Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2004 PathScale, Inc
  5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Licensed under the GPL
  7 */
  8
  9#include <stdlib.h>
 10#include <stdarg.h>
 11#include <errno.h>
 12#include <signal.h>
 13#include <strings.h>
 14#include <as-layout.h>
 15#include <kern_util.h>
 16#include <os.h>
 17#include <sysdep/mcontext.h>
 18#include <um_malloc.h>
 19#include <sys/ucontext.h>
 20
 21void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
 22	[SIGTRAP]	= relay_signal,
 23	[SIGFPE]	= relay_signal,
 24	[SIGILL]	= relay_signal,
 25	[SIGWINCH]	= winch,
 26	[SIGBUS]	= bus_handler,
 27	[SIGSEGV]	= segv_handler,
 28	[SIGIO]		= sigio_handler,
 29	[SIGALRM]	= timer_handler
 30};
 31
 32static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
 33{
 34	struct uml_pt_regs *r;
 35	int save_errno = errno;
 36
 37	r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
 38	if (!r)
 39		panic("out of memory");
 40
 41	r->is_user = 0;
 42	if (sig == SIGSEGV) {
 43		/* For segfaults, we want the data from the sigcontext. */
 44		get_regs_from_mc(r, mc);
 45		GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
 46	}
 47
 48	/* enable signals if sig isn't IRQ signal */
 49	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
 50		unblock_signals();
 51
 52	(*sig_info[sig])(sig, si, r);
 53
 54	errno = save_errno;
 55
 56	free(r);
 57}
 58
 59/*
 60 * These are the asynchronous signals.  SIGPROF is excluded because we want to
 61 * be able to profile all of UML, not just the non-critical sections.  If
 62 * profiling is not thread-safe, then that is not my problem.  We can disable
 63 * profiling when SMP is enabled in that case.
 64 */
 65#define SIGIO_BIT 0
 66#define SIGIO_MASK (1 << SIGIO_BIT)
 67
 68#define SIGALRM_BIT 1
 69#define SIGALRM_MASK (1 << SIGALRM_BIT)
 70
 71static int signals_enabled;
 72static unsigned int signals_pending;
 73static unsigned int signals_active = 0;
 74
 75void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
 76{
 77	int enabled;
 78
 79	enabled = signals_enabled;
 80	if (!enabled && (sig == SIGIO)) {
 81		signals_pending |= SIGIO_MASK;
 82		return;
 83	}
 84
 85	block_signals();
 86
 87	sig_handler_common(sig, si, mc);
 88
 89	set_signals(enabled);
 90}
 91
 92static void timer_real_alarm_handler(mcontext_t *mc)
 93{
 94	struct uml_pt_regs *regs;
 95
 96	regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
 97	if (!regs)
 98		panic("out of memory");
 99
100	if (mc != NULL)
101		get_regs_from_mc(regs, mc);
102	timer_handler(SIGALRM, NULL, regs);
103
104	free(regs);
105}
106
107void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
108{
109	int enabled;
110
111	enabled = signals_enabled;
112	if (!signals_enabled) {
113		signals_pending |= SIGALRM_MASK;
114		return;
115	}
116
117	block_signals();
118
119	signals_active |= SIGALRM_MASK;
120
121	timer_real_alarm_handler(mc);
122
123	signals_active &= ~SIGALRM_MASK;
124
125	set_signals(enabled);
126}
127
128void deliver_alarm(void) {
129    timer_alarm_handler(SIGALRM, NULL, NULL);
130}
131
132void timer_set_signal_handler(void)
133{
134	set_handler(SIGALRM);
135}
136
137void set_sigstack(void *sig_stack, int size)
138{
139	stack_t stack = {
140		.ss_flags = 0,
141		.ss_sp = sig_stack,
142		.ss_size = size - sizeof(void *)
143	};
144
145	if (sigaltstack(&stack, NULL) != 0)
146		panic("enabling signal stack failed, errno = %d\n", errno);
147}
148
149static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
150	[SIGSEGV] = sig_handler,
151	[SIGBUS] = sig_handler,
152	[SIGILL] = sig_handler,
153	[SIGFPE] = sig_handler,
154	[SIGTRAP] = sig_handler,
155
156	[SIGIO] = sig_handler,
157	[SIGWINCH] = sig_handler,
158	[SIGALRM] = timer_alarm_handler
159};
160
161static void hard_handler(int sig, siginfo_t *si, void *p)
162{
163	ucontext_t *uc = p;
164	mcontext_t *mc = &uc->uc_mcontext;
165	unsigned long pending = 1UL << sig;
166
167	do {
168		int nested, bail;
169
170		/*
171		 * pending comes back with one bit set for each
172		 * interrupt that arrived while setting up the stack,
173		 * plus a bit for this interrupt, plus the zero bit is
174		 * set if this is a nested interrupt.
175		 * If bail is true, then we interrupted another
176		 * handler setting up the stack.  In this case, we
177		 * have to return, and the upper handler will deal
178		 * with this interrupt.
179		 */
180		bail = to_irq_stack(&pending);
181		if (bail)
182			return;
183
184		nested = pending & 1;
185		pending &= ~1;
186
187		while ((sig = ffs(pending)) != 0){
188			sig--;
189			pending &= ~(1 << sig);
190			(*handlers[sig])(sig, (struct siginfo *)si, mc);
191		}
192
193		/*
194		 * Again, pending comes back with a mask of signals
195		 * that arrived while tearing down the stack.  If this
196		 * is non-zero, we just go back, set up the stack
197		 * again, and handle the new interrupts.
198		 */
199		if (!nested)
200			pending = from_irq_stack(nested);
201	} while (pending);
202}
203
204void set_handler(int sig)
205{
206	struct sigaction action;
207	int flags = SA_SIGINFO | SA_ONSTACK;
208	sigset_t sig_mask;
209
210	action.sa_sigaction = hard_handler;
211
212	/* block irq ones */
213	sigemptyset(&action.sa_mask);
214	sigaddset(&action.sa_mask, SIGIO);
215	sigaddset(&action.sa_mask, SIGWINCH);
216	sigaddset(&action.sa_mask, SIGALRM);
217
218	if (sig == SIGSEGV)
219		flags |= SA_NODEFER;
220
221	if (sigismember(&action.sa_mask, sig))
222		flags |= SA_RESTART; /* if it's an irq signal */
223
224	action.sa_flags = flags;
225	action.sa_restorer = NULL;
226	if (sigaction(sig, &action, NULL) < 0)
227		panic("sigaction failed - errno = %d\n", errno);
228
229	sigemptyset(&sig_mask);
230	sigaddset(&sig_mask, sig);
231	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
232		panic("sigprocmask failed - errno = %d\n", errno);
233}
234
235int change_sig(int signal, int on)
236{
237	sigset_t sigset;
238
239	sigemptyset(&sigset);
240	sigaddset(&sigset, signal);
241	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
242		return -errno;
243
244	return 0;
245}
246
247void block_signals(void)
248{
249	signals_enabled = 0;
250	/*
251	 * This must return with signals disabled, so this barrier
252	 * ensures that writes are flushed out before the return.
253	 * This might matter if gcc figures out how to inline this and
254	 * decides to shuffle this code into the caller.
255	 */
256	barrier();
257}
258
259void unblock_signals(void)
260{
261	int save_pending;
262
263	if (signals_enabled == 1)
264		return;
265
266	/*
267	 * We loop because the IRQ handler returns with interrupts off.  So,
268	 * interrupts may have arrived and we need to re-enable them and
269	 * recheck signals_pending.
270	 */
271	while (1) {
272		/*
273		 * Save and reset save_pending after enabling signals.  This
274		 * way, signals_pending won't be changed while we're reading it.
275		 */
276		signals_enabled = 1;
277
278		/*
279		 * Setting signals_enabled and reading signals_pending must
280		 * happen in this order.
281		 */
282		barrier();
283
284		save_pending = signals_pending;
285		if (save_pending == 0)
286			return;
287
288		signals_pending = 0;
289
290		/*
291		 * We have pending interrupts, so disable signals, as the
292		 * handlers expect them off when they are called.  They will
293		 * be enabled again above.
294		 */
295
296		signals_enabled = 0;
297
298		/*
299		 * Deal with SIGIO first because the alarm handler might
300		 * schedule, leaving the pending SIGIO stranded until we come
301		 * back here.
302		 *
303		 * SIGIO's handler doesn't use siginfo or mcontext,
304		 * so they can be NULL.
305		 */
306		if (save_pending & SIGIO_MASK)
307			sig_handler_common(SIGIO, NULL, NULL);
308
309		/* Do not reenter the handler */
310
311		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
312			timer_real_alarm_handler(NULL);
313
314		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
315
316		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
317			return;
318
319	}
320}
321
322int get_signals(void)
323{
324	return signals_enabled;
325}
326
327int set_signals(int enable)
328{
329	int ret;
330	if (signals_enabled == enable)
331		return enable;
332
333	ret = signals_enabled;
334	if (enable)
335		unblock_signals();
336	else block_signals();
337
338	return ret;
339}
340
341int os_is_signal_stack(void)
342{
343	stack_t ss;
344	sigaltstack(NULL, &ss);
345
346	return ss.ss_flags & SS_ONSTACK;
347}
v4.10.11
  1/*
  2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2004 PathScale, Inc
  5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Licensed under the GPL
  7 */
  8
  9#include <stdlib.h>
 10#include <stdarg.h>
 11#include <errno.h>
 12#include <signal.h>
 13#include <strings.h>
 14#include <as-layout.h>
 15#include <kern_util.h>
 16#include <os.h>
 17#include <sysdep/mcontext.h>
 18#include <um_malloc.h>
 
 19
 20void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
 21	[SIGTRAP]	= relay_signal,
 22	[SIGFPE]	= relay_signal,
 23	[SIGILL]	= relay_signal,
 24	[SIGWINCH]	= winch,
 25	[SIGBUS]	= bus_handler,
 26	[SIGSEGV]	= segv_handler,
 27	[SIGIO]		= sigio_handler,
 28	[SIGALRM]	= timer_handler
 29};
 30
 31static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
 32{
 33	struct uml_pt_regs *r;
 34	int save_errno = errno;
 35
 36	r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
 37	if (!r)
 38		panic("out of memory");
 39
 40	r->is_user = 0;
 41	if (sig == SIGSEGV) {
 42		/* For segfaults, we want the data from the sigcontext. */
 43		get_regs_from_mc(r, mc);
 44		GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
 45	}
 46
 47	/* enable signals if sig isn't IRQ signal */
 48	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
 49		unblock_signals();
 50
 51	(*sig_info[sig])(sig, si, r);
 52
 53	errno = save_errno;
 54
 55	free(r);
 56}
 57
 58/*
 59 * These are the asynchronous signals.  SIGPROF is excluded because we want to
 60 * be able to profile all of UML, not just the non-critical sections.  If
 61 * profiling is not thread-safe, then that is not my problem.  We can disable
 62 * profiling when SMP is enabled in that case.
 63 */
 64#define SIGIO_BIT 0
 65#define SIGIO_MASK (1 << SIGIO_BIT)
 66
 67#define SIGALRM_BIT 1
 68#define SIGALRM_MASK (1 << SIGALRM_BIT)
 69
 70static int signals_enabled;
 71static unsigned int signals_pending;
 72static unsigned int signals_active = 0;
 73
 74void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
 75{
 76	int enabled;
 77
 78	enabled = signals_enabled;
 79	if (!enabled && (sig == SIGIO)) {
 80		signals_pending |= SIGIO_MASK;
 81		return;
 82	}
 83
 84	block_signals();
 85
 86	sig_handler_common(sig, si, mc);
 87
 88	set_signals(enabled);
 89}
 90
 91static void timer_real_alarm_handler(mcontext_t *mc)
 92{
 93	struct uml_pt_regs *regs;
 94
 95	regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
 96	if (!regs)
 97		panic("out of memory");
 98
 99	if (mc != NULL)
100		get_regs_from_mc(regs, mc);
101	timer_handler(SIGALRM, NULL, regs);
102
103	free(regs);
104}
105
106void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
107{
108	int enabled;
109
110	enabled = signals_enabled;
111	if (!signals_enabled) {
112		signals_pending |= SIGALRM_MASK;
113		return;
114	}
115
116	block_signals();
117
118	signals_active |= SIGALRM_MASK;
119
120	timer_real_alarm_handler(mc);
121
122	signals_active &= ~SIGALRM_MASK;
123
124	set_signals(enabled);
125}
126
127void deliver_alarm(void) {
128    timer_alarm_handler(SIGALRM, NULL, NULL);
129}
130
131void timer_set_signal_handler(void)
132{
133	set_handler(SIGALRM);
134}
135
136void set_sigstack(void *sig_stack, int size)
137{
138	stack_t stack = {
139		.ss_flags = 0,
140		.ss_sp = sig_stack,
141		.ss_size = size - sizeof(void *)
142	};
143
144	if (sigaltstack(&stack, NULL) != 0)
145		panic("enabling signal stack failed, errno = %d\n", errno);
146}
147
148static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
149	[SIGSEGV] = sig_handler,
150	[SIGBUS] = sig_handler,
151	[SIGILL] = sig_handler,
152	[SIGFPE] = sig_handler,
153	[SIGTRAP] = sig_handler,
154
155	[SIGIO] = sig_handler,
156	[SIGWINCH] = sig_handler,
157	[SIGALRM] = timer_alarm_handler
158};
159
160static void hard_handler(int sig, siginfo_t *si, void *p)
161{
162	struct ucontext *uc = p;
163	mcontext_t *mc = &uc->uc_mcontext;
164	unsigned long pending = 1UL << sig;
165
166	do {
167		int nested, bail;
168
169		/*
170		 * pending comes back with one bit set for each
171		 * interrupt that arrived while setting up the stack,
172		 * plus a bit for this interrupt, plus the zero bit is
173		 * set if this is a nested interrupt.
174		 * If bail is true, then we interrupted another
175		 * handler setting up the stack.  In this case, we
176		 * have to return, and the upper handler will deal
177		 * with this interrupt.
178		 */
179		bail = to_irq_stack(&pending);
180		if (bail)
181			return;
182
183		nested = pending & 1;
184		pending &= ~1;
185
186		while ((sig = ffs(pending)) != 0){
187			sig--;
188			pending &= ~(1 << sig);
189			(*handlers[sig])(sig, (struct siginfo *)si, mc);
190		}
191
192		/*
193		 * Again, pending comes back with a mask of signals
194		 * that arrived while tearing down the stack.  If this
195		 * is non-zero, we just go back, set up the stack
196		 * again, and handle the new interrupts.
197		 */
198		if (!nested)
199			pending = from_irq_stack(nested);
200	} while (pending);
201}
202
203void set_handler(int sig)
204{
205	struct sigaction action;
206	int flags = SA_SIGINFO | SA_ONSTACK;
207	sigset_t sig_mask;
208
209	action.sa_sigaction = hard_handler;
210
211	/* block irq ones */
212	sigemptyset(&action.sa_mask);
213	sigaddset(&action.sa_mask, SIGIO);
214	sigaddset(&action.sa_mask, SIGWINCH);
215	sigaddset(&action.sa_mask, SIGALRM);
216
217	if (sig == SIGSEGV)
218		flags |= SA_NODEFER;
219
220	if (sigismember(&action.sa_mask, sig))
221		flags |= SA_RESTART; /* if it's an irq signal */
222
223	action.sa_flags = flags;
224	action.sa_restorer = NULL;
225	if (sigaction(sig, &action, NULL) < 0)
226		panic("sigaction failed - errno = %d\n", errno);
227
228	sigemptyset(&sig_mask);
229	sigaddset(&sig_mask, sig);
230	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
231		panic("sigprocmask failed - errno = %d\n", errno);
232}
233
234int change_sig(int signal, int on)
235{
236	sigset_t sigset;
237
238	sigemptyset(&sigset);
239	sigaddset(&sigset, signal);
240	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
241		return -errno;
242
243	return 0;
244}
245
246void block_signals(void)
247{
248	signals_enabled = 0;
249	/*
250	 * This must return with signals disabled, so this barrier
251	 * ensures that writes are flushed out before the return.
252	 * This might matter if gcc figures out how to inline this and
253	 * decides to shuffle this code into the caller.
254	 */
255	barrier();
256}
257
258void unblock_signals(void)
259{
260	int save_pending;
261
262	if (signals_enabled == 1)
263		return;
264
265	/*
266	 * We loop because the IRQ handler returns with interrupts off.  So,
267	 * interrupts may have arrived and we need to re-enable them and
268	 * recheck signals_pending.
269	 */
270	while (1) {
271		/*
272		 * Save and reset save_pending after enabling signals.  This
273		 * way, signals_pending won't be changed while we're reading it.
274		 */
275		signals_enabled = 1;
276
277		/*
278		 * Setting signals_enabled and reading signals_pending must
279		 * happen in this order.
280		 */
281		barrier();
282
283		save_pending = signals_pending;
284		if (save_pending == 0)
285			return;
286
287		signals_pending = 0;
288
289		/*
290		 * We have pending interrupts, so disable signals, as the
291		 * handlers expect them off when they are called.  They will
292		 * be enabled again above.
293		 */
294
295		signals_enabled = 0;
296
297		/*
298		 * Deal with SIGIO first because the alarm handler might
299		 * schedule, leaving the pending SIGIO stranded until we come
300		 * back here.
301		 *
302		 * SIGIO's handler doesn't use siginfo or mcontext,
303		 * so they can be NULL.
304		 */
305		if (save_pending & SIGIO_MASK)
306			sig_handler_common(SIGIO, NULL, NULL);
307
308		/* Do not reenter the handler */
309
310		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
311			timer_real_alarm_handler(NULL);
312
313		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
314
315		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
316			return;
317
318	}
319}
320
321int get_signals(void)
322{
323	return signals_enabled;
324}
325
326int set_signals(int enable)
327{
328	int ret;
329	if (signals_enabled == enable)
330		return enable;
331
332	ret = signals_enabled;
333	if (enable)
334		unblock_signals();
335	else block_signals();
336
337	return ret;
338}
339
340int os_is_signal_stack(void)
341{
342	stack_t ss;
343	sigaltstack(NULL, &ss);
344
345	return ss.ss_flags & SS_ONSTACK;
346}