Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2015 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/openvswitch.h>
  16#include <linux/tcp.h>
  17#include <linux/udp.h>
  18#include <linux/sctp.h>
 
 
  19#include <net/ip.h>
 
  20#include <net/netfilter/nf_conntrack_core.h>
 
  21#include <net/netfilter/nf_conntrack_helper.h>
  22#include <net/netfilter/nf_conntrack_labels.h>
  23#include <net/netfilter/nf_conntrack_seqadj.h>
 
  24#include <net/netfilter/nf_conntrack_zones.h>
  25#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
 
  26
  27#ifdef CONFIG_NF_NAT_NEEDED
  28#include <linux/netfilter/nf_nat.h>
  29#include <net/netfilter/nf_nat_core.h>
  30#include <net/netfilter/nf_nat_l3proto.h>
  31#endif
  32
 
 
  33#include "datapath.h"
 
  34#include "conntrack.h"
  35#include "flow.h"
  36#include "flow_netlink.h"
  37
  38struct ovs_ct_len_tbl {
  39	int maxlen;
  40	int minlen;
  41};
  42
  43/* Metadata mark for masked write to conntrack mark */
  44struct md_mark {
  45	u32 value;
  46	u32 mask;
  47};
  48
  49/* Metadata label for masked write to conntrack label. */
  50struct md_labels {
  51	struct ovs_key_ct_labels value;
  52	struct ovs_key_ct_labels mask;
  53};
  54
  55enum ovs_ct_nat {
  56	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  57	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  58	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  59};
  60
  61/* Conntrack action context for execution. */
  62struct ovs_conntrack_info {
  63	struct nf_conntrack_helper *helper;
  64	struct nf_conntrack_zone zone;
  65	struct nf_conn *ct;
  66	u8 commit : 1;
  67	u8 nat : 3;                 /* enum ovs_ct_nat */
 
 
  68	u16 family;
 
  69	struct md_mark mark;
  70	struct md_labels labels;
  71#ifdef CONFIG_NF_NAT_NEEDED
  72	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
 
 
  73#endif
  74};
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
  77
  78static u16 key_to_nfproto(const struct sw_flow_key *key)
  79{
  80	switch (ntohs(key->eth.type)) {
  81	case ETH_P_IP:
  82		return NFPROTO_IPV4;
  83	case ETH_P_IPV6:
  84		return NFPROTO_IPV6;
  85	default:
  86		return NFPROTO_UNSPEC;
  87	}
  88}
  89
  90/* Map SKB connection state into the values used by flow definition. */
  91static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
  92{
  93	u8 ct_state = OVS_CS_F_TRACKED;
  94
  95	switch (ctinfo) {
  96	case IP_CT_ESTABLISHED_REPLY:
  97	case IP_CT_RELATED_REPLY:
  98		ct_state |= OVS_CS_F_REPLY_DIR;
  99		break;
 100	default:
 101		break;
 102	}
 103
 104	switch (ctinfo) {
 105	case IP_CT_ESTABLISHED:
 106	case IP_CT_ESTABLISHED_REPLY:
 107		ct_state |= OVS_CS_F_ESTABLISHED;
 108		break;
 109	case IP_CT_RELATED:
 110	case IP_CT_RELATED_REPLY:
 111		ct_state |= OVS_CS_F_RELATED;
 112		break;
 113	case IP_CT_NEW:
 114		ct_state |= OVS_CS_F_NEW;
 115		break;
 116	default:
 117		break;
 118	}
 119
 120	return ct_state;
 121}
 122
 123static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 124{
 125#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 126	return ct ? ct->mark : 0;
 127#else
 128	return 0;
 129#endif
 130}
 131
 
 
 
 
 
 132static void ovs_ct_get_labels(const struct nf_conn *ct,
 133			      struct ovs_key_ct_labels *labels)
 134{
 135	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 136
 137	if (cl) {
 138		size_t len = sizeof(cl->bits);
 
 
 
 139
 140		if (len > OVS_CT_LABELS_LEN)
 141			len = OVS_CT_LABELS_LEN;
 142		else if (len < OVS_CT_LABELS_LEN)
 143			memset(labels, 0, OVS_CT_LABELS_LEN);
 144		memcpy(labels, cl->bits, len);
 
 
 
 145	} else {
 146		memset(labels, 0, OVS_CT_LABELS_LEN);
 
 147	}
 148}
 149
 150static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 151				const struct nf_conntrack_zone *zone,
 152				const struct nf_conn *ct)
 153{
 154	key->ct.state = state;
 155	key->ct.zone = zone->id;
 156	key->ct.mark = ovs_ct_get_mark(ct);
 157	ovs_ct_get_labels(ct, &key->ct.labels);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 159
 160/* Update 'key' based on skb->nfct.  If 'post_ct' is true, then OVS has
 161 * previously sent the packet to conntrack via the ct action.  If
 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 163 * initialized from the connection status.
 164 */
 165static void ovs_ct_update_key(const struct sk_buff *skb,
 166			      const struct ovs_conntrack_info *info,
 167			      struct sw_flow_key *key, bool post_ct,
 168			      bool keep_nat_flags)
 169{
 170	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 171	enum ip_conntrack_info ctinfo;
 172	struct nf_conn *ct;
 173	u8 state = 0;
 174
 175	ct = nf_ct_get(skb, &ctinfo);
 176	if (ct) {
 177		state = ovs_ct_get_state(ctinfo);
 178		/* All unconfirmed entries are NEW connections. */
 179		if (!nf_ct_is_confirmed(ct))
 180			state |= OVS_CS_F_NEW;
 181		/* OVS persists the related flag for the duration of the
 182		 * connection.
 183		 */
 184		if (ct->master)
 185			state |= OVS_CS_F_RELATED;
 186		if (keep_nat_flags) {
 187			state |= key->ct.state & OVS_CS_F_NAT_MASK;
 188		} else {
 189			if (ct->status & IPS_SRC_NAT)
 190				state |= OVS_CS_F_SRC_NAT;
 191			if (ct->status & IPS_DST_NAT)
 192				state |= OVS_CS_F_DST_NAT;
 193		}
 194		zone = nf_ct_zone(ct);
 195	} else if (post_ct) {
 196		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 197		if (info)
 198			zone = &info->zone;
 199	}
 200	__ovs_ct_update_key(key, state, zone, ct);
 201}
 202
 203/* This is called to initialize CT key fields possibly coming in from the local
 204 * stack.
 205 */
 206void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
 
 
 207{
 208	ovs_ct_update_key(skb, NULL, key, false, false);
 209}
 210
 211int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
 
 212{
 213	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
 214		return -EMSGSIZE;
 215
 216	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 217	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
 218		return -EMSGSIZE;
 219
 220	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 221	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
 222		return -EMSGSIZE;
 223
 224	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 225	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
 226		    &key->ct.labels))
 227		return -EMSGSIZE;
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229	return 0;
 230}
 231
 232static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
 233			   u32 ct_mark, u32 mask)
 234{
 235#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 236	enum ip_conntrack_info ctinfo;
 237	struct nf_conn *ct;
 238	u32 new_mark;
 239
 240	/* The connection could be invalid, in which case set_mark is no-op. */
 241	ct = nf_ct_get(skb, &ctinfo);
 242	if (!ct)
 243		return 0;
 244
 245	new_mark = ct_mark | (ct->mark & ~(mask));
 246	if (ct->mark != new_mark) {
 247		ct->mark = new_mark;
 248		nf_conntrack_event_cache(IPCT_MARK, ct);
 249		key->ct.mark = new_mark;
 250	}
 251
 252	return 0;
 253#else
 254	return -ENOTSUPP;
 255#endif
 256}
 257
 258static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
 259			     const struct ovs_key_ct_labels *labels,
 260			     const struct ovs_key_ct_labels *mask)
 261{
 262	enum ip_conntrack_info ctinfo;
 263	struct nf_conn_labels *cl;
 264	struct nf_conn *ct;
 265	int err;
 266
 267	/* The connection could be invalid, in which case set_label is no-op.*/
 268	ct = nf_ct_get(skb, &ctinfo);
 269	if (!ct)
 270		return 0;
 271
 272	cl = nf_ct_labels_find(ct);
 273	if (!cl) {
 274		nf_ct_labels_ext_add(ct);
 275		cl = nf_ct_labels_find(ct);
 276	}
 277	if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
 278		return -ENOSPC;
 279
 280	err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
 281				    OVS_CT_LABELS_LEN / sizeof(u32));
 282	if (err)
 283		return err;
 284
 285	ovs_ct_get_labels(ct, &key->ct.labels);
 286	return 0;
 287}
 288
 289/* 'skb' should already be pulled to nh_ofs. */
 290static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
 
 
 
 
 
 291{
 292	const struct nf_conntrack_helper *helper;
 293	const struct nf_conn_help *help;
 294	enum ip_conntrack_info ctinfo;
 295	unsigned int protoff;
 296	struct nf_conn *ct;
 297	int err;
 298
 299	ct = nf_ct_get(skb, &ctinfo);
 300	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
 301		return NF_ACCEPT;
 302
 303	help = nfct_help(ct);
 304	if (!help)
 305		return NF_ACCEPT;
 306
 307	helper = rcu_dereference(help->helper);
 308	if (!helper)
 309		return NF_ACCEPT;
 310
 311	switch (proto) {
 312	case NFPROTO_IPV4:
 313		protoff = ip_hdrlen(skb);
 314		break;
 315	case NFPROTO_IPV6: {
 316		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 317		__be16 frag_off;
 318		int ofs;
 319
 320		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
 321				       &frag_off);
 322		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
 323			pr_debug("proto header not found\n");
 324			return NF_ACCEPT;
 325		}
 326		protoff = ofs;
 327		break;
 328	}
 329	default:
 330		WARN_ONCE(1, "helper invoked on non-IP family!");
 331		return NF_DROP;
 332	}
 333
 334	err = helper->help(skb, protoff, ct, ctinfo);
 335	if (err != NF_ACCEPT)
 336		return err;
 337
 338	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
 339	 * FTP with NAT) adusting the TCP payload size when mangling IP
 340	 * addresses and/or port numbers in the text-based control connection.
 341	 */
 342	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
 343	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
 344		return NF_DROP;
 345	return NF_ACCEPT;
 
 346}
 347
 348/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 349 * value if 'skb' is freed.
 350 */
 351static int handle_fragments(struct net *net, struct sw_flow_key *key,
 352			    u16 zone, struct sk_buff *skb)
 353{
 354	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 355	int err;
 356
 357	if (key->eth.type == htons(ETH_P_IP)) {
 358		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 
 359
 360		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 361		err = ip_defrag(net, skb, user);
 362		if (err)
 363			return err;
 
 364
 365		ovs_cb.mru = IPCB(skb)->frag_max_size;
 366#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 367	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 368		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 369
 370		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 371		err = nf_ct_frag6_gather(net, skb, user);
 372		if (err) {
 373			if (err != -EINPROGRESS)
 374				kfree_skb(skb);
 375			return err;
 376		}
 377
 378		key->ip.proto = ipv6_hdr(skb)->nexthdr;
 379		ovs_cb.mru = IP6CB(skb)->frag_max_size;
 380#endif
 381	} else {
 382		kfree_skb(skb);
 383		return -EPFNOSUPPORT;
 384	}
 
 
 385
 
 
 
 
 386	key->ip.frag = OVS_FRAG_TYPE_NONE;
 387	skb_clear_hash(skb);
 388	skb->ignore_df = 1;
 389	*OVS_CB(skb) = ovs_cb;
 390
 391	return 0;
 392}
 393
 394static struct nf_conntrack_expect *
 395ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 396		   u16 proto, const struct sk_buff *skb)
 397{
 398	struct nf_conntrack_tuple tuple;
 399
 400	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 401		return NULL;
 402	return __nf_ct_expect_find(net, zone, &tuple);
 403}
 404
 405/* This replicates logic from nf_conntrack_core.c that is not exported. */
 406static enum ip_conntrack_info
 407ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 408{
 409	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 410
 411	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 412		return IP_CT_ESTABLISHED_REPLY;
 413	/* Once we've had two way comms, always ESTABLISHED. */
 414	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 415		return IP_CT_ESTABLISHED;
 416	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 417		return IP_CT_RELATED;
 418	return IP_CT_NEW;
 419}
 420
 421/* Find an existing connection which this packet belongs to without
 422 * re-attributing statistics or modifying the connection state.  This allows an
 423 * skb->nfct lost due to an upcall to be recovered during actions execution.
 424 *
 425 * Must be called with rcu_read_lock.
 426 *
 427 * On success, populates skb->nfct and skb->nfctinfo, and returns the
 428 * connection.  Returns NULL if there is no existing entry.
 429 */
 430static struct nf_conn *
 431ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 432		     u8 l3num, struct sk_buff *skb)
 433{
 434	struct nf_conntrack_l3proto *l3proto;
 435	struct nf_conntrack_l4proto *l4proto;
 436	struct nf_conntrack_tuple tuple;
 437	struct nf_conntrack_tuple_hash *h;
 438	struct nf_conn *ct;
 439	unsigned int dataoff;
 440	u8 protonum;
 441
 442	l3proto = __nf_ct_l3proto_find(l3num);
 443	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
 444				 &protonum) <= 0) {
 445		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
 446		return NULL;
 447	}
 448	l4proto = __nf_ct_l4proto_find(l3num, protonum);
 449	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
 450			     protonum, net, &tuple, l3proto, l4proto)) {
 451		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 452		return NULL;
 453	}
 454
 
 
 
 
 
 
 
 
 
 
 
 455	/* look for tuple match */
 456	h = nf_conntrack_find_get(net, zone, &tuple);
 457	if (!h)
 458		return NULL;   /* Not found. */
 459
 460	ct = nf_ct_tuplehash_to_ctrack(h);
 461
 462	skb->nfct = &ct->ct_general;
 463	skb->nfctinfo = ovs_ct_get_info(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464	return ct;
 465}
 466
 467/* Determine whether skb->nfct is equal to the result of conntrack lookup. */
 468static bool skb_nfct_cached(struct net *net,
 469			    const struct sw_flow_key *key,
 470			    const struct ovs_conntrack_info *info,
 471			    struct sk_buff *skb)
 472{
 473	enum ip_conntrack_info ctinfo;
 474	struct nf_conn *ct;
 
 475
 476	ct = nf_ct_get(skb, &ctinfo);
 477	/* If no ct, check if we have evidence that an existing conntrack entry
 478	 * might be found for this skb.  This happens when we lose a skb->nfct
 479	 * due to an upcall.  If the connection was not confirmed, it is not
 480	 * cached and needs to be run through conntrack again.
 481	 */
 482	if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
 483	    !(key->ct.state & OVS_CS_F_INVALID) &&
 484	    key->ct.zone == info->zone.id)
 485		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
 486	if (!ct)
 
 
 
 
 
 487		return false;
 
 488	if (!net_eq(net, read_pnet(&ct->ct_net)))
 489		return false;
 490	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 491		return false;
 492	if (info->helper) {
 493		struct nf_conn_help *help;
 494
 495		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 496		if (help && rcu_access_pointer(help->helper) != info->helper)
 497			return false;
 498	}
 
 
 499
 500	return true;
 501}
 502
 503#ifdef CONFIG_NF_NAT_NEEDED
 504/* Modelled after nf_nat_ipv[46]_fn().
 505 * range is only used for new, uninitialized NAT state.
 506 * Returns either NF_ACCEPT or NF_DROP.
 507 */
 508static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
 509			      enum ip_conntrack_info ctinfo,
 510			      const struct nf_nat_range *range,
 511			      enum nf_nat_manip_type maniptype)
 512{
 513	int hooknum, nh_off, err = NF_ACCEPT;
 514
 515	nh_off = skb_network_offset(skb);
 516	skb_pull_rcsum(skb, nh_off);
 517
 518	/* See HOOK2MANIP(). */
 519	if (maniptype == NF_NAT_MANIP_SRC)
 520		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
 521	else
 522		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
 523
 524	switch (ctinfo) {
 525	case IP_CT_RELATED:
 526	case IP_CT_RELATED_REPLY:
 527		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
 528		    skb->protocol == htons(ETH_P_IP) &&
 529		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
 530			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
 531							   hooknum))
 532				err = NF_DROP;
 533			goto push;
 534		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
 535			   skb->protocol == htons(ETH_P_IPV6)) {
 536			__be16 frag_off;
 537			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 538			int hdrlen = ipv6_skip_exthdr(skb,
 539						      sizeof(struct ipv6hdr),
 540						      &nexthdr, &frag_off);
 541
 542			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
 543				if (!nf_nat_icmpv6_reply_translation(skb, ct,
 544								     ctinfo,
 545								     hooknum,
 546								     hdrlen))
 547					err = NF_DROP;
 548				goto push;
 549			}
 550		}
 551		/* Non-ICMP, fall thru to initialize if needed. */
 552	case IP_CT_NEW:
 553		/* Seen it before?  This can happen for loopback, retrans,
 554		 * or local packets.
 555		 */
 556		if (!nf_nat_initialized(ct, maniptype)) {
 557			/* Initialize according to the NAT action. */
 558			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
 559				/* Action is set up to establish a new
 560				 * mapping.
 561				 */
 562				? nf_nat_setup_info(ct, range, maniptype)
 563				: nf_nat_alloc_null_binding(ct, hooknum);
 564			if (err != NF_ACCEPT)
 565				goto push;
 566		}
 567		break;
 568
 569	case IP_CT_ESTABLISHED:
 570	case IP_CT_ESTABLISHED_REPLY:
 571		break;
 572
 573	default:
 574		err = NF_DROP;
 575		goto push;
 576	}
 577
 578	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
 579push:
 580	skb_push(skb, nh_off);
 581	skb_postpush_rcsum(skb, skb->data, nh_off);
 582
 583	return err;
 584}
 585
 
 586static void ovs_nat_update_key(struct sw_flow_key *key,
 587			       const struct sk_buff *skb,
 588			       enum nf_nat_manip_type maniptype)
 589{
 590	if (maniptype == NF_NAT_MANIP_SRC) {
 591		__be16 src;
 592
 593		key->ct.state |= OVS_CS_F_SRC_NAT;
 594		if (key->eth.type == htons(ETH_P_IP))
 595			key->ipv4.addr.src = ip_hdr(skb)->saddr;
 596		else if (key->eth.type == htons(ETH_P_IPV6))
 597			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 598			       sizeof(key->ipv6.addr.src));
 599		else
 600			return;
 601
 602		if (key->ip.proto == IPPROTO_UDP)
 603			src = udp_hdr(skb)->source;
 604		else if (key->ip.proto == IPPROTO_TCP)
 605			src = tcp_hdr(skb)->source;
 606		else if (key->ip.proto == IPPROTO_SCTP)
 607			src = sctp_hdr(skb)->source;
 608		else
 609			return;
 610
 611		key->tp.src = src;
 612	} else {
 613		__be16 dst;
 614
 615		key->ct.state |= OVS_CS_F_DST_NAT;
 616		if (key->eth.type == htons(ETH_P_IP))
 617			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 618		else if (key->eth.type == htons(ETH_P_IPV6))
 619			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 620			       sizeof(key->ipv6.addr.dst));
 621		else
 622			return;
 623
 624		if (key->ip.proto == IPPROTO_UDP)
 625			dst = udp_hdr(skb)->dest;
 626		else if (key->ip.proto == IPPROTO_TCP)
 627			dst = tcp_hdr(skb)->dest;
 628		else if (key->ip.proto == IPPROTO_SCTP)
 629			dst = sctp_hdr(skb)->dest;
 630		else
 631			return;
 632
 633		key->tp.dst = dst;
 634	}
 635}
 636
 637/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 638static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 639		      const struct ovs_conntrack_info *info,
 640		      struct sk_buff *skb, struct nf_conn *ct,
 641		      enum ip_conntrack_info ctinfo)
 642{
 643	enum nf_nat_manip_type maniptype;
 644	int err;
 645
 646	if (nf_ct_is_untracked(ct)) {
 647		/* A NAT action may only be performed on tracked packets. */
 648		return NF_ACCEPT;
 649	}
 650
 651	/* Add NAT extension if not confirmed yet. */
 652	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
 653		return NF_ACCEPT;   /* Can't NAT. */
 654
 655	/* Determine NAT type.
 656	 * Check if the NAT type can be deduced from the tracked connection.
 657	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
 658	 * when committing.
 659	 */
 660	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
 661	    ct->status & IPS_NAT_MASK &&
 662	    (ctinfo != IP_CT_RELATED || info->commit)) {
 663		/* NAT an established or related connection like before. */
 664		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
 665			/* This is the REPLY direction for a connection
 666			 * for which NAT was applied in the forward
 667			 * direction.  Do the reverse NAT.
 668			 */
 669			maniptype = ct->status & IPS_SRC_NAT
 670				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
 671		else
 672			maniptype = ct->status & IPS_SRC_NAT
 673				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
 674	} else if (info->nat & OVS_CT_SRC_NAT) {
 675		maniptype = NF_NAT_MANIP_SRC;
 676	} else if (info->nat & OVS_CT_DST_NAT) {
 677		maniptype = NF_NAT_MANIP_DST;
 678	} else {
 679		return NF_ACCEPT; /* Connection is not NATed. */
 680	}
 681	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
 682
 683	/* Mark NAT done if successful and update the flow key. */
 684	if (err == NF_ACCEPT)
 685		ovs_nat_update_key(key, skb, maniptype);
 686
 687	return err;
 688}
 689#else /* !CONFIG_NF_NAT_NEEDED */
 690static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 691		      const struct ovs_conntrack_info *info,
 692		      struct sk_buff *skb, struct nf_conn *ct,
 693		      enum ip_conntrack_info ctinfo)
 694{
 695	return NF_ACCEPT;
 696}
 697#endif
 698
 699/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 700 * not done already.  Update key with new CT state after passing the packet
 701 * through conntrack.
 702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
 703 * set to NULL and 0 will be returned.
 704 */
 705static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 706			   const struct ovs_conntrack_info *info,
 707			   struct sk_buff *skb)
 708{
 709	/* If we are recirculating packets to match on conntrack fields and
 710	 * committing with a separate conntrack action,  then we don't need to
 711	 * actually run the packet through conntrack twice unless it's for a
 712	 * different zone.
 713	 */
 714	bool cached = skb_nfct_cached(net, key, info, skb);
 715	enum ip_conntrack_info ctinfo;
 716	struct nf_conn *ct;
 717
 718	if (!cached) {
 
 
 
 
 
 719		struct nf_conn *tmpl = info->ct;
 720		int err;
 721
 722		/* Associate skb with specified zone. */
 723		if (tmpl) {
 724			if (skb->nfct)
 725				nf_conntrack_put(skb->nfct);
 726			nf_conntrack_get(&tmpl->ct_general);
 727			skb->nfct = &tmpl->ct_general;
 728			skb->nfctinfo = IP_CT_NEW;
 729		}
 730
 731		err = nf_conntrack_in(net, info->family,
 732				      NF_INET_PRE_ROUTING, skb);
 733		if (err != NF_ACCEPT)
 734			return -ENOENT;
 735
 736		/* Clear CT state NAT flags to mark that we have not yet done
 737		 * NAT after the nf_conntrack_in() call.  We can actually clear
 738		 * the whole state, as it will be re-initialized below.
 739		 */
 740		key->ct.state = 0;
 741
 742		/* Update the key, but keep the NAT flags. */
 743		ovs_ct_update_key(skb, info, key, true, true);
 744	}
 745
 746	ct = nf_ct_get(skb, &ctinfo);
 747	if (ct) {
 
 
 748		/* Packets starting a new connection must be NATted before the
 749		 * helper, so that the helper knows about the NAT.  We enforce
 750		 * this by delaying both NAT and helper calls for unconfirmed
 751		 * connections until the committing CT action.  For later
 752		 * packets NAT and Helper may be called in either order.
 753		 *
 754		 * NAT will be done only if the CT action has NAT, and only
 755		 * once per packet (per zone), as guarded by the NAT bits in
 756		 * the key->ct.state.
 757		 */
 758		if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
 759		    (nf_ct_is_confirmed(ct) || info->commit) &&
 760		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 761			return -EINVAL;
 762		}
 763
 764		/* Userspace may decide to perform a ct lookup without a helper
 765		 * specified followed by a (recirculate and) commit with one.
 766		 * Therefore, for unconfirmed connections which we will commit,
 767		 * we need to attach the helper here.
 
 768		 */
 769		if (!nf_ct_is_confirmed(ct) && info->commit &&
 770		    info->helper && !nfct_help(ct)) {
 771			int err = __nf_ct_try_assign_helper(ct, info->ct,
 772							    GFP_ATOMIC);
 773			if (err)
 774				return err;
 
 
 
 
 
 
 
 775		}
 776
 777		/* Call the helper only if:
 778		 * - nf_conntrack_in() was executed above ("!cached") for a
 779		 *   confirmed connection, or
 
 780		 * - When committing an unconfirmed connection.
 781		 */
 782		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
 783		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
 
 784			return -EINVAL;
 785		}
 
 
 
 
 
 
 
 
 
 
 786	}
 787
 788	return 0;
 789}
 790
 791/* Lookup connection and read fields into key. */
 792static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 793			 const struct ovs_conntrack_info *info,
 794			 struct sk_buff *skb)
 795{
 796	struct nf_conntrack_expect *exp;
 797
 798	/* If we pass an expected packet through nf_conntrack_in() the
 799	 * expectation is typically removed, but the packet could still be
 800	 * lost in upcall processing.  To prevent this from happening we
 801	 * perform an explicit expectation lookup.  Expected connections are
 802	 * always new, and will be passed through conntrack only when they are
 803	 * committed, as it is OK to remove the expectation at that time.
 804	 */
 805	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
 806	if (exp) {
 807		u8 state;
 808
 809		/* NOTE: New connections are NATted and Helped only when
 810		 * committed, so we are not calling into NAT here.
 811		 */
 812		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
 813		__ovs_ct_update_key(key, state, &info->zone, exp->master);
 814	} else {
 815		struct nf_conn *ct;
 816		int err;
 817
 818		err = __ovs_ct_lookup(net, key, info, skb);
 819		if (err)
 820			return err;
 821
 822		ct = (struct nf_conn *)skb->nfct;
 823		if (ct)
 824			nf_ct_deliver_cached_events(ct);
 825	}
 826
 827	return 0;
 828}
 829
 830static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
 831{
 832	size_t i;
 833
 834	for (i = 0; i < sizeof(*labels); i++)
 835		if (labels->ct_labels[i])
 836			return true;
 837
 838	return false;
 839}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841/* Lookup connection and confirm if unconfirmed. */
 842static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
 843			 const struct ovs_conntrack_info *info,
 844			 struct sk_buff *skb)
 845{
 
 
 846	int err;
 847
 848	err = __ovs_ct_lookup(net, key, info, skb);
 849	if (err)
 850		return err;
 851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	/* Apply changes before confirming the connection so that the initial
 853	 * conntrack NEW netlink event carries the values given in the CT
 854	 * action.
 855	 */
 856	if (info->mark.mask) {
 857		err = ovs_ct_set_mark(skb, key, info->mark.value,
 858				      info->mark.mask);
 859		if (err)
 860			return err;
 861	}
 862	if (labels_nonzero(&info->labels.mask)) {
 863		err = ovs_ct_set_labels(skb, key, &info->labels.value,
 
 
 
 
 
 
 
 
 864					&info->labels.mask);
 865		if (err)
 866			return err;
 867	}
 868	/* This will take care of sending queued events even if the connection
 869	 * is already confirmed.
 870	 */
 871	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
 872		return -EINVAL;
 873
 874	return 0;
 875}
 876
 877/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 878 * value if 'skb' is freed.
 879 */
 880int ovs_ct_execute(struct net *net, struct sk_buff *skb,
 881		   struct sw_flow_key *key,
 882		   const struct ovs_conntrack_info *info)
 883{
 884	int nh_ofs;
 885	int err;
 886
 887	/* The conntrack module expects to be working at L3. */
 888	nh_ofs = skb_network_offset(skb);
 889	skb_pull_rcsum(skb, nh_ofs);
 890
 
 
 
 
 
 
 891	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
 892		err = handle_fragments(net, key, info->zone.id, skb);
 
 893		if (err)
 894			return err;
 895	}
 896
 897	if (info->commit)
 898		err = ovs_ct_commit(net, key, info, skb);
 899	else
 900		err = ovs_ct_lookup(net, key, info, skb);
 901
 902	skb_push(skb, nh_ofs);
 903	skb_postpush_rcsum(skb, skb->data, nh_ofs);
 904	if (err)
 905		kfree_skb(skb);
 906	return err;
 907}
 908
 909static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
 910			     const struct sw_flow_key *key, bool log)
 911{
 912	struct nf_conntrack_helper *helper;
 913	struct nf_conn_help *help;
 914
 915	helper = nf_conntrack_helper_try_module_get(name, info->family,
 916						    key->ip.proto);
 917	if (!helper) {
 918		OVS_NLERR(log, "Unknown helper \"%s\"", name);
 919		return -EINVAL;
 920	}
 921
 922	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
 923	if (!help) {
 924		module_put(helper->me);
 925		return -ENOMEM;
 926	}
 927
 928	rcu_assign_pointer(help->helper, helper);
 929	info->helper = helper;
 930	return 0;
 931}
 932
 933#ifdef CONFIG_NF_NAT_NEEDED
 934static int parse_nat(const struct nlattr *attr,
 935		     struct ovs_conntrack_info *info, bool log)
 936{
 937	struct nlattr *a;
 938	int rem;
 939	bool have_ip_max = false;
 940	bool have_proto_max = false;
 941	bool ip_vers = (info->family == NFPROTO_IPV6);
 942
 943	nla_for_each_nested(a, attr, rem) {
 944		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
 945			[OVS_NAT_ATTR_SRC] = {0, 0},
 946			[OVS_NAT_ATTR_DST] = {0, 0},
 947			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
 948						 sizeof(struct in6_addr)},
 949			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
 950						 sizeof(struct in6_addr)},
 951			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
 952			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
 953			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
 954			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
 955			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
 956		};
 957		int type = nla_type(a);
 958
 959		if (type > OVS_NAT_ATTR_MAX) {
 960			OVS_NLERR(log,
 961				  "Unknown NAT attribute (type=%d, max=%d).\n",
 962				  type, OVS_NAT_ATTR_MAX);
 963			return -EINVAL;
 964		}
 965
 966		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
 967			OVS_NLERR(log,
 968				  "NAT attribute type %d has unexpected length (%d != %d).\n",
 969				  type, nla_len(a),
 970				  ovs_nat_attr_lens[type][ip_vers]);
 971			return -EINVAL;
 972		}
 973
 974		switch (type) {
 975		case OVS_NAT_ATTR_SRC:
 976		case OVS_NAT_ATTR_DST:
 977			if (info->nat) {
 978				OVS_NLERR(log,
 979					  "Only one type of NAT may be specified.\n"
 980					  );
 981				return -ERANGE;
 982			}
 983			info->nat |= OVS_CT_NAT;
 984			info->nat |= ((type == OVS_NAT_ATTR_SRC)
 985					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
 986			break;
 987
 988		case OVS_NAT_ATTR_IP_MIN:
 989			nla_memcpy(&info->range.min_addr, a,
 990				   sizeof(info->range.min_addr));
 991			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
 992			break;
 993
 994		case OVS_NAT_ATTR_IP_MAX:
 995			have_ip_max = true;
 996			nla_memcpy(&info->range.max_addr, a,
 997				   sizeof(info->range.max_addr));
 998			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
 999			break;
1000
1001		case OVS_NAT_ATTR_PROTO_MIN:
1002			info->range.min_proto.all = htons(nla_get_u16(a));
1003			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004			break;
1005
1006		case OVS_NAT_ATTR_PROTO_MAX:
1007			have_proto_max = true;
1008			info->range.max_proto.all = htons(nla_get_u16(a));
1009			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010			break;
1011
1012		case OVS_NAT_ATTR_PERSISTENT:
1013			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014			break;
1015
1016		case OVS_NAT_ATTR_PROTO_HASH:
1017			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018			break;
1019
1020		case OVS_NAT_ATTR_PROTO_RANDOM:
1021			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022			break;
1023
1024		default:
1025			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026			return -EINVAL;
1027		}
1028	}
1029
1030	if (rem > 0) {
1031		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032		return -EINVAL;
1033	}
1034	if (!info->nat) {
1035		/* Do not allow flags if no type is given. */
1036		if (info->range.flags) {
1037			OVS_NLERR(log,
1038				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039				  );
1040			return -EINVAL;
1041		}
1042		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1043	} else if (!info->commit) {
1044		OVS_NLERR(log,
1045			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046			  );
1047		return -EINVAL;
1048	}
1049	/* Allow missing IP_MAX. */
1050	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051		memcpy(&info->range.max_addr, &info->range.min_addr,
1052		       sizeof(info->range.max_addr));
1053	}
1054	/* Allow missing PROTO_MAX. */
1055	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056	    !have_proto_max) {
1057		info->range.max_proto.all = info->range.min_proto.all;
1058	}
1059	return 0;
1060}
1061#endif
1062
1063static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
 
1065	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1066				    .maxlen = sizeof(u16) },
1067	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1068				    .maxlen = sizeof(struct md_mark) },
1069	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1070				    .maxlen = sizeof(struct md_labels) },
1071	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1072				    .maxlen = NF_CT_HELPER_NAME_LEN },
1073#ifdef CONFIG_NF_NAT_NEEDED
1074	/* NAT length is checked when parsing the nested attributes. */
1075	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1076#endif
 
 
 
 
1077};
1078
1079static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080		    const char **helper, bool log)
1081{
1082	struct nlattr *a;
1083	int rem;
1084
1085	nla_for_each_nested(a, attr, rem) {
1086		int type = nla_type(a);
1087		int maxlen = ovs_ct_attr_lens[type].maxlen;
1088		int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090		if (type > OVS_CT_ATTR_MAX) {
1091			OVS_NLERR(log,
1092				  "Unknown conntrack attr (type=%d, max=%d)",
1093				  type, OVS_CT_ATTR_MAX);
1094			return -EINVAL;
1095		}
 
 
 
1096		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097			OVS_NLERR(log,
1098				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099				  type, nla_len(a), maxlen);
1100			return -EINVAL;
1101		}
1102
1103		switch (type) {
 
 
 
1104		case OVS_CT_ATTR_COMMIT:
1105			info->commit = true;
1106			break;
1107#ifdef CONFIG_NF_CONNTRACK_ZONES
1108		case OVS_CT_ATTR_ZONE:
1109			info->zone.id = nla_get_u16(a);
1110			break;
1111#endif
1112#ifdef CONFIG_NF_CONNTRACK_MARK
1113		case OVS_CT_ATTR_MARK: {
1114			struct md_mark *mark = nla_data(a);
1115
1116			if (!mark->mask) {
1117				OVS_NLERR(log, "ct_mark mask cannot be 0");
1118				return -EINVAL;
1119			}
1120			info->mark = *mark;
1121			break;
1122		}
1123#endif
1124#ifdef CONFIG_NF_CONNTRACK_LABELS
1125		case OVS_CT_ATTR_LABELS: {
1126			struct md_labels *labels = nla_data(a);
1127
1128			if (!labels_nonzero(&labels->mask)) {
1129				OVS_NLERR(log, "ct_labels mask cannot be 0");
1130				return -EINVAL;
1131			}
1132			info->labels = *labels;
1133			break;
1134		}
1135#endif
1136		case OVS_CT_ATTR_HELPER:
1137			*helper = nla_data(a);
1138			if (!memchr(*helper, '\0', nla_len(a))) {
1139				OVS_NLERR(log, "Invalid conntrack helper");
1140				return -EINVAL;
1141			}
1142			break;
1143#ifdef CONFIG_NF_NAT_NEEDED
1144		case OVS_CT_ATTR_NAT: {
1145			int err = parse_nat(a, info, log);
1146
1147			if (err)
1148				return err;
1149			break;
1150		}
1151#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152		default:
1153			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154				  type);
1155			return -EINVAL;
1156		}
1157	}
1158
1159#ifdef CONFIG_NF_CONNTRACK_MARK
1160	if (!info->commit && info->mark.mask) {
1161		OVS_NLERR(log,
1162			  "Setting conntrack mark requires 'commit' flag.");
1163		return -EINVAL;
1164	}
1165#endif
1166#ifdef CONFIG_NF_CONNTRACK_LABELS
1167	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168		OVS_NLERR(log,
1169			  "Setting conntrack labels requires 'commit' flag.");
1170		return -EINVAL;
1171	}
1172#endif
1173	if (rem > 0) {
1174		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182{
1183	if (attr == OVS_KEY_ATTR_CT_STATE)
1184		return true;
1185	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186	    attr == OVS_KEY_ATTR_CT_ZONE)
1187		return true;
1188	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189	    attr == OVS_KEY_ATTR_CT_MARK)
1190		return true;
1191	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192	    attr == OVS_KEY_ATTR_CT_LABELS) {
1193		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195		return ovs_net->xt_label;
1196	}
1197
1198	return false;
1199}
1200
1201int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202		       const struct sw_flow_key *key,
1203		       struct sw_flow_actions **sfa,  bool log)
1204{
1205	struct ovs_conntrack_info ct_info;
1206	const char *helper = NULL;
1207	u16 family;
1208	int err;
1209
1210	family = key_to_nfproto(key);
1211	if (family == NFPROTO_UNSPEC) {
1212		OVS_NLERR(log, "ct family unspecified");
1213		return -EINVAL;
1214	}
1215
1216	memset(&ct_info, 0, sizeof(ct_info));
1217	ct_info.family = family;
1218
1219	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220			NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222	err = parse_ct(attr, &ct_info, &helper, log);
1223	if (err)
1224		return err;
1225
1226	/* Set up template for tracking connections in specific zones. */
1227	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228	if (!ct_info.ct) {
1229		OVS_NLERR(log, "Failed to allocate conntrack template");
1230		return -ENOMEM;
1231	}
1232
1233	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234	nf_conntrack_get(&ct_info.ct->ct_general);
 
 
 
 
 
 
 
 
1235
1236	if (helper) {
1237		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238		if (err)
 
 
1239			goto err_free_ct;
 
1240	}
1241
1242	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243				 sizeof(ct_info), log);
1244	if (err)
1245		goto err_free_ct;
1246
 
 
1247	return 0;
1248err_free_ct:
1249	__ovs_ct_free_action(&ct_info);
1250	return err;
1251}
1252
1253#ifdef CONFIG_NF_NAT_NEEDED
1254static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255			       struct sk_buff *skb)
1256{
1257	struct nlattr *start;
1258
1259	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260	if (!start)
1261		return false;
1262
1263	if (info->nat & OVS_CT_SRC_NAT) {
1264		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265			return false;
1266	} else if (info->nat & OVS_CT_DST_NAT) {
1267		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268			return false;
1269	} else {
1270		goto out;
1271	}
1272
1273	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275		    info->family == NFPROTO_IPV4) {
1276			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277					    info->range.min_addr.ip) ||
1278			    (info->range.max_addr.ip
1279			     != info->range.min_addr.ip &&
1280			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281					      info->range.max_addr.ip))))
1282				return false;
1283		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284			   info->family == NFPROTO_IPV6) {
1285			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286					     &info->range.min_addr.in6) ||
1287			    (memcmp(&info->range.max_addr.in6,
1288				    &info->range.min_addr.in6,
1289				    sizeof(info->range.max_addr.in6)) &&
1290			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291					       &info->range.max_addr.in6))))
1292				return false;
1293		} else {
1294			return false;
1295		}
1296	}
1297	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299			 ntohs(info->range.min_proto.all)) ||
1300	     (info->range.max_proto.all != info->range.min_proto.all &&
1301	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302			  ntohs(info->range.max_proto.all)))))
1303		return false;
1304
1305	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307		return false;
1308	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310		return false;
1311	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313		return false;
1314out:
1315	nla_nest_end(skb, start);
1316
1317	return true;
1318}
1319#endif
1320
1321int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322			  struct sk_buff *skb)
1323{
1324	struct nlattr *start;
1325
1326	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327	if (!start)
1328		return -EMSGSIZE;
1329
1330	if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
 
 
1331		return -EMSGSIZE;
1332	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334		return -EMSGSIZE;
1335	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337		    &ct_info->mark))
1338		return -EMSGSIZE;
1339	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340	    labels_nonzero(&ct_info->labels.mask) &&
1341	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342		    &ct_info->labels))
1343		return -EMSGSIZE;
1344	if (ct_info->helper) {
1345		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346				   ct_info->helper->name))
1347			return -EMSGSIZE;
1348	}
1349#ifdef CONFIG_NF_NAT_NEEDED
 
 
 
 
 
 
 
 
1350	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351		return -EMSGSIZE;
1352#endif
1353	nla_nest_end(skb, start);
1354
1355	return 0;
1356}
1357
1358void ovs_ct_free_action(const struct nlattr *a)
1359{
1360	struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362	__ovs_ct_free_action(ct_info);
1363}
1364
1365static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366{
1367	if (ct_info->helper)
1368		module_put(ct_info->helper->me);
1369	if (ct_info->ct)
 
 
 
 
 
 
 
1370		nf_ct_tmpl_free(ct_info->ct);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371}
1372
1373void ovs_ct_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374{
1375	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378	if (nf_connlabels_get(net, n_bits - 1)) {
1379		ovs_net->xt_label = false;
1380		OVS_NLERR(true, "Failed to set connlabel length");
1381	} else {
1382		ovs_net->xt_label = true;
1383	}
 
 
 
 
 
 
1384}
1385
1386void ovs_ct_exit(struct net *net)
1387{
1388	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
 
 
 
 
1389
1390	if (ovs_net->xt_label)
1391		nf_connlabels_put(net);
1392}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 Nicira, Inc.
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/openvswitch.h>
   8#include <linux/tcp.h>
   9#include <linux/udp.h>
  10#include <linux/sctp.h>
  11#include <linux/static_key.h>
  12#include <linux/string_helpers.h>
  13#include <net/ip.h>
  14#include <net/genetlink.h>
  15#include <net/netfilter/nf_conntrack_core.h>
  16#include <net/netfilter/nf_conntrack_count.h>
  17#include <net/netfilter/nf_conntrack_helper.h>
  18#include <net/netfilter/nf_conntrack_labels.h>
  19#include <net/netfilter/nf_conntrack_seqadj.h>
  20#include <net/netfilter/nf_conntrack_timeout.h>
  21#include <net/netfilter/nf_conntrack_zones.h>
  22#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
  23#include <net/ipv6_frag.h>
  24
  25#if IS_ENABLED(CONFIG_NF_NAT)
  26#include <net/netfilter/nf_nat.h>
 
 
  27#endif
  28
  29#include <net/netfilter/nf_conntrack_act_ct.h>
  30
  31#include "datapath.h"
  32#include "drop.h"
  33#include "conntrack.h"
  34#include "flow.h"
  35#include "flow_netlink.h"
  36
  37struct ovs_ct_len_tbl {
  38	int maxlen;
  39	int minlen;
  40};
  41
  42/* Metadata mark for masked write to conntrack mark */
  43struct md_mark {
  44	u32 value;
  45	u32 mask;
  46};
  47
  48/* Metadata label for masked write to conntrack label. */
  49struct md_labels {
  50	struct ovs_key_ct_labels value;
  51	struct ovs_key_ct_labels mask;
  52};
  53
  54enum ovs_ct_nat {
  55	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  56	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  57	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  58};
  59
  60/* Conntrack action context for execution. */
  61struct ovs_conntrack_info {
  62	struct nf_conntrack_helper *helper;
  63	struct nf_conntrack_zone zone;
  64	struct nf_conn *ct;
  65	u8 commit : 1;
  66	u8 nat : 3;                 /* enum ovs_ct_nat */
  67	u8 force : 1;
  68	u8 have_eventmask : 1;
  69	u16 family;
  70	u32 eventmask;              /* Mask of 1 << IPCT_*. */
  71	struct md_mark mark;
  72	struct md_labels labels;
  73	char timeout[CTNL_TIMEOUT_NAME_MAX];
  74	struct nf_ct_timeout *nf_ct_timeout;
  75#if IS_ENABLED(CONFIG_NF_NAT)
  76	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
  77#endif
  78};
  79
  80#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
  81#define OVS_CT_LIMIT_UNLIMITED	0
  82#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
  83#define CT_LIMIT_HASH_BUCKETS 512
  84static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
  85
  86struct ovs_ct_limit {
  87	/* Elements in ovs_ct_limit_info->limits hash table */
  88	struct hlist_node hlist_node;
  89	struct rcu_head rcu;
  90	u16 zone;
  91	u32 limit;
  92};
  93
  94struct ovs_ct_limit_info {
  95	u32 default_limit;
  96	struct hlist_head *limits;
  97	struct nf_conncount_data *data;
  98};
  99
 100static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
 101	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
 102};
 103#endif
 104
 105static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
 106
 107static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
 108
 109static u16 key_to_nfproto(const struct sw_flow_key *key)
 110{
 111	switch (ntohs(key->eth.type)) {
 112	case ETH_P_IP:
 113		return NFPROTO_IPV4;
 114	case ETH_P_IPV6:
 115		return NFPROTO_IPV6;
 116	default:
 117		return NFPROTO_UNSPEC;
 118	}
 119}
 120
 121/* Map SKB connection state into the values used by flow definition. */
 122static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
 123{
 124	u8 ct_state = OVS_CS_F_TRACKED;
 125
 126	switch (ctinfo) {
 127	case IP_CT_ESTABLISHED_REPLY:
 128	case IP_CT_RELATED_REPLY:
 129		ct_state |= OVS_CS_F_REPLY_DIR;
 130		break;
 131	default:
 132		break;
 133	}
 134
 135	switch (ctinfo) {
 136	case IP_CT_ESTABLISHED:
 137	case IP_CT_ESTABLISHED_REPLY:
 138		ct_state |= OVS_CS_F_ESTABLISHED;
 139		break;
 140	case IP_CT_RELATED:
 141	case IP_CT_RELATED_REPLY:
 142		ct_state |= OVS_CS_F_RELATED;
 143		break;
 144	case IP_CT_NEW:
 145		ct_state |= OVS_CS_F_NEW;
 146		break;
 147	default:
 148		break;
 149	}
 150
 151	return ct_state;
 152}
 153
 154static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 155{
 156#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 157	return ct ? READ_ONCE(ct->mark) : 0;
 158#else
 159	return 0;
 160#endif
 161}
 162
 163/* Guard against conntrack labels max size shrinking below 128 bits. */
 164#if NF_CT_LABELS_MAX_SIZE < 16
 165#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
 166#endif
 167
 168static void ovs_ct_get_labels(const struct nf_conn *ct,
 169			      struct ovs_key_ct_labels *labels)
 170{
 171	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 172
 173	if (cl)
 174		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
 175	else
 176		memset(labels, 0, OVS_CT_LABELS_LEN);
 177}
 178
 179static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
 180					const struct nf_conntrack_tuple *orig,
 181					u8 icmp_proto)
 182{
 183	key->ct_orig_proto = orig->dst.protonum;
 184	if (orig->dst.protonum == icmp_proto) {
 185		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
 186		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
 187	} else {
 188		key->ct.orig_tp.src = orig->src.u.all;
 189		key->ct.orig_tp.dst = orig->dst.u.all;
 190	}
 191}
 192
 193static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 194				const struct nf_conntrack_zone *zone,
 195				const struct nf_conn *ct)
 196{
 197	key->ct_state = state;
 198	key->ct_zone = zone->id;
 199	key->ct.mark = ovs_ct_get_mark(ct);
 200	ovs_ct_get_labels(ct, &key->ct.labels);
 201
 202	if (ct) {
 203		const struct nf_conntrack_tuple *orig;
 204
 205		/* Use the master if we have one. */
 206		if (ct->master)
 207			ct = ct->master;
 208		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
 209
 210		/* IP version must match with the master connection. */
 211		if (key->eth.type == htons(ETH_P_IP) &&
 212		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
 213			key->ipv4.ct_orig.src = orig->src.u3.ip;
 214			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
 215			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
 216			return;
 217		} else if (key->eth.type == htons(ETH_P_IPV6) &&
 218			   !sw_flow_key_is_nd(key) &&
 219			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
 220			key->ipv6.ct_orig.src = orig->src.u3.in6;
 221			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
 222			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
 223			return;
 224		}
 225	}
 226	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
 227	 * original direction key fields.
 228	 */
 229	key->ct_orig_proto = 0;
 230}
 231
 232/* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
 233 * previously sent the packet to conntrack via the ct action.  If
 234 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 235 * initialized from the connection status.
 236 */
 237static void ovs_ct_update_key(const struct sk_buff *skb,
 238			      const struct ovs_conntrack_info *info,
 239			      struct sw_flow_key *key, bool post_ct,
 240			      bool keep_nat_flags)
 241{
 242	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 243	enum ip_conntrack_info ctinfo;
 244	struct nf_conn *ct;
 245	u8 state = 0;
 246
 247	ct = nf_ct_get(skb, &ctinfo);
 248	if (ct) {
 249		state = ovs_ct_get_state(ctinfo);
 250		/* All unconfirmed entries are NEW connections. */
 251		if (!nf_ct_is_confirmed(ct))
 252			state |= OVS_CS_F_NEW;
 253		/* OVS persists the related flag for the duration of the
 254		 * connection.
 255		 */
 256		if (ct->master)
 257			state |= OVS_CS_F_RELATED;
 258		if (keep_nat_flags) {
 259			state |= key->ct_state & OVS_CS_F_NAT_MASK;
 260		} else {
 261			if (ct->status & IPS_SRC_NAT)
 262				state |= OVS_CS_F_SRC_NAT;
 263			if (ct->status & IPS_DST_NAT)
 264				state |= OVS_CS_F_DST_NAT;
 265		}
 266		zone = nf_ct_zone(ct);
 267	} else if (post_ct) {
 268		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 269		if (info)
 270			zone = &info->zone;
 271	}
 272	__ovs_ct_update_key(key, state, zone, ct);
 273}
 274
 275/* This is called to initialize CT key fields possibly coming in from the local
 276 * stack.
 277 */
 278void ovs_ct_fill_key(const struct sk_buff *skb,
 279		     struct sw_flow_key *key,
 280		     bool post_ct)
 281{
 282	ovs_ct_update_key(skb, NULL, key, post_ct, false);
 283}
 284
 285int ovs_ct_put_key(const struct sw_flow_key *swkey,
 286		   const struct sw_flow_key *output, struct sk_buff *skb)
 287{
 288	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
 289		return -EMSGSIZE;
 290
 291	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 292	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
 293		return -EMSGSIZE;
 294
 295	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 296	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
 297		return -EMSGSIZE;
 298
 299	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 300	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
 301		    &output->ct.labels))
 302		return -EMSGSIZE;
 303
 304	if (swkey->ct_orig_proto) {
 305		if (swkey->eth.type == htons(ETH_P_IP)) {
 306			struct ovs_key_ct_tuple_ipv4 orig;
 307
 308			memset(&orig, 0, sizeof(orig));
 309			orig.ipv4_src = output->ipv4.ct_orig.src;
 310			orig.ipv4_dst = output->ipv4.ct_orig.dst;
 311			orig.src_port = output->ct.orig_tp.src;
 312			orig.dst_port = output->ct.orig_tp.dst;
 313			orig.ipv4_proto = output->ct_orig_proto;
 314
 315			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
 316				    sizeof(orig), &orig))
 317				return -EMSGSIZE;
 318		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 319			struct ovs_key_ct_tuple_ipv6 orig;
 320
 321			memset(&orig, 0, sizeof(orig));
 322			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
 323			       sizeof(orig.ipv6_src));
 324			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
 325			       sizeof(orig.ipv6_dst));
 326			orig.src_port = output->ct.orig_tp.src;
 327			orig.dst_port = output->ct.orig_tp.dst;
 328			orig.ipv6_proto = output->ct_orig_proto;
 329
 330			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
 331				    sizeof(orig), &orig))
 332				return -EMSGSIZE;
 333		}
 334	}
 335
 336	return 0;
 337}
 338
 339static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
 340			   u32 ct_mark, u32 mask)
 341{
 342#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 
 
