Linux Audio

Check our new training course

Loading...
v4.10.11
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8#ifdef CONFIG_PARAVIRT
  9#include <asm/paravirt.h>
 10#endif
 11
 12
 13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 14
 15/*
 16 * There are no locks covering percpu hardirq/softirq time.
 17 * They are only modified in vtime_account, on corresponding CPU
 18 * with interrupts disabled. So, writes are safe.
 19 * They are read and saved off onto struct rq in update_rq_clock().
 20 * This may result in other CPU reading this CPU's irq time and can
 21 * race with irq/vtime_account on this CPU. We would either get old
 22 * or new value with a side effect of accounting a slice of irq time to wrong
 23 * task when irq is in progress while we read rq->clock. That is a worthy
 24 * compromise in place of having locks on each irq in account_system_time.
 25 */
 26DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 
 27
 
 28static int sched_clock_irqtime;
 29
 30void enable_sched_clock_irqtime(void)
 31{
 32	sched_clock_irqtime = 1;
 33}
 34
 35void disable_sched_clock_irqtime(void)
 36{
 37	sched_clock_irqtime = 0;
 38}
 39
 
 
 
 
 40/*
 41 * Called before incrementing preempt_count on {soft,}irq_enter
 42 * and before decrementing preempt_count on {soft,}irq_exit.
 43 */
 44void irqtime_account_irq(struct task_struct *curr)
 45{
 46	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 47	s64 delta;
 48	int cpu;
 49
 50	if (!sched_clock_irqtime)
 51		return;
 52
 
 
 53	cpu = smp_processor_id();
 54	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 55	irqtime->irq_start_time += delta;
 56
 57	u64_stats_update_begin(&irqtime->sync);
 58	/*
 59	 * We do not account for softirq time from ksoftirqd here.
 60	 * We want to continue accounting softirq time to ksoftirqd thread
 61	 * in that case, so as not to confuse scheduler with a special task
 62	 * that do not consume any time, but still wants to run.
 63	 */
 64	if (hardirq_count())
 65		irqtime->hardirq_time += delta;
 66	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 67		irqtime->softirq_time += delta;
 68
 69	u64_stats_update_end(&irqtime->sync);
 
 70}
 71EXPORT_SYMBOL_GPL(irqtime_account_irq);
 72
 73static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
 74{
 75	u64 *cpustat = kcpustat_this_cpu->cpustat;
 76	cputime_t irq_cputime;
 77
 78	irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
 79	irq_cputime = min(irq_cputime, maxtime);
 80	cpustat[idx] += irq_cputime;
 81
 82	return irq_cputime;
 
 
 
 
 
 83}
 84
 85static cputime_t irqtime_account_hi_update(cputime_t maxtime)
 86{
 87	return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
 88				      CPUTIME_IRQ, maxtime);
 89}
 
 90
 91static cputime_t irqtime_account_si_update(cputime_t maxtime)
 92{
 93	return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
 94				      CPUTIME_SOFTIRQ, maxtime);
 
 
 95}
 96
 97#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 98
 99#define sched_clock_irqtime	(0)
100
101static cputime_t irqtime_account_hi_update(cputime_t dummy)
102{
103	return 0;
104}
105
106static cputime_t irqtime_account_si_update(cputime_t dummy)
107{
108	return 0;
109}
110
111#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112
113static inline void task_group_account_field(struct task_struct *p, int index,
114					    u64 tmp)
115{
116	/*
117	 * Since all updates are sure to touch the root cgroup, we
118	 * get ourselves ahead and touch it first. If the root cgroup
119	 * is the only cgroup, then nothing else should be necessary.
120	 *
121	 */
122	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123
124	cpuacct_account_field(p, index, tmp);
125}
126
127/*
128 * Account user cpu time to a process.
129 * @p: the process that the cpu time gets accounted to
130 * @cputime: the cpu time spent in user space since the last update
 
131 */
132void account_user_time(struct task_struct *p, cputime_t cputime)
 
133{
134	int index;
135
136	/* Add user time to process. */
137	p->utime += cputime;
 
138	account_group_user_time(p, cputime);
139
140	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
141
142	/* Add user time to cpustat. */
143	task_group_account_field(p, index, (__force u64) cputime);
144
145	/* Account for user time used */
146	acct_account_cputime(p);
147}
148
149/*
150 * Account guest cpu time to a process.
151 * @p: the process that the cpu time gets accounted to
152 * @cputime: the cpu time spent in virtual machine since the last update
 
153 */
154static void account_guest_time(struct task_struct *p, cputime_t cputime)
 
155{
156	u64 *cpustat = kcpustat_this_cpu->cpustat;
157
158	/* Add guest time to process. */
159	p->utime += cputime;
 
160	account_group_user_time(p, cputime);
161	p->gtime += cputime;
162
163	/* Add guest time to cpustat. */
164	if (task_nice(p) > 0) {
165		cpustat[CPUTIME_NICE] += (__force u64) cputime;
166		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
167	} else {
168		cpustat[CPUTIME_USER] += (__force u64) cputime;
169		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
170	}
171}
172
173/*
174 * Account system cpu time to a process and desired cpustat field
175 * @p: the process that the cpu time gets accounted to
176 * @cputime: the cpu time spent in kernel space since the last update
177 * @index: pointer to cpustat field that has to be updated
 
178 */
179static inline
180void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
 
181{
182	/* Add system time to process. */
183	p->stime += cputime;
 
184	account_group_system_time(p, cputime);
185
186	/* Add system time to cpustat. */
187	task_group_account_field(p, index, (__force u64) cputime);
188
189	/* Account for system time used */
190	acct_account_cputime(p);
191}
192
193/*
194 * Account system cpu time to a process.
195 * @p: the process that the cpu time gets accounted to
196 * @hardirq_offset: the offset to subtract from hardirq_count()
197 * @cputime: the cpu time spent in kernel space since the last update
 
198 */
199void account_system_time(struct task_struct *p, int hardirq_offset,
200			 cputime_t cputime)
201{
202	int index;
203
204	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
205		account_guest_time(p, cputime);
206		return;
207	}
208
209	if (hardirq_count() - hardirq_offset)
210		index = CPUTIME_IRQ;
211	else if (in_serving_softirq())
212		index = CPUTIME_SOFTIRQ;
213	else
214		index = CPUTIME_SYSTEM;
215
216	__account_system_time(p, cputime, index);
217}
218
219/*
220 * Account for involuntary wait time.
221 * @cputime: the cpu time spent in involuntary wait
222 */
223void account_steal_time(cputime_t cputime)
224{
225	u64 *cpustat = kcpustat_this_cpu->cpustat;
226
227	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
228}
229
230/*
231 * Account for idle time.
232 * @cputime: the cpu time spent in idle wait
233 */
234void account_idle_time(cputime_t cputime)
235{
236	u64 *cpustat = kcpustat_this_cpu->cpustat;
237	struct rq *rq = this_rq();
238
239	if (atomic_read(&rq->nr_iowait) > 0)
240		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
241	else
242		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
243}
244
245/*
246 * When a guest is interrupted for a longer amount of time, missed clock
247 * ticks are not redelivered later. Due to that, this function may on
248 * occasion account more time than the calling functions think elapsed.
249 */
250static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
251{
252#ifdef CONFIG_PARAVIRT
253	if (static_key_false(&paravirt_steal_enabled)) {
254		cputime_t steal_cputime;
255		u64 steal;
 
