Loading...
1/*
2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2004 PathScale, Inc
5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Licensed under the GPL
7 */
8
9#include <stdlib.h>
10#include <stdarg.h>
11#include <errno.h>
12#include <signal.h>
13#include <strings.h>
14#include <as-layout.h>
15#include <kern_util.h>
16#include <os.h>
17#include <sysdep/mcontext.h>
18#include <um_malloc.h>
19#include <sys/ucontext.h>
20
21void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
22 [SIGTRAP] = relay_signal,
23 [SIGFPE] = relay_signal,
24 [SIGILL] = relay_signal,
25 [SIGWINCH] = winch,
26 [SIGBUS] = bus_handler,
27 [SIGSEGV] = segv_handler,
28 [SIGIO] = sigio_handler,
29 [SIGALRM] = timer_handler
30};
31
32static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
33{
34 struct uml_pt_regs *r;
35 int save_errno = errno;
36
37 r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
38 if (!r)
39 panic("out of memory");
40
41 r->is_user = 0;
42 if (sig == SIGSEGV) {
43 /* For segfaults, we want the data from the sigcontext. */
44 get_regs_from_mc(r, mc);
45 GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
46 }
47
48 /* enable signals if sig isn't IRQ signal */
49 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
50 unblock_signals();
51
52 (*sig_info[sig])(sig, si, r);
53
54 errno = save_errno;
55
56 free(r);
57}
58
59/*
60 * These are the asynchronous signals. SIGPROF is excluded because we want to
61 * be able to profile all of UML, not just the non-critical sections. If
62 * profiling is not thread-safe, then that is not my problem. We can disable
63 * profiling when SMP is enabled in that case.
64 */
65#define SIGIO_BIT 0
66#define SIGIO_MASK (1 << SIGIO_BIT)
67
68#define SIGALRM_BIT 1
69#define SIGALRM_MASK (1 << SIGALRM_BIT)
70
71static int signals_enabled;
72static unsigned int signals_pending;
73static unsigned int signals_active = 0;
74
75void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
76{
77 int enabled;
78
79 enabled = signals_enabled;
80 if (!enabled && (sig == SIGIO)) {
81 signals_pending |= SIGIO_MASK;
82 return;
83 }
84
85 block_signals();
86
87 sig_handler_common(sig, si, mc);
88
89 set_signals(enabled);
90}
91
92static void timer_real_alarm_handler(mcontext_t *mc)
93{
94 struct uml_pt_regs *regs;
95
96 regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
97 if (!regs)
98 panic("out of memory");
99
100 if (mc != NULL)
101 get_regs_from_mc(regs, mc);
102 timer_handler(SIGALRM, NULL, regs);
103
104 free(regs);
105}
106
107void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
108{
109 int enabled;
110
111 enabled = signals_enabled;
112 if (!signals_enabled) {
113 signals_pending |= SIGALRM_MASK;
114 return;
115 }
116
117 block_signals();
118
119 signals_active |= SIGALRM_MASK;
120
121 timer_real_alarm_handler(mc);
122
123 signals_active &= ~SIGALRM_MASK;
124
125 set_signals(enabled);
126}
127
128void deliver_alarm(void) {
129 timer_alarm_handler(SIGALRM, NULL, NULL);
130}
131
132void timer_set_signal_handler(void)
133{
134 set_handler(SIGALRM);
135}
136
137void set_sigstack(void *sig_stack, int size)
138{
139 stack_t stack = {
140 .ss_flags = 0,
141 .ss_sp = sig_stack,
142 .ss_size = size - sizeof(void *)
143 };
144
145 if (sigaltstack(&stack, NULL) != 0)
146 panic("enabling signal stack failed, errno = %d\n", errno);
147}
148
149static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
150 [SIGSEGV] = sig_handler,
151 [SIGBUS] = sig_handler,
152 [SIGILL] = sig_handler,
153 [SIGFPE] = sig_handler,
154 [SIGTRAP] = sig_handler,
155
156 [SIGIO] = sig_handler,
157 [SIGWINCH] = sig_handler,
158 [SIGALRM] = timer_alarm_handler
159};
160
161static void hard_handler(int sig, siginfo_t *si, void *p)
162{
163 ucontext_t *uc = p;
164 mcontext_t *mc = &uc->uc_mcontext;
165 unsigned long pending = 1UL << sig;
166
167 do {
168 int nested, bail;
169
170 /*
171 * pending comes back with one bit set for each
172 * interrupt that arrived while setting up the stack,
173 * plus a bit for this interrupt, plus the zero bit is
174 * set if this is a nested interrupt.
