Loading...
1/*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14#include <linux/module.h>
15#include <linux/openvswitch.h>
16#include <linux/tcp.h>
17#include <linux/udp.h>
18#include <linux/sctp.h>
19#include <net/ip.h>
20#include <net/netfilter/nf_conntrack_core.h>
21#include <net/netfilter/nf_conntrack_helper.h>
22#include <net/netfilter/nf_conntrack_labels.h>
23#include <net/netfilter/nf_conntrack_seqadj.h>
24#include <net/netfilter/nf_conntrack_zones.h>
25#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27#ifdef CONFIG_NF_NAT_NEEDED
28#include <linux/netfilter/nf_nat.h>
29#include <net/netfilter/nf_nat_core.h>
30#include <net/netfilter/nf_nat_l3proto.h>
31#endif
32
33#include "datapath.h"
34#include "conntrack.h"
35#include "flow.h"
36#include "flow_netlink.h"
37
38struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41};
42
43/* Metadata mark for masked write to conntrack mark */
44struct md_mark {
45 u32 value;
46 u32 mask;
47};
48
49/* Metadata label for masked write to conntrack label. */
50struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53};
54
55enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59};
60
61/* Conntrack action context for execution. */
62struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71#ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73#endif
74};
75
76static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78static u16 key_to_nfproto(const struct sw_flow_key *key)
79{
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88}
89
90/* Map SKB connection state into the values used by flow definition. */
91static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92{
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121}
122
123static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124{
125#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127#else
128 return 0;
129#endif
130}
131
132static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134{
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = sizeof(cl->bits);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148}
149
150static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153{
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158}
159
160/* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169{
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201}
202
203/* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207{
208 ovs_ct_update_key(skb, NULL, key, false, false);
209}
210
211int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212{
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230}
231
232static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234{
235#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253#else
254 return -ENOTSUPP;
255#endif
256}
257
258static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261{
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287}
288
289/* 'skb' should already be pulled to nh_ofs. */
290static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291{
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346}
347
348/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353{
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
371 err = nf_ct_frag6_gather(net, skb, user);
372 if (err) {
373 if (err != -EINPROGRESS)
374 kfree_skb(skb);
375 return err;
376 }
377
378 key->ip.proto = ipv6_hdr(skb)->nexthdr;
379 ovs_cb.mru = IP6CB(skb)->frag_max_size;
380#endif
381 } else {
382 kfree_skb(skb);
383 return -EPFNOSUPPORT;
384 }
385
386 key->ip.frag = OVS_FRAG_TYPE_NONE;
387 skb_clear_hash(skb);
388 skb->ignore_df = 1;
389 *OVS_CB(skb) = ovs_cb;
390
391 return 0;
392}
393
394static struct nf_conntrack_expect *
395ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
396 u16 proto, const struct sk_buff *skb)
397{
398 struct nf_conntrack_tuple tuple;
399
400 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
401 return NULL;
402 return __nf_ct_expect_find(net, zone, &tuple);
403}
404
405/* This replicates logic from nf_conntrack_core.c that is not exported. */
406static enum ip_conntrack_info
407ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
408{
409 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
410
411 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
412 return IP_CT_ESTABLISHED_REPLY;
413 /* Once we've had two way comms, always ESTABLISHED. */
414 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
415 return IP_CT_ESTABLISHED;
416 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
417 return IP_CT_RELATED;
418 return IP_CT_NEW;
419}
420
421/* Find an existing connection which this packet belongs to without
422 * re-attributing statistics or modifying the connection state. This allows an
423 * skb->nfct lost due to an upcall to be recovered during actions execution.
424 *
425 * Must be called with rcu_read_lock.
426 *
427 * On success, populates skb->nfct and skb->nfctinfo, and returns the
428 * connection. Returns NULL if there is no existing entry.