256
257		steal = paravirt_steal_clock(smp_processor_id());
258		steal -= this_rq()->prev_steal_time;
259
260		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
261		account_steal_time(steal_cputime);
262		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
 
 
 
 
263
264		return steal_cputime;
 
265	}
266#endif
267	return 0;
268}
269
270/*
271 * Account how much elapsed time was spent in steal, irq, or softirq time.
272 */
273static inline cputime_t account_other_time(cputime_t max)
274{
275	cputime_t accounted;
276
277	/* Shall be converted to a lockdep-enabled lightweight check */
278	WARN_ON_ONCE(!irqs_disabled());
279
280	accounted = steal_account_process_time(max);
281
282	if (accounted < max)
283		accounted += irqtime_account_hi_update(max - accounted);
284
285	if (accounted < max)
286		accounted += irqtime_account_si_update(max - accounted);
287
288	return accounted;
289}
290
291#ifdef CONFIG_64BIT
292static inline u64 read_sum_exec_runtime(struct task_struct *t)
293{
294	return t->se.sum_exec_runtime;
295}
296#else
297static u64 read_sum_exec_runtime(struct task_struct *t)
298{
299	u64 ns;
300	struct rq_flags rf;
301	struct rq *rq;
302
303	rq = task_rq_lock(t, &rf);
304	ns = t->se.sum_exec_runtime;
305	task_rq_unlock(rq, t, &rf);
306
307	return ns;
308}
309#endif
310
311/*
312 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
313 * tasks (sum on group iteration) belonging to @tsk's group.
314 */
315void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
316{
317	struct signal_struct *sig = tsk->signal;
318	cputime_t utime, stime;
319	struct task_struct *t;
320	unsigned int seq, nextseq;
321	unsigned long flags;
322
323	/*
324	 * Update current task runtime to account pending time since last
325	 * scheduler action or thread_group_cputime() call. This thread group
326	 * might have other running tasks on different CPUs, but updating
327	 * their runtime can affect syscall performance, so we skip account
328	 * those pending times and rely only on values updated on tick or
329	 * other scheduler action.
330	 */
331	if (same_thread_group(current, tsk))
332		(void) task_sched_runtime(current);
333
334	rcu_read_lock();
335	/* Attempt a lockless read on the first round. */
336	nextseq = 0;
337	do {
338		seq = nextseq;
339		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
340		times->utime = sig->utime;
341		times->stime = sig->stime;
342		times->sum_exec_runtime = sig->sum_sched_runtime;
343
344		for_each_thread(tsk, t) {
345			task_cputime(t, &utime, &stime);
346			times->utime += utime;
347			times->stime += stime;
348			times->sum_exec_runtime += read_sum_exec_runtime(t);
349		}
350		/* If lockless access failed, take the lock. */
351		nextseq = 1;
352	} while (need_seqretry(&sig->stats_lock, seq));
353	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
354	rcu_read_unlock();
355}
356
357#ifdef CONFIG_IRQ_TIME_ACCOUNTING
358/*
359 * Account a tick to a process and cpustat
360 * @p: the process that the cpu time gets accounted to
361 * @user_tick: is the tick from userspace
362 * @rq: the pointer to rq
363 *
364 * Tick demultiplexing follows the order
365 * - pending hardirq update
366 * - pending softirq update
367 * - user_time
368 * - idle_time
369 * - system time
370 *   - check for guest_time
371 *   - else account as system_time
372 *
373 * Check for hardirq is done both for system and user time as there is
374 * no timer going off while we are on hardirq and hence we may never get an
375 * opportunity to update it solely in system time.
376 * p->stime and friends are only updated on system time and not on irq
377 * softirq as those do not count in task exec_runtime any more.
378 */
379static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
380					 struct rq *rq, int ticks)
381{
382	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
383	cputime_t other;
 
384
385	/*
386	 * When returning from idle, many ticks can get accounted at
387	 * once, including some ticks of steal, irq, and softirq time.
388	 * Subtract those ticks from the amount of time accounted to
389	 * idle, or potentially user or system time. Due to rounding,
390	 * other time can exceed ticks occasionally.
391	 */
392	other = account_other_time(ULONG_MAX);
393	if (other >= cputime)
394		return;
395	cputime -= other;
396
397	if (this_cpu_ksoftirqd() == p) {
 
 
 
 
 
 
 
398		/*
399		 * ksoftirqd time do not get accounted in cpu_softirq_time.
400		 * So, we have to handle it separately here.
401		 * Also, p->stime needs to be updated for ksoftirqd.
402		 */
403		__account_system_time(p, cputime, CPUTIME_SOFTIRQ);
404	} else if (user_tick) {
405		account_user_time(p, cputime);
406	} else if (p == rq->idle) {
407		account_idle_time(cputime);
408	} else if (p->flags & PF_VCPU) { /* System time or guest time */
409		account_guest_time(p, cputime);
410	} else {
411		__account_system_time(p, cputime, CPUTIME_SYSTEM);
412	}
413}
414
415static void irqtime_account_idle_ticks(int ticks)
416{
417	struct rq *rq = this_rq();
418
419	irqtime_account_process_tick(current, 0, rq, ticks);
420}
421#else /* CONFIG_IRQ_TIME_ACCOUNTING */
422static inline void irqtime_account_idle_ticks(int ticks) {}
423static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
424						struct rq *rq, int nr_ticks) {}
425#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
426
427/*
428 * Use precise platform statistics if available:
429 */
430#ifdef CONFIG_VIRT_CPU_ACCOUNTING
431
432#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
433void vtime_common_task_switch(struct task_struct *prev)
434{
435	if (is_idle_task(prev))
436		vtime_account_idle(prev);
437	else
438		vtime_account_system(prev);
439
440#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441	vtime_account_user(prev);
442#endif
443	arch_vtime_task_switch(prev);
444}
445#endif
446
447#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
448
449
450#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
451/*
452 * Archs that account the whole time spent in the idle task
453 * (outside irq) as idle time can rely on this and just implement
454 * vtime_account_system() and vtime_account_idle(). Archs that
455 * have other meaning of the idle time (s390 only includes the
456 * time spent by the CPU when it's in low power mode) must override
457 * vtime_account().
458 */
459#ifndef __ARCH_HAS_VTIME_ACCOUNT
460void vtime_account_irq_enter(struct task_struct *tsk)
461{
462	if (!in_interrupt() && is_idle_task(tsk))
463		vtime_account_idle(tsk);
464	else
465		vtime_account_system(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466}
467EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
468#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 
 
469
 
470void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
471{
472	*ut = p->utime;
473	*st = p->stime;
474}
475EXPORT_SYMBOL_GPL(task_cputime_adjusted);
476
477void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
478{
479	struct task_cputime cputime;
480
481	thread_group_cputime(p, &cputime);
482
483	*ut = cputime.utime;
484	*st = cputime.stime;
485}
486#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
487/*
488 * Account a single tick of cpu time.
489 * @p: the process that the cpu time gets accounted to
490 * @user_tick: indicates if the tick is a user or a system tick
491 */
492void account_process_tick(struct task_struct *p, int user_tick)
493{
494	cputime_t cputime, steal;
495	struct rq *rq = this_rq();
496
497	if (vtime_accounting_cpu_enabled())
498		return;
499
500	if (sched_clock_irqtime) {
501		irqtime_account_process_tick(p, user_tick, rq, 1);
502		return;
503	}
504
505	cputime = cputime_one_jiffy;
506	steal = steal_account_process_time(ULONG_MAX);
507
508	if (steal >= cputime)
509		return;
510
511	cputime -= steal;
512
513	if (user_tick)
514		account_user_time(p, cputime);
515	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
516		account_system_time(p, HARDIRQ_OFFSET, cputime);
 
517	else
518		account_idle_time(cputime);
 
 
 
 
 
 
 
 
 
 
519}
520
521/*
522 * Account multiple ticks of idle time.
523 * @ticks: number of stolen ticks
524 */
525void account_idle_ticks(unsigned long ticks)
526{
527	cputime_t cputime, steal;
528
529	if (sched_clock_irqtime) {
530		irqtime_account_idle_ticks(ticks);
531		return;
532	}
533
534	cputime = jiffies_to_cputime(ticks);
535	steal = steal_account_process_time(ULONG_MAX);
536
537	if (steal >= cputime)
538		return;
539
540	cputime -= steal;
541	account_idle_time(cputime);
542}
543
544/*
545 * Perform (stime * rtime) / total, but avoid multiplication overflow by
546 * loosing precision when the numbers are big.
547 */
548static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
549{
550	u64 scaled;
551
552	for (;;) {
553		/* Make sure "rtime" is the bigger of stime/rtime */
554		if (stime > rtime)
555			swap(rtime, stime);
556
557		/* Make sure 'total' fits in 32 bits */
558		if (total >> 32)
559			goto drop_precision;
560
561		/* Does rtime (and thus stime) fit in 32 bits? */
562		if (!(rtime >> 32))
563			break;
564
565		/* Can we just balance rtime/stime rather than dropping bits? */
566		if (stime >> 31)
567			goto drop_precision;
568
569		/* We can grow stime and shrink rtime and try to make them both fit */
570		stime <<= 1;
571		rtime >>= 1;
572		continue;
573
574drop_precision:
575		/* We drop from rtime, it has more bits than stime */
576		rtime >>= 1;
577		total >>= 1;
578	}
579
580	/*
581	 * Make sure gcc understands that this is a 32x32->64 multiply,
582	 * followed by a 64/32->64 divide.
583	 */
584	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
585	return (__force cputime_t) scaled;
586}
587
588/*
589 * Adjust tick based cputime random precision against scheduler runtime
590 * accounting.
591 *
592 * Tick based cputime accounting depend on random scheduling timeslices of a
593 * task to be interrupted or not by the timer.  Depending on these
594 * circumstances, the number of these interrupts may be over or
595 * under-optimistic, matching the real user and system cputime with a variable
596 * precision.
597 *
598 * Fix this by scaling these tick based values against the total runtime
599 * accounted by the CFS scheduler.
600 *
601 * This code provides the following guarantees:
602 *
603 *   stime + utime == rtime
604 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
605 *
606 * Assuming that rtime_i+1 >= rtime_i.
607 */
608static void cputime_adjust(struct task_cputime *curr,
609			   struct prev_cputime *prev,
610			   cputime_t *ut, cputime_t *st)
611{
612	cputime_t rtime, stime, utime;
613	unsigned long flags;
614
615	/* Serialize concurrent callers such that we can honour our guarantees */
616	raw_spin_lock_irqsave(&prev->lock, flags);
617	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
618
619	/*
620	 * This is possible under two circumstances:
621	 *  - rtime isn't monotonic after all (a bug);
622	 *  - we got reordered by the lock.
623	 *
624	 * In both cases this acts as a filter such that the rest of the code
625	 * can assume it is monotonic regardless of anything else.
626	 */
627	if (prev->stime + prev->utime >= rtime)
628		goto out;
629
630	stime = curr->stime;
631	utime = curr->utime;
632
633	/*
634	 * If either stime or both stime and utime are 0, assume all runtime is
635	 * userspace. Once a task gets some ticks, the monotonicy code at
636	 * 'update' will ensure things converge to the observed ratio.
637	 */
638	if (stime == 0) {
639		utime = rtime;
640		goto update;
641	}
642
643	if (utime == 0) {
644		stime = rtime;
645		goto update;
646	}
647
648	stime = scale_stime((__force u64)stime, (__force u64)rtime,
649			    (__force u64)(stime + utime));
650
651update:
652	/*
653	 * Make sure stime doesn't go backwards; this preserves monotonicity
654	 * for utime because rtime is monotonic.
655	 *
656	 *  utime_i+1 = rtime_i+1 - stime_i
657	 *            = rtime_i+1 - (rtime_i - utime_i)
658	 *            = (rtime_i+1 - rtime_i) + utime_i
659	 *            >= utime_i
660	 */
661	if (stime < prev->stime)
662		stime = prev->stime;
663	utime = rtime - stime;
664
665	/*
666	 * Make sure utime doesn't go backwards; this still preserves
667	 * monotonicity for stime, analogous argument to above.
668	 */
669	if (utime < prev->utime) {
670		utime = prev->utime;
671		stime = rtime - utime;
672	}
673
 
674	prev->stime = stime;
675	prev->utime = utime;
676out:
677	*ut = prev->utime;
678	*st = prev->stime;
679	raw_spin_unlock_irqrestore(&prev->lock, flags);
680}
681
682void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
683{
684	struct task_cputime cputime = {
685		.sum_exec_runtime = p->se.sum_exec_runtime,
686	};
687
688	task_cputime(p, &cputime.utime, &cputime.stime);
689	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
690}
691EXPORT_SYMBOL_GPL(task_cputime_adjusted);
692
693void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
694{
695	struct task_cputime cputime;
696
697	thread_group_cputime(p, &cputime);
698	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
699}
700#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
701
702#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
703static cputime_t vtime_delta(struct task_struct *tsk)
704{
705	unsigned long now = READ_ONCE(jiffies);
706
707	if (time_before(now, (unsigned long)tsk->vtime_snap))
708		return 0;
709
710	return jiffies_to_cputime(now - tsk->vtime_snap);
711}
712
713static cputime_t get_vtime_delta(struct task_struct *tsk)
714{
715	unsigned long now = READ_ONCE(jiffies);
716	cputime_t delta, other;
717
718	/*
719	 * Unlike tick based timing, vtime based timing never has lost
720	 * ticks, and no need for steal time accounting to make up for
721	 * lost ticks. Vtime accounts a rounded version of actual
722	 * elapsed time. Limit account_other_time to prevent rounding
723	 * errors from causing elapsed vtime to go negative.
724	 */
725	delta = jiffies_to_cputime(now - tsk->vtime_snap);
726	other = account_other_time(delta);
727	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
728	tsk->vtime_snap = now;
729
730	return delta - other;
731}
732
733static void __vtime_account_system(struct task_struct *tsk)
734{
735	cputime_t delta_cpu = get_vtime_delta(tsk);
736
737	account_system_time(tsk, irq_count(), delta_cpu);
738}
739
740void vtime_account_system(struct task_struct *tsk)
741{
742	if (!vtime_delta(tsk))
743		return;
744
745	write_seqcount_begin(&tsk->vtime_seqcount);
746	__vtime_account_system(tsk);
747	write_seqcount_end(&tsk->vtime_seqcount);
748}
749
 
 
 
 
 
 
 
 
 
 
750void vtime_account_user(struct task_struct *tsk)
751{
752	cputime_t delta_cpu;
753
754	write_seqcount_begin(&tsk->vtime_seqcount);
755	tsk->vtime_snap_whence = VTIME_SYS;
756	if (vtime_delta(tsk)) {
757		delta_cpu = get_vtime_delta(tsk);
758		account_user_time(tsk, delta_cpu);
759	}
760	write_seqcount_end(&tsk->vtime_seqcount);
761}
762
763void vtime_user_enter(struct task_struct *tsk)
764{
765	write_seqcount_begin(&tsk->vtime_seqcount);
766	if (vtime_delta(tsk))
767		__vtime_account_system(tsk);
768	tsk->vtime_snap_whence = VTIME_USER;
769	write_seqcount_end(&tsk->vtime_seqcount);
770}
771
772void vtime_guest_enter(struct task_struct *tsk)
773{
774	/*
775	 * The flags must be updated under the lock with
776	 * the vtime_snap flush and update.
777	 * That enforces a right ordering and update sequence
778	 * synchronization against the reader (task_gtime())
779	 * that can thus safely catch up with a tickless delta.
780	 */
781	write_seqcount_begin(&tsk->vtime_seqcount);
782	if (vtime_delta(tsk))
783		__vtime_account_system(tsk);
784	current->flags |= PF_VCPU;
785	write_seqcount_end(&tsk->vtime_seqcount);
786}
787EXPORT_SYMBOL_GPL(vtime_guest_enter);
788
789void vtime_guest_exit(struct task_struct *tsk)
790{
791	write_seqcount_begin(&tsk->vtime_seqcount);
792	__vtime_account_system(tsk);
793	current->flags &= ~PF_VCPU;
794	write_seqcount_end(&tsk->vtime_seqcount);
795}
796EXPORT_SYMBOL_GPL(vtime_guest_exit);
797
798void vtime_account_idle(struct task_struct *tsk)
799{
800	cputime_t delta_cpu = get_vtime_delta(tsk);
801
802	account_idle_time(delta_cpu);
803}
804
805void arch_vtime_task_switch(struct task_struct *prev)
806{
807	write_seqcount_begin(&prev->vtime_seqcount);
808	prev->vtime_snap_whence = VTIME_INACTIVE;
809	write_seqcount_end(&prev->vtime_seqcount);
810
811	write_seqcount_begin(&current->vtime_seqcount);
812	current->vtime_snap_whence = VTIME_SYS;
813	current->vtime_snap = jiffies;
814	write_seqcount_end(&current->vtime_seqcount);
815}
816
817void vtime_init_idle(struct task_struct *t, int cpu)
818{
819	unsigned long flags;
820
821	local_irq_save(flags);
822	write_seqcount_begin(&t->vtime_seqcount);
823	t->vtime_snap_whence = VTIME_SYS;
824	t->vtime_snap = jiffies;
825	write_seqcount_end(&t->vtime_seqcount);
826	local_irq_restore(flags);
827}
828
829cputime_t task_gtime(struct task_struct *t)
830{
831	unsigned int seq;
832	cputime_t gtime;
833
834	if (!vtime_accounting_enabled())
835		return t->gtime;
836
837	do {
838		seq = read_seqcount_begin(&t->vtime_seqcount);
839
840		gtime = t->gtime;
841		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
842			gtime += vtime_delta(t);
843
844	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
845
846	return gtime;
847}
848
849/*
850 * Fetch cputime raw values from fields of task_struct and
851 * add up the pending nohz execution time since the last
852 * cputime snapshot.
853 */
854void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
 
 
 
 
855{
856	cputime_t delta;
857	unsigned int seq;
858
859	if (!vtime_accounting_enabled()) {
860		*utime = t->utime;
861		*stime = t->stime;
862		return;
863	}
864
865	do {
 
 
 
866		seq = read_seqcount_begin(&t->vtime_seqcount);
867
868		*utime = t->utime;
869		*stime = t->stime;
 
 
870
871		/* Task is sleeping, nothing to add */
872		if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
 
873			continue;
874
875		delta = vtime_delta(t);
876
877		/*
878		 * Task runs either in user or kernel space, add pending nohz time to
879		 * the right place.
880		 */
881		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
882			*utime += delta;
883		else if (t->vtime_snap_whence == VTIME_SYS)
884			*stime += delta;
 
 
885	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886}
887#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v4.6
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8#ifdef CONFIG_PARAVIRT
  9#include <asm/paravirt.h>
 10#endif
 11
 12
 13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 14
 15/*
 16 * There are no locks covering percpu hardirq/softirq time.
 17 * They are only modified in vtime_account, on corresponding CPU
 18 * with interrupts disabled. So, writes are safe.
 19 * They are read and saved off onto struct rq in update_rq_clock().
 20 * This may result in other CPU reading this CPU's irq time and can
 21 * race with irq/vtime_account on this CPU. We would either get old
 22 * or new value with a side effect of accounting a slice of irq time to wrong
 23 * task when irq is in progress while we read rq->clock. That is a worthy
 24 * compromise in place of having locks on each irq in account_system_time.
 25 */
 26DEFINE_PER_CPU(u64, cpu_hardirq_time);
 27DEFINE_PER_CPU(u64, cpu_softirq_time);
 28
 29static DEFINE_PER_CPU(u64, irq_start_time);
 30static int sched_clock_irqtime;
 31
 32void enable_sched_clock_irqtime(void)
 33{
 34	sched_clock_irqtime = 1;
 35}
 36
 37void disable_sched_clock_irqtime(void)
 38{
 39	sched_clock_irqtime = 0;
 40}
 41
 42#ifndef CONFIG_64BIT
 43DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 44#endif /* CONFIG_64BIT */
 45
 46/*
 47 * Called before incrementing preempt_count on {soft,}irq_enter
 48 * and before decrementing preempt_count on {soft,}irq_exit.
 49 */
 50void irqtime_account_irq(struct task_struct *curr)
 51{
 52	unsigned long flags;
 53	s64 delta;
 54	int cpu;
 55
 56	if (!sched_clock_irqtime)
 57		return;
 58
 59	local_irq_save(flags);
 60
 61	cpu = smp_processor_id();
 62	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 63	__this_cpu_add(irq_start_time, delta);
 64
 65	irq_time_write_begin();
 66	/*
 67	 * We do not account for softirq time from ksoftirqd here.
 68	 * We want to continue accounting softirq time to ksoftirqd thread
 69	 * in that case, so as not to confuse scheduler with a special task
 70	 * that do not consume any time, but still wants to run.
 71	 */
 72	if (hardirq_count())
 73		__this_cpu_add(cpu_hardirq_time, delta);
 74	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 75		__this_cpu_add(cpu_softirq_time, delta);
 76
 77	irq_time_write_end();
 78	local_irq_restore(flags);
 79}
 80EXPORT_SYMBOL_GPL(irqtime_account_irq);
 81
 82static int irqtime_account_hi_update(void)
 83{
 84	u64 *cpustat = kcpustat_this_cpu->cpustat;
 85	unsigned long flags;
 86	u64 latest_ns;
 87	int ret = 0;
 
 
 88
 89	local_irq_save(flags);
 90	latest_ns = this_cpu_read(cpu_hardirq_time);
 91	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 92		ret = 1;
 93	local_irq_restore(flags);
 94	return ret;
 95}
 96
 97static int irqtime_account_si_update(void)
 98{
 99	u64 *cpustat = kcpustat_this_cpu->cpustat;
100	unsigned long flags;
101	u64 latest_ns;
102	int ret = 0;
103
104	local_irq_save(flags);
105	latest_ns = this_cpu_read(cpu_softirq_time);
106	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
107		ret = 1;
108	local_irq_restore(flags);
109	return ret;
110}
111
112#else /* CONFIG_IRQ_TIME_ACCOUNTING */
113
114#define sched_clock_irqtime	(0)
115
 
 
 
 
 
 
 
 
 
 
116#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
117
118static inline void task_group_account_field(struct task_struct *p, int index,
119					    u64 tmp)
120{
121	/*
122	 * Since all updates are sure to touch the root cgroup, we
123	 * get ourselves ahead and touch it first. If the root cgroup
124	 * is the only cgroup, then nothing else should be necessary.
125	 *
126	 */
127	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
128
129	cpuacct_account_field(p, index, tmp);
130}
131
132/*
133 * Account user cpu time to a process.
134 * @p: the process that the cpu time gets accounted to
135 * @cputime: the cpu time spent in user space since the last update
136 * @cputime_scaled: cputime scaled by cpu frequency
137 */
138void account_user_time(struct task_struct *p, cputime_t cputime,
139		       cputime_t cputime_scaled)
140{
141	int index;
142
143	/* Add user time to process. */
144	p->utime += cputime;
145	p->utimescaled += cputime_scaled;
146	account_group_user_time(p, cputime);
147
148	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
149
150	/* Add user time to cpustat. */
151	task_group_account_field(p, index, (__force u64) cputime);
152
153	/* Account for user time used */
154	acct_account_cputime(p);
155}
156
157/*
158 * Account guest cpu time to a process.
159 * @p: the process that the cpu time gets accounted to
160 * @cputime: the cpu time spent in virtual machine since the last update
161 * @cputime_scaled: cputime scaled by cpu frequency
162 */
163static void account_guest_time(struct task_struct *p, cputime_t cputime,
164			       cputime_t cputime_scaled)
165{
166	u64 *cpustat = kcpustat_this_cpu->cpustat;
167
168	/* Add guest time to process. */
169	p->utime += cputime;
170	p->utimescaled += cputime_scaled;
171	account_group_user_time(p, cputime);
172	p->gtime += cputime;
173
174	/* Add guest time to cpustat. */
175	if (task_nice(p) > 0) {
176		cpustat[CPUTIME_NICE] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
178	} else {
179		cpustat[CPUTIME_USER] += (__force u64) cputime;
180		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
181	}
182}
183
184/*
185 * Account system cpu time to a process and desired cpustat field
186 * @p: the process that the cpu time gets accounted to
187 * @cputime: the cpu time spent in kernel space since the last update
188 * @cputime_scaled: cputime scaled by cpu frequency
189 * @target_cputime64: pointer to cpustat field that has to be updated
190 */
191static inline
192void __account_system_time(struct task_struct *p, cputime_t cputime,
193			cputime_t cputime_scaled, int index)
194{
195	/* Add system time to process. */
196	p->stime += cputime;
197	p->stimescaled += cputime_scaled;
198	account_group_system_time(p, cputime);
199
200	/* Add system time to cpustat. */
201	task_group_account_field(p, index, (__force u64) cputime);
202
203	/* Account for system time used */
204	acct_account_cputime(p);
205}
206
207/*
208 * Account system cpu time to a process.
209 * @p: the process that the cpu time gets accounted to
210 * @hardirq_offset: the offset to subtract from hardirq_count()
211 * @cputime: the cpu time spent in kernel space since the last update
212 * @cputime_scaled: cputime scaled by cpu frequency
213 */
214void account_system_time(struct task_struct *p, int hardirq_offset,
215			 cputime_t cputime, cputime_t cputime_scaled)
216{
217	int index;
218
219	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
220		account_guest_time(p, cputime, cputime_scaled);
221		return;
222	}
223
224	if (hardirq_count() - hardirq_offset)
225		index = CPUTIME_IRQ;
226	else if (in_serving_softirq())
227		index = CPUTIME_SOFTIRQ;
228	else
229		index = CPUTIME_SYSTEM;
230
231	__account_system_time(p, cputime, cputime_scaled, index);
232}
233
234/*
235 * Account for involuntary wait time.
236 * @cputime: the cpu time spent in involuntary wait
237 */
238void account_steal_time(cputime_t cputime)
239{
240	u64 *cpustat = kcpustat_this_cpu->cpustat;
241
242	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243}
244
245/*
246 * Account for idle time.
247 * @cputime: the cpu time spent in idle wait
248 */
249void account_idle_time(cputime_t cputime)
250{
251	u64 *cpustat = kcpustat_this_cpu->cpustat;
252	struct rq *rq = this_rq();
253
254	if (atomic_read(&rq->nr_iowait) > 0)
255		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
256	else
257		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
258}
259
260static __always_inline bool steal_account_process_tick(void)
 
 
 
 
 
261{
262#ifdef CONFIG_PARAVIRT
263	if (static_key_false(&paravirt_steal_enabled)) {
 
264		u64 steal;
265		unsigned long steal_jiffies;
266
267		steal = paravirt_steal_clock(smp_processor_id());
268		steal -= this_rq()->prev_steal_time;
269
270		/*
271		 * steal is in nsecs but our caller is expecting steal
272		 * time in jiffies. Lets cast the result to jiffies
273		 * granularity and account the rest on the next rounds.
274		 */
275		steal_jiffies = nsecs_to_jiffies(steal);
276		this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
277
278		account_steal_time(jiffies_to_cputime(steal_jiffies));
279		return steal_jiffies;
280	}
281#endif
282	return false;
283}
284
285/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
287 * tasks (sum on group iteration) belonging to @tsk's group.
288 */
289void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
290{
291	struct signal_struct *sig = tsk->signal;
292	cputime_t utime, stime;
293	struct task_struct *t;
294	unsigned int seq, nextseq;
295	unsigned long flags;
296
 
 
 
 
 
 
 
 
 
 
 
297	rcu_read_lock();
298	/* Attempt a lockless read on the first round. */
299	nextseq = 0;
300	do {
301		seq = nextseq;
302		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
303		times->utime = sig->utime;
304		times->stime = sig->stime;
305		times->sum_exec_runtime = sig->sum_sched_runtime;
306
307		for_each_thread(tsk, t) {
308			task_cputime(t, &utime, &stime);
309			times->utime += utime;
310			times->stime += stime;
311			times->sum_exec_runtime += task_sched_runtime(t);
312		}
313		/* If lockless access failed, take the lock. */
314		nextseq = 1;
315	} while (need_seqretry(&sig->stats_lock, seq));
316	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
317	rcu_read_unlock();
318}
319
320#ifdef CONFIG_IRQ_TIME_ACCOUNTING
321/*
322 * Account a tick to a process and cpustat
323 * @p: the process that the cpu time gets accounted to
324 * @user_tick: is the tick from userspace
325 * @rq: the pointer to rq
326 *
327 * Tick demultiplexing follows the order
328 * - pending hardirq update
329 * - pending softirq update
330 * - user_time
331 * - idle_time
332 * - system time
333 *   - check for guest_time
334 *   - else account as system_time
335 *
336 * Check for hardirq is done both for system and user time as there is
337 * no timer going off while we are on hardirq and hence we may never get an
338 * opportunity to update it solely in system time.
339 * p->stime and friends are only updated on system time and not on irq
340 * softirq as those do not count in task exec_runtime any more.
341 */
342static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
343					 struct rq *rq, int ticks)
344{
345	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
346	u64 cputime = (__force u64) cputime_one_jiffy;
347	u64 *cpustat = kcpustat_this_cpu->cpustat;
348
349	if (steal_account_process_tick())
 
 
 
 
 
 
 
 
350		return;
 
351
352	cputime *= ticks;
353	scaled *= ticks;
354
355	if (irqtime_account_hi_update()) {
356		cpustat[CPUTIME_IRQ] += cputime;
357	} else if (irqtime_account_si_update()) {
358		cpustat[CPUTIME_SOFTIRQ] += cputime;
359	} else if (this_cpu_ksoftirqd() == p) {
360		/*
361		 * ksoftirqd time do not get accounted in cpu_softirq_time.
362		 * So, we have to handle it separately here.
363		 * Also, p->stime needs to be updated for ksoftirqd.
364		 */
365		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
366	} else if (user_tick) {
367		account_user_time(p, cputime, scaled);
368	} else if (p == rq->idle) {
369		account_idle_time(cputime);
370	} else if (p->flags & PF_VCPU) { /* System time or guest time */
371		account_guest_time(p, cputime, scaled);
372	} else {
373		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
374	}
375}
376
377static void irqtime_account_idle_ticks(int ticks)
378{
379	struct rq *rq = this_rq();
380
381	irqtime_account_process_tick(current, 0, rq, ticks);
382}
383#else /* CONFIG_IRQ_TIME_ACCOUNTING */
384static inline void irqtime_account_idle_ticks(int ticks) {}
385static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
386						struct rq *rq, int nr_ticks) {}
387#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
388
389/*
390 * Use precise platform statistics if available:
391 */
392#ifdef CONFIG_VIRT_CPU_ACCOUNTING
393
394#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
395void vtime_common_task_switch(struct task_struct *prev)
396{
397	if (is_idle_task(prev))
398		vtime_account_idle(prev);
399	else
400		vtime_account_system(prev);
401
402#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
403	vtime_account_user(prev);
404#endif
405	arch_vtime_task_switch(prev);
406}
407#endif
408
 
 
 
 
409/*
410 * Archs that account the whole time spent in the idle task
411 * (outside irq) as idle time can rely on this and just implement
412 * vtime_account_system() and vtime_account_idle(). Archs that
413 * have other meaning of the idle time (s390 only includes the
414 * time spent by the CPU when it's in low power mode) must override
415 * vtime_account().
416 */
417#ifndef __ARCH_HAS_VTIME_ACCOUNT
418void vtime_common_account_irq_enter(struct task_struct *tsk)
419{
420	if (!in_interrupt()) {
421		/*
422		 * If we interrupted user, context_tracking_in_user()
423		 * is 1 because the context tracking don't hook
424		 * on irq entry/exit. This way we know if
425		 * we need to flush user time on kernel entry.
426		 */
427		if (context_tracking_in_user()) {
428			vtime_account_user(tsk);
429			return;
430		}
431
432		if (is_idle_task(tsk)) {
433			vtime_account_idle(tsk);
434			return;
435		}
436	}
437	vtime_account_system(tsk);
438}
439EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
440#endif /* __ARCH_HAS_VTIME_ACCOUNT */
441#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
442
443
444#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
445void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
446{
447	*ut = p->utime;
448	*st = p->stime;
449}
450EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451
452void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453{
454	struct task_cputime cputime;
455
456	thread_group_cputime(p, &cputime);
457
458	*ut = cputime.utime;
459	*st = cputime.stime;
460}
461#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
462/*
463 * Account a single tick of cpu time.
464 * @p: the process that the cpu time gets accounted to
465 * @user_tick: indicates if the tick is a user or a system tick
466 */
467void account_process_tick(struct task_struct *p, int user_tick)
468{
469	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
470	struct rq *rq = this_rq();
471
472	if (vtime_accounting_cpu_enabled())
473		return;
474
475	if (sched_clock_irqtime) {
476		irqtime_account_process_tick(p, user_tick, rq, 1);
477		return;
478	}
479
480	if (steal_account_process_tick())
 
 
 
481		return;
482
 
 
483	if (user_tick)
484		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
485	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
486		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
487				    one_jiffy_scaled);
488	else
489		account_idle_time(cputime_one_jiffy);
490}
491
492/*
493 * Account multiple ticks of steal time.
494 * @p: the process from which the cpu time has been stolen
495 * @ticks: number of stolen ticks
496 */
497void account_steal_ticks(unsigned long ticks)
498{
499	account_steal_time(jiffies_to_cputime(ticks));
500}
501
502/*
503 * Account multiple ticks of idle time.
504 * @ticks: number of stolen ticks
505 */
506void account_idle_ticks(unsigned long ticks)
507{
 
508
509	if (sched_clock_irqtime) {
510		irqtime_account_idle_ticks(ticks);
511		return;
512	}
513
514	account_idle_time(jiffies_to_cputime(ticks));
 
 
 
 
 
 
 
515}
516
517/*
518 * Perform (stime * rtime) / total, but avoid multiplication overflow by
519 * loosing precision when the numbers are big.
520 */
521static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
522{
523	u64 scaled;
524
525	for (;;) {
526		/* Make sure "rtime" is the bigger of stime/rtime */
527		if (stime > rtime)
528			swap(rtime, stime);
529
530		/* Make sure 'total' fits in 32 bits */
531		if (total >> 32)
532			goto drop_precision;
533
534		/* Does rtime (and thus stime) fit in 32 bits? */
535		if (!(rtime >> 32))
536			break;
537
538		/* Can we just balance rtime/stime rather than dropping bits? */
539		if (stime >> 31)
540			goto drop_precision;
541
542		/* We can grow stime and shrink rtime and try to make them both fit */
543		stime <<= 1;
544		rtime >>= 1;
545		continue;
546
547drop_precision:
548		/* We drop from rtime, it has more bits than stime */
549		rtime >>= 1;
550		total >>= 1;
551	}
552
553	/*
554	 * Make sure gcc understands that this is a 32x32->64 multiply,
555	 * followed by a 64/32->64 divide.
556	 */
557	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
558	return (__force cputime_t) scaled;
559}
560
561/*
562 * Adjust tick based cputime random precision against scheduler runtime
563 * accounting.
564 *
565 * Tick based cputime accounting depend on random scheduling timeslices of a
566 * task to be interrupted or not by the timer.  Depending on these
567 * circumstances, the number of these interrupts may be over or
568 * under-optimistic, matching the real user and system cputime with a variable
569 * precision.
570 *
571 * Fix this by scaling these tick based values against the total runtime
572 * accounted by the CFS scheduler.
573 *
574 * This code provides the following guarantees:
575 *
576 *   stime + utime == rtime
577 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
578 *
579 * Assuming that rtime_i+1 >= rtime_i.
580 */
581static void cputime_adjust(struct task_cputime *curr,
582			   struct prev_cputime *prev,
583			   cputime_t *ut, cputime_t *st)
584{
585	cputime_t rtime, stime, utime;
586	unsigned long flags;
587
588	/* Serialize concurrent callers such that we can honour our guarantees */
589	raw_spin_lock_irqsave(&prev->lock, flags);
590	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
591
592	/*
593	 * This is possible under two circumstances:
594	 *  - rtime isn't monotonic after all (a bug);
595	 *  - we got reordered by the lock.
596	 *
597	 * In both cases this acts as a filter such that the rest of the code
598	 * can assume it is monotonic regardless of anything else.
599	 */
600	if (prev->stime + prev->utime >= rtime)
601		goto out;
602
603	stime = curr->stime;
604	utime = curr->utime;
605
606	if (utime == 0) {
607		stime = rtime;
 
 
 
 
 
608		goto update;
609	}
610
611	if (stime == 0) {
612		utime = rtime;
613		goto update;
614	}
615
616	stime = scale_stime((__force u64)stime, (__force u64)rtime,
617			    (__force u64)(stime + utime));
618
 
619	/*
620	 * Make sure stime doesn't go backwards; this preserves monotonicity
621	 * for utime because rtime is monotonic.
622	 *
623	 *  utime_i+1 = rtime_i+1 - stime_i
624	 *            = rtime_i+1 - (rtime_i - utime_i)
625	 *            = (rtime_i+1 - rtime_i) + utime_i
626	 *            >= utime_i
627	 */
628	if (stime < prev->stime)
629		stime = prev->stime;
630	utime = rtime - stime;
631
632	/*
633	 * Make sure utime doesn't go backwards; this still preserves
634	 * monotonicity for stime, analogous argument to above.
635	 */
636	if (utime < prev->utime) {
637		utime = prev->utime;
638		stime = rtime - utime;
639	}
640
641update:
642	prev->stime = stime;
643	prev->utime = utime;
644out:
645	*ut = prev->utime;
646	*st = prev->stime;
647	raw_spin_unlock_irqrestore(&prev->lock, flags);
648}
649
650void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
651{
652	struct task_cputime cputime = {
653		.sum_exec_runtime = p->se.sum_exec_runtime,
654	};
655
656	task_cputime(p, &cputime.utime, &cputime.stime);
657	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
658}
659EXPORT_SYMBOL_GPL(task_cputime_adjusted);
660
661void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
662{
663	struct task_cputime cputime;
664
665	thread_group_cputime(p, &cputime);
666	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
667}
668#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
669
670#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
671static cputime_t vtime_delta(struct task_struct *tsk)
672{
673	unsigned long now = READ_ONCE(jiffies);
674
675	if (time_before(now, (unsigned long)tsk->vtime_snap))
676		return 0;
677
678	return jiffies_to_cputime(now - tsk->vtime_snap);
679}
680
681static cputime_t get_vtime_delta(struct task_struct *tsk)
682{
683	unsigned long now = READ_ONCE(jiffies);
684	unsigned long delta = now - tsk->vtime_snap;
685
 
 
 
 
 
 
 
 
 
686	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
687	tsk->vtime_snap = now;
688
689	return jiffies_to_cputime(delta);
690}
691
692static void __vtime_account_system(struct task_struct *tsk)
693{
694	cputime_t delta_cpu = get_vtime_delta(tsk);
695
696	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
697}
698
699void vtime_account_system(struct task_struct *tsk)
700{
701	if (!vtime_delta(tsk))
702		return;
703
704	write_seqcount_begin(&tsk->vtime_seqcount);
705	__vtime_account_system(tsk);
706	write_seqcount_end(&tsk->vtime_seqcount);
707}
708
709void vtime_gen_account_irq_exit(struct task_struct *tsk)
710{
711	write_seqcount_begin(&tsk->vtime_seqcount);
712	if (vtime_delta(tsk))
713		__vtime_account_system(tsk);
714	if (context_tracking_in_user())
715		tsk->vtime_snap_whence = VTIME_USER;
716	write_seqcount_end(&tsk->vtime_seqcount);
717}
718
719void vtime_account_user(struct task_struct *tsk)
720{
721	cputime_t delta_cpu;
722
723	write_seqcount_begin(&tsk->vtime_seqcount);
724	tsk->vtime_snap_whence = VTIME_SYS;
725	if (vtime_delta(tsk)) {
726		delta_cpu = get_vtime_delta(tsk);
727		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
728	}
729	write_seqcount_end(&tsk->vtime_seqcount);
730}
731
732void vtime_user_enter(struct task_struct *tsk)
733{
734	write_seqcount_begin(&tsk->vtime_seqcount);
735	if (vtime_delta(tsk))
736		__vtime_account_system(tsk);
737	tsk->vtime_snap_whence = VTIME_USER;
738	write_seqcount_end(&tsk->vtime_seqcount);
739}
740
741void vtime_guest_enter(struct task_struct *tsk)
742{
743	/*
744	 * The flags must be updated under the lock with
745	 * the vtime_snap flush and update.
746	 * That enforces a right ordering and update sequence
747	 * synchronization against the reader (task_gtime())
748	 * that can thus safely catch up with a tickless delta.
749	 */
750	write_seqcount_begin(&tsk->vtime_seqcount);
751	if (vtime_delta(tsk))
752		__vtime_account_system(tsk);
753	current->flags |= PF_VCPU;
754	write_seqcount_end(&tsk->vtime_seqcount);
755}
756EXPORT_SYMBOL_GPL(vtime_guest_enter);
757
758void vtime_guest_exit(struct task_struct *tsk)
759{
760	write_seqcount_begin(&tsk->vtime_seqcount);
761	__vtime_account_system(tsk);
762	current->flags &= ~PF_VCPU;
763	write_seqcount_end(&tsk->vtime_seqcount);
764}
765EXPORT_SYMBOL_GPL(vtime_guest_exit);
766
767void vtime_account_idle(struct task_struct *tsk)
768{
769	cputime_t delta_cpu = get_vtime_delta(tsk);
770
771	account_idle_time(delta_cpu);
772}
773
774void arch_vtime_task_switch(struct task_struct *prev)
775{
776	write_seqcount_begin(&prev->vtime_seqcount);
777	prev->vtime_snap_whence = VTIME_INACTIVE;
778	write_seqcount_end(&prev->vtime_seqcount);
779
780	write_seqcount_begin(&current->vtime_seqcount);
781	current->vtime_snap_whence = VTIME_SYS;
782	current->vtime_snap = jiffies;
783	write_seqcount_end(&current->vtime_seqcount);
784}
785
786void vtime_init_idle(struct task_struct *t, int cpu)
787{
788	unsigned long flags;
789
790	local_irq_save(flags);
791	write_seqcount_begin(&t->vtime_seqcount);
792	t->vtime_snap_whence = VTIME_SYS;
793	t->vtime_snap = jiffies;
794	write_seqcount_end(&t->vtime_seqcount);
795	local_irq_restore(flags);
796}
797
798cputime_t task_gtime(struct task_struct *t)
799{
800	unsigned int seq;
801	cputime_t gtime;
802
803	if (!vtime_accounting_enabled())
804		return t->gtime;
805
806	do {
807		seq = read_seqcount_begin(&t->vtime_seqcount);
808
809		gtime = t->gtime;
810		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
811			gtime += vtime_delta(t);
812
813	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
814
815	return gtime;
816}
817
818/*
819 * Fetch cputime raw values from fields of task_struct and
820 * add up the pending nohz execution time since the last
821 * cputime snapshot.
822 */
823static void
824fetch_task_cputime(struct task_struct *t,
825		   cputime_t *u_dst, cputime_t *s_dst,
826		   cputime_t *u_src, cputime_t *s_src,
827		   cputime_t *udelta, cputime_t *sdelta)
828{
 
829	unsigned int seq;
830	unsigned long long delta;
 
 
 
 
 
831
832	do {
833		*udelta = 0;
834		*sdelta = 0;
835
836		seq = read_seqcount_begin(&t->vtime_seqcount);
837
838		if (u_dst)
839			*u_dst = *u_src;
840		if (s_dst)
841			*s_dst = *s_src;
842
843		/* Task is sleeping, nothing to add */
844		if (t->vtime_snap_whence == VTIME_INACTIVE ||
845		    is_idle_task(t))
846			continue;
847
848		delta = vtime_delta(t);
849
850		/*
851		 * Task runs either in user or kernel space, add pending nohz time to
852		 * the right place.
853		 */
854		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
855			*udelta = delta;
856		} else {
857			if (t->vtime_snap_whence == VTIME_SYS)
858				*sdelta = delta;
859		}
860	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
861}
862
863
864void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
865{
866	cputime_t udelta, sdelta;
867
868	if (!vtime_accounting_enabled()) {
869		if (utime)
870			*utime = t->utime;
871		if (stime)
872			*stime = t->stime;
873		return;
874	}
875
876	fetch_task_cputime(t, utime, stime, &t->utime,
877			   &t->stime, &udelta, &sdelta);
878	if (utime)
879		*utime += udelta;
880	if (stime)
881		*stime += sdelta;
882}
883
884void task_cputime_scaled(struct task_struct *t,
885			 cputime_t *utimescaled, cputime_t *stimescaled)
886{
887	cputime_t udelta, sdelta;
888
889	if (!vtime_accounting_enabled()) {
890		if (utimescaled)
891			*utimescaled = t->utimescaled;
892		if (stimescaled)
893			*stimescaled = t->stimescaled;
894		return;
895	}
896
897	fetch_task_cputime(t, utimescaled, stimescaled,
898			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
899	if (utimescaled)
900		*utimescaled += cputime_to_scaled(udelta);
901	if (stimescaled)
902		*stimescaled += cputime_to_scaled(sdelta);
903}
904#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */