Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999, 2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/bootmem.h>
  23#include <linux/module.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/cpu.h>
  33#include <linux/slab.h>
  34#include <linux/crash_dump.h>
  35#include <linux/memblock.h>
  36#include <asm/asm-offsets.h>
  37#include <asm/diag.h>
  38#include <asm/switch_to.h>
  39#include <asm/facility.h>
  40#include <asm/ipl.h>
  41#include <asm/setup.h>
  42#include <asm/irq.h>
  43#include <asm/tlbflush.h>
  44#include <asm/vtimer.h>
  45#include <asm/lowcore.h>
  46#include <asm/sclp.h>
  47#include <asm/vdso.h>
  48#include <asm/debug.h>
  49#include <asm/os_info.h>
  50#include <asm/sigp.h>
  51#include <asm/idle.h>
  52#include "entry.h"
  53
  54enum {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55	ec_schedule = 0,
 
  56	ec_call_function_single,
  57	ec_stop_cpu,
  58};
  59
  60enum {
  61	CPU_STATE_STANDBY,
  62	CPU_STATE_CONFIGURED,
  63};
  64
  65static DEFINE_PER_CPU(struct cpu *, cpu_device);
  66
  67struct pcpu {
  68	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
 
 
 
  69	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  70	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  71	signed char state;		/* physical cpu state */
  72	signed char polarization;	/* physical polarization */
  73	u16 address;			/* physical cpu address */
  74};
  75
  76static u8 boot_core_type;
 
  77static struct pcpu pcpu_devices[NR_CPUS];
  78
  79unsigned int smp_cpu_mt_shift;
  80EXPORT_SYMBOL(smp_cpu_mt_shift);
  81
  82unsigned int smp_cpu_mtid;
  83EXPORT_SYMBOL(smp_cpu_mtid);
  84
  85#ifdef CONFIG_CRASH_DUMP
  86__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  87#endif
  88
  89static unsigned int smp_max_threads __initdata = -1U;
  90
  91static int __init early_nosmt(char *s)
  92{
  93	smp_max_threads = 1;
  94	return 0;
  95}
  96early_param("nosmt", early_nosmt);
  97
  98static int __init early_smt(char *s)
  99{
 100	get_option(&s, &smp_max_threads);
 101	return 0;
 102}
 103early_param("smt", early_smt);
 104
 105/*
 106 * The smp_cpu_state_mutex must be held when changing the state or polarization
 107 * member of a pcpu data structure within the pcpu_devices arreay.
 108 */
 109DEFINE_MUTEX(smp_cpu_state_mutex);
 110
 111/*
 112 * Signal processor helper functions.
 113 */
 114static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115{
 116	int cc;
 117
 118	while (1) {
 119		cc = __pcpu_sigp(addr, order, parm, NULL);
 120		if (cc != SIGP_CC_BUSY)
 121			return cc;
 122		cpu_relax();
 123	}
 124}
 125
 126static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 127{
 128	int cc, retry;
 129
 130	for (retry = 0; ; retry++) {
 131		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 132		if (cc != SIGP_CC_BUSY)
 133			break;
 134		if (retry >= 3)
 135			udelay(10);
 136	}
 137	return cc;
 138}
 139
 140static inline int pcpu_stopped(struct pcpu *pcpu)
 141{
 142	u32 uninitialized_var(status);
 143
 144	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 145			0, &status) != SIGP_CC_STATUS_STORED)
 146		return 0;
 147	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 
 148}
 149
 150static inline int pcpu_running(struct pcpu *pcpu)
 151{
 152	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 153			0, NULL) != SIGP_CC_STATUS_STORED)
 154		return 1;
 155	/* Status stored condition code is equivalent to cpu not running. */
 156	return 0;
 157}
 158
 159/*
 160 * Find struct pcpu by cpu address.
 161 */
 162static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 163{
 164	int cpu;
 165
 166	for_each_cpu(cpu, mask)
 167		if (pcpu_devices[cpu].address == address)
 168			return pcpu_devices + cpu;
 169	return NULL;
 170}
 171
 172static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 173{
 174	int order;
 175
 176	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 177		return;
 178	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 179	pcpu->ec_clk = get_tod_clock_fast();
 180	pcpu_sigp_retry(pcpu, order, 0);
 181}
 182
 183#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 184#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 185
 186static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 187{
 188	unsigned long async_stack, panic_stack;
 189	struct lowcore *lc;
 190
 191	if (pcpu != &pcpu_devices[0]) {
 192		pcpu->lowcore =	(struct lowcore *)
 193			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 194		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 195		panic_stack = __get_free_page(GFP_KERNEL);
 196		if (!pcpu->lowcore || !panic_stack || !async_stack)
 197			goto out;
 198	} else {
 199		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 200		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 201	}
 202	lc = pcpu->lowcore;
 203	memcpy(lc, &S390_lowcore, 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 206	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 207	lc->cpu_nr = cpu;
 208	lc->spinlock_lockval = arch_spin_lockval(cpu);
 209	if (MACHINE_HAS_VX)
 210		lc->vector_save_area_addr =
 211			(unsigned long) &lc->vector_save_area;
 
 
 
 212	if (vdso_alloc_per_cpu(lc))
 213		goto out;
 
 214	lowcore_ptr[cpu] = lc;
 215	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 216	return 0;
 217out:
 218	if (pcpu != &pcpu_devices[0]) {
 219		free_page(panic_stack);
 220		free_pages(async_stack, ASYNC_ORDER);
 221		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 222	}
 223	return -ENOMEM;
 224}
 225
 226#ifdef CONFIG_HOTPLUG_CPU
 227
 228static void pcpu_free_lowcore(struct pcpu *pcpu)
 229{
 230	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 231	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 
 
 
 
 
 
 
 
 232	vdso_free_per_cpu(pcpu->lowcore);
 233	if (pcpu == &pcpu_devices[0])
 234		return;
 235	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 236	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 237	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 
 238}
 239
 240#endif /* CONFIG_HOTPLUG_CPU */
 241
 242static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 243{
 244	struct lowcore *lc = pcpu->lowcore;
 245
 246	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 247	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 248	lc->cpu_nr = cpu;
 249	lc->spinlock_lockval = arch_spin_lockval(cpu);
 250	lc->percpu_offset = __per_cpu_offset[cpu];
 251	lc->kernel_asce = S390_lowcore.kernel_asce;
 252	lc->machine_flags = S390_lowcore.machine_flags;
 
 253	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 254	__ctl_store(lc->cregs_save_area, 0, 15);
 255	save_access_regs((unsigned int *) lc->access_regs_save_area);
 256	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 257	       MAX_FACILITY_BIT/8);
 258}
 259
 260static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 261{
 262	struct lowcore *lc = pcpu->lowcore;
 
 263
 264	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 265		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 266	lc->current_task = (unsigned long) tsk;
 267	lc->lpp = LPP_MAGIC;
 268	lc->current_pid = tsk->pid;
 269	lc->user_timer = tsk->thread.user_timer;
 270	lc->system_timer = tsk->thread.system_timer;
 271	lc->steal_timer = 0;
 272}
 273
 274static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 275{
 276	struct lowcore *lc = pcpu->lowcore;
 277
 278	lc->restart_stack = lc->kernel_stack;
 279	lc->restart_fn = (unsigned long) func;
 280	lc->restart_data = (unsigned long) data;
 281	lc->restart_source = -1UL;
 282	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 283}
 284
 285/*
 286 * Call function via PSW restart on pcpu and stop the current cpu.
 287 */
 288static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 289			  void *data, unsigned long stack)
 290{
 291	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 292	unsigned long source_cpu = stap();
 
 
 
 
 
