Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.10.11
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8#ifdef CONFIG_PARAVIRT
  9#include <asm/paravirt.h>
 10#endif
 11
 12
 13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 14
 15/*
 16 * There are no locks covering percpu hardirq/softirq time.
 17 * They are only modified in vtime_account, on corresponding CPU
 18 * with interrupts disabled. So, writes are safe.
 19 * They are read and saved off onto struct rq in update_rq_clock().
 20 * This may result in other CPU reading this CPU's irq time and can
 21 * race with irq/vtime_account on this CPU. We would either get old
 22 * or new value with a side effect of accounting a slice of irq time to wrong
 23 * task when irq is in progress while we read rq->clock. That is a worthy
 24 * compromise in place of having locks on each irq in account_system_time.
 25 */
 26DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 27
 28static int sched_clock_irqtime;
 29
 30void enable_sched_clock_irqtime(void)
 31{
 32	sched_clock_irqtime = 1;
 33}
 34
 35void disable_sched_clock_irqtime(void)
 36{
 37	sched_clock_irqtime = 0;
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 40/*
 41 * Called before incrementing preempt_count on {soft,}irq_enter
 42 * and before decrementing preempt_count on {soft,}irq_exit.
 43 */
 44void irqtime_account_irq(struct task_struct *curr)
 45{
 46	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 47	s64 delta;
 48	int cpu;
 49
 50	if (!sched_clock_irqtime)
 51		return;
 52
 53	cpu = smp_processor_id();
 54	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 55	irqtime->irq_start_time += delta;
 56
 57	u64_stats_update_begin(&irqtime->sync);
 58	/*
 59	 * We do not account for softirq time from ksoftirqd here.
 60	 * We want to continue accounting softirq time to ksoftirqd thread
 61	 * in that case, so as not to confuse scheduler with a special task
 62	 * that do not consume any time, but still wants to run.
 63	 */
 64	if (hardirq_count())
 65		irqtime->hardirq_time += delta;
 66	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 67		irqtime->softirq_time += delta;
 68
 69	u64_stats_update_end(&irqtime->sync);
 70}
 71EXPORT_SYMBOL_GPL(irqtime_account_irq);
 72
 73static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
 74{
 75	u64 *cpustat = kcpustat_this_cpu->cpustat;
 76	cputime_t irq_cputime;
 77
 78	irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
 79	irq_cputime = min(irq_cputime, maxtime);
 80	cpustat[idx] += irq_cputime;
 81
 82	return irq_cputime;
 83}
 84
 85static cputime_t irqtime_account_hi_update(cputime_t maxtime)
 86{
 87	return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
 88				      CPUTIME_IRQ, maxtime);
 89}
 90
 91static cputime_t irqtime_account_si_update(cputime_t maxtime)
 92{
 93	return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
 94				      CPUTIME_SOFTIRQ, maxtime);
 95}
 96
 97#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 98
 99#define sched_clock_irqtime	(0)
100
101static cputime_t irqtime_account_hi_update(cputime_t dummy)
102{
103	return 0;
104}
105
106static cputime_t irqtime_account_si_update(cputime_t dummy)
107{
108	return 0;
109}
110
111#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112
113static inline void task_group_account_field(struct task_struct *p, int index,
114					    u64 tmp)
115{
116	/*
117	 * Since all updates are sure to touch the root cgroup, we
118	 * get ourselves ahead and touch it first. If the root cgroup
119	 * is the only cgroup, then nothing else should be necessary.
120	 *
121	 */
122	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123
124	cpuacct_account_field(p, index, tmp);
125}
126
127/*
128 * Account user cpu time to a process.
129 * @p: the process that the cpu time gets accounted to
130 * @cputime: the cpu time spent in user space since the last update
131 */
132void account_user_time(struct task_struct *p, cputime_t cputime)
133{
134	int index;
135
136	/* Add user time to process. */
137	p->utime += cputime;
138	account_group_user_time(p, cputime);
139
140	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
141
142	/* Add user time to cpustat. */
143	task_group_account_field(p, index, (__force u64) cputime);
144
145	/* Account for user time used */
146	acct_account_cputime(p);
147}
148
149/*
150 * Account guest cpu time to a process.
151 * @p: the process that the cpu time gets accounted to
152 * @cputime: the cpu time spent in virtual machine since the last update
153 */
154static void account_guest_time(struct task_struct *p, cputime_t cputime)
155{
156	u64 *cpustat = kcpustat_this_cpu->cpustat;
157
158	/* Add guest time to process. */
159	p->utime += cputime;
160	account_group_user_time(p, cputime);
161	p->gtime += cputime;
162
163	/* Add guest time to cpustat. */
164	if (task_nice(p) > 0) {
165		cpustat[CPUTIME_NICE] += (__force u64) cputime;
166		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
167	} else {
168		cpustat[CPUTIME_USER] += (__force u64) cputime;
169		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
170	}
171}
172
173/*
174 * Account system cpu time to a process and desired cpustat field
175 * @p: the process that the cpu time gets accounted to
176 * @cputime: the cpu time spent in kernel space since the last update
177 * @index: pointer to cpustat field that has to be updated
178 */
179static inline
180void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
181{
182	/* Add system time to process. */
183	p->stime += cputime;
184	account_group_system_time(p, cputime);
185
186	/* Add system time to cpustat. */
187	task_group_account_field(p, index, (__force u64) cputime);
188
189	/* Account for system time used */
190	acct_account_cputime(p);
191}
192
193/*
194 * Account system cpu time to a process.
195 * @p: the process that the cpu time gets accounted to
196 * @hardirq_offset: the offset to subtract from hardirq_count()
197 * @cputime: the cpu time spent in kernel space since the last update
198 */
199void account_system_time(struct task_struct *p, int hardirq_offset,
200			 cputime_t cputime)
201{
202	int index;
203
204	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
205		account_guest_time(p, cputime);
206		return;
207	}
208
209	if (hardirq_count() - hardirq_offset)
210		index = CPUTIME_IRQ;
211	else if (in_serving_softirq())
212		index = CPUTIME_SOFTIRQ;
213	else
214		index = CPUTIME_SYSTEM;
215
216	__account_system_time(p, cputime, index);
217}
218
219/*
220 * Account for involuntary wait time.
221 * @cputime: the cpu time spent in involuntary wait
222 */
223void account_steal_time(cputime_t cputime)
224{
225	u64 *cpustat = kcpustat_this_cpu->cpustat;
226
227	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
228}
229
230/*
231 * Account for idle time.
232 * @cputime: the cpu time spent in idle wait
233 */
234void account_idle_time(cputime_t cputime)
235{
236	u64 *cpustat = kcpustat_this_cpu->cpustat;
237	struct rq *rq = this_rq();
238
239	if (atomic_read(&rq->nr_iowait) > 0)
240		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
241	else
242		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
243}
244
245/*
246 * When a guest is interrupted for a longer amount of time, missed clock
247 * ticks are not redelivered later. Due to that, this function may on
248 * occasion account more time than the calling functions think elapsed.
249 */
250static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
251{
252#ifdef CONFIG_PARAVIRT
253	if (static_key_false(&paravirt_steal_enabled)) {
254		cputime_t steal_cputime;
255		u64 steal;
256
257		steal = paravirt_steal_clock(smp_processor_id());
258		steal -= this_rq()->prev_steal_time;
 
 
 
259
260		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
261		account_steal_time(steal_cputime);
262		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
263
264		return steal_cputime;
265	}
266#endif
267	return 0;
268}
269
270/*
271 * Account how much elapsed time was spent in steal, irq, or softirq time.
272 */
273static inline cputime_t account_other_time(cputime_t max)
274{
275	cputime_t accounted;
276
277	/* Shall be converted to a lockdep-enabled lightweight check */
278	WARN_ON_ONCE(!irqs_disabled());
279
280	accounted = steal_account_process_time(max);
281
282	if (accounted < max)
283		accounted += irqtime_account_hi_update(max - accounted);
284
285	if (accounted < max)
286		accounted += irqtime_account_si_update(max - accounted);
287
288	return accounted;
289}
290
291#ifdef CONFIG_64BIT
292static inline u64 read_sum_exec_runtime(struct task_struct *t)
293{
294	return t->se.sum_exec_runtime;
295}
296#else
297static u64 read_sum_exec_runtime(struct task_struct *t)
298{
299	u64 ns;
300	struct rq_flags rf;
301	struct rq *rq;
302
303	rq = task_rq_lock(t, &rf);
304	ns = t->se.sum_exec_runtime;
305	task_rq_unlock(rq, t, &rf);
306
307	return ns;
308}
309#endif
310
311/*
312 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
313 * tasks (sum on group iteration) belonging to @tsk's group.
314 */
315void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
316{
317	struct signal_struct *sig = tsk->signal;
318	cputime_t utime, stime;
319	struct task_struct *t;
320	unsigned int seq, nextseq;
321	unsigned long flags;
322
323	/*
324	 * Update current task runtime to account pending time since last
325	 * scheduler action or thread_group_cputime() call. This thread group
326	 * might have other running tasks on different CPUs, but updating
327	 * their runtime can affect syscall performance, so we skip account
328	 * those pending times and rely only on values updated on tick or
329	 * other scheduler action.
330	 */
331	if (same_thread_group(current, tsk))
332		(void) task_sched_runtime(current);
333
334	rcu_read_lock();
335	/* Attempt a lockless read on the first round. */
336	nextseq = 0;
337	do {
338		seq = nextseq;
339		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
340		times->utime = sig->utime;
341		times->stime = sig->stime;
342		times->sum_exec_runtime = sig->sum_sched_runtime;
343
344		for_each_thread(tsk, t) {
345			task_cputime(t, &utime, &stime);
346			times->utime += utime;
347			times->stime += stime;
348			times->sum_exec_runtime += read_sum_exec_runtime(t);
349		}
350		/* If lockless access failed, take the lock. */
351		nextseq = 1;
352	} while (need_seqretry(&sig->stats_lock, seq));
353	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
354	rcu_read_unlock();
355}
356
357#ifdef CONFIG_IRQ_TIME_ACCOUNTING
358/*
359 * Account a tick to a process and cpustat
360 * @p: the process that the cpu time gets accounted to
361 * @user_tick: is the tick from userspace
362 * @rq: the pointer to rq
363 *
364 * Tick demultiplexing follows the order
365 * - pending hardirq update
366 * - pending softirq update
367 * - user_time
368 * - idle_time
369 * - system time
370 *   - check for guest_time
371 *   - else account as system_time
372 *
373 * Check for hardirq is done both for system and user time as there is
374 * no timer going off while we are on hardirq and hence we may never get an
375 * opportunity to update it solely in system time.
376 * p->stime and friends are only updated on system time and not on irq
377 * softirq as those do not count in task exec_runtime any more.
378 */
379static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
380					 struct rq *rq, int ticks)
381{
382	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
383	cputime_t other;
384
385	/*
386	 * When returning from idle, many ticks can get accounted at
387	 * once, including some ticks of steal, irq, and softirq time.
388	 * Subtract those ticks from the amount of time accounted to
389	 * idle, or potentially user or system time. Due to rounding,
390	 * other time can exceed ticks occasionally.
391	 */
392	other = account_other_time(ULONG_MAX);
393	if (other >= cputime)
394		return;
 
395	cputime -= other;
396
397	if (this_cpu_ksoftirqd() == p) {
398		/*
399		 * ksoftirqd time do not get accounted in cpu_softirq_time.
400		 * So, we have to handle it separately here.
401		 * Also, p->stime needs to be updated for ksoftirqd.
402		 */
403		__account_system_time(p, cputime, CPUTIME_SOFTIRQ);
404	} else if (user_tick) {
405		account_user_time(p, cputime);
406	} else if (p == rq->idle) {
407		account_idle_time(cputime);
408	} else if (p->flags & PF_VCPU) { /* System time or guest time */
409		account_guest_time(p, cputime);
410	} else {
411		__account_system_time(p, cputime, CPUTIME_SYSTEM);
412	}
413}
414
415static void irqtime_account_idle_ticks(int ticks)
416{
417	struct rq *rq = this_rq();
418
419	irqtime_account_process_tick(current, 0, rq, ticks);
420}
421#else /* CONFIG_IRQ_TIME_ACCOUNTING */
422static inline void irqtime_account_idle_ticks(int ticks) {}
423static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
424						struct rq *rq, int nr_ticks) {}
425#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
426
427/*
428 * Use precise platform statistics if available:
429 */
430#ifdef CONFIG_VIRT_CPU_ACCOUNTING
431
432#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
433void vtime_common_task_switch(struct task_struct *prev)
434{
435	if (is_idle_task(prev))
436		vtime_account_idle(prev);
437	else
438		vtime_account_system(prev);
439
440#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441	vtime_account_user(prev);
442#endif
443	arch_vtime_task_switch(prev);
444}
445#endif
446
447#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
448
449
450#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
451/*
452 * Archs that account the whole time spent in the idle task
453 * (outside irq) as idle time can rely on this and just implement
454 * vtime_account_system() and vtime_account_idle(). Archs that
455 * have other meaning of the idle time (s390 only includes the
456 * time spent by the CPU when it's in low power mode) must override
457 * vtime_account().
458 */
459#ifndef __ARCH_HAS_VTIME_ACCOUNT
460void vtime_account_irq_enter(struct task_struct *tsk)
461{
462	if (!in_interrupt() && is_idle_task(tsk))
463		vtime_account_idle(tsk);
464	else
465		vtime_account_system(tsk);
466}
467EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
468#endif /* __ARCH_HAS_VTIME_ACCOUNT */
469
470void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 
 
 
 
 
 
 
471{
472	*ut = p->utime;
473	*st = p->stime;
474}
475EXPORT_SYMBOL_GPL(task_cputime_adjusted);
476
477void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
478{
479	struct task_cputime cputime;
480
481	thread_group_cputime(p, &cputime);
482
483	*ut = cputime.utime;
484	*st = cputime.stime;
485}
486#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 
 
487/*
488 * Account a single tick of cpu time.
489 * @p: the process that the cpu time gets accounted to
490 * @user_tick: indicates if the tick is a user or a system tick
491 */
492void account_process_tick(struct task_struct *p, int user_tick)
493{
494	cputime_t cputime, steal;
495	struct rq *rq = this_rq();
496
497	if (vtime_accounting_cpu_enabled())
498		return;
499
500	if (sched_clock_irqtime) {
501		irqtime_account_process_tick(p, user_tick, rq, 1);
502		return;
503	}
504
505	cputime = cputime_one_jiffy;
506	steal = steal_account_process_time(ULONG_MAX);
507
508	if (steal >= cputime)
509		return;
510
511	cputime -= steal;
512
513	if (user_tick)
514		account_user_time(p, cputime);
515	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
516		account_system_time(p, HARDIRQ_OFFSET, cputime);
517	else
518		account_idle_time(cputime);
519}
520
521/*
522 * Account multiple ticks of idle time.
523 * @ticks: number of stolen ticks
524 */
525void account_idle_ticks(unsigned long ticks)
526{
527	cputime_t cputime, steal;
528
529	if (sched_clock_irqtime) {
530		irqtime_account_idle_ticks(ticks);
531		return;
532	}
533
534	cputime = jiffies_to_cputime(ticks);
535	steal = steal_account_process_time(ULONG_MAX);
536
537	if (steal >= cputime)
538		return;
539
540	cputime -= steal;
541	account_idle_time(cputime);
542}
543
544/*
545 * Perform (stime * rtime) / total, but avoid multiplication overflow by
546 * loosing precision when the numbers are big.
547 */
548static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
549{
550	u64 scaled;
551
552	for (;;) {
553		/* Make sure "rtime" is the bigger of stime/rtime */
554		if (stime > rtime)
555			swap(rtime, stime);
556
557		/* Make sure 'total' fits in 32 bits */
558		if (total >> 32)
559			goto drop_precision;
560
561		/* Does rtime (and thus stime) fit in 32 bits? */
562		if (!(rtime >> 32))
563			break;
564
565		/* Can we just balance rtime/stime rather than dropping bits? */
566		if (stime >> 31)
567			goto drop_precision;
568
569		/* We can grow stime and shrink rtime and try to make them both fit */
570		stime <<= 1;
571		rtime >>= 1;
572		continue;
573
574drop_precision:
575		/* We drop from rtime, it has more bits than stime */
576		rtime >>= 1;
577		total >>= 1;
578	}
579
580	/*
581	 * Make sure gcc understands that this is a 32x32->64 multiply,
582	 * followed by a 64/32->64 divide.
583	 */
584	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
585	return (__force cputime_t) scaled;
586}
587
588/*
589 * Adjust tick based cputime random precision against scheduler runtime
590 * accounting.
591 *
592 * Tick based cputime accounting depend on random scheduling timeslices of a
593 * task to be interrupted or not by the timer.  Depending on these
594 * circumstances, the number of these interrupts may be over or
595 * under-optimistic, matching the real user and system cputime with a variable
596 * precision.
597 *
598 * Fix this by scaling these tick based values against the total runtime
599 * accounted by the CFS scheduler.
600 *
601 * This code provides the following guarantees:
602 *
603 *   stime + utime == rtime
604 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
605 *
606 * Assuming that rtime_i+1 >= rtime_i.
607 */
608static void cputime_adjust(struct task_cputime *curr,
609			   struct prev_cputime *prev,
610			   cputime_t *ut, cputime_t *st)
611{
612	cputime_t rtime, stime, utime;
613	unsigned long flags;
614
615	/* Serialize concurrent callers such that we can honour our guarantees */
616	raw_spin_lock_irqsave(&prev->lock, flags);
617	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
618
619	/*
620	 * This is possible under two circumstances:
621	 *  - rtime isn't monotonic after all (a bug);
622	 *  - we got reordered by the lock.
623	 *
624	 * In both cases this acts as a filter such that the rest of the code
625	 * can assume it is monotonic regardless of anything else.
626	 */
627	if (prev->stime + prev->utime >= rtime)
628		goto out;
629
630	stime = curr->stime;
631	utime = curr->utime;
632
633	/*
634	 * If either stime or both stime and utime are 0, assume all runtime is
635	 * userspace. Once a task gets some ticks, the monotonicy code at
636	 * 'update' will ensure things converge to the observed ratio.
637	 */
638	if (stime == 0) {
639		utime = rtime;
640		goto update;
641	}
642
643	if (utime == 0) {
644		stime = rtime;
645		goto update;
646	}
647
648	stime = scale_stime((__force u64)stime, (__force u64)rtime,
649			    (__force u64)(stime + utime));
650
651update:
652	/*
653	 * Make sure stime doesn't go backwards; this preserves monotonicity
654	 * for utime because rtime is monotonic.
655	 *
656	 *  utime_i+1 = rtime_i+1 - stime_i
657	 *            = rtime_i+1 - (rtime_i - utime_i)
658	 *            = (rtime_i+1 - rtime_i) + utime_i
659	 *            >= utime_i
660	 */
661	if (stime < prev->stime)
662		stime = prev->stime;
663	utime = rtime - stime;
664
665	/*
666	 * Make sure utime doesn't go backwards; this still preserves
667	 * monotonicity for stime, analogous argument to above.
668	 */
669	if (utime < prev->utime) {
670		utime = prev->utime;
671		stime = rtime - utime;
672	}
673
674	prev->stime = stime;
675	prev->utime = utime;
676out:
677	*ut = prev->utime;
678	*st = prev->stime;
679	raw_spin_unlock_irqrestore(&prev->lock, flags);
680}
681
682void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
683{
684	struct task_cputime cputime = {
685		.sum_exec_runtime = p->se.sum_exec_runtime,
686	};
687
688	task_cputime(p, &cputime.utime, &cputime.stime);
689	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
690}
691EXPORT_SYMBOL_GPL(task_cputime_adjusted);
692
693void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
694{
695	struct task_cputime cputime;
696
697	thread_group_cputime(p, &cputime);
698	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
699}
700#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
701
702#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
703static cputime_t vtime_delta(struct task_struct *tsk)
704{
705	unsigned long now = READ_ONCE(jiffies);
706
707	if (time_before(now, (unsigned long)tsk->vtime_snap))
 
708		return 0;
709
710	return jiffies_to_cputime(now - tsk->vtime_snap);
711}
712
713static cputime_t get_vtime_delta(struct task_struct *tsk)
714{
715	unsigned long now = READ_ONCE(jiffies);
716	cputime_t delta, other;
717
718	/*
719	 * Unlike tick based timing, vtime based timing never has lost
720	 * ticks, and no need for steal time accounting to make up for
721	 * lost ticks. Vtime accounts a rounded version of actual
722	 * elapsed time. Limit account_other_time to prevent rounding
723	 * errors from causing elapsed vtime to go negative.
724	 */
725	delta = jiffies_to_cputime(now - tsk->vtime_snap);
726	other = account_other_time(delta);
727	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
728	tsk->vtime_snap = now;
729
730	return delta - other;
731}
732
733static void __vtime_account_system(struct task_struct *tsk)
 
734{
735	cputime_t delta_cpu = get_vtime_delta(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736
737	account_system_time(tsk, irq_count(), delta_cpu);
 
 
 
 
 
 
 
738}
739
740void vtime_account_system(struct task_struct *tsk)
741{
742	if (!vtime_delta(tsk))
 
 
743		return;
744
745	write_seqcount_begin(&tsk->vtime_seqcount);
746	__vtime_account_system(tsk);
747	write_seqcount_end(&tsk->vtime_seqcount);
748}
749
750void vtime_account_user(struct task_struct *tsk)
751{
752	cputime_t delta_cpu;
753
754	write_seqcount_begin(&tsk->vtime_seqcount);
755	tsk->vtime_snap_whence = VTIME_SYS;
756	if (vtime_delta(tsk)) {
757		delta_cpu = get_vtime_delta(tsk);
758		account_user_time(tsk, delta_cpu);
759	}
760	write_seqcount_end(&tsk->vtime_seqcount);
761}
762
763void vtime_user_enter(struct task_struct *tsk)
764{
765	write_seqcount_begin(&tsk->vtime_seqcount);
766	if (vtime_delta(tsk))
767		__vtime_account_system(tsk);
768	tsk->vtime_snap_whence = VTIME_USER;
769	write_seqcount_end(&tsk->vtime_seqcount);
 
 
 
 
 
770}
771
772void vtime_guest_enter(struct task_struct *tsk)
773{
 
774	/*
775	 * The flags must be updated under the lock with
776	 * the vtime_snap flush and update.
777	 * That enforces a right ordering and update sequence
778	 * synchronization against the reader (task_gtime())
779	 * that can thus safely catch up with a tickless delta.
780	 */
781	write_seqcount_begin(&tsk->vtime_seqcount);
782	if (vtime_delta(tsk))
783		__vtime_account_system(tsk);
784	current->flags |= PF_VCPU;
785	write_seqcount_end(&tsk->vtime_seqcount);
786}
787EXPORT_SYMBOL_GPL(vtime_guest_enter);
788
789void vtime_guest_exit(struct task_struct *tsk)
790{
791	write_seqcount_begin(&tsk->vtime_seqcount);
792	__vtime_account_system(tsk);
793	current->flags &= ~PF_VCPU;
794	write_seqcount_end(&tsk->vtime_seqcount);
 
 
 
795}
796EXPORT_SYMBOL_GPL(vtime_guest_exit);
797
798void vtime_account_idle(struct task_struct *tsk)
799{
800	cputime_t delta_cpu = get_vtime_delta(tsk);
801
802	account_idle_time(delta_cpu);
803}
804
805void arch_vtime_task_switch(struct task_struct *prev)
806{
807	write_seqcount_begin(&prev->vtime_seqcount);
808	prev->vtime_snap_whence = VTIME_INACTIVE;
809	write_seqcount_end(&prev->vtime_seqcount);
810
811	write_seqcount_begin(&current->vtime_seqcount);
812	current->vtime_snap_whence = VTIME_SYS;
813	current->vtime_snap = jiffies;
814	write_seqcount_end(&current->vtime_seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815}
816
817void vtime_init_idle(struct task_struct *t, int cpu)
818{
 
819	unsigned long flags;
820
821	local_irq_save(flags);
822	write_seqcount_begin(&t->vtime_seqcount);
823	t->vtime_snap_whence = VTIME_SYS;
824	t->vtime_snap = jiffies;
825	write_seqcount_end(&t->vtime_seqcount);
 
826	local_irq_restore(flags);
827}
828
829cputime_t task_gtime(struct task_struct *t)
830{
 
831	unsigned int seq;
832	cputime_t gtime;
833
834	if (!vtime_accounting_enabled())
835		return t->gtime;
836
837	do {
838		seq = read_seqcount_begin(&t->vtime_seqcount);
839
840		gtime = t->gtime;
841		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
842			gtime += vtime_delta(t);
843
844	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
845
846	return gtime;
847}
848
849/*
850 * Fetch cputime raw values from fields of task_struct and
851 * add up the pending nohz execution time since the last
852 * cputime snapshot.
853 */
854void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
855{
856	cputime_t delta;
857	unsigned int seq;
 
858
859	if (!vtime_accounting_enabled()) {
860		*utime = t->utime;
861		*stime = t->stime;
862		return;
863	}
864
865	do {
866		seq = read_seqcount_begin(&t->vtime_seqcount);
867
868		*utime = t->utime;
869		*stime = t->stime;
870
871		/* Task is sleeping, nothing to add */
872		if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
873			continue;
874
875		delta = vtime_delta(t);
876
877		/*
878		 * Task runs either in user or kernel space, add pending nohz time to
879		 * the right place.
880		 */
881		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
882			*utime += delta;
883		else if (t->vtime_snap_whence == VTIME_SYS)
884			*stime += delta;
885	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886}
 
 
887#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
 
 
   5#include "sched.h"
 
 
 
 
   6
   7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   8
   9/*
  10 * There are no locks covering percpu hardirq/softirq time.
  11 * They are only modified in vtime_account, on corresponding CPU
  12 * with interrupts disabled. So, writes are safe.
  13 * They are read and saved off onto struct rq in update_rq_clock().
  14 * This may result in other CPU reading this CPU's irq time and can
  15 * race with irq/vtime_account on this CPU. We would either get old
  16 * or new value with a side effect of accounting a slice of irq time to wrong
  17 * task when irq is in progress while we read rq->clock. That is a worthy
  18 * compromise in place of having locks on each irq in account_system_time.
  19 */
  20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  21
  22static int sched_clock_irqtime;
  23
  24void enable_sched_clock_irqtime(void)
  25{
  26	sched_clock_irqtime = 1;
  27}
  28
  29void disable_sched_clock_irqtime(void)
  30{
  31	sched_clock_irqtime = 0;
  32}
  33
  34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  35				  enum cpu_usage_stat idx)
  36{
  37	u64 *cpustat = kcpustat_this_cpu->cpustat;
  38
  39	u64_stats_update_begin(&irqtime->sync);
  40	cpustat[idx] += delta;
  41	irqtime->total += delta;
  42	irqtime->tick_delta += delta;
  43	u64_stats_update_end(&irqtime->sync);
  44}
  45
  46/*
  47 * Called before incrementing preempt_count on {soft,}irq_enter
  48 * and before decrementing preempt_count on {soft,}irq_exit.
  49 */
  50void irqtime_account_irq(struct task_struct *curr)
  51{
  52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  53	s64 delta;
  54	int cpu;
  55
  56	if (!sched_clock_irqtime)
  57		return;
  58
  59	cpu = smp_processor_id();
  60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  61	irqtime->irq_start_time += delta;
  62
 
  63	/*
  64	 * We do not account for softirq time from ksoftirqd here.
  65	 * We want to continue accounting softirq time to ksoftirqd thread
  66	 * in that case, so as not to confuse scheduler with a special task
  67	 * that do not consume any time, but still wants to run.
  68	 */
  69	if (hardirq_count())
  70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 
 
  73}
  74EXPORT_SYMBOL_GPL(irqtime_account_irq);
  75
  76static u64 irqtime_tick_accounted(u64 maxtime)
  77{
  78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  79	u64 delta;
 
 
 
 
 
 
 
  80
  81	delta = min(irqtime->tick_delta, maxtime);
  82	irqtime->tick_delta -= delta;
 
 
 
  83
  84	return delta;
 
 
 
  85}
  86
  87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  88
  89#define sched_clock_irqtime	(0)
  90
  91static u64 irqtime_tick_accounted(u64 dummy)
 
 
 
 
 
  92{
  93	return 0;
  94}
  95
  96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  97
  98static inline void task_group_account_field(struct task_struct *p, int index,
  99					    u64 tmp)
 100{
 101	/*
 102	 * Since all updates are sure to touch the root cgroup, we
 103	 * get ourselves ahead and touch it first. If the root cgroup
 104	 * is the only cgroup, then nothing else should be necessary.
 105	 *
 106	 */
 107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 108
 109	cgroup_account_cputime_field(p, index, tmp);
 110}
 111
 112/*
 113 * Account user CPU time to a process.
 114 * @p: the process that the CPU time gets accounted to
 115 * @cputime: the CPU time spent in user space since the last update
 116 */
 117void account_user_time(struct task_struct *p, u64 cputime)
 118{
 119	int index;
 120
 121	/* Add user time to process. */
 122	p->utime += cputime;
 123	account_group_user_time(p, cputime);
 124
 125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 126
 127	/* Add user time to cpustat. */
 128	task_group_account_field(p, index, cputime);
 129
 130	/* Account for user time used */
 131	acct_account_cputime(p);
 132}
 133
 134/*
 135 * Account guest CPU time to a process.
 136 * @p: the process that the CPU time gets accounted to
 137 * @cputime: the CPU time spent in virtual machine since the last update
 138 */
 139void account_guest_time(struct task_struct *p, u64 cputime)
 140{
 141	u64 *cpustat = kcpustat_this_cpu->cpustat;
 142
 143	/* Add guest time to process. */
 144	p->utime += cputime;
 145	account_group_user_time(p, cputime);
 146	p->gtime += cputime;
 147
 148	/* Add guest time to cpustat. */
 149	if (task_nice(p) > 0) {
 150		cpustat[CPUTIME_NICE] += cputime;
 151		cpustat[CPUTIME_GUEST_NICE] += cputime;
 152	} else {
 153		cpustat[CPUTIME_USER] += cputime;
 154		cpustat[CPUTIME_GUEST] += cputime;
 155	}
 156}
 157
 158/*
 159 * Account system CPU time to a process and desired cpustat field
 160 * @p: the process that the CPU time gets accounted to
 161 * @cputime: the CPU time spent in kernel space since the last update
 162 * @index: pointer to cpustat field that has to be updated
 163 */
 164void account_system_index_time(struct task_struct *p,
 165			       u64 cputime, enum cpu_usage_stat index)
 166{
 167	/* Add system time to process. */
 168	p->stime += cputime;
 169	account_group_system_time(p, cputime);
 170
 171	/* Add system time to cpustat. */
 172	task_group_account_field(p, index, cputime);
 173
 174	/* Account for system time used */
 175	acct_account_cputime(p);
 176}
 177
 178/*
 179 * Account system CPU time to a process.
 180 * @p: the process that the CPU time gets accounted to
 181 * @hardirq_offset: the offset to subtract from hardirq_count()
 182 * @cputime: the CPU time spent in kernel space since the last update
 183 */
 184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 
 185{
 186	int index;
 187
 188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 189		account_guest_time(p, cputime);
 190		return;
 191	}
 192
 193	if (hardirq_count() - hardirq_offset)
 194		index = CPUTIME_IRQ;
 195	else if (in_serving_softirq())
 196		index = CPUTIME_SOFTIRQ;
 197	else
 198		index = CPUTIME_SYSTEM;
 199
 200	account_system_index_time(p, cputime, index);
 201}
 202
 203/*
 204 * Account for involuntary wait time.
 205 * @cputime: the CPU time spent in involuntary wait
 206 */
 207void account_steal_time(u64 cputime)
 208{
 209	u64 *cpustat = kcpustat_this_cpu->cpustat;
 210
 211	cpustat[CPUTIME_STEAL] += cputime;
 212}
 213
 214/*
 215 * Account for idle time.
 216 * @cputime: the CPU time spent in idle wait
 217 */
 218void account_idle_time(u64 cputime)
 219{
 220	u64 *cpustat = kcpustat_this_cpu->cpustat;
 221	struct rq *rq = this_rq();
 222
 223	if (atomic_read(&rq->nr_iowait) > 0)
 224		cpustat[CPUTIME_IOWAIT] += cputime;
 225	else
 226		cpustat[CPUTIME_IDLE] += cputime;
 227}
 228
 229/*
 230 * When a guest is interrupted for a longer amount of time, missed clock
 231 * ticks are not redelivered later. Due to that, this function may on
 232 * occasion account more time than the calling functions think elapsed.
 233 */
 234static __always_inline u64 steal_account_process_time(u64 maxtime)
 235{
 236#ifdef CONFIG_PARAVIRT
 237	if (static_key_false(&paravirt_steal_enabled)) {
 
 238		u64 steal;
 239
 240		steal = paravirt_steal_clock(smp_processor_id());
 241		steal -= this_rq()->prev_steal_time;
 242		steal = min(steal, maxtime);
 243		account_steal_time(steal);
 244		this_rq()->prev_steal_time += steal;
 245
 246		return steal;
 
 
 
 
 247	}
 248#endif
 249	return 0;
 250}
 251
 252/*
 253 * Account how much elapsed time was spent in steal, irq, or softirq time.
 254 */
 255static inline u64 account_other_time(u64 max)
 256{
 257	u64 accounted;
 258
 259	lockdep_assert_irqs_disabled();
 
 260
 261	accounted = steal_account_process_time(max);
 262
 263	if (accounted < max)
 264		accounted += irqtime_tick_accounted(max - accounted);
 
 
 
 265
 266	return accounted;
 267}
 268
 269#ifdef CONFIG_64BIT
 270static inline u64 read_sum_exec_runtime(struct task_struct *t)
 271{
 272	return t->se.sum_exec_runtime;
 273}
 274#else
 275static u64 read_sum_exec_runtime(struct task_struct *t)
 276{
 277	u64 ns;
 278	struct rq_flags rf;
 279	struct rq *rq;
 280
 281	rq = task_rq_lock(t, &rf);
 282	ns = t->se.sum_exec_runtime;
 283	task_rq_unlock(rq, t, &rf);
 284
 285	return ns;
 286}
 287#endif
 288
 289/*
 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 291 * tasks (sum on group iteration) belonging to @tsk's group.
 292 */
 293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 294{
 295	struct signal_struct *sig = tsk->signal;
 296	u64 utime, stime;
 297	struct task_struct *t;
 298	unsigned int seq, nextseq;
 299	unsigned long flags;
 300
 301	/*
 302	 * Update current task runtime to account pending time since last
 303	 * scheduler action or thread_group_cputime() call. This thread group
 304	 * might have other running tasks on different CPUs, but updating
 305	 * their runtime can affect syscall performance, so we skip account
 306	 * those pending times and rely only on values updated on tick or
 307	 * other scheduler action.
 308	 */
 309	if (same_thread_group(current, tsk))
 310		(void) task_sched_runtime(current);
 311
 312	rcu_read_lock();
 313	/* Attempt a lockless read on the first round. */
 314	nextseq = 0;
 315	do {
 316		seq = nextseq;
 317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 318		times->utime = sig->utime;
 319		times->stime = sig->stime;
 320		times->sum_exec_runtime = sig->sum_sched_runtime;
 321
 322		for_each_thread(tsk, t) {
 323			task_cputime(t, &utime, &stime);
 324			times->utime += utime;
 325			times->stime += stime;
 326			times->sum_exec_runtime += read_sum_exec_runtime(t);
 327		}
 328		/* If lockless access failed, take the lock. */
 329		nextseq = 1;
 330	} while (need_seqretry(&sig->stats_lock, seq));
 331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 332	rcu_read_unlock();
 333}
 334
 335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 336/*
 337 * Account a tick to a process and cpustat
 338 * @p: the process that the CPU time gets accounted to
 339 * @user_tick: is the tick from userspace
 340 * @rq: the pointer to rq
 341 *
 342 * Tick demultiplexing follows the order
 343 * - pending hardirq update
 344 * - pending softirq update
 345 * - user_time
 346 * - idle_time
 347 * - system time
 348 *   - check for guest_time
 349 *   - else account as system_time
 350 *
 351 * Check for hardirq is done both for system and user time as there is
 352 * no timer going off while we are on hardirq and hence we may never get an
 353 * opportunity to update it solely in system time.
 354 * p->stime and friends are only updated on system time and not on irq
 355 * softirq as those do not count in task exec_runtime any more.
 356 */
 357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 358					 int ticks)
 359{
 360	u64 other, cputime = TICK_NSEC * ticks;
 
 361
 362	/*
 363	 * When returning from idle, many ticks can get accounted at
 364	 * once, including some ticks of steal, irq, and softirq time.
 365	 * Subtract those ticks from the amount of time accounted to
 366	 * idle, or potentially user or system time. Due to rounding,
 367	 * other time can exceed ticks occasionally.
 368	 */
 369	other = account_other_time(ULONG_MAX);
 370	if (other >= cputime)
 371		return;
 372
 373	cputime -= other;
 374
 375	if (this_cpu_ksoftirqd() == p) {
 376		/*
 377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 378		 * So, we have to handle it separately here.
 379		 * Also, p->stime needs to be updated for ksoftirqd.
 380		 */
 381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 382	} else if (user_tick) {
 383		account_user_time(p, cputime);
 384	} else if (p == this_rq()->idle) {
 385		account_idle_time(cputime);
 386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 387		account_guest_time(p, cputime);
 388	} else {
 389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 390	}
 391}
 392
 393static void irqtime_account_idle_ticks(int ticks)
 394{
 395	irqtime_account_process_tick(current, 0, ticks);
 
 
 396}
 397#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 398static inline void irqtime_account_idle_ticks(int ticks) { }
 399static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 400						int nr_ticks) { }
 401#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 402
 403/*
 404 * Use precise platform statistics if available:
 405 */
 406#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 407
 408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 409void vtime_task_switch(struct task_struct *prev)
 410{
 411	if (is_idle_task(prev))
 412		vtime_account_idle(prev);
 413	else
 414		vtime_account_kernel(prev);
 415
 416	vtime_flush(prev);
 
 
 417	arch_vtime_task_switch(prev);
 418}
 419# endif
 420
 
 
 
 
 421/*
 422 * Archs that account the whole time spent in the idle task
 423 * (outside irq) as idle time can rely on this and just implement
 424 * vtime_account_kernel() and vtime_account_idle(). Archs that
 425 * have other meaning of the idle time (s390 only includes the
 426 * time spent by the CPU when it's in low power mode) must override
 427 * vtime_account().
 428 */
 429#ifndef __ARCH_HAS_VTIME_ACCOUNT
 430void vtime_account_irq_enter(struct task_struct *tsk)
 431{
 432	if (!in_interrupt() && is_idle_task(tsk))
 433		vtime_account_idle(tsk);
 434	else
 435		vtime_account_kernel(tsk);
 436}
 437EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
 438#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 439
 440void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 441		    u64 *ut, u64 *st)
 442{
 443	*ut = curr->utime;
 444	*st = curr->stime;
 445}
 446
 447void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 448{
 449	*ut = p->utime;
 450	*st = p->stime;
 451}
 452EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 453
 454void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 455{
 456	struct task_cputime cputime;
 457
 458	thread_group_cputime(p, &cputime);
 459
 460	*ut = cputime.utime;
 461	*st = cputime.stime;
 462}
 463
 464#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 465
 466/*
 467 * Account a single tick of CPU time.
 468 * @p: the process that the CPU time gets accounted to
 469 * @user_tick: indicates if the tick is a user or a system tick
 470 */
 471void account_process_tick(struct task_struct *p, int user_tick)
 472{
 473	u64 cputime, steal;
 
 474
 475	if (vtime_accounting_enabled_this_cpu())
 476		return;
 477
 478	if (sched_clock_irqtime) {
 479		irqtime_account_process_tick(p, user_tick, 1);
 480		return;
 481	}
 482
 483	cputime = TICK_NSEC;
 484	steal = steal_account_process_time(ULONG_MAX);
 485
 486	if (steal >= cputime)
 487		return;
 488
 489	cputime -= steal;
 490
 491	if (user_tick)
 492		account_user_time(p, cputime);
 493	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 494		account_system_time(p, HARDIRQ_OFFSET, cputime);
 495	else
 496		account_idle_time(cputime);
 497}
 498
 499/*
 500 * Account multiple ticks of idle time.
 501 * @ticks: number of stolen ticks
 502 */
 503void account_idle_ticks(unsigned long ticks)
 504{
 505	u64 cputime, steal;
 506
 507	if (sched_clock_irqtime) {
 508		irqtime_account_idle_ticks(ticks);
 509		return;
 510	}
 511
 512	cputime = ticks * TICK_NSEC;
 513	steal = steal_account_process_time(ULONG_MAX);
 514
 515	if (steal >= cputime)
 516		return;
 517
 518	cputime -= steal;
 519	account_idle_time(cputime);
 520}
 521
 522/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523 * Adjust tick based cputime random precision against scheduler runtime
 524 * accounting.
 525 *
 526 * Tick based cputime accounting depend on random scheduling timeslices of a
 527 * task to be interrupted or not by the timer.  Depending on these
 528 * circumstances, the number of these interrupts may be over or
 529 * under-optimistic, matching the real user and system cputime with a variable
 530 * precision.
 531 *
 532 * Fix this by scaling these tick based values against the total runtime
 533 * accounted by the CFS scheduler.
 534 *
 535 * This code provides the following guarantees:
 536 *
 537 *   stime + utime == rtime
 538 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 539 *
 540 * Assuming that rtime_i+1 >= rtime_i.
 541 */
 542void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 543		    u64 *ut, u64 *st)
 
 544{
 545	u64 rtime, stime, utime;
 546	unsigned long flags;
 547
 548	/* Serialize concurrent callers such that we can honour our guarantees */
 549	raw_spin_lock_irqsave(&prev->lock, flags);
 550	rtime = curr->sum_exec_runtime;
 551
 552	/*
 553	 * This is possible under two circumstances:
 554	 *  - rtime isn't monotonic after all (a bug);
 555	 *  - we got reordered by the lock.
 556	 *
 557	 * In both cases this acts as a filter such that the rest of the code
 558	 * can assume it is monotonic regardless of anything else.
 559	 */
 560	if (prev->stime + prev->utime >= rtime)
 561		goto out;
 562
 563	stime = curr->stime;
 564	utime = curr->utime;
 565
 566	/*
 567	 * If either stime or utime are 0, assume all runtime is userspace.
 568	 * Once a task gets some ticks, the monotonicy code at 'update:'
 569	 * will ensure things converge to the observed ratio.
 570	 */
 571	if (stime == 0) {
 572		utime = rtime;
 573		goto update;
 574	}
 575
 576	if (utime == 0) {
 577		stime = rtime;
 578		goto update;
 579	}
 580
 581	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 
 582
 583update:
 584	/*
 585	 * Make sure stime doesn't go backwards; this preserves monotonicity
 586	 * for utime because rtime is monotonic.
 587	 *
 588	 *  utime_i+1 = rtime_i+1 - stime_i
 589	 *            = rtime_i+1 - (rtime_i - utime_i)
 590	 *            = (rtime_i+1 - rtime_i) + utime_i
 591	 *            >= utime_i
 592	 */
 593	if (stime < prev->stime)
 594		stime = prev->stime;
 595	utime = rtime - stime;
 596
 597	/*
 598	 * Make sure utime doesn't go backwards; this still preserves
 599	 * monotonicity for stime, analogous argument to above.
 600	 */
 601	if (utime < prev->utime) {
 602		utime = prev->utime;
 603		stime = rtime - utime;
 604	}
 605
 606	prev->stime = stime;
 607	prev->utime = utime;
 608out:
 609	*ut = prev->utime;
 610	*st = prev->stime;
 611	raw_spin_unlock_irqrestore(&prev->lock, flags);
 612}
 613
 614void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 615{
 616	struct task_cputime cputime = {
 617		.sum_exec_runtime = p->se.sum_exec_runtime,
 618	};
 619
 620	task_cputime(p, &cputime.utime, &cputime.stime);
 621	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 622}
 623EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 624
 625void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 626{
 627	struct task_cputime cputime;
 628
 629	thread_group_cputime(p, &cputime);
 630	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 631}
 632#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 633
 634#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 635static u64 vtime_delta(struct vtime *vtime)
 636{
 637	unsigned long long clock;
 638
 639	clock = sched_clock();
 640	if (clock < vtime->starttime)
 641		return 0;
 642
 643	return clock - vtime->starttime;
 644}
 645
 646static u64 get_vtime_delta(struct vtime *vtime)
 647{
 648	u64 delta = vtime_delta(vtime);
 649	u64 other;
 650
 651	/*
 652	 * Unlike tick based timing, vtime based timing never has lost
 653	 * ticks, and no need for steal time accounting to make up for
 654	 * lost ticks. Vtime accounts a rounded version of actual
 655	 * elapsed time. Limit account_other_time to prevent rounding
 656	 * errors from causing elapsed vtime to go negative.
 657	 */
 
 658	other = account_other_time(delta);
 659	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 660	vtime->starttime += delta;
 661
 662	return delta - other;
 663}
 664
 665static void vtime_account_system(struct task_struct *tsk,
 666				 struct vtime *vtime)
 667{
 668	vtime->stime += get_vtime_delta(vtime);
 669	if (vtime->stime >= TICK_NSEC) {
 670		account_system_time(tsk, irq_count(), vtime->stime);
 671		vtime->stime = 0;
 672	}
 673}
 674
 675static void vtime_account_guest(struct task_struct *tsk,
 676				struct vtime *vtime)
 677{
 678	vtime->gtime += get_vtime_delta(vtime);
 679	if (vtime->gtime >= TICK_NSEC) {
 680		account_guest_time(tsk, vtime->gtime);
 681		vtime->gtime = 0;
 682	}
 683}
 684
 685static void __vtime_account_kernel(struct task_struct *tsk,
 686				   struct vtime *vtime)
 687{
 688	/* We might have scheduled out from guest path */
 689	if (vtime->state == VTIME_GUEST)
 690		vtime_account_guest(tsk, vtime);
 691	else
 692		vtime_account_system(tsk, vtime);
 693}
 694
 695void vtime_account_kernel(struct task_struct *tsk)
 696{
 697	struct vtime *vtime = &tsk->vtime;
 698
 699	if (!vtime_delta(vtime))
 700		return;
 701
 702	write_seqcount_begin(&vtime->seqcount);
 703	__vtime_account_kernel(tsk, vtime);
 704	write_seqcount_end(&vtime->seqcount);
 705}
 706
 707void vtime_user_enter(struct task_struct *tsk)
 708{
 709	struct vtime *vtime = &tsk->vtime;
 710
 711	write_seqcount_begin(&vtime->seqcount);
 712	vtime_account_system(tsk, vtime);
 713	vtime->state = VTIME_USER;
 714	write_seqcount_end(&vtime->seqcount);
 
 
 
 715}
 716
 717void vtime_user_exit(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime->utime += get_vtime_delta(vtime);
 723	if (vtime->utime >= TICK_NSEC) {
 724		account_user_time(tsk, vtime->utime);
 725		vtime->utime = 0;
 726	}
 727	vtime->state = VTIME_SYS;
 728	write_seqcount_end(&vtime->seqcount);
 729}
 730
 731void vtime_guest_enter(struct task_struct *tsk)
 732{
 733	struct vtime *vtime = &tsk->vtime;
 734	/*
 735	 * The flags must be updated under the lock with
 736	 * the vtime_starttime flush and update.
 737	 * That enforces a right ordering and update sequence
 738	 * synchronization against the reader (task_gtime())
 739	 * that can thus safely catch up with a tickless delta.
 740	 */
 741	write_seqcount_begin(&vtime->seqcount);
 742	vtime_account_system(tsk, vtime);
 743	tsk->flags |= PF_VCPU;
 744	vtime->state = VTIME_GUEST;
 745	write_seqcount_end(&vtime->seqcount);
 746}
 747EXPORT_SYMBOL_GPL(vtime_guest_enter);
 748
 749void vtime_guest_exit(struct task_struct *tsk)
 750{
 751	struct vtime *vtime = &tsk->vtime;
 752
 753	write_seqcount_begin(&vtime->seqcount);
 754	vtime_account_guest(tsk, vtime);
 755	tsk->flags &= ~PF_VCPU;
 756	vtime->state = VTIME_SYS;
 757	write_seqcount_end(&vtime->seqcount);
 758}
 759EXPORT_SYMBOL_GPL(vtime_guest_exit);
 760
 761void vtime_account_idle(struct task_struct *tsk)
 762{
 763	account_idle_time(get_vtime_delta(&tsk->vtime));
 
 
 764}
 765
 766void vtime_task_switch_generic(struct task_struct *prev)
 767{
 768	struct vtime *vtime = &prev->vtime;
 
 
 769
 770	write_seqcount_begin(&vtime->seqcount);
 771	if (vtime->state == VTIME_IDLE)
 772		vtime_account_idle(prev);
 773	else
 774		__vtime_account_kernel(prev, vtime);
 775	vtime->state = VTIME_INACTIVE;
 776	vtime->cpu = -1;
 777	write_seqcount_end(&vtime->seqcount);
 778
 779	vtime = &current->vtime;
 780
 781	write_seqcount_begin(&vtime->seqcount);
 782	if (is_idle_task(current))
 783		vtime->state = VTIME_IDLE;
 784	else if (current->flags & PF_VCPU)
 785		vtime->state = VTIME_GUEST;
 786	else
 787		vtime->state = VTIME_SYS;
 788	vtime->starttime = sched_clock();
 789	vtime->cpu = smp_processor_id();
 790	write_seqcount_end(&vtime->seqcount);
 791}
 792
 793void vtime_init_idle(struct task_struct *t, int cpu)
 794{
 795	struct vtime *vtime = &t->vtime;
 796	unsigned long flags;
 797
 798	local_irq_save(flags);
 799	write_seqcount_begin(&vtime->seqcount);
 800	vtime->state = VTIME_IDLE;
 801	vtime->starttime = sched_clock();
 802	vtime->cpu = cpu;
 803	write_seqcount_end(&vtime->seqcount);
 804	local_irq_restore(flags);
 805}
 806
 807u64 task_gtime(struct task_struct *t)
 808{
 809	struct vtime *vtime = &t->vtime;
 810	unsigned int seq;
 811	u64 gtime;
 812
 813	if (!vtime_accounting_enabled())
 814		return t->gtime;
 815
 816	do {
 817		seq = read_seqcount_begin(&vtime->seqcount);
 818
 819		gtime = t->gtime;
 820		if (vtime->state == VTIME_GUEST)
 821			gtime += vtime->gtime + vtime_delta(vtime);
 822
 823	} while (read_seqcount_retry(&vtime->seqcount, seq));
 824
 825	return gtime;
 826}
 827
 828/*
 829 * Fetch cputime raw values from fields of task_struct and
 830 * add up the pending nohz execution time since the last
 831 * cputime snapshot.
 832 */
 833void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 834{
 835	struct vtime *vtime = &t->vtime;
 836	unsigned int seq;
 837	u64 delta;
 838
 839	if (!vtime_accounting_enabled()) {
 840		*utime = t->utime;
 841		*stime = t->stime;
 842		return;
 843	}
 844
 845	do {
 846		seq = read_seqcount_begin(&vtime->seqcount);
 847
 848		*utime = t->utime;
 849		*stime = t->stime;
 850
 851		/* Task is sleeping or idle, nothing to add */
 852		if (vtime->state < VTIME_SYS)
 853			continue;
 854
 855		delta = vtime_delta(vtime);
 856
 857		/*
 858		 * Task runs either in user (including guest) or kernel space,
 859		 * add pending nohz time to the right place.
 860		 */
 861		if (vtime->state == VTIME_SYS)
 862			*stime += vtime->stime + delta;
 863		else
 864			*utime += vtime->utime + delta;
 865	} while (read_seqcount_retry(&vtime->seqcount, seq));
 866}
 867
 868static int vtime_state_fetch(struct vtime *vtime, int cpu)
 869{
 870	int state = READ_ONCE(vtime->state);
 871
 872	/*
 873	 * We raced against a context switch, fetch the
 874	 * kcpustat task again.
 875	 */
 876	if (vtime->cpu != cpu && vtime->cpu != -1)
 877		return -EAGAIN;
 878
 879	/*
 880	 * Two possible things here:
 881	 * 1) We are seeing the scheduling out task (prev) or any past one.
 882	 * 2) We are seeing the scheduling in task (next) but it hasn't
 883	 *    passed though vtime_task_switch() yet so the pending
 884	 *    cputime of the prev task may not be flushed yet.
 885	 *
 886	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 887	 */
 888	if (state == VTIME_INACTIVE)
 889		return -EAGAIN;
 890
 891	return state;
 892}
 893
 894static u64 kcpustat_user_vtime(struct vtime *vtime)
 895{
 896	if (vtime->state == VTIME_USER)
 897		return vtime->utime + vtime_delta(vtime);
 898	else if (vtime->state == VTIME_GUEST)
 899		return vtime->gtime + vtime_delta(vtime);
 900	return 0;
 901}
 902
 903static int kcpustat_field_vtime(u64 *cpustat,
 904				struct task_struct *tsk,
 905				enum cpu_usage_stat usage,
 906				int cpu, u64 *val)
 907{
 908	struct vtime *vtime = &tsk->vtime;
 909	unsigned int seq;
 910
 911	do {
 912		int state;
 913
 914		seq = read_seqcount_begin(&vtime->seqcount);
 915
 916		state = vtime_state_fetch(vtime, cpu);
 917		if (state < 0)
 918			return state;
 919
 920		*val = cpustat[usage];
 921
 922		/*
 923		 * Nice VS unnice cputime accounting may be inaccurate if
 924		 * the nice value has changed since the last vtime update.
 925		 * But proper fix would involve interrupting target on nice
 926		 * updates which is a no go on nohz_full (although the scheduler
 927		 * may still interrupt the target if rescheduling is needed...)
 928		 */
 929		switch (usage) {
 930		case CPUTIME_SYSTEM:
 931			if (state == VTIME_SYS)
 932				*val += vtime->stime + vtime_delta(vtime);
 933			break;
 934		case CPUTIME_USER:
 935			if (task_nice(tsk) <= 0)
 936				*val += kcpustat_user_vtime(vtime);
 937			break;
 938		case CPUTIME_NICE:
 939			if (task_nice(tsk) > 0)
 940				*val += kcpustat_user_vtime(vtime);
 941			break;
 942		case CPUTIME_GUEST:
 943			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 944				*val += vtime->gtime + vtime_delta(vtime);
 945			break;
 946		case CPUTIME_GUEST_NICE:
 947			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 948				*val += vtime->gtime + vtime_delta(vtime);
 949			break;
 950		default:
 951			break;
 952		}
 953	} while (read_seqcount_retry(&vtime->seqcount, seq));
 954
 955	return 0;
 956}
 957
 958u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 959		   enum cpu_usage_stat usage, int cpu)
 960{
 961	u64 *cpustat = kcpustat->cpustat;
 962	u64 val = cpustat[usage];
 963	struct rq *rq;
 964	int err;
 965
 966	if (!vtime_accounting_enabled_cpu(cpu))
 967		return val;
 968
 969	rq = cpu_rq(cpu);
 970
 971	for (;;) {
 972		struct task_struct *curr;
 973
 974		rcu_read_lock();
 975		curr = rcu_dereference(rq->curr);
 976		if (WARN_ON_ONCE(!curr)) {
 977			rcu_read_unlock();
 978			return cpustat[usage];
 979		}
 980
 981		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 982		rcu_read_unlock();
 983
 984		if (!err)
 985			return val;
 986
 987		cpu_relax();
 988	}
 989}
 990EXPORT_SYMBOL_GPL(kcpustat_field);
 991
 992static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
 993				    const struct kernel_cpustat *src,
 994				    struct task_struct *tsk, int cpu)
 995{
 996	struct vtime *vtime = &tsk->vtime;
 997	unsigned int seq;
 998
 999	do {
1000		u64 *cpustat;
1001		u64 delta;
1002		int state;
1003
1004		seq = read_seqcount_begin(&vtime->seqcount);
1005
1006		state = vtime_state_fetch(vtime, cpu);
1007		if (state < 0)
1008			return state;
1009
1010		*dst = *src;
1011		cpustat = dst->cpustat;
1012
1013		/* Task is sleeping, dead or idle, nothing to add */
1014		if (state < VTIME_SYS)
1015			continue;
1016
1017		delta = vtime_delta(vtime);
1018
1019		/*
1020		 * Task runs either in user (including guest) or kernel space,
1021		 * add pending nohz time to the right place.
1022		 */
1023		if (state == VTIME_SYS) {
1024			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1025		} else if (state == VTIME_USER) {
1026			if (task_nice(tsk) > 0)
1027				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1028			else
1029				cpustat[CPUTIME_USER] += vtime->utime + delta;
1030		} else {
1031			WARN_ON_ONCE(state != VTIME_GUEST);
1032			if (task_nice(tsk) > 0) {
1033				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1034				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1035			} else {
1036				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1037				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1038			}
1039		}
1040	} while (read_seqcount_retry(&vtime->seqcount, seq));
1041
1042	return 0;
1043}
1044
1045void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1046{
1047	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1048	struct rq *rq;
1049	int err;
1050
1051	if (!vtime_accounting_enabled_cpu(cpu)) {
1052		*dst = *src;
1053		return;
1054	}
1055
1056	rq = cpu_rq(cpu);
1057
1058	for (;;) {
1059		struct task_struct *curr;
1060
1061		rcu_read_lock();
1062		curr = rcu_dereference(rq->curr);
1063		if (WARN_ON_ONCE(!curr)) {
1064			rcu_read_unlock();
1065			*dst = *src;
1066			return;
1067		}
1068
1069		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1070		rcu_read_unlock();
1071
1072		if (!err)
1073			return;
1074
1075		cpu_relax();
1076	}
1077}
1078EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1079
1080#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */