Linux Audio

Check our new training course

Loading...
v4.10.11
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8#ifdef CONFIG_PARAVIRT
  9#include <asm/paravirt.h>
 10#endif
 11
 
 
 
 12
 13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 14
 15/*
 16 * There are no locks covering percpu hardirq/softirq time.
 17 * They are only modified in vtime_account, on corresponding CPU
 18 * with interrupts disabled. So, writes are safe.
 19 * They are read and saved off onto struct rq in update_rq_clock().
 20 * This may result in other CPU reading this CPU's irq time and can
 21 * race with irq/vtime_account on this CPU. We would either get old
 22 * or new value with a side effect of accounting a slice of irq time to wrong
 23 * task when irq is in progress while we read rq->clock. That is a worthy
 24 * compromise in place of having locks on each irq in account_system_time.
 25 */
 26DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 27
 28static int sched_clock_irqtime;
 29
 30void enable_sched_clock_irqtime(void)
 31{
 32	sched_clock_irqtime = 1;
 33}
 34
 35void disable_sched_clock_irqtime(void)
 36{
 37	sched_clock_irqtime = 0;
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 40/*
 41 * Called before incrementing preempt_count on {soft,}irq_enter
 42 * and before decrementing preempt_count on {soft,}irq_exit.
 43 */
 44void irqtime_account_irq(struct task_struct *curr)
 45{
 46	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 
 47	s64 delta;
 48	int cpu;
 49
 50	if (!sched_clock_irqtime)
 51		return;
 52
 53	cpu = smp_processor_id();
 54	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 55	irqtime->irq_start_time += delta;
 
 56
 57	u64_stats_update_begin(&irqtime->sync);
 58	/*
 59	 * We do not account for softirq time from ksoftirqd here.
 60	 * We want to continue accounting softirq time to ksoftirqd thread
 61	 * in that case, so as not to confuse scheduler with a special task
 62	 * that do not consume any time, but still wants to run.
 63	 */
 64	if (hardirq_count())
 65		irqtime->hardirq_time += delta;
 66	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 67		irqtime->softirq_time += delta;
 68
 69	u64_stats_update_end(&irqtime->sync);
 70}
 71EXPORT_SYMBOL_GPL(irqtime_account_irq);
 72
 73static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
 74{
 75	u64 *cpustat = kcpustat_this_cpu->cpustat;
 76	cputime_t irq_cputime;
 77
 78	irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
 79	irq_cputime = min(irq_cputime, maxtime);
 80	cpustat[idx] += irq_cputime;
 81
 82	return irq_cputime;
 83}
 84
 85static cputime_t irqtime_account_hi_update(cputime_t maxtime)
 86{
 87	return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
 88				      CPUTIME_IRQ, maxtime);
 89}
 90
 91static cputime_t irqtime_account_si_update(cputime_t maxtime)
 92{
 93	return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
 94				      CPUTIME_SOFTIRQ, maxtime);
 95}
 96
 97#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 98
 99#define sched_clock_irqtime	(0)
100
101static cputime_t irqtime_account_hi_update(cputime_t dummy)
102{
103	return 0;
104}
105
106static cputime_t irqtime_account_si_update(cputime_t dummy)
107{
108	return 0;
109}
110
111#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112
113static inline void task_group_account_field(struct task_struct *p, int index,
114					    u64 tmp)
115{
116	/*
117	 * Since all updates are sure to touch the root cgroup, we
118	 * get ourselves ahead and touch it first. If the root cgroup
119	 * is the only cgroup, then nothing else should be necessary.
120	 *
121	 */
122	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123
124	cpuacct_account_field(p, index, tmp);
125}
126
127/*
128 * Account user cpu time to a process.
129 * @p: the process that the cpu time gets accounted to
130 * @cputime: the cpu time spent in user space since the last update
131 */
132void account_user_time(struct task_struct *p, cputime_t cputime)
133{
134	int index;
135
136	/* Add user time to process. */
137	p->utime += cputime;
138	account_group_user_time(p, cputime);
139
140	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
141
142	/* Add user time to cpustat. */
143	task_group_account_field(p, index, (__force u64) cputime);
144
145	/* Account for user time used */
146	acct_account_cputime(p);
147}
148
149/*
150 * Account guest cpu time to a process.
151 * @p: the process that the cpu time gets accounted to
152 * @cputime: the cpu time spent in virtual machine since the last update
153 */
154static void account_guest_time(struct task_struct *p, cputime_t cputime)
155{
156	u64 *cpustat = kcpustat_this_cpu->cpustat;
157
158	/* Add guest time to process. */
159	p->utime += cputime;
160	account_group_user_time(p, cputime);
161	p->gtime += cputime;
162
163	/* Add guest time to cpustat. */
164	if (task_nice(p) > 0) {
165		cpustat[CPUTIME_NICE] += (__force u64) cputime;
166		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
167	} else {
168		cpustat[CPUTIME_USER] += (__force u64) cputime;
169		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
170	}
171}
172
173/*
174 * Account system cpu time to a process and desired cpustat field
175 * @p: the process that the cpu time gets accounted to
176 * @cputime: the cpu time spent in kernel space since the last update
177 * @index: pointer to cpustat field that has to be updated
178 */
179static inline
180void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
181{
182	/* Add system time to process. */
183	p->stime += cputime;
184	account_group_system_time(p, cputime);
185
186	/* Add system time to cpustat. */
187	task_group_account_field(p, index, (__force u64) cputime);
188
189	/* Account for system time used */
190	acct_account_cputime(p);
191}
192
193/*
194 * Account system cpu time to a process.
195 * @p: the process that the cpu time gets accounted to
196 * @hardirq_offset: the offset to subtract from hardirq_count()
197 * @cputime: the cpu time spent in kernel space since the last update
198 */
199void account_system_time(struct task_struct *p, int hardirq_offset,
200			 cputime_t cputime)
201{
202	int index;
203
204	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
205		account_guest_time(p, cputime);
206		return;
207	}
208
209	if (hardirq_count() - hardirq_offset)
210		index = CPUTIME_IRQ;
211	else if (in_serving_softirq())
212		index = CPUTIME_SOFTIRQ;
213	else
214		index = CPUTIME_SYSTEM;
215
216	__account_system_time(p, cputime, index);
217}
218
219/*
220 * Account for involuntary wait time.
221 * @cputime: the cpu time spent in involuntary wait
222 */
223void account_steal_time(cputime_t cputime)
224{
225	u64 *cpustat = kcpustat_this_cpu->cpustat;
226
227	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
228}
229
230/*
231 * Account for idle time.
232 * @cputime: the cpu time spent in idle wait
233 */
234void account_idle_time(cputime_t cputime)
235{
236	u64 *cpustat = kcpustat_this_cpu->cpustat;
237	struct rq *rq = this_rq();
238
239	if (atomic_read(&rq->nr_iowait) > 0)
240		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
241	else
242		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
243}
244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245/*
246 * When a guest is interrupted for a longer amount of time, missed clock
247 * ticks are not redelivered later. Due to that, this function may on
248 * occasion account more time than the calling functions think elapsed.
249 */
250static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
251{
252#ifdef CONFIG_PARAVIRT
253	if (static_key_false(&paravirt_steal_enabled)) {
254		cputime_t steal_cputime;
255		u64 steal;
256
257		steal = paravirt_steal_clock(smp_processor_id());
258		steal -= this_rq()->prev_steal_time;
 
 
 
259
260		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
261		account_steal_time(steal_cputime);
262		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
263
264		return steal_cputime;
265	}
266#endif
267	return 0;
268}
269
270/*
271 * Account how much elapsed time was spent in steal, irq, or softirq time.
272 */
273static inline cputime_t account_other_time(cputime_t max)
274{
275	cputime_t accounted;
276
277	/* Shall be converted to a lockdep-enabled lightweight check */
278	WARN_ON_ONCE(!irqs_disabled());
279
280	accounted = steal_account_process_time(max);
281
282	if (accounted < max)
283		accounted += irqtime_account_hi_update(max - accounted);
284
285	if (accounted < max)
286		accounted += irqtime_account_si_update(max - accounted);
287
288	return accounted;
289}
290
291#ifdef CONFIG_64BIT
292static inline u64 read_sum_exec_runtime(struct task_struct *t)
293{
294	return t->se.sum_exec_runtime;
295}
296#else
297static u64 read_sum_exec_runtime(struct task_struct *t)
298{
299	u64 ns;
300	struct rq_flags rf;
301	struct rq *rq;
302
303	rq = task_rq_lock(t, &rf);
304	ns = t->se.sum_exec_runtime;
305	task_rq_unlock(rq, t, &rf);
306
307	return ns;
308}
309#endif
310
311/*
312 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
313 * tasks (sum on group iteration) belonging to @tsk's group.
314 */
315void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
316{
317	struct signal_struct *sig = tsk->signal;
318	cputime_t utime, stime;
319	struct task_struct *t;
320	unsigned int seq, nextseq;
321	unsigned long flags;
322
323	/*
324	 * Update current task runtime to account pending time since last
325	 * scheduler action or thread_group_cputime() call. This thread group
326	 * might have other running tasks on different CPUs, but updating
327	 * their runtime can affect syscall performance, so we skip account
328	 * those pending times and rely only on values updated on tick or
329	 * other scheduler action.
330	 */
331	if (same_thread_group(current, tsk))
332		(void) task_sched_runtime(current);
333
334	rcu_read_lock();
335	/* Attempt a lockless read on the first round. */
336	nextseq = 0;
337	do {
338		seq = nextseq;
339		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
340		times->utime = sig->utime;
341		times->stime = sig->stime;
342		times->sum_exec_runtime = sig->sum_sched_runtime;
343
344		for_each_thread(tsk, t) {
345			task_cputime(t, &utime, &stime);
346			times->utime += utime;
347			times->stime += stime;
348			times->sum_exec_runtime += read_sum_exec_runtime(t);
349		}
350		/* If lockless access failed, take the lock. */
351		nextseq = 1;
352	} while (need_seqretry(&sig->stats_lock, seq));
353	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
354	rcu_read_unlock();
355}
356
357#ifdef CONFIG_IRQ_TIME_ACCOUNTING
358/*
359 * Account a tick to a process and cpustat
360 * @p: the process that the cpu time gets accounted to
361 * @user_tick: is the tick from userspace
362 * @rq: the pointer to rq
363 *
364 * Tick demultiplexing follows the order
365 * - pending hardirq update
366 * - pending softirq update
367 * - user_time
368 * - idle_time
369 * - system time
370 *   - check for guest_time
371 *   - else account as system_time
372 *
373 * Check for hardirq is done both for system and user time as there is
374 * no timer going off while we are on hardirq and hence we may never get an
375 * opportunity to update it solely in system time.
376 * p->stime and friends are only updated on system time and not on irq
377 * softirq as those do not count in task exec_runtime any more.
378 */
379static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
380					 struct rq *rq, int ticks)
381{
382	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
383	cputime_t other;
384
385	/*
386	 * When returning from idle, many ticks can get accounted at
387	 * once, including some ticks of steal, irq, and softirq time.
388	 * Subtract those ticks from the amount of time accounted to
389	 * idle, or potentially user or system time. Due to rounding,
390	 * other time can exceed ticks occasionally.
391	 */
392	other = account_other_time(ULONG_MAX);
393	if (other >= cputime)
394		return;
 
395	cputime -= other;
396
397	if (this_cpu_ksoftirqd() == p) {
398		/*
399		 * ksoftirqd time do not get accounted in cpu_softirq_time.
400		 * So, we have to handle it separately here.
401		 * Also, p->stime needs to be updated for ksoftirqd.
402		 */
403		__account_system_time(p, cputime, CPUTIME_SOFTIRQ);
404	} else if (user_tick) {
405		account_user_time(p, cputime);
406	} else if (p == rq->idle) {
407		account_idle_time(cputime);
408	} else if (p->flags & PF_VCPU) { /* System time or guest time */
409		account_guest_time(p, cputime);
410	} else {
411		__account_system_time(p, cputime, CPUTIME_SYSTEM);
412	}
413}
414
415static void irqtime_account_idle_ticks(int ticks)
416{
417	struct rq *rq = this_rq();
418
419	irqtime_account_process_tick(current, 0, rq, ticks);
420}
421#else /* CONFIG_IRQ_TIME_ACCOUNTING */
422static inline void irqtime_account_idle_ticks(int ticks) {}
423static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
424						struct rq *rq, int nr_ticks) {}
425#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
426
427/*
428 * Use precise platform statistics if available:
429 */
430#ifdef CONFIG_VIRT_CPU_ACCOUNTING
431
432#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
433void vtime_common_task_switch(struct task_struct *prev)
434{
435	if (is_idle_task(prev))
436		vtime_account_idle(prev);
437	else
438		vtime_account_system(prev);
439
440#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441	vtime_account_user(prev);
442#endif
443	arch_vtime_task_switch(prev);
444}
445#endif
446
447#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 
 
448
 
 
 
 
 
 
 
 
 
 
 
449
450#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
451/*
452 * Archs that account the whole time spent in the idle task
453 * (outside irq) as idle time can rely on this and just implement
454 * vtime_account_system() and vtime_account_idle(). Archs that
455 * have other meaning of the idle time (s390 only includes the
456 * time spent by the CPU when it's in low power mode) must override
457 * vtime_account().
458 */
459#ifndef __ARCH_HAS_VTIME_ACCOUNT
460void vtime_account_irq_enter(struct task_struct *tsk)
461{
462	if (!in_interrupt() && is_idle_task(tsk))
463		vtime_account_idle(tsk);
464	else
465		vtime_account_system(tsk);
466}
467EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
468#endif /* __ARCH_HAS_VTIME_ACCOUNT */
469
470void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
471{
472	*ut = p->utime;
473	*st = p->stime;
474}
475EXPORT_SYMBOL_GPL(task_cputime_adjusted);
476
477void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
478{
479	struct task_cputime cputime;
480
481	thread_group_cputime(p, &cputime);
482
483	*ut = cputime.utime;
484	*st = cputime.stime;
485}
486#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 
 
487/*
488 * Account a single tick of cpu time.
489 * @p: the process that the cpu time gets accounted to
490 * @user_tick: indicates if the tick is a user or a system tick
491 */
492void account_process_tick(struct task_struct *p, int user_tick)
493{
494	cputime_t cputime, steal;
495	struct rq *rq = this_rq();
496
497	if (vtime_accounting_cpu_enabled())
498		return;
499
500	if (sched_clock_irqtime) {
501		irqtime_account_process_tick(p, user_tick, rq, 1);
502		return;
503	}
504
505	cputime = cputime_one_jiffy;
506	steal = steal_account_process_time(ULONG_MAX);
507
508	if (steal >= cputime)
509		return;
510
511	cputime -= steal;
512
513	if (user_tick)
514		account_user_time(p, cputime);
515	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
516		account_system_time(p, HARDIRQ_OFFSET, cputime);
517	else
518		account_idle_time(cputime);
519}
520
521/*
522 * Account multiple ticks of idle time.
523 * @ticks: number of stolen ticks
524 */
525void account_idle_ticks(unsigned long ticks)
526{
527	cputime_t cputime, steal;
528
529	if (sched_clock_irqtime) {
530		irqtime_account_idle_ticks(ticks);
531		return;
532	}
533
534	cputime = jiffies_to_cputime(ticks);
535	steal = steal_account_process_time(ULONG_MAX);
536
537	if (steal >= cputime)
538		return;
539
540	cputime -= steal;
541	account_idle_time(cputime);
542}
543
544/*
545 * Perform (stime * rtime) / total, but avoid multiplication overflow by
546 * loosing precision when the numbers are big.
547 */
548static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
549{
550	u64 scaled;
551
552	for (;;) {
553		/* Make sure "rtime" is the bigger of stime/rtime */
554		if (stime > rtime)
555			swap(rtime, stime);
556
557		/* Make sure 'total' fits in 32 bits */
558		if (total >> 32)
559			goto drop_precision;
560
561		/* Does rtime (and thus stime) fit in 32 bits? */
562		if (!(rtime >> 32))
563			break;
564
565		/* Can we just balance rtime/stime rather than dropping bits? */
566		if (stime >> 31)
567			goto drop_precision;
568
569		/* We can grow stime and shrink rtime and try to make them both fit */
570		stime <<= 1;
571		rtime >>= 1;
572		continue;
573
574drop_precision:
575		/* We drop from rtime, it has more bits than stime */
576		rtime >>= 1;
577		total >>= 1;
578	}
579
580	/*
581	 * Make sure gcc understands that this is a 32x32->64 multiply,
582	 * followed by a 64/32->64 divide.
583	 */
584	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
585	return (__force cputime_t) scaled;
586}
587
588/*
589 * Adjust tick based cputime random precision against scheduler runtime
590 * accounting.
591 *
592 * Tick based cputime accounting depend on random scheduling timeslices of a
593 * task to be interrupted or not by the timer.  Depending on these
594 * circumstances, the number of these interrupts may be over or
595 * under-optimistic, matching the real user and system cputime with a variable
596 * precision.
597 *
598 * Fix this by scaling these tick based values against the total runtime
599 * accounted by the CFS scheduler.
600 *
601 * This code provides the following guarantees:
602 *
603 *   stime + utime == rtime
604 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
605 *
606 * Assuming that rtime_i+1 >= rtime_i.
607 */
608static void cputime_adjust(struct task_cputime *curr,
609			   struct prev_cputime *prev,
610			   cputime_t *ut, cputime_t *st)
611{
612	cputime_t rtime, stime, utime;
613	unsigned long flags;
614
615	/* Serialize concurrent callers such that we can honour our guarantees */
616	raw_spin_lock_irqsave(&prev->lock, flags);
617	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
618
619	/*
620	 * This is possible under two circumstances:
621	 *  - rtime isn't monotonic after all (a bug);
622	 *  - we got reordered by the lock.
623	 *
624	 * In both cases this acts as a filter such that the rest of the code
625	 * can assume it is monotonic regardless of anything else.
626	 */
627	if (prev->stime + prev->utime >= rtime)
628		goto out;
629
630	stime = curr->stime;
631	utime = curr->utime;
632
633	/*
634	 * If either stime or both stime and utime are 0, assume all runtime is
635	 * userspace. Once a task gets some ticks, the monotonicy code at
636	 * 'update' will ensure things converge to the observed ratio.
637	 */
638	if (stime == 0) {
639		utime = rtime;
640		goto update;
641	}
642
643	if (utime == 0) {
644		stime = rtime;
645		goto update;
646	}
647
648	stime = scale_stime((__force u64)stime, (__force u64)rtime,
649			    (__force u64)(stime + utime));
650
651update:
652	/*
653	 * Make sure stime doesn't go backwards; this preserves monotonicity
654	 * for utime because rtime is monotonic.
655	 *
656	 *  utime_i+1 = rtime_i+1 - stime_i
657	 *            = rtime_i+1 - (rtime_i - utime_i)
658	 *            = (rtime_i+1 - rtime_i) + utime_i
659	 *            >= utime_i
660	 */
661	if (stime < prev->stime)
662		stime = prev->stime;
663	utime = rtime - stime;
664
665	/*
666	 * Make sure utime doesn't go backwards; this still preserves
667	 * monotonicity for stime, analogous argument to above.
668	 */
669	if (utime < prev->utime) {
670		utime = prev->utime;
671		stime = rtime - utime;
672	}
673
674	prev->stime = stime;
675	prev->utime = utime;
676out:
677	*ut = prev->utime;
678	*st = prev->stime;
679	raw_spin_unlock_irqrestore(&prev->lock, flags);
680}
681
682void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
683{
684	struct task_cputime cputime = {
685		.sum_exec_runtime = p->se.sum_exec_runtime,
686	};
687
688	task_cputime(p, &cputime.utime, &cputime.stime);
 
689	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
690}
691EXPORT_SYMBOL_GPL(task_cputime_adjusted);
692
693void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
694{
695	struct task_cputime cputime;
696
697	thread_group_cputime(p, &cputime);
698	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
699}
700#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
701
702#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
703static cputime_t vtime_delta(struct task_struct *tsk)
704{
705	unsigned long now = READ_ONCE(jiffies);
706
707	if (time_before(now, (unsigned long)tsk->vtime_snap))
 
708		return 0;
709
710	return jiffies_to_cputime(now - tsk->vtime_snap);
711}
712
713static cputime_t get_vtime_delta(struct task_struct *tsk)
714{
715	unsigned long now = READ_ONCE(jiffies);
716	cputime_t delta, other;
717
718	/*
719	 * Unlike tick based timing, vtime based timing never has lost
720	 * ticks, and no need for steal time accounting to make up for
721	 * lost ticks. Vtime accounts a rounded version of actual
722	 * elapsed time. Limit account_other_time to prevent rounding
723	 * errors from causing elapsed vtime to go negative.
724	 */
725	delta = jiffies_to_cputime(now - tsk->vtime_snap);
726	other = account_other_time(delta);
727	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
728	tsk->vtime_snap = now;
729
730	return delta - other;
731}
732
733static void __vtime_account_system(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
734{
735	cputime_t delta_cpu = get_vtime_delta(tsk);
 
 
 
 
 
736
737	account_system_time(tsk, irq_count(), delta_cpu);
 
 
 
 
 
 
 
738}
739
740void vtime_account_system(struct task_struct *tsk)
741{
742	if (!vtime_delta(tsk))
 
 
743		return;
744
745	write_seqcount_begin(&tsk->vtime_seqcount);
746	__vtime_account_system(tsk);
747	write_seqcount_end(&tsk->vtime_seqcount);
748}
749
750void vtime_account_user(struct task_struct *tsk)
751{
752	cputime_t delta_cpu;
753
754	write_seqcount_begin(&tsk->vtime_seqcount);
755	tsk->vtime_snap_whence = VTIME_SYS;
756	if (vtime_delta(tsk)) {
757		delta_cpu = get_vtime_delta(tsk);
758		account_user_time(tsk, delta_cpu);
759	}
760	write_seqcount_end(&tsk->vtime_seqcount);
761}
762
763void vtime_user_enter(struct task_struct *tsk)
764{
765	write_seqcount_begin(&tsk->vtime_seqcount);
766	if (vtime_delta(tsk))
767		__vtime_account_system(tsk);
768	tsk->vtime_snap_whence = VTIME_USER;
769	write_seqcount_end(&tsk->vtime_seqcount);
 
 
 
 
 
770}
771
772void vtime_guest_enter(struct task_struct *tsk)
773{
 
774	/*
775	 * The flags must be updated under the lock with
776	 * the vtime_snap flush and update.
777	 * That enforces a right ordering and update sequence
778	 * synchronization against the reader (task_gtime())
779	 * that can thus safely catch up with a tickless delta.
780	 */
781	write_seqcount_begin(&tsk->vtime_seqcount);
782	if (vtime_delta(tsk))
783		__vtime_account_system(tsk);
784	current->flags |= PF_VCPU;
785	write_seqcount_end(&tsk->vtime_seqcount);
786}
787EXPORT_SYMBOL_GPL(vtime_guest_enter);
788
789void vtime_guest_exit(struct task_struct *tsk)
790{
791	write_seqcount_begin(&tsk->vtime_seqcount);
792	__vtime_account_system(tsk);
793	current->flags &= ~PF_VCPU;
794	write_seqcount_end(&tsk->vtime_seqcount);
 
 
 
795}
796EXPORT_SYMBOL_GPL(vtime_guest_exit);
797
798void vtime_account_idle(struct task_struct *tsk)
799{
800	cputime_t delta_cpu = get_vtime_delta(tsk);
801
802	account_idle_time(delta_cpu);
803}
804
805void arch_vtime_task_switch(struct task_struct *prev)
806{
807	write_seqcount_begin(&prev->vtime_seqcount);
808	prev->vtime_snap_whence = VTIME_INACTIVE;
809	write_seqcount_end(&prev->vtime_seqcount);
810
811	write_seqcount_begin(&current->vtime_seqcount);
812	current->vtime_snap_whence = VTIME_SYS;
813	current->vtime_snap = jiffies;
814	write_seqcount_end(&current->vtime_seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815}
816
817void vtime_init_idle(struct task_struct *t, int cpu)
818{
 
819	unsigned long flags;
820
821	local_irq_save(flags);
822	write_seqcount_begin(&t->vtime_seqcount);
823	t->vtime_snap_whence = VTIME_SYS;
824	t->vtime_snap = jiffies;
825	write_seqcount_end(&t->vtime_seqcount);
 
826	local_irq_restore(flags);
827}
828
829cputime_t task_gtime(struct task_struct *t)
830{
 
831	unsigned int seq;
832	cputime_t gtime;
833
834	if (!vtime_accounting_enabled())
835		return t->gtime;
836
837	do {
838		seq = read_seqcount_begin(&t->vtime_seqcount);
839
840		gtime = t->gtime;
841		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
842			gtime += vtime_delta(t);
843
844	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
845
846	return gtime;
847}
848
849/*
850 * Fetch cputime raw values from fields of task_struct and
851 * add up the pending nohz execution time since the last
852 * cputime snapshot.
853 */
854void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
855{
856	cputime_t delta;
857	unsigned int seq;
 
 
858
859	if (!vtime_accounting_enabled()) {
860		*utime = t->utime;
861		*stime = t->stime;
862		return;
863	}
864
865	do {
866		seq = read_seqcount_begin(&t->vtime_seqcount);
 
867
868		*utime = t->utime;
869		*stime = t->stime;
870
871		/* Task is sleeping, nothing to add */
872		if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
873			continue;
874
875		delta = vtime_delta(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876
877		/*
878		 * Task runs either in user or kernel space, add pending nohz time to
879		 * the right place.
 
 
 
880		 */
881		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
882			*utime += delta;
883		else if (t->vtime_snap_whence == VTIME_SYS)
884			*stime += delta;
885	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
 
 
 
 
 
 
   5
   6#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
   7 #include <asm/cputime.h>
   8#endif
   9
  10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  11
  12/*
  13 * There are no locks covering percpu hardirq/softirq time.
  14 * They are only modified in vtime_account, on corresponding CPU
  15 * with interrupts disabled. So, writes are safe.
  16 * They are read and saved off onto struct rq in update_rq_clock().
  17 * This may result in other CPU reading this CPU's irq time and can
  18 * race with irq/vtime_account on this CPU. We would either get old
  19 * or new value with a side effect of accounting a slice of irq time to wrong
  20 * task when irq is in progress while we read rq->clock. That is a worthy
  21 * compromise in place of having locks on each irq in account_system_time.
  22 */
  23DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  24
  25static int sched_clock_irqtime;
  26
  27void enable_sched_clock_irqtime(void)
  28{
  29	sched_clock_irqtime = 1;
  30}
  31
  32void disable_sched_clock_irqtime(void)
  33{
  34	sched_clock_irqtime = 0;
  35}
  36
  37static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  38				  enum cpu_usage_stat idx)
  39{
  40	u64 *cpustat = kcpustat_this_cpu->cpustat;
  41
  42	u64_stats_update_begin(&irqtime->sync);
  43	cpustat[idx] += delta;
  44	irqtime->total += delta;
  45	irqtime->tick_delta += delta;
  46	u64_stats_update_end(&irqtime->sync);
  47}
  48
  49/*
  50 * Called after incrementing preempt_count on {soft,}irq_enter
  51 * and before decrementing preempt_count on {soft,}irq_exit.
  52 */
  53void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
  54{
  55	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  56	unsigned int pc;
  57	s64 delta;
  58	int cpu;
  59
  60	if (!sched_clock_irqtime)
  61		return;
  62
  63	cpu = smp_processor_id();
  64	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  65	irqtime->irq_start_time += delta;
  66	pc = irq_count() - offset;
  67
 
  68	/*
  69	 * We do not account for softirq time from ksoftirqd here.
  70	 * We want to continue accounting softirq time to ksoftirqd thread
  71	 * in that case, so as not to confuse scheduler with a special task
  72	 * that do not consume any time, but still wants to run.
  73	 */
  74	if (pc & HARDIRQ_MASK)
  75		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  76	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
  77		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 
 
  78}
 
  79
  80static u64 irqtime_tick_accounted(u64 maxtime)
  81{
  82	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  83	u64 delta;
 
 
 
 
 
 
 
  84
  85	delta = min(irqtime->tick_delta, maxtime);
  86	irqtime->tick_delta -= delta;
 
 
 
  87
  88	return delta;
 
 
 
  89}
  90
  91#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  92
  93#define sched_clock_irqtime	(0)
  94
  95static u64 irqtime_tick_accounted(u64 dummy)
 
 
 
 
 
  96{
  97	return 0;
  98}
  99
 100#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 101
 102static inline void task_group_account_field(struct task_struct *p, int index,
 103					    u64 tmp)
 104{
 105	/*
 106	 * Since all updates are sure to touch the root cgroup, we
 107	 * get ourselves ahead and touch it first. If the root cgroup
 108	 * is the only cgroup, then nothing else should be necessary.
 109	 *
 110	 */
 111	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 112
 113	cgroup_account_cputime_field(p, index, tmp);
 114}
 115
 116/*
 117 * Account user CPU time to a process.
 118 * @p: the process that the CPU time gets accounted to
 119 * @cputime: the CPU time spent in user space since the last update
 120 */
 121void account_user_time(struct task_struct *p, u64 cputime)
 122{
 123	int index;
 124
 125	/* Add user time to process. */
 126	p->utime += cputime;
 127	account_group_user_time(p, cputime);
 128
 129	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 130
 131	/* Add user time to cpustat. */
 132	task_group_account_field(p, index, cputime);
 133
 134	/* Account for user time used */
 135	acct_account_cputime(p);
 136}
 137
 138/*
 139 * Account guest CPU time to a process.
 140 * @p: the process that the CPU time gets accounted to
 141 * @cputime: the CPU time spent in virtual machine since the last update
 142 */
 143void account_guest_time(struct task_struct *p, u64 cputime)
 144{
 145	u64 *cpustat = kcpustat_this_cpu->cpustat;
 146
 147	/* Add guest time to process. */
 148	p->utime += cputime;
 149	account_group_user_time(p, cputime);
 150	p->gtime += cputime;
 151
 152	/* Add guest time to cpustat. */
 153	if (task_nice(p) > 0) {
 154		task_group_account_field(p, CPUTIME_NICE, cputime);
 155		cpustat[CPUTIME_GUEST_NICE] += cputime;
 156	} else {
 157		task_group_account_field(p, CPUTIME_USER, cputime);
 158		cpustat[CPUTIME_GUEST] += cputime;
 159	}
 160}
 161
 162/*
 163 * Account system CPU time to a process and desired cpustat field
 164 * @p: the process that the CPU time gets accounted to
 165 * @cputime: the CPU time spent in kernel space since the last update
 166 * @index: pointer to cpustat field that has to be updated
 167 */
 168void account_system_index_time(struct task_struct *p,
 169			       u64 cputime, enum cpu_usage_stat index)
 170{
 171	/* Add system time to process. */
 172	p->stime += cputime;
 173	account_group_system_time(p, cputime);
 174
 175	/* Add system time to cpustat. */
 176	task_group_account_field(p, index, cputime);
 177
 178	/* Account for system time used */
 179	acct_account_cputime(p);
 180}
 181
 182/*
 183 * Account system CPU time to a process.
 184 * @p: the process that the CPU time gets accounted to
 185 * @hardirq_offset: the offset to subtract from hardirq_count()
 186 * @cputime: the CPU time spent in kernel space since the last update
 187 */
 188void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 
 189{
 190	int index;
 191
 192	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 193		account_guest_time(p, cputime);
 194		return;
 195	}
 196
 197	if (hardirq_count() - hardirq_offset)
 198		index = CPUTIME_IRQ;
 199	else if (in_serving_softirq())
 200		index = CPUTIME_SOFTIRQ;
 201	else
 202		index = CPUTIME_SYSTEM;
 203
 204	account_system_index_time(p, cputime, index);
 205}
 206
 207/*
 208 * Account for involuntary wait time.
 209 * @cputime: the CPU time spent in involuntary wait
 210 */
 211void account_steal_time(u64 cputime)
 212{
 213	u64 *cpustat = kcpustat_this_cpu->cpustat;
 214
 215	cpustat[CPUTIME_STEAL] += cputime;
 216}
 217
 218/*
 219 * Account for idle time.
 220 * @cputime: the CPU time spent in idle wait
 221 */
 222void account_idle_time(u64 cputime)
 223{
 224	u64 *cpustat = kcpustat_this_cpu->cpustat;
 225	struct rq *rq = this_rq();
 226
 227	if (atomic_read(&rq->nr_iowait) > 0)
 228		cpustat[CPUTIME_IOWAIT] += cputime;
 229	else
 230		cpustat[CPUTIME_IDLE] += cputime;
 231}
 232
 233
 234#ifdef CONFIG_SCHED_CORE
 235/*
 236 * Account for forceidle time due to core scheduling.
 237 *
 238 * REQUIRES: schedstat is enabled.
 239 */
 240void __account_forceidle_time(struct task_struct *p, u64 delta)
 241{
 242	__schedstat_add(p->stats.core_forceidle_sum, delta);
 243
 244	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
 245}
 246#endif
 247
 248/*
 249 * When a guest is interrupted for a longer amount of time, missed clock
 250 * ticks are not redelivered later. Due to that, this function may on
 251 * occasion account more time than the calling functions think elapsed.
 252 */
 253static __always_inline u64 steal_account_process_time(u64 maxtime)
 254{
 255#ifdef CONFIG_PARAVIRT
 256	if (static_key_false(&paravirt_steal_enabled)) {
 
 257		u64 steal;
 258
 259		steal = paravirt_steal_clock(smp_processor_id());
 260		steal -= this_rq()->prev_steal_time;
 261		steal = min(steal, maxtime);
 262		account_steal_time(steal);
 263		this_rq()->prev_steal_time += steal;
 264
 265		return steal;
 
 
 
 
 266	}
 267#endif
 268	return 0;
 269}
 270
 271/*
 272 * Account how much elapsed time was spent in steal, irq, or softirq time.
 273 */
 274static inline u64 account_other_time(u64 max)
 275{
 276	u64 accounted;
 277
 278	lockdep_assert_irqs_disabled();
 
 279
 280	accounted = steal_account_process_time(max);
 281
 282	if (accounted < max)
 283		accounted += irqtime_tick_accounted(max - accounted);
 
 
 
 284
 285	return accounted;
 286}
 287
 288#ifdef CONFIG_64BIT
 289static inline u64 read_sum_exec_runtime(struct task_struct *t)
 290{
 291	return t->se.sum_exec_runtime;
 292}
 293#else
 294static u64 read_sum_exec_runtime(struct task_struct *t)
 295{
 296	u64 ns;
 297	struct rq_flags rf;
 298	struct rq *rq;
 299
 300	rq = task_rq_lock(t, &rf);
 301	ns = t->se.sum_exec_runtime;
 302	task_rq_unlock(rq, t, &rf);
 303
 304	return ns;
 305}
 306#endif
 307
 308/*
 309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 310 * tasks (sum on group iteration) belonging to @tsk's group.
 311 */
 312void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 313{
 314	struct signal_struct *sig = tsk->signal;
 315	u64 utime, stime;
 316	struct task_struct *t;
 317	unsigned int seq, nextseq;
 318	unsigned long flags;
 319
 320	/*
 321	 * Update current task runtime to account pending time since last
 322	 * scheduler action or thread_group_cputime() call. This thread group
 323	 * might have other running tasks on different CPUs, but updating
 324	 * their runtime can affect syscall performance, so we skip account
 325	 * those pending times and rely only on values updated on tick or
 326	 * other scheduler action.
 327	 */
 328	if (same_thread_group(current, tsk))
 329		(void) task_sched_runtime(current);
 330
 331	rcu_read_lock();
 332	/* Attempt a lockless read on the first round. */
 333	nextseq = 0;
 334	do {
 335		seq = nextseq;
 336		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 337		times->utime = sig->utime;
 338		times->stime = sig->stime;
 339		times->sum_exec_runtime = sig->sum_sched_runtime;
 340
 341		for_each_thread(tsk, t) {
 342			task_cputime(t, &utime, &stime);
 343			times->utime += utime;
 344			times->stime += stime;
 345			times->sum_exec_runtime += read_sum_exec_runtime(t);
 346		}
 347		/* If lockless access failed, take the lock. */
 348		nextseq = 1;
 349	} while (need_seqretry(&sig->stats_lock, seq));
 350	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 351	rcu_read_unlock();
 352}
 353
 354#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 355/*
 356 * Account a tick to a process and cpustat
 357 * @p: the process that the CPU time gets accounted to
 358 * @user_tick: is the tick from userspace
 359 * @rq: the pointer to rq
 360 *
 361 * Tick demultiplexing follows the order
 362 * - pending hardirq update
 363 * - pending softirq update
 364 * - user_time
 365 * - idle_time
 366 * - system time
 367 *   - check for guest_time
 368 *   - else account as system_time
 369 *
 370 * Check for hardirq is done both for system and user time as there is
 371 * no timer going off while we are on hardirq and hence we may never get an
 372 * opportunity to update it solely in system time.
 373 * p->stime and friends are only updated on system time and not on irq
 374 * softirq as those do not count in task exec_runtime any more.
 375 */
 376static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 377					 int ticks)
 378{
 379	u64 other, cputime = TICK_NSEC * ticks;
 
 380
 381	/*
 382	 * When returning from idle, many ticks can get accounted at
 383	 * once, including some ticks of steal, irq, and softirq time.
 384	 * Subtract those ticks from the amount of time accounted to
 385	 * idle, or potentially user or system time. Due to rounding,
 386	 * other time can exceed ticks occasionally.
 387	 */
 388	other = account_other_time(ULONG_MAX);
 389	if (other >= cputime)
 390		return;
 391
 392	cputime -= other;
 393
 394	if (this_cpu_ksoftirqd() == p) {
 395		/*
 396		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 397		 * So, we have to handle it separately here.
 398		 * Also, p->stime needs to be updated for ksoftirqd.
 399		 */
 400		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 401	} else if (user_tick) {
 402		account_user_time(p, cputime);
 403	} else if (p == this_rq()->idle) {
 404		account_idle_time(cputime);
 405	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 406		account_guest_time(p, cputime);
 407	} else {
 408		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 409	}
 410}
 411
 412static void irqtime_account_idle_ticks(int ticks)
 413{
 414	irqtime_account_process_tick(current, 0, ticks);
 
 
 415}
 416#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 417static inline void irqtime_account_idle_ticks(int ticks) { }
 418static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 419						int nr_ticks) { }
 420#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 421
 422/*
 423 * Use precise platform statistics if available:
 424 */
 425#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 426
 427# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 428void vtime_task_switch(struct task_struct *prev)
 429{
 430	if (is_idle_task(prev))
 431		vtime_account_idle(prev);
 432	else
 433		vtime_account_kernel(prev);
 434
 435	vtime_flush(prev);
 
 
 436	arch_vtime_task_switch(prev);
 437}
 438# endif
 439
 440void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
 441{
 442	unsigned int pc = irq_count() - offset;
 443
 444	if (pc & HARDIRQ_OFFSET) {
 445		vtime_account_hardirq(tsk);
 446	} else if (pc & SOFTIRQ_OFFSET) {
 447		vtime_account_softirq(tsk);
 448	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
 449		   is_idle_task(tsk)) {
 450		vtime_account_idle(tsk);
 451	} else {
 452		vtime_account_kernel(tsk);
 453	}
 454}
 455
 456void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 457		    u64 *ut, u64 *st)
 
 
 
 
 
 
 
 
 
 458{
 459	*ut = curr->utime;
 460	*st = curr->stime;
 
 
 461}
 
 
 462
 463void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 464{
 465	*ut = p->utime;
 466	*st = p->stime;
 467}
 468EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 469
 470void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 471{
 472	struct task_cputime cputime;
 473
 474	thread_group_cputime(p, &cputime);
 475
 476	*ut = cputime.utime;
 477	*st = cputime.stime;
 478}
 479
 480#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 481
 482/*
 483 * Account a single tick of CPU time.
 484 * @p: the process that the CPU time gets accounted to
 485 * @user_tick: indicates if the tick is a user or a system tick
 486 */
 487void account_process_tick(struct task_struct *p, int user_tick)
 488{
 489	u64 cputime, steal;
 
 490
 491	if (vtime_accounting_enabled_this_cpu())
 492		return;
 493
 494	if (sched_clock_irqtime) {
 495		irqtime_account_process_tick(p, user_tick, 1);
 496		return;
 497	}
 498
 499	cputime = TICK_NSEC;
 500	steal = steal_account_process_time(ULONG_MAX);
 501
 502	if (steal >= cputime)
 503		return;
 504
 505	cputime -= steal;
 506
 507	if (user_tick)
 508		account_user_time(p, cputime);
 509	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 510		account_system_time(p, HARDIRQ_OFFSET, cputime);
 511	else
 512		account_idle_time(cputime);
 513}
 514
 515/*
 516 * Account multiple ticks of idle time.
 517 * @ticks: number of stolen ticks
 518 */
 519void account_idle_ticks(unsigned long ticks)
 520{
 521	u64 cputime, steal;
 522
 523	if (sched_clock_irqtime) {
 524		irqtime_account_idle_ticks(ticks);
 525		return;
 526	}
 527
 528	cputime = ticks * TICK_NSEC;
 529	steal = steal_account_process_time(ULONG_MAX);
 530
 531	if (steal >= cputime)
 532		return;
 533
 534	cputime -= steal;
 535	account_idle_time(cputime);
 536}
 537
 538/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539 * Adjust tick based cputime random precision against scheduler runtime
 540 * accounting.
 541 *
 542 * Tick based cputime accounting depend on random scheduling timeslices of a
 543 * task to be interrupted or not by the timer.  Depending on these
 544 * circumstances, the number of these interrupts may be over or
 545 * under-optimistic, matching the real user and system cputime with a variable
 546 * precision.
 547 *
 548 * Fix this by scaling these tick based values against the total runtime
 549 * accounted by the CFS scheduler.
 550 *
 551 * This code provides the following guarantees:
 552 *
 553 *   stime + utime == rtime
 554 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 555 *
 556 * Assuming that rtime_i+1 >= rtime_i.
 557 */
 558void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 559		    u64 *ut, u64 *st)
 
 560{
 561	u64 rtime, stime, utime;
 562	unsigned long flags;
 563
 564	/* Serialize concurrent callers such that we can honour our guarantees */
 565	raw_spin_lock_irqsave(&prev->lock, flags);
 566	rtime = curr->sum_exec_runtime;
 567
 568	/*
 569	 * This is possible under two circumstances:
 570	 *  - rtime isn't monotonic after all (a bug);
 571	 *  - we got reordered by the lock.
 572	 *
 573	 * In both cases this acts as a filter such that the rest of the code
 574	 * can assume it is monotonic regardless of anything else.
 575	 */
 576	if (prev->stime + prev->utime >= rtime)
 577		goto out;
 578
 579	stime = curr->stime;
 580	utime = curr->utime;
 581
 582	/*
 583	 * If either stime or utime are 0, assume all runtime is userspace.
 584	 * Once a task gets some ticks, the monotonicity code at 'update:'
 585	 * will ensure things converge to the observed ratio.
 586	 */
 587	if (stime == 0) {
 588		utime = rtime;
 589		goto update;
 590	}
 591
 592	if (utime == 0) {
 593		stime = rtime;
 594		goto update;
 595	}
 596
 597	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 
 598
 599update:
 600	/*
 601	 * Make sure stime doesn't go backwards; this preserves monotonicity
 602	 * for utime because rtime is monotonic.
 603	 *
 604	 *  utime_i+1 = rtime_i+1 - stime_i
 605	 *            = rtime_i+1 - (rtime_i - utime_i)
 606	 *            = (rtime_i+1 - rtime_i) + utime_i
 607	 *            >= utime_i
 608	 */
 609	if (stime < prev->stime)
 610		stime = prev->stime;
 611	utime = rtime - stime;
 612
 613	/*
 614	 * Make sure utime doesn't go backwards; this still preserves
 615	 * monotonicity for stime, analogous argument to above.
 616	 */
 617	if (utime < prev->utime) {
 618		utime = prev->utime;
 619		stime = rtime - utime;
 620	}
 621
 622	prev->stime = stime;
 623	prev->utime = utime;
 624out:
 625	*ut = prev->utime;
 626	*st = prev->stime;
 627	raw_spin_unlock_irqrestore(&prev->lock, flags);
 628}
 629
 630void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 631{
 632	struct task_cputime cputime = {
 633		.sum_exec_runtime = p->se.sum_exec_runtime,
 634	};
 635
 636	if (task_cputime(p, &cputime.utime, &cputime.stime))
 637		cputime.sum_exec_runtime = task_sched_runtime(p);
 638	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 639}
 640EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 641
 642void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 643{
 644	struct task_cputime cputime;
 645
 646	thread_group_cputime(p, &cputime);
 647	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 648}
 649#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 650
 651#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 652static u64 vtime_delta(struct vtime *vtime)
 653{
 654	unsigned long long clock;
 655
 656	clock = sched_clock();
 657	if (clock < vtime->starttime)
 658		return 0;
 659
 660	return clock - vtime->starttime;
 661}
 662
 663static u64 get_vtime_delta(struct vtime *vtime)
 664{
 665	u64 delta = vtime_delta(vtime);
 666	u64 other;
 667
 668	/*
 669	 * Unlike tick based timing, vtime based timing never has lost
 670	 * ticks, and no need for steal time accounting to make up for
 671	 * lost ticks. Vtime accounts a rounded version of actual
 672	 * elapsed time. Limit account_other_time to prevent rounding
 673	 * errors from causing elapsed vtime to go negative.
 674	 */
 
 675	other = account_other_time(delta);
 676	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 677	vtime->starttime += delta;
 678
 679	return delta - other;
 680}
 681
 682static void vtime_account_system(struct task_struct *tsk,
 683				 struct vtime *vtime)
 684{
 685	vtime->stime += get_vtime_delta(vtime);
 686	if (vtime->stime >= TICK_NSEC) {
 687		account_system_time(tsk, irq_count(), vtime->stime);
 688		vtime->stime = 0;
 689	}
 690}
 691
 692static void vtime_account_guest(struct task_struct *tsk,
 693				struct vtime *vtime)
 694{
 695	vtime->gtime += get_vtime_delta(vtime);
 696	if (vtime->gtime >= TICK_NSEC) {
 697		account_guest_time(tsk, vtime->gtime);
 698		vtime->gtime = 0;
 699	}
 700}
 701
 702static void __vtime_account_kernel(struct task_struct *tsk,
 703				   struct vtime *vtime)
 704{
 705	/* We might have scheduled out from guest path */
 706	if (vtime->state == VTIME_GUEST)
 707		vtime_account_guest(tsk, vtime);
 708	else
 709		vtime_account_system(tsk, vtime);
 710}
 711
 712void vtime_account_kernel(struct task_struct *tsk)
 713{
 714	struct vtime *vtime = &tsk->vtime;
 715
 716	if (!vtime_delta(vtime))
 717		return;
 718
 719	write_seqcount_begin(&vtime->seqcount);
 720	__vtime_account_kernel(tsk, vtime);
 721	write_seqcount_end(&vtime->seqcount);
 722}
 723
 724void vtime_user_enter(struct task_struct *tsk)
 725{
 726	struct vtime *vtime = &tsk->vtime;
 727
 728	write_seqcount_begin(&vtime->seqcount);
 729	vtime_account_system(tsk, vtime);
 730	vtime->state = VTIME_USER;
 731	write_seqcount_end(&vtime->seqcount);
 
 
 
 732}
 733
 734void vtime_user_exit(struct task_struct *tsk)
 735{
 736	struct vtime *vtime = &tsk->vtime;
 737
 738	write_seqcount_begin(&vtime->seqcount);
 739	vtime->utime += get_vtime_delta(vtime);
 740	if (vtime->utime >= TICK_NSEC) {
 741		account_user_time(tsk, vtime->utime);
 742		vtime->utime = 0;
 743	}
 744	vtime->state = VTIME_SYS;
 745	write_seqcount_end(&vtime->seqcount);
 746}
 747
 748void vtime_guest_enter(struct task_struct *tsk)
 749{
 750	struct vtime *vtime = &tsk->vtime;
 751	/*
 752	 * The flags must be updated under the lock with
 753	 * the vtime_starttime flush and update.
 754	 * That enforces a right ordering and update sequence
 755	 * synchronization against the reader (task_gtime())
 756	 * that can thus safely catch up with a tickless delta.
 757	 */
 758	write_seqcount_begin(&vtime->seqcount);
 759	vtime_account_system(tsk, vtime);
 760	tsk->flags |= PF_VCPU;
 761	vtime->state = VTIME_GUEST;
 762	write_seqcount_end(&vtime->seqcount);
 763}
 764EXPORT_SYMBOL_GPL(vtime_guest_enter);
 765
 766void vtime_guest_exit(struct task_struct *tsk)
 767{
 768	struct vtime *vtime = &tsk->vtime;
 769
 770	write_seqcount_begin(&vtime->seqcount);
 771	vtime_account_guest(tsk, vtime);
 772	tsk->flags &= ~PF_VCPU;
 773	vtime->state = VTIME_SYS;
 774	write_seqcount_end(&vtime->seqcount);
 775}
 776EXPORT_SYMBOL_GPL(vtime_guest_exit);
 777
 778void vtime_account_idle(struct task_struct *tsk)
 779{
 780	account_idle_time(get_vtime_delta(&tsk->vtime));
 
 
 781}
 782
 783void vtime_task_switch_generic(struct task_struct *prev)
 784{
 785	struct vtime *vtime = &prev->vtime;
 
 
 786
 787	write_seqcount_begin(&vtime->seqcount);
 788	if (vtime->state == VTIME_IDLE)
 789		vtime_account_idle(prev);
 790	else
 791		__vtime_account_kernel(prev, vtime);
 792	vtime->state = VTIME_INACTIVE;
 793	vtime->cpu = -1;
 794	write_seqcount_end(&vtime->seqcount);
 795
 796	vtime = &current->vtime;
 797
 798	write_seqcount_begin(&vtime->seqcount);
 799	if (is_idle_task(current))
 800		vtime->state = VTIME_IDLE;
 801	else if (current->flags & PF_VCPU)
 802		vtime->state = VTIME_GUEST;
 803	else
 804		vtime->state = VTIME_SYS;
 805	vtime->starttime = sched_clock();
 806	vtime->cpu = smp_processor_id();
 807	write_seqcount_end(&vtime->seqcount);
 808}
 809
 810void vtime_init_idle(struct task_struct *t, int cpu)
 811{
 812	struct vtime *vtime = &t->vtime;
 813	unsigned long flags;
 814
 815	local_irq_save(flags);
 816	write_seqcount_begin(&vtime->seqcount);
 817	vtime->state = VTIME_IDLE;
 818	vtime->starttime = sched_clock();
 819	vtime->cpu = cpu;
 820	write_seqcount_end(&vtime->seqcount);
 821	local_irq_restore(flags);
 822}
 823
 824u64 task_gtime(struct task_struct *t)
 825{
 826	struct vtime *vtime = &t->vtime;
 827	unsigned int seq;
 828	u64 gtime;
 829
 830	if (!vtime_accounting_enabled())
 831		return t->gtime;
 832
 833	do {
 834		seq = read_seqcount_begin(&vtime->seqcount);
 835
 836		gtime = t->gtime;
 837		if (vtime->state == VTIME_GUEST)
 838			gtime += vtime->gtime + vtime_delta(vtime);
 839
 840	} while (read_seqcount_retry(&vtime->seqcount, seq));
 841
 842	return gtime;
 843}
 844
 845/*
 846 * Fetch cputime raw values from fields of task_struct and
 847 * add up the pending nohz execution time since the last
 848 * cputime snapshot.
 849 */
 850bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 851{
 852	struct vtime *vtime = &t->vtime;
 853	unsigned int seq;
 854	u64 delta;
 855	int ret;
 856
 857	if (!vtime_accounting_enabled()) {
 858		*utime = t->utime;
 859		*stime = t->stime;
 860		return false;
 861	}
 862
 863	do {
 864		ret = false;
 865		seq = read_seqcount_begin(&vtime->seqcount);
 866
 867		*utime = t->utime;
 868		*stime = t->stime;
 869
 870		/* Task is sleeping or idle, nothing to add */
 871		if (vtime->state < VTIME_SYS)
 872			continue;
 873
 874		ret = true;
 875		delta = vtime_delta(vtime);
 876
 877		/*
 878		 * Task runs either in user (including guest) or kernel space,
 879		 * add pending nohz time to the right place.
 880		 */
 881		if (vtime->state == VTIME_SYS)
 882			*stime += vtime->stime + delta;
 883		else
 884			*utime += vtime->utime + delta;
 885	} while (read_seqcount_retry(&vtime->seqcount, seq));
 886
 887	return ret;
 888}
 889
 890static int vtime_state_fetch(struct vtime *vtime, int cpu)
 891{
 892	int state = READ_ONCE(vtime->state);
 893
 894	/*
 895	 * We raced against a context switch, fetch the
 896	 * kcpustat task again.
 897	 */
 898	if (vtime->cpu != cpu && vtime->cpu != -1)
 899		return -EAGAIN;
 900
 901	/*
 902	 * Two possible things here:
 903	 * 1) We are seeing the scheduling out task (prev) or any past one.
 904	 * 2) We are seeing the scheduling in task (next) but it hasn't
 905	 *    passed though vtime_task_switch() yet so the pending
 906	 *    cputime of the prev task may not be flushed yet.
 907	 *
 908	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 909	 */
 910	if (state == VTIME_INACTIVE)
 911		return -EAGAIN;
 912
 913	return state;
 914}
 915
 916static u64 kcpustat_user_vtime(struct vtime *vtime)
 917{
 918	if (vtime->state == VTIME_USER)
 919		return vtime->utime + vtime_delta(vtime);
 920	else if (vtime->state == VTIME_GUEST)
 921		return vtime->gtime + vtime_delta(vtime);
 922	return 0;
 923}
 924
 925static int kcpustat_field_vtime(u64 *cpustat,
 926				struct task_struct *tsk,
 927				enum cpu_usage_stat usage,
 928				int cpu, u64 *val)
 929{
 930	struct vtime *vtime = &tsk->vtime;
 931	unsigned int seq;
 932
 933	do {
 934		int state;
 935
 936		seq = read_seqcount_begin(&vtime->seqcount);
 937
 938		state = vtime_state_fetch(vtime, cpu);
 939		if (state < 0)
 940			return state;
 941
 942		*val = cpustat[usage];
 943
 944		/*
 945		 * Nice VS unnice cputime accounting may be inaccurate if
 946		 * the nice value has changed since the last vtime update.
 947		 * But proper fix would involve interrupting target on nice
 948		 * updates which is a no go on nohz_full (although the scheduler
 949		 * may still interrupt the target if rescheduling is needed...)
 950		 */
 951		switch (usage) {
 952		case CPUTIME_SYSTEM:
 953			if (state == VTIME_SYS)
 954				*val += vtime->stime + vtime_delta(vtime);
 955			break;
 956		case CPUTIME_USER:
 957			if (task_nice(tsk) <= 0)
 958				*val += kcpustat_user_vtime(vtime);
 959			break;
 960		case CPUTIME_NICE:
 961			if (task_nice(tsk) > 0)
 962				*val += kcpustat_user_vtime(vtime);
 963			break;
 964		case CPUTIME_GUEST:
 965			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 966				*val += vtime->gtime + vtime_delta(vtime);
 967			break;
 968		case CPUTIME_GUEST_NICE:
 969			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 970				*val += vtime->gtime + vtime_delta(vtime);
 971			break;
 972		default:
 973			break;
 974		}
 975	} while (read_seqcount_retry(&vtime->seqcount, seq));
 976
 977	return 0;
 978}
 979
 980u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 981		   enum cpu_usage_stat usage, int cpu)
 982{
 983	u64 *cpustat = kcpustat->cpustat;
 984	u64 val = cpustat[usage];
 985	struct rq *rq;
 986	int err;
 987
 988	if (!vtime_accounting_enabled_cpu(cpu))
 989		return val;
 990
 991	rq = cpu_rq(cpu);
 992
 993	for (;;) {
 994		struct task_struct *curr;
 995
 996		rcu_read_lock();
 997		curr = rcu_dereference(rq->curr);
 998		if (WARN_ON_ONCE(!curr)) {
 999			rcu_read_unlock();
1000			return cpustat[usage];
1001		}
1002
1003		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1004		rcu_read_unlock();
1005
1006		if (!err)
1007			return val;
1008
1009		cpu_relax();
1010	}
1011}
1012EXPORT_SYMBOL_GPL(kcpustat_field);
1013
1014static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1015				    const struct kernel_cpustat *src,
1016				    struct task_struct *tsk, int cpu)
1017{
1018	struct vtime *vtime = &tsk->vtime;
1019	unsigned int seq;
1020
1021	do {
1022		u64 *cpustat;
1023		u64 delta;
1024		int state;
1025
1026		seq = read_seqcount_begin(&vtime->seqcount);
1027
1028		state = vtime_state_fetch(vtime, cpu);
1029		if (state < 0)
1030			return state;
1031
1032		*dst = *src;
1033		cpustat = dst->cpustat;
1034
1035		/* Task is sleeping, dead or idle, nothing to add */
1036		if (state < VTIME_SYS)
1037			continue;
1038
1039		delta = vtime_delta(vtime);
1040
1041		/*
1042		 * Task runs either in user (including guest) or kernel space,
1043		 * add pending nohz time to the right place.
1044		 */
1045		if (state == VTIME_SYS) {
1046			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1047		} else if (state == VTIME_USER) {
1048			if (task_nice(tsk) > 0)
1049				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1050			else
1051				cpustat[CPUTIME_USER] += vtime->utime + delta;
1052		} else {
1053			WARN_ON_ONCE(state != VTIME_GUEST);
1054			if (task_nice(tsk) > 0) {
1055				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1056				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1057			} else {
1058				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1059				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1060			}
1061		}
1062	} while (read_seqcount_retry(&vtime->seqcount, seq));
1063
1064	return 0;
1065}
1066
1067void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1068{
1069	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1070	struct rq *rq;
1071	int err;
1072
1073	if (!vtime_accounting_enabled_cpu(cpu)) {
1074		*dst = *src;
1075		return;
1076	}
1077
1078	rq = cpu_rq(cpu);
1079
1080	for (;;) {
1081		struct task_struct *curr;
1082
1083		rcu_read_lock();
1084		curr = rcu_dereference(rq->curr);
1085		if (WARN_ON_ONCE(!curr)) {
1086			rcu_read_unlock();
1087			*dst = *src;
1088			return;
1089		}
1090
1091		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1092		rcu_read_unlock();
1093
1094		if (!err)
1095			return;
1096
1097		cpu_relax();
1098	}
1099}
1100EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1101
1102#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */