Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999, 2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/bootmem.h>
  23#include <linux/module.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
 
  32#include <linux/cpu.h>
  33#include <linux/slab.h>
 
 
  34#include <linux/crash_dump.h>
  35#include <linux/memblock.h>
 
  36#include <asm/asm-offsets.h>
 
 
  37#include <asm/diag.h>
  38#include <asm/switch_to.h>
  39#include <asm/facility.h>
 
  40#include <asm/ipl.h>
  41#include <asm/setup.h>
  42#include <asm/irq.h>
  43#include <asm/tlbflush.h>
  44#include <asm/vtimer.h>
  45#include <asm/lowcore.h>
  46#include <asm/sclp.h>
  47#include <asm/vdso.h>
  48#include <asm/debug.h>
  49#include <asm/os_info.h>
  50#include <asm/sigp.h>
  51#include <asm/idle.h>
 
 
 
 
 
  52#include "entry.h"
  53
  54enum {
  55	ec_schedule = 0,
  56	ec_call_function_single,
  57	ec_stop_cpu,
 
 
  58};
  59
  60enum {
  61	CPU_STATE_STANDBY,
  62	CPU_STATE_CONFIGURED,
  63};
  64
  65static DEFINE_PER_CPU(struct cpu *, cpu_device);
  66
  67struct pcpu {
  68	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  69	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  70	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  71	signed char state;		/* physical cpu state */
  72	signed char polarization;	/* physical polarization */
  73	u16 address;			/* physical cpu address */
  74};
  75
  76static u8 boot_core_type;
  77static struct pcpu pcpu_devices[NR_CPUS];
  78
  79unsigned int smp_cpu_mt_shift;
  80EXPORT_SYMBOL(smp_cpu_mt_shift);
  81
  82unsigned int smp_cpu_mtid;
  83EXPORT_SYMBOL(smp_cpu_mtid);
  84
  85#ifdef CONFIG_CRASH_DUMP
  86__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  87#endif
  88
  89static unsigned int smp_max_threads __initdata = -1U;
 
  90
  91static int __init early_nosmt(char *s)
  92{
  93	smp_max_threads = 1;
  94	return 0;
  95}
  96early_param("nosmt", early_nosmt);
  97
  98static int __init early_smt(char *s)
  99{
 100	get_option(&s, &smp_max_threads);
 101	return 0;
 102}
 103early_param("smt", early_smt);
 104
 105/*
 106 * The smp_cpu_state_mutex must be held when changing the state or polarization
 107 * member of a pcpu data structure within the pcpu_devices arreay.
 108 */
 109DEFINE_MUTEX(smp_cpu_state_mutex);
 110
 111/*
 112 * Signal processor helper functions.
 113 */
 114static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 115{
 116	int cc;
 117
 118	while (1) {
 119		cc = __pcpu_sigp(addr, order, parm, NULL);
 120		if (cc != SIGP_CC_BUSY)
 121			return cc;
 122		cpu_relax();
 123	}
 124}
 125
 126static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 127{
 128	int cc, retry;
 129
 130	for (retry = 0; ; retry++) {
 131		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 132		if (cc != SIGP_CC_BUSY)
 133			break;
 134		if (retry >= 3)
 135			udelay(10);
 136	}
 137	return cc;
 138}
 139
 140static inline int pcpu_stopped(struct pcpu *pcpu)
 141{
 142	u32 uninitialized_var(status);
 143
 144	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 145			0, &status) != SIGP_CC_STATUS_STORED)
 146		return 0;
 147	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 148}
 149
 150static inline int pcpu_running(struct pcpu *pcpu)
 151{
 152	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 153			0, NULL) != SIGP_CC_STATUS_STORED)
 154		return 1;
 155	/* Status stored condition code is equivalent to cpu not running. */
 156	return 0;
 157}
 158
 159/*
 160 * Find struct pcpu by cpu address.
 161 */
 162static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 163{
 164	int cpu;
 165
 166	for_each_cpu(cpu, mask)
 167		if (pcpu_devices[cpu].address == address)
 168			return pcpu_devices + cpu;
 169	return NULL;
 170}
 171
 172static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 173{
 174	int order;
 175
 176	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 177		return;
 178	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 179	pcpu->ec_clk = get_tod_clock_fast();
 180	pcpu_sigp_retry(pcpu, order, 0);
 181}
 182
 183#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 184#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 185
 186static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 187{
 188	unsigned long async_stack, panic_stack;
 189	struct lowcore *lc;
 190
 191	if (pcpu != &pcpu_devices[0]) {
 192		pcpu->lowcore =	(struct lowcore *)
 193			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 194		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 195		panic_stack = __get_free_page(GFP_KERNEL);
 196		if (!pcpu->lowcore || !panic_stack || !async_stack)
 197			goto out;
 198	} else {
 199		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 200		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 201	}
 202	lc = pcpu->lowcore;
 203	memcpy(lc, &S390_lowcore, 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 206	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 
 207	lc->cpu_nr = cpu;
 208	lc->spinlock_lockval = arch_spin_lockval(cpu);
 209	if (MACHINE_HAS_VX)
 210		lc->vector_save_area_addr =
 211			(unsigned long) &lc->vector_save_area;
 212	if (vdso_alloc_per_cpu(lc))
 
 213		goto out;
 
 
 214	lowcore_ptr[cpu] = lc;
 215	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 216	return 0;
 
 
 
 217out:
 218	if (pcpu != &pcpu_devices[0]) {
 219		free_page(panic_stack);
 220		free_pages(async_stack, ASYNC_ORDER);
 221		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 222	}
 223	return -ENOMEM;
 224}
 225
 226#ifdef CONFIG_HOTPLUG_CPU
 227
 228static void pcpu_free_lowcore(struct pcpu *pcpu)
 229{
 
 
 
 
 
 
 
 
 
 230	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 231	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 232	vdso_free_per_cpu(pcpu->lowcore);
 233	if (pcpu == &pcpu_devices[0])
 234		return;
 235	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 236	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 237	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 238}
 239
 240#endif /* CONFIG_HOTPLUG_CPU */
 241
 242static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 243{
 244	struct lowcore *lc = pcpu->lowcore;
 245
 
 246	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 247	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 248	lc->cpu_nr = cpu;
 
 249	lc->spinlock_lockval = arch_spin_lockval(cpu);
 
 250	lc->percpu_offset = __per_cpu_offset[cpu];
 251	lc->kernel_asce = S390_lowcore.kernel_asce;
 
 252	lc->machine_flags = S390_lowcore.machine_flags;
 253	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 254	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 
 
 
 255	save_access_regs((unsigned int *) lc->access_regs_save_area);
 256	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 257	       MAX_FACILITY_BIT/8);
 258}
 259
 260static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 261{
 262	struct lowcore *lc = pcpu->lowcore;
 
 263
 264	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 265		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 266	lc->current_task = (unsigned long) tsk;
 
 267	lc->lpp = LPP_MAGIC;
 268	lc->current_pid = tsk->pid;
 269	lc->user_timer = tsk->thread.user_timer;
 
 270	lc->system_timer = tsk->thread.system_timer;
 
 
 271	lc->steal_timer = 0;
 272}
 273
 274static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 275{
 276	struct lowcore *lc = pcpu->lowcore;
 
 277
 
 
 278	lc->restart_stack = lc->kernel_stack;
 279	lc->restart_fn = (unsigned long) func;
 280	lc->restart_data = (unsigned long) data;
 281	lc->restart_source = -1UL;
 282	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 283}
 284
 
 
 285/*
 286 * Call function via PSW restart on pcpu and stop the current cpu.
 287 */
 288static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 
 
 
 
 
 
 289			  void *data, unsigned long stack)
 290{
 291	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 292	unsigned long source_cpu = stap();
 293
 294	__load_psw_mask(PSW_KERNEL_BITS);
 295	if (pcpu->address == source_cpu)
 296		func(data);	/* should not return */
 
 
 
 
 297	/* Stop target cpu (if func returns this stops the current cpu). */
 298	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 299	/* Restart func on the target cpu and stop the current cpu. */
 300	mem_assign_absolute(lc->restart_stack, stack);
 301	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 302	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 303	mem_assign_absolute(lc->restart_source, source_cpu);
 
 
 
 
 
 
 
 
 
 304	asm volatile(
 305		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 306		"	brc	2,0b	# busy, try again\n"
 307		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 308		"	brc	2,1b	# busy, try again\n"
 309		: : "d" (pcpu->address), "d" (source_cpu),
 310		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 311		: "0", "1", "cc");
 312	for (;;) ;
 313}
 314
 315/*
 316 * Enable additional logical cpus for multi-threading.
 317 */
 318static int pcpu_set_smt(unsigned int mtid)
 319{
 320	int cc;
 321
 322	if (smp_cpu_mtid == mtid)
 323		return 0;
 324	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 325	if (cc == 0) {
 326		smp_cpu_mtid = mtid;
 327		smp_cpu_mt_shift = 0;
 328		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 329			smp_cpu_mt_shift++;
 330		pcpu_devices[0].address = stap();
 331	}
 332	return cc;
 333}
 334
 335/*
 336 * Call function on an online CPU.
 337 */
 338void smp_call_online_cpu(void (*func)(void *), void *data)
 339{
 340	struct pcpu *pcpu;
 341
 342	/* Use the current cpu if it is online. */
 343	pcpu = pcpu_find_address(cpu_online_mask, stap());
 344	if (!pcpu)
 345		/* Use the first online cpu. */
 346		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 347	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 348}
 349
 350/*
 351 * Call function on the ipl CPU.
 352 */
 353void smp_call_ipl_cpu(void (*func)(void *), void *data)
 354{
 
 
 
 
 
 355	pcpu_delegate(&pcpu_devices[0], func, data,
 356		      pcpu_devices->lowcore->panic_stack -
 357		      PANIC_FRAME_OFFSET + PAGE_SIZE);
 358}
 359
 360int smp_find_processor_id(u16 address)
 361{
 362	int cpu;
 363
 364	for_each_present_cpu(cpu)
 365		if (pcpu_devices[cpu].address == address)
 366			return cpu;
 367	return -1;
 368}
 369
 370bool arch_vcpu_is_preempted(int cpu)
 
 
 
 
 
 371{
 372	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 373		return false;
 374	if (pcpu_running(pcpu_devices + cpu))
 375		return false;
 376	return true;
 377}
 378EXPORT_SYMBOL(arch_vcpu_is_preempted);
 379
 380void smp_yield_cpu(int cpu)
 381{
 382	if (MACHINE_HAS_DIAG9C) {
 383		diag_stat_inc_norecursion(DIAG_STAT_X09C);
 384		asm volatile("diag %0,0,0x9c"
 385			     : : "d" (pcpu_devices[cpu].address));
 386	} else if (MACHINE_HAS_DIAG44) {
 387		diag_stat_inc_norecursion(DIAG_STAT_X044);
 388		asm volatile("diag 0,0,0x44");
 389	}
 390}
 
 391
 392/*
 393 * Send cpus emergency shutdown signal. This gives the cpus the
 394 * opportunity to complete outstanding interrupts.
 395 */
 396static void smp_emergency_stop(cpumask_t *cpumask)
 397{
 
 
 398	u64 end;
 399	int cpu;
 400
 
 
 
 
 401	end = get_tod_clock() + (1000000UL << 12);
 402	for_each_cpu(cpu, cpumask) {
 403		struct pcpu *pcpu = pcpu_devices + cpu;
 404		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 405		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 406				   0, NULL) == SIGP_CC_BUSY &&
 407		       get_tod_clock() < end)
 408			cpu_relax();
 409	}
 410	while (get_tod_clock() < end) {
 411		for_each_cpu(cpu, cpumask)
 412			if (pcpu_stopped(pcpu_devices + cpu))
 413				cpumask_clear_cpu(cpu, cpumask);
 414		if (cpumask_empty(cpumask))
 415			break;
 416		cpu_relax();
 417	}
 
 418}
 
 419
 420/*
 421 * Stop all cpus but the current one.
 422 */
 423void smp_send_stop(void)
 424{
 425	cpumask_t cpumask;
 426	int cpu;
 427
 428	/* Disable all interrupts/machine checks */
 429	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 430	trace_hardirqs_off();
 431
 432	debug_set_critical();
 433	cpumask_copy(&cpumask, cpu_online_mask);
 434	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 435
 436	if (oops_in_progress)
 437		smp_emergency_stop(&cpumask);
 438
 439	/* stop all processors */
 440	for_each_cpu(cpu, &cpumask) {
 441		struct pcpu *pcpu = pcpu_devices + cpu;
 442		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 443		while (!pcpu_stopped(pcpu))
 
 444			cpu_relax();
 445	}
 446}
 447
 448/*
 449 * This is the main routine where commands issued by other
 450 * cpus are handled.
 451 */
 452static void smp_handle_ext_call(void)
 453{
 454	unsigned long bits;
 455
 456	/* handle bit signal external calls */
 457	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 458	if (test_bit(ec_stop_cpu, &bits))
 459		smp_stop_cpu();
 460	if (test_bit(ec_schedule, &bits))
 461		scheduler_ipi();
 462	if (test_bit(ec_call_function_single, &bits))
 463		generic_smp_call_function_single_interrupt();
 
 
 
 
 464}
 465
 466static void do_ext_call_interrupt(struct ext_code ext_code,
 467				  unsigned int param32, unsigned long param64)
 468{
 469	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 470	smp_handle_ext_call();
 471}
 472
 473void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 474{
 475	int cpu;
 476
 477	for_each_cpu(cpu, mask)
 478		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 479}
 480
 481void arch_send_call_function_single_ipi(int cpu)
 482{
 483	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 484}
 485
 486/*
 487 * this function sends a 'reschedule' IPI to another CPU.
 488 * it goes straight through and wastes no time serializing
 489 * anything. Worst case is that we lose a reschedule ...
 490 */
 491void smp_send_reschedule(int cpu)
 492{
 493	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 494}
 495
 496/*
 497 * parameter area for the set/clear control bit callbacks
 498 */
 499struct ec_creg_mask_parms {
 500	unsigned long orval;
 501	unsigned long andval;
 502	int cr;
 503};
 504
 505/*
 506 * callback for setting/clearing control bits
 507 */
 508static void smp_ctl_bit_callback(void *info)
 509{
 510	struct ec_creg_mask_parms *pp = info;
 511	unsigned long cregs[16];
 512
 513	__ctl_store(cregs, 0, 15);
 514	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 515	__ctl_load(cregs, 0, 15);
 516}
 517
 518/*
 519 * Set a bit in a control register of all cpus
 520 */
 521void smp_ctl_set_bit(int cr, int bit)
 522{
 523	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 524
 525	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 526}
 527EXPORT_SYMBOL(smp_ctl_set_bit);
 528
 529/*
 530 * Clear a bit in a control register of all cpus
 531 */
 532void smp_ctl_clear_bit(int cr, int bit)
 533{
 534	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 535
 536	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 537}
 538EXPORT_SYMBOL(smp_ctl_clear_bit);
 539
 540#ifdef CONFIG_CRASH_DUMP
 541
 542int smp_store_status(int cpu)
 543{
 544	struct pcpu *pcpu = pcpu_devices + cpu;
 
 545	unsigned long pa;
 546
 547	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 
 
 548	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 549			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 550		return -EIO;
 551	if (!MACHINE_HAS_VX)
 552		return 0;
 553	pa = __pa(pcpu->lowcore->vector_save_area_addr);
 
 
 554	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 555			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 556		return -EIO;
 557	return 0;
 558}
 559
 560/*
 561 * Collect CPU state of the previous, crashed system.
 562 * There are four cases:
 563 * 1) standard zfcp dump
 564 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 565 *    The state for all CPUs except the boot CPU needs to be collected
 566 *    with sigp stop-and-store-status. The boot CPU state is located in
 567 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 568 *    will copy the boot CPU state from the HSA.
 569 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 570 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 571 *    The state for all CPUs except the boot CPU needs to be collected
 572 *    with sigp stop-and-store-status. The firmware or the boot-loader
 573 *    stored the registers of the boot CPU in the absolute lowcore in the
 574 *    memory of the old system.
 575 * 3) kdump and the old kernel did not store the CPU state,
 576 *    or stand-alone kdump for DASD
 577 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 578 *    The state for all CPUs except the boot CPU needs to be collected
 579 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 580 *    stored the registers of the boot CPU in the memory of the old system.
 581 * 4) kdump and the old kernel stored the CPU state
 582 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 583 *    This case does not exist for s390 anymore, setup_arch explicitly
 584 *    deactivates the elfcorehdr= kernel parameter
 585 */
 586static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 587				     bool is_boot_cpu, unsigned long page)
 588{
 589	__vector128 *vxrs = (__vector128 *) page;
 590
 591	if (is_boot_cpu)
 592		vxrs = boot_cpu_vector_save_area;
 593	else
 594		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 595	save_area_add_vxrs(sa, vxrs);
 596}
 597
 598static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 599				     bool is_boot_cpu, unsigned long page)
 600{
 601	void *regs = (void *) page;
 
 602
 603	if (is_boot_cpu)
 604		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 605	else
 606		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 607	save_area_add_regs(sa, regs);
 
 
 
 608}
 609
 610void __init smp_save_dump_cpus(void)
 611{
 612	int addr, boot_cpu_addr, max_cpu_addr;
 613	struct save_area *sa;
 614	unsigned long page;
 615	bool is_boot_cpu;
 616
 617	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 618		/* No previous system present, normal boot. */
 619		return;
 620	/* Allocate a page as dumping area for the store status sigps */
 621	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
 
 
 
 
 622	/* Set multi-threading state to the previous system. */
 623	pcpu_set_smt(sclp.mtid_prev);
 624	boot_cpu_addr = stap();
 625	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 626	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 627		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 628		    SIGP_CC_NOT_OPERATIONAL)
 629			continue;
 630		is_boot_cpu = (addr == boot_cpu_addr);
 631		/* Allocate save area */
 632		sa = save_area_alloc(is_boot_cpu);
 633		if (!sa)
 634			panic("could not allocate memory for save area\n");
 635		if (MACHINE_HAS_VX)
 636			/* Get the vector registers */
 637			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 638		/*
 639		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 640		 * of the boot CPU are stored in the HSA. To retrieve
 641		 * these registers an SCLP request is required which is
 642		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 643		 */
 644		if (!is_boot_cpu || OLDMEM_BASE)
 645			/* Get the CPU registers */
 646			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 647	}
 648	memblock_free(page, PAGE_SIZE);
 649	diag308_reset();
 650	pcpu_set_smt(0);
 651}
 652#endif /* CONFIG_CRASH_DUMP */
 653
 654void smp_cpu_set_polarization(int cpu, int val)
 655{
 656	pcpu_devices[cpu].polarization = val;
 657}
 658
 659int smp_cpu_get_polarization(int cpu)
 660{
 661	return pcpu_devices[cpu].polarization;
 662}
 663
 
 
 
 
 
 664static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 665{
 666	static int use_sigp_detection;
 667	int address;
 668
 669	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 670		use_sigp_detection = 1;
 671		for (address = 0;
 672		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 673		     address += (1U << smp_cpu_mt_shift)) {
 674			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 675			    SIGP_CC_NOT_OPERATIONAL)
 676				continue;
 677			info->core[info->configured].core_id =
 678				address >> smp_cpu_mt_shift;
 679			info->configured++;
 680		}
 681		info->combined = info->configured;
 682	}
 683}
 684
 685static int smp_add_present_cpu(int cpu);
 686
 687static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 
 688{
 689	struct pcpu *pcpu;
 690	cpumask_t avail;
 691	int cpu, nr, i, j;
 692	u16 address;
 693
 694	nr = 0;
 695	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 696	cpu = cpumask_first(&avail);
 697	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 698		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 
 
 699			continue;
 700		address = info->core[i].core_id << smp_cpu_mt_shift;
 701		for (j = 0; j <= smp_cpu_mtid; j++) {
 702			if (pcpu_find_address(cpu_present_mask, address + j))
 703				continue;
 704			pcpu = pcpu_devices + cpu;
 705			pcpu->address = address + j;
 706			pcpu->state =
 707				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 708				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 709			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 710			set_cpu_present(cpu, true);
 711			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 712				set_cpu_present(cpu, false);
 713			else
 714				nr++;
 715			cpu = cpumask_next(cpu, &avail);
 716			if (cpu >= nr_cpu_ids)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717				break;
 
 718		}
 719	}
 
 
 
 
 
 
 720	return nr;
 721}
 722
 723void __init smp_detect_cpus(void)
 724{
 725	unsigned int cpu, mtid, c_cpus, s_cpus;
 726	struct sclp_core_info *info;
 727	u16 address;
 728
 729	/* Get CPU information */
 730	info = memblock_virt_alloc(sizeof(*info), 8);
 
 
 
 731	smp_get_core_info(info, 1);
 732	/* Find boot CPU type */
 733	if (sclp.has_core_type) {
 734		address = stap();
 735		for (cpu = 0; cpu < info->combined; cpu++)
 736			if (info->core[cpu].core_id == address) {
 737				/* The boot cpu dictates the cpu type. */
 738				boot_core_type = info->core[cpu].type;
 739				break;
 740			}
 741		if (cpu >= info->combined)
 742			panic("Could not find boot CPU type");
 743	}
 744
 745	/* Set multi-threading state for the current system */
 746	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 747	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 748	pcpu_set_smt(mtid);
 749
 750	/* Print number of CPUs */
 751	c_cpus = s_cpus = 0;
 752	for (cpu = 0; cpu < info->combined; cpu++) {
 753		if (sclp.has_core_type &&
 754		    info->core[cpu].type != boot_core_type)
 755			continue;
 756		if (cpu < info->configured)
 757			c_cpus += smp_cpu_mtid + 1;
 758		else
 759			s_cpus += smp_cpu_mtid + 1;
 760	}
 761	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 762
 763	/* Add CPUs present at boot */
 764	get_online_cpus();
 765	__smp_rescan_cpus(info, 0);
 766	put_online_cpus();
 767	memblock_free_early((unsigned long)info, sizeof(*info));
 768}
 769
 770/*
 771 *	Activate a secondary processor.
 772 */
 773static void smp_start_secondary(void *cpuvoid)
 774{
 
 
 775	S390_lowcore.last_update_clock = get_tod_clock();
 776	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 777	S390_lowcore.restart_fn = (unsigned long) do_restart;
 778	S390_lowcore.restart_data = 0;
 779	S390_lowcore.restart_source = -1UL;
 
 780	restore_access_regs(S390_lowcore.access_regs_save_area);
 781	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 782	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 783	cpu_init();
 784	preempt_disable();
 785	init_cpu_timer();
 786	vtime_init();
 
 787	pfault_init();
 788	notify_cpu_starting(smp_processor_id());
 789	set_cpu_online(smp_processor_id(), true);
 
 
 
 
 
 
 790	inc_irq_stat(CPU_RST);
 791	local_irq_enable();
 792	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 793}
 794
 795/* Upping and downing of CPUs */
 796int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 797{
 798	struct pcpu *pcpu;
 799	int base, i, rc;
 800
 801	pcpu = pcpu_devices + cpu;
 802	if (pcpu->state != CPU_STATE_CONFIGURED)
 803		return -EIO;
 804	base = smp_get_base_cpu(cpu);
 805	for (i = 0; i <= smp_cpu_mtid; i++) {
 806		if (base + i < nr_cpu_ids)
 807			if (cpu_online(base + i))
 808				break;
 809	}
 810	/*
 811	 * If this is the first CPU of the core to get online
 812	 * do an initial CPU reset.
 813	 */
 814	if (i > smp_cpu_mtid &&
 815	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 816	    SIGP_CC_ORDER_CODE_ACCEPTED)
 817		return -EIO;
 818
 819	rc = pcpu_alloc_lowcore(pcpu, cpu);
 820	if (rc)
 821		return rc;
 
 
 
 
 
 822	pcpu_prepare_secondary(pcpu, cpu);
 823	pcpu_attach_task(pcpu, tidle);
 824	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 825	/* Wait until cpu puts itself in the online & active maps */
 826	while (!cpu_online(cpu))
 827		cpu_relax();
 
 828	return 0;
 829}
 830
 831static unsigned int setup_possible_cpus __initdata;
 832
 833static int __init _setup_possible_cpus(char *s)
 834{
 835	get_option(&s, &setup_possible_cpus);
 836	return 0;
 837}
 838early_param("possible_cpus", _setup_possible_cpus);
 839
 840#ifdef CONFIG_HOTPLUG_CPU
 841
 842int __cpu_disable(void)
 843{
 844	unsigned long cregs[16];
 
 845
 846	/* Handle possible pending IPIs */
 847	smp_handle_ext_call();
 848	set_cpu_online(smp_processor_id(), false);
 
 
 
 849	/* Disable pseudo page faults on this cpu. */
 850	pfault_fini();
 851	/* Disable interrupt sources via control register. */
 852	__ctl_store(cregs, 0, 15);
 853	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 854	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 855	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 856	__ctl_load(cregs, 0, 15);
 857	clear_cpu_flag(CIF_NOHZ_DELAY);
 858	return 0;
 859}
 860
 861void __cpu_die(unsigned int cpu)
 862{
 863	struct pcpu *pcpu;
 864
 865	/* Wait until target cpu is down */
 866	pcpu = pcpu_devices + cpu;
 867	while (!pcpu_stopped(pcpu))
 868		cpu_relax();
 869	pcpu_free_lowcore(pcpu);
 870	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 871	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 872}
 873
 874void __noreturn cpu_die(void)
 875{
 876	idle_task_exit();
 877	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 878	for (;;) ;
 879}
 880
 881#endif /* CONFIG_HOTPLUG_CPU */
 882
 883void __init smp_fill_possible_mask(void)
 884{
 885	unsigned int possible, sclp_max, cpu;
 886
 887	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 888	sclp_max = min(smp_max_threads, sclp_max);
 889	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 890	possible = setup_possible_cpus ?: nr_cpu_ids;
 891	possible = min(possible, sclp_max);
 892	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 893		set_cpu_possible(cpu, true);
 894}
 895
 896void __init smp_prepare_cpus(unsigned int max_cpus)
 897{
 898	/* request the 0x1201 emergency signal external interrupt */
 899	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 900		panic("Couldn't request external interrupt 0x1201");
 901	/* request the 0x1202 external call external interrupt */
 902	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 903		panic("Couldn't request external interrupt 0x1202");
 
