Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43#include <linux/idr.h>
  44#include <linux/platform_data/x86/apple.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/spi.h>
  48
  49static DEFINE_IDR(spi_master_idr);
  50
  51static void spidev_release(struct device *dev)
  52{
  53	struct spi_device	*spi = to_spi_device(dev);
  54
  55	/* spi controllers may cleanup for released devices */
  56	if (spi->controller->cleanup)
  57		spi->controller->cleanup(spi);
  58
  59	spi_controller_put(spi->controller);
  60	kfree(spi);
  61}
  62
  63static ssize_t
  64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  65{
  66	const struct spi_device	*spi = to_spi_device(dev);
  67	int len;
  68
  69	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  70	if (len != -ENODEV)
  71		return len;
  72
  73	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  74}
  75static DEVICE_ATTR_RO(modalias);
  76
  77#define SPI_STATISTICS_ATTRS(field, file)				\
  78static ssize_t spi_controller_##field##_show(struct device *dev,	\
  79					     struct device_attribute *attr, \
  80					     char *buf)			\
  81{									\
  82	struct spi_controller *ctlr = container_of(dev,			\
  83					 struct spi_controller, dev);	\
  84	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
  85}									\
  86static struct device_attribute dev_attr_spi_controller_##field = {	\
  87	.attr = { .name = file, .mode = 0444 },				\
  88	.show = spi_controller_##field##_show,				\
  89};									\
  90static ssize_t spi_device_##field##_show(struct device *dev,		\
  91					 struct device_attribute *attr,	\
  92					char *buf)			\
  93{									\
  94	struct spi_device *spi = to_spi_device(dev);			\
  95	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  96}									\
  97static struct device_attribute dev_attr_spi_device_##field = {		\
  98	.attr = { .name = file, .mode = 0444 },				\
  99	.show = spi_device_##field##_show,				\
 100}
 101
 102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 104					    char *buf)			\
 105{									\
 106	unsigned long flags;						\
 107	ssize_t len;							\
 108	spin_lock_irqsave(&stat->lock, flags);				\
 109	len = sprintf(buf, format_string, stat->field);			\
 110	spin_unlock_irqrestore(&stat->lock, flags);			\
 111	return len;							\
 112}									\
 113SPI_STATISTICS_ATTRS(name, file)
 114
 115#define SPI_STATISTICS_SHOW(field, format_string)			\
 116	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 117				 field, format_string)
 118
 119SPI_STATISTICS_SHOW(messages, "%lu");
 120SPI_STATISTICS_SHOW(transfers, "%lu");
 121SPI_STATISTICS_SHOW(errors, "%lu");
 122SPI_STATISTICS_SHOW(timedout, "%lu");
 123
 124SPI_STATISTICS_SHOW(spi_sync, "%lu");
 125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 126SPI_STATISTICS_SHOW(spi_async, "%lu");
 127
 128SPI_STATISTICS_SHOW(bytes, "%llu");
 129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 131
 132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 133	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 134				 "transfer_bytes_histo_" number,	\
 135				 transfer_bytes_histo[index],  "%lu")
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 153
 154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 155
 156static struct attribute *spi_dev_attrs[] = {
 157	&dev_attr_modalias.attr,
 158	NULL,
 159};
 160
 161static const struct attribute_group spi_dev_group = {
 162	.attrs  = spi_dev_attrs,
 163};
 164
 165static struct attribute *spi_device_statistics_attrs[] = {
 166	&dev_attr_spi_device_messages.attr,
 167	&dev_attr_spi_device_transfers.attr,
 168	&dev_attr_spi_device_errors.attr,
 169	&dev_attr_spi_device_timedout.attr,
 170	&dev_attr_spi_device_spi_sync.attr,
 171	&dev_attr_spi_device_spi_sync_immediate.attr,
 172	&dev_attr_spi_device_spi_async.attr,
 173	&dev_attr_spi_device_bytes.attr,
 174	&dev_attr_spi_device_bytes_rx.attr,
 175	&dev_attr_spi_device_bytes_tx.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 186	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 187	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 188	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 189	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 190	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 191	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 192	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 193	&dev_attr_spi_device_transfers_split_maxsize.attr,
 194	NULL,
 195};
 196
 197static const struct attribute_group spi_device_statistics_group = {
 198	.name  = "statistics",
 199	.attrs  = spi_device_statistics_attrs,
 200};
 201
 202static const struct attribute_group *spi_dev_groups[] = {
 203	&spi_dev_group,
 204	&spi_device_statistics_group,
 205	NULL,
 206};
 207
 208static struct attribute *spi_controller_statistics_attrs[] = {
 209	&dev_attr_spi_controller_messages.attr,
 210	&dev_attr_spi_controller_transfers.attr,
 211	&dev_attr_spi_controller_errors.attr,
 212	&dev_attr_spi_controller_timedout.attr,
 213	&dev_attr_spi_controller_spi_sync.attr,
 214	&dev_attr_spi_controller_spi_sync_immediate.attr,
 215	&dev_attr_spi_controller_spi_async.attr,
 216	&dev_attr_spi_controller_bytes.attr,
 217	&dev_attr_spi_controller_bytes_rx.attr,
 218	&dev_attr_spi_controller_bytes_tx.attr,
 219	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 220	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 221	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 222	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 223	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 224	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 225	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 226	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 227	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 228	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 229	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 230	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 231	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 232	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 233	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 234	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 235	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 236	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 237	NULL,
 238};
 239
 240static const struct attribute_group spi_controller_statistics_group = {
 241	.name  = "statistics",
 242	.attrs  = spi_controller_statistics_attrs,
 243};
 244
 245static const struct attribute_group *spi_master_groups[] = {
 246	&spi_controller_statistics_group,
 247	NULL,
 248};
 249
 250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 251				       struct spi_transfer *xfer,
 252				       struct spi_controller *ctlr)
 253{
 254	unsigned long flags;
 255	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 256
 257	if (l2len < 0)
 258		l2len = 0;
 259
 260	spin_lock_irqsave(&stats->lock, flags);
 261
 262	stats->transfers++;
 263	stats->transfer_bytes_histo[l2len]++;
 264
 265	stats->bytes += xfer->len;
 266	if ((xfer->tx_buf) &&
 267	    (xfer->tx_buf != ctlr->dummy_tx))
 268		stats->bytes_tx += xfer->len;
 269	if ((xfer->rx_buf) &&
 270	    (xfer->rx_buf != ctlr->dummy_rx))
 271		stats->bytes_rx += xfer->len;
 272
 273	spin_unlock_irqrestore(&stats->lock, flags);
 274}
 275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 276
 277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 278 * and the sysfs version makes coldplug work too.
 279 */
 280
 281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 282						const struct spi_device *sdev)
 283{
 284	while (id->name[0]) {
 285		if (!strcmp(sdev->modalias, id->name))
 286			return id;
 287		id++;
 288	}
 289	return NULL;
 290}
 291
 292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 293{
 294	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 295
 296	return spi_match_id(sdrv->id_table, sdev);
 297}
 298EXPORT_SYMBOL_GPL(spi_get_device_id);
 299
 300static int spi_match_device(struct device *dev, struct device_driver *drv)
 301{
 302	const struct spi_device	*spi = to_spi_device(dev);
 303	const struct spi_driver	*sdrv = to_spi_driver(drv);
 304
 305	/* Attempt an OF style match */
 306	if (of_driver_match_device(dev, drv))
 307		return 1;
 308
 309	/* Then try ACPI */
 310	if (acpi_driver_match_device(dev, drv))
 311		return 1;
 312
 313	if (sdrv->id_table)
 314		return !!spi_match_id(sdrv->id_table, spi);
 315
 316	return strcmp(spi->modalias, drv->name) == 0;
 317}
 318
 319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 320{
 321	const struct spi_device		*spi = to_spi_device(dev);
 322	int rc;
 323
 324	rc = acpi_device_uevent_modalias(dev, env);
 325	if (rc != -ENODEV)
 326		return rc;
 327
 328	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 329}
 330
 331struct bus_type spi_bus_type = {
 332	.name		= "spi",
 333	.dev_groups	= spi_dev_groups,
 334	.match		= spi_match_device,
 335	.uevent		= spi_uevent,
 336};
 337EXPORT_SYMBOL_GPL(spi_bus_type);
 338
 339
 340static int spi_drv_probe(struct device *dev)
 341{
 342	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 343	struct spi_device		*spi = to_spi_device(dev);
 344	int ret;
 345
 346	ret = of_clk_set_defaults(dev->of_node, false);
 347	if (ret)
 348		return ret;
 349
 350	if (dev->of_node) {
 351		spi->irq = of_irq_get(dev->of_node, 0);
 352		if (spi->irq == -EPROBE_DEFER)
 353			return -EPROBE_DEFER;
 354		if (spi->irq < 0)
 355			spi->irq = 0;
 356	}
 357
 358	ret = dev_pm_domain_attach(dev, true);
 359	if (ret != -EPROBE_DEFER) {
 360		ret = sdrv->probe(spi);
 361		if (ret)
 362			dev_pm_domain_detach(dev, true);
 363	}
 364
 365	return ret;
 366}
 367
 368static int spi_drv_remove(struct device *dev)
 369{
 370	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 371	int ret;
 372
 373	ret = sdrv->remove(to_spi_device(dev));
 374	dev_pm_domain_detach(dev, true);
 375
 376	return ret;
 377}
 378
 379static void spi_drv_shutdown(struct device *dev)
 380{
 381	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 382
 383	sdrv->shutdown(to_spi_device(dev));
 384}
 385
 386/**
 387 * __spi_register_driver - register a SPI driver
 388 * @owner: owner module of the driver to register
 389 * @sdrv: the driver to register
 390 * Context: can sleep
 391 *
 392 * Return: zero on success, else a negative error code.
 393 */
 394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 395{
 396	sdrv->driver.owner = owner;
 397	sdrv->driver.bus = &spi_bus_type;
 398	if (sdrv->probe)
 399		sdrv->driver.probe = spi_drv_probe;
 400	if (sdrv->remove)
 401		sdrv->driver.remove = spi_drv_remove;
 402	if (sdrv->shutdown)
 403		sdrv->driver.shutdown = spi_drv_shutdown;
 404	return driver_register(&sdrv->driver);
 405}
 406EXPORT_SYMBOL_GPL(__spi_register_driver);
 407
 408/*-------------------------------------------------------------------------*/
 409
 410/* SPI devices should normally not be created by SPI device drivers; that
 411 * would make them board-specific.  Similarly with SPI controller drivers.
 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 413 * with other readonly (flashable) information about mainboard devices.
 414 */
 415
 416struct boardinfo {
 417	struct list_head	list;
 418	struct spi_board_info	board_info;
 419};
 420
 421static LIST_HEAD(board_list);
 422static LIST_HEAD(spi_controller_list);
 423
 424/*
 425 * Used to protect add/del opertion for board_info list and
 426 * spi_controller list, and their matching process
 427 * also used to protect object of type struct idr
 428 */
 429static DEFINE_MUTEX(board_lock);
 430
 431/**
 432 * spi_alloc_device - Allocate a new SPI device
 433 * @ctlr: Controller to which device is connected
 434 * Context: can sleep
 435 *
 436 * Allows a driver to allocate and initialize a spi_device without
 437 * registering it immediately.  This allows a driver to directly
 438 * fill the spi_device with device parameters before calling
 439 * spi_add_device() on it.
 440 *
 441 * Caller is responsible to call spi_add_device() on the returned
 442 * spi_device structure to add it to the SPI controller.  If the caller
 443 * needs to discard the spi_device without adding it, then it should
 444 * call spi_dev_put() on it.
 445 *
 446 * Return: a pointer to the new device, or NULL.
 447 */
 448struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 449{
 450	struct spi_device	*spi;
 451
 452	if (!spi_controller_get(ctlr))
 453		return NULL;
 454
 455	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 456	if (!spi) {
 457		spi_controller_put(ctlr);
 458		return NULL;
 459	}
 460
 461	spi->master = spi->controller = ctlr;
 462	spi->dev.parent = &ctlr->dev;
 463	spi->dev.bus = &spi_bus_type;
 464	spi->dev.release = spidev_release;
 465	spi->cs_gpio = -ENOENT;
 466
 467	spin_lock_init(&spi->statistics.lock);
 468
 469	device_initialize(&spi->dev);
 470	return spi;
 471}
 472EXPORT_SYMBOL_GPL(spi_alloc_device);
 473
 474static void spi_dev_set_name(struct spi_device *spi)
 475{
 476	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 477
 478	if (adev) {
 479		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 480		return;
 481	}
 482
 483	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 484		     spi->chip_select);
 485}
 486
 487static int spi_dev_check(struct device *dev, void *data)
 488{
 489	struct spi_device *spi = to_spi_device(dev);
 490	struct spi_device *new_spi = data;
 491
 492	if (spi->controller == new_spi->controller &&
 493	    spi->chip_select == new_spi->chip_select)
 494		return -EBUSY;
 495	return 0;
 496}
 497
 498/**
 499 * spi_add_device - Add spi_device allocated with spi_alloc_device
 500 * @spi: spi_device to register
 501 *
 502 * Companion function to spi_alloc_device.  Devices allocated with
 503 * spi_alloc_device can be added onto the spi bus with this function.
 504 *
 505 * Return: 0 on success; negative errno on failure
 506 */
 507int spi_add_device(struct spi_device *spi)
 508{
 509	static DEFINE_MUTEX(spi_add_lock);
 510	struct spi_controller *ctlr = spi->controller;
 511	struct device *dev = ctlr->dev.parent;
 512	int status;
 513
 514	/* Chipselects are numbered 0..max; validate. */
 515	if (spi->chip_select >= ctlr->num_chipselect) {
 516		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 517			ctlr->num_chipselect);
 
 518		return -EINVAL;
 519	}
 520
 521	/* Set the bus ID string */
 522	spi_dev_set_name(spi);
 523
 524	/* We need to make sure there's no other device with this
 525	 * chipselect **BEFORE** we call setup(), else we'll trash
 526	 * its configuration.  Lock against concurrent add() calls.
 527	 */
 528	mutex_lock(&spi_add_lock);
 529
 530	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 531	if (status) {
 532		dev_err(dev, "chipselect %d already in use\n",
 533				spi->chip_select);
 534		goto done;
 535	}
 536
 537	if (ctlr->cs_gpios)
 538		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 539
 540	/* Drivers may modify this initial i/o setup, but will
 541	 * normally rely on the device being setup.  Devices
 542	 * using SPI_CS_HIGH can't coexist well otherwise...
 543	 */
 544	status = spi_setup(spi);
 545	if (status < 0) {
 546		dev_err(dev, "can't setup %s, status %d\n",
 547				dev_name(&spi->dev), status);
 548		goto done;
 549	}
 550
 551	/* Device may be bound to an active driver when this returns */
 552	status = device_add(&spi->dev);
 553	if (status < 0)
 554		dev_err(dev, "can't add %s, status %d\n",
 555				dev_name(&spi->dev), status);
 556	else
 557		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 558
 559done:
 560	mutex_unlock(&spi_add_lock);
 561	return status;
 562}
 563EXPORT_SYMBOL_GPL(spi_add_device);
 564
 565/**
 566 * spi_new_device - instantiate one new SPI device
 567 * @ctlr: Controller to which device is connected
 568 * @chip: Describes the SPI device
 569 * Context: can sleep
 570 *
 571 * On typical mainboards, this is purely internal; and it's not needed
 572 * after board init creates the hard-wired devices.  Some development
 573 * platforms may not be able to use spi_register_board_info though, and
 574 * this is exported so that for example a USB or parport based adapter
 575 * driver could add devices (which it would learn about out-of-band).
 576 *
 577 * Return: the new device, or NULL.
 578 */
 579struct spi_device *spi_new_device(struct spi_controller *ctlr,
 580				  struct spi_board_info *chip)
 581{
 582	struct spi_device	*proxy;
 583	int			status;
 584
 585	/* NOTE:  caller did any chip->bus_num checks necessary.
 586	 *
 587	 * Also, unless we change the return value convention to use
 588	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 589	 * suggests syslogged diagnostics are best here (ugh).
 590	 */
 591
 592	proxy = spi_alloc_device(ctlr);
 593	if (!proxy)
 594		return NULL;
 595
 596	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 597
 598	proxy->chip_select = chip->chip_select;
 599	proxy->max_speed_hz = chip->max_speed_hz;
 600	proxy->mode = chip->mode;
 601	proxy->irq = chip->irq;
 602	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 603	proxy->dev.platform_data = (void *) chip->platform_data;
 604	proxy->controller_data = chip->controller_data;
 605	proxy->controller_state = NULL;
 606
 607	if (chip->properties) {
 608		status = device_add_properties(&proxy->dev, chip->properties);
 609		if (status) {
 610			dev_err(&ctlr->dev,
 611				"failed to add properties to '%s': %d\n",
 612				chip->modalias, status);
 613			goto err_dev_put;
 614		}
 615	}
 616
 617	status = spi_add_device(proxy);
 618	if (status < 0)
 619		goto err_remove_props;
 
 
 620
 621	return proxy;
 622
 623err_remove_props:
 624	if (chip->properties)
 625		device_remove_properties(&proxy->dev);
 626err_dev_put:
 627	spi_dev_put(proxy);
 628	return NULL;
 629}
 630EXPORT_SYMBOL_GPL(spi_new_device);
 631
 632/**
 633 * spi_unregister_device - unregister a single SPI device
 634 * @spi: spi_device to unregister
 635 *
 636 * Start making the passed SPI device vanish. Normally this would be handled
 637 * by spi_unregister_controller().
 638 */
 639void spi_unregister_device(struct spi_device *spi)
 640{
 641	if (!spi)
 642		return;
 643
 644	if (spi->dev.of_node) {
 645		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 646		of_node_put(spi->dev.of_node);
 647	}
 648	if (ACPI_COMPANION(&spi->dev))
 649		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 650	device_unregister(&spi->dev);
 651}
 652EXPORT_SYMBOL_GPL(spi_unregister_device);
 653
 654static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 655					      struct spi_board_info *bi)
 656{
 657	struct spi_device *dev;
 658
 659	if (ctlr->bus_num != bi->bus_num)
 660		return;
 661
 662	dev = spi_new_device(ctlr, bi);
 663	if (!dev)
 664		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 665			bi->modalias);
 666}
 667
 668/**
 669 * spi_register_board_info - register SPI devices for a given board
 670 * @info: array of chip descriptors
 671 * @n: how many descriptors are provided
 672 * Context: can sleep
 673 *
 674 * Board-specific early init code calls this (probably during arch_initcall)
 675 * with segments of the SPI device table.  Any device nodes are created later,
 676 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 677 * this table of devices forever, so that reloading a controller driver will
 678 * not make Linux forget about these hard-wired devices.
 679 *
 680 * Other code can also call this, e.g. a particular add-on board might provide
 681 * SPI devices through its expansion connector, so code initializing that board
 682 * would naturally declare its SPI devices.
 683 *
 684 * The board info passed can safely be __initdata ... but be careful of
 685 * any embedded pointers (platform_data, etc), they're copied as-is.
 686 * Device properties are deep-copied though.
 687 *
 688 * Return: zero on success, else a negative error code.
 689 */
 690int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 691{
 692	struct boardinfo *bi;
 693	int i;
 694
 695	if (!n)
 696		return 0;
 697
 698	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 699	if (!bi)
 700		return -ENOMEM;
 701
 702	for (i = 0; i < n; i++, bi++, info++) {
 703		struct spi_controller *ctlr;
 704
 705		memcpy(&bi->board_info, info, sizeof(*info));
 706		if (info->properties) {
 707			bi->board_info.properties =
 708					property_entries_dup(info->properties);
 709			if (IS_ERR(bi->board_info.properties))
 710				return PTR_ERR(bi->board_info.properties);
 711		}
 712
 713		mutex_lock(&board_lock);
 714		list_add_tail(&bi->list, &board_list);
 715		list_for_each_entry(ctlr, &spi_controller_list, list)
 716			spi_match_controller_to_boardinfo(ctlr,
 717							  &bi->board_info);
 718		mutex_unlock(&board_lock);
 719	}
 720
 721	return 0;
 722}
 723
 724/*-------------------------------------------------------------------------*/
 725
 726static void spi_set_cs(struct spi_device *spi, bool enable)
 727{
 728	if (spi->mode & SPI_CS_HIGH)
 729		enable = !enable;
 730
 731	if (gpio_is_valid(spi->cs_gpio)) {
 732		gpio_set_value(spi->cs_gpio, !enable);
 733		/* Some SPI masters need both GPIO CS & slave_select */
 734		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 735		    spi->controller->set_cs)
 736			spi->controller->set_cs(spi, !enable);
 737	} else if (spi->controller->set_cs) {
 738		spi->controller->set_cs(spi, !enable);
 739	}
 740}
 741
 742#ifdef CONFIG_HAS_DMA
 743static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 744		       struct sg_table *sgt, void *buf, size_t len,
 745		       enum dma_data_direction dir)
 746{
 747	const bool vmalloced_buf = is_vmalloc_addr(buf);
 748	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 749#ifdef CONFIG_HIGHMEM
 750	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 751				(unsigned long)buf < (PKMAP_BASE +
 752					(LAST_PKMAP * PAGE_SIZE)));
 753#else
 754	const bool kmap_buf = false;
 755#endif
 756	int desc_len;
 757	int sgs;
 758	struct page *vm_page;
 759	struct scatterlist *sg;
 760	void *sg_buf;
 761	size_t min;
 762	int i, ret;
 763
 764	if (vmalloced_buf || kmap_buf) {
 765		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 766		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 767	} else if (virt_addr_valid(buf)) {
 768		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 769		sgs = DIV_ROUND_UP(len, desc_len);
 770	} else {
 771		return -EINVAL;
 772	}
 773
 774	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 775	if (ret != 0)
 776		return ret;
 777
 778	sg = &sgt->sgl[0];
 779	for (i = 0; i < sgs; i++) {
 780
 781		if (vmalloced_buf || kmap_buf) {
 782			/*
 783			 * Next scatterlist entry size is the minimum between
 784			 * the desc_len and the remaining buffer length that
 785			 * fits in a page.
 786			 */
 787			min = min_t(size_t, desc_len,
 788				    min_t(size_t, len,
 789					  PAGE_SIZE - offset_in_page(buf)));
 790			if (vmalloced_buf)
 791				vm_page = vmalloc_to_page(buf);
 792			else
 793				vm_page = kmap_to_page(buf);
 794			if (!vm_page) {
 795				sg_free_table(sgt);
 796				return -ENOMEM;
 797			}
 798			sg_set_page(sg, vm_page,
 799				    min, offset_in_page(buf));
 800		} else {
 801			min = min_t(size_t, len, desc_len);
 802			sg_buf = buf;
 803			sg_set_buf(sg, sg_buf, min);
 804		}
 805
 806		buf += min;
 807		len -= min;
 808		sg = sg_next(sg);
 809	}
 810
 811	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 812	if (!ret)
 813		ret = -ENOMEM;
 814	if (ret < 0) {
 815		sg_free_table(sgt);
 816		return ret;
 817	}
 818
 819	sgt->nents = ret;
 820
 821	return 0;
 822}
 823
 824static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 825			  struct sg_table *sgt, enum dma_data_direction dir)
 826{
 827	if (sgt->orig_nents) {
 828		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 829		sg_free_table(sgt);
 830	}
 831}
 832
 833static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 834{
 835	struct device *tx_dev, *rx_dev;
 836	struct spi_transfer *xfer;
 837	int ret;
 838
 839	if (!ctlr->can_dma)
 840		return 0;
 841
 842	if (ctlr->dma_tx)
 843		tx_dev = ctlr->dma_tx->device->dev;
 844	else
 845		tx_dev = ctlr->dev.parent;
 846
 847	if (ctlr->dma_rx)
 848		rx_dev = ctlr->dma_rx->device->dev;
 849	else
 850		rx_dev = ctlr->dev.parent;
 851
 852	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 853		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 854			continue;
 855
 856		if (xfer->tx_buf != NULL) {
 857			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 858					  (void *)xfer->tx_buf, xfer->len,
 859					  DMA_TO_DEVICE);
 860			if (ret != 0)
 861				return ret;
 862		}
 863
 864		if (xfer->rx_buf != NULL) {
 865			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 866					  xfer->rx_buf, xfer->len,
 867					  DMA_FROM_DEVICE);
 868			if (ret != 0) {
 869				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 870					      DMA_TO_DEVICE);
 871				return ret;
 872			}
 873		}
 874	}
 875
 876	ctlr->cur_msg_mapped = true;
 877
 878	return 0;
 879}
 880
 881static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 882{
 883	struct spi_transfer *xfer;
 884	struct device *tx_dev, *rx_dev;
 885
 886	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 887		return 0;
 888
 889	if (ctlr->dma_tx)
 890		tx_dev = ctlr->dma_tx->device->dev;
 891	else
 892		tx_dev = ctlr->dev.parent;
 893
 894	if (ctlr->dma_rx)
 895		rx_dev = ctlr->dma_rx->device->dev;
 896	else
 897		rx_dev = ctlr->dev.parent;
 898
 899	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 900		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 901			continue;
 902
 903		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 904		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 905	}
 906
 907	return 0;
 908}
 909#else /* !CONFIG_HAS_DMA */
 910static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 911			      struct sg_table *sgt, void *buf, size_t len,
 
 912			      enum dma_data_direction dir)
 913{
 914	return -EINVAL;
 915}
 916
 917static inline void spi_unmap_buf(struct spi_controller *ctlr,
 918				 struct device *dev, struct sg_table *sgt,
 919				 enum dma_data_direction dir)
 920{
 921}
 922
 923static inline int __spi_map_msg(struct spi_controller *ctlr,
 924				struct spi_message *msg)
 925{
 926	return 0;
 927}
 928
 929static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 930				  struct spi_message *msg)
 931{
 932	return 0;
 933}
 934#endif /* !CONFIG_HAS_DMA */
 935
 936static inline int spi_unmap_msg(struct spi_controller *ctlr,
 937				struct spi_message *msg)
 938{
 939	struct spi_transfer *xfer;
 940
 941	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 942		/*
 943		 * Restore the original value of tx_buf or rx_buf if they are
 944		 * NULL.
 945		 */
 946		if (xfer->tx_buf == ctlr->dummy_tx)
 947			xfer->tx_buf = NULL;
 948		if (xfer->rx_buf == ctlr->dummy_rx)
 949			xfer->rx_buf = NULL;
 950	}
 951
 952	return __spi_unmap_msg(ctlr, msg);
 953}
 954
 955static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 956{
 957	struct spi_transfer *xfer;
 958	void *tmp;
 959	unsigned int max_tx, max_rx;
 960
 961	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 962		max_tx = 0;
 963		max_rx = 0;
 964
 965		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
 967			    !xfer->tx_buf)
 968				max_tx = max(xfer->len, max_tx);
 969			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
 970			    !xfer->rx_buf)
 971				max_rx = max(xfer->len, max_rx);
 972		}
 973
 974		if (max_tx) {
 975			tmp = krealloc(ctlr->dummy_tx, max_tx,
 976				       GFP_KERNEL | GFP_DMA);
 977			if (!tmp)
 978				return -ENOMEM;
 979			ctlr->dummy_tx = tmp;
 980			memset(tmp, 0, max_tx);
 981		}
 982
 983		if (max_rx) {
 984			tmp = krealloc(ctlr->dummy_rx, max_rx,
 985				       GFP_KERNEL | GFP_DMA);
 986			if (!tmp)
 987				return -ENOMEM;
 988			ctlr->dummy_rx = tmp;
 989		}
 990
 991		if (max_tx || max_rx) {
 992			list_for_each_entry(xfer, &msg->transfers,
 993					    transfer_list) {
 994				if (!xfer->tx_buf)
 995					xfer->tx_buf = ctlr->dummy_tx;
 996				if (!xfer->rx_buf)
 997					xfer->rx_buf = ctlr->dummy_rx;
 998			}
 999		}
1000	}
1001
1002	return __spi_map_msg(ctlr, msg);
1003}
1004
1005/*
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1007 *
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation.  It provides
1010 * standard handling of delays and chip select management.
1011 */
1012static int spi_transfer_one_message(struct spi_controller *ctlr,
1013				    struct spi_message *msg)
1014{
1015	struct spi_transfer *xfer;
1016	bool keep_cs = false;
1017	int ret = 0;
1018	unsigned long long ms = 1;
1019	struct spi_statistics *statm = &ctlr->statistics;
1020	struct spi_statistics *stats = &msg->spi->statistics;
1021
1022	spi_set_cs(msg->spi, true);
1023
1024	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026
1027	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028		trace_spi_transfer_start(msg, xfer);
1029
1030		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032
1033		if (xfer->tx_buf || xfer->rx_buf) {
1034			reinit_completion(&ctlr->xfer_completion);
1035
1036			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037			if (ret < 0) {
1038				SPI_STATISTICS_INCREMENT_FIELD(statm,
1039							       errors);
1040				SPI_STATISTICS_INCREMENT_FIELD(stats,
1041							       errors);
1042				dev_err(&msg->spi->dev,
1043					"SPI transfer failed: %d\n", ret);
1044				goto out;
1045			}
1046
1047			if (ret > 0) {
1048				ret = 0;
1049				ms = 8LL * 1000LL * xfer->len;
1050				do_div(ms, xfer->speed_hz);
1051				ms += ms + 200; /* some tolerance */
1052
1053				if (ms > UINT_MAX)
1054					ms = UINT_MAX;
1055
1056				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057								 msecs_to_jiffies(ms));
1058			}
1059
1060			if (ms == 0) {
1061				SPI_STATISTICS_INCREMENT_FIELD(statm,
1062							       timedout);
1063				SPI_STATISTICS_INCREMENT_FIELD(stats,
1064							       timedout);
1065				dev_err(&msg->spi->dev,
1066					"SPI transfer timed out\n");
1067				msg->status = -ETIMEDOUT;
1068			}
1069		} else {
1070			if (xfer->len)
1071				dev_err(&msg->spi->dev,
1072					"Bufferless transfer has length %u\n",
1073					xfer->len);
1074		}
1075
1076		trace_spi_transfer_stop(msg, xfer);
1077
1078		if (msg->status != -EINPROGRESS)
1079			goto out;
1080
1081		if (xfer->delay_usecs) {
1082			u16 us = xfer->delay_usecs;
1083
1084			if (us <= 10)
1085				udelay(us);
1086			else
1087				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088		}
1089
1090		if (xfer->cs_change) {
1091			if (list_is_last(&xfer->transfer_list,
1092					 &msg->transfers)) {
1093				keep_cs = true;
1094			} else {
1095				spi_set_cs(msg->spi, false);
1096				udelay(10);
1097				spi_set_cs(msg->spi, true);
1098			}
1099		}
1100
1101		msg->actual_length += xfer->len;
1102	}
1103
1104out:
1105	if (ret != 0 || !keep_cs)
1106		spi_set_cs(msg->spi, false);
1107
1108	if (msg->status == -EINPROGRESS)
1109		msg->status = ret;
1110
1111	if (msg->status && ctlr->handle_err)
1112		ctlr->handle_err(ctlr, msg);
1113
1114	spi_res_release(ctlr, msg);
1115
1116	spi_finalize_current_message(ctlr);
1117
1118	return ret;
1119}
1120
1121/**
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1124 *
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1128 */
1129void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130{
1131	complete(&ctlr->xfer_completion);
1132}
1133EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134
1135/**
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1139 *
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1143 *
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1147 */
1148static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149{
1150	unsigned long flags;
1151	bool was_busy = false;
1152	int ret;
1153
1154	/* Lock queue */
1155	spin_lock_irqsave(&ctlr->queue_lock, flags);
1156
1157	/* Make sure we are not already running a message */
1158	if (ctlr->cur_msg) {
1159		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160		return;
1161	}
1162
1163	/* If another context is idling the device then defer */
1164	if (ctlr->idling) {
1165		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167		return;
1168	}
1169
1170	/* Check if the queue is idle */
1171	if (list_empty(&ctlr->queue) || !ctlr->running) {
1172		if (!ctlr->busy) {
1173			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174			return;
1175		}
1176
1177		/* Only do teardown in the thread */
1178		if (!in_kthread) {
1179			kthread_queue_work(&ctlr->kworker,
1180					   &ctlr->pump_messages);
1181			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182			return;
1183		}
1184
1185		ctlr->busy = false;
1186		ctlr->idling = true;
1187		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188
1189		kfree(ctlr->dummy_rx);
1190		ctlr->dummy_rx = NULL;
1191		kfree(ctlr->dummy_tx);
1192		ctlr->dummy_tx = NULL;
1193		if (ctlr->unprepare_transfer_hardware &&
1194		    ctlr->unprepare_transfer_hardware(ctlr))
1195			dev_err(&ctlr->dev,
1196				"failed to unprepare transfer hardware\n");
1197		if (ctlr->auto_runtime_pm) {
1198			pm_runtime_mark_last_busy(ctlr->dev.parent);
1199			pm_runtime_put_autosuspend(ctlr->dev.parent);
1200		}
1201		trace_spi_controller_idle(ctlr);
1202
1203		spin_lock_irqsave(&ctlr->queue_lock, flags);
1204		ctlr->idling = false;
1205		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206		return;
1207	}
1208
1209	/* Extract head of queue */
1210	ctlr->cur_msg =
1211		list_first_entry(&ctlr->queue, struct spi_message, queue);
1212
1213	list_del_init(&ctlr->cur_msg->queue);
1214	if (ctlr->busy)
1215		was_busy = true;
1216	else
1217		ctlr->busy = true;
1218	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219
1220	mutex_lock(&ctlr->io_mutex);
1221
1222	if (!was_busy && ctlr->auto_runtime_pm) {
1223		ret = pm_runtime_get_sync(ctlr->dev.parent);
1224		if (ret < 0) {
1225			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1226				ret);
1227			mutex_unlock(&ctlr->io_mutex);
1228			return;
1229		}
1230	}
1231
1232	if (!was_busy)
1233		trace_spi_controller_busy(ctlr);
1234
1235	if (!was_busy && ctlr->prepare_transfer_hardware) {
1236		ret = ctlr->prepare_transfer_hardware(ctlr);
1237		if (ret) {
1238			dev_err(&ctlr->dev,
1239				"failed to prepare transfer hardware\n");
1240
1241			if (ctlr->auto_runtime_pm)
1242				pm_runtime_put(ctlr->dev.parent);
1243			mutex_unlock(&ctlr->io_mutex);
1244			return;
1245		}
1246	}
1247
1248	trace_spi_message_start(ctlr->cur_msg);
1249
1250	if (ctlr->prepare_message) {
1251		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1252		if (ret) {
1253			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1254				ret);
1255			ctlr->cur_msg->status = ret;
1256			spi_finalize_current_message(ctlr);
1257			goto out;
1258		}
1259		ctlr->cur_msg_prepared = true;
1260	}
1261
1262	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1263	if (ret) {
1264		ctlr->cur_msg->status = ret;
1265		spi_finalize_current_message(ctlr);
1266		goto out;
1267	}
1268
1269	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1270	if (ret) {
1271		dev_err(&ctlr->dev,
1272			"failed to transfer one message from queue\n");
1273		goto out;
1274	}
1275
1276out:
1277	mutex_unlock(&ctlr->io_mutex);
1278
1279	/* Prod the scheduler in case transfer_one() was busy waiting */
1280	if (!ret)
1281		cond_resched();
1282}
1283
1284/**
1285 * spi_pump_messages - kthread work function which processes spi message queue
1286 * @work: pointer to kthread work struct contained in the controller struct
1287 */
1288static void spi_pump_messages(struct kthread_work *work)
1289{
1290	struct spi_controller *ctlr =
1291		container_of(work, struct spi_controller, pump_messages);
1292
1293	__spi_pump_messages(ctlr, true);
1294}
1295
1296static int spi_init_queue(struct spi_controller *ctlr)
1297{
1298	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1299
1300	ctlr->running = false;
1301	ctlr->busy = false;
1302
1303	kthread_init_worker(&ctlr->kworker);
1304	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1305					 "%s", dev_name(&ctlr->dev));
1306	if (IS_ERR(ctlr->kworker_task)) {
1307		dev_err(&ctlr->dev, "failed to create message pump task\n");
1308		return PTR_ERR(ctlr->kworker_task);
 
1309	}
1310	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1311
1312	/*
1313	 * Controller config will indicate if this controller should run the
1314	 * message pump with high (realtime) priority to reduce the transfer
1315	 * latency on the bus by minimising the delay between a transfer
1316	 * request and the scheduling of the message pump thread. Without this
1317	 * setting the message pump thread will remain at default priority.
1318	 */
1319	if (ctlr->rt) {
1320		dev_info(&ctlr->dev,
1321			"will run message pump with realtime priority\n");
1322		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1323	}
1324
1325	return 0;
1326}
1327
1328/**
1329 * spi_get_next_queued_message() - called by driver to check for queued
1330 * messages
1331 * @ctlr: the controller to check for queued messages
1332 *
1333 * If there are more messages in the queue, the next message is returned from
1334 * this call.
1335 *
1336 * Return: the next message in the queue, else NULL if the queue is empty.
1337 */
1338struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1339{
1340	struct spi_message *next;
1341	unsigned long flags;
1342
1343	/* get a pointer to the next message, if any */
1344	spin_lock_irqsave(&ctlr->queue_lock, flags);
1345	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1346					queue);
1347	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348
1349	return next;
1350}
1351EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1352
1353/**
1354 * spi_finalize_current_message() - the current message is complete
1355 * @ctlr: the controller to return the message to
1356 *
1357 * Called by the driver to notify the core that the message in the front of the
1358 * queue is complete and can be removed from the queue.
1359 */
1360void spi_finalize_current_message(struct spi_controller *ctlr)
1361{
1362	struct spi_message *mesg;
1363	unsigned long flags;
1364	int ret;
1365
1366	spin_lock_irqsave(&ctlr->queue_lock, flags);
1367	mesg = ctlr->cur_msg;
1368	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369
1370	spi_unmap_msg(ctlr, mesg);
1371
1372	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1373		ret = ctlr->unprepare_message(ctlr, mesg);
1374		if (ret) {
1375			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1376				ret);
1377		}
1378	}
1379
1380	spin_lock_irqsave(&ctlr->queue_lock, flags);
1381	ctlr->cur_msg = NULL;
1382	ctlr->cur_msg_prepared = false;
1383	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1384	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1385
1386	trace_spi_message_done(mesg);
1387
1388	mesg->state = NULL;
1389	if (mesg->complete)
1390		mesg->complete(mesg->context);
1391}
1392EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1393
1394static int spi_start_queue(struct spi_controller *ctlr)
1395{
1396	unsigned long flags;
1397
1398	spin_lock_irqsave(&ctlr->queue_lock, flags);
1399
1400	if (ctlr->running || ctlr->busy) {
1401		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402		return -EBUSY;
1403	}
1404
1405	ctlr->running = true;
1406	ctlr->cur_msg = NULL;
1407	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408
1409	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1410
1411	return 0;
1412}
1413
1414static int spi_stop_queue(struct spi_controller *ctlr)
1415{
1416	unsigned long flags;
1417	unsigned limit = 500;
1418	int ret = 0;
1419
1420	spin_lock_irqsave(&ctlr->queue_lock, flags);
1421
1422	/*
1423	 * This is a bit lame, but is optimized for the common execution path.
1424	 * A wait_queue on the ctlr->busy could be used, but then the common
1425	 * execution path (pump_messages) would be required to call wake_up or
1426	 * friends on every SPI message. Do this instead.
1427	 */
1428	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1429		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430		usleep_range(10000, 11000);
1431		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432	}
1433
1434	if (!list_empty(&ctlr->queue) || ctlr->busy)
1435		ret = -EBUSY;
1436	else
1437		ctlr->running = false;
1438
1439	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440
1441	if (ret) {
1442		dev_warn(&ctlr->dev, "could not stop message queue\n");
 
1443		return ret;
1444	}
1445	return ret;
1446}
1447
1448static int spi_destroy_queue(struct spi_controller *ctlr)
1449{
1450	int ret;
1451
1452	ret = spi_stop_queue(ctlr);
1453
1454	/*
1455	 * kthread_flush_worker will block until all work is done.
1456	 * If the reason that stop_queue timed out is that the work will never
1457	 * finish, then it does no good to call flush/stop thread, so
1458	 * return anyway.
1459	 */
1460	if (ret) {
1461		dev_err(&ctlr->dev, "problem destroying queue\n");
1462		return ret;
1463	}
1464
1465	kthread_flush_worker(&ctlr->kworker);
1466	kthread_stop(ctlr->kworker_task);
1467
1468	return 0;
1469}
1470
1471static int __spi_queued_transfer(struct spi_device *spi,
1472				 struct spi_message *msg,
1473				 bool need_pump)
1474{
1475	struct spi_controller *ctlr = spi->controller;
1476	unsigned long flags;
1477
1478	spin_lock_irqsave(&ctlr->queue_lock, flags);
1479
1480	if (!ctlr->running) {
1481		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482		return -ESHUTDOWN;
1483	}
1484	msg->actual_length = 0;
1485	msg->status = -EINPROGRESS;
1486
1487	list_add_tail(&msg->queue, &ctlr->queue);
1488	if (!ctlr->busy && need_pump)
1489		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1490
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492	return 0;
1493}
1494
1495/**
1496 * spi_queued_transfer - transfer function for queued transfers
1497 * @spi: spi device which is requesting transfer
1498 * @msg: spi message which is to handled is queued to driver queue
1499 *
1500 * Return: zero on success, else a negative error code.
1501 */
1502static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1503{
1504	return __spi_queued_transfer(spi, msg, true);
1505}
1506
1507static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1508{
1509	int ret;
1510
1511	ctlr->transfer = spi_queued_transfer;
1512	if (!ctlr->transfer_one_message)
1513		ctlr->transfer_one_message = spi_transfer_one_message;
1514
1515	/* Initialize and start queue */
1516	ret = spi_init_queue(ctlr);
1517	if (ret) {
1518		dev_err(&ctlr->dev, "problem initializing queue\n");
1519		goto err_init_queue;
1520	}
1521	ctlr->queued = true;
1522	ret = spi_start_queue(ctlr);
1523	if (ret) {
1524		dev_err(&ctlr->dev, "problem starting queue\n");
1525		goto err_start_queue;
1526	}
1527
1528	return 0;
1529
1530err_start_queue:
1531	spi_destroy_queue(ctlr);
1532err_init_queue:
1533	return ret;
1534}
1535
1536/*-------------------------------------------------------------------------*/
1537
1538#if defined(CONFIG_OF)
1539static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1540			   struct device_node *nc)
1541{
1542	u32 value;
1543	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545	/* Mode (clock phase/polarity/etc.) */
1546	if (of_property_read_bool(nc, "spi-cpha"))
1547		spi->mode |= SPI_CPHA;
1548	if (of_property_read_bool(nc, "spi-cpol"))
1549		spi->mode |= SPI_CPOL;
1550	if (of_property_read_bool(nc, "spi-cs-high"))
1551		spi->mode |= SPI_CS_HIGH;
1552	if (of_property_read_bool(nc, "spi-3wire"))
1553		spi->mode |= SPI_3WIRE;
1554	if (of_property_read_bool(nc, "spi-lsb-first"))
1555		spi->mode |= SPI_LSB_FIRST;
1556
1557	/* Device DUAL/QUAD mode */
1558	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1559		switch (value) {
1560		case 1:
1561			break;
1562		case 2:
1563			spi->mode |= SPI_TX_DUAL;
1564			break;
1565		case 4:
1566			spi->mode |= SPI_TX_QUAD;
1567			break;
1568		default:
1569			dev_warn(&ctlr->dev,
1570				"spi-tx-bus-width %d not supported\n",
1571				value);
1572			break;
1573		}
1574	}
1575
1576	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1577		switch (value) {
1578		case 1:
1579			break;
1580		case 2:
1581			spi->mode |= SPI_RX_DUAL;
1582			break;
1583		case 4:
1584			spi->mode |= SPI_RX_QUAD;
1585			break;
1586		default:
1587			dev_warn(&ctlr->dev,
1588				"spi-rx-bus-width %d not supported\n",
1589				value);
1590			break;
1591		}
1592	}
1593
1594	if (spi_controller_is_slave(ctlr)) {
1595		if (strcmp(nc->name, "slave")) {
1596			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1597				nc);
1598			return -EINVAL;
1599		}
1600		return 0;
1601	}
1602
1603	/* Device address */
1604	rc = of_property_read_u32(nc, "reg", &value);
1605	if (rc) {
1606		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1607			nc, rc);
1608		return rc;
1609	}
1610	spi->chip_select = value;
1611
1612	/* Device speed */
1613	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1614	if (rc) {
1615		dev_err(&ctlr->dev,
1616			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1617		return rc;
1618	}
1619	spi->max_speed_hz = value;
1620
1621	return 0;
1622}
1623
1624static struct spi_device *
1625of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1626{
1627	struct spi_device *spi;
1628	int rc;
1629
1630	/* Alloc an spi_device */
1631	spi = spi_alloc_device(ctlr);
1632	if (!spi) {
1633		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1634		rc = -ENOMEM;
1635		goto err_out;
1636	}
1637
1638	/* Select device driver */
1639	rc = of_modalias_node(nc, spi->modalias,
1640				sizeof(spi->modalias));
1641	if (rc < 0) {
1642		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1643		goto err_out;
1644	}
1645
1646	rc = of_spi_parse_dt(ctlr, spi, nc);
1647	if (rc)
1648		goto err_out;
1649
1650	/* Store a pointer to the node in the device structure */
1651	of_node_get(nc);
1652	spi->dev.of_node = nc;
1653
1654	/* Register the new device */
1655	rc = spi_add_device(spi);
1656	if (rc) {
1657		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1658		goto err_of_node_put;
 
1659	}
1660
1661	return spi;
1662
1663err_of_node_put:
1664	of_node_put(nc);
1665err_out:
1666	spi_dev_put(spi);
1667	return ERR_PTR(rc);
1668}
1669
1670/**
1671 * of_register_spi_devices() - Register child devices onto the SPI bus
1672 * @ctlr:	Pointer to spi_controller device
1673 *
1674 * Registers an spi_device for each child node of controller node which
1675 * represents a valid SPI slave.
1676 */
1677static void of_register_spi_devices(struct spi_controller *ctlr)
1678{
1679	struct spi_device *spi;
1680	struct device_node *nc;
1681
1682	if (!ctlr->dev.of_node)
1683		return;
1684
1685	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1686		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1687			continue;
1688		spi = of_register_spi_device(ctlr, nc);
1689		if (IS_ERR(spi)) {
1690			dev_warn(&ctlr->dev,
1691				 "Failed to create SPI device for %pOF\n", nc);
1692			of_node_clear_flag(nc, OF_POPULATED);
1693		}
1694	}
1695}
1696#else
1697static void of_register_spi_devices(struct spi_controller *ctlr) { }
1698#endif
1699
1700#ifdef CONFIG_ACPI
1701static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1702{
1703	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1704	const union acpi_object *obj;
1705
1706	if (!x86_apple_machine)
1707		return;
1708
1709	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1710	    && obj->buffer.length >= 4)
1711		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1712
1713	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1714	    && obj->buffer.length == 8)
1715		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1716
1717	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1718	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1719		spi->mode |= SPI_LSB_FIRST;
1720
1721	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1722	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1723		spi->mode |= SPI_CPOL;
1724
1725	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1726	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1727		spi->mode |= SPI_CPHA;
1728}
1729
1730static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1731{
1732	struct spi_device *spi = data;
1733	struct spi_controller *ctlr = spi->controller;
1734
1735	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1736		struct acpi_resource_spi_serialbus *sb;
1737
1738		sb = &ares->data.spi_serial_bus;
1739		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1740			/*
1741			 * ACPI DeviceSelection numbering is handled by the
1742			 * host controller driver in Windows and can vary
1743			 * from driver to driver. In Linux we always expect
1744			 * 0 .. max - 1 so we need to ask the driver to
1745			 * translate between the two schemes.
1746			 */
1747			if (ctlr->fw_translate_cs) {
1748				int cs = ctlr->fw_translate_cs(ctlr,
1749						sb->device_selection);
1750				if (cs < 0)
1751					return cs;
1752				spi->chip_select = cs;
1753			} else {
1754				spi->chip_select = sb->device_selection;
1755			}
1756
1757			spi->max_speed_hz = sb->connection_speed;
1758
1759			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1760				spi->mode |= SPI_CPHA;
1761			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1762				spi->mode |= SPI_CPOL;
1763			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1764				spi->mode |= SPI_CS_HIGH;
1765		}
1766	} else if (spi->irq < 0) {
1767		struct resource r;
1768
1769		if (acpi_dev_resource_interrupt(ares, 0, &r))
1770			spi->irq = r.start;
1771	}
1772
1773	/* Always tell the ACPI core to skip this resource */
1774	return 1;
1775}
1776
1777static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1778					    struct acpi_device *adev)
1779{
1780	struct list_head resource_list;
1781	struct spi_device *spi;
1782	int ret;
1783
1784	if (acpi_bus_get_status(adev) || !adev->status.present ||
1785	    acpi_device_enumerated(adev))
1786		return AE_OK;
1787
1788	spi = spi_alloc_device(ctlr);
1789	if (!spi) {
1790		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1791			dev_name(&adev->dev));
1792		return AE_NO_MEMORY;
1793	}
1794
1795	ACPI_COMPANION_SET(&spi->dev, adev);
1796	spi->irq = -1;
1797
1798	INIT_LIST_HEAD(&resource_list);
1799	ret = acpi_dev_get_resources(adev, &resource_list,
1800				     acpi_spi_add_resource, spi);
1801	acpi_dev_free_resource_list(&resource_list);
1802
1803	acpi_spi_parse_apple_properties(spi);
1804
1805	if (ret < 0 || !spi->max_speed_hz) {
1806		spi_dev_put(spi);
1807		return AE_OK;
1808	}
1809
1810	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1811			  sizeof(spi->modalias));
1812
1813	if (spi->irq < 0)
1814		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1815
1816	acpi_device_set_enumerated(adev);
1817
1818	adev->power.flags.ignore_parent = true;
 
1819	if (spi_add_device(spi)) {
1820		adev->power.flags.ignore_parent = false;
1821		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1822			dev_name(&adev->dev));
1823		spi_dev_put(spi);
1824	}
1825
1826	return AE_OK;
1827}
1828
1829static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1830				       void *data, void **return_value)
1831{
1832	struct spi_controller *ctlr = data;
1833	struct acpi_device *adev;
1834
1835	if (acpi_bus_get_device(handle, &adev))
1836		return AE_OK;
1837
1838	return acpi_register_spi_device(ctlr, adev);
1839}
1840
1841static void acpi_register_spi_devices(struct spi_controller *ctlr)
1842{
1843	acpi_status status;
1844	acpi_handle handle;
1845
1846	handle = ACPI_HANDLE(ctlr->dev.parent);
1847	if (!handle)
1848		return;
1849
1850	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1851				     acpi_spi_add_device, NULL, ctlr, NULL);
 
1852	if (ACPI_FAILURE(status))
1853		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1854}
1855#else
1856static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1857#endif /* CONFIG_ACPI */
1858
1859static void spi_controller_release(struct device *dev)
1860{
1861	struct spi_controller *ctlr;
1862
1863	ctlr = container_of(dev, struct spi_controller, dev);
1864	kfree(ctlr);
1865}
1866
1867static struct class spi_master_class = {
1868	.name		= "spi_master",
1869	.owner		= THIS_MODULE,
1870	.dev_release	= spi_controller_release,
1871	.dev_groups	= spi_master_groups,
1872};
1873
1874#ifdef CONFIG_SPI_SLAVE
1875/**
1876 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1877 *		     controller
1878 * @spi: device used for the current transfer
1879 */
1880int spi_slave_abort(struct spi_device *spi)
1881{
1882	struct spi_controller *ctlr = spi->controller;
1883
1884	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1885		return ctlr->slave_abort(ctlr);
1886
1887	return -ENOTSUPP;
1888}
1889EXPORT_SYMBOL_GPL(spi_slave_abort);
1890
1891static int match_true(struct device *dev, void *data)
1892{
1893	return 1;
1894}
1895
1896static ssize_t spi_slave_show(struct device *dev,
1897			      struct device_attribute *attr, char *buf)
1898{
1899	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1900						   dev);
1901	struct device *child;
1902
1903	child = device_find_child(&ctlr->dev, NULL, match_true);
1904	return sprintf(buf, "%s\n",
1905		       child ? to_spi_device(child)->modalias : NULL);
1906}
1907
1908static ssize_t spi_slave_store(struct device *dev,
1909			       struct device_attribute *attr, const char *buf,
1910			       size_t count)
1911{
1912	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1913						   dev);
1914	struct spi_device *spi;
1915	struct device *child;
1916	char name[32];
1917	int rc;
1918
1919	rc = sscanf(buf, "%31s", name);
1920	if (rc != 1 || !name[0])
1921		return -EINVAL;
1922
1923	child = device_find_child(&ctlr->dev, NULL, match_true);
1924	if (child) {
1925		/* Remove registered slave */
1926		device_unregister(child);
1927		put_device(child);
1928	}
1929
1930	if (strcmp(name, "(null)")) {
1931		/* Register new slave */
1932		spi = spi_alloc_device(ctlr);
1933		if (!spi)
1934			return -ENOMEM;
1935
1936		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1937
1938		rc = spi_add_device(spi);
1939		if (rc) {
1940			spi_dev_put(spi);
1941			return rc;
1942		}
1943	}
1944
1945	return count;
1946}
1947
1948static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1949
1950static struct attribute *spi_slave_attrs[] = {
1951	&dev_attr_slave.attr,
1952	NULL,
1953};
1954
1955static const struct attribute_group spi_slave_group = {
1956	.attrs = spi_slave_attrs,
1957};
1958
1959static const struct attribute_group *spi_slave_groups[] = {
1960	&spi_controller_statistics_group,
1961	&spi_slave_group,
1962	NULL,
1963};
1964
1965static struct class spi_slave_class = {
1966	.name		= "spi_slave",
1967	.owner		= THIS_MODULE,
1968	.dev_release	= spi_controller_release,
1969	.dev_groups	= spi_slave_groups,
1970};
1971#else
1972extern struct class spi_slave_class;	/* dummy */
1973#endif
1974
1975/**
1976 * __spi_alloc_controller - allocate an SPI master or slave controller
1977 * @dev: the controller, possibly using the platform_bus
1978 * @size: how much zeroed driver-private data to allocate; the pointer to this
1979 *	memory is in the driver_data field of the returned device,
1980 *	accessible with spi_controller_get_devdata().
1981 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1982 *	slave (true) controller
1983 * Context: can sleep
1984 *
1985 * This call is used only by SPI controller drivers, which are the
1986 * only ones directly touching chip registers.  It's how they allocate
1987 * an spi_controller structure, prior to calling spi_register_controller().
1988 *
1989 * This must be called from context that can sleep.
1990 *
1991 * The caller is responsible for assigning the bus number and initializing the
1992 * controller's methods before calling spi_register_controller(); and (after
1993 * errors adding the device) calling spi_controller_put() to prevent a memory
1994 * leak.
1995 *
1996 * Return: the SPI controller structure on success, else NULL.
1997 */
1998struct spi_controller *__spi_alloc_controller(struct device *dev,
1999					      unsigned int size, bool slave)
2000{
2001	struct spi_controller	*ctlr;
2002
2003	if (!dev)
2004		return NULL;
2005
2006	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2007	if (!ctlr)
2008		return NULL;
2009
2010	device_initialize(&ctlr->dev);
2011	ctlr->bus_num = -1;
2012	ctlr->num_chipselect = 1;
2013	ctlr->slave = slave;
2014	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2015		ctlr->dev.class = &spi_slave_class;
2016	else
2017		ctlr->dev.class = &spi_master_class;
2018	ctlr->dev.parent = dev;
2019	pm_suspend_ignore_children(&ctlr->dev, true);
2020	spi_controller_set_devdata(ctlr, &ctlr[1]);
2021
2022	return ctlr;
2023}
2024EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2025
2026#ifdef CONFIG_OF
2027static int of_spi_register_master(struct spi_controller *ctlr)
2028{
2029	int nb, i, *cs;
2030	struct device_node *np = ctlr->dev.of_node;
2031
2032	if (!np)
2033		return 0;
2034
2035	nb = of_gpio_named_count(np, "cs-gpios");
2036	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2037
2038	/* Return error only for an incorrectly formed cs-gpios property */
2039	if (nb == 0 || nb == -ENOENT)
2040		return 0;
2041	else if (nb < 0)
2042		return nb;
2043
2044	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
 
2045			  GFP_KERNEL);
2046	ctlr->cs_gpios = cs;
2047
2048	if (!ctlr->cs_gpios)
2049		return -ENOMEM;
2050
2051	for (i = 0; i < ctlr->num_chipselect; i++)
2052		cs[i] = -ENOENT;
2053
2054	for (i = 0; i < nb; i++)
2055		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2056
2057	return 0;
2058}
2059#else
2060static int of_spi_register_master(struct spi_controller *ctlr)
2061{
2062	return 0;
2063}
2064#endif
2065
2066/**
2067 * spi_register_controller - register SPI master or slave controller
2068 * @ctlr: initialized master, originally from spi_alloc_master() or
2069 *	spi_alloc_slave()
2070 * Context: can sleep
2071 *
2072 * SPI controllers connect to their drivers using some non-SPI bus,
2073 * such as the platform bus.  The final stage of probe() in that code
2074 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2075 *
2076 * SPI controllers use board specific (often SOC specific) bus numbers,
2077 * and board-specific addressing for SPI devices combines those numbers
2078 * with chip select numbers.  Since SPI does not directly support dynamic
2079 * device identification, boards need configuration tables telling which
2080 * chip is at which address.
2081 *
2082 * This must be called from context that can sleep.  It returns zero on
2083 * success, else a negative error code (dropping the controller's refcount).
2084 * After a successful return, the caller is responsible for calling
2085 * spi_unregister_controller().
2086 *
2087 * Return: zero on success, else a negative error code.
2088 */
2089int spi_register_controller(struct spi_controller *ctlr)
2090{
2091	struct device		*dev = ctlr->dev.parent;
 
2092	struct boardinfo	*bi;
2093	int			status = -ENODEV;
2094	int			id, first_dynamic;
2095
2096	if (!dev)
2097		return -ENODEV;
2098
2099	if (!spi_controller_is_slave(ctlr)) {
2100		status = of_spi_register_master(ctlr);
2101		if (status)
2102			return status;
2103	}
2104
2105	/* even if it's just one always-selected device, there must
2106	 * be at least one chipselect
2107	 */
2108	if (ctlr->num_chipselect == 0)
2109		return -EINVAL;
2110	/* allocate dynamic bus number using Linux idr */
2111	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2112		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2113		if (id >= 0) {
2114			ctlr->bus_num = id;
2115			mutex_lock(&board_lock);
2116			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117				       ctlr->bus_num + 1, GFP_KERNEL);
2118			mutex_unlock(&board_lock);
2119			if (WARN(id < 0, "couldn't get idr"))
2120				return id == -ENOSPC ? -EBUSY : id;
2121		}
2122	}
2123	if (ctlr->bus_num < 0) {
2124		first_dynamic = of_alias_get_highest_id("spi");
2125		if (first_dynamic < 0)
2126			first_dynamic = 0;
2127		else
2128			first_dynamic++;
2129
2130		mutex_lock(&board_lock);
2131		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2132			       0, GFP_KERNEL);
2133		mutex_unlock(&board_lock);
2134		if (WARN(id < 0, "couldn't get idr"))
2135			return id;
2136		ctlr->bus_num = id;
 
 
 
2137	}
2138	INIT_LIST_HEAD(&ctlr->queue);
2139	spin_lock_init(&ctlr->queue_lock);
2140	spin_lock_init(&ctlr->bus_lock_spinlock);
2141	mutex_init(&ctlr->bus_lock_mutex);
2142	mutex_init(&ctlr->io_mutex);
2143	ctlr->bus_lock_flag = 0;
2144	init_completion(&ctlr->xfer_completion);
2145	if (!ctlr->max_dma_len)
2146		ctlr->max_dma_len = INT_MAX;
 
2147
2148	/* register the device, then userspace will see it.
2149	 * registration fails if the bus ID is in use.
2150	 */
2151	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2152	status = device_add(&ctlr->dev);
2153	if (status < 0) {
2154		/* free bus id */
2155		mutex_lock(&board_lock);
2156		idr_remove(&spi_master_idr, ctlr->bus_num);
2157		mutex_unlock(&board_lock);
2158		goto done;
2159	}
2160	dev_dbg(dev, "registered %s %s\n",
2161			spi_controller_is_slave(ctlr) ? "slave" : "master",
2162			dev_name(&ctlr->dev));
2163
2164	/* If we're using a queued driver, start the queue */
2165	if (ctlr->transfer)
2166		dev_info(dev, "controller is unqueued, this is deprecated\n");
2167	else {
2168		status = spi_controller_initialize_queue(ctlr);
2169		if (status) {
2170			device_del(&ctlr->dev);
2171			/* free bus id */
2172			mutex_lock(&board_lock);
2173			idr_remove(&spi_master_idr, ctlr->bus_num);
2174			mutex_unlock(&board_lock);
2175			goto done;
2176		}
2177	}
2178	/* add statistics */
2179	spin_lock_init(&ctlr->statistics.lock);
2180
2181	mutex_lock(&board_lock);
2182	list_add_tail(&ctlr->list, &spi_controller_list);
2183	list_for_each_entry(bi, &board_list, list)
2184		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2185	mutex_unlock(&board_lock);
2186
2187	/* Register devices from the device tree and ACPI */
2188	of_register_spi_devices(ctlr);
2189	acpi_register_spi_devices(ctlr);
2190done:
2191	return status;
2192}
2193EXPORT_SYMBOL_GPL(spi_register_controller);
2194
2195static void devm_spi_unregister(struct device *dev, void *res)
2196{
2197	spi_unregister_controller(*(struct spi_controller **)res);
2198}
2199
2200/**
2201 * devm_spi_register_controller - register managed SPI master or slave
2202 *	controller
2203 * @dev:    device managing SPI controller
2204 * @ctlr: initialized controller, originally from spi_alloc_master() or
2205 *	spi_alloc_slave()
2206 * Context: can sleep
2207 *
2208 * Register a SPI device as with spi_register_controller() which will
2209 * automatically be unregistered and freed.
2210 *
2211 * Return: zero on success, else a negative error code.
2212 */
2213int devm_spi_register_controller(struct device *dev,
2214				 struct spi_controller *ctlr)
2215{
2216	struct spi_controller **ptr;
2217	int ret;
2218
2219	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2220	if (!ptr)
2221		return -ENOMEM;
2222
2223	ret = spi_register_controller(ctlr);
2224	if (!ret) {
2225		*ptr = ctlr;
2226		devres_add(dev, ptr);
2227	} else {
2228		devres_free(ptr);
2229	}
2230
2231	return ret;
2232}
2233EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2234
2235static int __unregister(struct device *dev, void *null)
2236{
2237	spi_unregister_device(to_spi_device(dev));
2238	return 0;
2239}
2240
2241/**
2242 * spi_unregister_controller - unregister SPI master or slave controller
2243 * @ctlr: the controller being unregistered
2244 * Context: can sleep
2245 *
2246 * This call is used only by SPI controller drivers, which are the
2247 * only ones directly touching chip registers.
2248 *
2249 * This must be called from context that can sleep.
2250 *
2251 * Note that this function also drops a reference to the controller.
2252 */
2253void spi_unregister_controller(struct spi_controller *ctlr)
2254{
2255	struct spi_controller *found;
2256	int id = ctlr->bus_num;
2257	int dummy;
2258
2259	/* First make sure that this controller was ever added */
2260	mutex_lock(&board_lock);
2261	found = idr_find(&spi_master_idr, id);
2262	mutex_unlock(&board_lock);
2263	if (ctlr->queued) {
2264		if (spi_destroy_queue(ctlr))
2265			dev_err(&ctlr->dev, "queue remove failed\n");
2266	}
2267	mutex_lock(&board_lock);
2268	list_del(&ctlr->list);
2269	mutex_unlock(&board_lock);
2270
2271	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272	device_unregister(&ctlr->dev);
2273	/* free bus id */
2274	mutex_lock(&board_lock);
2275	if (found == ctlr)
2276		idr_remove(&spi_master_idr, id);
2277	mutex_unlock(&board_lock);
 
 
 
2278}
2279EXPORT_SYMBOL_GPL(spi_unregister_controller);
2280
2281int spi_controller_suspend(struct spi_controller *ctlr)
2282{
2283	int ret;
2284
2285	/* Basically no-ops for non-queued controllers */
2286	if (!ctlr->queued)
2287		return 0;
2288
2289	ret = spi_stop_queue(ctlr);
2290	if (ret)
2291		dev_err(&ctlr->dev, "queue stop failed\n");
2292
2293	return ret;
2294}
2295EXPORT_SYMBOL_GPL(spi_controller_suspend);
2296
2297int spi_controller_resume(struct spi_controller *ctlr)
2298{
2299	int ret;
2300
2301	if (!ctlr->queued)
2302		return 0;
2303
2304	ret = spi_start_queue(ctlr);
2305	if (ret)
2306		dev_err(&ctlr->dev, "queue restart failed\n");
2307
2308	return ret;
2309}
2310EXPORT_SYMBOL_GPL(spi_controller_resume);
2311
2312static int __spi_controller_match(struct device *dev, const void *data)
2313{
2314	struct spi_controller *ctlr;
2315	const u16 *bus_num = data;
2316
2317	ctlr = container_of(dev, struct spi_controller, dev);
2318	return ctlr->bus_num == *bus_num;
2319}
2320
2321/**
2322 * spi_busnum_to_master - look up master associated with bus_num
2323 * @bus_num: the master's bus number
2324 * Context: can sleep
2325 *
2326 * This call may be used with devices that are registered after
2327 * arch init time.  It returns a refcounted pointer to the relevant
2328 * spi_controller (which the caller must release), or NULL if there is
2329 * no such master registered.
2330 *
2331 * Return: the SPI master structure on success, else NULL.
2332 */
2333struct spi_controller *spi_busnum_to_master(u16 bus_num)
2334{
2335	struct device		*dev;
2336	struct spi_controller	*ctlr = NULL;
2337
2338	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2339				__spi_controller_match);
2340	if (dev)
2341		ctlr = container_of(dev, struct spi_controller, dev);
2342	/* reference got in class_find_device */
2343	return ctlr;
2344}
2345EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2346
2347/*-------------------------------------------------------------------------*/
2348
2349/* Core methods for SPI resource management */
2350
2351/**
2352 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2353 *                 during the processing of a spi_message while using
2354 *                 spi_transfer_one
2355 * @spi:     the spi device for which we allocate memory
2356 * @release: the release code to execute for this resource
2357 * @size:    size to alloc and return
2358 * @gfp:     GFP allocation flags
2359 *
2360 * Return: the pointer to the allocated data
2361 *
2362 * This may get enhanced in the future to allocate from a memory pool
2363 * of the @spi_device or @spi_controller to avoid repeated allocations.
2364 */
2365void *spi_res_alloc(struct spi_device *spi,
2366		    spi_res_release_t release,
2367		    size_t size, gfp_t gfp)
2368{
2369	struct spi_res *sres;
2370
2371	sres = kzalloc(sizeof(*sres) + size, gfp);
2372	if (!sres)
2373		return NULL;
2374
2375	INIT_LIST_HEAD(&sres->entry);
2376	sres->release = release;
2377
2378	return sres->data;
2379}
2380EXPORT_SYMBOL_GPL(spi_res_alloc);
2381
2382/**
2383 * spi_res_free - free an spi resource
2384 * @res: pointer to the custom data of a resource
2385 *
2386 */
2387void spi_res_free(void *res)
2388{
2389	struct spi_res *sres = container_of(res, struct spi_res, data);
2390
2391	if (!res)
2392		return;
2393
2394	WARN_ON(!list_empty(&sres->entry));
2395	kfree(sres);
2396}
2397EXPORT_SYMBOL_GPL(spi_res_free);
2398
2399/**
2400 * spi_res_add - add a spi_res to the spi_message
2401 * @message: the spi message
2402 * @res:     the spi_resource
2403 */
2404void spi_res_add(struct spi_message *message, void *res)
2405{
2406	struct spi_res *sres = container_of(res, struct spi_res, data);
2407
2408	WARN_ON(!list_empty(&sres->entry));
2409	list_add_tail(&sres->entry, &message->resources);
2410}
2411EXPORT_SYMBOL_GPL(spi_res_add);
2412
2413/**
2414 * spi_res_release - release all spi resources for this message
2415 * @ctlr:  the @spi_controller
2416 * @message: the @spi_message
2417 */
2418void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
 
2419{
2420	struct spi_res *res;
2421
2422	while (!list_empty(&message->resources)) {
2423		res = list_last_entry(&message->resources,
2424				      struct spi_res, entry);
2425
2426		if (res->release)
2427			res->release(ctlr, message, res->data);
2428
2429		list_del(&res->entry);
2430
2431		kfree(res);
2432	}
2433}
2434EXPORT_SYMBOL_GPL(spi_res_release);
2435
2436/*-------------------------------------------------------------------------*/
2437
2438/* Core methods for spi_message alterations */
2439
2440static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2441					    struct spi_message *msg,
2442					    void *res)
2443{
2444	struct spi_replaced_transfers *rxfer = res;
2445	size_t i;
2446
2447	/* call extra callback if requested */
2448	if (rxfer->release)
2449		rxfer->release(ctlr, msg, res);
2450
2451	/* insert replaced transfers back into the message */
2452	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2453
2454	/* remove the formerly inserted entries */
2455	for (i = 0; i < rxfer->inserted; i++)
2456		list_del(&rxfer->inserted_transfers[i].transfer_list);
2457}
2458
2459/**
2460 * spi_replace_transfers - replace transfers with several transfers
2461 *                         and register change with spi_message.resources
2462 * @msg:           the spi_message we work upon
2463 * @xfer_first:    the first spi_transfer we want to replace
2464 * @remove:        number of transfers to remove
2465 * @insert:        the number of transfers we want to insert instead
2466 * @release:       extra release code necessary in some circumstances
2467 * @extradatasize: extra data to allocate (with alignment guarantees
2468 *                 of struct @spi_transfer)
2469 * @gfp:           gfp flags
2470 *
2471 * Returns: pointer to @spi_replaced_transfers,
2472 *          PTR_ERR(...) in case of errors.
2473 */
2474struct spi_replaced_transfers *spi_replace_transfers(
2475	struct spi_message *msg,
2476	struct spi_transfer *xfer_first,
2477	size_t remove,
2478	size_t insert,
2479	spi_replaced_release_t release,
2480	size_t extradatasize,
2481	gfp_t gfp)
2482{
2483	struct spi_replaced_transfers *rxfer;
2484	struct spi_transfer *xfer;
2485	size_t i;
2486
2487	/* allocate the structure using spi_res */
2488	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2489			      insert * sizeof(struct spi_transfer)
2490			      + sizeof(struct spi_replaced_transfers)
2491			      + extradatasize,
2492			      gfp);
2493	if (!rxfer)
2494		return ERR_PTR(-ENOMEM);
2495
2496	/* the release code to invoke before running the generic release */
2497	rxfer->release = release;
2498
2499	/* assign extradata */
2500	if (extradatasize)
2501		rxfer->extradata =
2502			&rxfer->inserted_transfers[insert];
2503
2504	/* init the replaced_transfers list */
2505	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2506
2507	/* assign the list_entry after which we should reinsert
2508	 * the @replaced_transfers - it may be spi_message.messages!
2509	 */
2510	rxfer->replaced_after = xfer_first->transfer_list.prev;
2511
2512	/* remove the requested number of transfers */
2513	for (i = 0; i < remove; i++) {
2514		/* if the entry after replaced_after it is msg->transfers
2515		 * then we have been requested to remove more transfers
2516		 * than are in the list
2517		 */
2518		if (rxfer->replaced_after->next == &msg->transfers) {
2519			dev_err(&msg->spi->dev,
2520				"requested to remove more spi_transfers than are available\n");
2521			/* insert replaced transfers back into the message */
2522			list_splice(&rxfer->replaced_transfers,
2523				    rxfer->replaced_after);
2524
2525			/* free the spi_replace_transfer structure */
2526			spi_res_free(rxfer);
2527
2528			/* and return with an error */
2529			return ERR_PTR(-EINVAL);
2530		}
2531
2532		/* remove the entry after replaced_after from list of
2533		 * transfers and add it to list of replaced_transfers
2534		 */
2535		list_move_tail(rxfer->replaced_after->next,
2536			       &rxfer->replaced_transfers);
2537	}
2538
2539	/* create copy of the given xfer with identical settings
2540	 * based on the first transfer to get removed
2541	 */
2542	for (i = 0; i < insert; i++) {
2543		/* we need to run in reverse order */
2544		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2545
2546		/* copy all spi_transfer data */
2547		memcpy(xfer, xfer_first, sizeof(*xfer));
2548
2549		/* add to list */
2550		list_add(&xfer->transfer_list, rxfer->replaced_after);
2551
2552		/* clear cs_change and delay_usecs for all but the last */
2553		if (i) {
2554			xfer->cs_change = false;
2555			xfer->delay_usecs = 0;
2556		}
2557	}
2558
2559	/* set up inserted */
2560	rxfer->inserted = insert;
2561
2562	/* and register it with spi_res/spi_message */
2563	spi_res_add(msg, rxfer);
2564
2565	return rxfer;
2566}
2567EXPORT_SYMBOL_GPL(spi_replace_transfers);
2568
2569static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2570					struct spi_message *msg,
2571					struct spi_transfer **xferp,
2572					size_t maxsize,
2573					gfp_t gfp)
2574{
2575	struct spi_transfer *xfer = *xferp, *xfers;
2576	struct spi_replaced_transfers *srt;
2577	size_t offset;
2578	size_t count, i;
2579
2580	/* warn once about this fact that we are splitting a transfer */
2581	dev_warn_once(&msg->spi->dev,
2582		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2583		      xfer->len, maxsize);
2584
2585	/* calculate how many we have to replace */
2586	count = DIV_ROUND_UP(xfer->len, maxsize);
2587
2588	/* create replacement */
2589	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2590	if (IS_ERR(srt))
2591		return PTR_ERR(srt);
2592	xfers = srt->inserted_transfers;
2593
2594	/* now handle each of those newly inserted spi_transfers
2595	 * note that the replacements spi_transfers all are preset
2596	 * to the same values as *xferp, so tx_buf, rx_buf and len
2597	 * are all identical (as well as most others)
2598	 * so we just have to fix up len and the pointers.
2599	 *
2600	 * this also includes support for the depreciated
2601	 * spi_message.is_dma_mapped interface
2602	 */
2603
2604	/* the first transfer just needs the length modified, so we
2605	 * run it outside the loop
2606	 */
2607	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2608
2609	/* all the others need rx_buf/tx_buf also set */
2610	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2611		/* update rx_buf, tx_buf and dma */
2612		if (xfers[i].rx_buf)
2613			xfers[i].rx_buf += offset;
2614		if (xfers[i].rx_dma)
2615			xfers[i].rx_dma += offset;
2616		if (xfers[i].tx_buf)
2617			xfers[i].tx_buf += offset;
2618		if (xfers[i].tx_dma)
2619			xfers[i].tx_dma += offset;
2620
2621		/* update length */
2622		xfers[i].len = min(maxsize, xfers[i].len - offset);
2623	}
2624
2625	/* we set up xferp to the last entry we have inserted,
2626	 * so that we skip those already split transfers
2627	 */
2628	*xferp = &xfers[count - 1];
2629
2630	/* increment statistics counters */
2631	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2632				       transfers_split_maxsize);
2633	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2634				       transfers_split_maxsize);
2635
2636	return 0;
2637}
2638
2639/**
2640 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2641 *                              when an individual transfer exceeds a
2642 *                              certain size
2643 * @ctlr:    the @spi_controller for this transfer
2644 * @msg:   the @spi_message to transform
2645 * @maxsize:  the maximum when to apply this
2646 * @gfp: GFP allocation flags
2647 *
2648 * Return: status of transformation
2649 */
2650int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2651				struct spi_message *msg,
2652				size_t maxsize,
2653				gfp_t gfp)
2654{
2655	struct spi_transfer *xfer;
2656	int ret;
2657
2658	/* iterate over the transfer_list,
2659	 * but note that xfer is advanced to the last transfer inserted
2660	 * to avoid checking sizes again unnecessarily (also xfer does
2661	 * potentiall belong to a different list by the time the
2662	 * replacement has happened
2663	 */
2664	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2665		if (xfer->len > maxsize) {
2666			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2667							   maxsize, gfp);
2668			if (ret)
2669				return ret;
2670		}
2671	}
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2676
2677/*-------------------------------------------------------------------------*/
2678
2679/* Core methods for SPI controller protocol drivers.  Some of the
2680 * other core methods are currently defined as inline functions.
2681 */
2682
2683static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2684					u8 bits_per_word)
2685{
2686	if (ctlr->bits_per_word_mask) {
2687		/* Only 32 bits fit in the mask */
2688		if (bits_per_word > 32)
2689			return -EINVAL;
2690		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
 
2691			return -EINVAL;
2692	}
2693
2694	return 0;
2695}
2696
2697/**
2698 * spi_setup - setup SPI mode and clock rate
2699 * @spi: the device whose settings are being modified
2700 * Context: can sleep, and no requests are queued to the device
2701 *
2702 * SPI protocol drivers may need to update the transfer mode if the
2703 * device doesn't work with its default.  They may likewise need
2704 * to update clock rates or word sizes from initial values.  This function
2705 * changes those settings, and must be called from a context that can sleep.
2706 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2707 * effect the next time the device is selected and data is transferred to
2708 * or from it.  When this function returns, the spi device is deselected.
2709 *
2710 * Note that this call will fail if the protocol driver specifies an option
2711 * that the underlying controller or its driver does not support.  For
2712 * example, not all hardware supports wire transfers using nine bit words,
2713 * LSB-first wire encoding, or active-high chipselects.
2714 *
2715 * Return: zero on success, else a negative error code.
2716 */
2717int spi_setup(struct spi_device *spi)
2718{
2719	unsigned	bad_bits, ugly_bits;
2720	int		status;
2721
2722	/* check mode to prevent that DUAL and QUAD set at the same time
2723	 */
2724	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2725		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2726		dev_err(&spi->dev,
2727		"setup: can not select dual and quad at the same time\n");
2728		return -EINVAL;
2729	}
2730	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2731	 */
2732	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2733		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2734		return -EINVAL;
2735	/* help drivers fail *cleanly* when they need options
2736	 * that aren't supported with their current controller
2737	 */
2738	bad_bits = spi->mode & ~spi->controller->mode_bits;
2739	ugly_bits = bad_bits &
2740		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2741	if (ugly_bits) {
2742		dev_warn(&spi->dev,
2743			 "setup: ignoring unsupported mode bits %x\n",
2744			 ugly_bits);
2745		spi->mode &= ~ugly_bits;
2746		bad_bits &= ~ugly_bits;
2747	}
2748	if (bad_bits) {
2749		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2750			bad_bits);
2751		return -EINVAL;
2752	}
2753
2754	if (!spi->bits_per_word)
2755		spi->bits_per_word = 8;
2756
2757	status = __spi_validate_bits_per_word(spi->controller,
2758					      spi->bits_per_word);
2759	if (status)
2760		return status;
2761
2762	if (!spi->max_speed_hz)
2763		spi->max_speed_hz = spi->controller->max_speed_hz;
2764
2765	if (spi->controller->setup)
2766		status = spi->controller->setup(spi);
2767
2768	spi_set_cs(spi, false);
2769
2770	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2771			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2772			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2773			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2774			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2775			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2776			spi->bits_per_word, spi->max_speed_hz,
2777			status);
2778
2779	return status;
2780}
2781EXPORT_SYMBOL_GPL(spi_setup);
2782
2783static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2784{
2785	struct spi_controller *ctlr = spi->controller;
2786	struct spi_transfer *xfer;
2787	int w_size;
2788
2789	if (list_empty(&message->transfers))
2790		return -EINVAL;
2791
2792	/* Half-duplex links include original MicroWire, and ones with
2793	 * only one data pin like SPI_3WIRE (switches direction) or where
2794	 * either MOSI or MISO is missing.  They can also be caused by
2795	 * software limitations.
2796	 */
2797	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2798	    (spi->mode & SPI_3WIRE)) {
2799		unsigned flags = ctlr->flags;
2800
2801		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2802			if (xfer->rx_buf && xfer->tx_buf)
2803				return -EINVAL;
2804			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2805				return -EINVAL;
2806			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2807				return -EINVAL;
2808		}
2809	}
2810
2811	/**
2812	 * Set transfer bits_per_word and max speed as spi device default if
2813	 * it is not set for this transfer.
2814	 * Set transfer tx_nbits and rx_nbits as single transfer default
2815	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2816	 */
2817	message->frame_length = 0;
2818	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2819		message->frame_length += xfer->len;
2820		if (!xfer->bits_per_word)
2821			xfer->bits_per_word = spi->bits_per_word;
2822
2823		if (!xfer->speed_hz)
2824			xfer->speed_hz = spi->max_speed_hz;
2825		if (!xfer->speed_hz)
2826			xfer->speed_hz = ctlr->max_speed_hz;
2827
2828		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2829			xfer->speed_hz = ctlr->max_speed_hz;
 
2830
2831		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2832			return -EINVAL;
2833
2834		/*
2835		 * SPI transfer length should be multiple of SPI word size
2836		 * where SPI word size should be power-of-two multiple
2837		 */
2838		if (xfer->bits_per_word <= 8)
2839			w_size = 1;
2840		else if (xfer->bits_per_word <= 16)
2841			w_size = 2;
2842		else
2843			w_size = 4;
2844
2845		/* No partial transfers accepted */
2846		if (xfer->len % w_size)
2847			return -EINVAL;
2848
2849		if (xfer->speed_hz && ctlr->min_speed_hz &&
2850		    xfer->speed_hz < ctlr->min_speed_hz)
2851			return -EINVAL;
2852
2853		if (xfer->tx_buf && !xfer->tx_nbits)
2854			xfer->tx_nbits = SPI_NBITS_SINGLE;
2855		if (xfer->rx_buf && !xfer->rx_nbits)
2856			xfer->rx_nbits = SPI_NBITS_SINGLE;
2857		/* check transfer tx/rx_nbits:
2858		 * 1. check the value matches one of single, dual and quad
2859		 * 2. check tx/rx_nbits match the mode in spi_device
2860		 */
2861		if (xfer->tx_buf) {
2862			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2863				xfer->tx_nbits != SPI_NBITS_DUAL &&
2864				xfer->tx_nbits != SPI_NBITS_QUAD)
2865				return -EINVAL;
2866			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2867				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2868				return -EINVAL;
2869			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2870				!(spi->mode & SPI_TX_QUAD))
2871				return -EINVAL;
2872		}
2873		/* check transfer rx_nbits */
2874		if (xfer->rx_buf) {
2875			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2876				xfer->rx_nbits != SPI_NBITS_DUAL &&
2877				xfer->rx_nbits != SPI_NBITS_QUAD)
2878				return -EINVAL;
2879			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2880				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2881				return -EINVAL;
2882			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2883				!(spi->mode & SPI_RX_QUAD))
2884				return -EINVAL;
2885		}
2886	}
2887
2888	message->status = -EINPROGRESS;
2889
2890	return 0;
2891}
2892
2893static int __spi_async(struct spi_device *spi, struct spi_message *message)
2894{
2895	struct spi_controller *ctlr = spi->controller;
2896
2897	message->spi = spi;
2898
2899	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2900	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2901
2902	trace_spi_message_submit(message);
2903
2904	return ctlr->transfer(spi, message);
2905}
2906
2907/**
2908 * spi_async - asynchronous SPI transfer
2909 * @spi: device with which data will be exchanged
2910 * @message: describes the data transfers, including completion callback
2911 * Context: any (irqs may be blocked, etc)
2912 *
2913 * This call may be used in_irq and other contexts which can't sleep,
2914 * as well as from task contexts which can sleep.
2915 *
2916 * The completion callback is invoked in a context which can't sleep.
2917 * Before that invocation, the value of message->status is undefined.
2918 * When the callback is issued, message->status holds either zero (to
2919 * indicate complete success) or a negative error code.  After that
2920 * callback returns, the driver which issued the transfer request may
2921 * deallocate the associated memory; it's no longer in use by any SPI
2922 * core or controller driver code.
2923 *
2924 * Note that although all messages to a spi_device are handled in
2925 * FIFO order, messages may go to different devices in other orders.
2926 * Some device might be higher priority, or have various "hard" access
2927 * time requirements, for example.
2928 *
2929 * On detection of any fault during the transfer, processing of
2930 * the entire message is aborted, and the device is deselected.
2931 * Until returning from the associated message completion callback,
2932 * no other spi_message queued to that device will be processed.
2933 * (This rule applies equally to all the synchronous transfer calls,
2934 * which are wrappers around this core asynchronous primitive.)
2935 *
2936 * Return: zero on success, else a negative error code.
2937 */
2938int spi_async(struct spi_device *spi, struct spi_message *message)
2939{
2940	struct spi_controller *ctlr = spi->controller;
2941	int ret;
2942	unsigned long flags;
2943
2944	ret = __spi_validate(spi, message);
2945	if (ret != 0)
2946		return ret;
2947
2948	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2949
2950	if (ctlr->bus_lock_flag)
2951		ret = -EBUSY;
2952	else
2953		ret = __spi_async(spi, message);
2954
2955	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2956
2957	return ret;
2958}
2959EXPORT_SYMBOL_GPL(spi_async);
2960
2961/**
2962 * spi_async_locked - version of spi_async with exclusive bus usage
2963 * @spi: device with which data will be exchanged
2964 * @message: describes the data transfers, including completion callback
2965 * Context: any (irqs may be blocked, etc)
2966 *
2967 * This call may be used in_irq and other contexts which can't sleep,
2968 * as well as from task contexts which can sleep.
2969 *
2970 * The completion callback is invoked in a context which can't sleep.
2971 * Before that invocation, the value of message->status is undefined.
2972 * When the callback is issued, message->status holds either zero (to
2973 * indicate complete success) or a negative error code.  After that
2974 * callback returns, the driver which issued the transfer request may
2975 * deallocate the associated memory; it's no longer in use by any SPI
2976 * core or controller driver code.
2977 *
2978 * Note that although all messages to a spi_device are handled in
2979 * FIFO order, messages may go to different devices in other orders.
2980 * Some device might be higher priority, or have various "hard" access
2981 * time requirements, for example.
2982 *
2983 * On detection of any fault during the transfer, processing of
2984 * the entire message is aborted, and the device is deselected.
2985 * Until returning from the associated message completion callback,
2986 * no other spi_message queued to that device will be processed.
2987 * (This rule applies equally to all the synchronous transfer calls,
2988 * which are wrappers around this core asynchronous primitive.)
2989 *
2990 * Return: zero on success, else a negative error code.
2991 */
2992int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2993{
2994	struct spi_controller *ctlr = spi->controller;
2995	int ret;
2996	unsigned long flags;
2997
2998	ret = __spi_validate(spi, message);
2999	if (ret != 0)
3000		return ret;
3001
3002	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3003
3004	ret = __spi_async(spi, message);
3005
3006	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3007
3008	return ret;
3009
3010}
3011EXPORT_SYMBOL_GPL(spi_async_locked);
3012
3013
3014int spi_flash_read(struct spi_device *spi,
3015		   struct spi_flash_read_message *msg)
3016
3017{
3018	struct spi_controller *master = spi->controller;
3019	struct device *rx_dev = NULL;
3020	int ret;
3021
3022	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3023	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3024	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3025		return -EINVAL;
3026	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3027	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3028	    !(spi->mode & SPI_TX_QUAD))
3029		return -EINVAL;
3030	if (msg->data_nbits == SPI_NBITS_DUAL &&
3031	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3032		return -EINVAL;
3033	if (msg->data_nbits == SPI_NBITS_QUAD &&
3034	    !(spi->mode &  SPI_RX_QUAD))
3035		return -EINVAL;
3036
3037	if (master->auto_runtime_pm) {
3038		ret = pm_runtime_get_sync(master->dev.parent);
3039		if (ret < 0) {
3040			dev_err(&master->dev, "Failed to power device: %d\n",
3041				ret);
3042			return ret;
3043		}
3044	}
3045
3046	mutex_lock(&master->bus_lock_mutex);
3047	mutex_lock(&master->io_mutex);
3048	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3049		rx_dev = master->dma_rx->device->dev;
3050		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3051				  msg->buf, msg->len,
3052				  DMA_FROM_DEVICE);
3053		if (!ret)
3054			msg->cur_msg_mapped = true;
3055	}
3056	ret = master->spi_flash_read(spi, msg);
3057	if (msg->cur_msg_mapped)
3058		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3059			      DMA_FROM_DEVICE);
3060	mutex_unlock(&master->io_mutex);
3061	mutex_unlock(&master->bus_lock_mutex);
3062
3063	if (master->auto_runtime_pm)
3064		pm_runtime_put(master->dev.parent);
3065
3066	return ret;
3067}
3068EXPORT_SYMBOL_GPL(spi_flash_read);
3069
3070/*-------------------------------------------------------------------------*/
3071
3072/* Utility methods for SPI protocol drivers, layered on
3073 * top of the core.  Some other utility methods are defined as
3074 * inline functions.
3075 */
3076
3077static void spi_complete(void *arg)
3078{
3079	complete(arg);
3080}
3081
3082static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3083{
3084	DECLARE_COMPLETION_ONSTACK(done);
3085	int status;
3086	struct spi_controller *ctlr = spi->controller;
3087	unsigned long flags;
3088
3089	status = __spi_validate(spi, message);
3090	if (status != 0)
3091		return status;
3092
3093	message->complete = spi_complete;
3094	message->context = &done;
3095	message->spi = spi;
3096
3097	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3098	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3099
3100	/* If we're not using the legacy transfer method then we will
3101	 * try to transfer in the calling context so special case.
3102	 * This code would be less tricky if we could remove the
3103	 * support for driver implemented message queues.
3104	 */
3105	if (ctlr->transfer == spi_queued_transfer) {
3106		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3107
3108		trace_spi_message_submit(message);
3109
3110		status = __spi_queued_transfer(spi, message, false);
3111
3112		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3113	} else {
3114		status = spi_async_locked(spi, message);
3115	}
3116
3117	if (status == 0) {
3118		/* Push out the messages in the calling context if we
3119		 * can.
3120		 */
3121		if (ctlr->transfer == spi_queued_transfer) {
3122			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3123						       spi_sync_immediate);
3124			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3125						       spi_sync_immediate);
3126			__spi_pump_messages(ctlr, false);
3127		}
3128
3129		wait_for_completion(&done);
3130		status = message->status;
3131	}
3132	message->context = NULL;
3133	return status;
3134}
3135
3136/**
3137 * spi_sync - blocking/synchronous SPI data transfers
3138 * @spi: device with which data will be exchanged
3139 * @message: describes the data transfers
3140 * Context: can sleep
3141 *
3142 * This call may only be used from a context that may sleep.  The sleep
3143 * is non-interruptible, and has no timeout.  Low-overhead controller
3144 * drivers may DMA directly into and out of the message buffers.
3145 *
3146 * Note that the SPI device's chip select is active during the message,
3147 * and then is normally disabled between messages.  Drivers for some
3148 * frequently-used devices may want to minimize costs of selecting a chip,
3149 * by leaving it selected in anticipation that the next message will go
3150 * to the same chip.  (That may increase power usage.)
3151 *
3152 * Also, the caller is guaranteeing that the memory associated with the
3153 * message will not be freed before this call returns.
3154 *
3155 * Return: zero on success, else a negative error code.
3156 */
3157int spi_sync(struct spi_device *spi, struct spi_message *message)
3158{
3159	int ret;
3160
3161	mutex_lock(&spi->controller->bus_lock_mutex);
3162	ret = __spi_sync(spi, message);
3163	mutex_unlock(&spi->controller->bus_lock_mutex);
3164
3165	return ret;
3166}
3167EXPORT_SYMBOL_GPL(spi_sync);
3168
3169/**
3170 * spi_sync_locked - version of spi_sync with exclusive bus usage
3171 * @spi: device with which data will be exchanged
3172 * @message: describes the data transfers
3173 * Context: can sleep
3174 *
3175 * This call may only be used from a context that may sleep.  The sleep
3176 * is non-interruptible, and has no timeout.  Low-overhead controller
3177 * drivers may DMA directly into and out of the message buffers.
3178 *
3179 * This call should be used by drivers that require exclusive access to the
3180 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3181 * be released by a spi_bus_unlock call when the exclusive access is over.
3182 *
3183 * Return: zero on success, else a negative error code.
3184 */
3185int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3186{
3187	return __spi_sync(spi, message);
3188}
3189EXPORT_SYMBOL_GPL(spi_sync_locked);
3190
3191/**
3192 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3193 * @ctlr: SPI bus master that should be locked for exclusive bus access
3194 * Context: can sleep
3195 *
3196 * This call may only be used from a context that may sleep.  The sleep
3197 * is non-interruptible, and has no timeout.
3198 *
3199 * This call should be used by drivers that require exclusive access to the
3200 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3201 * exclusive access is over. Data transfer must be done by spi_sync_locked
3202 * and spi_async_locked calls when the SPI bus lock is held.
3203 *
3204 * Return: always zero.
3205 */
3206int spi_bus_lock(struct spi_controller *ctlr)
3207{
3208	unsigned long flags;
3209
3210	mutex_lock(&ctlr->bus_lock_mutex);
3211
3212	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3213	ctlr->bus_lock_flag = 1;
3214	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3215
3216	/* mutex remains locked until spi_bus_unlock is called */
3217
3218	return 0;
3219}
3220EXPORT_SYMBOL_GPL(spi_bus_lock);
3221
3222/**
3223 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3224 * @ctlr: SPI bus master that was locked for exclusive bus access
3225 * Context: can sleep
3226 *
3227 * This call may only be used from a context that may sleep.  The sleep
3228 * is non-interruptible, and has no timeout.
3229 *
3230 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3231 * call.
3232 *
3233 * Return: always zero.
3234 */
3235int spi_bus_unlock(struct spi_controller *ctlr)
3236{
3237	ctlr->bus_lock_flag = 0;
3238
3239	mutex_unlock(&ctlr->bus_lock_mutex);
3240
3241	return 0;
3242}
3243EXPORT_SYMBOL_GPL(spi_bus_unlock);
3244
3245/* portable code must never pass more than 32 bytes */
3246#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3247
3248static u8	*buf;
3249
3250/**
3251 * spi_write_then_read - SPI synchronous write followed by read
3252 * @spi: device with which data will be exchanged
3253 * @txbuf: data to be written (need not be dma-safe)
3254 * @n_tx: size of txbuf, in bytes
3255 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3256 * @n_rx: size of rxbuf, in bytes
3257 * Context: can sleep
3258 *
3259 * This performs a half duplex MicroWire style transaction with the
3260 * device, sending txbuf and then reading rxbuf.  The return value
3261 * is zero for success, else a negative errno status code.
3262 * This call may only be used from a context that may sleep.
3263 *
3264 * Parameters to this routine are always copied using a small buffer;
3265 * portable code should never use this for more than 32 bytes.
3266 * Performance-sensitive or bulk transfer code should instead use
3267 * spi_{async,sync}() calls with dma-safe buffers.
3268 *
3269 * Return: zero on success, else a negative error code.
3270 */
3271int spi_write_then_read(struct spi_device *spi,
3272		const void *txbuf, unsigned n_tx,
3273		void *rxbuf, unsigned n_rx)
3274{
3275	static DEFINE_MUTEX(lock);
3276
3277	int			status;
3278	struct spi_message	message;
3279	struct spi_transfer	x[2];
3280	u8			*local_buf;
3281
3282	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3283	 * copying here, (as a pure convenience thing), but we can
3284	 * keep heap costs out of the hot path unless someone else is
3285	 * using the pre-allocated buffer or the transfer is too large.
3286	 */
3287	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3288		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3289				    GFP_KERNEL | GFP_DMA);
3290		if (!local_buf)
3291			return -ENOMEM;
3292	} else {
3293		local_buf = buf;
3294	}
3295
3296	spi_message_init(&message);
3297	memset(x, 0, sizeof(x));
3298	if (n_tx) {
3299		x[0].len = n_tx;
3300		spi_message_add_tail(&x[0], &message);
3301	}
3302	if (n_rx) {
3303		x[1].len = n_rx;
3304		spi_message_add_tail(&x[1], &message);
3305	}
3306
3307	memcpy(local_buf, txbuf, n_tx);
3308	x[0].tx_buf = local_buf;
3309	x[1].rx_buf = local_buf + n_tx;
3310
3311	/* do the i/o */
3312	status = spi_sync(spi, &message);
3313	if (status == 0)
3314		memcpy(rxbuf, x[1].rx_buf, n_rx);
3315
3316	if (x[0].tx_buf == buf)
3317		mutex_unlock(&lock);
3318	else
3319		kfree(local_buf);
3320
3321	return status;
3322}
3323EXPORT_SYMBOL_GPL(spi_write_then_read);
3324
3325/*-------------------------------------------------------------------------*/
3326
3327#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3328static int __spi_of_device_match(struct device *dev, void *data)
3329{
3330	return dev->of_node == data;
3331}
3332
3333/* must call put_device() when done with returned spi_device device */
3334static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3335{
3336	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3337						__spi_of_device_match);
3338	return dev ? to_spi_device(dev) : NULL;
3339}
3340
3341static int __spi_of_controller_match(struct device *dev, const void *data)
3342{
3343	return dev->of_node == data;
3344}
3345
3346/* the spi controllers are not using spi_bus, so we find it with another way */
3347static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3348{
3349	struct device *dev;
3350
3351	dev = class_find_device(&spi_master_class, NULL, node,
3352				__spi_of_controller_match);
3353	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3354		dev = class_find_device(&spi_slave_class, NULL, node,
3355					__spi_of_controller_match);
3356	if (!dev)
3357		return NULL;
3358
3359	/* reference got in class_find_device */
3360	return container_of(dev, struct spi_controller, dev);
3361}
3362
3363static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3364			 void *arg)
3365{
3366	struct of_reconfig_data *rd = arg;
3367	struct spi_controller *ctlr;
3368	struct spi_device *spi;
3369
3370	switch (of_reconfig_get_state_change(action, arg)) {
3371	case OF_RECONFIG_CHANGE_ADD:
3372		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3373		if (ctlr == NULL)
3374			return NOTIFY_OK;	/* not for us */
3375
3376		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3377			put_device(&ctlr->dev);
3378			return NOTIFY_OK;
3379		}
3380
3381		spi = of_register_spi_device(ctlr, rd->dn);
3382		put_device(&ctlr->dev);
3383
3384		if (IS_ERR(spi)) {
3385			pr_err("%s: failed to create for '%pOF'\n",
3386					__func__, rd->dn);
3387			of_node_clear_flag(rd->dn, OF_POPULATED);
3388			return notifier_from_errno(PTR_ERR(spi));
3389		}
3390		break;
3391
3392	case OF_RECONFIG_CHANGE_REMOVE:
3393		/* already depopulated? */
3394		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3395			return NOTIFY_OK;
3396
3397		/* find our device by node */
3398		spi = of_find_spi_device_by_node(rd->dn);
3399		if (spi == NULL)
3400			return NOTIFY_OK;	/* no? not meant for us */
3401
3402		/* unregister takes one ref away */
3403		spi_unregister_device(spi);
3404
3405		/* and put the reference of the find */
3406		put_device(&spi->dev);
3407		break;
3408	}
3409
3410	return NOTIFY_OK;
3411}
3412
3413static struct notifier_block spi_of_notifier = {
3414	.notifier_call = of_spi_notify,
3415};
3416#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3417extern struct notifier_block spi_of_notifier;
3418#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3419
3420#if IS_ENABLED(CONFIG_ACPI)
3421static int spi_acpi_controller_match(struct device *dev, const void *data)
3422{
3423	return ACPI_COMPANION(dev->parent) == data;
3424}
3425
3426static int spi_acpi_device_match(struct device *dev, void *data)
3427{
3428	return ACPI_COMPANION(dev) == data;
3429}
3430
3431static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3432{
3433	struct device *dev;
3434
3435	dev = class_find_device(&spi_master_class, NULL, adev,
3436				spi_acpi_controller_match);
3437	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3438		dev = class_find_device(&spi_slave_class, NULL, adev,
3439					spi_acpi_controller_match);
3440	if (!dev)
3441		return NULL;
3442
3443	return container_of(dev, struct spi_controller, dev);
3444}
3445
3446static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3447{
3448	struct device *dev;
3449
3450	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3451
3452	return dev ? to_spi_device(dev) : NULL;
3453}
3454
3455static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3456			   void *arg)
3457{
3458	struct acpi_device *adev = arg;
3459	struct spi_controller *ctlr;
3460	struct spi_device *spi;
3461
3462	switch (value) {
3463	case ACPI_RECONFIG_DEVICE_ADD:
3464		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3465		if (!ctlr)
3466			break;
3467
3468		acpi_register_spi_device(ctlr, adev);
3469		put_device(&ctlr->dev);
3470		break;
3471	case ACPI_RECONFIG_DEVICE_REMOVE:
3472		if (!acpi_device_enumerated(adev))
3473			break;
3474
3475		spi = acpi_spi_find_device_by_adev(adev);
3476		if (!spi)
3477			break;
3478
3479		spi_unregister_device(spi);
3480		put_device(&spi->dev);
3481		break;
3482	}
3483
3484	return NOTIFY_OK;
3485}
3486
3487static struct notifier_block spi_acpi_notifier = {
3488	.notifier_call = acpi_spi_notify,
3489};
3490#else
3491extern struct notifier_block spi_acpi_notifier;
3492#endif
3493
3494static int __init spi_init(void)
3495{
3496	int	status;
3497
3498	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3499	if (!buf) {
3500		status = -ENOMEM;
3501		goto err0;
3502	}
3503
3504	status = bus_register(&spi_bus_type);
3505	if (status < 0)
3506		goto err1;
3507
3508	status = class_register(&spi_master_class);
3509	if (status < 0)
3510		goto err2;
3511
3512	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3513		status = class_register(&spi_slave_class);
3514		if (status < 0)
3515			goto err3;
3516	}
3517
3518	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3519		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3520	if (IS_ENABLED(CONFIG_ACPI))
3521		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3522
3523	return 0;
3524
3525err3:
3526	class_unregister(&spi_master_class);
3527err2:
3528	bus_unregister(&spi_bus_type);
3529err1:
3530	kfree(buf);
3531	buf = NULL;
3532err0:
3533	return status;
3534}
3535
3536/* board_info is normally registered in arch_initcall(),
3537 * but even essential drivers wait till later
3538 *
3539 * REVISIT only boardinfo really needs static linking. the rest (device and
3540 * driver registration) _could_ be dynamically linked (modular) ... costs
3541 * include needing to have boardinfo data structures be much more public.
3542 */
3543postcore_initcall(spi_init);
3544
v4.10.11
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
 
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
 
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
  40#include <linux/highmem.h>
 
 
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/spi.h>
  44
 
 
  45static void spidev_release(struct device *dev)
  46{
  47	struct spi_device	*spi = to_spi_device(dev);
  48
  49	/* spi masters may cleanup for released devices */
  50	if (spi->master->cleanup)
  51		spi->master->cleanup(spi);
  52
  53	spi_master_put(spi->master);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71#define SPI_STATISTICS_ATTRS(field, file)				\
  72static ssize_t spi_master_##field##_show(struct device *dev,		\
  73					 struct device_attribute *attr,	\
  74					 char *buf)			\
  75{									\
  76	struct spi_master *master = container_of(dev,			\
  77						 struct spi_master, dev); \
  78	return spi_statistics_##field##_show(&master->statistics, buf);	\
  79}									\
  80static struct device_attribute dev_attr_spi_master_##field = {		\
  81	.attr = { .name = file, .mode = S_IRUGO },			\
  82	.show = spi_master_##field##_show,				\
  83};									\
  84static ssize_t spi_device_##field##_show(struct device *dev,		\
  85					 struct device_attribute *attr,	\
  86					char *buf)			\
  87{									\
  88	struct spi_device *spi = to_spi_device(dev);			\
  89	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  90}									\
  91static struct device_attribute dev_attr_spi_device_##field = {		\
  92	.attr = { .name = file, .mode = S_IRUGO },			\
  93	.show = spi_device_##field##_show,				\
  94}
  95
  96#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
  97static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  98					    char *buf)			\
  99{									\
 100	unsigned long flags;						\
 101	ssize_t len;							\
 102	spin_lock_irqsave(&stat->lock, flags);				\
 103	len = sprintf(buf, format_string, stat->field);			\
 104	spin_unlock_irqrestore(&stat->lock, flags);			\
 105	return len;							\
 106}									\
 107SPI_STATISTICS_ATTRS(name, file)
 108
 109#define SPI_STATISTICS_SHOW(field, format_string)			\
 110	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 111				 field, format_string)
 112
 113SPI_STATISTICS_SHOW(messages, "%lu");
 114SPI_STATISTICS_SHOW(transfers, "%lu");
 115SPI_STATISTICS_SHOW(errors, "%lu");
 116SPI_STATISTICS_SHOW(timedout, "%lu");
 117
 118SPI_STATISTICS_SHOW(spi_sync, "%lu");
 119SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 120SPI_STATISTICS_SHOW(spi_async, "%lu");
 121
 122SPI_STATISTICS_SHOW(bytes, "%llu");
 123SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 124SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 125
 126#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 127	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 128				 "transfer_bytes_histo_" number,	\
 129				 transfer_bytes_histo[index],  "%lu")
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 147
 148SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 149
 150static struct attribute *spi_dev_attrs[] = {
 151	&dev_attr_modalias.attr,
 152	NULL,
 153};
 154
 155static const struct attribute_group spi_dev_group = {
 156	.attrs  = spi_dev_attrs,
 157};
 158
 159static struct attribute *spi_device_statistics_attrs[] = {
 160	&dev_attr_spi_device_messages.attr,
 161	&dev_attr_spi_device_transfers.attr,
 162	&dev_attr_spi_device_errors.attr,
 163	&dev_attr_spi_device_timedout.attr,
 164	&dev_attr_spi_device_spi_sync.attr,
 165	&dev_attr_spi_device_spi_sync_immediate.attr,
 166	&dev_attr_spi_device_spi_async.attr,
 167	&dev_attr_spi_device_bytes.attr,
 168	&dev_attr_spi_device_bytes_rx.attr,
 169	&dev_attr_spi_device_bytes_tx.attr,
 170	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 171	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 172	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 173	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 174	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 175	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 186	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 187	&dev_attr_spi_device_transfers_split_maxsize.attr,
 188	NULL,
 189};
 190
 191static const struct attribute_group spi_device_statistics_group = {
 192	.name  = "statistics",
 193	.attrs  = spi_device_statistics_attrs,
 194};
 195
 196static const struct attribute_group *spi_dev_groups[] = {
 197	&spi_dev_group,
 198	&spi_device_statistics_group,
 199	NULL,
 200};
 201
 202static struct attribute *spi_master_statistics_attrs[] = {
 203	&dev_attr_spi_master_messages.attr,
 204	&dev_attr_spi_master_transfers.attr,
 205	&dev_attr_spi_master_errors.attr,
 206	&dev_attr_spi_master_timedout.attr,
 207	&dev_attr_spi_master_spi_sync.attr,
 208	&dev_attr_spi_master_spi_sync_immediate.attr,
 209	&dev_attr_spi_master_spi_async.attr,
 210	&dev_attr_spi_master_bytes.attr,
 211	&dev_attr_spi_master_bytes_rx.attr,
 212	&dev_attr_spi_master_bytes_tx.attr,
 213	&dev_attr_spi_master_transfer_bytes_histo0.attr,
 214	&dev_attr_spi_master_transfer_bytes_histo1.attr,
 215	&dev_attr_spi_master_transfer_bytes_histo2.attr,
 216	&dev_attr_spi_master_transfer_bytes_histo3.attr,
 217	&dev_attr_spi_master_transfer_bytes_histo4.attr,
 218	&dev_attr_spi_master_transfer_bytes_histo5.attr,
 219	&dev_attr_spi_master_transfer_bytes_histo6.attr,
 220	&dev_attr_spi_master_transfer_bytes_histo7.attr,
 221	&dev_attr_spi_master_transfer_bytes_histo8.attr,
 222	&dev_attr_spi_master_transfer_bytes_histo9.attr,
 223	&dev_attr_spi_master_transfer_bytes_histo10.attr,
 224	&dev_attr_spi_master_transfer_bytes_histo11.attr,
 225	&dev_attr_spi_master_transfer_bytes_histo12.attr,
 226	&dev_attr_spi_master_transfer_bytes_histo13.attr,
 227	&dev_attr_spi_master_transfer_bytes_histo14.attr,
 228	&dev_attr_spi_master_transfer_bytes_histo15.attr,
 229	&dev_attr_spi_master_transfer_bytes_histo16.attr,
 230	&dev_attr_spi_master_transfers_split_maxsize.attr,
 231	NULL,
 232};
 233
 234static const struct attribute_group spi_master_statistics_group = {
 235	.name  = "statistics",
 236	.attrs  = spi_master_statistics_attrs,
 237};
 238
 239static const struct attribute_group *spi_master_groups[] = {
 240	&spi_master_statistics_group,
 241	NULL,
 242};
 243
 244void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 245				       struct spi_transfer *xfer,
 246				       struct spi_master *master)
 247{
 248	unsigned long flags;
 249	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 250
 251	if (l2len < 0)
 252		l2len = 0;
 253
 254	spin_lock_irqsave(&stats->lock, flags);
 255
 256	stats->transfers++;
 257	stats->transfer_bytes_histo[l2len]++;
 258
 259	stats->bytes += xfer->len;
 260	if ((xfer->tx_buf) &&
 261	    (xfer->tx_buf != master->dummy_tx))
 262		stats->bytes_tx += xfer->len;
 263	if ((xfer->rx_buf) &&
 264	    (xfer->rx_buf != master->dummy_rx))
 265		stats->bytes_rx += xfer->len;
 266
 267	spin_unlock_irqrestore(&stats->lock, flags);
 268}
 269EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 270
 271/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 272 * and the sysfs version makes coldplug work too.
 273 */
 274
 275static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 276						const struct spi_device *sdev)
 277{
 278	while (id->name[0]) {
 279		if (!strcmp(sdev->modalias, id->name))
 280			return id;
 281		id++;
 282	}
 283	return NULL;
 284}
 285
 286const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 287{
 288	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 289
 290	return spi_match_id(sdrv->id_table, sdev);
 291}
 292EXPORT_SYMBOL_GPL(spi_get_device_id);
 293
 294static int spi_match_device(struct device *dev, struct device_driver *drv)
 295{
 296	const struct spi_device	*spi = to_spi_device(dev);
 297	const struct spi_driver	*sdrv = to_spi_driver(drv);
 298
 299	/* Attempt an OF style match */
 300	if (of_driver_match_device(dev, drv))
 301		return 1;
 302
 303	/* Then try ACPI */
 304	if (acpi_driver_match_device(dev, drv))
 305		return 1;
 306
 307	if (sdrv->id_table)
 308		return !!spi_match_id(sdrv->id_table, spi);
 309
 310	return strcmp(spi->modalias, drv->name) == 0;
 311}
 312
 313static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 314{
 315	const struct spi_device		*spi = to_spi_device(dev);
 316	int rc;
 317
 318	rc = acpi_device_uevent_modalias(dev, env);
 319	if (rc != -ENODEV)
 320		return rc;
 321
 322	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 323	return 0;
 324}
 325
 326struct bus_type spi_bus_type = {
 327	.name		= "spi",
 328	.dev_groups	= spi_dev_groups,
 329	.match		= spi_match_device,
 330	.uevent		= spi_uevent,
 331};
 332EXPORT_SYMBOL_GPL(spi_bus_type);
 333
 334
 335static int spi_drv_probe(struct device *dev)
 336{
 337	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 338	struct spi_device		*spi = to_spi_device(dev);
 339	int ret;
 340
 341	ret = of_clk_set_defaults(dev->of_node, false);
 342	if (ret)
 343		return ret;
 344
 345	if (dev->of_node) {
 346		spi->irq = of_irq_get(dev->of_node, 0);
 347		if (spi->irq == -EPROBE_DEFER)
 348			return -EPROBE_DEFER;
 349		if (spi->irq < 0)
 350			spi->irq = 0;
 351	}
 352
 353	ret = dev_pm_domain_attach(dev, true);
 354	if (ret != -EPROBE_DEFER) {
 355		ret = sdrv->probe(spi);
 356		if (ret)
 357			dev_pm_domain_detach(dev, true);
 358	}
 359
 360	return ret;
 361}
 362
 363static int spi_drv_remove(struct device *dev)
 364{
 365	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 366	int ret;
 367
 368	ret = sdrv->remove(to_spi_device(dev));
 369	dev_pm_domain_detach(dev, true);
 370
 371	return ret;
 372}
 373
 374static void spi_drv_shutdown(struct device *dev)
 375{
 376	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 377
 378	sdrv->shutdown(to_spi_device(dev));
 379}
 380
 381/**
 382 * __spi_register_driver - register a SPI driver
 383 * @owner: owner module of the driver to register
 384 * @sdrv: the driver to register
 385 * Context: can sleep
 386 *
 387 * Return: zero on success, else a negative error code.
 388 */
 389int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 390{
 391	sdrv->driver.owner = owner;
 392	sdrv->driver.bus = &spi_bus_type;
 393	if (sdrv->probe)
 394		sdrv->driver.probe = spi_drv_probe;
 395	if (sdrv->remove)
 396		sdrv->driver.remove = spi_drv_remove;
 397	if (sdrv->shutdown)
 398		sdrv->driver.shutdown = spi_drv_shutdown;
 399	return driver_register(&sdrv->driver);
 400}
 401EXPORT_SYMBOL_GPL(__spi_register_driver);
 402
 403/*-------------------------------------------------------------------------*/
 404
 405/* SPI devices should normally not be created by SPI device drivers; that
 406 * would make them board-specific.  Similarly with SPI master drivers.
 407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 408 * with other readonly (flashable) information about mainboard devices.
 409 */
 410
 411struct boardinfo {
 412	struct list_head	list;
 413	struct spi_board_info	board_info;
 414};
 415
 416static LIST_HEAD(board_list);
 417static LIST_HEAD(spi_master_list);
 418
 419/*
 420 * Used to protect add/del opertion for board_info list and
 421 * spi_master list, and their matching process
 
 422 */
 423static DEFINE_MUTEX(board_lock);
 424
 425/**
 426 * spi_alloc_device - Allocate a new SPI device
 427 * @master: Controller to which device is connected
 428 * Context: can sleep
 429 *
 430 * Allows a driver to allocate and initialize a spi_device without
 431 * registering it immediately.  This allows a driver to directly
 432 * fill the spi_device with device parameters before calling
 433 * spi_add_device() on it.
 434 *
 435 * Caller is responsible to call spi_add_device() on the returned
 436 * spi_device structure to add it to the SPI master.  If the caller
 437 * needs to discard the spi_device without adding it, then it should
 438 * call spi_dev_put() on it.
 439 *
 440 * Return: a pointer to the new device, or NULL.
 441 */
 442struct spi_device *spi_alloc_device(struct spi_master *master)
 443{
 444	struct spi_device	*spi;
 445
 446	if (!spi_master_get(master))
 447		return NULL;
 448
 449	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 450	if (!spi) {
 451		spi_master_put(master);
 452		return NULL;
 453	}
 454
 455	spi->master = master;
 456	spi->dev.parent = &master->dev;
 457	spi->dev.bus = &spi_bus_type;
 458	spi->dev.release = spidev_release;
 459	spi->cs_gpio = -ENOENT;
 460
 461	spin_lock_init(&spi->statistics.lock);
 462
 463	device_initialize(&spi->dev);
 464	return spi;
 465}
 466EXPORT_SYMBOL_GPL(spi_alloc_device);
 467
 468static void spi_dev_set_name(struct spi_device *spi)
 469{
 470	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 471
 472	if (adev) {
 473		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 474		return;
 475	}
 476
 477	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 478		     spi->chip_select);
 479}
 480
 481static int spi_dev_check(struct device *dev, void *data)
 482{
 483	struct spi_device *spi = to_spi_device(dev);
 484	struct spi_device *new_spi = data;
 485
 486	if (spi->master == new_spi->master &&
 487	    spi->chip_select == new_spi->chip_select)
 488		return -EBUSY;
 489	return 0;
 490}
 491
 492/**
 493 * spi_add_device - Add spi_device allocated with spi_alloc_device
 494 * @spi: spi_device to register
 495 *
 496 * Companion function to spi_alloc_device.  Devices allocated with
 497 * spi_alloc_device can be added onto the spi bus with this function.
 498 *
 499 * Return: 0 on success; negative errno on failure
 500 */
 501int spi_add_device(struct spi_device *spi)
 502{
 503	static DEFINE_MUTEX(spi_add_lock);
 504	struct spi_master *master = spi->master;
 505	struct device *dev = master->dev.parent;
 506	int status;
 507
 508	/* Chipselects are numbered 0..max; validate. */
 509	if (spi->chip_select >= master->num_chipselect) {
 510		dev_err(dev, "cs%d >= max %d\n",
 511			spi->chip_select,
 512			master->num_chipselect);
 513		return -EINVAL;
 514	}
 515
 516	/* Set the bus ID string */
 517	spi_dev_set_name(spi);
 518
 519	/* We need to make sure there's no other device with this
 520	 * chipselect **BEFORE** we call setup(), else we'll trash
 521	 * its configuration.  Lock against concurrent add() calls.
 522	 */
 523	mutex_lock(&spi_add_lock);
 524
 525	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 526	if (status) {
 527		dev_err(dev, "chipselect %d already in use\n",
 528				spi->chip_select);
 529		goto done;
 530	}
 531
 532	if (master->cs_gpios)
 533		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 534
 535	/* Drivers may modify this initial i/o setup, but will
 536	 * normally rely on the device being setup.  Devices
 537	 * using SPI_CS_HIGH can't coexist well otherwise...
 538	 */
 539	status = spi_setup(spi);
 540	if (status < 0) {
 541		dev_err(dev, "can't setup %s, status %d\n",
 542				dev_name(&spi->dev), status);
 543		goto done;
 544	}
 545
 546	/* Device may be bound to an active driver when this returns */
 547	status = device_add(&spi->dev);
 548	if (status < 0)
 549		dev_err(dev, "can't add %s, status %d\n",
 550				dev_name(&spi->dev), status);
 551	else
 552		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 553
 554done:
 555	mutex_unlock(&spi_add_lock);
 556	return status;
 557}
 558EXPORT_SYMBOL_GPL(spi_add_device);
 559
 560/**
 561 * spi_new_device - instantiate one new SPI device
 562 * @master: Controller to which device is connected
 563 * @chip: Describes the SPI device
 564 * Context: can sleep
 565 *
 566 * On typical mainboards, this is purely internal; and it's not needed
 567 * after board init creates the hard-wired devices.  Some development
 568 * platforms may not be able to use spi_register_board_info though, and
 569 * this is exported so that for example a USB or parport based adapter
 570 * driver could add devices (which it would learn about out-of-band).
 571 *
 572 * Return: the new device, or NULL.
 573 */
 574struct spi_device *spi_new_device(struct spi_master *master,
 575				  struct spi_board_info *chip)
 576{
 577	struct spi_device	*proxy;
 578	int			status;
 579
 580	/* NOTE:  caller did any chip->bus_num checks necessary.
 581	 *
 582	 * Also, unless we change the return value convention to use
 583	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 584	 * suggests syslogged diagnostics are best here (ugh).
 585	 */
 586
 587	proxy = spi_alloc_device(master);
 588	if (!proxy)
 589		return NULL;
 590
 591	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 592
 593	proxy->chip_select = chip->chip_select;
 594	proxy->max_speed_hz = chip->max_speed_hz;
 595	proxy->mode = chip->mode;
 596	proxy->irq = chip->irq;
 597	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 598	proxy->dev.platform_data = (void *) chip->platform_data;
 599	proxy->controller_data = chip->controller_data;
 600	proxy->controller_state = NULL;
 601
 
 
 
 
 
 
 
 
 
 
 602	status = spi_add_device(proxy);
 603	if (status < 0) {
 604		spi_dev_put(proxy);
 605		return NULL;
 606	}
 607
 608	return proxy;
 
 
 
 
 
 
 
 609}
 610EXPORT_SYMBOL_GPL(spi_new_device);
 611
 612/**
 613 * spi_unregister_device - unregister a single SPI device
 614 * @spi: spi_device to unregister
 615 *
 616 * Start making the passed SPI device vanish. Normally this would be handled
 617 * by spi_unregister_master().
 618 */
 619void spi_unregister_device(struct spi_device *spi)
 620{
 621	if (!spi)
 622		return;
 623
 624	if (spi->dev.of_node)
 625		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 
 
 626	if (ACPI_COMPANION(&spi->dev))
 627		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 628	device_unregister(&spi->dev);
 629}
 630EXPORT_SYMBOL_GPL(spi_unregister_device);
 631
 632static void spi_match_master_to_boardinfo(struct spi_master *master,
 633				struct spi_board_info *bi)
 634{
 635	struct spi_device *dev;
 636
 637	if (master->bus_num != bi->bus_num)
 638		return;
 639
 640	dev = spi_new_device(master, bi);
 641	if (!dev)
 642		dev_err(master->dev.parent, "can't create new device for %s\n",
 643			bi->modalias);
 644}
 645
 646/**
 647 * spi_register_board_info - register SPI devices for a given board
 648 * @info: array of chip descriptors
 649 * @n: how many descriptors are provided
 650 * Context: can sleep
 651 *
 652 * Board-specific early init code calls this (probably during arch_initcall)
 653 * with segments of the SPI device table.  Any device nodes are created later,
 654 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 655 * this table of devices forever, so that reloading a controller driver will
 656 * not make Linux forget about these hard-wired devices.
 657 *
 658 * Other code can also call this, e.g. a particular add-on board might provide
 659 * SPI devices through its expansion connector, so code initializing that board
 660 * would naturally declare its SPI devices.
 661 *
 662 * The board info passed can safely be __initdata ... but be careful of
 663 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 664 *
 665 * Return: zero on success, else a negative error code.
 666 */
 667int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 668{
 669	struct boardinfo *bi;
 670	int i;
 671
 672	if (!n)
 673		return -EINVAL;
 674
 675	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 676	if (!bi)
 677		return -ENOMEM;
 678
 679	for (i = 0; i < n; i++, bi++, info++) {
 680		struct spi_master *master;
 681
 682		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 
 683		mutex_lock(&board_lock);
 684		list_add_tail(&bi->list, &board_list);
 685		list_for_each_entry(master, &spi_master_list, list)
 686			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 687		mutex_unlock(&board_lock);
 688	}
 689
 690	return 0;
 691}
 692
 693/*-------------------------------------------------------------------------*/
 694
 695static void spi_set_cs(struct spi_device *spi, bool enable)
 696{
 697	if (spi->mode & SPI_CS_HIGH)
 698		enable = !enable;
 699
 700	if (gpio_is_valid(spi->cs_gpio)) {
 701		gpio_set_value(spi->cs_gpio, !enable);
 702		/* Some SPI masters need both GPIO CS & slave_select */
 703		if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
 704		    spi->master->set_cs)
 705			spi->master->set_cs(spi, !enable);
 706	} else if (spi->master->set_cs) {
 707		spi->master->set_cs(spi, !enable);
 708	}
 709}
 710
 711#ifdef CONFIG_HAS_DMA
 712static int spi_map_buf(struct spi_master *master, struct device *dev,
 713		       struct sg_table *sgt, void *buf, size_t len,
 714		       enum dma_data_direction dir)
 715{
 716	const bool vmalloced_buf = is_vmalloc_addr(buf);
 717	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 718#ifdef CONFIG_HIGHMEM
 719	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 720				(unsigned long)buf < (PKMAP_BASE +
 721					(LAST_PKMAP * PAGE_SIZE)));
 722#else
 723	const bool kmap_buf = false;
 724#endif
 725	int desc_len;
 726	int sgs;
 727	struct page *vm_page;
 728	struct scatterlist *sg;
 729	void *sg_buf;
 730	size_t min;
 731	int i, ret;
 732
 733	if (vmalloced_buf || kmap_buf) {
 734		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 735		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 736	} else if (virt_addr_valid(buf)) {
 737		desc_len = min_t(int, max_seg_size, master->max_dma_len);
 738		sgs = DIV_ROUND_UP(len, desc_len);
 739	} else {
 740		return -EINVAL;
 741	}
 742
 743	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 744	if (ret != 0)
 745		return ret;
 746
 747	sg = &sgt->sgl[0];
 748	for (i = 0; i < sgs; i++) {
 749
 750		if (vmalloced_buf || kmap_buf) {
 751			min = min_t(size_t,
 752				    len, desc_len - offset_in_page(buf));
 
 
 
 
 
 
 753			if (vmalloced_buf)
 754				vm_page = vmalloc_to_page(buf);
 755			else
 756				vm_page = kmap_to_page(buf);
 757			if (!vm_page) {
 758				sg_free_table(sgt);
 759				return -ENOMEM;
 760			}
 761			sg_set_page(sg, vm_page,
 762				    min, offset_in_page(buf));
 763		} else {
 764			min = min_t(size_t, len, desc_len);
 765			sg_buf = buf;
 766			sg_set_buf(sg, sg_buf, min);
 767		}
 768
 769		buf += min;
 770		len -= min;
 771		sg = sg_next(sg);
 772	}
 773
 774	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 775	if (!ret)
 776		ret = -ENOMEM;
 777	if (ret < 0) {
 778		sg_free_table(sgt);
 779		return ret;
 780	}
 781
 782	sgt->nents = ret;
 783
 784	return 0;
 785}
 786
 787static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 788			  struct sg_table *sgt, enum dma_data_direction dir)
 789{
 790	if (sgt->orig_nents) {
 791		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 792		sg_free_table(sgt);
 793	}
 794}
 795
 796static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 797{
 798	struct device *tx_dev, *rx_dev;
 799	struct spi_transfer *xfer;
 800	int ret;
 801
 802	if (!master->can_dma)
 803		return 0;
 804
 805	if (master->dma_tx)
 806		tx_dev = master->dma_tx->device->dev;
 807	else
 808		tx_dev = &master->dev;
 809
 810	if (master->dma_rx)
 811		rx_dev = master->dma_rx->device->dev;
 812	else
 813		rx_dev = &master->dev;
 814
 815	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 816		if (!master->can_dma(master, msg->spi, xfer))
 817			continue;
 818
 819		if (xfer->tx_buf != NULL) {
 820			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 821					  (void *)xfer->tx_buf, xfer->len,
 822					  DMA_TO_DEVICE);
 823			if (ret != 0)
 824				return ret;
 825		}
 826
 827		if (xfer->rx_buf != NULL) {
 828			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 829					  xfer->rx_buf, xfer->len,
 830					  DMA_FROM_DEVICE);
 831			if (ret != 0) {
 832				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 833					      DMA_TO_DEVICE);
 834				return ret;
 835			}
 836		}
 837	}
 838
 839	master->cur_msg_mapped = true;
 840
 841	return 0;
 842}
 843
 844static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 845{
 846	struct spi_transfer *xfer;
 847	struct device *tx_dev, *rx_dev;
 848
 849	if (!master->cur_msg_mapped || !master->can_dma)
 850		return 0;
 851
 852	if (master->dma_tx)
 853		tx_dev = master->dma_tx->device->dev;
 854	else
 855		tx_dev = &master->dev;
 856
 857	if (master->dma_rx)
 858		rx_dev = master->dma_rx->device->dev;
 859	else
 860		rx_dev = &master->dev;
 861
 862	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 863		if (!master->can_dma(master, msg->spi, xfer))
 864			continue;
 865
 866		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 867		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 868	}
 869
 870	return 0;
 871}
 872#else /* !CONFIG_HAS_DMA */
 873static inline int spi_map_buf(struct spi_master *master,
 874			      struct device *dev, struct sg_table *sgt,
 875			      void *buf, size_t len,
 876			      enum dma_data_direction dir)
 877{
 878	return -EINVAL;
 879}
 880
 881static inline void spi_unmap_buf(struct spi_master *master,
 882				 struct device *dev, struct sg_table *sgt,
 883				 enum dma_data_direction dir)
 884{
 885}
 886
 887static inline int __spi_map_msg(struct spi_master *master,
 888				struct spi_message *msg)
 889{
 890	return 0;
 891}
 892
 893static inline int __spi_unmap_msg(struct spi_master *master,
 894				  struct spi_message *msg)
 895{
 896	return 0;
 897}
 898#endif /* !CONFIG_HAS_DMA */
 899
 900static inline int spi_unmap_msg(struct spi_master *master,
 901				struct spi_message *msg)
 902{
 903	struct spi_transfer *xfer;
 904
 905	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 906		/*
 907		 * Restore the original value of tx_buf or rx_buf if they are
 908		 * NULL.
 909		 */
 910		if (xfer->tx_buf == master->dummy_tx)
 911			xfer->tx_buf = NULL;
 912		if (xfer->rx_buf == master->dummy_rx)
 913			xfer->rx_buf = NULL;
 914	}
 915
 916	return __spi_unmap_msg(master, msg);
 917}
 918
 919static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 920{
 921	struct spi_transfer *xfer;
 922	void *tmp;
 923	unsigned int max_tx, max_rx;
 924
 925	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 926		max_tx = 0;
 927		max_rx = 0;
 928
 929		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 930			if ((master->flags & SPI_MASTER_MUST_TX) &&
 931			    !xfer->tx_buf)
 932				max_tx = max(xfer->len, max_tx);
 933			if ((master->flags & SPI_MASTER_MUST_RX) &&
 934			    !xfer->rx_buf)
 935				max_rx = max(xfer->len, max_rx);
 936		}
 937
 938		if (max_tx) {
 939			tmp = krealloc(master->dummy_tx, max_tx,
 940				       GFP_KERNEL | GFP_DMA);
 941			if (!tmp)
 942				return -ENOMEM;
 943			master->dummy_tx = tmp;
 944			memset(tmp, 0, max_tx);
 945		}
 946
 947		if (max_rx) {
 948			tmp = krealloc(master->dummy_rx, max_rx,
 949				       GFP_KERNEL | GFP_DMA);
 950			if (!tmp)
 951				return -ENOMEM;
 952			master->dummy_rx = tmp;
 953		}
 954
 955		if (max_tx || max_rx) {
 956			list_for_each_entry(xfer, &msg->transfers,
 957					    transfer_list) {
 958				if (!xfer->tx_buf)
 959					xfer->tx_buf = master->dummy_tx;
 960				if (!xfer->rx_buf)
 961					xfer->rx_buf = master->dummy_rx;
 962			}
 963		}
 964	}
 965
 966	return __spi_map_msg(master, msg);
 967}
 968
 969/*
 970 * spi_transfer_one_message - Default implementation of transfer_one_message()
 971 *
 972 * This is a standard implementation of transfer_one_message() for
 973 * drivers which implement a transfer_one() operation.  It provides
 974 * standard handling of delays and chip select management.
 975 */
 976static int spi_transfer_one_message(struct spi_master *master,
 977				    struct spi_message *msg)
 978{
 979	struct spi_transfer *xfer;
 980	bool keep_cs = false;
 981	int ret = 0;
 982	unsigned long long ms = 1;
 983	struct spi_statistics *statm = &master->statistics;
 984	struct spi_statistics *stats = &msg->spi->statistics;
 985
 986	spi_set_cs(msg->spi, true);
 987
 988	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 989	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 990
 991	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 992		trace_spi_transfer_start(msg, xfer);
 993
 994		spi_statistics_add_transfer_stats(statm, xfer, master);
 995		spi_statistics_add_transfer_stats(stats, xfer, master);
 996
 997		if (xfer->tx_buf || xfer->rx_buf) {
 998			reinit_completion(&master->xfer_completion);
 999
1000			ret = master->transfer_one(master, msg->spi, xfer);
1001			if (ret < 0) {
1002				SPI_STATISTICS_INCREMENT_FIELD(statm,
1003							       errors);
1004				SPI_STATISTICS_INCREMENT_FIELD(stats,
1005							       errors);
1006				dev_err(&msg->spi->dev,
1007					"SPI transfer failed: %d\n", ret);
1008				goto out;
1009			}
1010
1011			if (ret > 0) {
1012				ret = 0;
1013				ms = 8LL * 1000LL * xfer->len;
1014				do_div(ms, xfer->speed_hz);
1015				ms += ms + 100; /* some tolerance */
1016
1017				if (ms > UINT_MAX)
1018					ms = UINT_MAX;
1019
1020				ms = wait_for_completion_timeout(&master->xfer_completion,
1021								 msecs_to_jiffies(ms));
1022			}
1023
1024			if (ms == 0) {
1025				SPI_STATISTICS_INCREMENT_FIELD(statm,
1026							       timedout);
1027				SPI_STATISTICS_INCREMENT_FIELD(stats,
1028							       timedout);
1029				dev_err(&msg->spi->dev,
1030					"SPI transfer timed out\n");
1031				msg->status = -ETIMEDOUT;
1032			}
1033		} else {
1034			if (xfer->len)
1035				dev_err(&msg->spi->dev,
1036					"Bufferless transfer has length %u\n",
1037					xfer->len);
1038		}
1039
1040		trace_spi_transfer_stop(msg, xfer);
1041
1042		if (msg->status != -EINPROGRESS)
1043			goto out;
1044
1045		if (xfer->delay_usecs) {
1046			u16 us = xfer->delay_usecs;
1047
1048			if (us <= 10)
1049				udelay(us);
1050			else
1051				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1052		}
1053
1054		if (xfer->cs_change) {
1055			if (list_is_last(&xfer->transfer_list,
1056					 &msg->transfers)) {
1057				keep_cs = true;
1058			} else {
1059				spi_set_cs(msg->spi, false);
1060				udelay(10);
1061				spi_set_cs(msg->spi, true);
1062			}
1063		}
1064
1065		msg->actual_length += xfer->len;
1066	}
1067
1068out:
1069	if (ret != 0 || !keep_cs)
1070		spi_set_cs(msg->spi, false);
1071
1072	if (msg->status == -EINPROGRESS)
1073		msg->status = ret;
1074
1075	if (msg->status && master->handle_err)
1076		master->handle_err(master, msg);
1077
1078	spi_res_release(master, msg);
1079
1080	spi_finalize_current_message(master);
1081
1082	return ret;
1083}
1084
1085/**
1086 * spi_finalize_current_transfer - report completion of a transfer
1087 * @master: the master reporting completion
1088 *
1089 * Called by SPI drivers using the core transfer_one_message()
1090 * implementation to notify it that the current interrupt driven
1091 * transfer has finished and the next one may be scheduled.
1092 */
1093void spi_finalize_current_transfer(struct spi_master *master)
1094{
1095	complete(&master->xfer_completion);
1096}
1097EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1098
1099/**
1100 * __spi_pump_messages - function which processes spi message queue
1101 * @master: master to process queue for
1102 * @in_kthread: true if we are in the context of the message pump thread
1103 *
1104 * This function checks if there is any spi message in the queue that
1105 * needs processing and if so call out to the driver to initialize hardware
1106 * and transfer each message.
1107 *
1108 * Note that it is called both from the kthread itself and also from
1109 * inside spi_sync(); the queue extraction handling at the top of the
1110 * function should deal with this safely.
1111 */
1112static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1113{
1114	unsigned long flags;
1115	bool was_busy = false;
1116	int ret;
1117
1118	/* Lock queue */
1119	spin_lock_irqsave(&master->queue_lock, flags);
1120
1121	/* Make sure we are not already running a message */
1122	if (master->cur_msg) {
1123		spin_unlock_irqrestore(&master->queue_lock, flags);
1124		return;
1125	}
1126
1127	/* If another context is idling the device then defer */
1128	if (master->idling) {
1129		kthread_queue_work(&master->kworker, &master->pump_messages);
1130		spin_unlock_irqrestore(&master->queue_lock, flags);
1131		return;
1132	}
1133
1134	/* Check if the queue is idle */
1135	if (list_empty(&master->queue) || !master->running) {
1136		if (!master->busy) {
1137			spin_unlock_irqrestore(&master->queue_lock, flags);
1138			return;
1139		}
1140
1141		/* Only do teardown in the thread */
1142		if (!in_kthread) {
1143			kthread_queue_work(&master->kworker,
1144					   &master->pump_messages);
1145			spin_unlock_irqrestore(&master->queue_lock, flags);
1146			return;
1147		}
1148
1149		master->busy = false;
1150		master->idling = true;
1151		spin_unlock_irqrestore(&master->queue_lock, flags);
1152
1153		kfree(master->dummy_rx);
1154		master->dummy_rx = NULL;
1155		kfree(master->dummy_tx);
1156		master->dummy_tx = NULL;
1157		if (master->unprepare_transfer_hardware &&
1158		    master->unprepare_transfer_hardware(master))
1159			dev_err(&master->dev,
1160				"failed to unprepare transfer hardware\n");
1161		if (master->auto_runtime_pm) {
1162			pm_runtime_mark_last_busy(master->dev.parent);
1163			pm_runtime_put_autosuspend(master->dev.parent);
1164		}
1165		trace_spi_master_idle(master);
1166
1167		spin_lock_irqsave(&master->queue_lock, flags);
1168		master->idling = false;
1169		spin_unlock_irqrestore(&master->queue_lock, flags);
1170		return;
1171	}
1172
1173	/* Extract head of queue */
1174	master->cur_msg =
1175		list_first_entry(&master->queue, struct spi_message, queue);
1176
1177	list_del_init(&master->cur_msg->queue);
1178	if (master->busy)
1179		was_busy = true;
1180	else
1181		master->busy = true;
1182	spin_unlock_irqrestore(&master->queue_lock, flags);
1183
1184	mutex_lock(&master->io_mutex);
1185
1186	if (!was_busy && master->auto_runtime_pm) {
1187		ret = pm_runtime_get_sync(master->dev.parent);
1188		if (ret < 0) {
1189			dev_err(&master->dev, "Failed to power device: %d\n",
1190				ret);
1191			mutex_unlock(&master->io_mutex);
1192			return;
1193		}
1194	}
1195
1196	if (!was_busy)
1197		trace_spi_master_busy(master);
1198
1199	if (!was_busy && master->prepare_transfer_hardware) {
1200		ret = master->prepare_transfer_hardware(master);
1201		if (ret) {
1202			dev_err(&master->dev,
1203				"failed to prepare transfer hardware\n");
1204
1205			if (master->auto_runtime_pm)
1206				pm_runtime_put(master->dev.parent);
1207			mutex_unlock(&master->io_mutex);
1208			return;
1209		}
1210	}
1211
1212	trace_spi_message_start(master->cur_msg);
1213
1214	if (master->prepare_message) {
1215		ret = master->prepare_message(master, master->cur_msg);
1216		if (ret) {
1217			dev_err(&master->dev,
1218				"failed to prepare message: %d\n", ret);
1219			master->cur_msg->status = ret;
1220			spi_finalize_current_message(master);
1221			goto out;
1222		}
1223		master->cur_msg_prepared = true;
1224	}
1225
1226	ret = spi_map_msg(master, master->cur_msg);
1227	if (ret) {
1228		master->cur_msg->status = ret;
1229		spi_finalize_current_message(master);
1230		goto out;
1231	}
1232
1233	ret = master->transfer_one_message(master, master->cur_msg);
1234	if (ret) {
1235		dev_err(&master->dev,
1236			"failed to transfer one message from queue\n");
1237		goto out;
1238	}
1239
1240out:
1241	mutex_unlock(&master->io_mutex);
1242
1243	/* Prod the scheduler in case transfer_one() was busy waiting */
1244	if (!ret)
1245		cond_resched();
1246}
1247
1248/**
1249 * spi_pump_messages - kthread work function which processes spi message queue
1250 * @work: pointer to kthread work struct contained in the master struct
1251 */
1252static void spi_pump_messages(struct kthread_work *work)
1253{
1254	struct spi_master *master =
1255		container_of(work, struct spi_master, pump_messages);
1256
1257	__spi_pump_messages(master, true);
1258}
1259
1260static int spi_init_queue(struct spi_master *master)
1261{
1262	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1263
1264	master->running = false;
1265	master->busy = false;
1266
1267	kthread_init_worker(&master->kworker);
1268	master->kworker_task = kthread_run(kthread_worker_fn,
1269					   &master->kworker, "%s",
1270					   dev_name(&master->dev));
1271	if (IS_ERR(master->kworker_task)) {
1272		dev_err(&master->dev, "failed to create message pump task\n");
1273		return PTR_ERR(master->kworker_task);
1274	}
1275	kthread_init_work(&master->pump_messages, spi_pump_messages);
1276
1277	/*
1278	 * Master config will indicate if this controller should run the
1279	 * message pump with high (realtime) priority to reduce the transfer
1280	 * latency on the bus by minimising the delay between a transfer
1281	 * request and the scheduling of the message pump thread. Without this
1282	 * setting the message pump thread will remain at default priority.
1283	 */
1284	if (master->rt) {
1285		dev_info(&master->dev,
1286			"will run message pump with realtime priority\n");
1287		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1288	}
1289
1290	return 0;
1291}
1292
1293/**
1294 * spi_get_next_queued_message() - called by driver to check for queued
1295 * messages
1296 * @master: the master to check for queued messages
1297 *
1298 * If there are more messages in the queue, the next message is returned from
1299 * this call.
1300 *
1301 * Return: the next message in the queue, else NULL if the queue is empty.
1302 */
1303struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1304{
1305	struct spi_message *next;
1306	unsigned long flags;
1307
1308	/* get a pointer to the next message, if any */
1309	spin_lock_irqsave(&master->queue_lock, flags);
1310	next = list_first_entry_or_null(&master->queue, struct spi_message,
1311					queue);
1312	spin_unlock_irqrestore(&master->queue_lock, flags);
1313
1314	return next;
1315}
1316EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1317
1318/**
1319 * spi_finalize_current_message() - the current message is complete
1320 * @master: the master to return the message to
1321 *
1322 * Called by the driver to notify the core that the message in the front of the
1323 * queue is complete and can be removed from the queue.
1324 */
1325void spi_finalize_current_message(struct spi_master *master)
1326{
1327	struct spi_message *mesg;
1328	unsigned long flags;
1329	int ret;
1330
1331	spin_lock_irqsave(&master->queue_lock, flags);
1332	mesg = master->cur_msg;
1333	spin_unlock_irqrestore(&master->queue_lock, flags);
1334
1335	spi_unmap_msg(master, mesg);
1336
1337	if (master->cur_msg_prepared && master->unprepare_message) {
1338		ret = master->unprepare_message(master, mesg);
1339		if (ret) {
1340			dev_err(&master->dev,
1341				"failed to unprepare message: %d\n", ret);
1342		}
1343	}
1344
1345	spin_lock_irqsave(&master->queue_lock, flags);
1346	master->cur_msg = NULL;
1347	master->cur_msg_prepared = false;
1348	kthread_queue_work(&master->kworker, &master->pump_messages);
1349	spin_unlock_irqrestore(&master->queue_lock, flags);
1350
1351	trace_spi_message_done(mesg);
1352
1353	mesg->state = NULL;
1354	if (mesg->complete)
1355		mesg->complete(mesg->context);
1356}
1357EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1358
1359static int spi_start_queue(struct spi_master *master)
1360{
1361	unsigned long flags;
1362
1363	spin_lock_irqsave(&master->queue_lock, flags);
1364
1365	if (master->running || master->busy) {
1366		spin_unlock_irqrestore(&master->queue_lock, flags);
1367		return -EBUSY;
1368	}
1369
1370	master->running = true;
1371	master->cur_msg = NULL;
1372	spin_unlock_irqrestore(&master->queue_lock, flags);
1373
1374	kthread_queue_work(&master->kworker, &master->pump_messages);
1375
1376	return 0;
1377}
1378
1379static int spi_stop_queue(struct spi_master *master)
1380{
1381	unsigned long flags;
1382	unsigned limit = 500;
1383	int ret = 0;
1384
1385	spin_lock_irqsave(&master->queue_lock, flags);
1386
1387	/*
1388	 * This is a bit lame, but is optimized for the common execution path.
1389	 * A wait_queue on the master->busy could be used, but then the common
1390	 * execution path (pump_messages) would be required to call wake_up or
1391	 * friends on every SPI message. Do this instead.
1392	 */
1393	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1394		spin_unlock_irqrestore(&master->queue_lock, flags);
1395		usleep_range(10000, 11000);
1396		spin_lock_irqsave(&master->queue_lock, flags);
1397	}
1398
1399	if (!list_empty(&master->queue) || master->busy)
1400		ret = -EBUSY;
1401	else
1402		master->running = false;
1403
1404	spin_unlock_irqrestore(&master->queue_lock, flags);
1405
1406	if (ret) {
1407		dev_warn(&master->dev,
1408			 "could not stop message queue\n");
1409		return ret;
1410	}
1411	return ret;
1412}
1413
1414static int spi_destroy_queue(struct spi_master *master)
1415{
1416	int ret;
1417
1418	ret = spi_stop_queue(master);
1419
1420	/*
1421	 * kthread_flush_worker will block until all work is done.
1422	 * If the reason that stop_queue timed out is that the work will never
1423	 * finish, then it does no good to call flush/stop thread, so
1424	 * return anyway.
1425	 */
1426	if (ret) {
1427		dev_err(&master->dev, "problem destroying queue\n");
1428		return ret;
1429	}
1430
1431	kthread_flush_worker(&master->kworker);
1432	kthread_stop(master->kworker_task);
1433
1434	return 0;
1435}
1436
1437static int __spi_queued_transfer(struct spi_device *spi,
1438				 struct spi_message *msg,
1439				 bool need_pump)
1440{
1441	struct spi_master *master = spi->master;
1442	unsigned long flags;
1443
1444	spin_lock_irqsave(&master->queue_lock, flags);
1445
1446	if (!master->running) {
1447		spin_unlock_irqrestore(&master->queue_lock, flags);
1448		return -ESHUTDOWN;
1449	}
1450	msg->actual_length = 0;
1451	msg->status = -EINPROGRESS;
1452
1453	list_add_tail(&msg->queue, &master->queue);
1454	if (!master->busy && need_pump)
1455		kthread_queue_work(&master->kworker, &master->pump_messages);
1456
1457	spin_unlock_irqrestore(&master->queue_lock, flags);
1458	return 0;
1459}
1460
1461/**
1462 * spi_queued_transfer - transfer function for queued transfers
1463 * @spi: spi device which is requesting transfer
1464 * @msg: spi message which is to handled is queued to driver queue
1465 *
1466 * Return: zero on success, else a negative error code.
1467 */
1468static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1469{
1470	return __spi_queued_transfer(spi, msg, true);
1471}
1472
1473static int spi_master_initialize_queue(struct spi_master *master)
1474{
1475	int ret;
1476
1477	master->transfer = spi_queued_transfer;
1478	if (!master->transfer_one_message)
1479		master->transfer_one_message = spi_transfer_one_message;
1480
1481	/* Initialize and start queue */
1482	ret = spi_init_queue(master);
1483	if (ret) {
1484		dev_err(&master->dev, "problem initializing queue\n");
1485		goto err_init_queue;
1486	}
1487	master->queued = true;
1488	ret = spi_start_queue(master);
1489	if (ret) {
1490		dev_err(&master->dev, "problem starting queue\n");
1491		goto err_start_queue;
1492	}
1493
1494	return 0;
1495
1496err_start_queue:
1497	spi_destroy_queue(master);
1498err_init_queue:
1499	return ret;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504#if defined(CONFIG_OF)
1505static struct spi_device *
1506of_register_spi_device(struct spi_master *master, struct device_node *nc)
1507{
1508	struct spi_device *spi;
1509	int rc;
1510	u32 value;
1511
1512	/* Alloc an spi_device */
1513	spi = spi_alloc_device(master);
1514	if (!spi) {
1515		dev_err(&master->dev, "spi_device alloc error for %s\n",
1516			nc->full_name);
1517		rc = -ENOMEM;
1518		goto err_out;
1519	}
1520
1521	/* Select device driver */
1522	rc = of_modalias_node(nc, spi->modalias,
1523				sizeof(spi->modalias));
1524	if (rc < 0) {
1525		dev_err(&master->dev, "cannot find modalias for %s\n",
1526			nc->full_name);
1527		goto err_out;
1528	}
1529
1530	/* Device address */
1531	rc = of_property_read_u32(nc, "reg", &value);
1532	if (rc) {
1533		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1534			nc->full_name, rc);
1535		goto err_out;
1536	}
1537	spi->chip_select = value;
1538
1539	/* Mode (clock phase/polarity/etc.) */
1540	if (of_find_property(nc, "spi-cpha", NULL))
1541		spi->mode |= SPI_CPHA;
1542	if (of_find_property(nc, "spi-cpol", NULL))
1543		spi->mode |= SPI_CPOL;
1544	if (of_find_property(nc, "spi-cs-high", NULL))
1545		spi->mode |= SPI_CS_HIGH;
1546	if (of_find_property(nc, "spi-3wire", NULL))
1547		spi->mode |= SPI_3WIRE;
1548	if (of_find_property(nc, "spi-lsb-first", NULL))
1549		spi->mode |= SPI_LSB_FIRST;
1550
1551	/* Device DUAL/QUAD mode */
1552	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553		switch (value) {
1554		case 1:
1555			break;
1556		case 2:
1557			spi->mode |= SPI_TX_DUAL;
1558			break;
1559		case 4:
1560			spi->mode |= SPI_TX_QUAD;
1561			break;
1562		default:
1563			dev_warn(&master->dev,
1564				"spi-tx-bus-width %d not supported\n",
1565				value);
1566			break;
1567		}
1568	}
1569
1570	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571		switch (value) {
1572		case 1:
1573			break;
1574		case 2:
1575			spi->mode |= SPI_RX_DUAL;
1576			break;
1577		case 4:
1578			spi->mode |= SPI_RX_QUAD;
1579			break;
1580		default:
1581			dev_warn(&master->dev,
1582				"spi-rx-bus-width %d not supported\n",
1583				value);
1584			break;
1585		}
1586	}
1587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588	/* Device speed */
1589	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1590	if (rc) {
1591		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1592			nc->full_name, rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593		goto err_out;
1594	}
1595	spi->max_speed_hz = value;
 
 
 
 
 
 
 
 
 
 
 
1596
1597	/* Store a pointer to the node in the device structure */
1598	of_node_get(nc);
1599	spi->dev.of_node = nc;
1600
1601	/* Register the new device */
1602	rc = spi_add_device(spi);
1603	if (rc) {
1604		dev_err(&master->dev, "spi_device register error %s\n",
1605			nc->full_name);
1606		goto err_out;
1607	}
1608
1609	return spi;
1610
 
 
1611err_out:
1612	spi_dev_put(spi);
1613	return ERR_PTR(rc);
1614}
1615
1616/**
1617 * of_register_spi_devices() - Register child devices onto the SPI bus
1618 * @master:	Pointer to spi_master device
1619 *
1620 * Registers an spi_device for each child node of master node which has a 'reg'
1621 * property.
1622 */
1623static void of_register_spi_devices(struct spi_master *master)
1624{
1625	struct spi_device *spi;
1626	struct device_node *nc;
1627
1628	if (!master->dev.of_node)
1629		return;
1630
1631	for_each_available_child_of_node(master->dev.of_node, nc) {
1632		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1633			continue;
1634		spi = of_register_spi_device(master, nc);
1635		if (IS_ERR(spi)) {
1636			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1637				nc->full_name);
1638			of_node_clear_flag(nc, OF_POPULATED);
1639		}
1640	}
1641}
1642#else
1643static void of_register_spi_devices(struct spi_master *master) { }
1644#endif
1645
1646#ifdef CONFIG_ACPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1648{
1649	struct spi_device *spi = data;
1650	struct spi_master *master = spi->master;
1651
1652	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1653		struct acpi_resource_spi_serialbus *sb;
1654
1655		sb = &ares->data.spi_serial_bus;
1656		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1657			/*
1658			 * ACPI DeviceSelection numbering is handled by the
1659			 * host controller driver in Windows and can vary
1660			 * from driver to driver. In Linux we always expect
1661			 * 0 .. max - 1 so we need to ask the driver to
1662			 * translate between the two schemes.
1663			 */
1664			if (master->fw_translate_cs) {
1665				int cs = master->fw_translate_cs(master,
1666						sb->device_selection);
1667				if (cs < 0)
1668					return cs;
1669				spi->chip_select = cs;
1670			} else {
1671				spi->chip_select = sb->device_selection;
1672			}
1673
1674			spi->max_speed_hz = sb->connection_speed;
1675
1676			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1677				spi->mode |= SPI_CPHA;
1678			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1679				spi->mode |= SPI_CPOL;
1680			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1681				spi->mode |= SPI_CS_HIGH;
1682		}
1683	} else if (spi->irq < 0) {
1684		struct resource r;
1685
1686		if (acpi_dev_resource_interrupt(ares, 0, &r))
1687			spi->irq = r.start;
1688	}
1689
1690	/* Always tell the ACPI core to skip this resource */
1691	return 1;
1692}
1693
1694static acpi_status acpi_register_spi_device(struct spi_master *master,
1695					    struct acpi_device *adev)
1696{
1697	struct list_head resource_list;
1698	struct spi_device *spi;
1699	int ret;
1700
1701	if (acpi_bus_get_status(adev) || !adev->status.present ||
1702	    acpi_device_enumerated(adev))
1703		return AE_OK;
1704
1705	spi = spi_alloc_device(master);
1706	if (!spi) {
1707		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1708			dev_name(&adev->dev));
1709		return AE_NO_MEMORY;
1710	}
1711
1712	ACPI_COMPANION_SET(&spi->dev, adev);
1713	spi->irq = -1;
1714
1715	INIT_LIST_HEAD(&resource_list);
1716	ret = acpi_dev_get_resources(adev, &resource_list,
1717				     acpi_spi_add_resource, spi);
1718	acpi_dev_free_resource_list(&resource_list);
1719
 
 
1720	if (ret < 0 || !spi->max_speed_hz) {
1721		spi_dev_put(spi);
1722		return AE_OK;
1723	}
1724
 
 
 
1725	if (spi->irq < 0)
1726		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1727
1728	acpi_device_set_enumerated(adev);
1729
1730	adev->power.flags.ignore_parent = true;
1731	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1732	if (spi_add_device(spi)) {
1733		adev->power.flags.ignore_parent = false;
1734		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1735			dev_name(&adev->dev));
1736		spi_dev_put(spi);
1737	}
1738
1739	return AE_OK;
1740}
1741
1742static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1743				       void *data, void **return_value)
1744{
1745	struct spi_master *master = data;
1746	struct acpi_device *adev;
1747
1748	if (acpi_bus_get_device(handle, &adev))
1749		return AE_OK;
1750
1751	return acpi_register_spi_device(master, adev);
1752}
1753
1754static void acpi_register_spi_devices(struct spi_master *master)
1755{
1756	acpi_status status;
1757	acpi_handle handle;
1758
1759	handle = ACPI_HANDLE(master->dev.parent);
1760	if (!handle)
1761		return;
1762
1763	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1764				     acpi_spi_add_device, NULL,
1765				     master, NULL);
1766	if (ACPI_FAILURE(status))
1767		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1768}
1769#else
1770static inline void acpi_register_spi_devices(struct spi_master *master) {}
1771#endif /* CONFIG_ACPI */
1772
1773static void spi_master_release(struct device *dev)
1774{
1775	struct spi_master *master;
1776
1777	master = container_of(dev, struct spi_master, dev);
1778	kfree(master);
1779}
1780
1781static struct class spi_master_class = {
1782	.name		= "spi_master",
1783	.owner		= THIS_MODULE,
1784	.dev_release	= spi_master_release,
1785	.dev_groups	= spi_master_groups,
1786};
1787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1788
1789/**
1790 * spi_alloc_master - allocate SPI master controller
1791 * @dev: the controller, possibly using the platform_bus
1792 * @size: how much zeroed driver-private data to allocate; the pointer to this
1793 *	memory is in the driver_data field of the returned device,
1794 *	accessible with spi_master_get_devdata().
 
 
1795 * Context: can sleep
1796 *
1797 * This call is used only by SPI master controller drivers, which are the
1798 * only ones directly touching chip registers.  It's how they allocate
1799 * an spi_master structure, prior to calling spi_register_master().
1800 *
1801 * This must be called from context that can sleep.
1802 *
1803 * The caller is responsible for assigning the bus number and initializing
1804 * the master's methods before calling spi_register_master(); and (after errors
1805 * adding the device) calling spi_master_put() to prevent a memory leak.
 
1806 *
1807 * Return: the SPI master structure on success, else NULL.
1808 */
1809struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
1810{
1811	struct spi_master	*master;
1812
1813	if (!dev)
1814		return NULL;
1815
1816	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1817	if (!master)
1818		return NULL;
1819
1820	device_initialize(&master->dev);
1821	master->bus_num = -1;
1822	master->num_chipselect = 1;
1823	master->dev.class = &spi_master_class;
1824	master->dev.parent = dev;
1825	pm_suspend_ignore_children(&master->dev, true);
1826	spi_master_set_devdata(master, &master[1]);
 
 
 
 
1827
1828	return master;
1829}
1830EXPORT_SYMBOL_GPL(spi_alloc_master);
1831
1832#ifdef CONFIG_OF
1833static int of_spi_register_master(struct spi_master *master)
1834{
1835	int nb, i, *cs;
1836	struct device_node *np = master->dev.of_node;
1837
1838	if (!np)
1839		return 0;
1840
1841	nb = of_gpio_named_count(np, "cs-gpios");
1842	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1843
1844	/* Return error only for an incorrectly formed cs-gpios property */
1845	if (nb == 0 || nb == -ENOENT)
1846		return 0;
1847	else if (nb < 0)
1848		return nb;
1849
1850	cs = devm_kzalloc(&master->dev,
1851			  sizeof(int) * master->num_chipselect,
1852			  GFP_KERNEL);
1853	master->cs_gpios = cs;
1854
1855	if (!master->cs_gpios)
1856		return -ENOMEM;
1857
1858	for (i = 0; i < master->num_chipselect; i++)
1859		cs[i] = -ENOENT;
1860
1861	for (i = 0; i < nb; i++)
1862		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1863
1864	return 0;
1865}
1866#else
1867static int of_spi_register_master(struct spi_master *master)
1868{
1869	return 0;
1870}
1871#endif
1872
1873/**
1874 * spi_register_master - register SPI master controller
1875 * @master: initialized master, originally from spi_alloc_master()
 
1876 * Context: can sleep
1877 *
1878 * SPI master controllers connect to their drivers using some non-SPI bus,
1879 * such as the platform bus.  The final stage of probe() in that code
1880 * includes calling spi_register_master() to hook up to this SPI bus glue.
1881 *
1882 * SPI controllers use board specific (often SOC specific) bus numbers,
1883 * and board-specific addressing for SPI devices combines those numbers
1884 * with chip select numbers.  Since SPI does not directly support dynamic
1885 * device identification, boards need configuration tables telling which
1886 * chip is at which address.
1887 *
1888 * This must be called from context that can sleep.  It returns zero on
1889 * success, else a negative error code (dropping the master's refcount).
1890 * After a successful return, the caller is responsible for calling
1891 * spi_unregister_master().
1892 *
1893 * Return: zero on success, else a negative error code.
1894 */
1895int spi_register_master(struct spi_master *master)
1896{
1897	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1898	struct device		*dev = master->dev.parent;
1899	struct boardinfo	*bi;
1900	int			status = -ENODEV;
1901	int			dynamic = 0;
1902
1903	if (!dev)
1904		return -ENODEV;
1905
1906	status = of_spi_register_master(master);
1907	if (status)
1908		return status;
 
 
1909
1910	/* even if it's just one always-selected device, there must
1911	 * be at least one chipselect
1912	 */
1913	if (master->num_chipselect == 0)
1914		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915
1916	if ((master->bus_num < 0) && master->dev.of_node)
1917		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1918
1919	/* convention:  dynamically assigned bus IDs count down from the max */
1920	if (master->bus_num < 0) {
1921		/* FIXME switch to an IDR based scheme, something like
1922		 * I2C now uses, so we can't run out of "dynamic" IDs
1923		 */
1924		master->bus_num = atomic_dec_return(&dyn_bus_id);
1925		dynamic = 1;
1926	}
1927
1928	INIT_LIST_HEAD(&master->queue);
1929	spin_lock_init(&master->queue_lock);
1930	spin_lock_init(&master->bus_lock_spinlock);
1931	mutex_init(&master->bus_lock_mutex);
1932	mutex_init(&master->io_mutex);
1933	master->bus_lock_flag = 0;
1934	init_completion(&master->xfer_completion);
1935	if (!master->max_dma_len)
1936		master->max_dma_len = INT_MAX;
1937
1938	/* register the device, then userspace will see it.
1939	 * registration fails if the bus ID is in use.
1940	 */
1941	dev_set_name(&master->dev, "spi%u", master->bus_num);
1942	status = device_add(&master->dev);
1943	if (status < 0)
 
 
 
 
1944		goto done;
1945	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1946			dynamic ? " (dynamic)" : "");
 
 
1947
1948	/* If we're using a queued driver, start the queue */
1949	if (master->transfer)
1950		dev_info(dev, "master is unqueued, this is deprecated\n");
1951	else {
1952		status = spi_master_initialize_queue(master);
1953		if (status) {
1954			device_del(&master->dev);
 
 
 
 
1955			goto done;
1956		}
1957	}
1958	/* add statistics */
1959	spin_lock_init(&master->statistics.lock);
1960
1961	mutex_lock(&board_lock);
1962	list_add_tail(&master->list, &spi_master_list);
1963	list_for_each_entry(bi, &board_list, list)
1964		spi_match_master_to_boardinfo(master, &bi->board_info);
1965	mutex_unlock(&board_lock);
1966
1967	/* Register devices from the device tree and ACPI */
1968	of_register_spi_devices(master);
1969	acpi_register_spi_devices(master);
1970done:
1971	return status;
1972}
1973EXPORT_SYMBOL_GPL(spi_register_master);
1974
1975static void devm_spi_unregister(struct device *dev, void *res)
1976{
1977	spi_unregister_master(*(struct spi_master **)res);
1978}
1979
1980/**
1981 * dev_spi_register_master - register managed SPI master controller
1982 * @dev:    device managing SPI master
1983 * @master: initialized master, originally from spi_alloc_master()
 
 
1984 * Context: can sleep
1985 *
1986 * Register a SPI device as with spi_register_master() which will
1987 * automatically be unregister
1988 *
1989 * Return: zero on success, else a negative error code.
1990 */
1991int devm_spi_register_master(struct device *dev, struct spi_master *master)
 
1992{
1993	struct spi_master **ptr;
1994	int ret;
1995
1996	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1997	if (!ptr)
1998		return -ENOMEM;
1999
2000	ret = spi_register_master(master);
2001	if (!ret) {
2002		*ptr = master;
2003		devres_add(dev, ptr);
2004	} else {
2005		devres_free(ptr);
2006	}
2007
2008	return ret;
2009}
2010EXPORT_SYMBOL_GPL(devm_spi_register_master);
2011
2012static int __unregister(struct device *dev, void *null)
2013{
2014	spi_unregister_device(to_spi_device(dev));
2015	return 0;
2016}
2017
2018/**
2019 * spi_unregister_master - unregister SPI master controller
2020 * @master: the master being unregistered
2021 * Context: can sleep
2022 *
2023 * This call is used only by SPI master controller drivers, which are the
2024 * only ones directly touching chip registers.
2025 *
2026 * This must be called from context that can sleep.
 
 
2027 */
2028void spi_unregister_master(struct spi_master *master)
2029{
 
 
2030	int dummy;
2031
2032	if (master->queued) {
2033		if (spi_destroy_queue(master))
2034			dev_err(&master->dev, "queue remove failed\n");
 
 
 
 
2035	}
 
 
 
2036
 
 
 
2037	mutex_lock(&board_lock);
2038	list_del(&master->list);
 
2039	mutex_unlock(&board_lock);
2040
2041	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2042	device_unregister(&master->dev);
2043}
2044EXPORT_SYMBOL_GPL(spi_unregister_master);
2045
2046int spi_master_suspend(struct spi_master *master)
2047{
2048	int ret;
2049
2050	/* Basically no-ops for non-queued masters */
2051	if (!master->queued)
2052		return 0;
2053
2054	ret = spi_stop_queue(master);
2055	if (ret)
2056		dev_err(&master->dev, "queue stop failed\n");
2057
2058	return ret;
2059}
2060EXPORT_SYMBOL_GPL(spi_master_suspend);
2061
2062int spi_master_resume(struct spi_master *master)
2063{
2064	int ret;
2065
2066	if (!master->queued)
2067		return 0;
2068
2069	ret = spi_start_queue(master);
2070	if (ret)
2071		dev_err(&master->dev, "queue restart failed\n");
2072
2073	return ret;
2074}
2075EXPORT_SYMBOL_GPL(spi_master_resume);
2076
2077static int __spi_master_match(struct device *dev, const void *data)
2078{
2079	struct spi_master *m;
2080	const u16 *bus_num = data;
2081
2082	m = container_of(dev, struct spi_master, dev);
2083	return m->bus_num == *bus_num;
2084}
2085
2086/**
2087 * spi_busnum_to_master - look up master associated with bus_num
2088 * @bus_num: the master's bus number
2089 * Context: can sleep
2090 *
2091 * This call may be used with devices that are registered after
2092 * arch init time.  It returns a refcounted pointer to the relevant
2093 * spi_master (which the caller must release), or NULL if there is
2094 * no such master registered.
2095 *
2096 * Return: the SPI master structure on success, else NULL.
2097 */
2098struct spi_master *spi_busnum_to_master(u16 bus_num)
2099{
2100	struct device		*dev;
2101	struct spi_master	*master = NULL;
2102
2103	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2104				__spi_master_match);
2105	if (dev)
2106		master = container_of(dev, struct spi_master, dev);
2107	/* reference got in class_find_device */
2108	return master;
2109}
2110EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2111
2112/*-------------------------------------------------------------------------*/
2113
2114/* Core methods for SPI resource management */
2115
2116/**
2117 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2118 *                 during the processing of a spi_message while using
2119 *                 spi_transfer_one
2120 * @spi:     the spi device for which we allocate memory
2121 * @release: the release code to execute for this resource
2122 * @size:    size to alloc and return
2123 * @gfp:     GFP allocation flags
2124 *
2125 * Return: the pointer to the allocated data
2126 *
2127 * This may get enhanced in the future to allocate from a memory pool
2128 * of the @spi_device or @spi_master to avoid repeated allocations.
2129 */
2130void *spi_res_alloc(struct spi_device *spi,
2131		    spi_res_release_t release,
2132		    size_t size, gfp_t gfp)
2133{
2134	struct spi_res *sres;
2135
2136	sres = kzalloc(sizeof(*sres) + size, gfp);
2137	if (!sres)
2138		return NULL;
2139
2140	INIT_LIST_HEAD(&sres->entry);
2141	sres->release = release;
2142
2143	return sres->data;
2144}
2145EXPORT_SYMBOL_GPL(spi_res_alloc);
2146
2147/**
2148 * spi_res_free - free an spi resource
2149 * @res: pointer to the custom data of a resource
2150 *
2151 */
2152void spi_res_free(void *res)
2153{
2154	struct spi_res *sres = container_of(res, struct spi_res, data);
2155
2156	if (!res)
2157		return;
2158
2159	WARN_ON(!list_empty(&sres->entry));
2160	kfree(sres);
2161}
2162EXPORT_SYMBOL_GPL(spi_res_free);
2163
2164/**
2165 * spi_res_add - add a spi_res to the spi_message
2166 * @message: the spi message
2167 * @res:     the spi_resource
2168 */
2169void spi_res_add(struct spi_message *message, void *res)
2170{
2171	struct spi_res *sres = container_of(res, struct spi_res, data);
2172
2173	WARN_ON(!list_empty(&sres->entry));
2174	list_add_tail(&sres->entry, &message->resources);
2175}
2176EXPORT_SYMBOL_GPL(spi_res_add);
2177
2178/**
2179 * spi_res_release - release all spi resources for this message
2180 * @master:  the @spi_master
2181 * @message: the @spi_message
2182 */
2183void spi_res_release(struct spi_master *master,
2184		     struct spi_message *message)
2185{
2186	struct spi_res *res;
2187
2188	while (!list_empty(&message->resources)) {
2189		res = list_last_entry(&message->resources,
2190				      struct spi_res, entry);
2191
2192		if (res->release)
2193			res->release(master, message, res->data);
2194
2195		list_del(&res->entry);
2196
2197		kfree(res);
2198	}
2199}
2200EXPORT_SYMBOL_GPL(spi_res_release);
2201
2202/*-------------------------------------------------------------------------*/
2203
2204/* Core methods for spi_message alterations */
2205
2206static void __spi_replace_transfers_release(struct spi_master *master,
2207					    struct spi_message *msg,
2208					    void *res)
2209{
2210	struct spi_replaced_transfers *rxfer = res;
2211	size_t i;
2212
2213	/* call extra callback if requested */
2214	if (rxfer->release)
2215		rxfer->release(master, msg, res);
2216
2217	/* insert replaced transfers back into the message */
2218	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2219
2220	/* remove the formerly inserted entries */
2221	for (i = 0; i < rxfer->inserted; i++)
2222		list_del(&rxfer->inserted_transfers[i].transfer_list);
2223}
2224
2225/**
2226 * spi_replace_transfers - replace transfers with several transfers
2227 *                         and register change with spi_message.resources
2228 * @msg:           the spi_message we work upon
2229 * @xfer_first:    the first spi_transfer we want to replace
2230 * @remove:        number of transfers to remove
2231 * @insert:        the number of transfers we want to insert instead
2232 * @release:       extra release code necessary in some circumstances
2233 * @extradatasize: extra data to allocate (with alignment guarantees
2234 *                 of struct @spi_transfer)
2235 * @gfp:           gfp flags
2236 *
2237 * Returns: pointer to @spi_replaced_transfers,
2238 *          PTR_ERR(...) in case of errors.
2239 */
2240struct spi_replaced_transfers *spi_replace_transfers(
2241	struct spi_message *msg,
2242	struct spi_transfer *xfer_first,
2243	size_t remove,
2244	size_t insert,
2245	spi_replaced_release_t release,
2246	size_t extradatasize,
2247	gfp_t gfp)
2248{
2249	struct spi_replaced_transfers *rxfer;
2250	struct spi_transfer *xfer;
2251	size_t i;
2252
2253	/* allocate the structure using spi_res */
2254	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2255			      insert * sizeof(struct spi_transfer)
2256			      + sizeof(struct spi_replaced_transfers)
2257			      + extradatasize,
2258			      gfp);
2259	if (!rxfer)
2260		return ERR_PTR(-ENOMEM);
2261
2262	/* the release code to invoke before running the generic release */
2263	rxfer->release = release;
2264
2265	/* assign extradata */
2266	if (extradatasize)
2267		rxfer->extradata =
2268			&rxfer->inserted_transfers[insert];
2269
2270	/* init the replaced_transfers list */
2271	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2272
2273	/* assign the list_entry after which we should reinsert
2274	 * the @replaced_transfers - it may be spi_message.messages!
2275	 */
2276	rxfer->replaced_after = xfer_first->transfer_list.prev;
2277
2278	/* remove the requested number of transfers */
2279	for (i = 0; i < remove; i++) {
2280		/* if the entry after replaced_after it is msg->transfers
2281		 * then we have been requested to remove more transfers
2282		 * than are in the list
2283		 */
2284		if (rxfer->replaced_after->next == &msg->transfers) {
2285			dev_err(&msg->spi->dev,
2286				"requested to remove more spi_transfers than are available\n");
2287			/* insert replaced transfers back into the message */
2288			list_splice(&rxfer->replaced_transfers,
2289				    rxfer->replaced_after);
2290
2291			/* free the spi_replace_transfer structure */
2292			spi_res_free(rxfer);
2293
2294			/* and return with an error */
2295			return ERR_PTR(-EINVAL);
2296		}
2297
2298		/* remove the entry after replaced_after from list of
2299		 * transfers and add it to list of replaced_transfers
2300		 */
2301		list_move_tail(rxfer->replaced_after->next,
2302			       &rxfer->replaced_transfers);
2303	}
2304
2305	/* create copy of the given xfer with identical settings
2306	 * based on the first transfer to get removed
2307	 */
2308	for (i = 0; i < insert; i++) {
2309		/* we need to run in reverse order */
2310		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2311
2312		/* copy all spi_transfer data */
2313		memcpy(xfer, xfer_first, sizeof(*xfer));
2314
2315		/* add to list */
2316		list_add(&xfer->transfer_list, rxfer->replaced_after);
2317
2318		/* clear cs_change and delay_usecs for all but the last */
2319		if (i) {
2320			xfer->cs_change = false;
2321			xfer->delay_usecs = 0;
2322		}
2323	}
2324
2325	/* set up inserted */
2326	rxfer->inserted = insert;
2327
2328	/* and register it with spi_res/spi_message */
2329	spi_res_add(msg, rxfer);
2330
2331	return rxfer;
2332}
2333EXPORT_SYMBOL_GPL(spi_replace_transfers);
2334
2335static int __spi_split_transfer_maxsize(struct spi_master *master,
2336					struct spi_message *msg,
2337					struct spi_transfer **xferp,
2338					size_t maxsize,
2339					gfp_t gfp)
2340{
2341	struct spi_transfer *xfer = *xferp, *xfers;
2342	struct spi_replaced_transfers *srt;
2343	size_t offset;
2344	size_t count, i;
2345
2346	/* warn once about this fact that we are splitting a transfer */
2347	dev_warn_once(&msg->spi->dev,
2348		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2349		      xfer->len, maxsize);
2350
2351	/* calculate how many we have to replace */
2352	count = DIV_ROUND_UP(xfer->len, maxsize);
2353
2354	/* create replacement */
2355	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2356	if (IS_ERR(srt))
2357		return PTR_ERR(srt);
2358	xfers = srt->inserted_transfers;
2359
2360	/* now handle each of those newly inserted spi_transfers
2361	 * note that the replacements spi_transfers all are preset
2362	 * to the same values as *xferp, so tx_buf, rx_buf and len
2363	 * are all identical (as well as most others)
2364	 * so we just have to fix up len and the pointers.
2365	 *
2366	 * this also includes support for the depreciated
2367	 * spi_message.is_dma_mapped interface
2368	 */
2369
2370	/* the first transfer just needs the length modified, so we
2371	 * run it outside the loop
2372	 */
2373	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2374
2375	/* all the others need rx_buf/tx_buf also set */
2376	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2377		/* update rx_buf, tx_buf and dma */
2378		if (xfers[i].rx_buf)
2379			xfers[i].rx_buf += offset;
2380		if (xfers[i].rx_dma)
2381			xfers[i].rx_dma += offset;
2382		if (xfers[i].tx_buf)
2383			xfers[i].tx_buf += offset;
2384		if (xfers[i].tx_dma)
2385			xfers[i].tx_dma += offset;
2386
2387		/* update length */
2388		xfers[i].len = min(maxsize, xfers[i].len - offset);
2389	}
2390
2391	/* we set up xferp to the last entry we have inserted,
2392	 * so that we skip those already split transfers
2393	 */
2394	*xferp = &xfers[count - 1];
2395
2396	/* increment statistics counters */
2397	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2398				       transfers_split_maxsize);
2399	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2400				       transfers_split_maxsize);
2401
2402	return 0;
2403}
2404
2405/**
2406 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2407 *                              when an individual transfer exceeds a
2408 *                              certain size
2409 * @master:    the @spi_master for this transfer
2410 * @msg:   the @spi_message to transform
2411 * @maxsize:  the maximum when to apply this
2412 * @gfp: GFP allocation flags
2413 *
2414 * Return: status of transformation
2415 */
2416int spi_split_transfers_maxsize(struct spi_master *master,
2417				struct spi_message *msg,
2418				size_t maxsize,
2419				gfp_t gfp)
2420{
2421	struct spi_transfer *xfer;
2422	int ret;
2423
2424	/* iterate over the transfer_list,
2425	 * but note that xfer is advanced to the last transfer inserted
2426	 * to avoid checking sizes again unnecessarily (also xfer does
2427	 * potentiall belong to a different list by the time the
2428	 * replacement has happened
2429	 */
2430	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2431		if (xfer->len > maxsize) {
2432			ret = __spi_split_transfer_maxsize(
2433				master, msg, &xfer, maxsize, gfp);
2434			if (ret)
2435				return ret;
2436		}
2437	}
2438
2439	return 0;
2440}
2441EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2442
2443/*-------------------------------------------------------------------------*/
2444
2445/* Core methods for SPI master protocol drivers.  Some of the
2446 * other core methods are currently defined as inline functions.
2447 */
2448
2449static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
 
2450{
2451	if (master->bits_per_word_mask) {
2452		/* Only 32 bits fit in the mask */
2453		if (bits_per_word > 32)
2454			return -EINVAL;
2455		if (!(master->bits_per_word_mask &
2456				SPI_BPW_MASK(bits_per_word)))
2457			return -EINVAL;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 * spi_setup - setup SPI mode and clock rate
2465 * @spi: the device whose settings are being modified
2466 * Context: can sleep, and no requests are queued to the device
2467 *
2468 * SPI protocol drivers may need to update the transfer mode if the
2469 * device doesn't work with its default.  They may likewise need
2470 * to update clock rates or word sizes from initial values.  This function
2471 * changes those settings, and must be called from a context that can sleep.
2472 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2473 * effect the next time the device is selected and data is transferred to
2474 * or from it.  When this function returns, the spi device is deselected.
2475 *
2476 * Note that this call will fail if the protocol driver specifies an option
2477 * that the underlying controller or its driver does not support.  For
2478 * example, not all hardware supports wire transfers using nine bit words,
2479 * LSB-first wire encoding, or active-high chipselects.
2480 *
2481 * Return: zero on success, else a negative error code.
2482 */
2483int spi_setup(struct spi_device *spi)
2484{
2485	unsigned	bad_bits, ugly_bits;
2486	int		status;
2487
2488	/* check mode to prevent that DUAL and QUAD set at the same time
2489	 */
2490	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2491		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2492		dev_err(&spi->dev,
2493		"setup: can not select dual and quad at the same time\n");
2494		return -EINVAL;
2495	}
2496	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2497	 */
2498	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2499		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2500		return -EINVAL;
2501	/* help drivers fail *cleanly* when they need options
2502	 * that aren't supported with their current master
2503	 */
2504	bad_bits = spi->mode & ~spi->master->mode_bits;
2505	ugly_bits = bad_bits &
2506		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2507	if (ugly_bits) {
2508		dev_warn(&spi->dev,
2509			 "setup: ignoring unsupported mode bits %x\n",
2510			 ugly_bits);
2511		spi->mode &= ~ugly_bits;
2512		bad_bits &= ~ugly_bits;
2513	}
2514	if (bad_bits) {
2515		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2516			bad_bits);
2517		return -EINVAL;
2518	}
2519
2520	if (!spi->bits_per_word)
2521		spi->bits_per_word = 8;
2522
2523	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
 
2524	if (status)
2525		return status;
2526
2527	if (!spi->max_speed_hz)
2528		spi->max_speed_hz = spi->master->max_speed_hz;
2529
2530	if (spi->master->setup)
2531		status = spi->master->setup(spi);
2532
2533	spi_set_cs(spi, false);
2534
2535	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2536			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2537			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2538			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2539			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2540			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2541			spi->bits_per_word, spi->max_speed_hz,
2542			status);
2543
2544	return status;
2545}
2546EXPORT_SYMBOL_GPL(spi_setup);
2547
2548static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2549{
2550	struct spi_master *master = spi->master;
2551	struct spi_transfer *xfer;
2552	int w_size;
2553
2554	if (list_empty(&message->transfers))
2555		return -EINVAL;
2556
2557	/* Half-duplex links include original MicroWire, and ones with
2558	 * only one data pin like SPI_3WIRE (switches direction) or where
2559	 * either MOSI or MISO is missing.  They can also be caused by
2560	 * software limitations.
2561	 */
2562	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2563			|| (spi->mode & SPI_3WIRE)) {
2564		unsigned flags = master->flags;
2565
2566		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2567			if (xfer->rx_buf && xfer->tx_buf)
2568				return -EINVAL;
2569			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2570				return -EINVAL;
2571			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2572				return -EINVAL;
2573		}
2574	}
2575
2576	/**
2577	 * Set transfer bits_per_word and max speed as spi device default if
2578	 * it is not set for this transfer.
2579	 * Set transfer tx_nbits and rx_nbits as single transfer default
2580	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2581	 */
2582	message->frame_length = 0;
2583	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2584		message->frame_length += xfer->len;
2585		if (!xfer->bits_per_word)
2586			xfer->bits_per_word = spi->bits_per_word;
2587
2588		if (!xfer->speed_hz)
2589			xfer->speed_hz = spi->max_speed_hz;
2590		if (!xfer->speed_hz)
2591			xfer->speed_hz = master->max_speed_hz;
2592
2593		if (master->max_speed_hz &&
2594		    xfer->speed_hz > master->max_speed_hz)
2595			xfer->speed_hz = master->max_speed_hz;
2596
2597		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2598			return -EINVAL;
2599
2600		/*
2601		 * SPI transfer length should be multiple of SPI word size
2602		 * where SPI word size should be power-of-two multiple
2603		 */
2604		if (xfer->bits_per_word <= 8)
2605			w_size = 1;
2606		else if (xfer->bits_per_word <= 16)
2607			w_size = 2;
2608		else
2609			w_size = 4;
2610
2611		/* No partial transfers accepted */
2612		if (xfer->len % w_size)
2613			return -EINVAL;
2614
2615		if (xfer->speed_hz && master->min_speed_hz &&
2616		    xfer->speed_hz < master->min_speed_hz)
2617			return -EINVAL;
2618
2619		if (xfer->tx_buf && !xfer->tx_nbits)
2620			xfer->tx_nbits = SPI_NBITS_SINGLE;
2621		if (xfer->rx_buf && !xfer->rx_nbits)
2622			xfer->rx_nbits = SPI_NBITS_SINGLE;
2623		/* check transfer tx/rx_nbits:
2624		 * 1. check the value matches one of single, dual and quad
2625		 * 2. check tx/rx_nbits match the mode in spi_device
2626		 */
2627		if (xfer->tx_buf) {
2628			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2629				xfer->tx_nbits != SPI_NBITS_DUAL &&
2630				xfer->tx_nbits != SPI_NBITS_QUAD)
2631				return -EINVAL;
2632			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2633				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2634				return -EINVAL;
2635			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2636				!(spi->mode & SPI_TX_QUAD))
2637				return -EINVAL;
2638		}
2639		/* check transfer rx_nbits */
2640		if (xfer->rx_buf) {
2641			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2642				xfer->rx_nbits != SPI_NBITS_DUAL &&
2643				xfer->rx_nbits != SPI_NBITS_QUAD)
2644				return -EINVAL;
2645			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2646				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2647				return -EINVAL;
2648			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2649				!(spi->mode & SPI_RX_QUAD))
2650				return -EINVAL;
2651		}
2652	}
2653
2654	message->status = -EINPROGRESS;
2655
2656	return 0;
2657}
2658
2659static int __spi_async(struct spi_device *spi, struct spi_message *message)
2660{
2661	struct spi_master *master = spi->master;
2662
2663	message->spi = spi;
2664
2665	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2666	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2667
2668	trace_spi_message_submit(message);
2669
2670	return master->transfer(spi, message);
2671}
2672
2673/**
2674 * spi_async - asynchronous SPI transfer
2675 * @spi: device with which data will be exchanged
2676 * @message: describes the data transfers, including completion callback
2677 * Context: any (irqs may be blocked, etc)
2678 *
2679 * This call may be used in_irq and other contexts which can't sleep,
2680 * as well as from task contexts which can sleep.
2681 *
2682 * The completion callback is invoked in a context which can't sleep.
2683 * Before that invocation, the value of message->status is undefined.
2684 * When the callback is issued, message->status holds either zero (to
2685 * indicate complete success) or a negative error code.  After that
2686 * callback returns, the driver which issued the transfer request may
2687 * deallocate the associated memory; it's no longer in use by any SPI
2688 * core or controller driver code.
2689 *
2690 * Note that although all messages to a spi_device are handled in
2691 * FIFO order, messages may go to different devices in other orders.
2692 * Some device might be higher priority, or have various "hard" access
2693 * time requirements, for example.
2694 *
2695 * On detection of any fault during the transfer, processing of
2696 * the entire message is aborted, and the device is deselected.
2697 * Until returning from the associated message completion callback,
2698 * no other spi_message queued to that device will be processed.
2699 * (This rule applies equally to all the synchronous transfer calls,
2700 * which are wrappers around this core asynchronous primitive.)
2701 *
2702 * Return: zero on success, else a negative error code.
2703 */
2704int spi_async(struct spi_device *spi, struct spi_message *message)
2705{
2706	struct spi_master *master = spi->master;
2707	int ret;
2708	unsigned long flags;
2709
2710	ret = __spi_validate(spi, message);
2711	if (ret != 0)
2712		return ret;
2713
2714	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2715
2716	if (master->bus_lock_flag)
2717		ret = -EBUSY;
2718	else
2719		ret = __spi_async(spi, message);
2720
2721	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2722
2723	return ret;
2724}
2725EXPORT_SYMBOL_GPL(spi_async);
2726
2727/**
2728 * spi_async_locked - version of spi_async with exclusive bus usage
2729 * @spi: device with which data will be exchanged
2730 * @message: describes the data transfers, including completion callback
2731 * Context: any (irqs may be blocked, etc)
2732 *
2733 * This call may be used in_irq and other contexts which can't sleep,
2734 * as well as from task contexts which can sleep.
2735 *
2736 * The completion callback is invoked in a context which can't sleep.
2737 * Before that invocation, the value of message->status is undefined.
2738 * When the callback is issued, message->status holds either zero (to
2739 * indicate complete success) or a negative error code.  After that
2740 * callback returns, the driver which issued the transfer request may
2741 * deallocate the associated memory; it's no longer in use by any SPI
2742 * core or controller driver code.
2743 *
2744 * Note that although all messages to a spi_device are handled in
2745 * FIFO order, messages may go to different devices in other orders.
2746 * Some device might be higher priority, or have various "hard" access
2747 * time requirements, for example.
2748 *
2749 * On detection of any fault during the transfer, processing of
2750 * the entire message is aborted, and the device is deselected.
2751 * Until returning from the associated message completion callback,
2752 * no other spi_message queued to that device will be processed.
2753 * (This rule applies equally to all the synchronous transfer calls,
2754 * which are wrappers around this core asynchronous primitive.)
2755 *
2756 * Return: zero on success, else a negative error code.
2757 */
2758int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2759{
2760	struct spi_master *master = spi->master;
2761	int ret;
2762	unsigned long flags;
2763
2764	ret = __spi_validate(spi, message);
2765	if (ret != 0)
2766		return ret;
2767
2768	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2769
2770	ret = __spi_async(spi, message);
2771
2772	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2773
2774	return ret;
2775
2776}
2777EXPORT_SYMBOL_GPL(spi_async_locked);
2778
2779
2780int spi_flash_read(struct spi_device *spi,
2781		   struct spi_flash_read_message *msg)
2782
2783{
2784	struct spi_master *master = spi->master;
2785	struct device *rx_dev = NULL;
2786	int ret;
2787
2788	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2789	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2790	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2791		return -EINVAL;
2792	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2793	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2794	    !(spi->mode & SPI_TX_QUAD))
2795		return -EINVAL;
2796	if (msg->data_nbits == SPI_NBITS_DUAL &&
2797	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2798		return -EINVAL;
2799	if (msg->data_nbits == SPI_NBITS_QUAD &&
2800	    !(spi->mode &  SPI_RX_QUAD))
2801		return -EINVAL;
2802
2803	if (master->auto_runtime_pm) {
2804		ret = pm_runtime_get_sync(master->dev.parent);
2805		if (ret < 0) {
2806			dev_err(&master->dev, "Failed to power device: %d\n",
2807				ret);
2808			return ret;
2809		}
2810	}
2811
2812	mutex_lock(&master->bus_lock_mutex);
2813	mutex_lock(&master->io_mutex);
2814	if (master->dma_rx) {
2815		rx_dev = master->dma_rx->device->dev;
2816		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2817				  msg->buf, msg->len,
2818				  DMA_FROM_DEVICE);
2819		if (!ret)
2820			msg->cur_msg_mapped = true;
2821	}
2822	ret = master->spi_flash_read(spi, msg);
2823	if (msg->cur_msg_mapped)
2824		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2825			      DMA_FROM_DEVICE);
2826	mutex_unlock(&master->io_mutex);
2827	mutex_unlock(&master->bus_lock_mutex);
2828
2829	if (master->auto_runtime_pm)
2830		pm_runtime_put(master->dev.parent);
2831
2832	return ret;
2833}
2834EXPORT_SYMBOL_GPL(spi_flash_read);
2835
2836/*-------------------------------------------------------------------------*/
2837
2838/* Utility methods for SPI master protocol drivers, layered on
2839 * top of the core.  Some other utility methods are defined as
2840 * inline functions.
2841 */
2842
2843static void spi_complete(void *arg)
2844{
2845	complete(arg);
2846}
2847
2848static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2849{
2850	DECLARE_COMPLETION_ONSTACK(done);
2851	int status;
2852	struct spi_master *master = spi->master;
2853	unsigned long flags;
2854
2855	status = __spi_validate(spi, message);
2856	if (status != 0)
2857		return status;
2858
2859	message->complete = spi_complete;
2860	message->context = &done;
2861	message->spi = spi;
2862
2863	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2864	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2865
2866	/* If we're not using the legacy transfer method then we will
2867	 * try to transfer in the calling context so special case.
2868	 * This code would be less tricky if we could remove the
2869	 * support for driver implemented message queues.
2870	 */
2871	if (master->transfer == spi_queued_transfer) {
2872		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2873
2874		trace_spi_message_submit(message);
2875
2876		status = __spi_queued_transfer(spi, message, false);
2877
2878		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2879	} else {
2880		status = spi_async_locked(spi, message);
2881	}
2882
2883	if (status == 0) {
2884		/* Push out the messages in the calling context if we
2885		 * can.
2886		 */
2887		if (master->transfer == spi_queued_transfer) {
2888			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2889						       spi_sync_immediate);
2890			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2891						       spi_sync_immediate);
2892			__spi_pump_messages(master, false);
2893		}
2894
2895		wait_for_completion(&done);
2896		status = message->status;
2897	}
2898	message->context = NULL;
2899	return status;
2900}
2901
2902/**
2903 * spi_sync - blocking/synchronous SPI data transfers
2904 * @spi: device with which data will be exchanged
2905 * @message: describes the data transfers
2906 * Context: can sleep
2907 *
2908 * This call may only be used from a context that may sleep.  The sleep
2909 * is non-interruptible, and has no timeout.  Low-overhead controller
2910 * drivers may DMA directly into and out of the message buffers.
2911 *
2912 * Note that the SPI device's chip select is active during the message,
2913 * and then is normally disabled between messages.  Drivers for some
2914 * frequently-used devices may want to minimize costs of selecting a chip,
2915 * by leaving it selected in anticipation that the next message will go
2916 * to the same chip.  (That may increase power usage.)
2917 *
2918 * Also, the caller is guaranteeing that the memory associated with the
2919 * message will not be freed before this call returns.
2920 *
2921 * Return: zero on success, else a negative error code.
2922 */
2923int spi_sync(struct spi_device *spi, struct spi_message *message)
2924{
2925	int ret;
2926
2927	mutex_lock(&spi->master->bus_lock_mutex);
2928	ret = __spi_sync(spi, message);
2929	mutex_unlock(&spi->master->bus_lock_mutex);
2930
2931	return ret;
2932}
2933EXPORT_SYMBOL_GPL(spi_sync);
2934
2935/**
2936 * spi_sync_locked - version of spi_sync with exclusive bus usage
2937 * @spi: device with which data will be exchanged
2938 * @message: describes the data transfers
2939 * Context: can sleep
2940 *
2941 * This call may only be used from a context that may sleep.  The sleep
2942 * is non-interruptible, and has no timeout.  Low-overhead controller
2943 * drivers may DMA directly into and out of the message buffers.
2944 *
2945 * This call should be used by drivers that require exclusive access to the
2946 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2947 * be released by a spi_bus_unlock call when the exclusive access is over.
2948 *
2949 * Return: zero on success, else a negative error code.
2950 */
2951int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2952{
2953	return __spi_sync(spi, message);
2954}
2955EXPORT_SYMBOL_GPL(spi_sync_locked);
2956
2957/**
2958 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2959 * @master: SPI bus master that should be locked for exclusive bus access
2960 * Context: can sleep
2961 *
2962 * This call may only be used from a context that may sleep.  The sleep
2963 * is non-interruptible, and has no timeout.
2964 *
2965 * This call should be used by drivers that require exclusive access to the
2966 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2967 * exclusive access is over. Data transfer must be done by spi_sync_locked
2968 * and spi_async_locked calls when the SPI bus lock is held.
2969 *
2970 * Return: always zero.
2971 */
2972int spi_bus_lock(struct spi_master *master)
2973{
2974	unsigned long flags;
2975
2976	mutex_lock(&master->bus_lock_mutex);
2977
2978	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2979	master->bus_lock_flag = 1;
2980	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2981
2982	/* mutex remains locked until spi_bus_unlock is called */
2983
2984	return 0;
2985}
2986EXPORT_SYMBOL_GPL(spi_bus_lock);
2987
2988/**
2989 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2990 * @master: SPI bus master that was locked for exclusive bus access
2991 * Context: can sleep
2992 *
2993 * This call may only be used from a context that may sleep.  The sleep
2994 * is non-interruptible, and has no timeout.
2995 *
2996 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2997 * call.
2998 *
2999 * Return: always zero.
3000 */
3001int spi_bus_unlock(struct spi_master *master)
3002{
3003	master->bus_lock_flag = 0;
3004
3005	mutex_unlock(&master->bus_lock_mutex);
3006
3007	return 0;
3008}
3009EXPORT_SYMBOL_GPL(spi_bus_unlock);
3010
3011/* portable code must never pass more than 32 bytes */
3012#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3013
3014static u8	*buf;
3015
3016/**
3017 * spi_write_then_read - SPI synchronous write followed by read
3018 * @spi: device with which data will be exchanged
3019 * @txbuf: data to be written (need not be dma-safe)
3020 * @n_tx: size of txbuf, in bytes
3021 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3022 * @n_rx: size of rxbuf, in bytes
3023 * Context: can sleep
3024 *
3025 * This performs a half duplex MicroWire style transaction with the
3026 * device, sending txbuf and then reading rxbuf.  The return value
3027 * is zero for success, else a negative errno status code.
3028 * This call may only be used from a context that may sleep.
3029 *
3030 * Parameters to this routine are always copied using a small buffer;
3031 * portable code should never use this for more than 32 bytes.
3032 * Performance-sensitive or bulk transfer code should instead use
3033 * spi_{async,sync}() calls with dma-safe buffers.
3034 *
3035 * Return: zero on success, else a negative error code.
3036 */
3037int spi_write_then_read(struct spi_device *spi,
3038		const void *txbuf, unsigned n_tx,
3039		void *rxbuf, unsigned n_rx)
3040{
3041	static DEFINE_MUTEX(lock);
3042
3043	int			status;
3044	struct spi_message	message;
3045	struct spi_transfer	x[2];
3046	u8			*local_buf;
3047
3048	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3049	 * copying here, (as a pure convenience thing), but we can
3050	 * keep heap costs out of the hot path unless someone else is
3051	 * using the pre-allocated buffer or the transfer is too large.
3052	 */
3053	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3054		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3055				    GFP_KERNEL | GFP_DMA);
3056		if (!local_buf)
3057			return -ENOMEM;
3058	} else {
3059		local_buf = buf;
3060	}
3061
3062	spi_message_init(&message);
3063	memset(x, 0, sizeof(x));
3064	if (n_tx) {
3065		x[0].len = n_tx;
3066		spi_message_add_tail(&x[0], &message);
3067	}
3068	if (n_rx) {
3069		x[1].len = n_rx;
3070		spi_message_add_tail(&x[1], &message);
3071	}
3072
3073	memcpy(local_buf, txbuf, n_tx);
3074	x[0].tx_buf = local_buf;
3075	x[1].rx_buf = local_buf + n_tx;
3076
3077	/* do the i/o */
3078	status = spi_sync(spi, &message);
3079	if (status == 0)
3080		memcpy(rxbuf, x[1].rx_buf, n_rx);
3081
3082	if (x[0].tx_buf == buf)
3083		mutex_unlock(&lock);
3084	else
3085		kfree(local_buf);
3086
3087	return status;
3088}
3089EXPORT_SYMBOL_GPL(spi_write_then_read);
3090
3091/*-------------------------------------------------------------------------*/
3092
3093#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3094static int __spi_of_device_match(struct device *dev, void *data)
3095{
3096	return dev->of_node == data;
3097}
3098
3099/* must call put_device() when done with returned spi_device device */
3100static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3101{
3102	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3103						__spi_of_device_match);
3104	return dev ? to_spi_device(dev) : NULL;
3105}
3106
3107static int __spi_of_master_match(struct device *dev, const void *data)
3108{
3109	return dev->of_node == data;
3110}
3111
3112/* the spi masters are not using spi_bus, so we find it with another way */
3113static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3114{
3115	struct device *dev;
3116
3117	dev = class_find_device(&spi_master_class, NULL, node,
3118				__spi_of_master_match);
 
 
 
3119	if (!dev)
3120		return NULL;
3121
3122	/* reference got in class_find_device */
3123	return container_of(dev, struct spi_master, dev);
3124}
3125
3126static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3127			 void *arg)
3128{
3129	struct of_reconfig_data *rd = arg;
3130	struct spi_master *master;
3131	struct spi_device *spi;
3132
3133	switch (of_reconfig_get_state_change(action, arg)) {
3134	case OF_RECONFIG_CHANGE_ADD:
3135		master = of_find_spi_master_by_node(rd->dn->parent);
3136		if (master == NULL)
3137			return NOTIFY_OK;	/* not for us */
3138
3139		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3140			put_device(&master->dev);
3141			return NOTIFY_OK;
3142		}
3143
3144		spi = of_register_spi_device(master, rd->dn);
3145		put_device(&master->dev);
3146
3147		if (IS_ERR(spi)) {
3148			pr_err("%s: failed to create for '%s'\n",
3149					__func__, rd->dn->full_name);
3150			of_node_clear_flag(rd->dn, OF_POPULATED);
3151			return notifier_from_errno(PTR_ERR(spi));
3152		}
3153		break;
3154
3155	case OF_RECONFIG_CHANGE_REMOVE:
3156		/* already depopulated? */
3157		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3158			return NOTIFY_OK;
3159
3160		/* find our device by node */
3161		spi = of_find_spi_device_by_node(rd->dn);
3162		if (spi == NULL)
3163			return NOTIFY_OK;	/* no? not meant for us */
3164
3165		/* unregister takes one ref away */
3166		spi_unregister_device(spi);
3167
3168		/* and put the reference of the find */
3169		put_device(&spi->dev);
3170		break;
3171	}
3172
3173	return NOTIFY_OK;
3174}
3175
3176static struct notifier_block spi_of_notifier = {
3177	.notifier_call = of_spi_notify,
3178};
3179#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3180extern struct notifier_block spi_of_notifier;
3181#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3182
3183#if IS_ENABLED(CONFIG_ACPI)
3184static int spi_acpi_master_match(struct device *dev, const void *data)
3185{
3186	return ACPI_COMPANION(dev->parent) == data;
3187}
3188
3189static int spi_acpi_device_match(struct device *dev, void *data)
3190{
3191	return ACPI_COMPANION(dev) == data;
3192}
3193
3194static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3195{
3196	struct device *dev;
3197
3198	dev = class_find_device(&spi_master_class, NULL, adev,
3199				spi_acpi_master_match);
 
 
 
3200	if (!dev)
3201		return NULL;
3202
3203	return container_of(dev, struct spi_master, dev);
3204}
3205
3206static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3207{
3208	struct device *dev;
3209
3210	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3211
3212	return dev ? to_spi_device(dev) : NULL;
3213}
3214
3215static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3216			   void *arg)
3217{
3218	struct acpi_device *adev = arg;
3219	struct spi_master *master;
3220	struct spi_device *spi;
3221
3222	switch (value) {
3223	case ACPI_RECONFIG_DEVICE_ADD:
3224		master = acpi_spi_find_master_by_adev(adev->parent);
3225		if (!master)
3226			break;
3227
3228		acpi_register_spi_device(master, adev);
3229		put_device(&master->dev);
3230		break;
3231	case ACPI_RECONFIG_DEVICE_REMOVE:
3232		if (!acpi_device_enumerated(adev))
3233			break;
3234
3235		spi = acpi_spi_find_device_by_adev(adev);
3236		if (!spi)
3237			break;
3238
3239		spi_unregister_device(spi);
3240		put_device(&spi->dev);
3241		break;
3242	}
3243
3244	return NOTIFY_OK;
3245}
3246
3247static struct notifier_block spi_acpi_notifier = {
3248	.notifier_call = acpi_spi_notify,
3249};
3250#else
3251extern struct notifier_block spi_acpi_notifier;
3252#endif
3253
3254static int __init spi_init(void)
3255{
3256	int	status;
3257
3258	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3259	if (!buf) {
3260		status = -ENOMEM;
3261		goto err0;
3262	}
3263
3264	status = bus_register(&spi_bus_type);
3265	if (status < 0)
3266		goto err1;
3267
3268	status = class_register(&spi_master_class);
3269	if (status < 0)
3270		goto err2;
3271
 
 
 
 
 
 
3272	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3273		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3274	if (IS_ENABLED(CONFIG_ACPI))
3275		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3276
3277	return 0;
3278
 
 
3279err2:
3280	bus_unregister(&spi_bus_type);
3281err1:
3282	kfree(buf);
3283	buf = NULL;
3284err0:
3285	return status;
3286}
3287
3288/* board_info is normally registered in arch_initcall(),
3289 * but even essential drivers wait till later
3290 *
3291 * REVISIT only boardinfo really needs static linking. the rest (device and
3292 * driver registration) _could_ be dynamically linked (modular) ... costs
3293 * include needing to have boardinfo data structures be much more public.
3294 */
3295postcore_initcall(spi_init);
3296