175 * If bail is true, then we interrupted another
176 * handler setting up the stack. In this case, we
177 * have to return, and the upper handler will deal
178 * with this interrupt.
179 */
180 bail = to_irq_stack(&pending);
181 if (bail)
182 return;
183
184 nested = pending & 1;
185 pending &= ~1;
186
187 while ((sig = ffs(pending)) != 0){
188 sig--;
189 pending &= ~(1 << sig);
190 (*handlers[sig])(sig, (struct siginfo *)si, mc);
191 }
192
193 /*
194 * Again, pending comes back with a mask of signals
195 * that arrived while tearing down the stack. If this
196 * is non-zero, we just go back, set up the stack
197 * again, and handle the new interrupts.
198 */
199 if (!nested)
200 pending = from_irq_stack(nested);
201 } while (pending);
202}
203
204void set_handler(int sig)
205{
206 struct sigaction action;
207 int flags = SA_SIGINFO | SA_ONSTACK;
208 sigset_t sig_mask;
209
210 action.sa_sigaction = hard_handler;
211
212 /* block irq ones */
213 sigemptyset(&action.sa_mask);
214 sigaddset(&action.sa_mask, SIGIO);
215 sigaddset(&action.sa_mask, SIGWINCH);
216 sigaddset(&action.sa_mask, SIGALRM);
217
218 if (sig == SIGSEGV)
219 flags |= SA_NODEFER;
220
221 if (sigismember(&action.sa_mask, sig))
222 flags |= SA_RESTART; /* if it's an irq signal */
223
224 action.sa_flags = flags;
225 action.sa_restorer = NULL;
226 if (sigaction(sig, &action, NULL) < 0)
227 panic("sigaction failed - errno = %d\n", errno);
228
229 sigemptyset(&sig_mask);
230 sigaddset(&sig_mask, sig);
231 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
232 panic("sigprocmask failed - errno = %d\n", errno);
233}
234
235int change_sig(int signal, int on)
236{
237 sigset_t sigset;
238
239 sigemptyset(&sigset);
240 sigaddset(&sigset, signal);
241 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
242 return -errno;
243
244 return 0;
245}
246
247void block_signals(void)
248{
249 signals_enabled = 0;
250 /*
251 * This must return with signals disabled, so this barrier
252 * ensures that writes are flushed out before the return.
253 * This might matter if gcc figures out how to inline this and
254 * decides to shuffle this code into the caller.
255 */
256 barrier();
257}
258
259void unblock_signals(void)
260{
261 int save_pending;
262
263 if (signals_enabled == 1)
264 return;
265
266 /*
267 * We loop because the IRQ handler returns with interrupts off. So,
268 * interrupts may have arrived and we need to re-enable them and
269 * recheck signals_pending.
270 */
271 while (1) {
272 /*
273 * Save and reset save_pending after enabling signals. This
274 * way, signals_pending won't be changed while we're reading it.
275 */
276 signals_enabled = 1;
277
278 /*
279 * Setting signals_enabled and reading signals_pending must
280 * happen in this order.
281 */
282 barrier();
283
284 save_pending = signals_pending;
285 if (save_pending == 0)
286 return;
287
288 signals_pending = 0;
289
290 /*
291 * We have pending interrupts, so disable signals, as the
292 * handlers expect them off when they are called. They will
293 * be enabled again above.
294 */
295
296 signals_enabled = 0;
297
298 /*
299 * Deal with SIGIO first because the alarm handler might
300 * schedule, leaving the pending SIGIO stranded until we come
301 * back here.
302 *
303 * SIGIO's handler doesn't use siginfo or mcontext,
304 * so they can be NULL.
305 */
306 if (save_pending & SIGIO_MASK)
307 sig_handler_common(SIGIO, NULL, NULL);
308
309 /* Do not reenter the handler */
310
311 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
312 timer_real_alarm_handler(NULL);
313
314 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
315
316 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
317 return;
318
319 }
320}
321
322int get_signals(void)
323{
324 return signals_enabled;
325}
326
327int set_signals(int enable)
328{
329 int ret;
330 if (signals_enabled == enable)
331 return enable;
332
333 ret = signals_enabled;
334 if (enable)
335 unblock_signals();
336 else block_signals();
337
338 return ret;
339}
340
341int os_is_signal_stack(void)
342{
343 stack_t ss;
344 sigaltstack(NULL, &ss);
345
346 return ss.ss_flags & SS_ONSTACK;
347}
1/*
2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
5 */
6
7#include <stdlib.h>
8#include <stdarg.h>
9#include <errno.h>
10#include <signal.h>
11#include <strings.h>
12#include "as-layout.h"
13#include "kern_util.h"
14#include "os.h"
15#include "process.h"
16#include "sysdep/barrier.h"
17#include "sysdep/sigcontext.h"
18#include "user.h"
19
20/* Copied from linux/compiler-gcc.h since we can't include it directly */
21#define barrier() __asm__ __volatile__("": : :"memory")
22
23void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
24 [SIGTRAP] = relay_signal,
25 [SIGFPE] = relay_signal,
26 [SIGILL] = relay_signal,
27 [SIGWINCH] = winch,
28 [SIGBUS] = bus_handler,
29 [SIGSEGV] = segv_handler,
30 [SIGIO] = sigio_handler,
31 [SIGVTALRM] = timer_handler };
32
33static void sig_handler_common(int sig, struct sigcontext *sc)
34{
35 struct uml_pt_regs r;
36 int save_errno = errno;
37
38 r.is_user = 0;
39 if (sig == SIGSEGV) {
40 /* For segfaults, we want the data from the sigcontext. */
41 copy_sc(&r, sc);
42 GET_FAULTINFO_FROM_SC(r.faultinfo, sc);
43 }
44
45 /* enable signals if sig isn't IRQ signal */
46 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
47 unblock_signals();
48
49 (*sig_info[sig])(sig, &r);
50
51 errno = save_errno;
52}
53
54/*
55 * These are the asynchronous signals. SIGPROF is excluded because we want to
56 * be able to profile all of UML, not just the non-critical sections. If
57 * profiling is not thread-safe, then that is not my problem. We can disable
58 * profiling when SMP is enabled in that case.
59 */
60#define SIGIO_BIT 0
61#define SIGIO_MASK (1 << SIGIO_BIT)
62
63#define SIGVTALRM_BIT 1
64#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
65
66static int signals_enabled;
67static unsigned int signals_pending;
68
69void sig_handler(int sig, struct sigcontext *sc)
70{
71 int enabled;
72
73 enabled = signals_enabled;
74 if (!enabled && (sig == SIGIO)) {
75 signals_pending |= SIGIO_MASK;
76 return;
77 }
78
79 block_signals();
80
81 sig_handler_common(sig, sc);
82
83 set_signals(enabled);
84}
85
86static void real_alarm_handler(struct sigcontext *sc)
87{
88 struct uml_pt_regs regs;
89
90 if (sc != NULL)
91 copy_sc(®s, sc);
92 regs.is_user = 0;
93 unblock_signals();
94 timer_handler(SIGVTALRM, ®s);
95}
96
97void alarm_handler(int sig, struct sigcontext *sc)
98{
99 int enabled;
100
101 enabled = signals_enabled;
102 if (!signals_enabled) {
103 signals_pending |= SIGVTALRM_MASK;
104 return;
105 }
106
107 block_signals();
108
109 real_alarm_handler(sc);
110 set_signals(enabled);
111}
112
113void timer_init(void)
114{
115 set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
116 SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
117}
118
119void set_sigstack(void *sig_stack, int size)
120{
121 stack_t stack = ((stack_t) { .ss_flags = 0,
122 .ss_sp = (__ptr_t) sig_stack,
123 .ss_size = size - sizeof(void *) });
124
125 if (sigaltstack(&stack, NULL) != 0)
126 panic("enabling signal stack failed, errno = %d\n", errno);
127}
128
129static void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
130
131void handle_signal(int sig, struct sigcontext *sc)
132{
133 unsigned long pending = 1UL << sig;
134
135 do {
136 int nested, bail;
137
138 /*
139 * pending comes back with one bit set for each
140 * interrupt that arrived while setting up the stack,
141 * plus a bit for this interrupt, plus the zero bit is
142 * set if this is a nested interrupt.
143 * If bail is true, then we interrupted another
144 * handler setting up the stack. In this case, we
145 * have to return, and the upper handler will deal
146 * with this interrupt.
147 */
148 bail = to_irq_stack(&pending);
149 if (bail)
150 return;
151
152 nested = pending & 1;
153 pending &= ~1;
154
155 while ((sig = ffs(pending)) != 0){
156 sig--;
157 pending &= ~(1 << sig);
158 (*handlers[sig])(sig, sc);
159 }
160
161 /*
162 * Again, pending comes back with a mask of signals
163 * that arrived while tearing down the stack. If this
164 * is non-zero, we just go back, set up the stack
165 * again, and handle the new interrupts.
166 */
167 if (!nested)
168 pending = from_irq_stack(nested);
169 } while (pending);
170}
171
172extern void hard_handler(int sig);
173
174void set_handler(int sig, void (*handler)(int), int flags, ...)
175{
176 struct sigaction action;
177 va_list ap;
178 sigset_t sig_mask;
179 int mask;
180
181 handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
182 action.sa_handler = hard_handler;
183
184 sigemptyset(&action.sa_mask);
185
186 va_start(ap, flags);
187 while ((mask = va_arg(ap, int)) != -1)
188 sigaddset(&action.sa_mask, mask);
189 va_end(ap);
190
191 if (sig == SIGSEGV)
192 flags |= SA_NODEFER;
193
194 action.sa_flags = flags;
195 action.sa_restorer = NULL;
196 if (sigaction(sig, &action, NULL) < 0)
197 panic("sigaction failed - errno = %d\n", errno);
198
199 sigemptyset(&sig_mask);
200 sigaddset(&sig_mask, sig);
201 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
202 panic("sigprocmask failed - errno = %d\n", errno);
203}
204
205int change_sig(int signal, int on)
206{
207 sigset_t sigset;
208
209 sigemptyset(&sigset);
210 sigaddset(&sigset, signal);
211 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
212 return -errno;
213
214 return 0;
215}
216
217void block_signals(void)
218{
219 signals_enabled = 0;
220 /*
221 * This must return with signals disabled, so this barrier
222 * ensures that writes are flushed out before the return.
223 * This might matter if gcc figures out how to inline this and
224 * decides to shuffle this code into the caller.
225 */
226 barrier();
227}
228
229void unblock_signals(void)
230{
231 int save_pending;
232
233 if (signals_enabled == 1)
234 return;
235
236 /*
237 * We loop because the IRQ handler returns with interrupts off. So,
238 * interrupts may have arrived and we need to re-enable them and
239 * recheck signals_pending.
240 */
241 while (1) {
242 /*
243 * Save and reset save_pending after enabling signals. This
244 * way, signals_pending won't be changed while we're reading it.
245 */
246 signals_enabled = 1;
247
248 /*
249 * Setting signals_enabled and reading signals_pending must
250 * happen in this order.
251 */
252 barrier();
253
254 save_pending = signals_pending;
255 if (save_pending == 0)
256 return;
257
258 signals_pending = 0;
259
260 /*
261 * We have pending interrupts, so disable signals, as the
262 * handlers expect them off when they are called. They will
263 * be enabled again above.
264 */
265
266 signals_enabled = 0;
267
268 /*
269 * Deal with SIGIO first because the alarm handler might
270 * schedule, leaving the pending SIGIO stranded until we come
271 * back here.
272 */
273 if (save_pending & SIGIO_MASK)
274 sig_handler_common(SIGIO, NULL);
275
276 if (save_pending & SIGVTALRM_MASK)
277 real_alarm_handler(NULL);
278 }
279}
280
281int get_signals(void)
282{
283 return signals_enabled;
284}
285
286int set_signals(int enable)
287{
288 int ret;
289 if (signals_enabled == enable)
290 return enable;
291
292 ret = signals_enabled;
293 if (enable)
294 unblock_signals();
295 else block_signals();
296
297 return ret;
298}