	if (list_empty(&ctlr->queue) || !ctlr->running) {
1869		if (!ctlr->busy)
1870			goto out_unlock;
 
 
1871
1872		/* Defer any non-atomic teardown to the thread */
1873		if (!in_kthread) {
1874			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1875			    !ctlr->unprepare_transfer_hardware) {
1876				spi_idle_runtime_pm(ctlr);
1877				ctlr->busy = false;
1878				ctlr->queue_empty = true;
1879				trace_spi_controller_idle(ctlr);
1880			} else {
1881				kthread_queue_work(ctlr->kworker,
1882						   &ctlr->pump_messages);
1883			}
1884			goto out_unlock;
1885		}
1886
1887		ctlr->busy = false;
 
1888		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1889
1890		kfree(ctlr->dummy_rx);
1891		ctlr->dummy_rx = NULL;
1892		kfree(ctlr->dummy_tx);
1893		ctlr->dummy_tx = NULL;
1894		if (ctlr->unprepare_transfer_hardware &&
1895		    ctlr->unprepare_transfer_hardware(ctlr))
1896			dev_err(&ctlr->dev,
1897				"failed to unprepare transfer hardware\n");
1898		spi_idle_runtime_pm(ctlr);
 
 
 
1899		trace_spi_controller_idle(ctlr);
1900
1901		spin_lock_irqsave(&ctlr->queue_lock, flags);
1902		ctlr->queue_empty = true;
1903		goto out_unlock;
 
1904	}
1905
1906	/* Extract head of queue */
1907	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1908	ctlr->cur_msg = msg;
1909
1910	list_del_init(&msg->queue);
1911	if (ctlr->busy)
1912		was_busy = true;
1913	else
1914		ctlr->busy = true;
1915	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1916
1917	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1918	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919
1920	ctlr->cur_msg = NULL;
1921	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922
 
1923	mutex_unlock(&ctlr->io_mutex);
1924
1925	/* Prod the scheduler in case transfer_one() was busy waiting */
1926	if (!ret)
1927		cond_resched();
1928	return;
1929
1930out_unlock:
1931	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1932	mutex_unlock(&ctlr->io_mutex);
1933}
1934
1935/**
1936 * spi_pump_messages - kthread work function which processes spi message queue
1937 * @work: pointer to kthread work struct contained in the controller struct
1938 */
1939static void spi_pump_messages(struct kthread_work *work)
1940{
1941	struct spi_controller *ctlr =
1942		container_of(work, struct spi_controller, pump_messages);
1943
1944	__spi_pump_messages(ctlr, true);
1945}
1946
1947/**
1948 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1949 * @ctlr: Pointer to the spi_controller structure of the driver
1950 * @xfer: Pointer to the transfer being timestamped
1951 * @progress: How many words (not bytes) have been transferred so far
1952 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1953 *	      transfer, for less jitter in time measurement. Only compatible
1954 *	      with PIO drivers. If true, must follow up with
1955 *	      spi_take_timestamp_post or otherwise system will crash.
1956 *	      WARNING: for fully predictable results, the CPU frequency must
1957 *	      also be under control (governor).
1958 *
1959 * This is a helper for drivers to collect the beginning of the TX timestamp
1960 * for the requested byte from the SPI transfer. The frequency with which this
1961 * function must be called (once per word, once for the whole transfer, once
1962 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1963 * greater than or equal to the requested byte at the time of the call. The
1964 * timestamp is only taken once, at the first such call. It is assumed that
1965 * the driver advances its @tx buffer pointer monotonically.
1966 */
1967void spi_take_timestamp_pre(struct spi_controller *ctlr,
1968			    struct spi_transfer *xfer,
1969			    size_t progress, bool irqs_off)
1970{
1971	if (!xfer->ptp_sts)
1972		return;
1973
1974	if (xfer->timestamped)
1975		return;
1976
1977	if (progress > xfer->ptp_sts_word_pre)
1978		return;
1979
1980	/* Capture the resolution of the timestamp */
1981	xfer->ptp_sts_word_pre = progress;
1982
1983	if (irqs_off) {
1984		local_irq_save(ctlr->irq_flags);
1985		preempt_disable();
1986	}
1987
1988	ptp_read_system_prets(xfer->ptp_sts);
1989}
1990EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1991
1992/**
1993 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1994 * @ctlr: Pointer to the spi_controller structure of the driver
1995 * @xfer: Pointer to the transfer being timestamped
1996 * @progress: How many words (not bytes) have been transferred so far
1997 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1998 *
1999 * This is a helper for drivers to collect the end of the TX timestamp for
2000 * the requested byte from the SPI transfer. Can be called with an arbitrary
2001 * frequency: only the first call where @tx exceeds or is equal to the
2002 * requested word will be timestamped.
2003 */
2004void spi_take_timestamp_post(struct spi_controller *ctlr,
2005			     struct spi_transfer *xfer,
2006			     size_t progress, bool irqs_off)
2007{
2008	if (!xfer->ptp_sts)
2009		return;
2010
2011	if (xfer->timestamped)
2012		return;
2013
2014	if (progress < xfer->ptp_sts_word_post)
2015		return;
2016
2017	ptp_read_system_postts(xfer->ptp_sts);
2018
2019	if (irqs_off) {
2020		local_irq_restore(ctlr->irq_flags);
2021		preempt_enable();
2022	}
2023
2024	/* Capture the resolution of the timestamp */
2025	xfer->ptp_sts_word_post = progress;
2026
2027	xfer->timestamped = 1;
2028}
2029EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2030
2031/**
2032 * spi_set_thread_rt - set the controller to pump at realtime priority
2033 * @ctlr: controller to boost priority of
2034 *
2035 * This can be called because the controller requested realtime priority
2036 * (by setting the ->rt value before calling spi_register_controller()) or
2037 * because a device on the bus said that its transfers needed realtime
2038 * priority.
2039 *
2040 * NOTE: at the moment if any device on a bus says it needs realtime then
2041 * the thread will be at realtime priority for all transfers on that
2042 * controller.  If this eventually becomes a problem we may see if we can
2043 * find a way to boost the priority only temporarily during relevant
2044 * transfers.
2045 */
2046static void spi_set_thread_rt(struct spi_controller *ctlr)
2047{
2048	dev_info(&ctlr->dev,
2049		"will run message pump with realtime priority\n");
2050	sched_set_fifo(ctlr->kworker->task);
2051}
2052
2053static int spi_init_queue(struct spi_controller *ctlr)
2054{
2055	ctlr->running = false;
2056	ctlr->busy = false;
2057	ctlr->queue_empty = true;
2058
2059	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2060	if (IS_ERR(ctlr->kworker)) {
2061		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2062		return PTR_ERR(ctlr->kworker);
 
 
2063	}
2064
2065	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2066
2067	/*
2068	 * Controller config will indicate if this controller should run the
2069	 * message pump with high (realtime) priority to reduce the transfer
2070	 * latency on the bus by minimising the delay between a transfer
2071	 * request and the scheduling of the message pump thread. Without this
2072	 * setting the message pump thread will remain at default priority.
2073	 */
2074	if (ctlr->rt)
2075		spi_set_thread_rt(ctlr);
 
 
 
2076
2077	return 0;
2078}
2079
2080/**
2081 * spi_get_next_queued_message() - called by driver to check for queued
2082 * messages
2083 * @ctlr: the controller to check for queued messages
2084 *
2085 * If there are more messages in the queue, the next message is returned from
2086 * this call.
2087 *
2088 * Return: the next message in the queue, else NULL if the queue is empty.
2089 */
2090struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2091{
2092	struct spi_message *next;
2093	unsigned long flags;
2094
2095	/* Get a pointer to the next message, if any */
2096	spin_lock_irqsave(&ctlr->queue_lock, flags);
2097	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2098					queue);
2099	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2100
2101	return next;
2102}
2103EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2104
2105/*
2106 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2107 *                            and spi_maybe_unoptimize_message()
2108 * @msg: the message to unoptimize
2109 *
2110 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2111 * core should use spi_maybe_unoptimize_message() rather than calling this
2112 * function directly.
2113 *
2114 * It is not valid to call this on a message that is not currently optimized.
2115 */
2116static void __spi_unoptimize_message(struct spi_message *msg)
2117{
2118	struct spi_controller *ctlr = msg->spi->controller;
2119
2120	if (ctlr->unoptimize_message)
2121		ctlr->unoptimize_message(msg);
2122
2123	spi_res_release(ctlr, msg);
2124
2125	msg->optimized = false;
2126	msg->opt_state = NULL;
2127}
2128
2129/*
2130 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2131 * @msg: the message to unoptimize
2132 *
2133 * This function is used to unoptimize a message if and only if it was
2134 * optimized by the core (via spi_maybe_optimize_message()).
2135 */
2136static void spi_maybe_unoptimize_message(struct spi_message *msg)
2137{
2138	if (!msg->pre_optimized && msg->optimized)
2139		__spi_unoptimize_message(msg);
2140}
2141
2142/**
2143 * spi_finalize_current_message() - the current message is complete
2144 * @ctlr: the controller to return the message to
2145 *
2146 * Called by the driver to notify the core that the message in the front of the
2147 * queue is complete and can be removed from the queue.
2148 */
2149void spi_finalize_current_message(struct spi_controller *ctlr)
2150{
2151	struct spi_transfer *xfer;
2152	struct spi_message *mesg;
 
2153	int ret;
2154
 
2155	mesg = ctlr->cur_msg;
2156
2157	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2158		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2159			ptp_read_system_postts(xfer->ptp_sts);
2160			xfer->ptp_sts_word_post = xfer->len;
2161		}
2162	}
2163
2164	if (unlikely(ctlr->ptp_sts_supported))
2165		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2166			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2167
2168	spi_unmap_msg(ctlr, mesg);
2169
2170	if (mesg->prepared && ctlr->unprepare_message) {
2171		ret = ctlr->unprepare_message(ctlr, mesg);
2172		if (ret) {
2173			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2174				ret);
2175		}
2176	}
2177
2178	mesg->prepared = false;
2179
2180	spi_maybe_unoptimize_message(mesg);
2181
2182	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2183	smp_mb(); /* See __spi_pump_transfer_message()... */
2184	if (READ_ONCE(ctlr->cur_msg_need_completion))
2185		complete(&ctlr->cur_msg_completion);
2186
2187	trace_spi_message_done(mesg);
2188
2189	mesg->state = NULL;
2190	if (mesg->complete)
2191		mesg->complete(mesg->context);
2192}
2193EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2194
2195static int spi_start_queue(struct spi_controller *ctlr)
2196{
2197	unsigned long flags;
2198
2199	spin_lock_irqsave(&ctlr->queue_lock, flags);
2200
2201	if (ctlr->running || ctlr->busy) {
2202		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2203		return -EBUSY;
2204	}
2205
2206	ctlr->running = true;
2207	ctlr->cur_msg = NULL;
2208	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2209
2210	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2211
2212	return 0;
2213}
2214
2215static int spi_stop_queue(struct spi_controller *ctlr)
2216{
2217	unsigned long flags;
2218	unsigned limit = 500;
2219	int ret = 0;
2220
2221	spin_lock_irqsave(&ctlr->queue_lock, flags);
2222
2223	/*
2224	 * This is a bit lame, but is optimized for the common execution path.
2225	 * A wait_queue on the ctlr->busy could be used, but then the common
2226	 * execution path (pump_messages) would be required to call wake_up or
2227	 * friends on every SPI message. Do this instead.
2228	 */
2229	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2230		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2231		usleep_range(10000, 11000);
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233	}
2234
2235	if (!list_empty(&ctlr->queue) || ctlr->busy)
2236		ret = -EBUSY;
2237	else
2238		ctlr->running = false;
2239
2240	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2241
 
 
 
 
2242	return ret;
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
 
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
 
 
2379	if (of_property_read_bool(nc, "spi-3wire"))
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_slave(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
 
 
 
 
2462		return rc;
2463	}
2464	if ((of_property_read_bool(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
 
 
 
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc = 0;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
 
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
 
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
 
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
2879	if (spi->irq < 0)
2880		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2881
2882	acpi_device_set_enumerated(adev);
2883
2884	adev->power.flags.ignore_parent = true;
2885	if (spi_add_device(spi)) {
2886		adev->power.flags.ignore_parent = false;
2887		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2888			dev_name(&adev->dev));
2889		spi_dev_put(spi);
2890	}
2891
2892	return AE_OK;
2893}
2894
2895static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2896				       void *data, void **return_value)
2897{
2898	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2899	struct spi_controller *ctlr = data;
 
2900
2901	if (!adev)
2902		return AE_OK;
2903
2904	return acpi_register_spi_device(ctlr, adev);
2905}
2906
2907#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2908
2909static void acpi_register_spi_devices(struct spi_controller *ctlr)
2910{
2911	acpi_status status;
2912	acpi_handle handle;
2913
2914	handle = ACPI_HANDLE(ctlr->dev.parent);
2915	if (!handle)
2916		return;
2917
2918	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2919				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2920				     acpi_spi_add_device, NULL, ctlr, NULL);
2921	if (ACPI_FAILURE(status))
2922		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2923}
2924#else
2925static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2926#endif /* CONFIG_ACPI */
2927
2928static void spi_controller_release(struct device *dev)
2929{
2930	struct spi_controller *ctlr;
2931
2932	ctlr = container_of(dev, struct spi_controller, dev);
2933	kfree(ctlr);
2934}
2935
2936static struct class spi_master_class = {
2937	.name		= "spi_master",
 
2938	.dev_release	= spi_controller_release,
2939	.dev_groups	= spi_master_groups,
2940};
2941
2942#ifdef CONFIG_SPI_SLAVE
2943/**
2944 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2945 *		     controller
2946 * @spi: device used for the current transfer
2947 */
2948int spi_slave_abort(struct spi_device *spi)
2949{
2950	struct spi_controller *ctlr = spi->controller;
2951
2952	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2953		return ctlr->slave_abort(ctlr);
2954
2955	return -ENOTSUPP;
2956}
2957EXPORT_SYMBOL_GPL(spi_slave_abort);
2958
2959int spi_target_abort(struct spi_device *spi)
2960{
2961	struct spi_controller *ctlr = spi->controller;
2962
2963	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2964		return ctlr->target_abort(ctlr);
2965
2966	return -ENOTSUPP;
2967}
2968EXPORT_SYMBOL_GPL(spi_target_abort);
2969
2970static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2971			  char *buf)
2972{
2973	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2974						   dev);
2975	struct device *child;
2976
2977	child = device_find_any_child(&ctlr->dev);
2978	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
 
2979}
2980
2981static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2982			   const char *buf, size_t count)
 
2983{
2984	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2985						   dev);
2986	struct spi_device *spi;
2987	struct device *child;
2988	char name[32];
2989	int rc;
2990
2991	rc = sscanf(buf, "%31s", name);
2992	if (rc != 1 || !name[0])
2993		return -EINVAL;
2994
2995	child = device_find_any_child(&ctlr->dev);
2996	if (child) {
2997		/* Remove registered slave */
2998		device_unregister(child);
2999		put_device(child);
3000	}
3001
3002	if (strcmp(name, "(null)")) {
3003		/* Register new slave */
3004		spi = spi_alloc_device(ctlr);
3005		if (!spi)
3006			return -ENOMEM;
3007
3008		strscpy(spi->modalias, name, sizeof(spi->modalias));
3009
3010		rc = spi_add_device(spi);
3011		if (rc) {
3012			spi_dev_put(spi);
3013			return rc;
3014		}
3015	}
3016
3017	return count;
3018}
3019
3020static DEVICE_ATTR_RW(slave);
3021
3022static struct attribute *spi_slave_attrs[] = {
3023	&dev_attr_slave.attr,
3024	NULL,
3025};
3026
3027static const struct attribute_group spi_slave_group = {
3028	.attrs = spi_slave_attrs,
3029};
3030
3031static const struct attribute_group *spi_slave_groups[] = {
3032	&spi_controller_statistics_group,
3033	&spi_slave_group,
3034	NULL,
3035};
3036
3037static struct class spi_slave_class = {
3038	.name		= "spi_slave",
 
3039	.dev_release	= spi_controller_release,
3040	.dev_groups	= spi_slave_groups,
3041};
3042#else
3043extern struct class spi_slave_class;	/* dummy */
3044#endif
3045
3046/**
3047 * __spi_alloc_controller - allocate an SPI master or slave controller
3048 * @dev: the controller, possibly using the platform_bus
3049 * @size: how much zeroed driver-private data to allocate; the pointer to this
3050 *	memory is in the driver_data field of the returned device, accessible
3051 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3052 *	drivers granting DMA access to portions of their private data need to
3053 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3054 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3055 *	slave (true) controller
3056 * Context: can sleep
3057 *
3058 * This call is used only by SPI controller drivers, which are the
3059 * only ones directly touching chip registers.  It's how they allocate
3060 * an spi_controller structure, prior to calling spi_register_controller().
3061 *
3062 * This must be called from context that can sleep.
3063 *
3064 * The caller is responsible for assigning the bus number and initializing the
3065 * controller's methods before calling spi_register_controller(); and (after
3066 * errors adding the device) calling spi_controller_put() to prevent a memory
3067 * leak.
3068 *
3069 * Return: the SPI controller structure on success, else NULL.
3070 */
3071struct spi_controller *__spi_alloc_controller(struct device *dev,
3072					      unsigned int size, bool slave)
3073{
3074	struct spi_controller	*ctlr;
3075	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3076
3077	if (!dev)
3078		return NULL;
3079
3080	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3081	if (!ctlr)
3082		return NULL;
3083
3084	device_initialize(&ctlr->dev);
3085	INIT_LIST_HEAD(&ctlr->queue);
3086	spin_lock_init(&ctlr->queue_lock);
3087	spin_lock_init(&ctlr->bus_lock_spinlock);
3088	mutex_init(&ctlr->bus_lock_mutex);
3089	mutex_init(&ctlr->io_mutex);
3090	mutex_init(&ctlr->add_lock);
3091	ctlr->bus_num = -1;
3092	ctlr->num_chipselect = 1;
3093	ctlr->slave = slave;
3094	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3095		ctlr->dev.class = &spi_slave_class;
3096	else
3097		ctlr->dev.class = &spi_master_class;
3098	ctlr->dev.parent = dev;
3099	pm_suspend_ignore_children(&ctlr->dev, true);
3100	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3101
3102	return ctlr;
3103}
3104EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3105
3106static void devm_spi_release_controller(struct device *dev, void *ctlr)
 
3107{
3108	spi_controller_put(*(struct spi_controller **)ctlr);
3109}
3110
3111/**
3112 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3113 * @dev: physical device of SPI controller
3114 * @size: how much zeroed driver-private data to allocate
3115 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3116 * Context: can sleep
3117 *
3118 * Allocate an SPI controller and automatically release a reference on it
3119 * when @dev is unbound from its driver.  Drivers are thus relieved from
3120 * having to call spi_controller_put().
3121 *
3122 * The arguments to this function are identical to __spi_alloc_controller().
3123 *
3124 * Return: the SPI controller structure on success, else NULL.
3125 */
3126struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3127						   unsigned int size,
3128						   bool slave)
3129{
3130	struct spi_controller **ptr, *ctlr;
3131
3132	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3133			   GFP_KERNEL);
3134	if (!ptr)
3135		return NULL;
3136
3137	ctlr = __spi_alloc_controller(dev, size, slave);
3138	if (ctlr) {
3139		ctlr->devm_allocated = true;
3140		*ptr = ctlr;
3141		devres_add(dev, ptr);
3142	} else {
3143		devres_free(ptr);
3144	}
3145
3146	return ctlr;
3147}
3148EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3149
3150/**
3151 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3152 * @ctlr: The SPI master to grab GPIO descriptors for
3153 */
3154static int spi_get_gpio_descs(struct spi_controller *ctlr)
3155{
3156	int nb, i;
3157	struct gpio_desc **cs;
3158	struct device *dev = &ctlr->dev;
3159	unsigned long native_cs_mask = 0;
3160	unsigned int num_cs_gpios = 0;
3161
3162	nb = gpiod_count(dev, "cs");
3163	if (nb < 0) {
3164		/* No GPIOs at all is fine, else return the error */
3165		if (nb == -ENOENT)
3166			return 0;
3167		return nb;
3168	}
3169
3170	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
 
 
3171
3172	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3173			  GFP_KERNEL);
3174	if (!cs)
3175		return -ENOMEM;
3176	ctlr->cs_gpiods = cs;
3177
3178	for (i = 0; i < nb; i++) {
3179		/*
3180		 * Most chipselects are active low, the inverted
3181		 * semantics are handled by special quirks in gpiolib,
3182		 * so initializing them GPIOD_OUT_LOW here means
3183		 * "unasserted", in most cases this will drive the physical
3184		 * line high.
3185		 */
3186		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3187						      GPIOD_OUT_LOW);
3188		if (IS_ERR(cs[i]))
3189			return PTR_ERR(cs[i]);
3190
3191		if (cs[i]) {
3192			/*
3193			 * If we find a CS GPIO, name it after the device and
3194			 * chip select line.
3195			 */
3196			char *gpioname;
3197
3198			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3199						  dev_name(dev), i);
3200			if (!gpioname)
3201				return -ENOMEM;
3202			gpiod_set_consumer_name(cs[i], gpioname);
3203			num_cs_gpios++;
3204			continue;
3205		}
3206
3207		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3208			dev_err(dev, "Invalid native chip select %d\n", i);
3209			return -EINVAL;
3210		}
3211		native_cs_mask |= BIT(i);
3212	}
3213
3214	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3215
3216	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3217	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3218		dev_err(dev, "No unused native chip select available\n");
3219		return -EINVAL;
3220	}
3221
3222	return 0;
3223}
3224
3225static int spi_controller_check_ops(struct spi_controller *ctlr)
3226{
3227	/*
3228	 * The controller may implement only the high-level SPI-memory like
3229	 * operations if it does not support regular SPI transfers, and this is
3230	 * valid use case.
3231	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3232	 * one of the ->transfer_xxx() method be implemented.
3233	 */
3234	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3235		if (!ctlr->transfer && !ctlr->transfer_one &&
3236		   !ctlr->transfer_one_message) {
3237			return -EINVAL;
3238		}
3239	}
3240
3241	return 0;
3242}
3243
3244/* Allocate dynamic bus number using Linux idr */
3245static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3246{
3247	int id;
3248
3249	mutex_lock(&board_lock);
3250	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3251	mutex_unlock(&board_lock);
3252	if (WARN(id < 0, "couldn't get idr"))
3253		return id == -ENOSPC ? -EBUSY : id;
3254	ctlr->bus_num = id;
3255	return 0;
3256}
 
3257
3258/**
3259 * spi_register_controller - register SPI master or slave controller
3260 * @ctlr: initialized master, originally from spi_alloc_master() or
3261 *	spi_alloc_slave()
3262 * Context: can sleep
3263 *
3264 * SPI controllers connect to their drivers using some non-SPI bus,
3265 * such as the platform bus.  The final stage of probe() in that code
3266 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3267 *
3268 * SPI controllers use board specific (often SOC specific) bus numbers,
3269 * and board-specific addressing for SPI devices combines those numbers
3270 * with chip select numbers.  Since SPI does not directly support dynamic
3271 * device identification, boards need configuration tables telling which
3272 * chip is at which address.
3273 *
3274 * This must be called from context that can sleep.  It returns zero on
3275 * success, else a negative error code (dropping the controller's refcount).
3276 * After a successful return, the caller is responsible for calling
3277 * spi_unregister_controller().
3278 *
3279 * Return: zero on success, else a negative error code.
3280 */
3281int spi_register_controller(struct spi_controller *ctlr)
3282{
3283	struct device		*dev = ctlr->dev.parent;
3284	struct boardinfo	*bi;
3285	int			first_dynamic;
3286	int			status;
3287	int			idx;
3288
3289	if (!dev)
3290		return -ENODEV;
3291
3292	/*
3293	 * Make sure all necessary hooks are implemented before registering
3294	 * the SPI controller.
3295	 */
3296	status = spi_controller_check_ops(ctlr);
3297	if (status)
3298		return status;
3299
3300	if (ctlr->bus_num < 0)
3301		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3302	if (ctlr->bus_num >= 0) {
3303		/* Devices with a fixed bus num must check-in with the num */
3304		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3305		if (status)
3306			return status;
3307	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3308	if (ctlr->bus_num < 0) {
3309		first_dynamic = of_alias_get_highest_id("spi");
3310		if (first_dynamic < 0)
3311			first_dynamic = 0;
3312		else
3313			first_dynamic++;
3314
3315		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3316		if (status)
3317			return status;
 
 
 
 
3318	}
 
 
 
 
 
3319	ctlr->bus_lock_flag = 0;
3320	init_completion(&ctlr->xfer_completion);
3321	init_completion(&ctlr->cur_msg_completion);
3322	if (!ctlr->max_dma_len)
3323		ctlr->max_dma_len = INT_MAX;
3324
3325	/*
3326	 * Register the device, then userspace will see it.
3327	 * Registration fails if the bus ID is in use.
3328	 */
3329	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3330
3331	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3332		status = spi_get_gpio_descs(ctlr);
3333		if (status)
3334			goto free_bus_id;
3335		/*
3336		 * A controller using GPIO descriptors always
3337		 * supports SPI_CS_HIGH if need be.
3338		 */
3339		ctlr->mode_bits |= SPI_CS_HIGH;
3340	}
3341
3342	/*
3343	 * Even if it's just one always-selected device, there must
3344	 * be at least one chipselect.
3345	 */
3346	if (!ctlr->num_chipselect) {
3347		status = -EINVAL;
3348		goto free_bus_id;
3349	}
3350
3351	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3352	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3353		ctlr->last_cs[idx] = SPI_INVALID_CS;
3354
3355	status = device_add(&ctlr->dev);
3356	if (status < 0)
3357		goto free_bus_id;
3358	dev_dbg(dev, "registered %s %s\n",
3359			spi_controller_is_slave(ctlr) ? "slave" : "master",
3360			dev_name(&ctlr->dev));
3361
3362	/*
3363	 * If we're using a queued driver, start the queue. Note that we don't
3364	 * need the queueing logic if the driver is only supporting high-level
3365	 * memory operations.
3366	 */
3367	if (ctlr->transfer) {
3368		dev_info(dev, "controller is unqueued, this is deprecated\n");
3369	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3370		status = spi_controller_initialize_queue(ctlr);
3371		if (status) {
3372			device_del(&ctlr->dev);
3373			goto free_bus_id;
 
 
 