 904}
 905
 906void __init smp_prepare_boot_cpu(void)
 907{
 908	struct pcpu *pcpu = pcpu_devices;
 909
 
 910	pcpu->state = CPU_STATE_CONFIGURED;
 911	pcpu->address = stap();
 912	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 913	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 914	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 915	set_cpu_present(0, true);
 916	set_cpu_online(0, true);
 917}
 918
 919void __init smp_cpus_done(unsigned int max_cpus)
 920{
 921}
 922
 923void __init smp_setup_processor_id(void)
 924{
 
 925	S390_lowcore.cpu_nr = 0;
 926	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 
 927}
 928
 929/*
 930 * the frequency of the profiling timer can be changed
 931 * by writing a multiplier value into /proc/profile.
 932 *
 933 * usually you want to run this on all CPUs ;)
 934 */
 935int setup_profiling_timer(unsigned int multiplier)
 936{
 937	return 0;
 938}
 939
 940#ifdef CONFIG_HOTPLUG_CPU
 941static ssize_t cpu_configure_show(struct device *dev,
 942				  struct device_attribute *attr, char *buf)
 943{
 944	ssize_t count;
 945
 946	mutex_lock(&smp_cpu_state_mutex);
 947	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 948	mutex_unlock(&smp_cpu_state_mutex);
 949	return count;
 950}
 951
 952static ssize_t cpu_configure_store(struct device *dev,
 953				   struct device_attribute *attr,
 954				   const char *buf, size_t count)
 955{
 956	struct pcpu *pcpu;
 957	int cpu, val, rc, i;
 958	char delim;
 959
 960	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 961		return -EINVAL;
 962	if (val != 0 && val != 1)
 963		return -EINVAL;
 964	get_online_cpus();
 965	mutex_lock(&smp_cpu_state_mutex);
 966	rc = -EBUSY;
 967	/* disallow configuration changes of online cpus and cpu 0 */
 968	cpu = dev->id;
 969	cpu = smp_get_base_cpu(cpu);
 970	if (cpu == 0)
 971		goto out;
 972	for (i = 0; i <= smp_cpu_mtid; i++)
 973		if (cpu_online(cpu + i))
 974			goto out;
 975	pcpu = pcpu_devices + cpu;
 976	rc = 0;
 977	switch (val) {
 978	case 0:
 979		if (pcpu->state != CPU_STATE_CONFIGURED)
 980			break;
 981		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
 982		if (rc)
 983			break;
 984		for (i = 0; i <= smp_cpu_mtid; i++) {
 985			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 986				continue;
 987			pcpu[i].state = CPU_STATE_STANDBY;
 988			smp_cpu_set_polarization(cpu + i,
 989						 POLARIZATION_UNKNOWN);
 990		}
 991		topology_expect_change();
 992		break;
 993	case 1:
 994		if (pcpu->state != CPU_STATE_STANDBY)
 995			break;
 996		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
 997		if (rc)
 998			break;
 999		for (i = 0; i <= smp_cpu_mtid; i++) {
1000			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1001				continue;
1002			pcpu[i].state = CPU_STATE_CONFIGURED;
1003			smp_cpu_set_polarization(cpu + i,
1004						 POLARIZATION_UNKNOWN);
1005		}
1006		topology_expect_change();
1007		break;
1008	default:
1009		break;
1010	}
1011out:
1012	mutex_unlock(&smp_cpu_state_mutex);
1013	put_online_cpus();
1014	return rc ? rc : count;
1015}
1016static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1017#endif /* CONFIG_HOTPLUG_CPU */
1018
1019static ssize_t show_cpu_address(struct device *dev,
1020				struct device_attribute *attr, char *buf)
1021{
1022	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1023}
1024static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1025
1026static struct attribute *cpu_common_attrs[] = {
1027#ifdef CONFIG_HOTPLUG_CPU
1028	&dev_attr_configure.attr,
1029#endif
1030	&dev_attr_address.attr,
1031	NULL,
1032};
1033
1034static struct attribute_group cpu_common_attr_group = {
1035	.attrs = cpu_common_attrs,
1036};
1037
1038static struct attribute *cpu_online_attrs[] = {
1039	&dev_attr_idle_count.attr,
1040	&dev_attr_idle_time_us.attr,
1041	NULL,
1042};
1043
1044static struct attribute_group cpu_online_attr_group = {
1045	.attrs = cpu_online_attrs,
1046};
1047
1048static int smp_cpu_online(unsigned int cpu)
1049{
1050	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1051
1052	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1053}
 
1054static int smp_cpu_pre_down(unsigned int cpu)
1055{
1056	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1057
1058	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1059	return 0;
1060}
1061
1062static int smp_add_present_cpu(int cpu)
1063{
1064	struct device *s;
1065	struct cpu *c;
1066	int rc;
1067
1068	c = kzalloc(sizeof(*c), GFP_KERNEL);
1069	if (!c)
1070		return -ENOMEM;
1071	per_cpu(cpu_device, cpu) = c;
1072	s = &c->dev;
1073	c->hotpluggable = 1;
1074	rc = register_cpu(c, cpu);
1075	if (rc)
1076		goto out;
1077	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1078	if (rc)
1079		goto out_cpu;
1080	rc = topology_cpu_init(c);
1081	if (rc)
1082		goto out_topology;
1083	return 0;
1084
1085out_topology:
1086	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1087out_cpu:
1088#ifdef CONFIG_HOTPLUG_CPU
1089	unregister_cpu(c);
1090#endif
1091out:
1092	return rc;
1093}
1094
1095#ifdef CONFIG_HOTPLUG_CPU
1096
1097int __ref smp_rescan_cpus(void)
1098{
1099	struct sclp_core_info *info;
1100	int nr;
1101
1102	info = kzalloc(sizeof(*info), GFP_KERNEL);
1103	if (!info)
1104		return -ENOMEM;
1105	smp_get_core_info(info, 0);
1106	get_online_cpus();
1107	mutex_lock(&smp_cpu_state_mutex);
1108	nr = __smp_rescan_cpus(info, 1);
1109	mutex_unlock(&smp_cpu_state_mutex);
1110	put_online_cpus();
1111	kfree(info);
1112	if (nr)
1113		topology_schedule_update();
1114	return 0;
1115}
1116
1117static ssize_t __ref rescan_store(struct device *dev,
1118				  struct device_attribute *attr,
1119				  const char *buf,
1120				  size_t count)
1121{
1122	int rc;
1123
 
 
 
1124	rc = smp_rescan_cpus();
 
1125	return rc ? rc : count;
1126}
1127static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1128#endif /* CONFIG_HOTPLUG_CPU */
1129
1130static int __init s390_smp_init(void)
1131{
 
1132	int cpu, rc = 0;
1133
1134#ifdef CONFIG_HOTPLUG_CPU
1135	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1136	if (rc)
1137		return rc;
1138#endif
 
 
 
1139	for_each_present_cpu(cpu) {
1140		rc = smp_add_present_cpu(cpu);
1141		if (rc)
1142			goto out;
1143	}
1144
1145	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1146			       smp_cpu_online, smp_cpu_pre_down);
 
1147out:
1148	return rc;
1149}
1150subsys_initcall(s390_smp_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/access-regs.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/ctlreg.h>
  42#include <asm/pfault.h>
  43#include <asm/diag.h>
 
  44#include <asm/facility.h>
  45#include <asm/fpu.h>
  46#include <asm/ipl.h>
  47#include <asm/setup.h>
  48#include <asm/irq.h>
  49#include <asm/tlbflush.h>
  50#include <asm/vtimer.h>
  51#include <asm/abs_lowcore.h>
  52#include <asm/sclp.h>
 
  53#include <asm/debug.h>
  54#include <asm/os_info.h>
  55#include <asm/sigp.h>
  56#include <asm/idle.h>
  57#include <asm/nmi.h>
  58#include <asm/stacktrace.h>
  59#include <asm/topology.h>
  60#include <asm/vdso.h>
  61#include <asm/maccess.h>
  62#include "entry.h"
  63
  64enum {
  65	ec_schedule = 0,
  66	ec_call_function_single,
  67	ec_stop_cpu,
  68	ec_mcck_pending,
  69	ec_irq_work,
  70};
  71
  72enum {
  73	CPU_STATE_STANDBY,
  74	CPU_STATE_CONFIGURED,
  75};
  76
  77static DEFINE_PER_CPU(struct cpu *, cpu_device);
  78
  79struct pcpu {
 
  80	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  81	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  82	signed char state;		/* physical cpu state */
  83	signed char polarization;	/* physical polarization */
  84	u16 address;			/* physical cpu address */
  85};
  86
  87static u8 boot_core_type;
  88static struct pcpu pcpu_devices[NR_CPUS];
  89
  90unsigned int smp_cpu_mt_shift;
  91EXPORT_SYMBOL(smp_cpu_mt_shift);
  92
  93unsigned int smp_cpu_mtid;
  94EXPORT_SYMBOL(smp_cpu_mtid);
  95
  96#ifdef CONFIG_CRASH_DUMP
  97__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  98#endif
  99
 100static unsigned int smp_max_threads __initdata = -1U;
 101cpumask_t cpu_setup_mask;
 102
 103static int __init early_nosmt(char *s)
 104{
 105	smp_max_threads = 1;
 106	return 0;
 107}
 108early_param("nosmt", early_nosmt);
 109
 110static int __init early_smt(char *s)
 111{
 112	get_option(&s, &smp_max_threads);
 113	return 0;
 114}
 115early_param("smt", early_smt);
 116
 117/*
 118 * The smp_cpu_state_mutex must be held when changing the state or polarization
 119 * member of a pcpu data structure within the pcpu_devices array.
 120 */
 121DEFINE_MUTEX(smp_cpu_state_mutex);
 122
 123/*
 124 * Signal processor helper functions.
 125 */
 126static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 127{
 128	int cc;
 129
 130	while (1) {
 131		cc = __pcpu_sigp(addr, order, parm, NULL);
 132		if (cc != SIGP_CC_BUSY)
 133			return cc;
 134		cpu_relax();
 135	}
 136}
 137
 138static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 139{
 140	int cc, retry;
 141
 142	for (retry = 0; ; retry++) {
 143		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 144		if (cc != SIGP_CC_BUSY)
 145			break;
 146		if (retry >= 3)
 147			udelay(10);
 148	}
 149	return cc;
 150}
 151
 152static inline int pcpu_stopped(struct pcpu *pcpu)
 153{
 154	u32 status;
 155
 156	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 157			0, &status) != SIGP_CC_STATUS_STORED)
 158		return 0;
 159	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 160}
 161
 162static inline int pcpu_running(struct pcpu *pcpu)
 163{
 164	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 165			0, NULL) != SIGP_CC_STATUS_STORED)
 166		return 1;
 167	/* Status stored condition code is equivalent to cpu not running. */
 168	return 0;
 169}
 170
 171/*
 172 * Find struct pcpu by cpu address.
 173 */
 174static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 175{
 176	int cpu;
 177
 178	for_each_cpu(cpu, mask)
 179		if (pcpu_devices[cpu].address == address)
 180			return pcpu_devices + cpu;
 181	return NULL;
 182}
 183
 184static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 185{
 186	int order;
 187
 188	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 189		return;
 190	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 191	pcpu->ec_clk = get_tod_clock_fast();
 192	pcpu_sigp_retry(pcpu, order, 0);
 193}
 194
 
 
 
 195static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 196{
 197	unsigned long async_stack, nodat_stack, mcck_stack;
 198	struct lowcore *lc;
 199
 200	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 201	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 202	async_stack = stack_alloc();
 203	mcck_stack = stack_alloc();
 204	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 205		goto out;
 
 
 
 
 
 
 206	memcpy(lc, &S390_lowcore, 512);
 207	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 208	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 209	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 210	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 211	lc->cpu_nr = cpu;
 212	lc->spinlock_lockval = arch_spin_lockval(cpu);
 213	lc->spinlock_index = 0;
 214	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 215	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 216	lc->preempt_count = PREEMPT_DISABLED;
 217	if (nmi_alloc_mcesa(&lc->mcesad))
 218		goto out;
 219	if (abs_lowcore_map(cpu, lc, true))
 220		goto out_mcesa;
 221	lowcore_ptr[cpu] = lc;
 222	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 223	return 0;
 224
 225out_mcesa:
 226	nmi_free_mcesa(&lc->mcesad);
 227out:
 228	stack_free(mcck_stack);
 229	stack_free(async_stack);
 230	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 231	free_pages((unsigned long) lc, LC_ORDER);
 
 232	return -ENOMEM;
 233}
 234
 
 
 235static void pcpu_free_lowcore(struct pcpu *pcpu)
 236{
 237	unsigned long async_stack, nodat_stack, mcck_stack;
 238	struct lowcore *lc;
 239	int cpu;
 240
 241	cpu = pcpu - pcpu_devices;
 242	lc = lowcore_ptr[cpu];
 243	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 244	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 245	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 246	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 247	lowcore_ptr[cpu] = NULL;
 248	abs_lowcore_unmap(cpu);
 249	nmi_free_mcesa(&lc->mcesad);
 250	stack_free(async_stack);
 251	stack_free(mcck_stack);
 252	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 253	free_pages((unsigned long) lc, LC_ORDER);
 254}
 255
 
 
 256static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 257{
 258	struct lowcore *lc, *abs_lc;
 259
 260	lc = lowcore_ptr[cpu];
 261	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 262	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 263	lc->cpu_nr = cpu;
 264	lc->restart_flags = RESTART_FLAG_CTLREGS;
 265	lc->spinlock_lockval = arch_spin_lockval(cpu);
 266	lc->spinlock_index = 0;
 267	lc->percpu_offset = __per_cpu_offset[cpu];
 268	lc->kernel_asce = S390_lowcore.kernel_asce;
 269	lc->user_asce = s390_invalid_asce;
 270	lc->machine_flags = S390_lowcore.machine_flags;
 271	lc->user_timer = lc->system_timer =
 272		lc->steal_timer = lc->avg_steal_timer = 0;
 273	abs_lc = get_abs_lowcore();
 274	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 275	put_abs_lowcore(abs_lc);
 276	lc->cregs_save_area[1] = lc->kernel_asce;
 277	lc->cregs_save_area[7] = lc->user_asce;
 278	save_access_regs((unsigned int *) lc->access_regs_save_area);
 279	arch_spin_lock_setup(cpu);
 
 280}
 281
 282static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 283{
 284	struct lowcore *lc;
 285	int cpu;
 286
 287	cpu = pcpu - pcpu_devices;
 288	lc = lowcore_ptr[cpu];
 289	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 290	lc->current_task = (unsigned long)tsk;
 291	lc->lpp = LPP_MAGIC;
 292	lc->current_pid = tsk->pid;
 293	lc->user_timer = tsk->thread.user_timer;
 294	lc->guest_timer = tsk->thread.guest_timer;
 295	lc->system_timer = tsk->thread.system_timer;
 296	lc->hardirq_timer = tsk->thread.hardirq_timer;
 297	lc->softirq_timer = tsk->thread.softirq_timer;
 298	lc->steal_timer = 0;
 299}
 300
 301static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 302{
 303	struct lowcore *lc;
 304	int cpu;
 305
 306	cpu = pcpu - pcpu_devices;
 307	lc = lowcore_ptr[cpu];
 308	lc->restart_stack = lc->kernel_stack;
 309	lc->restart_fn = (unsigned long) func;
 310	lc->restart_data = (unsigned long) data;
 311	lc->restart_source = -1U;
 312	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 313}
 314
 315typedef void (pcpu_delegate_fn)(void *);
 316
 317/*
 318 * Call function via PSW restart on pcpu and stop the current cpu.
 319 */
 320static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 321{
 322	func(data);	/* should not return */
 323}
 324
 325static void pcpu_delegate(struct pcpu *pcpu,
 326			  pcpu_delegate_fn *func,
 327			  void *data, unsigned long stack)
 328{
 329	struct lowcore *lc, *abs_lc;
 330	unsigned int source_cpu;
 331
 332	lc = lowcore_ptr[pcpu - pcpu_devices];
 333	source_cpu = stap();
 334
 335	if (pcpu->address == source_cpu) {
 336		call_on_stack(2, stack, void, __pcpu_delegate,
 337			      pcpu_delegate_fn *, func, void *, data);
 338	}
 339	/* Stop target cpu (if func returns this stops the current cpu). */
 340	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 341	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 342	/* Restart func on the target cpu and stop the current cpu. */
 343	if (lc) {
 344		lc->restart_stack = stack;
 345		lc->restart_fn = (unsigned long)func;
 346		lc->restart_data = (unsigned long)data;
 347		lc->restart_source = source_cpu;
 348	} else {
 349		abs_lc = get_abs_lowcore();
 350		abs_lc->restart_stack = stack;
 351		abs_lc->restart_fn = (unsigned long)func;
 352		abs_lc->restart_data = (unsigned long)data;
 353		abs_lc->restart_source = source_cpu;
 354		put_abs_lowcore(abs_lc);
 355	}
 356	asm volatile(
 357		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 358		"	brc	2,0b	# busy, try again\n"
 359		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 360		"	brc	2,1b	# busy, try again\n"
 361		: : "d" (pcpu->address), "d" (source_cpu),
 362		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 363		: "0", "1", "cc");
 364	for (;;) ;
 365}
 366
 367/*
 368 * Enable additional logical cpus for multi-threading.
 369 */
 370static int pcpu_set_smt(unsigned int mtid)
 371{
 372	int cc;
 373
 374	if (smp_cpu_mtid == mtid)
 375		return 0;
 376	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 377	if (cc == 0) {
 378		smp_cpu_mtid = mtid;
 379		smp_cpu_mt_shift = 0;
 380		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 381			smp_cpu_mt_shift++;
 382		pcpu_devices[0].address = stap();
 383	}
 384	return cc;
 385}
 386
 387/*
 388 * Call function on an online CPU.
 389 */
 390void smp_call_online_cpu(void (*func)(void *), void *data)
 391{
 392	struct pcpu *pcpu;
 393
 394	/* Use the current cpu if it is online. */
 395	pcpu = pcpu_find_address(cpu_online_mask, stap());
 396	if (!pcpu)
 397		/* Use the first online cpu. */
 398		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 399	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 400}
 401
 402/*
 403 * Call function on the ipl CPU.
 404 */
 405void smp_call_ipl_cpu(void (*func)(void *), void *data)
 406{
 407	struct lowcore *lc = lowcore_ptr[0];
 408
 409	if (pcpu_devices[0].address == stap())
 410		lc = &S390_lowcore;
 411
 412	pcpu_delegate(&pcpu_devices[0], func, data,
 413		      lc->nodat_stack);
 
 414}
 415
 416int smp_find_processor_id(u16 address)
 417{
 418	int cpu;
 419
 420	for_each_present_cpu(cpu)
 421		if (pcpu_devices[cpu].address == address)
 422			return cpu;
 423	return -1;
 424}
 425
 426void schedule_mcck_handler(void)
 427{
 428	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 429}
 430
 431bool notrace arch_vcpu_is_preempted(int cpu)
 432{
 433	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 434		return false;
 435	if (pcpu_running(pcpu_devices + cpu))
 436		return false;
 437	return true;
 438}
 439EXPORT_SYMBOL(arch_vcpu_is_preempted);
 440
 441void notrace smp_yield_cpu(int cpu)
 442{
 443	if (!MACHINE_HAS_DIAG9C)
 444		return;
 445	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 446	asm volatile("diag %0,0,0x9c"
 447		     : : "d" (pcpu_devices[cpu].address));
 
 
 
 448}
 449EXPORT_SYMBOL_GPL(smp_yield_cpu);
 450
 451/*
 452 * Send cpus emergency shutdown signal. This gives the cpus the
 453 * opportunity to complete outstanding interrupts.
 454 */
 455void notrace smp_emergency_stop(void)
 456{
 457	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 458	static cpumask_t cpumask;
 459	u64 end;
 460	int cpu;
 461
 462	arch_spin_lock(&lock);
 463	cpumask_copy(&cpumask, cpu_online_mask);
 464	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 465
 466	end = get_tod_clock() + (1000000UL << 12);
 467	for_each_cpu(cpu, &cpumask) {
 468		struct pcpu *pcpu = pcpu_devices + cpu;
 469		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 470		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 471				   0, NULL) == SIGP_CC_BUSY &&
 472		       get_tod_clock() < end)
 473			cpu_relax();
 474	}
 475	while (get_tod_clock() < end) {
 476		for_each_cpu(cpu, &cpumask)
 477			if (pcpu_stopped(pcpu_devices + cpu))
 478				cpumask_clear_cpu(cpu, &cpumask);
 479		if (cpumask_empty(&cpumask))
 480			break;
 481		cpu_relax();
 482	}
 483	arch_spin_unlock(&lock);
 484}
 485NOKPROBE_SYMBOL(smp_emergency_stop);
 486
 487/*
 488 * Stop all cpus but the current one.
 489 */
 490void smp_send_stop(void)
 491{
 
 492	int cpu;
 493
 494	/* Disable all interrupts/machine checks */
 495	__load_psw_mask(PSW_KERNEL_BITS);
 496	trace_hardirqs_off();
 497
 498	debug_set_critical();
 
 
 499
 500	if (oops_in_progress)
 501		smp_emergency_stop();
 502
 503	/* stop all processors */
 504	for_each_online_cpu(cpu) {
 505		if (cpu == smp_processor_id())
 506			continue;
 507		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 508		while (!pcpu_stopped(pcpu_devices + cpu))
 509			cpu_relax();
 510	}
 511}
 512
 513/*
 514 * This is the main routine where commands issued by other
 515 * cpus are handled.
 516 */
 517static void smp_handle_ext_call(void)
 518{
 519	unsigned long bits;
 520
 521	/* handle bit signal external calls */
 522	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 523	if (test_bit(ec_stop_cpu, &bits))
 524		smp_stop_cpu();
 525	if (test_bit(ec_schedule, &bits))
 526		scheduler_ipi();
 527	if (test_bit(ec_call_function_single, &bits))
 528		generic_smp_call_function_single_interrupt();
 529	if (test_bit(ec_mcck_pending, &bits))
 530		s390_handle_mcck();
 531	if (test_bit(ec_irq_work, &bits))
 532		irq_work_run();
 533}
 534
 535static void do_ext_call_interrupt(struct ext_code ext_code,
 536				  unsigned int param32, unsigned long param64)
 537{
 538	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 539	smp_handle_ext_call();
 540}
 541
 542void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 543{
 544	int cpu;
 545
 546	for_each_cpu(cpu, mask)
 547		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 548}
 549
 550void arch_send_call_function_single_ipi(int cpu)
 551{
 552	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 553}
 554
 555/*
 556 * this function sends a 'reschedule' IPI to another CPU.
 557 * it goes straight through and wastes no time serializing
 558 * anything. Worst case is that we lose a reschedule ...
 559 */
 560void arch_smp_send_reschedule(int cpu)
 561{
 562	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 563}
 564
 565#ifdef CONFIG_IRQ_WORK
 566void arch_irq_work_raise(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567{
 568	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570#endif
 571
 572#ifdef CONFIG_CRASH_DUMP
 573
 574int smp_store_status(int cpu)
 575{
 576	struct lowcore *lc;
 577	struct pcpu *pcpu;
 578	unsigned long pa;
 579
 580	pcpu = pcpu_devices + cpu;
 581	lc = lowcore_ptr[cpu];
 582	pa = __pa(&lc->floating_pt_save_area);
 583	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 584			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 585		return -EIO;
 586	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 587		return 0;
 588	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 589	if (MACHINE_HAS_GS)
 590		pa |= lc->mcesad & MCESA_LC_MASK;
 591	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 592			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 593		return -EIO;
 594	return 0;
 595}
 596
 597/*
 598 * Collect CPU state of the previous, crashed system.
 599 * There are four cases:
 600 * 1) standard zfcp/nvme dump
 601 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 602 *    The state for all CPUs except the boot CPU needs to be collected
 603 *    with sigp stop-and-store-status. The boot CPU state is located in
 604 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 605 *    will copy the boot CPU state from the HSA.
 606 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 607 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 608 *    The state for all CPUs except the boot CPU needs to be collected
 609 *    with sigp stop-and-store-status. The firmware or the boot-loader
 610 *    stored the registers of the boot CPU in the absolute lowcore in the
 611 *    memory of the old system.
 612 * 3) kdump and the old kernel did not store the CPU state,
 613 *    or stand-alone kdump for DASD
 614 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 615 *    The state for all CPUs except the boot CPU needs to be collected
 616 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 617 *    stored the registers of the boot CPU in the memory of the old system.
 618 * 4) kdump and the old kernel stored the CPU state
 619 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 620 *    This case does not exist for s390 anymore, setup_arch explicitly
 621 *    deactivates the elfcorehdr= kernel parameter
 622 */
 623static bool dump_available(void)
 
 624{
 625	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 626}
 627
 628void __init smp_save_dump_ipl_cpu(void)
 
 629{
 630	struct save_area *sa;
 631	void *regs;
 632
 633	if (!dump_available())
 634		return;
 635	sa = save_area_alloc(true);
 636	regs = memblock_alloc(512, 8);
 637	if (!sa || !regs)
 638		panic("could not allocate memory for boot CPU save area\n");
 639	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 640	save_area_add_regs(sa, regs);
 641	memblock_free(regs, 512);
 642	if (cpu_has_vx())
 643		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 644}
 645
 646void __init smp_save_dump_secondary_cpus(void)
 647{
 648	int addr, boot_cpu_addr, max_cpu_addr;
 649	struct save_area *sa;
 650	void *page;
 
 651
 652	if (!dump_available())
 
 653		return;
 654	/* Allocate a page as dumping area for the store status sigps */
 655	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 656	if (!page)
 657		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 658		      PAGE_SIZE, 1UL << 31);
 659
 660	/* Set multi-threading state to the previous system. */
 661	pcpu_set_smt(sclp.mtid_prev);
 662	boot_cpu_addr = stap();
 663	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 664	for (addr = 0; addr <= max_cpu_addr; addr++) {
 665		if (addr == boot_cpu_addr)
 666			continue;
 667		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 668		    SIGP_CC_NOT_OPERATIONAL)
 669			continue;
 670		sa = save_area_alloc(false);
 
 
 671		if (!sa)
 672			panic("could not allocate memory for save area\n");
 673		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 674		save_area_add_regs(sa, page);
 675		if (cpu_has_vx()) {
 676			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 677			save_area_add_vxrs(sa, page);
 678		}
 
 
 
 
 
 
 679	}
 680	memblock_free(page, PAGE_SIZE);
 681	diag_amode31_ops.diag308_reset();
 682	pcpu_set_smt(0);
 683}
 684#endif /* CONFIG_CRASH_DUMP */
 685
 686void smp_cpu_set_polarization(int cpu, int val)
 687{
 688	pcpu_devices[cpu].polarization = val;
 689}
 690
 691int smp_cpu_get_polarization(int cpu)
 692{
 693	return pcpu_devices[cpu].polarization;
 694}
 695
 696int smp_cpu_get_cpu_address(int cpu)
 697{
 698	return pcpu_devices[cpu].address;
 699}
 700
 701static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 702{
 703	static int use_sigp_detection;
 704	int address;
 705
 706	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 707		use_sigp_detection = 1;
 708		for (address = 0;
 709		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 710		     address += (1U << smp_cpu_mt_shift)) {
 711			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 712			    SIGP_CC_NOT_OPERATIONAL)
 713				continue;
 714			info->core[info->configured].core_id =
 715				address >> smp_cpu_mt_shift;
 716			info->configured++;
 717		}
 718		info->combined = info->configured;
 719	}
 720}
 721
 722static int smp_add_present_cpu(int cpu);
 723
 724static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 725			bool configured, bool early)
 726{
 727	struct pcpu *pcpu;
 728	int cpu, nr, i;
 
 729	u16 address;
 730
 731	nr = 0;
 732	if (sclp.has_core_type && core->type != boot_core_type)
 733		return nr;
 734	cpu = cpumask_first(avail);
 735	address = core->core_id << smp_cpu_mt_shift;
 736	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 737		if (pcpu_find_address(cpu_present_mask, address + i))
 738			continue;
 739		pcpu = pcpu_devices + cpu;
 740		pcpu->address = address + i;
 741		if (configured)
 742			pcpu->state = CPU_STATE_CONFIGURED;
 743		else
 744			pcpu->state = CPU_STATE_STANDBY;
 745		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 746		set_cpu_present(cpu, true);
 747		if (!early && smp_add_present_cpu(cpu) != 0)
 748			set_cpu_present(cpu, false);
 749		else
 750			nr++;
 751		cpumask_clear_cpu(cpu, avail);
 752		cpu = cpumask_next(cpu, avail);
 753	}
 754	return nr;
 755}
 756
 757static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 758{
 759	struct sclp_core_entry *core;
 760	static cpumask_t avail;
 761	bool configured;
 762	u16 core_id;
 763	int nr, i;
 764
 765	cpus_read_lock();
 766	mutex_lock(&smp_cpu_state_mutex);
 767	nr = 0;
 768	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 769	/*
 770	 * Add IPL core first (which got logical CPU number 0) to make sure
 771	 * that all SMT threads get subsequent logical CPU numbers.
 772	 */
 773	if (early) {
 774		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 775		for (i = 0; i < info->configured; i++) {
 776			core = &info->core[i];
 777			if (core->core_id == core_id) {
 778				nr += smp_add_core(core, &avail, true, early);
 779				break;
 780			}
 781		}
 782	}
 783	for (i = 0; i < info->combined; i++) {
 784		configured = i < info->configured;
 785		nr += smp_add_core(&info->core[i], &avail, configured, early);
 786	}
 787	mutex_unlock(&smp_cpu_state_mutex);
 788	cpus_read_unlock();
 789	return nr;
 790}
 791
 792void __init smp_detect_cpus(void)
 793{
 794	unsigned int cpu, mtid, c_cpus, s_cpus;
 795	struct sclp_core_info *info;
 796	u16 address;
 797
 798	/* Get CPU information */
 799	info = memblock_alloc(sizeof(*info), 8);
 800	if (!info)
 801		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 802		      __func__, sizeof(*info), 8);
 803	smp_get_core_info(info, 1);
 804	/* Find boot CPU type */
 805	if (sclp.has_core_type) {
 806		address = stap();
 807		for (cpu = 0; cpu < info->combined; cpu++)
 808			if (info->core[cpu].core_id == address) {
 809				/* The boot cpu dictates the cpu type. */
 810				boot_core_type = info->core[cpu].type;
 811				break;
 812			}
 813		if (cpu >= info->combined)
 814			panic("Could not find boot CPU type");
 815	}
 816
 817	/* Set multi-threading state for the current system */
 818	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 819	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 820	pcpu_set_smt(mtid);
 821
 822	/* Print number of CPUs */
 823	c_cpus = s_cpus = 0;
 824	for (cpu = 0; cpu < info->combined; cpu++) {
 825		if (sclp.has_core_type &&
 826		    info->core[cpu].type != boot_core_type)
 827			continue;
 828		if (cpu < info->configured)
 829			c_cpus += smp_cpu_mtid + 1;
 830		else
 831			s_cpus += smp_cpu_mtid + 1;
 832	}
 833	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 834
 835	/* Add CPUs present at boot */
 836	__smp_rescan_cpus(info, true);
 837	memblock_free(info, sizeof(*info));
 
 
 838}
 839
 840/*
 841 *	Activate a secondary processor.
 842 */
 843static void smp_start_secondary(void *cpuvoid)
 844{
 845	int cpu = raw_smp_processor_id();
 846
 847	S390_lowcore.last_update_clock = get_tod_clock();
 848	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 849	S390_lowcore.restart_fn = (unsigned long)do_restart;
 850	S390_lowcore.restart_data = 0;
 851	S390_lowcore.restart_source = -1U;
 852	S390_lowcore.restart_flags = 0;
 853	restore_access_regs(S390_lowcore.access_regs_save_area);
 
 
 854	cpu_init();
 855	rcutree_report_cpu_starting(cpu);
 856	init_cpu_timer();
 857	vtime_init();
 858	vdso_getcpu_init();
 859	pfault_init();
 860	cpumask_set_cpu(cpu, &cpu_setup_mask);
 861	update_cpu_masks();
 862	notify_cpu_starting(cpu);
 863	if (topology_cpu_dedicated(cpu))
 864		set_cpu_flag(CIF_DEDICATED_CPU);
 865	else
 866		clear_cpu_flag(CIF_DEDICATED_CPU);
 867	set_cpu_online(cpu, true);
 868	inc_irq_stat(CPU_RST);
 869	local_irq_enable();
 870	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 871}
 872
 873/* Upping and downing of CPUs */
 874int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 875{
 876	struct pcpu *pcpu = pcpu_devices + cpu;
 877	int rc;
 878
 
 879	if (pcpu->state != CPU_STATE_CONFIGURED)
 880		return -EIO;
 881	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 
 
 
 
 
 
 
 
 
 
 
 882	    SIGP_CC_ORDER_CODE_ACCEPTED)
 883		return -EIO;
 884
 885	rc = pcpu_alloc_lowcore(pcpu, cpu);
 886	if (rc)
 887		return rc;
 888	/*
 889	 * Make sure global control register contents do not change
 890	 * until new CPU has initialized control registers.
 891	 */
 892	system_ctlreg_lock();
 893	pcpu_prepare_secondary(pcpu, cpu);
 894	pcpu_attach_task(pcpu, tidle);
 895	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 896	/* Wait until cpu puts itself in the online & active maps */
 897	while (!cpu_online(cpu))
 898		cpu_relax();
 899	system_ctlreg_unlock();
 900	return 0;
 901}
 902
 903static unsigned int setup_possible_cpus __initdata;
 904
 905static int __init _setup_possible_cpus(char *s)
 906{
 907	get_option(&s, &setup_possible_cpus);
 908	return 0;
 909}
 910early_param("possible_cpus", _setup_possible_cpus);
 911
 
 
 912int __cpu_disable(void)
 913{
 914	struct ctlreg cregs[16];
 915	int cpu;
 916
 917	/* Handle possible pending IPIs */
 918	smp_handle_ext_call();
 919	cpu = smp_processor_id();
 920	set_cpu_online(cpu, false);
 921	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 922	update_cpu_masks();
 923	/* Disable pseudo page faults on this cpu. */
 924	pfault_fini();
 925	/* Disable interrupt sources via control register. */
 926	__local_ctl_store(0, 15, cregs);
 927	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 928	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 929	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 930	__local_ctl_load(0, 15, cregs);
 931	clear_cpu_flag(CIF_NOHZ_DELAY);
 932	return 0;
 933}
 934
 935void __cpu_die(unsigned int cpu)
 936{
 937	struct pcpu *pcpu;
 938
 939	/* Wait until target cpu is down */
 940	pcpu = pcpu_devices + cpu;
 941	while (!pcpu_stopped(pcpu))
 942		cpu_relax();
 943	pcpu_free_lowcore(pcpu);
 944	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 945	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 946}
 947
 948void __noreturn cpu_die(void)
 949{
 950	idle_task_exit();
 951	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 952	for (;;) ;
 953}
 954
 
 
 955void __init smp_fill_possible_mask(void)
 956{
 957	unsigned int possible, sclp_max, cpu;
 958
 959	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 960	sclp_max = min(smp_max_threads, sclp_max);
 961	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 962	possible = setup_possible_cpus ?: nr_cpu_ids;
 963	possible = min(possible, sclp_max);
 964	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 965		set_cpu_possible(cpu, true);
 966}
 967
 968void __init smp_prepare_cpus(unsigned int max_cpus)
 969{
 
 970	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 971		panic("Couldn't request external interrupt 0x1201");
 972	system_ctl_set_bit(0, 14);
 973	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 974		panic("Couldn't request external interrupt 0x1202");
 975	system_ctl_set_bit(0, 13);
 976}
 977
 978void __init smp_prepare_boot_cpu(void)
 979{
 980	struct pcpu *pcpu = pcpu_devices;
 981
 982	WARN_ON(!cpu_present(0) || !cpu_online(0));
 983	pcpu->state = CPU_STATE_CONFIGURED;
 
 
 984	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 985	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
 
 
 
 
 
 986}
 987
 988void __init smp_setup_processor_id(void)
 989{
 990	pcpu_devices[0].address = stap();
 991	S390_lowcore.cpu_nr = 0;
 992	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 993	S390_lowcore.spinlock_index = 0;
 994}
 995
 996/*
 997 * the frequency of the profiling timer can be changed
 998 * by writing a multiplier value into /proc/profile.
 999 *
1000 * usually you want to run this on all CPUs ;)
1001 */
1002int setup_profiling_timer(unsigned int multiplier)
1003{
1004	return 0;
1005}
1006
 
1007static ssize_t cpu_configure_show(struct device *dev,
1008				  struct device_attribute *attr, char *buf)
1009{
1010	ssize_t count;
1011
1012	mutex_lock(&smp_cpu_state_mutex);
1013	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1014	mutex_unlock(&smp_cpu_state_mutex);
1015	return count;
1016}
1017
1018static ssize_t cpu_configure_store(struct device *dev,
1019				   struct device_attribute *attr,
1020				   const char *buf, size_t count)
1021{
1022	struct pcpu *pcpu;
1023	int cpu, val, rc, i;
1024	char delim;
1025
1026	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1027		return -EINVAL;
1028	if (val != 0 && val != 1)
1029		return -EINVAL;
1030	cpus_read_lock();
1031	mutex_lock(&smp_cpu_state_mutex);
1032	rc = -EBUSY;
1033	/* disallow configuration changes of online cpus */
1034	cpu = dev->id;
1035	cpu = smp_get_base_cpu(cpu);
 
 
1036	for (i = 0; i <= smp_cpu_mtid; i++)
1037		if (cpu_online(cpu + i))
1038			goto out;
1039	pcpu = pcpu_devices + cpu;
1040	rc = 0;
1041	switch (val) {
1042	case 0:
1043		if (pcpu->state != CPU_STATE_CONFIGURED)
1044			break;
1045		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1046		if (rc)
1047			break;
1048		for (i = 0; i <= smp_cpu_mtid; i++) {
1049			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1050				continue;
1051			pcpu[i].state = CPU_STATE_STANDBY;
1052			smp_cpu_set_polarization(cpu + i,
1053						 POLARIZATION_UNKNOWN);
1054		}
1055		topology_expect_change();
1056		break;
1057	case 1:
1058		if (pcpu->state != CPU_STATE_STANDBY)
1059			break;
1060		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1061		if (rc)
1062			break;
1063		for (i = 0; i <= smp_cpu_mtid; i++) {
1064			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1065				continue;
1066			pcpu[i].state = CPU_STATE_CONFIGURED;
1067			smp_cpu_set_polarization(cpu + i,
1068						 POLARIZATION_UNKNOWN);
1069		}
1070		topology_expect_change();
1071		break;
1072	default:
1073		break;
1074	}
1075out:
1076	mutex_unlock(&smp_cpu_state_mutex);
1077	cpus_read_unlock();
1078	return rc ? rc : count;
1079}
1080static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 
1081
1082static ssize_t show_cpu_address(struct device *dev,
1083				struct device_attribute *attr, char *buf)
1084{
1085	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1086}
1087static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1088
1089static struct attribute *cpu_common_attrs[] = {
 
1090	&dev_attr_configure.attr,
 
1091	&dev_attr_address.attr,
1092	NULL,
1093};
1094
1095static struct attribute_group cpu_common_attr_group = {
1096	.attrs = cpu_common_attrs,
1097};
1098
1099static struct attribute *cpu_online_attrs[] = {
1100	&dev_attr_idle_count.attr,
1101	&dev_attr_idle_time_us.attr,
1102	NULL,
1103};
1104
1105static struct attribute_group cpu_online_attr_group = {
1106	.attrs = cpu_online_attrs,
1107};
1108
1109static int smp_cpu_online(unsigned int cpu)
1110{
1111	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1112
1113	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1114}
1115
1116static int smp_cpu_pre_down(unsigned int cpu)
1117{
1118	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1119
1120	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1121	return 0;
1122}
1123
1124static int smp_add_present_cpu(int cpu)
1125{
1126	struct device *s;
1127	struct cpu *c;
1128	int rc;
1129
1130	c = kzalloc(sizeof(*c), GFP_KERNEL);
1131	if (!c)
1132		return -ENOMEM;
1133	per_cpu(cpu_device, cpu) = c;
1134	s = &c->dev;
1135	c->hotpluggable = !!cpu;
1136	rc = register_cpu(c, cpu);
1137	if (rc)
1138		goto out;
1139	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1140	if (rc)
1141		goto out_cpu;
1142	rc = topology_cpu_init(c);
1143	if (rc)
1144		goto out_topology;
1145	return 0;
1146
1147out_topology:
1148	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1149out_cpu:
 
1150	unregister_cpu(c);
 
1151out:
1152	return rc;
1153}
1154
 
 
1155int __ref smp_rescan_cpus(void)
1156{
1157	struct sclp_core_info *info;
1158	int nr;
1159
1160	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161	if (!info)
1162		return -ENOMEM;
1163	smp_get_core_info(info, 0);
1164	nr = __smp_rescan_cpus(info, false);
 
 
 
 
1165	kfree(info);
1166	if (nr)
1167		topology_schedule_update();
1168	return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172				  struct device_attribute *attr,
1173				  const char *buf,
1174				  size_t count)
1175{
1176	int rc;
1177
1178	rc = lock_device_hotplug_sysfs();
1179	if (rc)
1180		return rc;
1181	rc = smp_rescan_cpus();
1182	unlock_device_hotplug();
1183	return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
 
1186
1187static int __init s390_smp_init(void)
1188{
1189	struct device *dev_root;
1190	int cpu, rc = 0;
1191
1192	dev_root = bus_get_dev_root(&cpu_subsys);
1193	if (dev_root) {
1194		rc = device_create_file(dev_root, &dev_attr_rescan);
1195		put_device(dev_root);
1196		if (rc)
1197			return rc;
1198	}
1199
1200	for_each_present_cpu(cpu) {
1201		rc = smp_add_present_cpu(cpu);
1202		if (rc)
1203			goto out;
1204	}
1205
1206	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1207			       smp_cpu_online, smp_cpu_pre_down);
1208	rc = rc <= 0 ? rc : 0;
1209out:
1210	return rc;
1211}
1212subsys_initcall(s390_smp_init);