Loading...
1/*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14#include <linux/module.h>
15#include <linux/openvswitch.h>
16#include <linux/tcp.h>
17#include <linux/udp.h>
18#include <linux/sctp.h>
19#include <net/ip.h>
20#include <net/netfilter/nf_conntrack_core.h>
21#include <net/netfilter/nf_conntrack_helper.h>
22#include <net/netfilter/nf_conntrack_labels.h>
23#include <net/netfilter/nf_conntrack_seqadj.h>
24#include <net/netfilter/nf_conntrack_zones.h>
25#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27#ifdef CONFIG_NF_NAT_NEEDED
28#include <linux/netfilter/nf_nat.h>
29#include <net/netfilter/nf_nat_core.h>
30#include <net/netfilter/nf_nat_l3proto.h>
31#endif
32
33#include "datapath.h"
34#include "conntrack.h"
35#include "flow.h"
36#include "flow_netlink.h"
37
38struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41};
42
43/* Metadata mark for masked write to conntrack mark */
44struct md_mark {
45 u32 value;
46 u32 mask;
47};
48
49/* Metadata label for masked write to conntrack label. */
50struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53};
54
55enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59};
60
61/* Conntrack action context for execution. */
62struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71#ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73#endif
74};
75
76static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78static u16 key_to_nfproto(const struct sw_flow_key *key)
79{
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88}
89
90/* Map SKB connection state into the values used by flow definition. */
91static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92{
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121}
122
123static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124{
125#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127#else
128 return 0;
129#endif
130}
131
132static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134{
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = sizeof(cl->bits);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148}
149
150static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153{
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158}
159
160/* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169{
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201}
202
203/* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207{
208 ovs_ct_update_key(skb, NULL, key, false, false);
209}
210
211int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212{
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230}
231
232static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234{
235#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253#else
254 return -ENOTSUPP;
255#endif
256}
257
258static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261{
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287}
288
289/* 'skb' should already be pulled to nh_ofs. */
290static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291{
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346}
347
348/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353{
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
371 err = nf_ct_frag6_gather(net, skb, user);
372 if (err) {
373 if (err != -EINPROGRESS)
374 kfree_skb(skb);
375 return err;
376 }
377
378 key->ip.proto = ipv6_hdr(skb)->nexthdr;
379 ovs_cb.mru = IP6CB(skb)->frag_max_size;
380#endif
381 } else {
382 kfree_skb(skb);
383 return -EPFNOSUPPORT;
384 }
385
386 key->ip.frag = OVS_FRAG_TYPE_NONE;
387 skb_clear_hash(skb);
388 skb->ignore_df = 1;
389 *OVS_CB(skb) = ovs_cb;
390
391 return 0;
392}
393
394static struct nf_conntrack_expect *
395ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
396 u16 proto, const struct sk_buff *skb)
397{
398 struct nf_conntrack_tuple tuple;
399
400 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
401 return NULL;
402 return __nf_ct_expect_find(net, zone, &tuple);
403}
404
405/* This replicates logic from nf_conntrack_core.c that is not exported. */
406static enum ip_conntrack_info
407ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
408{
409 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
410
411 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
412 return IP_CT_ESTABLISHED_REPLY;
413 /* Once we've had two way comms, always ESTABLISHED. */
414 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
415 return IP_CT_ESTABLISHED;
416 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
417 return IP_CT_RELATED;
418 return IP_CT_NEW;
419}
420
421/* Find an existing connection which this packet belongs to without
422 * re-attributing statistics or modifying the connection state. This allows an
423 * skb->nfct lost due to an upcall to be recovered during actions execution.
424 *
425 * Must be called with rcu_read_lock.
426 *
427 * On success, populates skb->nfct and skb->nfctinfo, and returns the
428 * connection. Returns NULL if there is no existing entry.
429 */
430static struct nf_conn *
431ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
432 u8 l3num, struct sk_buff *skb)
433{
434 struct nf_conntrack_l3proto *l3proto;
435 struct nf_conntrack_l4proto *l4proto;
436 struct nf_conntrack_tuple tuple;
437 struct nf_conntrack_tuple_hash *h;
438 struct nf_conn *ct;
439 unsigned int dataoff;
440 u8 protonum;
441
442 l3proto = __nf_ct_l3proto_find(l3num);
443 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
444 &protonum) <= 0) {
445 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
446 return NULL;
447 }
448 l4proto = __nf_ct_l4proto_find(l3num, protonum);
449 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
450 protonum, net, &tuple, l3proto, l4proto)) {
451 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
452 return NULL;
453 }
454
455 /* look for tuple match */
456 h = nf_conntrack_find_get(net, zone, &tuple);
457 if (!h)
458 return NULL; /* Not found. */
459
460 ct = nf_ct_tuplehash_to_ctrack(h);
461
462 skb->nfct = &ct->ct_general;
463 skb->nfctinfo = ovs_ct_get_info(h);
464 return ct;
465}
466
467/* Determine whether skb->nfct is equal to the result of conntrack lookup. */
468static bool skb_nfct_cached(struct net *net,
469 const struct sw_flow_key *key,
470 const struct ovs_conntrack_info *info,
471 struct sk_buff *skb)
472{
473 enum ip_conntrack_info ctinfo;
474 struct nf_conn *ct;
475
476 ct = nf_ct_get(skb, &ctinfo);
477 /* If no ct, check if we have evidence that an existing conntrack entry
478 * might be found for this skb. This happens when we lose a skb->nfct
479 * due to an upcall. If the connection was not confirmed, it is not
480 * cached and needs to be run through conntrack again.
481 */
482 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
483 !(key->ct.state & OVS_CS_F_INVALID) &&
484 key->ct.zone == info->zone.id)
485 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
486 if (!ct)
487 return false;
488 if (!net_eq(net, read_pnet(&ct->ct_net)))
489 return false;
490 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
491 return false;
492 if (info->helper) {
493 struct nf_conn_help *help;
494
495 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
496 if (help && rcu_access_pointer(help->helper) != info->helper)
497 return false;
498 }
499
500 return true;
501}
502
503#ifdef CONFIG_NF_NAT_NEEDED
504/* Modelled after nf_nat_ipv[46]_fn().
505 * range is only used for new, uninitialized NAT state.
506 * Returns either NF_ACCEPT or NF_DROP.
507 */
508static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
509 enum ip_conntrack_info ctinfo,
510 const struct nf_nat_range *range,
511 enum nf_nat_manip_type maniptype)
512{
513 int hooknum, nh_off, err = NF_ACCEPT;
514
515 nh_off = skb_network_offset(skb);
516 skb_pull_rcsum(skb, nh_off);
517
518 /* See HOOK2MANIP(). */
519 if (maniptype == NF_NAT_MANIP_SRC)
520 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
521 else
522 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
523
524 switch (ctinfo) {
525 case IP_CT_RELATED:
526 case IP_CT_RELATED_REPLY:
527 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
528 skb->protocol == htons(ETH_P_IP) &&
529 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
530 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
531 hooknum))
532 err = NF_DROP;
533 goto push;
534 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
535 skb->protocol == htons(ETH_P_IPV6)) {
536 __be16 frag_off;
537 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
538 int hdrlen = ipv6_skip_exthdr(skb,
539 sizeof(struct ipv6hdr),
540 &nexthdr, &frag_off);
541
542 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
543 if (!nf_nat_icmpv6_reply_translation(skb, ct,
544 ctinfo,
545 hooknum,
546 hdrlen))
547 err = NF_DROP;
548 goto push;
549 }
550 }
551 /* Non-ICMP, fall thru to initialize if needed. */
552 case IP_CT_NEW:
553 /* Seen it before? This can happen for loopback, retrans,
554 * or local packets.
555 */
556 if (!nf_nat_initialized(ct, maniptype)) {
557 /* Initialize according to the NAT action. */
558 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
559 /* Action is set up to establish a new
560 * mapping.
561 */
562 ? nf_nat_setup_info(ct, range, maniptype)
563 : nf_nat_alloc_null_binding(ct, hooknum);
564 if (err != NF_ACCEPT)
565 goto push;
566 }
567 break;
568
569 case IP_CT_ESTABLISHED:
570 case IP_CT_ESTABLISHED_REPLY:
571 break;
572
573 default:
574 err = NF_DROP;
575 goto push;
576 }
577
578 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
579push:
580 skb_push(skb, nh_off);
581 skb_postpush_rcsum(skb, skb->data, nh_off);
582
583 return err;
584}
585
586static void ovs_nat_update_key(struct sw_flow_key *key,
587 const struct sk_buff *skb,
588 enum nf_nat_manip_type maniptype)
589{
590 if (maniptype == NF_NAT_MANIP_SRC) {
591 __be16 src;
592
593 key->ct.state |= OVS_CS_F_SRC_NAT;
594 if (key->eth.type == htons(ETH_P_IP))
595 key->ipv4.addr.src = ip_hdr(skb)->saddr;
596 else if (key->eth.type == htons(ETH_P_IPV6))
597 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
598 sizeof(key->ipv6.addr.src));
599 else
600 return;
601
602 if (key->ip.proto == IPPROTO_UDP)
603 src = udp_hdr(skb)->source;
604 else if (key->ip.proto == IPPROTO_TCP)
605 src = tcp_hdr(skb)->source;
606 else if (key->ip.proto == IPPROTO_SCTP)
607 src = sctp_hdr(skb)->source;
608 else
609 return;
610
611 key->tp.src = src;
612 } else {
613 __be16 dst;
614
615 key->ct.state |= OVS_CS_F_DST_NAT;
616 if (key->eth.type == htons(ETH_P_IP))
617 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
618 else if (key->eth.type == htons(ETH_P_IPV6))
619 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
620 sizeof(key->ipv6.addr.dst));
621 else
622 return;
623
624 if (key->ip.proto == IPPROTO_UDP)
625 dst = udp_hdr(skb)->dest;
626 else if (key->ip.proto == IPPROTO_TCP)
627 dst = tcp_hdr(skb)->dest;
628 else if (key->ip.proto == IPPROTO_SCTP)
629 dst = sctp_hdr(skb)->dest;
630 else
631 return;
632
633 key->tp.dst = dst;
634 }
635}
636
637/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
638static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
639 const struct ovs_conntrack_info *info,
640 struct sk_buff *skb, struct nf_conn *ct,
641 enum ip_conntrack_info ctinfo)
642{
643 enum nf_nat_manip_type maniptype;
644 int err;
645
646 if (nf_ct_is_untracked(ct)) {
647 /* A NAT action may only be performed on tracked packets. */
648 return NF_ACCEPT;
649 }
650
651 /* Add NAT extension if not confirmed yet. */
652 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
653 return NF_ACCEPT; /* Can't NAT. */
654
655 /* Determine NAT type.
656 * Check if the NAT type can be deduced from the tracked connection.
657 * Make sure new expected connections (IP_CT_RELATED) are NATted only
658 * when committing.
659 */
660 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
661 ct->status & IPS_NAT_MASK &&
662 (ctinfo != IP_CT_RELATED || info->commit)) {
663 /* NAT an established or related connection like before. */
664 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
665 /* This is the REPLY direction for a connection
666 * for which NAT was applied in the forward
667 * direction. Do the reverse NAT.
668 */
669 maniptype = ct->status & IPS_SRC_NAT
670 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
671 else
672 maniptype = ct->status & IPS_SRC_NAT
673 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
674 } else if (info->nat & OVS_CT_SRC_NAT) {
675 maniptype = NF_NAT_MANIP_SRC;
676 } else if (info->nat & OVS_CT_DST_NAT) {
677 maniptype = NF_NAT_MANIP_DST;
678 } else {
679 return NF_ACCEPT; /* Connection is not NATed. */
680 }
681 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
682
683 /* Mark NAT done if successful and update the flow key. */
684 if (err == NF_ACCEPT)
685 ovs_nat_update_key(key, skb, maniptype);
686
687 return err;
688}
689#else /* !CONFIG_NF_NAT_NEEDED */
690static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
691 const struct ovs_conntrack_info *info,
692 struct sk_buff *skb, struct nf_conn *ct,
693 enum ip_conntrack_info ctinfo)
694{
695 return NF_ACCEPT;
696}
697#endif
698
699/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
700 * not done already. Update key with new CT state after passing the packet
701 * through conntrack.
702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
703 * set to NULL and 0 will be returned.
704 */
705static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
706 const struct ovs_conntrack_info *info,
707 struct sk_buff *skb)
708{
709 /* If we are recirculating packets to match on conntrack fields and
710 * committing with a separate conntrack action, then we don't need to
711 * actually run the packet through conntrack twice unless it's for a
712 * different zone.
713 */
714 bool cached = skb_nfct_cached(net, key, info, skb);
715 enum ip_conntrack_info ctinfo;
716 struct nf_conn *ct;
717
718 if (!cached) {
719 struct nf_conn *tmpl = info->ct;
720 int err;
721
722 /* Associate skb with specified zone. */
723 if (tmpl) {
724 if (skb->nfct)
725 nf_conntrack_put(skb->nfct);
726 nf_conntrack_get(&tmpl->ct_general);
727 skb->nfct = &tmpl->ct_general;
728 skb->nfctinfo = IP_CT_NEW;
729 }
730
731 err = nf_conntrack_in(net, info->family,
732 NF_INET_PRE_ROUTING, skb);
733 if (err != NF_ACCEPT)
734 return -ENOENT;
735
736 /* Clear CT state NAT flags to mark that we have not yet done
737 * NAT after the nf_conntrack_in() call. We can actually clear
738 * the whole state, as it will be re-initialized below.
739 */
740 key->ct.state = 0;
741
742 /* Update the key, but keep the NAT flags. */
743 ovs_ct_update_key(skb, info, key, true, true);
744 }
745
746 ct = nf_ct_get(skb, &ctinfo);
747 if (ct) {
748 /* Packets starting a new connection must be NATted before the
749 * helper, so that the helper knows about the NAT. We enforce
750 * this by delaying both NAT and helper calls for unconfirmed
751 * connections until the committing CT action. For later
752 * packets NAT and Helper may be called in either order.
753 *
754 * NAT will be done only if the CT action has NAT, and only
755 * once per packet (per zone), as guarded by the NAT bits in
756 * the key->ct.state.
757 */
758 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
759 (nf_ct_is_confirmed(ct) || info->commit) &&
760 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
761 return -EINVAL;
762 }
763
764 /* Userspace may decide to perform a ct lookup without a helper
765 * specified followed by a (recirculate and) commit with one.
766 * Therefore, for unconfirmed connections which we will commit,
767 * we need to attach the helper here.
768 */
769 if (!nf_ct_is_confirmed(ct) && info->commit &&
770 info->helper && !nfct_help(ct)) {
771 int err = __nf_ct_try_assign_helper(ct, info->ct,
772 GFP_ATOMIC);
773 if (err)
774 return err;
775 }
776
777 /* Call the helper only if:
778 * - nf_conntrack_in() was executed above ("!cached") for a
779 * confirmed connection, or
780 * - When committing an unconfirmed connection.
781 */
782 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
783 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
784 return -EINVAL;
785 }
786 }
787
788 return 0;
789}
790
791/* Lookup connection and read fields into key. */
792static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
793 const struct ovs_conntrack_info *info,
794 struct sk_buff *skb)
795{
796 struct nf_conntrack_expect *exp;
797
798 /* If we pass an expected packet through nf_conntrack_in() the
799 * expectation is typically removed, but the packet could still be
800 * lost in upcall processing. To prevent this from happening we
801 * perform an explicit expectation lookup. Expected connections are
802 * always new, and will be passed through conntrack only when they are
803 * committed, as it is OK to remove the expectation at that time.
804 */
805 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
806 if (exp) {
807 u8 state;
808
809 /* NOTE: New connections are NATted and Helped only when
810 * committed, so we are not calling into NAT here.
811 */
812 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
813 __ovs_ct_update_key(key, state, &info->zone, exp->master);
814 } else {
815 struct nf_conn *ct;
816 int err;
817
818 err = __ovs_ct_lookup(net, key, info, skb);
819 if (err)
820 return err;
821
822 ct = (struct nf_conn *)skb->nfct;
823 if (ct)
824 nf_ct_deliver_cached_events(ct);
825 }
826
827 return 0;
828}
829
830static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
831{
832 size_t i;
833
834 for (i = 0; i < sizeof(*labels); i++)
835 if (labels->ct_labels[i])
836 return true;
837
838 return false;
839}
840
841/* Lookup connection and confirm if unconfirmed. */
842static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
843 const struct ovs_conntrack_info *info,
844 struct sk_buff *skb)
845{
846 int err;
847
848 err = __ovs_ct_lookup(net, key, info, skb);
849 if (err)
850 return err;
851
852 /* Apply changes before confirming the connection so that the initial
853 * conntrack NEW netlink event carries the values given in the CT
854 * action.
855 */
856 if (info->mark.mask) {
857 err = ovs_ct_set_mark(skb, key, info->mark.value,
858 info->mark.mask);
859 if (err)
860 return err;
861 }
862 if (labels_nonzero(&info->labels.mask)) {
863 err = ovs_ct_set_labels(skb, key, &info->labels.value,
864 &info->labels.mask);
865 if (err)
866 return err;
867 }
868 /* This will take care of sending queued events even if the connection
869 * is already confirmed.
870 */
871 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
872 return -EINVAL;
873
874 return 0;
875}
876
877/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
878 * value if 'skb' is freed.
879 */
880int ovs_ct_execute(struct net *net, struct sk_buff *skb,
881 struct sw_flow_key *key,
882 const struct ovs_conntrack_info *info)
883{
884 int nh_ofs;
885 int err;
886
887 /* The conntrack module expects to be working at L3. */
888 nh_ofs = skb_network_offset(skb);
889 skb_pull_rcsum(skb, nh_ofs);
890
891 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
892 err = handle_fragments(net, key, info->zone.id, skb);
893 if (err)
894 return err;
895 }
896
897 if (info->commit)
898 err = ovs_ct_commit(net, key, info, skb);
899 else
900 err = ovs_ct_lookup(net, key, info, skb);
901
902 skb_push(skb, nh_ofs);
903 skb_postpush_rcsum(skb, skb->data, nh_ofs);
904 if (err)
905 kfree_skb(skb);
906 return err;
907}
908
909static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
910 const struct sw_flow_key *key, bool log)
911{
912 struct nf_conntrack_helper *helper;
913 struct nf_conn_help *help;
914
915 helper = nf_conntrack_helper_try_module_get(name, info->family,
916 key->ip.proto);
917 if (!helper) {
918 OVS_NLERR(log, "Unknown helper \"%s\"", name);
919 return -EINVAL;
920 }
921
922 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
923 if (!help) {
924 module_put(helper->me);
925 return -ENOMEM;
926 }
927
928 rcu_assign_pointer(help->helper, helper);
929 info->helper = helper;
930 return 0;
931}
932
933#ifdef CONFIG_NF_NAT_NEEDED
934static int parse_nat(const struct nlattr *attr,
935 struct ovs_conntrack_info *info, bool log)
936{
937 struct nlattr *a;
938 int rem;
939 bool have_ip_max = false;
940 bool have_proto_max = false;
941 bool ip_vers = (info->family == NFPROTO_IPV6);
942
943 nla_for_each_nested(a, attr, rem) {
944 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
945 [OVS_NAT_ATTR_SRC] = {0, 0},
946 [OVS_NAT_ATTR_DST] = {0, 0},
947 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
948 sizeof(struct in6_addr)},
949 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
950 sizeof(struct in6_addr)},
951 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
952 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
953 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
954 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
955 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
956 };
957 int type = nla_type(a);
958
959 if (type > OVS_NAT_ATTR_MAX) {
960 OVS_NLERR(log,
961 "Unknown NAT attribute (type=%d, max=%d).\n",
962 type, OVS_NAT_ATTR_MAX);
963 return -EINVAL;
964 }
965
966 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
967 OVS_NLERR(log,
968 "NAT attribute type %d has unexpected length (%d != %d).\n",
969 type, nla_len(a),
970 ovs_nat_attr_lens[type][ip_vers]);
971 return -EINVAL;
972 }
973
974 switch (type) {
975 case OVS_NAT_ATTR_SRC:
976 case OVS_NAT_ATTR_DST:
977 if (info->nat) {
978 OVS_NLERR(log,
979 "Only one type of NAT may be specified.\n"
980 );
981 return -ERANGE;
982 }
983 info->nat |= OVS_CT_NAT;
984 info->nat |= ((type == OVS_NAT_ATTR_SRC)
985 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
986 break;
987
988 case OVS_NAT_ATTR_IP_MIN:
989 nla_memcpy(&info->range.min_addr, a,
990 sizeof(info->range.min_addr));
991 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
992 break;
993
994 case OVS_NAT_ATTR_IP_MAX:
995 have_ip_max = true;
996 nla_memcpy(&info->range.max_addr, a,
997 sizeof(info->range.max_addr));
998 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
999 break;
1000
1001 case OVS_NAT_ATTR_PROTO_MIN:
1002 info->range.min_proto.all = htons(nla_get_u16(a));
1003 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004 break;
1005