 
3374		}
3375	}
3376	/* Add statistics */
3377	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3378	if (!ctlr->pcpu_statistics) {
3379		dev_err(dev, "Error allocating per-cpu statistics\n");
3380		status = -ENOMEM;
3381		goto destroy_queue;
3382	}
3383
3384	mutex_lock(&board_lock);
3385	list_add_tail(&ctlr->list, &spi_controller_list);
3386	list_for_each_entry(bi, &board_list, list)
3387		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3388	mutex_unlock(&board_lock);
3389
3390	/* Register devices from the device tree and ACPI */
3391	of_register_spi_devices(ctlr);
3392	acpi_register_spi_devices(ctlr);
3393	return status;
3394
3395destroy_queue:
3396	spi_destroy_queue(ctlr);
3397free_bus_id:
3398	mutex_lock(&board_lock);
3399	idr_remove(&spi_master_idr, ctlr->bus_num);
3400	mutex_unlock(&board_lock);
3401	return status;
3402}
3403EXPORT_SYMBOL_GPL(spi_register_controller);
3404
3405static void devm_spi_unregister(struct device *dev, void *res)
3406{
3407	spi_unregister_controller(*(struct spi_controller **)res);
3408}
3409
3410/**
3411 * devm_spi_register_controller - register managed SPI master or slave
3412 *	controller
3413 * @dev:    device managing SPI controller
3414 * @ctlr: initialized controller, originally from spi_alloc_master() or
3415 *	spi_alloc_slave()
3416 * Context: can sleep
3417 *
3418 * Register a SPI device as with spi_register_controller() which will
3419 * automatically be unregistered and freed.
3420 *
3421 * Return: zero on success, else a negative error code.
3422 */
3423int devm_spi_register_controller(struct device *dev,
3424				 struct spi_controller *ctlr)
3425{
3426	struct spi_controller **ptr;
3427	int ret;
3428
3429	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3430	if (!ptr)
3431		return -ENOMEM;
3432
3433	ret = spi_register_controller(ctlr);
3434	if (!ret) {
3435		*ptr = ctlr;
3436		devres_add(dev, ptr);
3437	} else {
3438		devres_free(ptr);
3439	}
3440
3441	return ret;
3442}
3443EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3444
3445static int __unregister(struct device *dev, void *null)
3446{
3447	spi_unregister_device(to_spi_device(dev));
3448	return 0;
3449}
3450
3451/**
3452 * spi_unregister_controller - unregister SPI master or slave controller
3453 * @ctlr: the controller being unregistered
3454 * Context: can sleep
3455 *
3456 * This call is used only by SPI controller drivers, which are the
3457 * only ones directly touching chip registers.
3458 *
3459 * This must be called from context that can sleep.
3460 *
3461 * Note that this function also drops a reference to the controller.
3462 */
3463void spi_unregister_controller(struct spi_controller *ctlr)
3464{
3465	struct spi_controller *found;
3466	int id = ctlr->bus_num;
3467
3468	/* Prevent addition of new devices, unregister existing ones */
3469	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3470		mutex_lock(&ctlr->add_lock);
3471
3472	device_for_each_child(&ctlr->dev, NULL, __unregister);
3473
3474	/* First make sure that this controller was ever added */
3475	mutex_lock(&board_lock);
3476	found = idr_find(&spi_master_idr, id);
3477	mutex_unlock(&board_lock);
3478	if (ctlr->queued) {
3479		if (spi_destroy_queue(ctlr))
3480			dev_err(&ctlr->dev, "queue remove failed\n");
3481	}
3482	mutex_lock(&board_lock);
3483	list_del(&ctlr->list);
3484	mutex_unlock(&board_lock);
3485
3486	device_del(&ctlr->dev);
3487
3488	/* Free bus id */
3489	mutex_lock(&board_lock);
3490	if (found == ctlr)
3491		idr_remove(&spi_master_idr, id);
3492	mutex_unlock(&board_lock);
 
 
3493
3494	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3495		mutex_unlock(&ctlr->add_lock);
 
3496
3497	/*
3498	 * Release the last reference on the controller if its driver
3499	 * has not yet been converted to devm_spi_alloc_master/slave().
3500	 */
3501	if (!ctlr->devm_allocated)
3502		put_device(&ctlr->dev);
 
 
 
3503}
3504EXPORT_SYMBOL_GPL(spi_unregister_controller);
3505
3506static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3507{
3508	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
 
 
 
 
 
 
 
 
 
3509}
 
3510
3511static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3512{
3513	mutex_lock(&ctlr->bus_lock_mutex);
3514	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3515	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
3516}
3517
3518static inline void __spi_mark_resumed(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
3519{
3520	mutex_lock(&ctlr->bus_lock_mutex);
3521	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3522	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3523}
 
3524
3525int spi_controller_suspend(struct spi_controller *ctlr)
 
 
 
 
 
3526{
3527	int ret = 0;
 
 
 
 
 
 
 
 
3528
3529	/* Basically no-ops for non-queued controllers */
3530	if (ctlr->queued) {
3531		ret = spi_stop_queue(ctlr);
3532		if (ret)
3533			dev_err(&ctlr->dev, "queue stop failed\n");
3534	}
 
 
3535
3536	__spi_mark_suspended(ctlr);
3537	return ret;
3538}
3539EXPORT_SYMBOL_GPL(spi_controller_suspend);
3540
3541int spi_controller_resume(struct spi_controller *ctlr)
 
 
 
 
 
3542{
3543	int ret = 0;
 
 
 
 
 
 
 
3544
3545	__spi_mark_resumed(ctlr);
3546
3547	if (ctlr->queued) {
3548		ret = spi_start_queue(ctlr);
3549		if (ret)
3550			dev_err(&ctlr->dev, "queue restart failed\n");
3551	}
3552	return ret;
3553}
3554EXPORT_SYMBOL_GPL(spi_controller_resume);
3555
3556/*-------------------------------------------------------------------------*/
3557
3558/* Core methods for spi_message alterations */
3559
3560static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3561					    struct spi_message *msg,
3562					    void *res)
3563{
3564	struct spi_replaced_transfers *rxfer = res;
3565	size_t i;
3566
3567	/* Call extra callback if requested */
3568	if (rxfer->release)
3569		rxfer->release(ctlr, msg, res);
3570
3571	/* Insert replaced transfers back into the message */
3572	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3573
3574	/* Remove the formerly inserted entries */
3575	for (i = 0; i < rxfer->inserted; i++)
3576		list_del(&rxfer->inserted_transfers[i].transfer_list);
3577}
3578
3579/**
3580 * spi_replace_transfers - replace transfers with several transfers
3581 *                         and register change with spi_message.resources
3582 * @msg:           the spi_message we work upon
3583 * @xfer_first:    the first spi_transfer we want to replace
3584 * @remove:        number of transfers to remove
3585 * @insert:        the number of transfers we want to insert instead
3586 * @release:       extra release code necessary in some circumstances
3587 * @extradatasize: extra data to allocate (with alignment guarantees
3588 *                 of struct @spi_transfer)
3589 * @gfp:           gfp flags
3590 *
3591 * Returns: pointer to @spi_replaced_transfers,
3592 *          PTR_ERR(...) in case of errors.
3593 */
3594static struct spi_replaced_transfers *spi_replace_transfers(
3595	struct spi_message *msg,
3596	struct spi_transfer *xfer_first,
3597	size_t remove,
3598	size_t insert,
3599	spi_replaced_release_t release,
3600	size_t extradatasize,
3601	gfp_t gfp)
3602{
3603	struct spi_replaced_transfers *rxfer;
3604	struct spi_transfer *xfer;
3605	size_t i;
3606
3607	/* Allocate the structure using spi_res */
3608	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3609			      struct_size(rxfer, inserted_transfers, insert)
 
3610			      + extradatasize,
3611			      gfp);
3612	if (!rxfer)
3613		return ERR_PTR(-ENOMEM);
3614
3615	/* The release code to invoke before running the generic release */
3616	rxfer->release = release;
3617
3618	/* Assign extradata */
3619	if (extradatasize)
3620		rxfer->extradata =
3621			&rxfer->inserted_transfers[insert];
3622
3623	/* Init the replaced_transfers list */
3624	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3625
3626	/*
3627	 * Assign the list_entry after which we should reinsert
3628	 * the @replaced_transfers - it may be spi_message.messages!
3629	 */
3630	rxfer->replaced_after = xfer_first->transfer_list.prev;
3631
3632	/* Remove the requested number of transfers */
3633	for (i = 0; i < remove; i++) {
3634		/*
3635		 * If the entry after replaced_after it is msg->transfers
3636		 * then we have been requested to remove more transfers
3637		 * than are in the list.
3638		 */
3639		if (rxfer->replaced_after->next == &msg->transfers) {
3640			dev_err(&msg->spi->dev,
3641				"requested to remove more spi_transfers than are available\n");
3642			/* Insert replaced transfers back into the message */
3643			list_splice(&rxfer->replaced_transfers,
3644				    rxfer->replaced_after);
3645
3646			/* Free the spi_replace_transfer structure... */
3647			spi_res_free(rxfer);
3648
3649			/* ...and return with an error */
3650			return ERR_PTR(-EINVAL);
3651		}
3652
3653		/*
3654		 * Remove the entry after replaced_after from list of
3655		 * transfers and add it to list of replaced_transfers.
3656		 */
3657		list_move_tail(rxfer->replaced_after->next,
3658			       &rxfer->replaced_transfers);
3659	}
3660
3661	/*
3662	 * Create copy of the given xfer with identical settings
3663	 * based on the first transfer to get removed.
3664	 */
3665	for (i = 0; i < insert; i++) {
3666		/* We need to run in reverse order */
3667		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3668
3669		/* Copy all spi_transfer data */
3670		memcpy(xfer, xfer_first, sizeof(*xfer));
3671
3672		/* Add to list */
3673		list_add(&xfer->transfer_list, rxfer->replaced_after);
3674
3675		/* Clear cs_change and delay for all but the last */
3676		if (i) {
3677			xfer->cs_change = false;
3678			xfer->delay.value = 0;
3679		}
3680	}
3681
3682	/* Set up inserted... */
3683	rxfer->inserted = insert;
3684
3685	/* ...and register it with spi_res/spi_message */
3686	spi_res_add(msg, rxfer);
3687
3688	return rxfer;
3689}
 
3690
3691static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3692					struct spi_message *msg,
3693					struct spi_transfer **xferp,
3694					size_t maxsize)
 
3695{
3696	struct spi_transfer *xfer = *xferp, *xfers;
3697	struct spi_replaced_transfers *srt;
3698	size_t offset;
3699	size_t count, i;
3700
3701	/* Calculate how many we have to replace */
 
 
 
 
 
3702	count = DIV_ROUND_UP(xfer->len, maxsize);
3703
3704	/* Create replacement */
3705	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3706	if (IS_ERR(srt))
3707		return PTR_ERR(srt);
3708	xfers = srt->inserted_transfers;
3709
3710	/*
3711	 * Now handle each of those newly inserted spi_transfers.
3712	 * Note that the replacements spi_transfers all are preset
3713	 * to the same values as *xferp, so tx_buf, rx_buf and len
3714	 * are all identical (as well as most others)
3715	 * so we just have to fix up len and the pointers.
3716	 *
3717	 * This also includes support for the depreciated
3718	 * spi_message.is_dma_mapped interface.
3719	 */
3720
3721	/*
3722	 * The first transfer just needs the length modified, so we
3723	 * run it outside the loop.
3724	 */
3725	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3726
3727	/* All the others need rx_buf/tx_buf also set */
3728	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3729		/* Update rx_buf, tx_buf and DMA */
3730		if (xfers[i].rx_buf)
3731			xfers[i].rx_buf += offset;
3732		if (xfers[i].rx_dma)
3733			xfers[i].rx_dma += offset;
3734		if (xfers[i].tx_buf)
3735			xfers[i].tx_buf += offset;
3736		if (xfers[i].tx_dma)
3737			xfers[i].tx_dma += offset;
3738
3739		/* Update length */
3740		xfers[i].len = min(maxsize, xfers[i].len - offset);
3741	}
3742
3743	/*
3744	 * We set up xferp to the last entry we have inserted,
3745	 * so that we skip those already split transfers.
3746	 */
3747	*xferp = &xfers[count - 1];
3748
3749	/* Increment statistics counters */
3750	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3751				       transfers_split_maxsize);
3752	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3753				       transfers_split_maxsize);
3754
3755	return 0;
3756}
3757
3758/**
3759 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3760 *                               when an individual transfer exceeds a
3761 *                               certain size
3762 * @ctlr:    the @spi_controller for this transfer
3763 * @msg:   the @spi_message to transform
3764 * @maxsize:  the maximum when to apply this
3765 *
3766 * This function allocates resources that are automatically freed during the
3767 * spi message unoptimize phase so this function should only be called from
3768 * optimize_message callbacks.
3769 *
3770 * Return: status of transformation
3771 */
3772int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3773				struct spi_message *msg,
3774				size_t maxsize)
 
3775{
3776	struct spi_transfer *xfer;
3777	int ret;
3778
3779	/*
3780	 * Iterate over the transfer_list,
3781	 * but note that xfer is advanced to the last transfer inserted
3782	 * to avoid checking sizes again unnecessarily (also xfer does
3783	 * potentially belong to a different list by the time the
3784	 * replacement has happened).
3785	 */
3786	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3787		if (xfer->len > maxsize) {
3788			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3789							   maxsize);
3790			if (ret)
3791				return ret;
3792		}
3793	}
3794
3795	return 0;
3796}
3797EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3798
3799
3800/**
3801 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3802 *                                when an individual transfer exceeds a
3803 *                                certain number of SPI words
3804 * @ctlr:     the @spi_controller for this transfer
3805 * @msg:      the @spi_message to transform
3806 * @maxwords: the number of words to limit each transfer to
3807 *
3808 * This function allocates resources that are automatically freed during the
3809 * spi message unoptimize phase so this function should only be called from
3810 * optimize_message callbacks.
3811 *
3812 * Return: status of transformation
3813 */
3814int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3815				 struct spi_message *msg,
3816				 size_t maxwords)
3817{
3818	struct spi_transfer *xfer;
3819
3820	/*
3821	 * Iterate over the transfer_list,
3822	 * but note that xfer is advanced to the last transfer inserted
3823	 * to avoid checking sizes again unnecessarily (also xfer does
3824	 * potentially belong to a different list by the time the
3825	 * replacement has happened).
3826	 */
3827	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3828		size_t maxsize;
3829		int ret;
3830
3831		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3832		if (xfer->len > maxsize) {
3833			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3834							   maxsize);
3835			if (ret)
3836				return ret;
3837		}
3838	}
3839
3840	return 0;
3841}
3842EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3843
3844/*-------------------------------------------------------------------------*/
3845
3846/*
3847 * Core methods for SPI controller protocol drivers. Some of the
3848 * other core methods are currently defined as inline functions.
3849 */
3850
3851static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3852					u8 bits_per_word)
3853{
3854	if (ctlr->bits_per_word_mask) {
3855		/* Only 32 bits fit in the mask */
3856		if (bits_per_word > 32)
3857			return -EINVAL;
3858		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3859			return -EINVAL;
3860	}
3861
3862	return 0;
3863}
3864
3865/**
3866 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3867 * @spi: the device that requires specific CS timing configuration
3868 *
3869 * Return: zero on success, else a negative error code.
3870 */
3871static int spi_set_cs_timing(struct spi_device *spi)
3872{
3873	struct device *parent = spi->controller->dev.parent;
3874	int status = 0;
3875
3876	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3877		if (spi->controller->auto_runtime_pm) {
3878			status = pm_runtime_get_sync(parent);
3879			if (status < 0) {
3880				pm_runtime_put_noidle(parent);
3881				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3882					status);
3883				return status;
3884			}
3885
3886			status = spi->controller->set_cs_timing(spi);
3887			pm_runtime_mark_last_busy(parent);
3888			pm_runtime_put_autosuspend(parent);
3889		} else {
3890			status = spi->controller->set_cs_timing(spi);
3891		}
3892	}
3893	return status;
3894}
3895
3896/**
3897 * spi_setup - setup SPI mode and clock rate
3898 * @spi: the device whose settings are being modified
3899 * Context: can sleep, and no requests are queued to the device
3900 *
3901 * SPI protocol drivers may need to update the transfer mode if the
3902 * device doesn't work with its default.  They may likewise need
3903 * to update clock rates or word sizes from initial values.  This function
3904 * changes those settings, and must be called from a context that can sleep.
3905 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3906 * effect the next time the device is selected and data is transferred to
3907 * or from it.  When this function returns, the SPI device is deselected.
3908 *
3909 * Note that this call will fail if the protocol driver specifies an option
3910 * that the underlying controller or its driver does not support.  For
3911 * example, not all hardware supports wire transfers using nine bit words,
3912 * LSB-first wire encoding, or active-high chipselects.
3913 *
3914 * Return: zero on success, else a negative error code.
3915 */
3916int spi_setup(struct spi_device *spi)
3917{
3918	unsigned	bad_bits, ugly_bits;
3919	int		status = 0;
3920
3921	/*
3922	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3923	 * are set at the same time.
3924	 */
3925	if ((hweight_long(spi->mode &
3926		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3927	    (hweight_long(spi->mode &
3928		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3929		dev_err(&spi->dev,
3930		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3931		return -EINVAL;
3932	}
3933	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3934	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3935		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3936		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3937		return -EINVAL;
3938	/*
3939	 * Help drivers fail *cleanly* when they need options
3940	 * that aren't supported with their current controller.
3941	 * SPI_CS_WORD has a fallback software implementation,
3942	 * so it is ignored here.
3943	 */
3944	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3945				 SPI_NO_TX | SPI_NO_RX);
3946	ugly_bits = bad_bits &
3947		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3948		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3949	if (ugly_bits) {
3950		dev_warn(&spi->dev,
3951			 "setup: ignoring unsupported mode bits %x\n",
3952			 ugly_bits);
3953		spi->mode &= ~ugly_bits;
3954		bad_bits &= ~ugly_bits;
3955	}
3956	if (bad_bits) {
3957		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3958			bad_bits);
3959		return -EINVAL;
3960	}
3961
3962	if (!spi->bits_per_word) {
3963		spi->bits_per_word = 8;
3964	} else {
3965		/*
3966		 * Some controllers may not support the default 8 bits-per-word
3967		 * so only perform the check when this is explicitly provided.
3968		 */
3969		status = __spi_validate_bits_per_word(spi->controller,
3970						      spi->bits_per_word);
3971		if (status)
3972			return status;
3973	}
3974
3975	if (spi->controller->max_speed_hz &&
3976	    (!spi->max_speed_hz ||
3977	     spi->max_speed_hz > spi->controller->max_speed_hz))
 
 
 
3978		spi->max_speed_hz = spi->controller->max_speed_hz;
3979
3980	mutex_lock(&spi->controller->io_mutex);
3981
3982	if (spi->controller->setup) {
3983		status = spi->controller->setup(spi);
3984		if (status) {
3985			mutex_unlock(&spi->controller->io_mutex);
3986			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3987				status);
3988			return status;
3989		}
3990	}
3991
3992	status = spi_set_cs_timing(spi);
3993	if (status) {
3994		mutex_unlock(&spi->controller->io_mutex);
3995		return status;
3996	}
3997
3998	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3999		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4000		if (status < 0) {
4001			mutex_unlock(&spi->controller->io_mutex);
4002			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4003				status);
4004			return status;
4005		}
4006
4007		/*
4008		 * We do not want to return positive value from pm_runtime_get,
4009		 * there are many instances of devices calling spi_setup() and
4010		 * checking for a non-zero return value instead of a negative
4011		 * return value.
4012		 */
4013		status = 0;
4014
4015		spi_set_cs(spi, false, true);
4016		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4017		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4018	} else {
4019		spi_set_cs(spi, false, true);
4020	}
4021
4022	mutex_unlock(&spi->controller->io_mutex);
4023
4024	if (spi->rt && !spi->controller->rt) {
4025		spi->controller->rt = true;
4026		spi_set_thread_rt(spi->controller);
4027	}
4028
4029	trace_spi_setup(spi, status);
4030
4031	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4032			spi->mode & SPI_MODE_X_MASK,
4033			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4034			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4035			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4036			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4037			spi->bits_per_word, spi->max_speed_hz,
4038			status);
4039
4040	return status;
4041}
4042EXPORT_SYMBOL_GPL(spi_setup);
4043
4044static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4045				       struct spi_device *spi)
4046{
4047	int delay1, delay2;
4048
4049	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4050	if (delay1 < 0)
4051		return delay1;
4052
4053	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4054	if (delay2 < 0)
4055		return delay2;
4056
4057	if (delay1 < delay2)
4058		memcpy(&xfer->word_delay, &spi->word_delay,
4059		       sizeof(xfer->word_delay));
4060
4061	return 0;
4062}
4063
4064static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4065{
4066	struct spi_controller *ctlr = spi->controller;
4067	struct spi_transfer *xfer;
4068	int w_size;
4069
4070	if (list_empty(&message->transfers))
4071		return -EINVAL;
4072
4073	message->spi = spi;
4074
4075	/*
4076	 * Half-duplex links include original MicroWire, and ones with
4077	 * only one data pin like SPI_3WIRE (switches direction) or where
4078	 * either MOSI or MISO is missing.  They can also be caused by
4079	 * software limitations.
4080	 */
4081	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4082	    (spi->mode & SPI_3WIRE)) {
4083		unsigned flags = ctlr->flags;
4084
4085		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4086			if (xfer->rx_buf && xfer->tx_buf)
4087				return -EINVAL;
4088			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4089				return -EINVAL;
4090			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4091				return -EINVAL;
4092		}
4093	}
4094
4095	/*
4096	 * Set transfer bits_per_word and max speed as spi device default if
4097	 * it is not set for this transfer.
4098	 * Set transfer tx_nbits and rx_nbits as single transfer default
4099	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4100	 * Ensure transfer word_delay is at least as long as that required by
4101	 * device itself.
4102	 */
4103	message->frame_length = 0;
4104	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4105		xfer->effective_speed_hz = 0;
4106		message->frame_length += xfer->len;
4107		if (!xfer->bits_per_word)
4108			xfer->bits_per_word = spi->bits_per_word;
4109
4110		if (!xfer->speed_hz)
4111			xfer->speed_hz = spi->max_speed_hz;
 
 
4112
4113		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4114			xfer->speed_hz = ctlr->max_speed_hz;
4115
4116		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4117			return -EINVAL;
4118
4119		/*
4120		 * SPI transfer length should be multiple of SPI word size
4121		 * where SPI word size should be power-of-two multiple.
4122		 */
4123		if (xfer->bits_per_word <= 8)
4124			w_size = 1;
4125		else if (xfer->bits_per_word <= 16)
4126			w_size = 2;
4127		else
4128			w_size = 4;
4129
4130		/* No partial transfers accepted */
4131		if (xfer->len % w_size)
4132			return -EINVAL;
4133
4134		if (xfer->speed_hz && ctlr->min_speed_hz &&
4135		    xfer->speed_hz < ctlr->min_speed_hz)
4136			return -EINVAL;
4137
4138		if (xfer->tx_buf && !xfer->tx_nbits)
4139			xfer->tx_nbits = SPI_NBITS_SINGLE;
4140		if (xfer->rx_buf && !xfer->rx_nbits)
4141			xfer->rx_nbits = SPI_NBITS_SINGLE;
4142		/*
4143		 * Check transfer tx/rx_nbits:
4144		 * 1. check the value matches one of single, dual and quad
4145		 * 2. check tx/rx_nbits match the mode in spi_device
4146		 */
4147		if (xfer->tx_buf) {
4148			if (spi->mode & SPI_NO_TX)
4149				return -EINVAL;
4150			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4151				xfer->tx_nbits != SPI_NBITS_DUAL &&
4152				xfer->tx_nbits != SPI_NBITS_QUAD)
4153				return -EINVAL;
4154			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4155				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4156				return -EINVAL;
4157			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4158				!(spi->mode & SPI_TX_QUAD))
4159				return -EINVAL;
4160		}
4161		/* Check transfer rx_nbits */
4162		if (xfer->rx_buf) {
4163			if (spi->mode & SPI_NO_RX)
4164				return -EINVAL;
4165			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4166				xfer->rx_nbits != SPI_NBITS_DUAL &&
4167				xfer->rx_nbits != SPI_NBITS_QUAD)
4168				return -EINVAL;
4169			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4170				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4171				return -EINVAL;
4172			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4173				!(spi->mode & SPI_RX_QUAD))
4174				return -EINVAL;
4175		}
4176
4177		if (_spi_xfer_word_delay_update(xfer, spi))
4178			return -EINVAL;
4179	}
4180
4181	message->status = -EINPROGRESS;
4182
4183	return 0;
4184}
4185
4186/*
4187 * spi_split_transfers - generic handling of transfer splitting
4188 * @msg: the message to split
4189 *
4190 * Under certain conditions, a SPI controller may not support arbitrary
4191 * transfer sizes or other features required by a peripheral. This function
4192 * will split the transfers in the message into smaller transfers that are
4193 * supported by the controller.
4194 *
4195 * Controllers with special requirements not covered here can also split
4196 * transfers in the optimize_message() callback.
4197 *
4198 * Context: can sleep
4199 * Return: zero on success, else a negative error code
4200 */
4201static int spi_split_transfers(struct spi_message *msg)
4202{
4203	struct spi_controller *ctlr = msg->spi->controller;
4204	struct spi_transfer *xfer;
4205	int ret;
4206
4207	/*
4208	 * If an SPI controller does not support toggling the CS line on each
4209	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4210	 * for the CS line, we can emulate the CS-per-word hardware function by
4211	 * splitting transfers into one-word transfers and ensuring that
4212	 * cs_change is set for each transfer.
4213	 */
4214	if ((msg->spi->mode & SPI_CS_WORD) &&
4215	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4216		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4217		if (ret)
4218			return ret;
4219
4220		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4221			/* Don't change cs_change on the last entry in the list */
4222			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4223				break;
4224
4225			xfer->cs_change = 1;
4226		}
4227	} else {
4228		ret = spi_split_transfers_maxsize(ctlr, msg,
4229						  spi_max_transfer_size(msg->spi));
4230		if (ret)
4231			return ret;
4232	}
4233
4234	return 0;
4235}
4236
4237/*
4238 * __spi_optimize_message - shared implementation for spi_optimize_message()
4239 *                          and spi_maybe_optimize_message()
4240 * @spi: the device that will be used for the message
4241 * @msg: the message to optimize
4242 *
4243 * Peripheral drivers will call spi_optimize_message() and the spi core will
4244 * call spi_maybe_optimize_message() instead of calling this directly.
4245 *
4246 * It is not valid to call this on a message that has already been optimized.
 
 
 
 
 
 
4247 *
4248 * Return: zero on success, else a negative error code
4249 */
4250static int __spi_optimize_message(struct spi_device *spi,
4251				  struct spi_message *msg)
4252{
4253	struct spi_controller *ctlr = spi->controller;
4254	int ret;
4255
4256	ret = __spi_validate(spi, msg);
4257	if (ret)
4258		return ret;
4259
4260	ret = spi_split_transfers(msg);
4261	if (ret)
4262		return ret;
4263
4264	if (ctlr->optimize_message) {
4265		ret = ctlr->optimize_message(msg);
4266		if (ret) {
4267			spi_res_release(ctlr, msg);
4268			return ret;
4269		}
4270	}
4271
4272	msg->optimized = true;
4273
4274	return 0;
4275}
4276
4277/*
4278 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4279 * @spi: the device that will be used for the message
4280 * @msg: the message to optimize
4281 * Return: zero on success, else a negative error code
4282 */
4283static int spi_maybe_optimize_message(struct spi_device *spi,
4284				      struct spi_message *msg)
4285{
4286	if (msg->pre_optimized)
4287		return 0;
4288
4289	return __spi_optimize_message(spi, msg);
4290}
4291
4292/**
4293 * spi_optimize_message - do any one-time validation and setup for a SPI message
4294 * @spi: the device that will be used for the message
4295 * @msg: the message to optimize
4296 *
4297 * Peripheral drivers that reuse the same message repeatedly may call this to
4298 * perform as much message prep as possible once, rather than repeating it each
4299 * time a message transfer is performed to improve throughput and reduce CPU
4300 * usage.
4301 *
4302 * Once a message has been optimized, it cannot be modified with the exception
4303 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4304 * only the data in the memory it points to).
4305 *
4306 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4307 * to avoid leaking resources.
 