 343	u32 new_mark;
 344
 345	new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
 346	if (READ_ONCE(ct->mark) != new_mark) {
 347		WRITE_ONCE(ct->mark, new_mark);
 348		if (nf_ct_is_confirmed(ct))
 349			nf_conntrack_event_cache(IPCT_MARK, ct);
 
 
 
 
 350		key->ct.mark = new_mark;
 351	}
 352
 353	return 0;
 354#else
 355	return -ENOTSUPP;
 356#endif
 357}
 358
 359static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
 
 
 360{
 
 361	struct nf_conn_labels *cl;
 
 
 
 
 
 
 
 362
 363	cl = nf_ct_labels_find(ct);
 364	if (!cl) {
 365		nf_ct_labels_ext_add(ct);
 366		cl = nf_ct_labels_find(ct);
 367	}
 
 
 368
 369	return cl;
 
 
 
 
 
 
 370}
 371
 372/* Initialize labels for a new, yet to be committed conntrack entry.  Note that
 373 * since the new connection is not yet confirmed, and thus no-one else has
 374 * access to it's labels, we simply write them over.
 375 */
 376static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
 377			      const struct ovs_key_ct_labels *labels,
 378			      const struct ovs_key_ct_labels *mask)
 379{
 380	struct nf_conn_labels *cl, *master_cl;
 381	bool have_mask = labels_nonzero(mask);
 
 
 
 
 382
 383	/* Inherit master's labels to the related connection? */
 384	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
 
 385
 386	if (!master_cl && !have_mask)
 387		return 0;   /* Nothing to do. */
 
 388
 389	cl = ovs_ct_get_conn_labels(ct);
 390	if (!cl)
 391		return -ENOSPC;
 392
 393	/* Inherit the master's labels, if any. */
 394	if (master_cl)
 395		*cl = *master_cl;
 396
 397	if (have_mask) {
 398		u32 *dst = (u32 *)cl->bits;
 399		int i;
 400
 401		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 402			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
 403				(labels->ct_labels_32[i]
 404				 & mask->ct_labels_32[i]);
 
 
 
 
 
 
 
 
 
 405	}
 406
 407	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
 408	 * IPCT_LABEL bit is set in the event cache.
 
 
 
 
 
 409	 */
 410	nf_conntrack_event_cache(IPCT_LABEL, ct);
 411
 412	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 413
 414	return 0;
 415}
 416
 417static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
 418			     const struct ovs_key_ct_labels *labels,
 419			     const struct ovs_key_ct_labels *mask)
 
 
 420{
 421	struct nf_conn_labels *cl;
 422	int err;
 423
 424	cl = ovs_ct_get_conn_labels(ct);
 425	if (!cl)
 426		return -ENOSPC;
 427
 428	err = nf_connlabels_replace(ct, labels->ct_labels_32,
 429				    mask->ct_labels_32,
 430				    OVS_CT_LABELS_LEN_32);
 431	if (err)
 432		return err;
 433
 434	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 
 
 
 435
 436	return 0;
 437}
 
 
 
 
 
 438
 439static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key,
 440				   u16 zone, int family, struct sk_buff *skb)
 441{
 442	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 443	int err;
 444
 445	err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru);
 446	if (err)
 447		return err;
 448
 449	/* The key extracted from the fragment that completed this datagram
 450	 * likely didn't have an L4 header, so regenerate it.
 451	 */
 452	ovs_flow_key_update_l3l4(skb, key);
 453	key->ip.frag = OVS_FRAG_TYPE_NONE;
 
 
 454	*OVS_CB(skb) = ovs_cb;
 455
 456	return 0;
 457}
 458
 
 
 
 
 
 
 
 
 
 
 
 459/* This replicates logic from nf_conntrack_core.c that is not exported. */
 460static enum ip_conntrack_info
 461ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 462{
 463	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 464
 465	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 466		return IP_CT_ESTABLISHED_REPLY;
 467	/* Once we've had two way comms, always ESTABLISHED. */
 468	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 469		return IP_CT_ESTABLISHED;
 470	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 471		return IP_CT_RELATED;
 472	return IP_CT_NEW;
 473}
 474
 475/* Find an existing connection which this packet belongs to without
 476 * re-attributing statistics or modifying the connection state.  This allows an
 477 * skb->_nfct lost due to an upcall to be recovered during actions execution.
 478 *
 479 * Must be called with rcu_read_lock.
 480 *
 481 * On success, populates skb->_nfct and returns the connection.  Returns NULL
 482 * if there is no existing entry.
 483 */
 484static struct nf_conn *
 485ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 486		     u8 l3num, struct sk_buff *skb, bool natted)
 487{
 
 
 488	struct nf_conntrack_tuple tuple;
 489	struct nf_conntrack_tuple_hash *h;
 490	struct nf_conn *ct;
 
 
 491
 492	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
 493			       net, &tuple)) {
 
 
 
 
 
 
 
 494		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 495		return NULL;
 496	}
 497
 498	/* Must invert the tuple if skb has been transformed by NAT. */
 499	if (natted) {
 500		struct nf_conntrack_tuple inverse;
 501
 502		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
 503			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
 504			return NULL;
 505		}
 506		tuple = inverse;
 507	}
 508
 509	/* look for tuple match */
 510	h = nf_conntrack_find_get(net, zone, &tuple);
 511	if (!h)
 512		return NULL;   /* Not found. */
 513
 514	ct = nf_ct_tuplehash_to_ctrack(h);
 515
 516	/* Inverted packet tuple matches the reverse direction conntrack tuple,
 517	 * select the other tuplehash to get the right 'ctinfo' bits for this
 518	 * packet.
 519	 */
 520	if (natted)
 521		h = &ct->tuplehash[!h->tuple.dst.dir];
 522
 523	nf_ct_set(skb, ct, ovs_ct_get_info(h));
 524	return ct;
 525}
 526
 527static
 528struct nf_conn *ovs_ct_executed(struct net *net,
 529				const struct sw_flow_key *key,
 530				const struct ovs_conntrack_info *info,
 531				struct sk_buff *skb,
 532				bool *ct_executed)
 533{
 534	struct nf_conn *ct = NULL;
 535
 536	/* If no ct, check if we have evidence that an existing conntrack entry
 537	 * might be found for this skb.  This happens when we lose a skb->_nfct
 538	 * due to an upcall, or if the direction is being forced.  If the
 539	 * connection was not confirmed, it is not cached and needs to be run
 540	 * through conntrack again.
 541	 */
 542	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
 543		       !(key->ct_state & OVS_CS_F_INVALID) &&
 544		       (key->ct_zone == info->zone.id);
 545
 546	if (*ct_executed || (!key->ct_state && info->force)) {
 547		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
 548					  !!(key->ct_state &
 549					  OVS_CS_F_NAT_MASK));
 550	}
 551
 552	return ct;
 553}
 554
 555/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
 556static bool skb_nfct_cached(struct net *net,
 557			    const struct sw_flow_key *key,
 558			    const struct ovs_conntrack_info *info,
 559			    struct sk_buff *skb)
 560{
 561	enum ip_conntrack_info ctinfo;
 562	struct nf_conn *ct;
 563	bool ct_executed = true;
 564
 565	ct = nf_ct_get(skb, &ctinfo);
 
 
 
 
 
 
 
 
 
 566	if (!ct)
 567		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
 568
 569	if (ct)
 570		nf_ct_get(skb, &ctinfo);
 571	else
 572		return false;
 573
 574	if (!net_eq(net, read_pnet(&ct->ct_net)))
 575		return false;
 576	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 577		return false;
 578	if (info->helper) {
 579		struct nf_conn_help *help;
 580
 581		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 582		if (help && rcu_access_pointer(help->helper) != info->helper)
 583			return false;
 584	}
 585	if (info->nf_ct_timeout) {
 586		struct nf_conn_timeout *timeout_ext;
 587
 588		timeout_ext = nf_ct_timeout_find(ct);
 589		if (!timeout_ext || info->nf_ct_timeout !=
 590		    rcu_dereference(timeout_ext->timeout))
 591			return false;
 592	}
 593	/* Force conntrack entry direction to the current packet? */
 594	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
 595		/* Delete the conntrack entry if confirmed, else just release
 596		 * the reference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597		 */
 598		if (nf_ct_is_confirmed(ct))
 599			nf_ct_delete(ct, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601		nf_ct_put(ct);
 602		nf_ct_set(skb, NULL, 0);
 603		return false;
 604	}
 605
 606	return ct_executed;
 
 
 
 
 
 607}
 608
 609#if IS_ENABLED(CONFIG_NF_NAT)
 610static void ovs_nat_update_key(struct sw_flow_key *key,
 611			       const struct sk_buff *skb,
 612			       enum nf_nat_manip_type maniptype)
 613{
 614	if (maniptype == NF_NAT_MANIP_SRC) {
 615		__be16 src;
 616
 617		key->ct_state |= OVS_CS_F_SRC_NAT;
 618		if (key->eth.type == htons(ETH_P_IP))
 619			key->ipv4.addr.src = ip_hdr(skb)->saddr;
 620		else if (key->eth.type == htons(ETH_P_IPV6))
 621			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 622			       sizeof(key->ipv6.addr.src));
 623		else
 624			return;
 625
 626		if (key->ip.proto == IPPROTO_UDP)
 627			src = udp_hdr(skb)->source;
 628		else if (key->ip.proto == IPPROTO_TCP)
 629			src = tcp_hdr(skb)->source;
 630		else if (key->ip.proto == IPPROTO_SCTP)
 631			src = sctp_hdr(skb)->source;
 632		else
 633			return;
 634
 635		key->tp.src = src;
 636	} else {
 637		__be16 dst;
 638
 639		key->ct_state |= OVS_CS_F_DST_NAT;
 640		if (key->eth.type == htons(ETH_P_IP))
 641			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 642		else if (key->eth.type == htons(ETH_P_IPV6))
 643			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 644			       sizeof(key->ipv6.addr.dst));
 645		else
 646			return;
 647
 648		if (key->ip.proto == IPPROTO_UDP)
 649			dst = udp_hdr(skb)->dest;
 650		else if (key->ip.proto == IPPROTO_TCP)
 651			dst = tcp_hdr(skb)->dest;
 652		else if (key->ip.proto == IPPROTO_SCTP)
 653			dst = sctp_hdr(skb)->dest;
 654		else
 655			return;
 656
 657		key->tp.dst = dst;
 658	}
 659}
 660
 661/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 662static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 663		      const struct ovs_conntrack_info *info,
 664		      struct sk_buff *skb, struct nf_conn *ct,
 665		      enum ip_conntrack_info ctinfo)
 666{
 667	int err, action = 0;
 
 668
 669	if (!(info->nat & OVS_CT_NAT))
 