1006 case OVS_NAT_ATTR_PROTO_MAX:
1007 have_proto_max = true;
1008 info->range.max_proto.all = htons(nla_get_u16(a));
1009 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010 break;
1011
1012 case OVS_NAT_ATTR_PERSISTENT:
1013 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014 break;
1015
1016 case OVS_NAT_ATTR_PROTO_HASH:
1017 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018 break;
1019
1020 case OVS_NAT_ATTR_PROTO_RANDOM:
1021 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022 break;
1023
1024 default:
1025 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026 return -EINVAL;
1027 }
1028 }
1029
1030 if (rem > 0) {
1031 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032 return -EINVAL;
1033 }
1034 if (!info->nat) {
1035 /* Do not allow flags if no type is given. */
1036 if (info->range.flags) {
1037 OVS_NLERR(log,
1038 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039 );
1040 return -EINVAL;
1041 }
1042 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1043 } else if (!info->commit) {
1044 OVS_NLERR(log,
1045 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046 );
1047 return -EINVAL;
1048 }
1049 /* Allow missing IP_MAX. */
1050 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051 memcpy(&info->range.max_addr, &info->range.min_addr,
1052 sizeof(info->range.max_addr));
1053 }
1054 /* Allow missing PROTO_MAX. */
1055 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056 !have_proto_max) {
1057 info->range.max_proto.all = info->range.min_proto.all;
1058 }
1059 return 0;
1060}
1061#endif
1062
1063static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1065 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1066 .maxlen = sizeof(u16) },
1067 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1068 .maxlen = sizeof(struct md_mark) },
1069 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1070 .maxlen = sizeof(struct md_labels) },
1071 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1072 .maxlen = NF_CT_HELPER_NAME_LEN },
1073#ifdef CONFIG_NF_NAT_NEEDED
1074 /* NAT length is checked when parsing the nested attributes. */
1075 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1076#endif
1077};
1078
1079static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080 const char **helper, bool log)
1081{
1082 struct nlattr *a;
1083 int rem;
1084
1085 nla_for_each_nested(a, attr, rem) {
1086 int type = nla_type(a);
1087 int maxlen = ovs_ct_attr_lens[type].maxlen;
1088 int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090 if (type > OVS_CT_ATTR_MAX) {
1091 OVS_NLERR(log,
1092 "Unknown conntrack attr (type=%d, max=%d)",
1093 type, OVS_CT_ATTR_MAX);
1094 return -EINVAL;
1095 }
1096 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097 OVS_NLERR(log,
1098 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099 type, nla_len(a), maxlen);
1100 return -EINVAL;
1101 }
1102
1103 switch (type) {
1104 case OVS_CT_ATTR_COMMIT:
1105 info->commit = true;
1106 break;
1107#ifdef CONFIG_NF_CONNTRACK_ZONES
1108 case OVS_CT_ATTR_ZONE:
1109 info->zone.id = nla_get_u16(a);
1110 break;
1111#endif
1112#ifdef CONFIG_NF_CONNTRACK_MARK
1113 case OVS_CT_ATTR_MARK: {
1114 struct md_mark *mark = nla_data(a);
1115
1116 if (!mark->mask) {
1117 OVS_NLERR(log, "ct_mark mask cannot be 0");
1118 return -EINVAL;
1119 }
1120 info->mark = *mark;
1121 break;
1122 }
1123#endif
1124#ifdef CONFIG_NF_CONNTRACK_LABELS
1125 case OVS_CT_ATTR_LABELS: {
1126 struct md_labels *labels = nla_data(a);
1127
1128 if (!labels_nonzero(&labels->mask)) {
1129 OVS_NLERR(log, "ct_labels mask cannot be 0");
1130 return -EINVAL;
1131 }
1132 info->labels = *labels;
1133 break;
1134 }
1135#endif
1136 case OVS_CT_ATTR_HELPER:
1137 *helper = nla_data(a);
1138 if (!memchr(*helper, '\0', nla_len(a))) {
1139 OVS_NLERR(log, "Invalid conntrack helper");
1140 return -EINVAL;
1141 }
1142 break;
1143#ifdef CONFIG_NF_NAT_NEEDED
1144 case OVS_CT_ATTR_NAT: {
1145 int err = parse_nat(a, info, log);
1146
1147 if (err)
1148 return err;
1149 break;
1150 }
1151#endif
1152 default:
1153 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154 type);
1155 return -EINVAL;
1156 }
1157 }
1158
1159#ifdef CONFIG_NF_CONNTRACK_MARK
1160 if (!info->commit && info->mark.mask) {
1161 OVS_NLERR(log,
1162 "Setting conntrack mark requires 'commit' flag.");
1163 return -EINVAL;
1164 }
1165#endif
1166#ifdef CONFIG_NF_CONNTRACK_LABELS
1167 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168 OVS_NLERR(log,
1169 "Setting conntrack labels requires 'commit' flag.");
1170 return -EINVAL;
1171 }
1172#endif
1173 if (rem > 0) {
1174 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179}
1180
1181bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182{
1183 if (attr == OVS_KEY_ATTR_CT_STATE)
1184 return true;
1185 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186 attr == OVS_KEY_ATTR_CT_ZONE)
1187 return true;
1188 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189 attr == OVS_KEY_ATTR_CT_MARK)
1190 return true;
1191 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192 attr == OVS_KEY_ATTR_CT_LABELS) {
1193 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195 return ovs_net->xt_label;
1196 }
1197
1198 return false;
1199}
1200
1201int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202 const struct sw_flow_key *key,
1203 struct sw_flow_actions **sfa, bool log)
1204{
1205 struct ovs_conntrack_info ct_info;
1206 const char *helper = NULL;
1207 u16 family;
1208 int err;
1209
1210 family = key_to_nfproto(key);
1211 if (family == NFPROTO_UNSPEC) {
1212 OVS_NLERR(log, "ct family unspecified");
1213 return -EINVAL;
1214 }
1215
1216 memset(&ct_info, 0, sizeof(ct_info));
1217 ct_info.family = family;
1218
1219 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220 NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222 err = parse_ct(attr, &ct_info, &helper, log);
1223 if (err)
1224 return err;
1225
1226 /* Set up template for tracking connections in specific zones. */
1227 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228 if (!ct_info.ct) {
1229 OVS_NLERR(log, "Failed to allocate conntrack template");
1230 return -ENOMEM;
1231 }
1232
1233 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234 nf_conntrack_get(&ct_info.ct->ct_general);
1235
1236 if (helper) {
1237 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238 if (err)
1239 goto err_free_ct;
1240 }
1241
1242 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243 sizeof(ct_info), log);
1244 if (err)
1245 goto err_free_ct;
1246
1247 return 0;
1248err_free_ct:
1249 __ovs_ct_free_action(&ct_info);
1250 return err;
1251}
1252
1253#ifdef CONFIG_NF_NAT_NEEDED
1254static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255 struct sk_buff *skb)
1256{
1257 struct nlattr *start;
1258
1259 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260 if (!start)
1261 return false;
1262
1263 if (info->nat & OVS_CT_SRC_NAT) {
1264 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265 return false;
1266 } else if (info->nat & OVS_CT_DST_NAT) {
1267 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268 return false;
1269 } else {
1270 goto out;
1271 }
1272
1273 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275 info->family == NFPROTO_IPV4) {
1276 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277 info->range.min_addr.ip) ||
1278 (info->range.max_addr.ip
1279 != info->range.min_addr.ip &&
1280 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281 info->range.max_addr.ip))))
1282 return false;
1283 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284 info->family == NFPROTO_IPV6) {
1285 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286 &info->range.min_addr.in6) ||
1287 (memcmp(&info->range.max_addr.in6,
1288 &info->range.min_addr.in6,
1289 sizeof(info->range.max_addr.in6)) &&
1290 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291 &info->range.max_addr.in6))))
1292 return false;
1293 } else {
1294 return false;
1295 }
1296 }
1297 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299 ntohs(info->range.min_proto.all)) ||
1300 (info->range.max_proto.all != info->range.min_proto.all &&
1301 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302 ntohs(info->range.max_proto.all)))))
1303 return false;
1304
1305 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307 return false;
1308 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310 return false;
1311 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313 return false;
1314out:
1315 nla_nest_end(skb, start);
1316
1317 return true;
1318}
1319#endif
1320
1321int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322 struct sk_buff *skb)
1323{
1324 struct nlattr *start;
1325
1326 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327 if (!start)
1328 return -EMSGSIZE;
1329
1330 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1331 return -EMSGSIZE;
1332 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334 return -EMSGSIZE;
1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337 &ct_info->mark))
1338 return -EMSGSIZE;
1339 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340 labels_nonzero(&ct_info->labels.mask) &&
1341 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342 &ct_info->labels))
1343 return -EMSGSIZE;
1344 if (ct_info->helper) {
1345 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346 ct_info->helper->name))
1347 return -EMSGSIZE;
1348 }
1349#ifdef CONFIG_NF_NAT_NEEDED
1350 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351 return -EMSGSIZE;
1352#endif
1353 nla_nest_end(skb, start);
1354
1355 return 0;
1356}
1357
1358void ovs_ct_free_action(const struct nlattr *a)
1359{
1360 struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362 __ovs_ct_free_action(ct_info);
1363}
1364
1365static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366{
1367 if (ct_info->helper)
1368 module_put(ct_info->helper->me);
1369 if (ct_info->ct)
1370 nf_ct_tmpl_free(ct_info->ct);
1371}
1372
1373void ovs_ct_init(struct net *net)
1374{
1375 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378 if (nf_connlabels_get(net, n_bits - 1)) {
1379 ovs_net->xt_label = false;
1380 OVS_NLERR(true, "Failed to set connlabel length");
1381 } else {
1382 ovs_net->xt_label = true;
1383 }
1384}
1385
1386void ovs_ct_exit(struct net *net)
1387{
1388 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1389
1390 if (ovs_net->xt_label)
1391 nf_connlabels_put(net);
1392}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015 Nicira, Inc.
4 */
5
6#include <linux/module.h>
7#include <linux/openvswitch.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/sctp.h>
11#include <linux/static_key.h>
12#include <linux/string_helpers.h>
13#include <net/ip.h>
14#include <net/genetlink.h>
15#include <net/netfilter/nf_conntrack_core.h>
16#include <net/netfilter/nf_conntrack_count.h>
17#include <net/netfilter/nf_conntrack_helper.h>
18#include <net/netfilter/nf_conntrack_labels.h>
19#include <net/netfilter/nf_conntrack_seqadj.h>
20#include <net/netfilter/nf_conntrack_timeout.h>
21#include <net/netfilter/nf_conntrack_zones.h>
22#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
23#include <net/ipv6_frag.h>
24
25#if IS_ENABLED(CONFIG_NF_NAT)
26#include <net/netfilter/nf_nat.h>
27#endif
28
29#include <net/netfilter/nf_conntrack_act_ct.h>
30
31#include "datapath.h"
32#include "drop.h"
33#include "conntrack.h"
34#include "flow.h"
35#include "flow_netlink.h"
36
37struct ovs_ct_len_tbl {
38 int maxlen;
39 int minlen;
40};
41
42/* Metadata mark for masked write to conntrack mark */
43struct md_mark {
44 u32 value;
45 u32 mask;
46};
47
48/* Metadata label for masked write to conntrack label. */
49struct md_labels {
50 struct ovs_key_ct_labels value;
51 struct ovs_key_ct_labels mask;
52};
53
54enum ovs_ct_nat {
55 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
56 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
57 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
58};
59
60/* Conntrack action context for execution. */
61struct ovs_conntrack_info {
62 struct nf_conntrack_helper *helper;
63 struct nf_conntrack_zone zone;
64 struct nf_conn *ct;
65 u8 commit : 1;
66 u8 nat : 3; /* enum ovs_ct_nat */
67 u8 force : 1;
68 u8 have_eventmask : 1;
69 u16 family;
70 u32 eventmask; /* Mask of 1 << IPCT_*. */
71 struct md_mark mark;
72 struct md_labels labels;
73 char timeout[CTNL_TIMEOUT_NAME_MAX];
74 struct nf_ct_timeout *nf_ct_timeout;
75#if IS_ENABLED(CONFIG_NF_NAT)
76 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
77#endif
78};
79
80#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
81#define OVS_CT_LIMIT_UNLIMITED 0
82#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
83#define CT_LIMIT_HASH_BUCKETS 512
84static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
85
86struct ovs_ct_limit {
87 /* Elements in ovs_ct_limit_info->limits hash table */
88 struct hlist_node hlist_node;
89 struct rcu_head rcu;
90 u16 zone;
91 u32 limit;
92};
93
94struct ovs_ct_limit_info {
95 u32 default_limit;
96 struct hlist_head *limits;
97 struct nf_conncount_data *data;
98};
99
100static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
101 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
102};
103#endif
104
105static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
106
107static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
108
109static u16 key_to_nfproto(const struct sw_flow_key *key)
110{
111 switch (ntohs(key->eth.type)) {
112 case ETH_P_IP:
113 return NFPROTO_IPV4;
114 case ETH_P_IPV6:
115 return NFPROTO_IPV6;
116 default:
117 return NFPROTO_UNSPEC;
118 }
119}
120
121/* Map SKB connection state into the values used by flow definition. */
122static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
123{
124 u8 ct_state = OVS_CS_F_TRACKED;
125
126 switch (ctinfo) {
127 case IP_CT_ESTABLISHED_REPLY:
128 case IP_CT_RELATED_REPLY:
129 ct_state |= OVS_CS_F_REPLY_DIR;
130 break;
131 default:
132 break;
133 }
134
135 switch (ctinfo) {
136 case IP_CT_ESTABLISHED:
137 case IP_CT_ESTABLISHED_REPLY:
138 ct_state |= OVS_CS_F_ESTABLISHED;
139 break;
140 case IP_CT_RELATED:
141 case IP_CT_RELATED_REPLY:
142 ct_state |= OVS_CS_F_RELATED;
143 break;
144 case IP_CT_NEW:
145 ct_state |= OVS_CS_F_NEW;
146 break;
147 default:
148 break;
149 }
150
151 return ct_state;
152}
153
154static u32 ovs_ct_get_mark(const struct nf_conn *ct)
155{
156#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
157 return ct ? READ_ONCE(ct->mark) : 0;
158#else
159 return 0;
160#endif
161}
162
163/* Guard against conntrack labels max size shrinking below 128 bits. */
164#if NF_CT_LABELS_MAX_SIZE < 16
165#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
166#endif
167
168static void ovs_ct_get_labels(const struct nf_conn *ct,
169 struct ovs_key_ct_labels *labels)
170{
171 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
172
173 if (cl)
174 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
175 else
176 memset(labels, 0, OVS_CT_LABELS_LEN);
177}
178
179static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
180 const struct nf_conntrack_tuple *orig,
181 u8 icmp_proto)
182{
183 key->ct_orig_proto = orig->dst.protonum;
184 if (orig->dst.protonum == icmp_proto) {
185 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
186 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
187 } else {
188 key->ct.orig_tp.src = orig->src.u.all;
189 key->ct.orig_tp.dst = orig->dst.u.all;
190 }
191}
192
193static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
194 const struct nf_conntrack_zone *zone,
195 const struct nf_conn *ct)
196{
197 key->ct_state = state;
198 key->ct_zone = zone->id;
199 key->ct.mark = ovs_ct_get_mark(ct);
200 ovs_ct_get_labels(ct, &key->ct.labels);
201
202 if (ct) {
203 const struct nf_conntrack_tuple *orig;
204
205 /* Use the master if we have one. */
206 if (ct->master)
207 ct = ct->master;
208 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
209
210 /* IP version must match with the master connection. */
211 if (key->eth.type == htons(ETH_P_IP) &&
212 nf_ct_l3num(ct) == NFPROTO_IPV4) {
213 key->ipv4.ct_orig.src = orig->src.u3.ip;
214 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
215 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
216 return;
217 } else if (key->eth.type == htons(ETH_P_IPV6) &&
218 !sw_flow_key_is_nd(key) &&
219 nf_ct_l3num(ct) == NFPROTO_IPV6) {
220 key->ipv6.ct_orig.src = orig->src.u3.in6;
221 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
222 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
223 return;
224 }
225 }
226 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
227 * original direction key fields.
228 */
229 key->ct_orig_proto = 0;
230}
231
232/* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
233 * previously sent the packet to conntrack via the ct action. If
234 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
235 * initialized from the connection status.
236 */
237static void ovs_ct_update_key(const struct sk_buff *skb,
238 const struct ovs_conntrack_info *info,
239 struct sw_flow_key *key, bool post_ct,
240 bool keep_nat_flags)
241{
242 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
243 enum ip_conntrack_info ctinfo;
244 struct nf_conn *ct;
245 u8 state = 0;
246
247 ct = nf_ct_get(skb, &ctinfo);
248 if (ct) {
249 state = ovs_ct_get_state(ctinfo);
250 /* All unconfirmed entries are NEW connections. */
251 if (!nf_ct_is_confirmed(ct))
252 state |= OVS_CS_F_NEW;
253 /* OVS persists the related flag for the duration of the
254 * connection.
255 */
256 if (ct->master)
257 state |= OVS_CS_F_RELATED;
258 if (keep_nat_flags) {
259 state |= key->ct_state & OVS_CS_F_NAT_MASK;
260 } else {
261 if (ct->status & IPS_SRC_NAT)
262 state |= OVS_CS_F_SRC_NAT;
263 if (ct->status & IPS_DST_NAT)
264 state |= OVS_CS_F_DST_NAT;
265 }
266 zone = nf_ct_zone(ct);
267 } else if (post_ct) {
268 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
269 if (info)
270 zone = &info->zone;
271 }
272 __ovs_ct_update_key(key, state, zone, ct);
273}
274
275/* This is called to initialize CT key fields possibly coming in from the local
276 * stack.
277 */
278void ovs_ct_fill_key(const struct sk_buff *skb,
279 struct sw_flow_key *key,
280 bool post_ct)
281{
282 ovs_ct_update_key(skb, NULL, key, post_ct, false);
283}
284
285int ovs_ct_put_key(const struct sw_flow_key *swkey,
286 const struct sw_flow_key *output, struct sk_buff *skb)
287{
288 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
289 return -EMSGSIZE;
290
291 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
292 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
293 return -EMSGSIZE;
294
295 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
296 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
297 return -EMSGSIZE;
298
299 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
300 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
301 &output->ct.labels))
302 return -EMSGSIZE;
303
304 if (swkey->ct_orig_proto) {
305 if (swkey->eth.type == htons(ETH_P_IP)) {
306 struct ovs_key_ct_tuple_ipv4 orig;
307
308 memset(&orig, 0, sizeof(orig));
309 orig.ipv4_src = output->ipv4.ct_orig.src;
310 orig.ipv4_dst = output->ipv4.ct_orig.dst;
311 orig.src_port = output->ct.orig_tp.src;
312 orig.dst_port = output->ct.orig_tp.dst;
313 orig.ipv4_proto = output->ct_orig_proto;
314
315 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
316 sizeof(orig), &orig))
317 return -EMSGSIZE;
318 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
319 struct ovs_key_ct_tuple_ipv6 orig;
320
321 memset(&orig, 0, sizeof(orig));
322 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
323 sizeof(orig.ipv6_src));
324 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
325 sizeof(orig.ipv6_dst));
326 orig.src_port = output->ct.orig_tp.src;
327 orig.dst_port = output->ct.orig_tp.dst;
328 orig.ipv6_proto = output->ct_orig_proto;
329
330 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
331 sizeof(orig), &orig))
332 return -EMSGSIZE;
333 }
334 }
335
336 return 0;
337}
338
339static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
340 u32 ct_mark, u32 mask)
341{
342#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
343 u32 new_mark;
344
345 new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
346 if (READ_ONCE(ct->mark) != new_mark) {
347 WRITE_ONCE(ct->mark, new_mark);
348 if (nf_ct_is_confirmed(ct))
349 nf_conntrack_event_cache(IPCT_MARK, ct);
350 key->ct.mark = new_mark;
351 }
352
353 return 0;
354#else
355 return -ENOTSUPP;
356#endif
357}
358
359static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
360{
361 struct nf_conn_labels *cl;
362
363 cl = nf_ct_labels_find(ct);
364 if (!cl) {
365 nf_ct_labels_ext_add(ct);
366 cl = nf_ct_labels_find(ct);
367 }
368
369 return cl;
370}
371
372/* Initialize labels for a new, yet to be committed conntrack entry. Note that
373 * since the new connection is not yet confirmed, and thus no-one else has
374 * access to it's labels, we simply write them over.
375 */
376static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
377 const struct ovs_key_ct_labels *labels,
378 const struct ovs_key_ct_labels *mask)
379{
380 struct nf_conn_labels *cl, *master_cl;
381 bool have_mask = labels_nonzero(mask);
382
383 /* Inherit master's labels to the related connection? */
384 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
385
386 if (!master_cl && !have_mask)
387 return 0; /* Nothing to do. */
388
389 cl = ovs_ct_get_conn_labels(ct);
390 if (!cl)
391 return -ENOSPC;
392
393 /* Inherit the master's labels, if any. */
394 if (master_cl)
395 *cl = *master_cl;
396
397 if (have_mask) {
398 u32 *dst = (u32 *)cl->bits;
399 int i;
400
401 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
402 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
403 (labels->ct_labels_32[i]
404 & mask->ct_labels_32[i]);
405 }
406
407 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
408 * IPCT_LABEL bit is set in the event cache.
409 */
410 nf_conntrack_event_cache(IPCT_LABEL, ct);
411
412 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
413
414 return 0;
415}
416
417static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
418 const struct ovs_key_ct_labels *labels,
419 const struct ovs_key_ct_labels *mask)
420{
421 struct nf_conn_labels *cl;
422 int err;
423
424 cl = ovs_ct_get_conn_labels(ct);
425 if (!cl)
426 return -ENOSPC;
427
428 err = nf_connlabels_replace(ct, labels->ct_labels_32,
429 mask->ct_labels_32,
430 OVS_CT_LABELS_LEN_32);
431 if (err)
432 return err;
433
434 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
435
436 return 0;
437}
438
439static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key,
440 u16 zone, int family, struct sk_buff *skb)
441{
442 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
443 int err;
444
445 err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru);
446 if (err)
447 return err;
448
449 /* The key extracted from the fragment that completed this datagram
450 * likely didn't have an L4 header, so regenerate it.
451 */
452 ovs_flow_key_update_l3l4(skb, key);
453 key->ip.frag = OVS_FRAG_TYPE_NONE;
454 *OVS_CB(skb) = ovs_cb;
455
456 return 0;
457}
458
459/* This replicates logic from nf_conntrack_core.c that is not exported. */
460static enum ip_conntrack_info
461ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
462{
463 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
464
465 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
466 return IP_CT_ESTABLISHED_REPLY;
467 /* Once we've had two way comms, always ESTABLISHED. */
468 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
469 return IP_CT_ESTABLISHED;
470 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
471 return IP_CT_RELATED;
472 return IP_CT_NEW;
473}
474
475/* Find an existing connection which this packet belongs to without
476 * re-attributing statistics or modifying the connection state. This allows an
477 * skb->_nfct lost due to an upcall to be recovered during actions execution.
478 *
479 * Must be called with rcu_read_lock.
480 *
481 * On success, populates skb->_nfct and returns the connection. Returns NULL
482 * if there is no existing entry.
483 */
484static struct nf_conn *
485ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
486 u8 l3num, struct sk_buff *skb, bool natted)
487{
488 struct nf_conntrack_tuple tuple;
489 struct nf_conntrack_tuple_hash *h;
490 struct nf_conn *ct;
491
492 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
493 net, &tuple)) {
494 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
495 return NULL;
496 }
497
498 /* Must invert the tuple if skb has been transformed by NAT. */
499 if (natted) {
500 struct nf_conntrack_tuple inverse;
501
502 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
503 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
504 return NULL;
505 }
506 tuple = inverse;
507 }
508
509 /* look for tuple match */
510 h = nf_conntrack_find_get(net, zone, &tuple);
511 if (!h)
512 return NULL; /* Not found. */
513
514 ct = nf_ct_tuplehash_to_ctrack(h);
515
516 /* Inverted packet tuple matches the reverse direction conntrack tuple,
517 * select the other tuplehash to get the right 'ctinfo' bits for this
518 * packet.
519 */
520 if (natted)
521 h = &ct->tuplehash[!h->tuple.dst.dir];
522
523 nf_ct_set(skb, ct, ovs_ct_get_info(h));
524 return ct;
525}
526
527static
528struct nf_conn *ovs_ct_executed(struct net *net,
529 const struct sw_flow_key *key,
530 const struct ovs_conntrack_info *info,
531 struct sk_buff *skb,
532 bool *ct_executed)
533{
534 struct nf_conn *ct = NULL;
535
536 /* If no ct, check if we have evidence that an existing conntrack entry
537 * might be found for this skb. This happens when we lose a skb->_nfct
538 * due to an upcall, or if the direction is being forced. If the
539 * connection was not confirmed, it is not cached and needs to be run
540 * through conntrack again.
541 */
542 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
543 !(key->ct_state & OVS_CS_F_INVALID) &&
544 (key->ct_zone == info->zone.id);
545
546 if (*ct_executed || (!key->ct_state && info->force)) {
547 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
548 !!(key->ct_state &
549 OVS_CS_F_NAT_MASK));
550 }
551
552 return ct;
553}
554
555/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
556static bool skb_nfct_cached(struct net *net,
557 const struct sw_flow_key *key,
558 const struct ovs_conntrack_info *info,
559 struct sk_buff *skb)
560{
561 enum ip_conntrack_info ctinfo;
562 struct nf_conn *ct;
563 bool ct_executed = true;
564
565 ct = nf_ct_get(skb, &ctinfo);
566 if (!ct)
567 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
568
569 if (ct)
570 nf_ct_get(skb, &ctinfo);
571 else
572 return false;
573
574 if (!net_eq(net, read_pnet(&ct->ct_net)))
575 return false;
576 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
577 return false;
578 if (info->helper) {
579 struct nf_conn_help *help;
580
581 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
582 if (help && rcu_access_pointer(help->helper) != info->helper)
583 return false;
584 }
585 if (info->nf_ct_timeout) {
586 struct nf_conn_timeout *timeout_ext;
587
588 timeout_ext = nf_ct_timeout_find(ct);
589 if (!timeout_ext || info->nf_ct_timeout !=
590 rcu_dereference(timeout_ext->timeout))
591 return false;
592 }
593 /* Force conntrack entry direction to the current packet? */
594 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
595 /* Delete the conntrack entry if confirmed, else just release
596 * the reference.
597 */
598 if (nf_ct_is_confirmed(ct))
599 nf_ct_delete(ct, 0, 0);
600
601 nf_ct_put(ct);
602 nf_ct_set(skb, NULL, 0);
603 return false;
604 }
605
606 return ct_executed;
607}
608
609#if IS_ENABLED(CONFIG_NF_NAT)
610static void ovs_nat_update_key(struct sw_flow_key *key,
611 const struct sk_buff *skb,
612 enum nf_nat_manip_type maniptype)
613{
614 if (maniptype == NF_NAT_MANIP_SRC) {
615 __be16 src;
616
617 key->ct_state |= OVS_CS_F_SRC_NAT;
618 if (key->eth.type == htons(ETH_P_IP))
619 key->ipv4.addr.src = ip_hdr(skb)->saddr;
620 else if (key->eth.type == htons(ETH_P_IPV6))
621 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
622 sizeof(key->ipv6.addr.src));
623 else
624 return;
625
626 if (key->ip.proto == IPPROTO_UDP)
627 src = udp_hdr(skb)->source;
628 else if (key->ip.proto == IPPROTO_TCP)
629 src = tcp_hdr(skb)->source;
630 else if (key->ip.proto == IPPROTO_SCTP)
631 src = sctp_hdr(skb)->source;
632 else
633 return;
634
635 key->tp.src = src;
636 } else {
637 __be16 dst;
638
639 key->ct_state |= OVS_CS_F_DST_NAT;
640 if (key->eth.type == htons(ETH_P_IP))
641 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
642 else if (key->eth.type == htons(ETH_P_IPV6))
643 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
644 sizeof(key->ipv6.addr.dst));
645 else
646 return;
647
648 if (key->ip.proto == IPPROTO_UDP)
649 dst = udp_hdr(skb)->dest;
650 else if (key->ip.proto == IPPROTO_TCP)
651 dst = tcp_hdr(skb)->dest;
652 else if (key->ip.proto == IPPROTO_SCTP)
653 dst = sctp_hdr(skb)->dest;
654 else
655 return;
656
657 key->tp.dst = dst;
658 }
659}
660
661/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
662static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
663 const struct ovs_conntrack_info *info,
664 struct sk_buff *skb, struct nf_conn *ct,
665 enum ip_conntrack_info ctinfo)
666{
667 int err, action = 0;
668
669 if (!(info->nat & OVS_CT_NAT))
670 return NF_ACCEPT;
671 if (info->nat & OVS_CT_SRC_NAT)
672 action |= BIT(NF_NAT_MANIP_SRC);
673 if (info->nat & OVS_CT_DST_NAT)
674 action |= BIT(NF_NAT_MANIP_DST);
675
676 err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit);
677
678 if (action & BIT(NF_NAT_MANIP_SRC))
679 ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC);
680 if (action & BIT(NF_NAT_MANIP_DST))
681 ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST);
682
683 return err;
684}
685#else /* !CONFIG_NF_NAT */
686static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
687 const struct ovs_conntrack_info *info,
688 struct sk_buff *skb, struct nf_conn *ct,
689 enum ip_conntrack_info ctinfo)
690{
691 return NF_ACCEPT;
692}
693#endif
694
695/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
696 * not done already. Update key with new CT state after passing the packet
697 * through conntrack.
698 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
699 * set to NULL and 0 will be returned.
700 */
701static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
702 const struct ovs_conntrack_info *info,
703 struct sk_buff *skb)
704{
705 /* If we are recirculating packets to match on conntrack fields and
706 * committing with a separate conntrack action, then we don't need to
707 * actually run the packet through conntrack twice unless it's for a
708 * different zone.
709 */
710 bool cached = skb_nfct_cached(net, key, info, skb);
711 enum ip_conntrack_info ctinfo;
712 struct nf_conn *ct;
713
714 if (!cached) {
715 struct nf_hook_state state = {
716 .hook = NF_INET_PRE_ROUTING,
717 .pf = info->family,
718 .net = net,
719 };
720 struct nf_conn *tmpl = info->ct;
721 int err;
722
723 /* Associate skb with specified zone. */
724 if (tmpl) {
725 ct = nf_ct_get(skb, &ctinfo);
726 nf_ct_put(ct);
727 nf_conntrack_get(&tmpl->ct_general);
728 nf_ct_set(skb, tmpl, IP_CT_NEW);
729 }
730
731 err = nf_conntrack_in(skb, &state);
732 if (err != NF_ACCEPT)
733 return -ENOENT;
734
735 /* Clear CT state NAT flags to mark that we have not yet done
736 * NAT after the nf_conntrack_in() call. We can actually clear
737 * the whole state, as it will be re-initialized below.
738 */
739 key->ct_state = 0;
740
741 /* Update the key, but keep the NAT flags. */
742 ovs_ct_update_key(skb, info, key, true, true);
743 }
744
745 ct = nf_ct_get(skb, &ctinfo);
746 if (ct) {
747 bool add_helper = false;
748
749 /* Packets starting a new connection must be NATted before the
750 * helper, so that the helper knows about the NAT. We enforce
751 * this by delaying both NAT and helper calls for unconfirmed
752 * connections until the committing CT action. For later
753 * packets NAT and Helper may be called in either order.
754 *
755 * NAT will be done only if the CT action has NAT, and only
756 * once per packet (per zone), as guarded by the NAT bits in
757 * the key->ct_state.
758 */
759 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
760 (nf_ct_is_confirmed(ct) || info->commit) &&
761 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
762 return -EINVAL;
763 }
764
765 /* Userspace may decide to perform a ct lookup without a helper
766 * specified followed by a (recirculate and) commit with one,
767 * or attach a helper in a later commit. Therefore, for
768 * connections which we will commit, we may need to attach
769 * the helper here.
770 */
771 if (!nf_ct_is_confirmed(ct) && info->commit &&
772 info->helper && !nfct_help(ct)) {
773 int err = __nf_ct_try_assign_helper(ct, info->ct,
774 GFP_ATOMIC);
775 if (err)
776 return err;
777 add_helper = true;
778
779 /* helper installed, add seqadj if NAT is required */
780 if (info->nat && !nfct_seqadj(ct)) {
781 if (!nfct_seqadj_ext_add(ct))
782 return -EINVAL;
783 }
784 }
785
786 /* Call the helper only if:
787 * - nf_conntrack_in() was executed above ("!cached") or a
788 * helper was just attached ("add_helper") for a confirmed
789 * connection, or
790 * - When committing an unconfirmed connection.
791 */
792 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
793 info->commit) &&
794 nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) {
795 return -EINVAL;
796 }
797
798 if (nf_ct_protonum(ct) == IPPROTO_TCP &&
799 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
800 /* Be liberal for tcp packets so that out-of-window
801 * packets are not marked invalid.
802 */
803 nf_ct_set_tcp_be_liberal(ct);
804 }
805
806 nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
807 }
808
809 return 0;
810}
811
812/* Lookup connection and read fields into key. */
813static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
814 const struct ovs_conntrack_info *info,
815 struct sk_buff *skb)
816{
817 struct nf_conn *ct;
818 int err;
819
820 err = __ovs_ct_lookup(net, key, info, skb);
821 if (err)
822 return err;
823
824 ct = (struct nf_conn *)skb_nfct(skb);
825 if (ct)
826 nf_ct_deliver_cached_events(ct);
827
828 return 0;
829}
830
831static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
832{
833 size_t i;
834
835 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
836 if (labels->ct_labels_32[i])
837 return true;
838
839 return false;
840}
841
842#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
843static struct hlist_head *ct_limit_hash_bucket(
844 const struct ovs_ct_limit_info *info, u16 zone)
845{
846 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
847}
848
849/* Call with ovs_mutex */
850static void ct_limit_set(const struct ovs_ct_limit_info *info,
851 struct ovs_ct_limit *new_ct_limit)
852{
853 struct ovs_ct_limit *ct_limit;
854 struct hlist_head *head;
855
856 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
857 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
858 if (ct_limit->zone == new_ct_limit->zone) {
859 hlist_replace_rcu(&ct_limit->hlist_node,
860 &new_ct_limit->hlist_node);
861 kfree_rcu(ct_limit, rcu);
862 return;
863 }
864 }
865
866 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
867}
868
869/* Call with ovs_mutex */
870static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
871{
872 struct ovs_ct_limit *ct_limit;
873 struct hlist_head *head;
874 struct hlist_node *n;
875
876 head = ct_limit_hash_bucket(info, zone);
877 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
878 if (ct_limit->zone == zone) {
879 hlist_del_rcu(&ct_limit->hlist_node);
880 kfree_rcu(ct_limit, rcu);
881 return;
882 }
883 }
884}
885
886/* Call with RCU read lock */
887static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
888{
889 struct ovs_ct_limit *ct_limit;
890 struct hlist_head *head;
891
892 head = ct_limit_hash_bucket(info, zone);
893 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
894 if (ct_limit->zone == zone)
895 return ct_limit->limit;
896 }
897
898 return info->default_limit;
899}
900
901static int ovs_ct_check_limit(struct net *net,
902 const struct ovs_conntrack_info *info,
903 const struct nf_conntrack_tuple *tuple)
904{
905 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
906 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
907 u32 per_zone_limit, connections;
908 u32 conncount_key;
909
910 conncount_key = info->zone.id;
911
912 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
913 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
914 return 0;
915
916 connections = nf_conncount_count(net, ct_limit_info->data,
917 &conncount_key, tuple, &info->zone);
918 if (connections > per_zone_limit)
919 return -ENOMEM;
920
921 return 0;
922}
923#endif
924
925/* Lookup connection and confirm if unconfirmed. */
926static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
927 const struct ovs_conntrack_info *info,
928 struct sk_buff *skb)
929{
930 enum ip_conntrack_info ctinfo;
931 struct nf_conn *ct;
932 int err;
933
934 err = __ovs_ct_lookup(net, key, info, skb);
935 if (err)
936 return err;
937
938 /* The connection could be invalid, in which case this is a no-op.*/
939 ct = nf_ct_get(skb, &ctinfo);
940 if (!ct)
941 return 0;
942
943#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
944 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
945 if (!nf_ct_is_confirmed(ct)) {
946 err = ovs_ct_check_limit(net, info,
947 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
948 if (err) {
949 net_warn_ratelimited("openvswitch: zone: %u "
950 "exceeds conntrack limit\n",
951 info->zone.id);
952 return err;
953 }
954 }
955 }
956#endif
957
958 /* Set the conntrack event mask if given. NEW and DELETE events have
959 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
960 * typically would receive many kinds of updates. Setting the event
961 * mask allows those events to be filtered. The set event mask will
962 * remain in effect for the lifetime of the connection unless changed
963 * by a further CT action with both the commit flag and the eventmask
964 * option. */
965 if (info->have_eventmask) {
966 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
967
968 if (cache)
969 cache->ctmask = info->eventmask;
970 }
971
972 /* Apply changes before confirming the connection so that the initial
973 * conntrack NEW netlink event carries the values given in the CT
974 * action.
975 */
976 if (info->mark.mask) {
977 err = ovs_ct_set_mark(ct, key, info->mark.value,
978 info->mark.mask);
979 if (err)
980 return err;
981 }
982 if (!nf_ct_is_confirmed(ct)) {
983 err = ovs_ct_init_labels(ct, key, &info->labels.value,
984 &info->labels.mask);
985 if (err)
986 return err;
987
988 nf_conn_act_ct_ext_add(skb, ct, ctinfo);
989 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
990 labels_nonzero(&info->labels.mask)) {
991 err = ovs_ct_set_labels(ct, key, &info->labels.value,
992 &info->labels.mask);
993 if (err)
994 return err;
995 }
996 /* This will take care of sending queued events even if the connection
997 * is already confirmed.
998 */
999 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1000 return -EINVAL;
1001
1002 return 0;
1003}
1004
1005/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1006 * value if 'skb' is freed.
1007 */
1008int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1009 struct sw_flow_key *key,
1010 const struct ovs_conntrack_info *info)
1011{
1012 int nh_ofs;
1013 int err;
1014
1015 /* The conntrack module expects to be working at L3. */
1016 nh_ofs = skb_network_offset(skb);
1017 skb_pull_rcsum(skb, nh_ofs);
1018
1019 err = nf_ct_skb_network_trim(skb, info->family);
1020 if (err) {
1021 kfree_skb(skb);
1022 return err;
1023 }
1024
1025 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1026 err = ovs_ct_handle_fragments(net, key, info->zone.id,
1027 info->family, skb);
1028 if (err)
1029 return err;
1030 }
1031
1032 if (info->commit)
1033 err = ovs_ct_commit(net, key, info, skb);
1034 else
1035 err = ovs_ct_lookup(net, key, info, skb);
1036
1037 skb_push_rcsum(skb, nh_ofs);
1038 if (err)
1039 ovs_kfree_skb_reason(skb, OVS_DROP_CONNTRACK);
1040 return err;
1041}
1042
1043int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1044{
1045 enum ip_conntrack_info ctinfo;
1046 struct nf_conn *ct;
1047
1048 ct = nf_ct_get(skb, &ctinfo);
1049
1050 nf_ct_put(ct);
1051 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1052
1053 if (key)
1054 ovs_ct_fill_key(skb, key, false);
1055
1056 return 0;
1057}
1058
1059#if IS_ENABLED(CONFIG_NF_NAT)
1060static int parse_nat(const struct nlattr *attr,
1061 struct ovs_conntrack_info *info, bool log)
1062{
1063 struct nlattr *a;
1064 int rem;
1065 bool have_ip_max = false;
1066 bool have_proto_max = false;
1067 bool ip_vers = (info->family == NFPROTO_IPV6);
1068
1069 nla_for_each_nested(a, attr, rem) {
1070 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1071 [OVS_NAT_ATTR_SRC] = {0, 0},
1072 [OVS_NAT_ATTR_DST] = {0, 0},
1073 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1074 sizeof(struct in6_addr)},
1075 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1076 sizeof(struct in6_addr)},
1077 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1078 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1079 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1080 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1081 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1082 };
1083 int type = nla_type(a);
1084
1085 if (type > OVS_NAT_ATTR_MAX) {
1086 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1087 type, OVS_NAT_ATTR_MAX);
1088 return -EINVAL;
1089 }
1090
1091 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1092 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1093 type, nla_len(a),
1094 ovs_nat_attr_lens[type][ip_vers]);
1095 return -EINVAL;
1096 }
1097
1098 switch (type) {
1099 case OVS_NAT_ATTR_SRC:
1100 case OVS_NAT_ATTR_DST:
1101 if (info->nat) {
1102 OVS_NLERR(log, "Only one type of NAT may be specified");
1103 return -ERANGE;
1104 }
1105 info->nat |= OVS_CT_NAT;
1106 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1107 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1108 break;
1109
1110 case OVS_NAT_ATTR_IP_MIN:
1111 nla_memcpy(&info->range.min_addr, a,
1112 sizeof(info->range.min_addr));
1113 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1114 break;
1115
1116 case OVS_NAT_ATTR_IP_MAX:
1117 have_ip_max = true;
1118 nla_memcpy(&info->range.max_addr, a,
1119 sizeof(info->range.max_addr));
1120 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1121 break;
1122
1123 case OVS_NAT_ATTR_PROTO_MIN:
1124 info->range.min_proto.all = htons(nla_get_u16(a));
1125 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1126 break;
1127
1128 case OVS_NAT_ATTR_PROTO_MAX:
1129 have_proto_max = true;
1130 info->range.max_proto.all = htons(nla_get_u16(a));
1131 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1132 break;
1133
1134 case OVS_NAT_ATTR_PERSISTENT:
1135 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1136 break;
1137
1138 case OVS_NAT_ATTR_PROTO_HASH:
1139 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1140 break;
1141
1142 case OVS_NAT_ATTR_PROTO_RANDOM:
1143 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1144 break;
1145
1146 default:
1147 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1148 return -EINVAL;
1149 }
1150 }
1151
1152 if (rem > 0) {
1153 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1154 return -EINVAL;
1155 }
1156 if (!info->nat) {
1157 /* Do not allow flags if no type is given. */
1158 if (info->range.flags) {
1159 OVS_NLERR(log,
1160 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1161 );
1162 return -EINVAL;
1163 }
1164 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1165 } else if (!info->commit) {
1166 OVS_NLERR(log,
1167 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1168 );
1169 return -EINVAL;
1170 }
1171 /* Allow missing IP_MAX. */
1172 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1173 memcpy(&info->range.max_addr, &info->range.min_addr,
1174 sizeof(info->range.max_addr));
1175 }
1176 /* Allow missing PROTO_MAX. */
1177 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1178 !have_proto_max) {
1179 info->range.max_proto.all = info->range.min_proto.all;
1180 }
1181 return 0;
1182}
1183#endif
1184
1185static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1186 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1187 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1188 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1189 .maxlen = sizeof(u16) },
1190 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1191 .maxlen = sizeof(struct md_mark) },
1192 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1193 .maxlen = sizeof(struct md_labels) },
1194 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1195 .maxlen = NF_CT_HELPER_NAME_LEN },
1196#if IS_ENABLED(CONFIG_NF_NAT)
1197 /* NAT length is checked when parsing the nested attributes. */
1198 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1199#endif
1200 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1201 .maxlen = sizeof(u32) },
1202 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1203 .maxlen = CTNL_TIMEOUT_NAME_MAX },
1204};
1205
1206static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1207 const char **helper, bool log)
1208{
1209 struct nlattr *a;
1210 int rem;
1211
1212 nla_for_each_nested(a, attr, rem) {
1213 int type = nla_type(a);
1214 int maxlen;
1215 int minlen;
1216
1217 if (type > OVS_CT_ATTR_MAX) {
1218 OVS_NLERR(log,
1219 "Unknown conntrack attr (type=%d, max=%d)",
1220 type, OVS_CT_ATTR_MAX);
1221 return -EINVAL;
1222 }
1223
1224 maxlen = ovs_ct_attr_lens[type].maxlen;
1225 minlen = ovs_ct_attr_lens[type].minlen;
1226 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1227 OVS_NLERR(log,
1228 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1229 type, nla_len(a), maxlen);
1230 return -EINVAL;
1231 }
1232
1233 switch (type) {
1234 case OVS_CT_ATTR_FORCE_COMMIT:
1235 info->force = true;
1236 fallthrough;
1237 case OVS_CT_ATTR_COMMIT:
1238 info->commit = true;
1239 break;
1240#ifdef CONFIG_NF_CONNTRACK_ZONES
1241 case OVS_CT_ATTR_ZONE:
1242 info->zone.id = nla_get_u16(a);
1243 break;
1244#endif
1245#ifdef CONFIG_NF_CONNTRACK_MARK
1246 case OVS_CT_ATTR_MARK: {
1247 struct md_mark *mark = nla_data(a);
1248
1249 if (!mark->mask) {
1250 OVS_NLERR(log, "ct_mark mask cannot be 0");
1251 return -EINVAL;
1252 }
1253 info->mark = *mark;
1254 break;
1255 }
1256#endif
1257#ifdef CONFIG_NF_CONNTRACK_LABELS
1258 case OVS_CT_ATTR_LABELS: {
1259 struct md_labels *labels = nla_data(a);
1260
1261 if (!labels_nonzero(&labels->mask)) {
1262 OVS_NLERR(log, "ct_labels mask cannot be 0");
1263 return -EINVAL;
1264 }
1265 info->labels = *labels;
1266 break;
1267 }
1268#endif
1269 case OVS_CT_ATTR_HELPER:
1270 *helper = nla_data(a);
1271 if (!string_is_terminated(*helper, nla_len(a))) {
1272 OVS_NLERR(log, "Invalid conntrack helper");
1273 return -EINVAL;
1274 }
1275 break;
1276#if IS_ENABLED(CONFIG_NF_NAT)
1277 case OVS_CT_ATTR_NAT: {
1278 int err = parse_nat(a, info, log);
1279
1280 if (err)
1281 return err;
1282 break;
1283 }
1284#endif
1285 case OVS_CT_ATTR_EVENTMASK:
1286 info->have_eventmask = true;
1287 info->eventmask = nla_get_u32(a);
1288 break;
1289#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1290 case OVS_CT_ATTR_TIMEOUT:
1291 memcpy(info->timeout, nla_data(a), nla_len(a));
1292 if (!string_is_terminated(info->timeout, nla_len(a))) {
1293 OVS_NLERR(log, "Invalid conntrack timeout");
1294 return -EINVAL;
1295 }
1296 break;
1297#endif
1298
1299 default:
1300 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1301 type);
1302 return -EINVAL;
1303 }
1304 }
1305
1306#ifdef CONFIG_NF_CONNTRACK_MARK
1307 if (!info->commit && info->mark.mask) {
1308 OVS_NLERR(log,
1309 "Setting conntrack mark requires 'commit' flag.");
1310 return -EINVAL;
1311 }
1312#endif
1313#ifdef CONFIG_NF_CONNTRACK_LABELS
1314 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1315 OVS_NLERR(log,
1316 "Setting conntrack labels requires 'commit' flag.");
1317 return -EINVAL;
1318 }
1319#endif
1320 if (rem > 0) {
1321 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1322 return -EINVAL;
1323 }
1324
1325 return 0;
1326}
1327
1328bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1329{
1330 if (attr == OVS_KEY_ATTR_CT_STATE)
1331 return true;
1332 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333 attr == OVS_KEY_ATTR_CT_ZONE)
1334 return true;
1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1336 attr == OVS_KEY_ATTR_CT_MARK)
1337 return true;
1338 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1339 attr == OVS_KEY_ATTR_CT_LABELS) {
1340 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1341
1342 return ovs_net->xt_label;
1343 }
1344
1345 return false;
1346}
1347
1348int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1349 const struct sw_flow_key *key,
1350 struct sw_flow_actions **sfa, bool log)
1351{
1352 struct ovs_conntrack_info ct_info;
1353 const char *helper = NULL;
1354 u16 family;
1355 int err;
1356
1357 family = key_to_nfproto(key);
1358 if (family == NFPROTO_UNSPEC) {
1359 OVS_NLERR(log, "ct family unspecified");
1360 return -EINVAL;
1361 }
1362
1363 memset(&ct_info, 0, sizeof(ct_info));
1364 ct_info.family = family;
1365
1366 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1367 NF_CT_DEFAULT_ZONE_DIR, 0);
1368
1369 err = parse_ct(attr, &ct_info, &helper, log);
1370 if (err)
1371 return err;
1372
1373 /* Set up template for tracking connections in specific zones. */
1374 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1375 if (!ct_info.ct) {
1376 OVS_NLERR(log, "Failed to allocate conntrack template");
1377 return -ENOMEM;
1378 }
1379
1380 if (ct_info.timeout[0]) {
1381 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1382 ct_info.timeout))
1383 pr_info_ratelimited("Failed to associated timeout "
1384 "policy `%s'\n", ct_info.timeout);
1385 else
1386 ct_info.nf_ct_timeout = rcu_dereference(
1387 nf_ct_timeout_find(ct_info.ct)->timeout);
1388
1389 }
1390
1391 if (helper) {
1392 err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family,
1393 key->ip.proto, ct_info.nat, &ct_info.helper);
1394 if (err) {
1395 OVS_NLERR(log, "Failed to add %s helper %d", helper, err);
1396 goto err_free_ct;
1397 }
1398 }
1399
1400 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1401 sizeof(ct_info), log);
1402 if (err)
1403 goto err_free_ct;
1404
1405 if (ct_info.commit)
1406 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1407 return 0;
1408err_free_ct:
1409 __ovs_ct_free_action(&ct_info);
1410 return err;
1411}
1412
1413#if IS_ENABLED(CONFIG_NF_NAT)
1414static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1415 struct sk_buff *skb)
1416{
1417 struct nlattr *start;
1418
1419 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1420 if (!start)
1421 return false;
1422
1423 if (info->nat & OVS_CT_SRC_NAT) {
1424 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1425 return false;
1426 } else if (info->nat & OVS_CT_DST_NAT) {
1427 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1428 return false;
1429 } else {
1430 goto out;
1431 }
1432
1433 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1434 if (IS_ENABLED(CONFIG_NF_NAT) &&
1435 info->family == NFPROTO_IPV4) {
1436 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1437 info->range.min_addr.ip) ||
1438 (info->range.max_addr.ip
1439 != info->range.min_addr.ip &&
1440 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1441 info->range.max_addr.ip))))
1442 return false;
1443 } else if (IS_ENABLED(CONFIG_IPV6) &&
1444 info->family == NFPROTO_IPV6) {
1445 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1446 &info->range.min_addr.in6) ||
1447 (memcmp(&info->range.max_addr.in6,
1448 &info->range.min_addr.in6,
1449 sizeof(info->range.max_addr.in6)) &&
1450 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1451 &info->range.max_addr.in6))))
1452 return false;
1453 } else {
1454 return false;
1455 }
1456 }
1457 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1458 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1459 ntohs(info->range.min_proto.all)) ||
1460 (info->range.max_proto.all != info->range.min_proto.all &&
1461 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1462 ntohs(info->range.max_proto.all)))))
1463 return false;
1464
1465 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1466 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1467 return false;
1468 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1469 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1470 return false;
1471 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1472 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1473 return false;
1474out:
1475 nla_nest_end(skb, start);
1476
1477 return true;
1478}
1479#endif
1480
1481int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1482 struct sk_buff *skb)
1483{
1484 struct nlattr *start;
1485
1486 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1487 if (!start)
1488 return -EMSGSIZE;
1489
1490 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1491 ? OVS_CT_ATTR_FORCE_COMMIT
1492 : OVS_CT_ATTR_COMMIT))
1493 return -EMSGSIZE;
1494 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1495 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1496 return -EMSGSIZE;
1497 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1498 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1499 &ct_info->mark))
1500 return -EMSGSIZE;
1501 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1502 labels_nonzero(&ct_info->labels.mask) &&
1503 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1504 &ct_info->labels))
1505 return -EMSGSIZE;
1506 if (ct_info->helper) {
1507 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1508 ct_info->helper->name))
1509 return -EMSGSIZE;
1510 }
1511 if (ct_info->have_eventmask &&
1512 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1513 return -EMSGSIZE;
1514 if (ct_info->timeout[0]) {
1515 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1516 return -EMSGSIZE;
1517 }
1518
1519#if IS_ENABLED(CONFIG_NF_NAT)
1520 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1521 return -EMSGSIZE;
1522#endif
1523 nla_nest_end(skb, start);
1524
1525 return 0;
1526}
1527
1528void ovs_ct_free_action(const struct nlattr *a)
1529{
1530 struct ovs_conntrack_info *ct_info = nla_data(a);
1531
1532 __ovs_ct_free_action(ct_info);
1533}
1534
1535static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1536{
1537 if (ct_info->helper) {
1538#if IS_ENABLED(CONFIG_NF_NAT)
1539 if (ct_info->nat)
1540 nf_nat_helper_put(ct_info->helper);
1541#endif
1542 nf_conntrack_helper_put(ct_info->helper);
1543 }
1544 if (ct_info->ct) {
1545 if (ct_info->timeout[0])
1546 nf_ct_destroy_timeout(ct_info->ct);
1547 nf_ct_tmpl_free(ct_info->ct);
1548 }
1549}
1550
1551#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1552static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1553{
1554 int i, err;
1555
1556 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1557 GFP_KERNEL);
1558 if (!ovs_net->ct_limit_info)
1559 return -ENOMEM;
1560
1561 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1562 ovs_net->ct_limit_info->limits =
1563 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1564 GFP_KERNEL);
1565 if (!ovs_net->ct_limit_info->limits) {
1566 kfree(ovs_net->ct_limit_info);
1567 return -ENOMEM;
1568 }
1569
1570 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1571 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1572
1573 ovs_net->ct_limit_info->data =
1574 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1575
1576 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1577 err = PTR_ERR(ovs_net->ct_limit_info->data);
1578 kfree(ovs_net->ct_limit_info->limits);
1579 kfree(ovs_net->ct_limit_info);
1580 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1581 return err;
1582 }
1583 return 0;
1584}
1585
1586static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1587{
1588 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1589 int i;
1590
1591 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1592 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1593 struct hlist_head *head = &info->limits[i];
1594 struct ovs_ct_limit *ct_limit;
1595
1596 hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1597 lockdep_ovsl_is_held())
1598 kfree_rcu(ct_limit, rcu);
1599 }
1600 kfree(info->limits);
1601 kfree(info);
1602}
1603
1604static struct sk_buff *
1605ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1606 struct ovs_header **ovs_reply_header)
1607{
1608 struct ovs_header *ovs_header = genl_info_userhdr(info);
1609 struct sk_buff *skb;
1610
1611 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1612 if (!skb)
1613 return ERR_PTR(-ENOMEM);
1614
1615 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1616 info->snd_seq,
1617 &dp_ct_limit_genl_family, 0, cmd);
1618
1619 if (!*ovs_reply_header) {
1620 nlmsg_free(skb);
1621 return ERR_PTR(-EMSGSIZE);
1622 }
1623 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1624
1625 return skb;
1626}
1627
1628static bool check_zone_id(int zone_id, u16 *pzone)
1629{
1630 if (zone_id >= 0 && zone_id <= 65535) {
1631 *pzone = (u16)zone_id;
1632 return true;
1633 }
1634 return false;
1635}
1636
1637static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1638 struct ovs_ct_limit_info *info)
1639{
1640 struct ovs_zone_limit *zone_limit;
1641 int rem;
1642 u16 zone;
1643
1644 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1645 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1646
1647 while (rem >= sizeof(*zone_limit)) {
1648 if (unlikely(zone_limit->zone_id ==
1649 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1650 ovs_lock();
1651 info->default_limit = zone_limit->limit;
1652 ovs_unlock();
1653 } else if (unlikely(!check_zone_id(
1654 zone_limit->zone_id, &zone))) {
1655 OVS_NLERR(true, "zone id is out of range");
1656 } else {
1657 struct ovs_ct_limit *ct_limit;
1658
1659 ct_limit = kmalloc(sizeof(*ct_limit),
1660 GFP_KERNEL_ACCOUNT);
1661 if (!ct_limit)
1662 return -ENOMEM;
1663
1664 ct_limit->zone = zone;
1665 ct_limit->limit = zone_limit->limit;
1666
1667 ovs_lock();
1668 ct_limit_set(info, ct_limit);
1669 ovs_unlock();
1670 }
1671 rem -= NLA_ALIGN(sizeof(*zone_limit));
1672 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1673 NLA_ALIGN(sizeof(*zone_limit)));
1674 }
1675
1676 if (rem)
1677 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1678
1679 return 0;
1680}
1681
1682static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1683 struct ovs_ct_limit_info *info)
1684{
1685 struct ovs_zone_limit *zone_limit;
1686 int rem;
1687 u16 zone;
1688
1689 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1690 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1691
1692 while (rem >= sizeof(*zone_limit)) {
1693 if (unlikely(zone_limit->zone_id ==
1694 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1695 ovs_lock();
1696 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1697 ovs_unlock();
1698 } else if (unlikely(!check_zone_id(
1699 zone_limit->zone_id, &zone))) {
1700 OVS_NLERR(true, "zone id is out of range");
1701 } else {
1702 ovs_lock();
1703 ct_limit_del(info, zone);
1704 ovs_unlock();
1705 }
1706 rem -= NLA_ALIGN(sizeof(*zone_limit));
1707 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1708 NLA_ALIGN(sizeof(*zone_limit)));
1709 }
1710
1711 if (rem)
1712 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1713
1714 return 0;
1715}
1716
1717static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1718 struct sk_buff *reply)
1719{
1720 struct ovs_zone_limit zone_limit = {
1721 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
1722 .limit = info->default_limit,
1723 };
1724
1725 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1726}
1727
1728static int __ovs_ct_limit_get_zone_limit(struct net *net,
1729 struct nf_conncount_data *data,
1730 u16 zone_id, u32 limit,
1731 struct sk_buff *reply)
1732{
1733 struct nf_conntrack_zone ct_zone;
1734 struct ovs_zone_limit zone_limit;
1735 u32 conncount_key = zone_id;
1736
1737 zone_limit.zone_id = zone_id;
1738 zone_limit.limit = limit;
1739 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1740
1741 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1742 &ct_zone);
1743 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1744}
1745
1746static int ovs_ct_limit_get_zone_limit(struct net *net,
1747 struct nlattr *nla_zone_limit,
1748 struct ovs_ct_limit_info *info,
1749 struct sk_buff *reply)
1750{
1751 struct ovs_zone_limit *zone_limit;
1752 int rem, err;
1753 u32 limit;
1754 u16 zone;
1755
1756 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1757 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1758
1759 while (rem >= sizeof(*zone_limit)) {
1760 if (unlikely(zone_limit->zone_id ==
1761 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1762 err = ovs_ct_limit_get_default_limit(info, reply);
1763 if (err)
1764 return err;
1765 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
1766 &zone))) {
1767 OVS_NLERR(true, "zone id is out of range");
1768 } else {
1769 rcu_read_lock();
1770 limit = ct_limit_get(info, zone);
1771 rcu_read_unlock();
1772
1773 err = __ovs_ct_limit_get_zone_limit(
1774 net, info->data, zone, limit, reply);
1775 if (err)
1776 return err;
1777 }
1778 rem -= NLA_ALIGN(sizeof(*zone_limit));
1779 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1780 NLA_ALIGN(sizeof(*zone_limit)));
1781 }
1782
1783 if (rem)
1784 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
1785
1786 return 0;
1787}
1788
1789static int ovs_ct_limit_get_all_zone_limit(struct net *net,
1790 struct ovs_ct_limit_info *info,
1791 struct sk_buff *reply)
1792{
1793 struct ovs_ct_limit *ct_limit;
1794 struct hlist_head *head;
1795 int i, err = 0;
1796
1797 err = ovs_ct_limit_get_default_limit(info, reply);
1798 if (err)
1799 return err;
1800
1801 rcu_read_lock();
1802 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1803 head = &info->limits[i];
1804 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1805 err = __ovs_ct_limit_get_zone_limit(net, info->data,
1806 ct_limit->zone, ct_limit->limit, reply);
1807 if (err)
1808 goto exit_err;
1809 }
1810 }
1811
1812exit_err:
1813 rcu_read_unlock();
1814 return err;
1815}
1816
1817static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
1818{
1819 struct nlattr **a = info->attrs;
1820 struct sk_buff *reply;
1821 struct ovs_header *ovs_reply_header;
1822 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1823 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1824 int err;
1825
1826 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
1827 &ovs_reply_header);
1828 if (IS_ERR(reply))
1829 return PTR_ERR(reply);
1830
1831 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1832 err = -EINVAL;
1833 goto exit_err;
1834 }
1835
1836 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1837 ct_limit_info);
1838 if (err)
1839 goto exit_err;
1840
1841 static_branch_enable(&ovs_ct_limit_enabled);
1842
1843 genlmsg_end(reply, ovs_reply_header);
1844 return genlmsg_reply(reply, info);
1845
1846exit_err:
1847 nlmsg_free(reply);
1848 return err;
1849}
1850
1851static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
1852{
1853 struct nlattr **a = info->attrs;
1854 struct sk_buff *reply;
1855 struct ovs_header *ovs_reply_header;
1856 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1857 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1858 int err;
1859
1860 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
1861 &ovs_reply_header);
1862 if (IS_ERR(reply))
1863 return PTR_ERR(reply);
1864
1865 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1866 err = -EINVAL;
1867 goto exit_err;
1868 }
1869
1870 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1871 ct_limit_info);
1872 if (err)
1873 goto exit_err;
1874
1875 genlmsg_end(reply, ovs_reply_header);
1876 return genlmsg_reply(reply, info);
1877
1878exit_err:
1879 nlmsg_free(reply);
1880 return err;
1881}
1882
1883static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
1884{
1885 struct nlattr **a = info->attrs;
1886 struct nlattr *nla_reply;
1887 struct sk_buff *reply;
1888 struct ovs_header *ovs_reply_header;
1889 struct net *net = sock_net(skb->sk);
1890 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1891 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1892 int err;
1893
1894 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
1895 &ovs_reply_header);
1896 if (IS_ERR(reply))
1897 return PTR_ERR(reply);
1898
1899 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
1900 if (!nla_reply) {
1901 err = -EMSGSIZE;
1902 goto exit_err;
1903 }
1904
1905 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1906 err = ovs_ct_limit_get_zone_limit(
1907 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
1908 reply);
1909 if (err)
1910 goto exit_err;
1911 } else {
1912 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
1913 reply);
1914 if (err)
1915 goto exit_err;
1916 }
1917
1918 nla_nest_end(reply, nla_reply);
1919 genlmsg_end(reply, ovs_reply_header);
1920 return genlmsg_reply(reply, info);
1921
1922exit_err:
1923 nlmsg_free(reply);
1924 return err;
1925}
1926
1927static const struct genl_small_ops ct_limit_genl_ops[] = {
1928 { .cmd = OVS_CT_LIMIT_CMD_SET,
1929 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1930 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1931 * privilege.
1932 */
1933 .doit = ovs_ct_limit_cmd_set,
1934 },
1935 { .cmd = OVS_CT_LIMIT_CMD_DEL,
1936 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1937 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1938 * privilege.
1939 */
1940 .doit = ovs_ct_limit_cmd_del,
1941 },
1942 { .cmd = OVS_CT_LIMIT_CMD_GET,
1943 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1944 .flags = 0, /* OK for unprivileged users. */
1945 .doit = ovs_ct_limit_cmd_get,
1946 },
1947};
1948
1949static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
1950 .name = OVS_CT_LIMIT_MCGROUP,
1951};
1952
1953struct genl_family dp_ct_limit_genl_family __ro_after_init = {
1954 .hdrsize = sizeof(struct ovs_header),
1955 .name = OVS_CT_LIMIT_FAMILY,
1956 .version = OVS_CT_LIMIT_VERSION,
1957 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
1958 .policy = ct_limit_policy,
1959 .netnsok = true,
1960 .parallel_ops = true,
1961 .small_ops = ct_limit_genl_ops,
1962 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
1963 .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1,
1964 .mcgrps = &ovs_ct_limit_multicast_group,
1965 .n_mcgrps = 1,
1966 .module = THIS_MODULE,
1967};
1968#endif
1969
1970int ovs_ct_init(struct net *net)
1971{
1972 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1973 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1974
1975 if (nf_connlabels_get(net, n_bits - 1)) {
1976 ovs_net->xt_label = false;
1977 OVS_NLERR(true, "Failed to set connlabel length");
1978 } else {
1979 ovs_net->xt_label = true;
1980 }
1981
1982#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1983 return ovs_ct_limit_init(net, ovs_net);
1984#else
1985 return 0;
1986#endif
1987}
1988
1989void ovs_ct_exit(struct net *net)
1990{
1991 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1992
1993#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1994 ovs_ct_limit_exit(net, ovs_net);
1995#endif
1996
1997 if (ovs_net->xt_label)
1998 nf_connlabels_put(net);
1999}