 
 
 
4308 *
4309 * Context: can sleep
4310 * Return: zero on success, else a negative error code
4311 */
4312int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4313{
 
4314	int ret;
 
4315
4316	ret = __spi_optimize_message(spi, msg);
4317	if (ret)
4318		return ret;
4319
4320	/*
4321	 * This flag indicates that the peripheral driver called spi_optimize_message()
4322	 * and therefore we shouldn't unoptimize message automatically when finalizing
4323	 * the message but rather wait until spi_unoptimize_message() is called
4324	 * by the peripheral driver.
4325	 */
4326	msg->pre_optimized = true;
4327
4328	return 0;
4329}
4330EXPORT_SYMBOL_GPL(spi_optimize_message);
 
4331
4332/**
4333 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4334 * @msg: the message to unoptimize
4335 *
4336 * Calls to this function must be balanced with calls to spi_optimize_message().
4337 *
4338 * Context: can sleep
4339 */
4340void spi_unoptimize_message(struct spi_message *msg)
4341{
4342	__spi_unoptimize_message(msg);
4343	msg->pre_optimized = false;
4344}
4345EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4346
4347static int __spi_async(struct spi_device *spi, struct spi_message *message)
4348{
4349	struct spi_controller *ctlr = spi->controller;
4350	struct spi_transfer *xfer;
4351
4352	/*
4353	 * Some controllers do not support doing regular SPI transfers. Return
4354	 * ENOTSUPP when this is the case.
4355	 */
4356	if (!ctlr->transfer)
4357		return -ENOTSUPP;
4358
4359	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4360	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4361
4362	trace_spi_message_submit(message);
4363
4364	if (!ctlr->ptp_sts_supported) {
4365		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4366			xfer->ptp_sts_word_pre = 0;
4367			ptp_read_system_prets(xfer->ptp_sts);
4368		}
4369	}
4370
4371	return ctlr->transfer(spi, message);
4372}
 
4373
4374/**
4375 * spi_async - asynchronous SPI transfer
4376 * @spi: device with which data will be exchanged
4377 * @message: describes the data transfers, including completion callback
4378 * Context: any (IRQs may be blocked, etc)
4379 *
4380 * This call may be used in_irq and other contexts which can't sleep,
4381 * as well as from task contexts which can sleep.
4382 *
4383 * The completion callback is invoked in a context which can't sleep.
4384 * Before that invocation, the value of message->status is undefined.
4385 * When the callback is issued, message->status holds either zero (to
4386 * indicate complete success) or a negative error code.  After that
4387 * callback returns, the driver which issued the transfer request may
4388 * deallocate the associated memory; it's no longer in use by any SPI
4389 * core or controller driver code.
4390 *
4391 * Note that although all messages to a spi_device are handled in
4392 * FIFO order, messages may go to different devices in other orders.
4393 * Some device might be higher priority, or have various "hard" access
4394 * time requirements, for example.
4395 *
4396 * On detection of any fault during the transfer, processing of
4397 * the entire message is aborted, and the device is deselected.
4398 * Until returning from the associated message completion callback,
4399 * no other spi_message queued to that device will be processed.
4400 * (This rule applies equally to all the synchronous transfer calls,
4401 * which are wrappers around this core asynchronous primitive.)
4402 *
4403 * Return: zero on success, else a negative error code.
4404 */
4405int spi_async(struct spi_device *spi, struct spi_message *message)
4406{
4407	struct spi_controller *ctlr = spi->controller;
4408	int ret;
4409	unsigned long flags;
4410
4411	ret = spi_maybe_optimize_message(spi, message);
4412	if (ret)
4413		return ret;
4414
4415	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4416
4417	if (ctlr->bus_lock_flag)
4418		ret = -EBUSY;
4419	else
4420		ret = __spi_async(spi, message);
4421
4422	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4423
4424	spi_maybe_unoptimize_message(message);
4425
4426	return ret;
4427}
4428EXPORT_SYMBOL_GPL(spi_async);
 
 
 
 
4429
4430static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4431{
4432	bool was_busy;
 
4433	int ret;
4434
4435	mutex_lock(&ctlr->io_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
4436
4437	was_busy = ctlr->busy;
 
 
 
 
 
 
 
4438
4439	ctlr->cur_msg = msg;
4440	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4441	if (ret)
4442		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4443	ctlr->cur_msg = NULL;
4444	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
4445
4446	if (!was_busy) {
4447		kfree(ctlr->dummy_rx);
4448		ctlr->dummy_rx = NULL;
4449		kfree(ctlr->dummy_tx);
4450		ctlr->dummy_tx = NULL;
4451		if (ctlr->unprepare_transfer_hardware &&
4452		    ctlr->unprepare_transfer_hardware(ctlr))
4453			dev_err(&ctlr->dev,
4454				"failed to unprepare transfer hardware\n");
4455		spi_idle_runtime_pm(ctlr);
4456	}
4457
4458	mutex_unlock(&ctlr->io_mutex);
4459}
 
4460
4461/*-------------------------------------------------------------------------*/
4462
4463/*
4464 * Utility methods for SPI protocol drivers, layered on
4465 * top of the core.  Some other utility methods are defined as
4466 * inline functions.
4467 */
4468
4469static void spi_complete(void *arg)
4470{
4471	complete(arg);
4472}
4473
4474static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4475{
4476	DECLARE_COMPLETION_ONSTACK(done);
4477	unsigned long flags;
4478	int status;
4479	struct spi_controller *ctlr = spi->controller;
 
4480
4481	if (__spi_check_suspended(ctlr)) {
4482		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4483		return -ESHUTDOWN;
4484	}
4485
4486	status = spi_maybe_optimize_message(spi, message);
4487	if (status)
4488		return status;
4489
4490	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4491	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4492
4493	/*
4494	 * Checking queue_empty here only guarantees async/sync message
4495	 * ordering when coming from the same context. It does not need to
4496	 * guard against reentrancy from a different context. The io_mutex
4497	 * will catch those cases.
4498	 */
4499	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4500		message->actual_length = 0;
4501		message->status = -EINPROGRESS;
4502
4503		trace_spi_message_submit(message);
4504
4505		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4506		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4507
4508		__spi_transfer_message_noqueue(ctlr, message);
4509
4510		return message->status;
4511	}
4512
4513	/*
4514	 * There are messages in the async queue that could have originated
4515	 * from the same context, so we need to preserve ordering.
4516	 * Therefor we send the message to the async queue and wait until they
4517	 * are completed.
4518	 */
4519	message->complete = spi_complete;
4520	message->context = &done;
4521
4522	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4523	status = __spi_async(spi, message);
4524	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4525
4526	if (status == 0) {
4527		wait_for_completion(&done);
4528		status = message->status;
4529	}
4530	message->complete = NULL;
4531	message->context = NULL;
4532
4533	return status;
4534}
4535
4536/**
4537 * spi_sync - blocking/synchronous SPI data transfers
4538 * @spi: device with which data will be exchanged
4539 * @message: describes the data transfers
4540 * Context: can sleep
4541 *
4542 * This call may only be used from a context that may sleep.  The sleep
4543 * is non-interruptible, and has no timeout.  Low-overhead controller
4544 * drivers may DMA directly into and out of the message buffers.
4545 *
4546 * Note that the SPI device's chip select is active during the message,
4547 * and then is normally disabled between messages.  Drivers for some
4548 * frequently-used devices may want to minimize costs of selecting a chip,
4549 * by leaving it selected in anticipation that the next message will go
4550 * to the same chip.  (That may increase power usage.)
4551 *
4552 * Also, the caller is guaranteeing that the memory associated with the
4553 * message will not be freed before this call returns.
4554 *
4555 * Return: zero on success, else a negative error code.
4556 */
4557int spi_sync(struct spi_device *spi, struct spi_message *message)
4558{
4559	int ret;
4560
4561	mutex_lock(&spi->controller->bus_lock_mutex);
4562	ret = __spi_sync(spi, message);
4563	mutex_unlock(&spi->controller->bus_lock_mutex);
4564
4565	return ret;
4566}
4567EXPORT_SYMBOL_GPL(spi_sync);
4568
4569/**
4570 * spi_sync_locked - version of spi_sync with exclusive bus usage
4571 * @spi: device with which data will be exchanged
4572 * @message: describes the data transfers
4573 * Context: can sleep
4574 *
4575 * This call may only be used from a context that may sleep.  The sleep
4576 * is non-interruptible, and has no timeout.  Low-overhead controller
4577 * drivers may DMA directly into and out of the message buffers.
4578 *
4579 * This call should be used by drivers that require exclusive access to the
4580 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4581 * be released by a spi_bus_unlock call when the exclusive access is over.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4586{
4587	return __spi_sync(spi, message);
4588}
4589EXPORT_SYMBOL_GPL(spi_sync_locked);
4590
4591/**
4592 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4593 * @ctlr: SPI bus master that should be locked for exclusive bus access
4594 * Context: can sleep
4595 *
4596 * This call may only be used from a context that may sleep.  The sleep
4597 * is non-interruptible, and has no timeout.
4598 *
4599 * This call should be used by drivers that require exclusive access to the
4600 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4601 * exclusive access is over. Data transfer must be done by spi_sync_locked
4602 * and spi_async_locked calls when the SPI bus lock is held.
4603 *
4604 * Return: always zero.
4605 */
4606int spi_bus_lock(struct spi_controller *ctlr)
4607{
4608	unsigned long flags;
4609
4610	mutex_lock(&ctlr->bus_lock_mutex);
4611
4612	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4613	ctlr->bus_lock_flag = 1;
4614	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4615
4616	/* Mutex remains locked until spi_bus_unlock() is called */
4617
4618	return 0;
4619}
4620EXPORT_SYMBOL_GPL(spi_bus_lock);
4621
4622/**
4623 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4624 * @ctlr: SPI bus master that was locked for exclusive bus access
4625 * Context: can sleep
4626 *
4627 * This call may only be used from a context that may sleep.  The sleep
4628 * is non-interruptible, and has no timeout.
4629 *
4630 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4631 * call.
4632 *
4633 * Return: always zero.
4634 */
4635int spi_bus_unlock(struct spi_controller *ctlr)
4636{
4637	ctlr->bus_lock_flag = 0;
4638
4639	mutex_unlock(&ctlr->bus_lock_mutex);
4640
4641	return 0;
4642}
4643EXPORT_SYMBOL_GPL(spi_bus_unlock);
4644
4645/* Portable code must never pass more than 32 bytes */
4646#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4647
4648static u8	*buf;
4649
4650/**
4651 * spi_write_then_read - SPI synchronous write followed by read
4652 * @spi: device with which data will be exchanged
4653 * @txbuf: data to be written (need not be DMA-safe)
4654 * @n_tx: size of txbuf, in bytes
4655 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4656 * @n_rx: size of rxbuf, in bytes
4657 * Context: can sleep
4658 *
4659 * This performs a half duplex MicroWire style transaction with the
4660 * device, sending txbuf and then reading rxbuf.  The return value
4661 * is zero for success, else a negative errno status code.
4662 * This call may only be used from a context that may sleep.
4663 *
4664 * Parameters to this routine are always copied using a small buffer.
 