 670		return NF_ACCEPT;
 671	if (info->nat & OVS_CT_SRC_NAT)
 672		action |= BIT(NF_NAT_MANIP_SRC);
 673	if (info->nat & OVS_CT_DST_NAT)
 674		action |= BIT(NF_NAT_MANIP_DST);
 675
 676	err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit);
 677
 678	if (action & BIT(NF_NAT_MANIP_SRC))
 679		ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC);
 680	if (action & BIT(NF_NAT_MANIP_DST))
 681		ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683	return err;
 684}
 685#else /* !CONFIG_NF_NAT */
 686static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 687		      const struct ovs_conntrack_info *info,
 688		      struct sk_buff *skb, struct nf_conn *ct,
 689		      enum ip_conntrack_info ctinfo)
 690{
 691	return NF_ACCEPT;
 692}
 693#endif
 694
 695/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 696 * not done already.  Update key with new CT state after passing the packet
 697 * through conntrack.
 698 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
 699 * set to NULL and 0 will be returned.
 700 */
 701static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 702			   const struct ovs_conntrack_info *info,
 703			   struct sk_buff *skb)
 704{
 705	/* If we are recirculating packets to match on conntrack fields and
 706	 * committing with a separate conntrack action,  then we don't need to
 707	 * actually run the packet through conntrack twice unless it's for a
 708	 * different zone.
 709	 */
 710	bool cached = skb_nfct_cached(net, key, info, skb);
 711	enum ip_conntrack_info ctinfo;
 712	struct nf_conn *ct;
 713
 714	if (!cached) {
 715		struct nf_hook_state state = {
 716			.hook = NF_INET_PRE_ROUTING,
 717			.pf = info->family,
 718			.net = net,
 719		};
 720		struct nf_conn *tmpl = info->ct;
 721		int err;
 722
 723		/* Associate skb with specified zone. */
 724		if (tmpl) {
 725			ct = nf_ct_get(skb, &ctinfo);
 726			nf_ct_put(ct);
 727			nf_conntrack_get(&tmpl->ct_general);
 728			nf_ct_set(skb, tmpl, IP_CT_NEW);
 
 729		}
 730
 731		err = nf_conntrack_in(skb, &state);
 
 732		if (err != NF_ACCEPT)
 733			return -ENOENT;
 734
 735		/* Clear CT state NAT flags to mark that we have not yet done
 736		 * NAT after the nf_conntrack_in() call.  We can actually clear
 737		 * the whole state, as it will be re-initialized below.
 738		 */
 739		key->ct_state = 0;
 740
 741		/* Update the key, but keep the NAT flags. */
 742		ovs_ct_update_key(skb, info, key, true, true);
 743	}
 744
 745	ct = nf_ct_get(skb, &ctinfo);
 746	if (ct) {
 747		bool add_helper = false;
 748
 749		/* Packets starting a new connection must be NATted before the
 750		 * helper, so that the helper knows about the NAT.  We enforce
 751		 * this by delaying both NAT and helper calls for unconfirmed
 752		 * connections until the committing CT action.  For later
 753		 * packets NAT and Helper may be called in either order.
 754		 *
 755		 * NAT will be done only if the CT action has NAT, and only
 756		 * once per packet (per zone), as guarded by the NAT bits in
 757		 * the key->ct_state.
 758		 */
 759		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
 760		    (nf_ct_is_confirmed(ct) || info->commit) &&
 761		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 762			return -EINVAL;
 763		}
 764
 765		/* Userspace may decide to perform a ct lookup without a helper
 766		 * specified followed by a (recirculate and) commit with one,
 767		 * or attach a helper in a later commit.  Therefore, for
 768		 * connections which we will commit, we may need to attach
 769		 * the helper here.
 770		 */
 771		if (!nf_ct_is_confirmed(ct) && info->commit &&
 772		    info->helper && !nfct_help(ct)) {
 773			int err = __nf_ct_try_assign_helper(ct, info->ct,
 774							    GFP_ATOMIC);
 775			if (err)
 776				return err;
 777			add_helper = true;
 778
 779			/* helper installed, add seqadj if NAT is required */
 780			if (info->nat && !nfct_seqadj(ct)) {
 781				if (!nfct_seqadj_ext_add(ct))
 782					return -EINVAL;
 783			}
 784		}
 785
 786		/* Call the helper only if:
 787		 * - nf_conntrack_in() was executed above ("!cached") or a
 788		 *   helper was just attached ("add_helper") for a confirmed
 789		 *   connection, or
 790		 * - When committing an unconfirmed connection.
 791		 */
 792		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
 793					      info->commit) &&
 794		    nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) {
 795			return -EINVAL;
 796		}
 797
 798		if (nf_ct_protonum(ct) == IPPROTO_TCP &&
 799		    nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
 800			/* Be liberal for tcp packets so that out-of-window
 801			 * packets are not marked invalid.
 802			 */
 803			nf_ct_set_tcp_be_liberal(ct);
 804		}
 805
 806		nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
 807	}
 808
 809	return 0;
 810}
 811
 812/* Lookup connection and read fields into key. */
 813static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 814			 const struct ovs_conntrack_info *info,
 815			 struct sk_buff *skb)
 816{
 817	struct nf_conn *ct;
 818	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819
 820	err = __ovs_ct_lookup(net, key, info, skb);
 821	if (err)
 822		return err;
 823
 824	ct = (struct nf_conn *)skb_nfct(skb);
 825	if (ct)
 826		nf_ct_deliver_cached_events(ct);
 
 827
 828	return 0;
 829}
 830
 831static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
 832{
 833	size_t i;
 834
 835	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 836		if (labels->ct_labels_32[i])
 837			return true;
 838
 839	return false;
 840}
 841
 842#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
 843static struct hlist_head *ct_limit_hash_bucket(
 844	const struct ovs_ct_limit_info *info, u16 zone)
 845{
 846	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
 847}
 848
 849/* Call with ovs_mutex */
 850static void ct_limit_set(const struct ovs_ct_limit_info *info,
 851			 struct ovs_ct_limit *new_ct_limit)
 852{
 853	struct ovs_ct_limit *ct_limit;
 854	struct hlist_head *head;
 855
 856	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
 857	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
 858		if (ct_limit->zone == new_ct_limit->zone) {
 859			hlist_replace_rcu(&ct_limit->hlist_node,
 860					  &new_ct_limit->hlist_node);
 861			kfree_rcu(ct_limit, rcu);
 862			return;
 863		}
 864	}
 865
 866	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
 867}
 868
 869/* Call with ovs_mutex */
 870static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
 871{
 872	struct ovs_ct_limit *ct_limit;
 873	struct hlist_head *head;
 874	struct hlist_node *n;
 875
 876	head = ct_limit_hash_bucket(info, zone);
 877	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
 878		if (ct_limit->zone == zone) {
 879			hlist_del_rcu(&ct_limit->hlist_node);
 880			kfree_rcu(ct_limit, rcu);
 881			return;
 882		}
 883	}
 884}
 885
 886/* Call with RCU read lock */
 887static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
 888{
 889	struct ovs_ct_limit *ct_limit;
 890	struct hlist_head *head;
 891
 892	head = ct_limit_hash_bucket(info, zone);
 893	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
 894		if (ct_limit->zone == zone)
 895			return ct_limit->limit;
 896	}
 897
 898	return info->default_limit;
 899}
 900
 901static int ovs_ct_check_limit(struct net *net,
 902			      const struct ovs_conntrack_info *info,
 903			      const struct nf_conntrack_tuple *tuple)
 904{
 905	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
 906	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
 907	u32 per_zone_limit, connections;
 908	u32 conncount_key;
 909
 910	conncount_key = info->zone.id;
 911
 912	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
 913	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
 914		return 0;
 915
 916	connections = nf_conncount_count(net, ct_limit_info->data,
 917					 &conncount_key, tuple, &info->zone);
 918	if (connections > per_zone_limit)
 919		return -ENOMEM;
 920
 921	return 0;
 922}
 923#endif
 924
 925/* Lookup connection and confirm if unconfirmed. */
 926static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
 927			 const struct ovs_conntrack_info *info,
 928			 struct sk_buff *skb)
 929{
 930	enum ip_conntrack_info ctinfo;
 931	struct nf_conn *ct;
 932	int err;
 933
 934	err = __ovs_ct_lookup(net, key, info, skb);
 935	if (err)
 936		return err;
 937
 938	/* The connection could be invalid, in which case this is a no-op.*/
 939	ct = nf_ct_get(skb, &ctinfo);
 940	if (!ct)
 941		return 0;
 942
 943#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
 944	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
 945		if (!nf_ct_is_confirmed(ct)) {
 946			err = ovs_ct_check_limit(net, info,
 947				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
 948			if (err) {
 949				net_warn_ratelimited("openvswitch: zone: %u "
 950					"exceeds conntrack limit\n",
 951					info->zone.id);
 952				return err;
 953			}
 954		}
 955	}
 956#endif
 957
 958	/* Set the conntrack event mask if given.  NEW and DELETE events have
 959	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
 960	 * typically would receive many kinds of updates.  Setting the event
 961	 * mask allows those events to be filtered.  The set event mask will
 962	 * remain in effect for the lifetime of the connection unless changed
 963	 * by a further CT action with both the commit flag and the eventmask
 964	 * option. */
 965	if (info->have_eventmask) {
 966		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
 967
 968		if (cache)
 969			cache->ctmask = info->eventmask;
 970	}
 971
 972	/* Apply changes before confirming the connection so that the initial
 973	 * conntrack NEW netlink event carries the values given in the CT
 974	 * action.
 975	 */
 976	if (info->mark.mask) {
 977		err = ovs_ct_set_mark(ct, key, info->mark.value,
 978				      info->mark.mask);
 979		if (err)
 980			return err;
 981	}
 982	if (!nf_ct_is_confirmed(ct)) {
 983		err = ovs_ct_init_labels(ct, key, &info->labels.value,
 984					 &info->labels.mask);
 985		if (err)
 986			return err;
 987
 988		nf_conn_act_ct_ext_add(skb, ct, ctinfo);
 989	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 990		   labels_nonzero(&info->labels.mask)) {
 991		err = ovs_ct_set_labels(ct, key, &info->labels.value,
 992					&info->labels.mask);
 993		if (err)
 994			return err;
 995	}
 996	/* This will take care of sending queued events even if the connection
 997	 * is already confirmed.
 998	 */
 999	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1000		return -EINVAL;
1001
1002	return 0;
1003}
1004
1005/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1006 * value if 'skb' is freed.
1007 */
1008int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1009		   struct sw_flow_key *key,
1010		   const struct ovs_conntrack_info *info)
1011{
1012	int nh_ofs;
1013	int err;
1014
1015	/* The conntrack module expects to be working at L3. */
1016	nh_ofs = skb_network_offset(skb);
1017	skb_pull_rcsum(skb, nh_ofs);
1018
1019	err = nf_ct_skb_network_trim(skb, info->family);
1020	if (err) {
1021		kfree_skb(skb);
1022		return err;
1023	}
1024
1025	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1026		err = ovs_ct_handle_fragments(net, key, info->zone.id,
1027					      info->family, skb);
1028		if (err)
1029			return err;
1030	}
1031
1032	if (info->commit)
1033		err = ovs_ct_commit(net, key, info, skb);
1034	else
1035		err = ovs_ct_lookup(net, key, info, skb);
1036
1037	skb_push_rcsum(skb, nh_ofs);
 
1038	if (err)
1039		ovs_kfree_skb_reason(skb, OVS_DROP_CONNTRACK);
1040	return err;
1041}
1042
1043int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
 
1044{
1045	enum ip_conntrack_info ctinfo;
1046	struct nf_conn *ct;
1047
1048	ct = nf_ct_get(skb, &ctinfo);
 
 
 
 
 
1049
1050	nf_ct_put(ct);
1051	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1052
1053	if (key)
1054		ovs_ct_fill_key(skb, key, false);
1055
 
 
1056	return 0;
1057}
1058
1059#if IS_ENABLED(CONFIG_NF_NAT)
1060static int parse_nat(const struct nlattr *attr,
1061		     struct ovs_conntrack_info *info, bool log)
1062{
1063	struct nlattr *a;
1064	int rem;
1065	bool have_ip_max = false;
1066	bool have_proto_max = false;
1067	bool ip_vers = (info->family == NFPROTO_IPV6);
1068
1069	nla_for_each_nested(a, attr, rem) {
1070		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1071			[OVS_NAT_ATTR_SRC] = {0, 0},
1072			[OVS_NAT_ATTR_DST] = {0, 0},
1073			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1074						 sizeof(struct in6_addr)},
1075			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1076						 sizeof(struct in6_addr)},
1077			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1078			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1079			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1080			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1081			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1082		};
1083		int type = nla_type(a);
1084
1085		if (type > OVS_NAT_ATTR_MAX) {
1086			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
 
1087				  type, OVS_NAT_ATTR_MAX);
1088			return -EINVAL;
1089		}
1090
1091		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1092			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
 
1093				  type, nla_len(a),
1094				  ovs_nat_attr_lens[type][ip_vers]);
1095			return -EINVAL;
1096		}
1097
1098		switch (type) {
1099		case OVS_NAT_ATTR_SRC:
1100		case OVS_NAT_ATTR_DST:
1101			if (info->nat) {
1102				OVS_NLERR(log, "Only one type of NAT may be specified");
 
 
1103				return -ERANGE;
1104			}
1105			info->nat |= OVS_CT_NAT;
1106			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1107					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1108			break;
1109
1110		case OVS_NAT_ATTR_IP_MIN:
1111			nla_memcpy(&info->range.min_addr, a,
1112				   sizeof(info->range.min_addr));
1113			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1114			break;
1115
1116		case OVS_NAT_ATTR_IP_MAX:
1117			have_ip_max = true;
1118			nla_memcpy(&info->range.max_addr, a,
1119				   sizeof(info->range.max_addr));
1120			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1121			break;
1122
1123		case OVS_NAT_ATTR_PROTO_MIN:
1124			info->range.min_proto.all = htons(nla_get_u16(a));
1125			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1126			break;
1127
1128		case OVS_NAT_ATTR_PROTO_MAX:
1129			have_proto_max = true;
1130			info->range.max_proto.all = htons(nla_get_u16(a));
1131			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1132			break;
1133
1134		case OVS_NAT_ATTR_PERSISTENT:
1135			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1136			break;
1137
1138		case OVS_NAT_ATTR_PROTO_HASH:
1139			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1140			break;
1141
1142		case OVS_NAT_ATTR_PROTO_RANDOM:
1143			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1144			break;
1145
1146		default:
1147			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1148			return -EINVAL;
1149		}
1150	}
1151
1152	if (rem > 0) {
1153		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1154		return -EINVAL;
1155	}
1156	if (!info->nat) {
1157		/* Do not allow flags if no type is given. */
1158		if (info->range.flags) {
1159			OVS_NLERR(log,
1160				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1161				  );
1162			return -EINVAL;
1163		}
1164		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1165	} else if (!info->commit) {
1166		OVS_NLERR(log,
1167			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1168			  );
1169		return -EINVAL;
1170	}
1171	/* Allow missing IP_MAX. */
1172	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1173		memcpy(&info->range.max_addr, &info->range.min_addr,
1174		       sizeof(info->range.max_addr));
1175	}
1176	/* Allow missing PROTO_MAX. */
1177	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1178	    !have_proto_max) {
1179		info->range.max_proto.all = info->range.min_proto.all;
1180	}
1181	return 0;
1182}
1183#endif
1184
1185static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1186	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1187	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1188	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1189				    .maxlen = sizeof(u16) },
1190	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1191				    .maxlen = sizeof(struct md_mark) },
1192	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1193				    .maxlen = sizeof(struct md_labels) },
1194	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1195				    .maxlen = NF_CT_HELPER_NAME_LEN },
1196#if IS_ENABLED(CONFIG_NF_NAT)
1197	/* NAT length is checked when parsing the nested attributes. */
1198	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1199#endif
1200	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1201				    .maxlen = sizeof(u32) },
1202	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1203				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1204};
1205
1206static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1207		    const char **helper, bool log)
1208{
1209	struct nlattr *a;
1210	int rem;
1211
1212	nla_for_each_nested(a, attr, rem) {
1213		int type = nla_type(a);
1214		int maxlen;
1215		int minlen;
1216
1217		if (type > OVS_CT_ATTR_MAX) {
1218			OVS_NLERR(log,
1219				  "Unknown conntrack attr (type=%d, max=%d)",
1220				  type, OVS_CT_ATTR_MAX);
1221			return -EINVAL;
1222		}
1223
1224		maxlen = ovs_ct_attr_lens[type].maxlen;
1225		minlen = ovs_ct_attr_lens[type].minlen;
1226		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1227			OVS_NLERR(log,
1228				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1229				  type, nla_len(a), maxlen);
1230			return -EINVAL;
1231		}
1232
1233		switch (type) {
1234		case OVS_CT_ATTR_FORCE_COMMIT:
1235			info->force = true;
1236			fallthrough;
1237		case OVS_CT_ATTR_COMMIT:
1238			info->commit = true;
1239			break;
1240#ifdef CONFIG_NF_CONNTRACK_ZONES
1241		case OVS_CT_ATTR_ZONE:
1242			info->zone.id = nla_get_u16(a);
1243			break;
1244#endif
1245#ifdef CONFIG_NF_CONNTRACK_MARK
1246		case OVS_CT_ATTR_MARK: {
1247			struct md_mark *mark = nla_data(a);
1248
1249			if (!mark->mask) {
1250				OVS_NLERR(log, "ct_mark mask cannot be 0");
1251				return -EINVAL;
1252			}
1253			info->mark = *mark;
1254			break;
1255		}
1256#endif
1257#ifdef CONFIG_NF_CONNTRACK_LABELS
1258		case OVS_CT_ATTR_LABELS: {
1259			struct md_labels *labels = nla_data(a);
1260
1261			if (!labels_nonzero(&labels->mask)) {
1262				OVS_NLERR(log, "ct_labels mask cannot be 0");
1263				return -EINVAL;
1264			}
1265			info->labels = *labels;
1266			break;
1267		}
1268#endif
1269		case OVS_CT_ATTR_HELPER:
1270			*helper = nla_data(a);
1271			if (!string_is_terminated(*helper, nla_len(a))) {
1272				OVS_NLERR(log, "Invalid conntrack helper");
1273				return -EINVAL;
1274			}
1275			break;
1276#if IS_ENABLED(CONFIG_NF_NAT)
1277		case OVS_CT_ATTR_NAT: {
1278			int err = parse_nat(a, info, log);
1279
1280			if (err)
1281				return err;
1282			break;
1283		}
1284#endif
1285		case OVS_CT_ATTR_EVENTMASK:
1286			info->have_eventmask = true;
1287			info->eventmask = nla_get_u32(a);
1288			break;
1289#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1290		case OVS_CT_ATTR_TIMEOUT:
1291			memcpy(info->timeout, nla_data(a), nla_len(a));
1292			if (!string_is_terminated(info->timeout, nla_len(a))) {
1293				OVS_NLERR(log, "Invalid conntrack timeout");
1294				return -EINVAL;
1295			}
1296			break;
1297#endif
1298
1299		default:
1300			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1301				  type);
1302			return -EINVAL;
1303		}
1304	}
1305
1306#ifdef CONFIG_NF_CONNTRACK_MARK
1307	if (!info->commit && info->mark.mask) {
1308		OVS_NLERR(log,
1309			  "Setting conntrack mark requires 'commit' flag.");
1310		return -EINVAL;
1311	}
1312#endif
1313#ifdef CONFIG_NF_CONNTRACK_LABELS
1314	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1315		OVS_NLERR(log,
1316			  "Setting conntrack labels requires 'commit' flag.");
1317		return -EINVAL;
1318	}
1319#endif
1320	if (rem > 0) {
1321		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1322		return -EINVAL;
1323	}
1324
1325	return 0;
1326}
1327
1328bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1329{
1330	if (attr == OVS_KEY_ATTR_CT_STATE)
1331		return true;
1332	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333	    attr == OVS_KEY_ATTR_CT_ZONE)
1334		return true;
1335	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1336	    attr == OVS_KEY_ATTR_CT_MARK)
1337		return true;
1338	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1339	    attr == OVS_KEY_ATTR_CT_LABELS) {
1340		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1341
1342		return ovs_net->xt_label;
1343	}
1344
1345	return false;
1346}
1347
1348int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1349		       const struct sw_flow_key *key,
1350		       struct sw_flow_actions **sfa,  bool log)
1351{
1352	struct ovs_conntrack_info ct_info;
1353	const char *helper = NULL;
1354	u16 family;
1355	int err;
1356
1357	family = key_to_nfproto(key);
1358	if (family == NFPROTO_UNSPEC) {
1359		OVS_NLERR(log, "ct family unspecified");
1360		return -EINVAL;
1361	}
1362
1363	memset(&ct_info, 0, sizeof(ct_info));
1364	ct_info.family = family;
1365
1366	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1367			NF_CT_DEFAULT_ZONE_DIR, 0);
1368
1369	err = parse_ct(attr, &ct_info, &helper, log);
1370	if (err)
1371		return err;
1372
1373	/* Set up template for tracking connections in specific zones. */
1374	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1375	if (!ct_info.ct) {
1376		OVS_NLERR(log, "Failed to allocate conntrack template");
1377		return -ENOMEM;
1378	}
1379
1380	if (ct_info.timeout[0]) {
1381		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1382				      ct_info.timeout))
1383			pr_info_ratelimited("Failed to associated timeout "
1384					    "policy `%s'\n", ct_info.timeout);
1385		else
1386			ct_info.nf_ct_timeout = rcu_dereference(
1387				nf_ct_timeout_find(ct_info.ct)->timeout);
1388
1389	}
1390
1391	if (helper) {
1392		err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family,
1393				       key->ip.proto, ct_info.nat, &ct_info.helper);
1394		if (err) {
1395			OVS_NLERR(log, "Failed to add %s helper %d", helper, err);
1396			goto err_free_ct;
1397		}
1398	}
1399
1400	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1401				 sizeof(ct_info), log);
1402	if (err)
1403		goto err_free_ct;
1404
1405	if (ct_info.commit)
1406		__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1407	return 0;
1408err_free_ct:
1409	__ovs_ct_free_action(&ct_info);
1410	return err;
1411}
1412
1413#if IS_ENABLED(CONFIG_NF_NAT)
1414static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1415			       struct sk_buff *skb)
1416{
1417	struct nlattr *start;
1418
1419	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1420	if (!start)
1421		return false;
1422
1423	if (info->nat & OVS_CT_SRC_NAT) {
1424		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1425			return false;
1426	} else if (info->nat & OVS_CT_DST_NAT) {
1427		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1428			return false;
1429	} else {
1430		goto out;
1431	}
1432
1433	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1434		if (IS_ENABLED(CONFIG_NF_NAT) &&
1435		    info->family == NFPROTO_IPV4) {
1436			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1437					    info->range.min_addr.ip) ||
1438			    (info->range.max_addr.ip
1439			     != info->range.min_addr.ip &&
1440			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1441					      info->range.max_addr.ip))))
1442				return false;
1443		} else if (IS_ENABLED(CONFIG_IPV6) &&
1444			   info->family == NFPROTO_IPV6) {
1445			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1446					     &info->range.min_addr.in6) ||
1447			    (memcmp(&info->range.max_addr.in6,
1448				    &info->range.min_addr.in6,
1449				    sizeof(info->range.max_addr.in6)) &&
1450			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1451					       &info->range.max_addr.in6))))
1452				return false;
1453		} else {
1454			return false;
1455		}
1456	}
1457	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1458	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1459			 ntohs(info->range.min_proto.all)) ||
1460	     (info->range.max_proto.all != info->range.min_proto.all &&
1461	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1462			  ntohs(info->range.max_proto.all)))))
1463		return false;
1464
1465	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1466	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1467		return false;
1468	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1469	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1470		return false;
1471	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1472	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1473		return false;
1474out:
1475	nla_nest_end(skb, start);
1476
1477	return true;
1478}
1479#endif
1480
1481int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1482			  struct sk_buff *skb)
1483{
1484	struct nlattr *start;
1485
1486	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1487	if (!start)
1488		return -EMSGSIZE;
1489
1490	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1491					    ? OVS_CT_ATTR_FORCE_COMMIT
1492					    : OVS_CT_ATTR_COMMIT))
1493		return -EMSGSIZE;
1494	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1495	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1496		return -EMSGSIZE;
1497	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1498	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1499		    &ct_info->mark))
1500		return -EMSGSIZE;
1501	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1502	    labels_nonzero(&ct_info->labels.mask) &&
1503	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1504		    &ct_info->labels))
1505		return -EMSGSIZE;
1506	if (ct_info->helper) {
1507		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1508				   ct_info->helper->name))
1509			return -EMSGSIZE;
1510	}
1511	if (ct_info->have_eventmask &&
1512	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1513		return -EMSGSIZE;
1514	if (ct_info->timeout[0]) {
1515		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1516			return -EMSGSIZE;
1517	}
1518
1519#if IS_ENABLED(CONFIG_NF_NAT)
1520	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1521		return -EMSGSIZE;
1522#endif
1523	nla_nest_end(skb, start);
1524
1525	return 0;
1526}
1527
1528void ovs_ct_free_action(const struct nlattr *a)
1529{
1530	struct ovs_conntrack_info *ct_info = nla_data(a);
1531
1532	__ovs_ct_free_action(ct_info);
1533}
1534
1535static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1536{
1537	if (ct_info->helper) {
1538#if IS_ENABLED(CONFIG_NF_NAT)
1539		if (ct_info->nat)
1540			nf_nat_helper_put(ct_info->helper);
1541#endif
1542		nf_conntrack_helper_put(ct_info->helper);
1543	}
1544	if (ct_info->ct) {
1545		if (ct_info->timeout[0])
1546			nf_ct_destroy_timeout(ct_info->ct);
1547		nf_ct_tmpl_free(ct_info->ct);
1548	}
1549}
1550
1551#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1552static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1553{
1554	int i, err;
1555
1556	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1557					 GFP_KERNEL);
1558	if (!ovs_net->ct_limit_info)
1559		return -ENOMEM;
1560
1561	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1562	ovs_net->ct_limit_info->limits =
1563		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1564			      GFP_KERNEL);
1565	if (!ovs_net->ct_limit_info->limits) {
1566		kfree(ovs_net->ct_limit_info);
1567		return -ENOMEM;
1568	}
1569
1570	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1571		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1572
1573	ovs_net->ct_limit_info->data =
1574		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1575
1576	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1577		err = PTR_ERR(ovs_net->ct_limit_info->data);
1578		kfree(ovs_net->ct_limit_info->limits);
1579		kfree(ovs_net->ct_limit_info);
1580		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1581		return err;
1582	}
1583	return 0;
1584}
1585
1586static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1587{
1588	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1589	int i;
1590
1591	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1592	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1593		struct hlist_head *head = &info->limits[i];
1594		struct ovs_ct_limit *ct_limit;
1595
1596		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1597					 lockdep_ovsl_is_held())
1598			kfree_rcu(ct_limit, rcu);
1599	}
1600	kfree(info->limits);
1601	kfree(info);
1602}
1603
1604static struct sk_buff *
1605ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1606			     struct ovs_header **ovs_reply_header)
1607{
1608	struct ovs_header *ovs_header = genl_info_userhdr(info);
1609	struct sk_buff *skb;
1610
1611	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1612	if (!skb)
1613		return ERR_PTR(-ENOMEM);
1614
1615	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1616					info->snd_seq,
1617					&dp_ct_limit_genl_family, 0, cmd);
1618
1619	if (!*ovs_reply_header) {
1620		nlmsg_free(skb);
1621		return ERR_PTR(-EMSGSIZE);
1622	}
1623	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1624
1625	return skb;
1626}
1627
1628static bool check_zone_id(int zone_id, u16 *pzone)
1629{
1630	if (zone_id >= 0 && zone_id <= 65535) {
1631		*pzone = (u16)zone_id;
1632		return true;
1633	}
1634	return false;
1635}
1636
1637static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1638				       struct ovs_ct_limit_info *info)
1639{
1640	struct ovs_zone_limit *zone_limit;
1641	int rem;
1642	u16 zone;
1643
1644	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1645	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1646
1647	while (rem >= sizeof(*zone_limit)) {
1648		if (unlikely(zone_limit->zone_id ==
1649				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1650			ovs_lock();
1651			info->default_limit = zone_limit->limit;
1652			ovs_unlock();
1653		} else if (unlikely(!check_zone_id(
1654				zone_limit->zone_id, &zone))) {
1655			OVS_NLERR(true, "zone id is out of range");
1656		} else {
1657			struct ovs_ct_limit *ct_limit;
1658
1659			ct_limit = kmalloc(sizeof(*ct_limit),
1660					   GFP_KERNEL_ACCOUNT);
1661			if (!ct_limit)
1662				return -ENOMEM;
1663
1664			ct_limit->zone = zone;
1665			ct_limit->limit = zone_limit->limit;
1666
1667			ovs_lock();
1668			ct_limit_set(info, ct_limit);
1669			ovs_unlock();
1670		}
1671		rem -= NLA_ALIGN(sizeof(*zone_limit));
1672		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1673				NLA_ALIGN(sizeof(*zone_limit)));
1674	}
1675
1676	if (rem)
1677		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1678
1679	return 0;
1680}
1681
1682static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1683				       struct ovs_ct_limit_info *info)
1684{
1685	struct ovs_zone_limit *zone_limit;
1686	int rem;
1687	u16 zone;
1688
1689	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1690	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1691
1692	while (rem >= sizeof(*zone_limit)) {
1693		if (unlikely(zone_limit->zone_id ==
1694				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1695			ovs_lock();
1696			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1697			ovs_unlock();
1698		} else if (unlikely(!check_zone_id(
1699				zone_limit->zone_id, &zone))) {
1700			OVS_NLERR(true, "zone id is out of range");
1701		} else {
1702			ovs_lock();
1703			ct_limit_del(info, zone);
1704			ovs_unlock();
1705		}
1706		rem -= NLA_ALIGN(sizeof(*zone_limit));
1707		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1708				NLA_ALIGN(sizeof(*zone_limit)));
1709	}
1710
1711	if (rem)
1712		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1713
1714	return 0;
1715}
1716
1717static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1718					  struct sk_buff *reply)
1719{
1720	struct ovs_zone_limit zone_limit = {
1721		.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
1722		.limit   = info->default_limit,
1723	};
1724
1725	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1726}
1727
1728static int __ovs_ct_limit_get_zone_limit(struct net *net,
1729					 struct nf_conncount_data *data,
1730					 u16 zone_id, u32 limit,
1731					 struct sk_buff *reply)
1732{
1733	struct nf_conntrack_zone ct_zone;
1734	struct ovs_zone_limit zone_limit;
1735	u32 conncount_key = zone_id;
1736
1737	zone_limit.zone_id = zone_id;
1738	zone_limit.limit = limit;
1739	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1740
1741	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1742					      &ct_zone);
1743	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1744}
1745
1746static int ovs_ct_limit_get_zone_limit(struct net *net,
1747				       struct nlattr *nla_zone_limit,
1748				       struct ovs_ct_limit_info *info,
1749				       struct sk_buff *reply)
1750{
1751	struct ovs_zone_limit *zone_limit;
1752	int rem, err;
1753	u32 limit;
1754	u16 zone;
1755
1756	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1757	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1758
1759	while (rem >= sizeof(*zone_limit)) {
1760		if (unlikely(zone_limit->zone_id ==
1761				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1762			err = ovs_ct_limit_get_default_limit(info, reply);
1763			if (err)
1764				return err;
1765		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
1766							&zone))) {
1767			OVS_NLERR(true, "zone id is out of range");
1768		} else {
1769			rcu_read_lock();
1770			limit = ct_limit_get(info, zone);
1771			rcu_read_unlock();
1772
1773			err = __ovs_ct_limit_get_zone_limit(
1774				net, info->data, zone, limit, reply);
1775			if (err)
1776				return err;
1777		}
1778		rem -= NLA_ALIGN(sizeof(*zone_limit));
1779		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1780				NLA_ALIGN(sizeof(*zone_limit)));
1781	}
1782
1783	if (rem)
1784		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
1785
1786	return 0;
1787}
1788
1789static int ovs_ct_limit_get_all_zone_limit(struct net *net,
1790					   struct ovs_ct_limit_info *info,
1791					   struct sk_buff *reply)
1792{
1793	struct ovs_ct_limit *ct_limit;
1794	struct hlist_head *head;
1795	int i, err = 0;
1796
1797	err = ovs_ct_limit_get_default_limit(info, reply);
1798	if (err)
1799		return err;
1800
1801	rcu_read_lock();
1802	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1803		head = &info->limits[i];
1804		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1805			err = __ovs_ct_limit_get_zone_limit(net, info->data,
1806				ct_limit->zone, ct_limit->limit, reply);
1807			if (err)
1808				goto exit_err;
1809		}
1810	}
1811
1812exit_err:
1813	rcu_read_unlock();
1814	return err;
1815}
1816
1817static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
1818{
1819	struct nlattr **a = info->attrs;
1820	struct sk_buff *reply;
1821	struct ovs_header *ovs_reply_header;
1822	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1823	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1824	int err;
1825
1826	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
1827					     &ovs_reply_header);
1828	if (IS_ERR(reply))
1829		return PTR_ERR(reply);
1830
1831	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1832		err = -EINVAL;
1833		goto exit_err;
1834	}
1835
1836	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1837					  ct_limit_info);
1838	if (err)
1839		goto exit_err;
1840
1841	static_branch_enable(&ovs_ct_limit_enabled);
1842
1843	genlmsg_end(reply, ovs_reply_header);
1844	return genlmsg_reply(reply, info);
1845
1846exit_err:
1847	nlmsg_free(reply);
1848	return err;
1849}
1850
1851static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
1852{
1853	struct nlattr **a = info->attrs;
1854	struct sk_buff *reply;
1855	struct ovs_header *ovs_reply_header;
1856	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1857	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1858	int err;
1859
1860	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
1861					     &ovs_reply_header);
1862	if (IS_ERR(reply))
1863		return PTR_ERR(reply);
1864
1865	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1866		err = -EINVAL;
1867		goto exit_err;
1868	}
1869
1870	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1871					  ct_limit_info);
1872	if (err)
1873		goto exit_err;
1874
1875	genlmsg_end(reply, ovs_reply_header);
1876	return genlmsg_reply(reply, info);
1877
1878exit_err:
1879	nlmsg_free(reply);
1880	return err;
1881}
1882
1883static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
1884{
1885	struct nlattr **a = info->attrs;
1886	struct nlattr *nla_reply;
1887	struct sk_buff *reply;
1888	struct ovs_header *ovs_reply_header;
1889	struct net *net = sock_net(skb->sk);
1890	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1891	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1892	int err;
1893
1894	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
1895					     &ovs_reply_header);
1896	if (IS_ERR(reply))
1897		return PTR_ERR(reply);
1898
1899	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
1900	if (!nla_reply) {
1901		err = -EMSGSIZE;
1902		goto exit_err;
1903	}
1904
1905	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1906		err = ovs_ct_limit_get_zone_limit(
1907			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
1908			reply);
1909		if (err)
1910			goto exit_err;
1911	} else {
1912		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
1913						      reply);
1914		if (err)
1915			goto exit_err;
1916	}
1917
1918	nla_nest_end(reply, nla_reply);
1919	genlmsg_end(reply, ovs_reply_header);
1920	return genlmsg_reply(reply, info);
1921
1922exit_err:
1923	nlmsg_free(reply);
1924	return err;
1925}
1926
1927static const struct genl_small_ops ct_limit_genl_ops[] = {
1928	{ .cmd = OVS_CT_LIMIT_CMD_SET,
1929		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1930		.flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1931					       * privilege.
1932					       */
1933		.doit = ovs_ct_limit_cmd_set,
1934	},
1935	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
1936		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1937		.flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1938					       * privilege.
1939					       */
1940		.doit = ovs_ct_limit_cmd_del,
1941	},
1942	{ .cmd = OVS_CT_LIMIT_CMD_GET,
1943		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1944		.flags = 0,		  /* OK for unprivileged users. */
1945		.doit = ovs_ct_limit_cmd_get,
1946	},
1947};
1948
1949static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
1950	.name = OVS_CT_LIMIT_MCGROUP,
1951};
1952
1953struct genl_family dp_ct_limit_genl_family __ro_after_init = {
1954	.hdrsize = sizeof(struct ovs_header),
1955	.name = OVS_CT_LIMIT_FAMILY,
1956	.version = OVS_CT_LIMIT_VERSION,
1957	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
1958	.policy = ct_limit_policy,
1959	.netnsok = true,
1960	.parallel_ops = true,
1961	.small_ops = ct_limit_genl_ops,
1962	.n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
1963	.resv_start_op = OVS_CT_LIMIT_CMD_GET + 1,
1964	.mcgrps = &ovs_ct_limit_multicast_group,
1965	.n_mcgrps = 1,
1966	.module = THIS_MODULE,
1967};
1968#endif
1969
1970int ovs_ct_init(struct net *net)
1971{
1972	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1973	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1974
1975	if (nf_connlabels_get(net, n_bits - 1)) {
1976		ovs_net->xt_label = false;
1977		OVS_NLERR(true, "Failed to set connlabel length");
1978	} else {
1979		ovs_net->xt_label = true;
1980	}
1981
1982#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1983	return ovs_ct_limit_init(net, ovs_net);
1984#else
1985	return 0;
1986#endif
1987}
1988
1989void ovs_ct_exit(struct net *net)
1990{
1991	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1992
1993#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1994	ovs_ct_limit_exit(net, ovs_net);
1995#endif
1996
1997	if (ovs_net->xt_label)
1998		nf_connlabels_put(net);
1999}