 293
 294	__load_psw_mask(PSW_KERNEL_BITS);
 295	if (pcpu->address == source_cpu)
 296		func(data);	/* should not return */
 297	/* Stop target cpu (if func returns this stops the current cpu). */
 298	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 299	/* Restart func on the target cpu and stop the current cpu. */
 300	mem_assign_absolute(lc->restart_stack, stack);
 301	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 302	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 303	mem_assign_absolute(lc->restart_source, source_cpu);
 304	asm volatile(
 305		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 306		"	brc	2,0b	# busy, try again\n"
 307		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 308		"	brc	2,1b	# busy, try again\n"
 309		: : "d" (pcpu->address), "d" (source_cpu),
 310		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 311		: "0", "1", "cc");
 312	for (;;) ;
 313}
 314
 315/*
 316 * Enable additional logical cpus for multi-threading.
 317 */
 318static int pcpu_set_smt(unsigned int mtid)
 319{
 320	int cc;
 321
 322	if (smp_cpu_mtid == mtid)
 323		return 0;
 324	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 325	if (cc == 0) {
 326		smp_cpu_mtid = mtid;
 327		smp_cpu_mt_shift = 0;
 328		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 329			smp_cpu_mt_shift++;
 330		pcpu_devices[0].address = stap();
 331	}
 332	return cc;
 333}
 334
 335/*
 336 * Call function on an online CPU.
 337 */
 338void smp_call_online_cpu(void (*func)(void *), void *data)
 339{
 340	struct pcpu *pcpu;
 341
 342	/* Use the current cpu if it is online. */
 343	pcpu = pcpu_find_address(cpu_online_mask, stap());
 344	if (!pcpu)
 345		/* Use the first online cpu. */
 346		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 347	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 348}
 349
 350/*
 351 * Call function on the ipl CPU.
 352 */
 353void smp_call_ipl_cpu(void (*func)(void *), void *data)
 354{
 355	pcpu_delegate(&pcpu_devices[0], func, data,
 356		      pcpu_devices->lowcore->panic_stack -
 357		      PANIC_FRAME_OFFSET + PAGE_SIZE);
 358}
 359
 360int smp_find_processor_id(u16 address)
 361{
 362	int cpu;
 363
 364	for_each_present_cpu(cpu)
 365		if (pcpu_devices[cpu].address == address)
 366			return cpu;
 367	return -1;
 368}
 369
 370bool arch_vcpu_is_preempted(int cpu)
 
 
 
 
 
 371{
 372	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 373		return false;
 374	if (pcpu_running(pcpu_devices + cpu))
 375		return false;
 376	return true;
 377}
 378EXPORT_SYMBOL(arch_vcpu_is_preempted);
 379
 380void smp_yield_cpu(int cpu)
 381{
 382	if (MACHINE_HAS_DIAG9C) {
 383		diag_stat_inc_norecursion(DIAG_STAT_X09C);
 384		asm volatile("diag %0,0,0x9c"
 385			     : : "d" (pcpu_devices[cpu].address));
 386	} else if (MACHINE_HAS_DIAG44) {
 387		diag_stat_inc_norecursion(DIAG_STAT_X044);
 388		asm volatile("diag 0,0,0x44");
 389	}
 390}
 391
 392/*
 393 * Send cpus emergency shutdown signal. This gives the cpus the
 394 * opportunity to complete outstanding interrupts.
 395 */
 396static void smp_emergency_stop(cpumask_t *cpumask)
 397{
 398	u64 end;
 399	int cpu;
 400
 401	end = get_tod_clock() + (1000000UL << 12);
 402	for_each_cpu(cpu, cpumask) {
 403		struct pcpu *pcpu = pcpu_devices + cpu;
 404		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 405		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 406				   0, NULL) == SIGP_CC_BUSY &&
 407		       get_tod_clock() < end)
 408			cpu_relax();
 409	}
 410	while (get_tod_clock() < end) {
 411		for_each_cpu(cpu, cpumask)
 412			if (pcpu_stopped(pcpu_devices + cpu))
 413				cpumask_clear_cpu(cpu, cpumask);
 414		if (cpumask_empty(cpumask))
 415			break;
 416		cpu_relax();
 417	}
 418}
 419
 420/*
 421 * Stop all cpus but the current one.
 422 */
 423void smp_send_stop(void)
 424{
 425	cpumask_t cpumask;
 426	int cpu;
 427
 428	/* Disable all interrupts/machine checks */
 429	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 430	trace_hardirqs_off();
 431
 432	debug_set_critical();
 433	cpumask_copy(&cpumask, cpu_online_mask);
 434	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 435
 436	if (oops_in_progress)
 437		smp_emergency_stop(&cpumask);
 438
 439	/* stop all processors */
 440	for_each_cpu(cpu, &cpumask) {
 441		struct pcpu *pcpu = pcpu_devices + cpu;
 442		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 443		while (!pcpu_stopped(pcpu))
 444			cpu_relax();
 445	}
 446}
 447
 448/*
 
 
 
 
 
 
 
 
 
 449 * This is the main routine where commands issued by other
 450 * cpus are handled.
 451 */
 452static void smp_handle_ext_call(void)
 
 453{
 454	unsigned long bits;
 
 
 
 
 
 
 
 
 
 
 
 455
 456	/* handle bit signal external calls */
 457	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 458	if (test_bit(ec_stop_cpu, &bits))
 459		smp_stop_cpu();
 
 460	if (test_bit(ec_schedule, &bits))
 461		scheduler_ipi();
 
 
 
 
 462	if (test_bit(ec_call_function_single, &bits))
 463		generic_smp_call_function_single_interrupt();
 464}
 465
 466static void do_ext_call_interrupt(struct ext_code ext_code,
 467				  unsigned int param32, unsigned long param64)
 468{
 469	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 470	smp_handle_ext_call();
 471}
 472
 473void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 474{
 475	int cpu;
 476
 477	for_each_cpu(cpu, mask)
 478		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 479}
 480
 481void arch_send_call_function_single_ipi(int cpu)
 482{
 483	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 484}
 485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486/*
 487 * this function sends a 'reschedule' IPI to another CPU.
 488 * it goes straight through and wastes no time serializing
 489 * anything. Worst case is that we lose a reschedule ...
 490 */
 491void smp_send_reschedule(int cpu)
 492{
 493	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 494}
 495
 496/*
 497 * parameter area for the set/clear control bit callbacks
 498 */
 499struct ec_creg_mask_parms {
 500	unsigned long orval;
 501	unsigned long andval;
 502	int cr;
 503};
 504
 505/*
 506 * callback for setting/clearing control bits
 507 */
 508static void smp_ctl_bit_callback(void *info)
 509{
 510	struct ec_creg_mask_parms *pp = info;
 511	unsigned long cregs[16];
 512
 513	__ctl_store(cregs, 0, 15);
 514	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 515	__ctl_load(cregs, 0, 15);
 516}
 517
 518/*
 519 * Set a bit in a control register of all cpus
 520 */
 521void smp_ctl_set_bit(int cr, int bit)
 522{
 523	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 524
 525	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 526}
 527EXPORT_SYMBOL(smp_ctl_set_bit);
 528
 529/*
 530 * Clear a bit in a control register of all cpus
 531 */
 532void smp_ctl_clear_bit(int cr, int bit)
 533{
 534	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 535
 536	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 537}
 538EXPORT_SYMBOL(smp_ctl_clear_bit);
 539
 540#ifdef CONFIG_CRASH_DUMP
 541
 542int smp_store_status(int cpu)
 543{
 544	struct pcpu *pcpu = pcpu_devices + cpu;
 545	unsigned long pa;
 546
 547	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 548	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 549			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 550		return -EIO;
 551	if (!MACHINE_HAS_VX)
 552		return 0;
 553	pa = __pa(pcpu->lowcore->vector_save_area_addr);
 554	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 555			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 556		return -EIO;
 557	return 0;
 558}
 559
 560/*
 561 * Collect CPU state of the previous, crashed system.
 562 * There are four cases:
 563 * 1) standard zfcp dump
 564 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 565 *    The state for all CPUs except the boot CPU needs to be collected
 566 *    with sigp stop-and-store-status. The boot CPU state is located in
 567 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 568 *    will copy the boot CPU state from the HSA.
 569 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 570 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 571 *    The state for all CPUs except the boot CPU needs to be collected
 572 *    with sigp stop-and-store-status. The firmware or the boot-loader
 573 *    stored the registers of the boot CPU in the absolute lowcore in the
 574 *    memory of the old system.
 575 * 3) kdump and the old kernel did not store the CPU state,
 576 *    or stand-alone kdump for DASD
 577 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 578 *    The state for all CPUs except the boot CPU needs to be collected
 579 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 580 *    stored the registers of the boot CPU in the memory of the old system.
 581 * 4) kdump and the old kernel stored the CPU state
 582 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 583 *    This case does not exist for s390 anymore, setup_arch explicitly
 584 *    deactivates the elfcorehdr= kernel parameter
 585 */
 586static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 587				     bool is_boot_cpu, unsigned long page)
 588{
 589	__vector128 *vxrs = (__vector128 *) page;
 
 590
 591	if (is_boot_cpu)
 592		vxrs = boot_cpu_vector_save_area;
 593	else
 594		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 595	save_area_add_vxrs(sa, vxrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596}
 597
 598static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 599				     bool is_boot_cpu, unsigned long page)
 600{
 601	void *regs = (void *) page;
 602
 603	if (is_boot_cpu)
 604		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 605	else
 606		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 607	save_area_add_regs(sa, regs);
 608}
 609
 610void __init smp_save_dump_cpus(void)
 611{
 612	int addr, boot_cpu_addr, max_cpu_addr;
 613	struct save_area *sa;
 614	unsigned long page;
 615	bool is_boot_cpu;
 616
 617	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 618		/* No previous system present, normal boot. */
 619		return;
 620	/* Allocate a page as dumping area for the store status sigps */
 621	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
 622	/* Set multi-threading state to the previous system. */
 623	pcpu_set_smt(sclp.mtid_prev);
 624	boot_cpu_addr = stap();
 625	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 626	for (addr = 0; addr <= max_cpu_addr; addr++) {
 627		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 628		    SIGP_CC_NOT_OPERATIONAL)
 629			continue;
 630		is_boot_cpu = (addr == boot_cpu_addr);
 631		/* Allocate save area */
 632		sa = save_area_alloc(is_boot_cpu);
 633		if (!sa)
 634			panic("could not allocate memory for save area\n");
 635		if (MACHINE_HAS_VX)
 636			/* Get the vector registers */
 637			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 638		/*
 639		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 640		 * of the boot CPU are stored in the HSA. To retrieve
 641		 * these registers an SCLP request is required which is
 642		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 643		 */
 644		if (!is_boot_cpu || OLDMEM_BASE)
 645			/* Get the CPU registers */
 646			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 647	}
 648	memblock_free(page, PAGE_SIZE);
 649	diag308_reset();
 650	pcpu_set_smt(0);
 651}
 652#endif /* CONFIG_CRASH_DUMP */
 653
 654void smp_cpu_set_polarization(int cpu, int val)
 655{
 656	pcpu_devices[cpu].polarization = val;
 657}
 658
 659int smp_cpu_get_polarization(int cpu)
 660{
 661	return pcpu_devices[cpu].polarization;
 662}
 663
 664static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 665{
 666	static int use_sigp_detection;
 
 667	int address;
 668
 669	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 
 670		use_sigp_detection = 1;
 671		for (address = 0;
 672		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 673		     address += (1U << smp_cpu_mt_shift)) {
 674			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 675			    SIGP_CC_NOT_OPERATIONAL)
 676				continue;
 677			info->core[info->configured].core_id =
 678				address >> smp_cpu_mt_shift;
 679			info->configured++;
 680		}
 681		info->combined = info->configured;
 682	}
 
 683}
 684
 685static int smp_add_present_cpu(int cpu);
 686
 687static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 
 688{
 689	struct pcpu *pcpu;
 690	cpumask_t avail;
 691	int cpu, nr, i, j;
 692	u16 address;
 693
 694	nr = 0;
 695	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 696	cpu = cpumask_first(&avail);
 697	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 698		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 699			continue;
 700		address = info->core[i].core_id << smp_cpu_mt_shift;
 701		for (j = 0; j <= smp_cpu_mtid; j++) {
 702			if (pcpu_find_address(cpu_present_mask, address + j))
 703				continue;
 704			pcpu = pcpu_devices + cpu;
 705			pcpu->address = address + j;
 706			pcpu->state =
 707				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 708				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 709			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 710			set_cpu_present(cpu, true);
 711			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 712				set_cpu_present(cpu, false);
 713			else
 714				nr++;
 715			cpu = cpumask_next(cpu, &avail);
 716			if (cpu >= nr_cpu_ids)
 717				break;
 718		}
 719	}
 720	return nr;
 721}
 722
 723void __init smp_detect_cpus(void)
 724{
 725	unsigned int cpu, mtid, c_cpus, s_cpus;
 726	struct sclp_core_info *info;
 727	u16 address;
 728
 729	/* Get CPU information */
 730	info = memblock_virt_alloc(sizeof(*info), 8);
 731	smp_get_core_info(info, 1);
 732	/* Find boot CPU type */
 733	if (sclp.has_core_type) {
 734		address = stap();
 735		for (cpu = 0; cpu < info->combined; cpu++)
 736			if (info->core[cpu].core_id == address) {
 737				/* The boot cpu dictates the cpu type. */
 738				boot_core_type = info->core[cpu].type;
 739				break;
 740			}
 741		if (cpu >= info->combined)
 742			panic("Could not find boot CPU type");
 743	}
 744
 745	/* Set multi-threading state for the current system */
 746	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 747	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 748	pcpu_set_smt(mtid);
 749
 750	/* Print number of CPUs */
 
 
 
 
 
 
 
 
 
 
 
 751	c_cpus = s_cpus = 0;
 752	for (cpu = 0; cpu < info->combined; cpu++) {
 753		if (sclp.has_core_type &&
 754		    info->core[cpu].type != boot_core_type)
 755			continue;
 756		if (cpu < info->configured)
 757			c_cpus += smp_cpu_mtid + 1;
 758		else
 759			s_cpus += smp_cpu_mtid + 1;
 
 760	}
 761	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 762
 763	/* Add CPUs present at boot */
 764	get_online_cpus();
 765	__smp_rescan_cpus(info, 0);
 766	put_online_cpus();
 767	memblock_free_early((unsigned long)info, sizeof(*info));
 768}
 769
 770/*
 771 *	Activate a secondary processor.
 772 */
 773static void smp_start_secondary(void *cpuvoid)
 774{
 775	S390_lowcore.last_update_clock = get_tod_clock();
 776	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 777	S390_lowcore.restart_fn = (unsigned long) do_restart;
 778	S390_lowcore.restart_data = 0;
 779	S390_lowcore.restart_source = -1UL;
 780	restore_access_regs(S390_lowcore.access_regs_save_area);
 781	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 782	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 783	cpu_init();
 784	preempt_disable();
 785	init_cpu_timer();
 786	vtime_init();
 787	pfault_init();
 788	notify_cpu_starting(smp_processor_id());
 
 789	set_cpu_online(smp_processor_id(), true);
 790	inc_irq_stat(CPU_RST);
 791	local_irq_enable();
 792	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
 793}
 794
 795/* Upping and downing of CPUs */
 796int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 797{
 798	struct pcpu *pcpu;
 799	int base, i, rc;
 800
 801	pcpu = pcpu_devices + cpu;
 802	if (pcpu->state != CPU_STATE_CONFIGURED)
 803		return -EIO;
 804	base = smp_get_base_cpu(cpu);
 805	for (i = 0; i <= smp_cpu_mtid; i++) {
 806		if (base + i < nr_cpu_ids)
 807			if (cpu_online(base + i))
 808				break;
 809	}
 810	/*
 811	 * If this is the first CPU of the core to get online
 812	 * do an initial CPU reset.
 813	 */
 814	if (i > smp_cpu_mtid &&
 815	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 816	    SIGP_CC_ORDER_CODE_ACCEPTED)
 817		return -EIO;
 818
 819	rc = pcpu_alloc_lowcore(pcpu, cpu);
 820	if (rc)
 821		return rc;
 822	pcpu_prepare_secondary(pcpu, cpu);
 823	pcpu_attach_task(pcpu, tidle);
 824	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 825	/* Wait until cpu puts itself in the online & active maps */
 826	while (!cpu_online(cpu))
 827		cpu_relax();
 828	return 0;
 829}
 830
 831static unsigned int setup_possible_cpus __initdata;
 832
 833static int __init _setup_possible_cpus(char *s)
 834{
 835	get_option(&s, &setup_possible_cpus);
 
 
 
 
 
 
 836	return 0;
 837}
 838early_param("possible_cpus", _setup_possible_cpus);
 839
 840#ifdef CONFIG_HOTPLUG_CPU
 841
 842int __cpu_disable(void)
 843{
 844	unsigned long cregs[16];
 845
 846	/* Handle possible pending IPIs */
 847	smp_handle_ext_call();
 848	set_cpu_online(smp_processor_id(), false);
 849	/* Disable pseudo page faults on this cpu. */
 850	pfault_fini();
 851	/* Disable interrupt sources via control register. */
 852	__ctl_store(cregs, 0, 15);
 853	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 854	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 855	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 856	__ctl_load(cregs, 0, 15);
 857	clear_cpu_flag(CIF_NOHZ_DELAY);
 858	return 0;
 859}
 860
 861void __cpu_die(unsigned int cpu)
 862{
 863	struct pcpu *pcpu;
 864
 865	/* Wait until target cpu is down */
 866	pcpu = pcpu_devices + cpu;
 867	while (!pcpu_stopped(pcpu))
 868		cpu_relax();
 869	pcpu_free_lowcore(pcpu);
 870	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 871	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 872}
 873
 874void __noreturn cpu_die(void)
 875{
 876	idle_task_exit();
 877	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 878	for (;;) ;
 879}
 880
 881#endif /* CONFIG_HOTPLUG_CPU */
 882
 883void __init smp_fill_possible_mask(void)
 884{
 885	unsigned int possible, sclp_max, cpu;
 886
 887	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 888	sclp_max = min(smp_max_threads, sclp_max);
 889	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 890	possible = setup_possible_cpus ?: nr_cpu_ids;
 891	possible = min(possible, sclp_max);
 892	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 893		set_cpu_possible(cpu, true);
 894}
 895
 896void __init smp_prepare_cpus(unsigned int max_cpus)
 897{
 898	/* request the 0x1201 emergency signal external interrupt */
 899	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 900		panic("Couldn't request external interrupt 0x1201");
 901	/* request the 0x1202 external call external interrupt */
 902	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 903		panic("Couldn't request external interrupt 0x1202");
 
 904}
 905
 906void __init smp_prepare_boot_cpu(void)
 907{
 908	struct pcpu *pcpu = pcpu_devices;
 909
 
 910	pcpu->state = CPU_STATE_CONFIGURED;
 911	pcpu->address = stap();
 912	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 
 
 913	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 914	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 915	set_cpu_present(0, true);
 916	set_cpu_online(0, true);
 917}
 918
 919void __init smp_cpus_done(unsigned int max_cpus)
 920{
 921}
 922
 923void __init smp_setup_processor_id(void)
 924{
 925	S390_lowcore.cpu_nr = 0;
 926	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 927}
 928
 929/*
 930 * the frequency of the profiling timer can be changed
 931 * by writing a multiplier value into /proc/profile.
 932 *
 933 * usually you want to run this on all CPUs ;)
 934 */
 935int setup_profiling_timer(unsigned int multiplier)
 936{
 937	return 0;
 938}
 939
 940#ifdef CONFIG_HOTPLUG_CPU
 941static ssize_t cpu_configure_show(struct device *dev,
 942				  struct device_attribute *attr, char *buf)
 943{
 944	ssize_t count;
 945
 946	mutex_lock(&smp_cpu_state_mutex);
 947	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 948	mutex_unlock(&smp_cpu_state_mutex);
 949	return count;
 950}
 951
 952static ssize_t cpu_configure_store(struct device *dev,
 953				   struct device_attribute *attr,
 954				   const char *buf, size_t count)
 955{
 956	struct pcpu *pcpu;
 957	int cpu, val, rc, i;
 958	char delim;
 959
 960	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 961		return -EINVAL;
 962	if (val != 0 && val != 1)
 963		return -EINVAL;
 964	get_online_cpus();
 965	mutex_lock(&smp_cpu_state_mutex);
 966	rc = -EBUSY;
 967	/* disallow configuration changes of online cpus and cpu 0 */
 968	cpu = dev->id;
 969	cpu = smp_get_base_cpu(cpu);
 970	if (cpu == 0)
 971		goto out;
 972	for (i = 0; i <= smp_cpu_mtid; i++)
 973		if (cpu_online(cpu + i))
 974			goto out;
 975	pcpu = pcpu_devices + cpu;
 976	rc = 0;
 977	switch (val) {
 978	case 0:
 979		if (pcpu->state != CPU_STATE_CONFIGURED)
 980			break;
 981		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
 982		if (rc)
 983			break;
 984		for (i = 0; i <= smp_cpu_mtid; i++) {
 985			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 986				continue;
 987			pcpu[i].state = CPU_STATE_STANDBY;
 988			smp_cpu_set_polarization(cpu + i,
 989						 POLARIZATION_UNKNOWN);
 990		}
 991		topology_expect_change();
 992		break;
 993	case 1:
 994		if (pcpu->state != CPU_STATE_STANDBY)
 995			break;
 996		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
 997		if (rc)
 998			break;
 999		for (i = 0; i <= smp_cpu_mtid; i++) {
1000			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1001				continue;
1002			pcpu[i].state = CPU_STATE_CONFIGURED;
1003			smp_cpu_set_polarization(cpu + i,
1004						 POLARIZATION_UNKNOWN);
1005		}
1006		topology_expect_change();
1007		break;
1008	default:
1009		break;
1010	}
1011out:
1012	mutex_unlock(&smp_cpu_state_mutex);
1013	put_online_cpus();
1014	return rc ? rc : count;
1015}
1016static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1017#endif /* CONFIG_HOTPLUG_CPU */
1018
1019static ssize_t show_cpu_address(struct device *dev,
1020				struct device_attribute *attr, char *buf)
1021{
1022	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1023}
1024static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1025
1026static struct attribute *cpu_common_attrs[] = {
1027#ifdef CONFIG_HOTPLUG_CPU
1028	&dev_attr_configure.attr,
1029#endif
1030	&dev_attr_address.attr,
1031	NULL,
1032};
1033
1034static struct attribute_group cpu_common_attr_group = {
1035	.attrs = cpu_common_attrs,
1036};
1037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038static struct attribute *cpu_online_attrs[] = {
1039	&dev_attr_idle_count.attr,
1040	&dev_attr_idle_time_us.attr,
1041	NULL,
1042};
1043
1044static struct attribute_group cpu_online_attr_group = {
1045	.attrs = cpu_online_attrs,
1046};
1047
1048static int smp_cpu_online(unsigned int cpu)
 
1049{
1050	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1051
1052	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054static int smp_cpu_pre_down(unsigned int cpu)
1055{
1056	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1057
1058	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1059	return 0;
1060}
1061
1062static int smp_add_present_cpu(int cpu)
1063{
1064	struct device *s;
1065	struct cpu *c;
1066	int rc;
1067
1068	c = kzalloc(sizeof(*c), GFP_KERNEL);
1069	if (!c)
1070		return -ENOMEM;
1071	per_cpu(cpu_device, cpu) = c;
1072	s = &c->dev;
1073	c->hotpluggable = 1;
1074	rc = register_cpu(c, cpu);
1075	if (rc)
1076		goto out;
1077	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1078	if (rc)
1079		goto out_cpu;
 
 
 
 
 
1080	rc = topology_cpu_init(c);
1081	if (rc)
1082		goto out_topology;
1083	return 0;
1084
1085out_topology:
 
 
 
1086	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1087out_cpu:
1088#ifdef CONFIG_HOTPLUG_CPU
1089	unregister_cpu(c);
1090#endif
1091out:
1092	return rc;
1093}
1094
1095#ifdef CONFIG_HOTPLUG_CPU
1096
1097int __ref smp_rescan_cpus(void)
1098{
1099	struct sclp_core_info *info;
1100	int nr;
1101
1102	info = kzalloc(sizeof(*info), GFP_KERNEL);
1103	if (!info)
1104		return -ENOMEM;
1105	smp_get_core_info(info, 0);
1106	get_online_cpus();
1107	mutex_lock(&smp_cpu_state_mutex);
1108	nr = __smp_rescan_cpus(info, 1);
1109	mutex_unlock(&smp_cpu_state_mutex);
1110	put_online_cpus();
1111	kfree(info);
1112	if (nr)
1113		topology_schedule_update();
1114	return 0;
1115}
1116
1117static ssize_t __ref rescan_store(struct device *dev,
1118				  struct device_attribute *attr,
1119				  const char *buf,
1120				  size_t count)
1121{
1122	int rc;
1123
1124	rc = smp_rescan_cpus();
1125	return rc ? rc : count;
1126}
1127static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1128#endif /* CONFIG_HOTPLUG_CPU */
1129
1130static int __init s390_smp_init(void)
1131{
1132	int cpu, rc = 0;
1133
 
1134#ifdef CONFIG_HOTPLUG_CPU
1135	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1136	if (rc)
1137		return rc;
1138#endif
1139	for_each_present_cpu(cpu) {
1140		rc = smp_add_present_cpu(cpu);
1141		if (rc)
1142			goto out;
1143	}
1144
1145	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1146			       smp_cpu_online, smp_cpu_pre_down);
1147out:
1148	return rc;
1149}
1150subsys_initcall(s390_smp_init);
v3.5.6
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999,2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
 
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/mm.h>
  25#include <linux/err.h>
  26#include <linux/spinlock.h>
  27#include <linux/kernel_stat.h>
  28#include <linux/delay.h>
  29#include <linux/interrupt.h>
  30#include <linux/irqflags.h>
  31#include <linux/cpu.h>
  32#include <linux/slab.h>
  33#include <linux/crash_dump.h>
 
  34#include <asm/asm-offsets.h>
 
  35#include <asm/switch_to.h>
  36#include <asm/facility.h>
  37#include <asm/ipl.h>
  38#include <asm/setup.h>
  39#include <asm/irq.h>
  40#include <asm/tlbflush.h>
  41#include <asm/timer.h>
  42#include <asm/lowcore.h>
  43#include <asm/sclp.h>
  44#include <asm/vdso.h>
  45#include <asm/debug.h>
  46#include <asm/os_info.h>
 
 
  47#include "entry.h"
  48
  49enum {
  50	sigp_sense = 1,
  51	sigp_external_call = 2,
  52	sigp_emergency_signal = 3,
  53	sigp_start = 4,
  54	sigp_stop = 5,
  55	sigp_restart = 6,
  56	sigp_stop_and_store_status = 9,
  57	sigp_initial_cpu_reset = 11,
  58	sigp_cpu_reset = 12,
  59	sigp_set_prefix = 13,
  60	sigp_store_status_at_address = 14,
  61	sigp_store_extended_status_at_address = 15,
  62	sigp_set_architecture = 18,
  63	sigp_conditional_emergency_signal = 19,
  64	sigp_sense_running = 21,
  65};
  66
  67enum {
  68	sigp_order_code_accepted = 0,
  69	sigp_status_stored = 1,
  70	sigp_busy = 2,
  71	sigp_not_operational = 3,
  72};
  73
  74enum {
  75	ec_schedule = 0,
  76	ec_call_function,
  77	ec_call_function_single,
  78	ec_stop_cpu,
  79};
  80
  81enum {
  82	CPU_STATE_STANDBY,
  83	CPU_STATE_CONFIGURED,
  84};
  85
 
 
  86struct pcpu {
  87	struct cpu cpu;
  88	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
  89	unsigned long async_stack;	/* async stack for the cpu */
  90	unsigned long panic_stack;	/* panic stack for the cpu */
  91	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  92	int state;			/* physical cpu state */
  93	u32 status;			/* last status received via sigp */
 
  94	u16 address;			/* physical cpu address */
  95};
  96
  97static u8 boot_cpu_type;
  98static u16 boot_cpu_address;
  99static struct pcpu pcpu_devices[NR_CPUS];
 100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101DEFINE_MUTEX(smp_cpu_state_mutex);
 102
 103/*
 104 * Signal processor helper functions.
 105 */
 106static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
 107{
 108	register unsigned int reg1 asm ("1") = parm;
 109	int cc;
 110
 111	asm volatile(
 112		"	sigp	%1,%2,0(%3)\n"
 113		"	ipm	%0\n"
 114		"	srl	%0,28\n"
 115		: "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
 116	if (status && cc == 1)
 117		*status = reg1;
 118	return cc;
 119}
 120
 121static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
 122{
 123	int cc;
 124
 125	while (1) {
 126		cc = __pcpu_sigp(addr, order, parm, status);
 127		if (cc != sigp_busy)
 128			return cc;
 129		cpu_relax();
 130	}
 131}
 132
 133static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 134{
 135	int cc, retry;
 136
 137	for (retry = 0; ; retry++) {
 138		cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
 139		if (cc != sigp_busy)
 140			break;
 141		if (retry >= 3)
 142			udelay(10);
 143	}
 144	return cc;
 145}
 146
 147static inline int pcpu_stopped(struct pcpu *pcpu)
 148{
 149	if (__pcpu_sigp(pcpu->address, sigp_sense,
 150			0, &pcpu->status) != sigp_status_stored)
 
 
 151		return 0;
 152	/* Check for stopped and check stop state */
 153	return !!(pcpu->status & 0x50);
 154}
 155
 156static inline int pcpu_running(struct pcpu *pcpu)
 157{
 158	if (__pcpu_sigp(pcpu->address, sigp_sense_running,
 159			0, &pcpu->status) != sigp_status_stored)
 160		return 1;
 161	/* Check for running status */
 162	return !(pcpu->status & 0x400);
 163}
 164
 165/*
 166 * Find struct pcpu by cpu address.
 167 */
 168static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
 169{
 170	int cpu;
 171
 172	for_each_cpu(cpu, mask)
 173		if (pcpu_devices[cpu].address == address)
 174			return pcpu_devices + cpu;
 175	return NULL;
 176}
 177
 178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 179{
 180	int order;
 181
 182	set_bit(ec_bit, &pcpu->ec_mask);
 183	order = pcpu_running(pcpu) ?
 184		sigp_external_call : sigp_emergency_signal;
 
 185	pcpu_sigp_retry(pcpu, order, 0);
 186}
 187
 188static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 
 
 
 189{
 190	struct _lowcore *lc;
 
 191
 192	if (pcpu != &pcpu_devices[0]) {
 193		pcpu->lowcore =	(struct _lowcore *)
 194			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 195		pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 196		pcpu->panic_stack = __get_free_page(GFP_KERNEL);
 197		if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
 198			goto out;
 
 
 
 199	}
 200	lc = pcpu->lowcore;
 201	memcpy(lc, &S390_lowcore, 512);
 202	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 203	lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
 204	lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
 205	lc->cpu_nr = cpu;
 206#ifndef CONFIG_64BIT
 207	if (MACHINE_HAS_IEEE) {
 208		lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
 209		if (!lc->extended_save_area_addr)
 210			goto out;
 211	}
 212#else
 213	if (vdso_alloc_per_cpu(lc))
 214		goto out;
 215#endif
 216	lowcore_ptr[cpu] = lc;
 217	pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
 218	return 0;
 219out:
 220	if (pcpu != &pcpu_devices[0]) {
 221		free_page(pcpu->panic_stack);
 222		free_pages(pcpu->async_stack, ASYNC_ORDER);
 223		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 224	}
 225	return -ENOMEM;
 226}
 227
 228#ifdef CONFIG_HOTPLUG_CPU
 229
 230static void pcpu_free_lowcore(struct pcpu *pcpu)
 231{
 232	pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
 233	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 234#ifndef CONFIG_64BIT
 235	if (MACHINE_HAS_IEEE) {
 236		struct _lowcore *lc = pcpu->lowcore;
 237
 238		free_page((unsigned long) lc->extended_save_area_addr);
 239		lc->extended_save_area_addr = 0;
 240	}
 241#else
 242	vdso_free_per_cpu(pcpu->lowcore);
 243#endif
 244	if (pcpu != &pcpu_devices[0]) {
 245		free_page(pcpu->panic_stack);
 246		free_pages(pcpu->async_stack, ASYNC_ORDER);
 247		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 248	}
 249}
 250
 251#endif /* CONFIG_HOTPLUG_CPU */
 252
 253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 254{
 255	struct _lowcore *lc = pcpu->lowcore;
 256
 257	atomic_inc(&init_mm.context.attach_count);
 
 258	lc->cpu_nr = cpu;
 
 259	lc->percpu_offset = __per_cpu_offset[cpu];
 260	lc->kernel_asce = S390_lowcore.kernel_asce;
 261	lc->machine_flags = S390_lowcore.machine_flags;
 262	lc->ftrace_func = S390_lowcore.ftrace_func;
 263	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 264	__ctl_store(lc->cregs_save_area, 0, 15);
 265	save_access_regs((unsigned int *) lc->access_regs_save_area);
 266	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 267	       MAX_FACILITY_BIT/8);
 268}
 269
 270static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 271{
 272	struct _lowcore *lc = pcpu->lowcore;
 273	struct thread_info *ti = task_thread_info(tsk);
 274
 275	lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
 276	lc->thread_info = (unsigned long) task_thread_info(tsk);
 277	lc->current_task = (unsigned long) tsk;
 278	lc->user_timer = ti->user_timer;
 279	lc->system_timer = ti->system_timer;
 
 
 280	lc->steal_timer = 0;
 281}
 282
 283static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 284{
 285	struct _lowcore *lc = pcpu->lowcore;
 286
 287	lc->restart_stack = lc->kernel_stack;
 288	lc->restart_fn = (unsigned long) func;
 289	lc->restart_data = (unsigned long) data;
 290	lc->restart_source = -1UL;
 291	pcpu_sigp_retry(pcpu, sigp_restart, 0);
 292}
 293
 294/*
 295 * Call function via PSW restart on pcpu and stop the current cpu.
 296 */
 297static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 298			  void *data, unsigned long stack)
 299{
 300	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 301	struct {
 302		unsigned long	stack;
 303		void		*func;
 304		void		*data;
 305		unsigned long	source;
 306	} restart = { stack, func, data, stap() };
 307
 308	__load_psw_mask(psw_kernel_bits);
 309	if (pcpu->address == restart.source)
 310		func(data);	/* should not return */
 311	/* Stop target cpu (if func returns this stops the current cpu). */
 312	pcpu_sigp_retry(pcpu, sigp_stop, 0);
 313	/* Restart func on the target cpu and stop the current cpu. */
 314	memcpy_absolute(&lc->restart_stack, &restart, sizeof(restart));
 
 
 
 315	asm volatile(
 316		"0:	sigp	0,%0,6	# sigp restart to target cpu\n"
 317		"	brc	2,0b	# busy, try again\n"
 318		"1:	sigp	0,%1,5	# sigp stop to current cpu\n"
 319		"	brc	2,1b	# busy, try again\n"
 320		: : "d" (pcpu->address), "d" (restart.source) : "0", "1", "cc");
 
 
 321	for (;;) ;
 322}
 323
 324/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325 * Call function on an online CPU.
 326 */
 327void smp_call_online_cpu(void (*func)(void *), void *data)
 328{
 329	struct pcpu *pcpu;
 330
 331	/* Use the current cpu if it is online. */
 332	pcpu = pcpu_find_address(cpu_online_mask, stap());
 333	if (!pcpu)
 334		/* Use the first online cpu. */
 335		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 336	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 337}
 338
 339/*
 340 * Call function on the ipl CPU.
 341 */
 342void smp_call_ipl_cpu(void (*func)(void *), void *data)
 343{
 344	pcpu_delegate(&pcpu_devices[0], func, data,
 345		      pcpu_devices->panic_stack + PAGE_SIZE);
 
 346}
 347
 348int smp_find_processor_id(u16 address)
 349{
 350	int cpu;
 351
 352	for_each_present_cpu(cpu)
 353		if (pcpu_devices[cpu].address == address)
 354			return cpu;
 355	return -1;
 356}
 357
 358int smp_vcpu_scheduled(int cpu)
 359{
 360	return pcpu_running(pcpu_devices + cpu);
 361}
 362
 363void smp_yield(void)
 364{
 365	if (MACHINE_HAS_DIAG44)
 366		asm volatile("diag 0,0,0x44");
 
 
 
 367}
 
 368
 369void smp_yield_cpu(int cpu)
 370{
 371	if (MACHINE_HAS_DIAG9C)
 
 372		asm volatile("diag %0,0,0x9c"
 373			     : : "d" (pcpu_devices[cpu].address));
 374	else if (MACHINE_HAS_DIAG44)
 
 375		asm volatile("diag 0,0,0x44");
 
 376}
 377
 378/*
 379 * Send cpus emergency shutdown signal. This gives the cpus the
 380 * opportunity to complete outstanding interrupts.
 381 */
 382void smp_emergency_stop(cpumask_t *cpumask)
 383{
 384	u64 end;
 385	int cpu;
 386
 387	end = get_clock() + (1000000UL << 12);
 388	for_each_cpu(cpu, cpumask) {
 389		struct pcpu *pcpu = pcpu_devices + cpu;
 390		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 391		while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
 392				   0, NULL) == sigp_busy &&
 393		       get_clock() < end)
 394			cpu_relax();
 395	}
 396	while (get_clock() < end) {
 397		for_each_cpu(cpu, cpumask)
 398			if (pcpu_stopped(pcpu_devices + cpu))
 399				cpumask_clear_cpu(cpu, cpumask);
 400		if (cpumask_empty(cpumask))
 401			break;
 402		cpu_relax();
 403	}
 404}
 405
 406/*
 407 * Stop all cpus but the current one.
 408 */
 409void smp_send_stop(void)
 410{
 411	cpumask_t cpumask;
 412	int cpu;
 413
 414	/* Disable all interrupts/machine checks */
 415	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
 416	trace_hardirqs_off();
 417
 418	debug_set_critical();
 419	cpumask_copy(&cpumask, cpu_online_mask);
 420	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 421
 422	if (oops_in_progress)
 423		smp_emergency_stop(&cpumask);
 424
 425	/* stop all processors */
 426	for_each_cpu(cpu, &cpumask) {
 427		struct pcpu *pcpu = pcpu_devices + cpu;
 428		pcpu_sigp_retry(pcpu, sigp_stop, 0);
 429		while (!pcpu_stopped(pcpu))
 430			cpu_relax();
 431	}
 432}
 433
 434/*
 435 * Stop the current cpu.
 436 */
 437void smp_stop_cpu(void)
 438{
 439	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
 440	for (;;) ;
 441}
 442
 443/*
 444 * This is the main routine where commands issued by other
 445 * cpus are handled.
 446 */
 447static void do_ext_call_interrupt(struct ext_code ext_code,
 448				  unsigned int param32, unsigned long param64)
 449{
 450	unsigned long bits;
 451	int cpu;
 452
 453	cpu = smp_processor_id();
 454	if (ext_code.code == 0x1202)
 455		kstat_cpu(cpu).irqs[EXTINT_EXC]++;
 456	else
 457		kstat_cpu(cpu).irqs[EXTINT_EMS]++;
 458	/*
 459	 * handle bit signal external calls
 460	 */
 461	bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
 462
 
 
 463	if (test_bit(ec_stop_cpu, &bits))
 464		smp_stop_cpu();
 465
 466	if (test_bit(ec_schedule, &bits))
 467		scheduler_ipi();
 468
 469	if (test_bit(ec_call_function, &bits))
 470		generic_smp_call_function_interrupt();
 471
 472	if (test_bit(ec_call_function_single, &bits))
 473		generic_smp_call_function_single_interrupt();
 
 474
 
 
 
 
 
 475}
 476
 477void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 478{
 479	int cpu;
 480
 481	for_each_cpu(cpu, mask)
 482		pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
 483}
 484
 485void arch_send_call_function_single_ipi(int cpu)
 486{
 487	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 488}
 489
 490#ifndef CONFIG_64BIT
 491/*
 492 * this function sends a 'purge tlb' signal to another CPU.
 493 */
 494static void smp_ptlb_callback(void *info)
 495{
 496	__tlb_flush_local();
 497}
 498
 499void smp_ptlb_all(void)
 500{
 501	on_each_cpu(smp_ptlb_callback, NULL, 1);
 502}
 503EXPORT_SYMBOL(smp_ptlb_all);
 504#endif /* ! CONFIG_64BIT */
 505
 506/*
 507 * this function sends a 'reschedule' IPI to another CPU.
 508 * it goes straight through and wastes no time serializing
 509 * anything. Worst case is that we lose a reschedule ...
 510 */
 511void smp_send_reschedule(int cpu)
 512{
 513	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 514}
 515
 516/*
 517 * parameter area for the set/clear control bit callbacks
 518 */
 519struct ec_creg_mask_parms {
 520	unsigned long orval;
 521	unsigned long andval;
 522	int cr;
 523};
 524
 525/*
 526 * callback for setting/clearing control bits
 527 */
 528static void smp_ctl_bit_callback(void *info)
 529{
 530	struct ec_creg_mask_parms *pp = info;
 531	unsigned long cregs[16];
 532
 533	__ctl_store(cregs, 0, 15);
 534	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 535	__ctl_load(cregs, 0, 15);
 536}
 537
 538/*
 539 * Set a bit in a control register of all cpus
 540 */
 541void smp_ctl_set_bit(int cr, int bit)
 542{
 543	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 544
 545	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 546}
 547EXPORT_SYMBOL(smp_ctl_set_bit);
 548
 549/*
 550 * Clear a bit in a control register of all cpus
 551 */
 552void smp_ctl_clear_bit(int cr, int bit)
 553{
 554	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 555
 556	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 557}
 558EXPORT_SYMBOL(smp_ctl_clear_bit);
 559
 560#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
 561
 562struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
 563EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
 
 
 564
 565static void __init smp_get_save_area(int cpu, u16 address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566{
 567	void *lc = pcpu_devices[0].lowcore;
 568	struct save_area *save_area;
 569
 570	if (is_kdump_kernel())
 571		return;
 572	if (!OLDMEM_BASE && (address == boot_cpu_address ||
 573			     ipl_info.type != IPL_TYPE_FCP_DUMP))
 574		return;
 575	if (cpu >= NR_CPUS) {
 576		pr_warning("CPU %i exceeds the maximum %i and is excluded "
 577			   "from the dump\n", cpu, NR_CPUS - 1);
 578		return;
 579	}
 580	save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
 581	if (!save_area)
 582		panic("could not allocate memory for save area\n");
 583	zfcpdump_save_areas[cpu] = save_area;
 584#ifdef CONFIG_CRASH_DUMP
 585	if (address == boot_cpu_address) {
 586		/* Copy the registers of the boot cpu. */
 587		copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
 588				 SAVE_AREA_BASE - PAGE_SIZE, 0);
 589		return;
 590	}
 591#endif
 592	/* Get the registers of a non-boot cpu. */
 593	__pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
 594	memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
 595}
 596
 597int smp_store_status(int cpu)
 
 598{
 599	struct pcpu *pcpu;
 600
 601	pcpu = pcpu_devices + cpu;
 602	if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
 603			      0, NULL) != sigp_order_code_accepted)
 604		return -EIO;
 605	return 0;
 606}
 607
 608#else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
 
 
 
 
 
 609
 610static inline void smp_get_save_area(int cpu, u16 address) { }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612#endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
 
 
 
 613
 614static struct sclp_cpu_info *smp_get_cpu_info(void)
 
 
 
 
 
 615{
 616	static int use_sigp_detection;
 617	struct sclp_cpu_info *info;
 618	int address;
 619
 620	info = kzalloc(sizeof(*info), GFP_KERNEL);
 621	if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
 622		use_sigp_detection = 1;
 623		for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
 624			if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
 625			    sigp_not_operational)
 
 
 626				continue;
 627			info->cpu[info->configured].address = address;
 
 628			info->configured++;
 629		}
 630		info->combined = info->configured;
 631	}
 632	return info;
 633}
 634
 635static int __devinit smp_add_present_cpu(int cpu);
 636
 637static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
 638				       int sysfs_add)
 639{
 640	struct pcpu *pcpu;
 641	cpumask_t avail;
 642	int cpu, nr, i;
 
 643
 644	nr = 0;
 645	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 646	cpu = cpumask_first(&avail);
 647	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 648		if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
 649			continue;
 650		if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
 651			continue;
 652		pcpu = pcpu_devices + cpu;
 653		pcpu->address = info->cpu[i].address;
 654		pcpu->state = (cpu >= info->configured) ?
 655			CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 656		cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 657		set_cpu_present(cpu, true);
 658		if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 659			set_cpu_present(cpu, false);
 660		else
 661			nr++;
 662		cpu = cpumask_next(cpu, &avail);
 
 
 
 
 
 
 663	}
 664	return nr;
 665}
 666
 667static void __init smp_detect_cpus(void)
 668{
 669	unsigned int cpu, c_cpus, s_cpus;
 670	struct sclp_cpu_info *info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671
 672	info = smp_get_cpu_info();
 673	if (!info)
 674		panic("smp_detect_cpus failed to allocate memory\n");
 675	if (info->has_cpu_type) {
 676		for (cpu = 0; cpu < info->combined; cpu++) {
 677			if (info->cpu[cpu].address != boot_cpu_address)
 678				continue;
 679			/* The boot cpu dictates the cpu type. */
 680			boot_cpu_type = info->cpu[cpu].type;
 681			break;
 682		}
 683	}
 684	c_cpus = s_cpus = 0;
 685	for (cpu = 0; cpu < info->combined; cpu++) {
 686		if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
 
 687			continue;
 688		if (cpu < info->configured) {
 689			smp_get_save_area(c_cpus, info->cpu[cpu].address);
 690			c_cpus++;
 691		} else
 692			s_cpus++;
 693	}
 694	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 
 
 695	get_online_cpus();
 696	__smp_rescan_cpus(info, 0);
 697	put_online_cpus();
 698	kfree(info);
 699}
 700
 701/*
 702 *	Activate a secondary processor.
 703 */
 704static void __cpuinit smp_start_secondary(void *cpuvoid)
 705{
 706	S390_lowcore.last_update_clock = get_clock();
 707	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 708	S390_lowcore.restart_fn = (unsigned long) do_restart;
 709	S390_lowcore.restart_data = 0;
 710	S390_lowcore.restart_source = -1UL;
 711	restore_access_regs(S390_lowcore.access_regs_save_area);
 712	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 713	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
 714	cpu_init();
 715	preempt_disable();
 716	init_cpu_timer();
 717	init_cpu_vtimer();
 718	pfault_init();
 719	notify_cpu_starting(smp_processor_id());
 720	ipi_call_lock();
 721	set_cpu_online(smp_processor_id(), true);
 722	ipi_call_unlock();
 723	local_irq_enable();
 724	/* cpu_idle will call schedule for us */
 725	cpu_idle();
 726}
 727
 728/* Upping and downing of CPUs */
 729int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
 730{
 731	struct pcpu *pcpu;
 732	int rc;
 733
 734	pcpu = pcpu_devices + cpu;
 735	if (pcpu->state != CPU_STATE_CONFIGURED)
 736		return -EIO;
 737	if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
 738	    sigp_order_code_accepted)
 
 
 
 
 
 
 
 
 
 
 
 739		return -EIO;
 740
 741	rc = pcpu_alloc_lowcore(pcpu, cpu);
 742	if (rc)
 743		return rc;
 744	pcpu_prepare_secondary(pcpu, cpu);
 745	pcpu_attach_task(pcpu, tidle);
 746	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 
 747	while (!cpu_online(cpu))
 748		cpu_relax();
 749	return 0;
 750}
 751
 752static int __init setup_possible_cpus(char *s)
 
 
 753{
 754	int max, cpu;
 755
 756	if (kstrtoint(s, 0, &max) < 0)
 757		return 0;
 758	init_cpu_possible(cpumask_of(0));
 759	for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
 760		set_cpu_possible(cpu, true);
 761	return 0;
 762}
 763early_param("possible_cpus", setup_possible_cpus);
 764
 765#ifdef CONFIG_HOTPLUG_CPU
 766
 767int __cpu_disable(void)
 768{
 769	unsigned long cregs[16];
 770
 
 
 771	set_cpu_online(smp_processor_id(), false);
 772	/* Disable pseudo page faults on this cpu. */
 773	pfault_fini();
 774	/* Disable interrupt sources via control register. */
 775	__ctl_store(cregs, 0, 15);
 776	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 777	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 778	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 779	__ctl_load(cregs, 0, 15);
 
 780	return 0;
 781}
 782
 783void __cpu_die(unsigned int cpu)
 784{
 785	struct pcpu *pcpu;
 786
 787	/* Wait until target cpu is down */
 788	pcpu = pcpu_devices + cpu;
 789	while (!pcpu_stopped(pcpu))
 790		cpu_relax();
 791	pcpu_free_lowcore(pcpu);
 792	atomic_dec(&init_mm.context.attach_count);
 
 793}
 794
 795void __noreturn cpu_die(void)
 796{
 797	idle_task_exit();
 798	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
 799	for (;;) ;
 800}
 801
 802#endif /* CONFIG_HOTPLUG_CPU */
 803
 
 
 
 
 
 
 
 
 
 
 
 
 
 804void __init smp_prepare_cpus(unsigned int max_cpus)
 805{
 806	/* request the 0x1201 emergency signal external interrupt */
 807	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
 808		panic("Couldn't request external interrupt 0x1201");
 809	/* request the 0x1202 external call external interrupt */
 810	if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
 811		panic("Couldn't request external interrupt 0x1202");
 812	smp_detect_cpus();
 813}
 814
 815void __init smp_prepare_boot_cpu(void)
 816{
 817	struct pcpu *pcpu = pcpu_devices;
 818
 819	boot_cpu_address = stap();
 820	pcpu->state = CPU_STATE_CONFIGURED;
 821	pcpu->address = boot_cpu_address;
 822	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
 823	pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
 824	pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
 825	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 826	cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 827	set_cpu_present(0, true);
 828	set_cpu_online(0, true);
 829}
 830
 831void __init smp_cpus_done(unsigned int max_cpus)
 832{
 833}
 834
 835void __init smp_setup_processor_id(void)
 836{
 837	S390_lowcore.cpu_nr = 0;
 
 838}
 839
 840/*
 841 * the frequency of the profiling timer can be changed
 842 * by writing a multiplier value into /proc/profile.
 843 *
 844 * usually you want to run this on all CPUs ;)
 845 */
 846int setup_profiling_timer(unsigned int multiplier)
 847{
 848	return 0;
 849}
 850
 851#ifdef CONFIG_HOTPLUG_CPU
 852static ssize_t cpu_configure_show(struct device *dev,
 853				  struct device_attribute *attr, char *buf)
 854{
 855	ssize_t count;
 856
 857	mutex_lock(&smp_cpu_state_mutex);
 858	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 859	mutex_unlock(&smp_cpu_state_mutex);
 860	return count;
 861}
 862
 863static ssize_t cpu_configure_store(struct device *dev,
 864				   struct device_attribute *attr,
 865				   const char *buf, size_t count)
 866{
 867	struct pcpu *pcpu;
 868	int cpu, val, rc;
 869	char delim;
 870
 871	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 872		return -EINVAL;
 873	if (val != 0 && val != 1)
 874		return -EINVAL;
 875	get_online_cpus();
 876	mutex_lock(&smp_cpu_state_mutex);
 877	rc = -EBUSY;
 878	/* disallow configuration changes of online cpus and cpu 0 */
 879	cpu = dev->id;
 880	if (cpu_online(cpu) || cpu == 0)
 
 881		goto out;
 
 
 
 882	pcpu = pcpu_devices + cpu;
 883	rc = 0;
 884	switch (val) {
 885	case 0:
 886		if (pcpu->state != CPU_STATE_CONFIGURED)
 887			break;
 888		rc = sclp_cpu_deconfigure(pcpu->address);
 889		if (rc)
 890			break;
 891		pcpu->state = CPU_STATE_STANDBY;
 892		cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 
 
 
 
 893		topology_expect_change();
 894		break;
 895	case 1:
 896		if (pcpu->state != CPU_STATE_STANDBY)
 897			break;
 898		rc = sclp_cpu_configure(pcpu->address);
 899		if (rc)
 900			break;
 901		pcpu->state = CPU_STATE_CONFIGURED;
 902		cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 
 
 
 
 903		topology_expect_change();
 904		break;
 905	default:
 906		break;
 907	}
 908out:
 909	mutex_unlock(&smp_cpu_state_mutex);
 910	put_online_cpus();
 911	return rc ? rc : count;
 912}
 913static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 914#endif /* CONFIG_HOTPLUG_CPU */
 915
 916static ssize_t show_cpu_address(struct device *dev,
 917				struct device_attribute *attr, char *buf)
 918{
 919	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
 920}
 921static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
 922
 923static struct attribute *cpu_common_attrs[] = {
 924#ifdef CONFIG_HOTPLUG_CPU
 925	&dev_attr_configure.attr,
 926#endif
 927	&dev_attr_address.attr,
 928	NULL,
 929};
 930
 931static struct attribute_group cpu_common_attr_group = {
 932	.attrs = cpu_common_attrs,
 933};
 934
 935static ssize_t show_idle_count(struct device *dev,
 936				struct device_attribute *attr, char *buf)
 937{
 938	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
 939	unsigned long long idle_count;
 940	unsigned int sequence;
 941
 942	do {
 943		sequence = ACCESS_ONCE(idle->sequence);
 944		idle_count = ACCESS_ONCE(idle->idle_count);
 945		if (ACCESS_ONCE(idle->idle_enter))
 946			idle_count++;
 947	} while ((sequence & 1) || (idle->sequence != sequence));
 948	return sprintf(buf, "%llu\n", idle_count);
 949}
 950static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
 951
 952static ssize_t show_idle_time(struct device *dev,
 953				struct device_attribute *attr, char *buf)
 954{
 955	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
 956	unsigned long long now, idle_time, idle_enter, idle_exit;
 957	unsigned int sequence;
 958
 959	do {
 960		now = get_clock();
 961		sequence = ACCESS_ONCE(idle->sequence);
 962		idle_time = ACCESS_ONCE(idle->idle_time);
 963		idle_enter = ACCESS_ONCE(idle->idle_enter);
 964		idle_exit = ACCESS_ONCE(idle->idle_exit);
 965	} while ((sequence & 1) || (idle->sequence != sequence));
 966	idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
 967	return sprintf(buf, "%llu\n", idle_time >> 12);
 968}
 969static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
 970
 971static struct attribute *cpu_online_attrs[] = {
 972	&dev_attr_idle_count.attr,
 973	&dev_attr_idle_time_us.attr,
 974	NULL,
 975};
 976
 977static struct attribute_group cpu_online_attr_group = {
 978	.attrs = cpu_online_attrs,
 979};
 980
 981static int __cpuinit smp_cpu_notify(struct notifier_block *self,
 982				    unsigned long action, void *hcpu)
 983{
 984	unsigned int cpu = (unsigned int)(long)hcpu;
 985	struct cpu *c = &pcpu_devices[cpu].cpu;
 986	struct device *s = &c->dev;
 987	int err = 0;
 988
 989	switch (action) {
 990	case CPU_ONLINE:
 991	case CPU_ONLINE_FROZEN:
 992		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 993		break;
 994	case CPU_DEAD:
 995	case CPU_DEAD_FROZEN:
 996		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 997		break;
 998	}
 999	return notifier_from_errno(err);
1000}
 
 
 
1001
1002static struct notifier_block __cpuinitdata smp_cpu_nb = {
1003	.notifier_call = smp_cpu_notify,
1004};
1005
1006static int __devinit smp_add_present_cpu(int cpu)
1007{
1008	struct cpu *c = &pcpu_devices[cpu].cpu;
1009	struct device *s = &c->dev;
1010	int rc;
1011
 
 
 
 
 
1012	c->hotpluggable = 1;
1013	rc = register_cpu(c, cpu);
1014	if (rc)
1015		goto out;
1016	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1017	if (rc)
1018		goto out_cpu;
1019	if (cpu_online(cpu)) {
1020		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1021		if (rc)
1022			goto out_online;
1023	}
1024	rc = topology_cpu_init(c);
1025	if (rc)
1026		goto out_topology;
1027	return 0;
1028
1029out_topology:
1030	if (cpu_online(cpu))
1031		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1032out_online:
1033	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1034out_cpu:
1035#ifdef CONFIG_HOTPLUG_CPU
1036	unregister_cpu(c);
1037#endif
1038out:
1039	return rc;
1040}
1041
1042#ifdef CONFIG_HOTPLUG_CPU
1043
1044int __ref smp_rescan_cpus(void)
1045{
1046	struct sclp_cpu_info *info;
1047	int nr;
1048
1049	info = smp_get_cpu_info();
1050	if (!info)
1051		return -ENOMEM;
 
1052	get_online_cpus();
1053	mutex_lock(&smp_cpu_state_mutex);
1054	nr = __smp_rescan_cpus(info, 1);
1055	mutex_unlock(&smp_cpu_state_mutex);
1056	put_online_cpus();
1057	kfree(info);
1058	if (nr)
1059		topology_schedule_update();
1060	return 0;
1061}
1062
1063static ssize_t __ref rescan_store(struct device *dev,
1064				  struct device_attribute *attr,
1065				  const char *buf,
1066				  size_t count)
1067{
1068	int rc;
1069
1070	rc = smp_rescan_cpus();
1071	return rc ? rc : count;
1072}
1073static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1074#endif /* CONFIG_HOTPLUG_CPU */
1075
1076static int __init s390_smp_init(void)
1077{
1078	int cpu, rc;
1079
1080	register_cpu_notifier(&smp_cpu_nb);
1081#ifdef CONFIG_HOTPLUG_CPU
1082	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1083	if (rc)
1084		return rc;
1085#endif
1086	for_each_present_cpu(cpu) {
1087		rc = smp_add_present_cpu(cpu);
1088		if (rc)
1089			return rc;
1090	}
1091	return 0;
 
 
 
 
1092}
1093subsys_initcall(s390_smp_init);