4665 * Performance-sensitive or bulk transfer code should instead use
4666 * spi_{async,sync}() calls with DMA-safe buffers.
4667 *
4668 * Return: zero on success, else a negative error code.
4669 */
4670int spi_write_then_read(struct spi_device *spi,
4671		const void *txbuf, unsigned n_tx,
4672		void *rxbuf, unsigned n_rx)
4673{
4674	static DEFINE_MUTEX(lock);
4675
4676	int			status;
4677	struct spi_message	message;
4678	struct spi_transfer	x[2];
4679	u8			*local_buf;
4680
4681	/*
4682	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4683	 * copying here, (as a pure convenience thing), but we can
4684	 * keep heap costs out of the hot path unless someone else is
4685	 * using the pre-allocated buffer or the transfer is too large.
4686	 */
4687	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4688		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4689				    GFP_KERNEL | GFP_DMA);
4690		if (!local_buf)
4691			return -ENOMEM;
4692	} else {
4693		local_buf = buf;
4694	}
4695
4696	spi_message_init(&message);
4697	memset(x, 0, sizeof(x));
4698	if (n_tx) {
4699		x[0].len = n_tx;
4700		spi_message_add_tail(&x[0], &message);
4701	}
4702	if (n_rx) {
4703		x[1].len = n_rx;
4704		spi_message_add_tail(&x[1], &message);
4705	}
4706
4707	memcpy(local_buf, txbuf, n_tx);
4708	x[0].tx_buf = local_buf;
4709	x[1].rx_buf = local_buf + n_tx;
4710
4711	/* Do the I/O */
4712	status = spi_sync(spi, &message);
4713	if (status == 0)
4714		memcpy(rxbuf, x[1].rx_buf, n_rx);
4715
4716	if (x[0].tx_buf == buf)
4717		mutex_unlock(&lock);
4718	else
4719		kfree(local_buf);
4720
4721	return status;
4722}
4723EXPORT_SYMBOL_GPL(spi_write_then_read);
4724
4725/*-------------------------------------------------------------------------*/
4726
4727#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4728/* Must call put_device() when done with returned spi_device device */
 
 
 
 
 
4729static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4730{
4731	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
 
 
 
4732
4733	return dev ? to_spi_device(dev) : NULL;
 
 
4734}
4735
4736/* The spi controllers are not using spi_bus, so we find it with another way */
4737static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4738{
4739	struct device *dev;
4740
4741	dev = class_find_device_by_of_node(&spi_master_class, node);
 
4742	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4743		dev = class_find_device_by_of_node(&spi_slave_class, node);
 
4744	if (!dev)
4745		return NULL;
4746
4747	/* Reference got in class_find_device */
4748	return container_of(dev, struct spi_controller, dev);
4749}
4750
4751static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4752			 void *arg)
4753{
4754	struct of_reconfig_data *rd = arg;
4755	struct spi_controller *ctlr;
4756	struct spi_device *spi;
4757
4758	switch (of_reconfig_get_state_change(action, arg)) {
4759	case OF_RECONFIG_CHANGE_ADD:
4760		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4761		if (ctlr == NULL)
4762			return NOTIFY_OK;	/* Not for us */
4763
4764		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4765			put_device(&ctlr->dev);
4766			return NOTIFY_OK;
4767		}
4768
4769		/*
4770		 * Clear the flag before adding the device so that fw_devlink
4771		 * doesn't skip adding consumers to this device.
4772		 */
4773		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4774		spi = of_register_spi_device(ctlr, rd->dn);
4775		put_device(&ctlr->dev);
4776
4777		if (IS_ERR(spi)) {
4778			pr_err("%s: failed to create for '%pOF'\n",
4779					__func__, rd->dn);
4780			of_node_clear_flag(rd->dn, OF_POPULATED);
4781			return notifier_from_errno(PTR_ERR(spi));
4782		}
4783		break;
4784
4785	case OF_RECONFIG_CHANGE_REMOVE:
4786		/* Already depopulated? */
4787		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4788			return NOTIFY_OK;
4789
4790		/* Find our device by node */
4791		spi = of_find_spi_device_by_node(rd->dn);
4792		if (spi == NULL)
4793			return NOTIFY_OK;	/* No? not meant for us */
4794
4795		/* Unregister takes one ref away */
4796		spi_unregister_device(spi);
4797
4798		/* And put the reference of the find */
4799		put_device(&spi->dev);
4800		break;
4801	}
4802
4803	return NOTIFY_OK;
4804}
4805
4806static struct notifier_block spi_of_notifier = {
4807	.notifier_call = of_spi_notify,
4808};
4809#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4810extern struct notifier_block spi_of_notifier;
4811#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4812
4813#if IS_ENABLED(CONFIG_ACPI)
4814static int spi_acpi_controller_match(struct device *dev, const void *data)
4815{
4816	return ACPI_COMPANION(dev->parent) == data;
4817}
4818
4819struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
 
 
 
 
 
4820{
4821	struct device *dev;
4822
4823	dev = class_find_device(&spi_master_class, NULL, adev,
4824				spi_acpi_controller_match);
4825	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4826		dev = class_find_device(&spi_slave_class, NULL, adev,
4827					spi_acpi_controller_match);
4828	if (!dev)
4829		return NULL;
4830
4831	return container_of(dev, struct spi_controller, dev);
4832}
4833EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4834
4835static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4836{
4837	struct device *dev;
4838
4839	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4840	return to_spi_device(dev);
 
4841}
4842
4843static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4844			   void *arg)
4845{
4846	struct acpi_device *adev = arg;
4847	struct spi_controller *ctlr;
4848	struct spi_device *spi;
4849
4850	switch (value) {
4851	case ACPI_RECONFIG_DEVICE_ADD:
4852		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4853		if (!ctlr)
4854			break;
4855
4856		acpi_register_spi_device(ctlr, adev);
4857		put_device(&ctlr->dev);
4858		break;
4859	case ACPI_RECONFIG_DEVICE_REMOVE:
4860		if (!acpi_device_enumerated(adev))
4861			break;
4862
4863		spi = acpi_spi_find_device_by_adev(adev);
4864		if (!spi)
4865			break;
4866
4867		spi_unregister_device(spi);
4868		put_device(&spi->dev);
4869		break;
4870	}
4871
4872	return NOTIFY_OK;
4873}
4874
4875static struct notifier_block spi_acpi_notifier = {
4876	.notifier_call = acpi_spi_notify,
4877};
4878#else
4879extern struct notifier_block spi_acpi_notifier;
4880#endif
4881
4882static int __init spi_init(void)
4883{
4884	int	status;
4885
4886	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4887	if (!buf) {
4888		status = -ENOMEM;
4889		goto err0;
4890	}
4891
4892	status = bus_register(&spi_bus_type);
4893	if (status < 0)
4894		goto err1;
4895
4896	status = class_register(&spi_master_class);
4897	if (status < 0)
4898		goto err2;
4899
4900	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4901		status = class_register(&spi_slave_class);
4902		if (status < 0)
4903			goto err3;
4904	}
4905
4906	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4907		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4908	if (IS_ENABLED(CONFIG_ACPI))
4909		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4910
4911	return 0;
4912
4913err3:
4914	class_unregister(&spi_master_class);
4915err2:
4916	bus_unregister(&spi_bus_type);
4917err1:
4918	kfree(buf);
4919	buf = NULL;
4920err0:
4921	return status;
4922}
4923
4924/*
4925 * A board_info is normally registered in arch_initcall(),
4926 * but even essential drivers wait till later.
4927 *
4928 * REVISIT only boardinfo really needs static linking. The rest (device and
4929 * driver registration) _could_ be dynamically linked (modular) ... Costs
4930 * include needing to have boardinfo data structures be much more public.
4931 */
4932postcore_initcall(spi_init);