429 */
430static struct nf_conn *
431ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
432 u8 l3num, struct sk_buff *skb)
433{
434 struct nf_conntrack_l3proto *l3proto;
435 struct nf_conntrack_l4proto *l4proto;
436 struct nf_conntrack_tuple tuple;
437 struct nf_conntrack_tuple_hash *h;
438 struct nf_conn *ct;
439 unsigned int dataoff;
440 u8 protonum;
441
442 l3proto = __nf_ct_l3proto_find(l3num);
443 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
444 &protonum) <= 0) {
445 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
446 return NULL;
447 }
448 l4proto = __nf_ct_l4proto_find(l3num, protonum);
449 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
450 protonum, net, &tuple, l3proto, l4proto)) {
451 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
452 return NULL;
453 }
454
455 /* look for tuple match */
456 h = nf_conntrack_find_get(net, zone, &tuple);
457 if (!h)
458 return NULL; /* Not found. */
459
460 ct = nf_ct_tuplehash_to_ctrack(h);
461
462 skb->nfct = &ct->ct_general;
463 skb->nfctinfo = ovs_ct_get_info(h);
464 return ct;
465}
466
467/* Determine whether skb->nfct is equal to the result of conntrack lookup. */
468static bool skb_nfct_cached(struct net *net,
469 const struct sw_flow_key *key,
470 const struct ovs_conntrack_info *info,
471 struct sk_buff *skb)
472{
473 enum ip_conntrack_info ctinfo;
474 struct nf_conn *ct;
475
476 ct = nf_ct_get(skb, &ctinfo);
477 /* If no ct, check if we have evidence that an existing conntrack entry
478 * might be found for this skb. This happens when we lose a skb->nfct
479 * due to an upcall. If the connection was not confirmed, it is not
480 * cached and needs to be run through conntrack again.
481 */
482 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
483 !(key->ct.state & OVS_CS_F_INVALID) &&
484 key->ct.zone == info->zone.id)
485 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
486 if (!ct)
487 return false;
488 if (!net_eq(net, read_pnet(&ct->ct_net)))
489 return false;
490 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
491 return false;
492 if (info->helper) {
493 struct nf_conn_help *help;
494
495 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
496 if (help && rcu_access_pointer(help->helper) != info->helper)
497 return false;
498 }
499
500 return true;
501}
502
503#ifdef CONFIG_NF_NAT_NEEDED
504/* Modelled after nf_nat_ipv[46]_fn().
505 * range is only used for new, uninitialized NAT state.
506 * Returns either NF_ACCEPT or NF_DROP.
507 */
508static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
509 enum ip_conntrack_info ctinfo,
510 const struct nf_nat_range *range,
511 enum nf_nat_manip_type maniptype)
512{
513 int hooknum, nh_off, err = NF_ACCEPT;
514
515 nh_off = skb_network_offset(skb);
516 skb_pull_rcsum(skb, nh_off);
517
518 /* See HOOK2MANIP(). */
519 if (maniptype == NF_NAT_MANIP_SRC)
520 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
521 else
522 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
523
524 switch (ctinfo) {
525 case IP_CT_RELATED:
526 case IP_CT_RELATED_REPLY:
527 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
528 skb->protocol == htons(ETH_P_IP) &&
529 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
530 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
531 hooknum))
532 err = NF_DROP;
533 goto push;
534 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
535 skb->protocol == htons(ETH_P_IPV6)) {
536 __be16 frag_off;
537 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
538 int hdrlen = ipv6_skip_exthdr(skb,
539 sizeof(struct ipv6hdr),
540 &nexthdr, &frag_off);
541
542 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
543 if (!nf_nat_icmpv6_reply_translation(skb, ct,
544 ctinfo,
545 hooknum,
546 hdrlen))
547 err = NF_DROP;
548 goto push;
549 }
550 }
551 /* Non-ICMP, fall thru to initialize if needed. */
552 case IP_CT_NEW:
553 /* Seen it before? This can happen for loopback, retrans,
554 * or local packets.
555 */
556 if (!nf_nat_initialized(ct, maniptype)) {
557 /* Initialize according to the NAT action. */
558 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
559 /* Action is set up to establish a new
560 * mapping.
561 */
562 ? nf_nat_setup_info(ct, range, maniptype)
563 : nf_nat_alloc_null_binding(ct, hooknum);
564 if (err != NF_ACCEPT)
565 goto push;
566 }
567 break;
568
569 case IP_CT_ESTABLISHED:
570 case IP_CT_ESTABLISHED_REPLY:
571 break;
572
573 default:
574 err = NF_DROP;
575 goto push;
576 }
577
578 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
579push:
580 skb_push(skb, nh_off);
581 skb_postpush_rcsum(skb, skb->data, nh_off);
582
583 return err;
584}
585
586static void ovs_nat_update_key(struct sw_flow_key *key,
587 const struct sk_buff *skb,
588 enum nf_nat_manip_type maniptype)
589{
590 if (maniptype == NF_NAT_MANIP_SRC) {
591 __be16 src;
592
593 key->ct.state |= OVS_CS_F_SRC_NAT;
594 if (key->eth.type == htons(ETH_P_IP))
595 key->ipv4.addr.src = ip_hdr(skb)->saddr;
596 else if (key->eth.type == htons(ETH_P_IPV6))
597 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
598 sizeof(key->ipv6.addr.src));
599 else
600 return;
601
602 if (key->ip.proto == IPPROTO_UDP)
603 src = udp_hdr(skb)->source;
604 else if (key->ip.proto == IPPROTO_TCP)
605 src = tcp_hdr(skb)->source;
606 else if (key->ip.proto == IPPROTO_SCTP)
607 src = sctp_hdr(skb)->source;
608 else
609 return;
610
611 key->tp.src = src;
612 } else {
613 __be16 dst;
614
615 key->ct.state |= OVS_CS_F_DST_NAT;
616 if (key->eth.type == htons(ETH_P_IP))
617 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
618 else if (key->eth.type == htons(ETH_P_IPV6))
619 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
620 sizeof(key->ipv6.addr.dst));
621 else
622 return;
623
624 if (key->ip.proto == IPPROTO_UDP)
625 dst = udp_hdr(skb)->dest;
626 else if (key->ip.proto == IPPROTO_TCP)
627 dst = tcp_hdr(skb)->dest;
628 else if (key->ip.proto == IPPROTO_SCTP)
629 dst = sctp_hdr(skb)->dest;
630 else
631 return;
632
633 key->tp.dst = dst;
634 }
635}
636
637/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
638static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
639 const struct ovs_conntrack_info *info,
640 struct sk_buff *skb, struct nf_conn *ct,
641 enum ip_conntrack_info ctinfo)
642{
643 enum nf_nat_manip_type maniptype;
644 int err;
645
646 if (nf_ct_is_untracked(ct)) {
647 /* A NAT action may only be performed on tracked packets. */
648 return NF_ACCEPT;
649 }
650
651 /* Add NAT extension if not confirmed yet. */
652 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
653 return NF_ACCEPT; /* Can't NAT. */
654
655 /* Determine NAT type.
656 * Check if the NAT type can be deduced from the tracked connection.
657 * Make sure new expected connections (IP_CT_RELATED) are NATted only
658 * when committing.
659 */
660 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
661 ct->status & IPS_NAT_MASK &&
662 (ctinfo != IP_CT_RELATED || info->commit)) {
663 /* NAT an established or related connection like before. */
664 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
665 /* This is the REPLY direction for a connection
666 * for which NAT was applied in the forward
667 * direction. Do the reverse NAT.
668 */
669 maniptype = ct->status & IPS_SRC_NAT
670 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
671 else
672 maniptype = ct->status & IPS_SRC_NAT
673 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
674 } else if (info->nat & OVS_CT_SRC_NAT) {
675 maniptype = NF_NAT_MANIP_SRC;
676 } else if (info->nat & OVS_CT_DST_NAT) {
677 maniptype = NF_NAT_MANIP_DST;
678 } else {
679 return NF_ACCEPT; /* Connection is not NATed. */
680 }
681 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
682
683 /* Mark NAT done if successful and update the flow key. */
684 if (err == NF_ACCEPT)
685 ovs_nat_update_key(key, skb, maniptype);
686
687 return err;
688}
689#else /* !CONFIG_NF_NAT_NEEDED */
690static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
691 const struct ovs_conntrack_info *info,
692 struct sk_buff *skb, struct nf_conn *ct,
693 enum ip_conntrack_info ctinfo)
694{
695 return NF_ACCEPT;
696}
697#endif
698
699/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
700 * not done already. Update key with new CT state after passing the packet
701 * through conntrack.
702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
703 * set to NULL and 0 will be returned.
704 */
705static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
706 const struct ovs_conntrack_info *info,
707 struct sk_buff *skb)
708{
709 /* If we are recirculating packets to match on conntrack fields and
710 * committing with a separate conntrack action, then we don't need to
711 * actually run the packet through conntrack twice unless it's for a
712 * different zone.
713 */
714 bool cached = skb_nfct_cached(net, key, info, skb);
715 enum ip_conntrack_info ctinfo;
716 struct nf_conn *ct;
717
718 if (!cached) {
719 struct nf_conn *tmpl = info->ct;
720 int err;
721
722 /* Associate skb with specified zone. */
723 if (tmpl) {
724 if (skb->nfct)
725 nf_conntrack_put(skb->nfct);
726 nf_conntrack_get(&tmpl->ct_general);
727 skb->nfct = &tmpl->ct_general;
728 skb->nfctinfo = IP_CT_NEW;
729 }
730
731 err = nf_conntrack_in(net, info->family,
732 NF_INET_PRE_ROUTING, skb);
733 if (err != NF_ACCEPT)
734 return -ENOENT;
735
736 /* Clear CT state NAT flags to mark that we have not yet done
737 * NAT after the nf_conntrack_in() call. We can actually clear
738 * the whole state, as it will be re-initialized below.
739 */
740 key->ct.state = 0;
741
742 /* Update the key, but keep the NAT flags. */
743 ovs_ct_update_key(skb, info, key, true, true);
744 }
745
746 ct = nf_ct_get(skb, &ctinfo);
747 if (ct) {
748 /* Packets starting a new connection must be NATted before the
749 * helper, so that the helper knows about the NAT. We enforce
750 * this by delaying both NAT and helper calls for unconfirmed
751 * connections until the committing CT action. For later
752 * packets NAT and Helper may be called in either order.
753 *
754 * NAT will be done only if the CT action has NAT, and only
755 * once per packet (per zone), as guarded by the NAT bits in
756 * the key->ct.state.
757 */
758 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
759 (nf_ct_is_confirmed(ct) || info->commit) &&
760 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
761 return -EINVAL;
762 }
763
764 /* Userspace may decide to perform a ct lookup without a helper
765 * specified followed by a (recirculate and) commit with one.
766 * Therefore, for unconfirmed connections which we will commit,
767 * we need to attach the helper here.
768 */
769 if (!nf_ct_is_confirmed(ct) && info->commit &&
770 info->helper && !nfct_help(ct)) {
771 int err = __nf_ct_try_assign_helper(ct, info->ct,
772 GFP_ATOMIC);
773 if (err)
774 return err;
775 }
776
777 /* Call the helper only if:
778 * - nf_conntrack_in() was executed above ("!cached") for a
779 * confirmed connection, or
780 * - When committing an unconfirmed connection.
781 */
782 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
783 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
784 return -EINVAL;
785 }
786 }
787
788 return 0;
789}
790
791/* Lookup connection and read fields into key. */
792static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
793 const struct ovs_conntrack_info *info,
794 struct sk_buff *skb)
795{
796 struct nf_conntrack_expect *exp;
797
798 /* If we pass an expected packet through nf_conntrack_in() the
799 * expectation is typically removed, but the packet could still be
800 * lost in upcall processing. To prevent this from happening we
801 * perform an explicit expectation lookup. Expected connections are
802 * always new, and will be passed through conntrack only when they are
803 * committed, as it is OK to remove the expectation at that time.
804 */
805 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
806 if (exp) {
807 u8 state;
808
809 /* NOTE: New connections are NATted and Helped only when
810 * committed, so we are not calling into NAT here.
811 */
812 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
813 __ovs_ct_update_key(key, state, &info->zone, exp->master);
814 } else {
815 struct nf_conn *ct;
816 int err;
817
818 err = __ovs_ct_lookup(net, key, info, skb);
819 if (err)
820 return err;
821
822 ct = (struct nf_conn *)skb->nfct;
823 if (ct)
824 nf_ct_deliver_cached_events(ct);
825 }
826
827 return 0;
828}
829
830static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
831{
832 size_t i;
833
834 for (i = 0; i < sizeof(*labels); i++)
835 if (labels->ct_labels[i])
836 return true;
837
838 return false;
839}
840
841/* Lookup connection and confirm if unconfirmed. */
842static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
843 const struct ovs_conntrack_info *info,
844 struct sk_buff *skb)
845{
846 int err;
847
848 err = __ovs_ct_lookup(net, key, info, skb);
849 if (err)
850 return err;
851
852 /* Apply changes before confirming the connection so that the initial
853 * conntrack NEW netlink event carries the values given in the CT
854 * action.
855 */
856 if (info->mark.mask) {
857 err = ovs_ct_set_mark(skb, key, info->mark.value,
858 info->mark.mask);
859 if (err)
860 return err;
861 }
862 if (labels_nonzero(&info->labels.mask)) {
863 err = ovs_ct_set_labels(skb, key, &info->labels.value,
864 &info->labels.mask);
865 if (err)
866 return err;
867 }
868 /* This will take care of sending queued events even if the connection
869 * is already confirmed.
870 */
871 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
872 return -EINVAL;
873
874 return 0;
875}
876
877/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
878 * value if 'skb' is freed.
879 */
880int ovs_ct_execute(struct net *net, struct sk_buff *skb,
881 struct sw_flow_key *key,
882 const struct ovs_conntrack_info *info)
883{
884 int nh_ofs;
885 int err;
886
887 /* The conntrack module expects to be working at L3. */
888 nh_ofs = skb_network_offset(skb);
889 skb_pull_rcsum(skb, nh_ofs);
890
891 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
892 err = handle_fragments(net, key, info->zone.id, skb);
893 if (err)
894 return err;
895 }
896
897 if (info->commit)
898 err = ovs_ct_commit(net, key, info, skb);
899 else
900 err = ovs_ct_lookup(net, key, info, skb);
901
902 skb_push(skb, nh_ofs);
903 skb_postpush_rcsum(skb, skb->data, nh_ofs);
904 if (err)
905 kfree_skb(skb);
906 return err;
907}
908
909static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
910 const struct sw_flow_key *key, bool log)
911{
912 struct nf_conntrack_helper *helper;
913 struct nf_conn_help *help;
914
915 helper = nf_conntrack_helper_try_module_get(name, info->family,
916 key->ip.proto);
917 if (!helper) {
918 OVS_NLERR(log, "Unknown helper \"%s\"", name);
919 return -EINVAL;
920 }
921
922 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
923 if (!help) {
924 module_put(helper->me);
925 return -ENOMEM;
926 }
927
928 rcu_assign_pointer(help->helper, helper);
929 info->helper = helper;
930 return 0;
931}
932
933#ifdef CONFIG_NF_NAT_NEEDED
934static int parse_nat(const struct nlattr *attr,
935 struct ovs_conntrack_info *info, bool log)
936{
937 struct nlattr *a;
938 int rem;
939 bool have_ip_max = false;
940 bool have_proto_max = false;
941 bool ip_vers = (info->family == NFPROTO_IPV6);
942
943 nla_for_each_nested(a, attr, rem) {
944 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
945 [OVS_NAT_ATTR_SRC] = {0, 0},
946 [OVS_NAT_ATTR_DST] = {0, 0},
947 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
948 sizeof(struct in6_addr)},
949 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
950 sizeof(struct in6_addr)},
951 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
952 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
953 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
954 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
955 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
956 };
957 int type = nla_type(a);
958
959 if (type > OVS_NAT_ATTR_MAX) {
960 OVS_NLERR(log,
961 "Unknown NAT attribute (type=%d, max=%d).\n",
962 type, OVS_NAT_ATTR_MAX);
963 return -EINVAL;
964 }
965
966 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
967 OVS_NLERR(log,
968 "NAT attribute type %d has unexpected length (%d != %d).\n",
969 type, nla_len(a),
970 ovs_nat_attr_lens[type][ip_vers]);
971 return -EINVAL;
972 }
973
974 switch (type) {
975 case OVS_NAT_ATTR_SRC:
976 case OVS_NAT_ATTR_DST:
977 if (info->nat) {
978 OVS_NLERR(log,
979 "Only one type of NAT may be specified.\n"
980 );
981 return -ERANGE;
982 }
983 info->nat |= OVS_CT_NAT;
984 info->nat |= ((type == OVS_NAT_ATTR_SRC)
985 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
986 break;
987
988 case OVS_NAT_ATTR_IP_MIN:
989 nla_memcpy(&info->range.min_addr, a,
990 sizeof(info->range.min_addr));
991 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
992 break;
993
994 case OVS_NAT_ATTR_IP_MAX:
995 have_ip_max = true;
996 nla_memcpy(&info->range.max_addr, a,
997 sizeof(info->range.max_addr));
998 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
999 break;
1000
1001 case OVS_NAT_ATTR_PROTO_MIN:
1002 info->range.min_proto.all = htons(nla_get_u16(a));
1003 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004 break;
1005
1006 case OVS_NAT_ATTR_PROTO_MAX:
1007 have_proto_max = true;
1008 info->range.max_proto.all = htons(nla_get_u16(a));
1009 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010 break;
1011
1012 case OVS_NAT_ATTR_PERSISTENT:
1013 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014 break;
1015
1016 case OVS_NAT_ATTR_PROTO_HASH:
1017 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018 break;
1019
1020 case OVS_NAT_ATTR_PROTO_RANDOM:
1021 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022 break;
1023
1024 default:
1025 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026 return -EINVAL;
1027 }
1028 }
1029
1030 if (rem > 0) {
1031 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032 return -EINVAL;
1033 }
1034 if (!info->nat) {
1035 /* Do not allow flags if no type is given. */
1036 if (info->range.flags) {
1037 OVS_NLERR(log,
1038 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039 );
1040 return -EINVAL;
1041 }
1042 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1043 } else if (!info->commit) {
1044 OVS_NLERR(log,
1045 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046 );
1047 return -EINVAL;
1048 }
1049 /* Allow missing IP_MAX. */
1050 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051 memcpy(&info->range.max_addr, &info->range.min_addr,
1052 sizeof(info->range.max_addr));
1053 }
1054 /* Allow missing PROTO_MAX. */
1055 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056 !have_proto_max) {
1057 info->range.max_proto.all = info->range.min_proto.all;
1058 }
1059 return 0;
1060}
1061#endif
1062
1063static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1065 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1066 .maxlen = sizeof(u16) },
1067 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1068 .maxlen = sizeof(struct md_mark) },
1069 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1070 .maxlen = sizeof(struct md_labels) },
1071 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1072 .maxlen = NF_CT_HELPER_NAME_LEN },
1073#ifdef CONFIG_NF_NAT_NEEDED
1074 /* NAT length is checked when parsing the nested attributes. */
1075 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1076#endif
1077};
1078
1079static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080 const char **helper, bool log)
1081{
1082 struct nlattr *a;
1083 int rem;
1084
1085 nla_for_each_nested(a, attr, rem) {
1086 int type = nla_type(a);
1087 int maxlen = ovs_ct_attr_lens[type].maxlen;
1088 int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090 if (type > OVS_CT_ATTR_MAX) {
1091 OVS_NLERR(log,
1092 "Unknown conntrack attr (type=%d, max=%d)",
1093 type, OVS_CT_ATTR_MAX);
1094 return -EINVAL;
1095 }
1096 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097 OVS_NLERR(log,
1098 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099 type, nla_len(a), maxlen);
1100 return -EINVAL;
1101 }
1102
1103 switch (type) {
1104 case OVS_CT_ATTR_COMMIT:
1105 info->commit = true;
1106 break;
1107#ifdef CONFIG_NF_CONNTRACK_ZONES
1108 case OVS_CT_ATTR_ZONE:
1109 info->zone.id = nla_get_u16(a);
1110 break;
1111#endif
1112#ifdef CONFIG_NF_CONNTRACK_MARK
1113 case OVS_CT_ATTR_MARK: {
1114 struct md_mark *mark = nla_data(a);
1115
1116 if (!mark->mask) {
1117 OVS_NLERR(log, "ct_mark mask cannot be 0");
1118 return -EINVAL;
1119 }
1120 info->mark = *mark;
1121 break;
1122 }
1123#endif
1124#ifdef CONFIG_NF_CONNTRACK_LABELS
1125 case OVS_CT_ATTR_LABELS: {
1126 struct md_labels *labels = nla_data(a);
1127
1128 if (!labels_nonzero(&labels->mask)) {
1129 OVS_NLERR(log, "ct_labels mask cannot be 0");
1130 return -EINVAL;
1131 }
1132 info->labels = *labels;
1133 break;
1134 }
1135#endif
1136 case OVS_CT_ATTR_HELPER:
1137 *helper = nla_data(a);
1138 if (!memchr(*helper, '\0', nla_len(a))) {
1139 OVS_NLERR(log, "Invalid conntrack helper");
1140 return -EINVAL;
1141 }
1142 break;
1143#ifdef CONFIG_NF_NAT_NEEDED
1144 case OVS_CT_ATTR_NAT: {
1145 int err = parse_nat(a, info, log);
1146
1147 if (err)
1148 return err;
1149 break;
1150 }
1151#endif
1152 default:
1153 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154 type);
1155 return -EINVAL;
1156 }
1157 }
1158
1159#ifdef CONFIG_NF_CONNTRACK_MARK
1160 if (!info->commit && info->mark.mask) {
1161 OVS_NLERR(log,
1162 "Setting conntrack mark requires 'commit' flag.");
1163 return -EINVAL;
1164 }
1165#endif
1166#ifdef CONFIG_NF_CONNTRACK_LABELS
1167 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168 OVS_NLERR(log,
1169 "Setting conntrack labels requires 'commit' flag.");
1170 return -EINVAL;
1171 }
1172#endif
1173 if (rem > 0) {
1174 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179}
1180
1181bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182{
1183 if (attr == OVS_KEY_ATTR_CT_STATE)
1184 return true;
1185 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186 attr == OVS_KEY_ATTR_CT_ZONE)
1187 return true;
1188 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189 attr == OVS_KEY_ATTR_CT_MARK)
1190 return true;
1191 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192 attr == OVS_KEY_ATTR_CT_LABELS) {
1193 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195 return ovs_net->xt_label;
1196 }
1197
1198 return false;
1199}
1200
1201int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202 const struct sw_flow_key *key,
1203 struct sw_flow_actions **sfa, bool log)
1204{
1205 struct ovs_conntrack_info ct_info;
1206 const char *helper = NULL;
1207 u16 family;
1208 int err;
1209
1210 family = key_to_nfproto(key);
1211 if (family == NFPROTO_UNSPEC) {
1212 OVS_NLERR(log, "ct family unspecified");
1213 return -EINVAL;
1214 }
1215
1216 memset(&ct_info, 0, sizeof(ct_info));
1217 ct_info.family = family;
1218
1219 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220 NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222 err = parse_ct(attr, &ct_info, &helper, log);
1223 if (err)
1224 return err;
1225
1226 /* Set up template for tracking connections in specific zones. */
1227 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228 if (!ct_info.ct) {
1229 OVS_NLERR(log, "Failed to allocate conntrack template");
1230 return -ENOMEM;
1231 }
1232
1233 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234 nf_conntrack_get(&ct_info.ct->ct_general);
1235
1236 if (helper) {
1237 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238 if (err)
1239 goto err_free_ct;
1240 }
1241
1242 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243 sizeof(ct_info), log);
1244 if (err)
1245 goto err_free_ct;
1246
1247 return 0;
1248err_free_ct:
1249 __ovs_ct_free_action(&ct_info);
1250 return err;
1251}
1252
1253#ifdef CONFIG_NF_NAT_NEEDED
1254static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255 struct sk_buff *skb)
1256{
1257 struct nlattr *start;
1258
1259 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260 if (!start)
1261 return false;
1262
1263 if (info->nat & OVS_CT_SRC_NAT) {
1264 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265 return false;
1266 } else if (info->nat & OVS_CT_DST_NAT) {
1267 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268 return false;
1269 } else {
1270 goto out;
1271 }
1272
1273 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275 info->family == NFPROTO_IPV4) {
1276 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277 info->range.min_addr.ip) ||
1278 (info->range.max_addr.ip
1279 != info->range.min_addr.ip &&
1280 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281 info->range.max_addr.ip))))
1282 return false;
1283 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284 info->family == NFPROTO_IPV6) {
1285 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286 &info->range.min_addr.in6) ||
1287 (memcmp(&info->range.max_addr.in6,
1288 &info->range.min_addr.in6,
1289 sizeof(info->range.max_addr.in6)) &&
1290 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291 &info->range.max_addr.in6))))
1292 return false;
1293 } else {
1294 return false;
1295 }
1296 }
1297 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299 ntohs(info->range.min_proto.all)) ||
1300 (info->range.max_proto.all != info->range.min_proto.all &&
1301 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302 ntohs(info->range.max_proto.all)))))
1303 return false;
1304
1305 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307 return false;
1308 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310 return false;
1311 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313 return false;
1314out:
1315 nla_nest_end(skb, start);
1316
1317 return true;
1318}
1319#endif
1320
1321int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322 struct sk_buff *skb)
1323{
1324 struct nlattr *start;
1325
1326 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327 if (!start)
1328 return -EMSGSIZE;
1329
1330 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1331 return -EMSGSIZE;
1332 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334 return -EMSGSIZE;
1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337 &ct_info->mark))
1338 return -EMSGSIZE;
1339 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340 labels_nonzero(&ct_info->labels.mask) &&
1341 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342 &ct_info->labels))
1343 return -EMSGSIZE;
1344 if (ct_info->helper) {
1345 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346 ct_info->helper->name))
1347 return -EMSGSIZE;
1348 }
1349#ifdef CONFIG_NF_NAT_NEEDED
1350 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351 return -EMSGSIZE;
1352#endif
1353 nla_nest_end(skb, start);
1354
1355 return 0;
1356}
1357
1358void ovs_ct_free_action(const struct nlattr *a)
1359{
1360 struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362 __ovs_ct_free_action(ct_info);
1363}
1364
1365static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366{
1367 if (ct_info->helper)
1368 module_put(ct_info->helper->me);
1369 if (ct_info->ct)
1370 nf_ct_tmpl_free(ct_info->ct);
1371}
1372
1373void ovs_ct_init(struct net *net)
1374{
1375 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378 if (nf_connlabels_get(net, n_bits - 1)) {
1379 ovs_net->xt_label = false;
1380 OVS_NLERR(true, "Failed to set connlabel length");
1381 } else {
1382 ovs_net->xt_label = true;
1383 }
1384}
1385
1386void ovs_ct_exit(struct net *net)
1387{
1388 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1389
1390 if (ovs_net->xt_label)
1391 nf_connlabels_put(net);
1392}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015 Nicira, Inc.
4 */
5
6#include <linux/module.h>
7#include <linux/openvswitch.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/sctp.h>
11#include <linux/static_key.h>
12#include <linux/string_helpers.h>
13#include <net/ip.h>
14#include <net/genetlink.h>
15#include <net/netfilter/nf_conntrack_core.h>
16#include <net/netfilter/nf_conntrack_count.h>
17#include <net/netfilter/nf_conntrack_helper.h>
18#include <net/netfilter/nf_conntrack_labels.h>
19#include <net/netfilter/nf_conntrack_seqadj.h>
20#include <net/netfilter/nf_conntrack_timeout.h>
21#include <net/netfilter/nf_conntrack_zones.h>
22#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
23#include <net/ipv6_frag.h>
24
25#if IS_ENABLED(CONFIG_NF_NAT)
26#include <net/netfilter/nf_nat.h>
27#endif
28
29#include <net/netfilter/nf_conntrack_act_ct.h>
30
31#include "datapath.h"
32#include "drop.h"
33#include "conntrack.h"
34#include "flow.h"
35#include "flow_netlink.h"
36
37struct ovs_ct_len_tbl {
38 int maxlen;
39 int minlen;
40};
41
42/* Metadata mark for masked write to conntrack mark */
43struct md_mark {
44 u32 value;
45 u32 mask;
46};
47
48/* Metadata label for masked write to conntrack label. */
49struct md_labels {
50 struct ovs_key_ct_labels value;
51 struct ovs_key_ct_labels mask;
52};
53
54enum ovs_ct_nat {
55 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
56 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
57 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
58};
59
60/* Conntrack action context for execution. */
61struct ovs_conntrack_info {
62 struct nf_conntrack_helper *helper;
63 struct nf_conntrack_zone zone;
64 struct nf_conn *ct;
65 u8 commit : 1;
66 u8 nat : 3; /* enum ovs_ct_nat */
67 u8 force : 1;
68 u8 have_eventmask : 1;
69 u16 family;
70 u32 eventmask; /* Mask of 1 << IPCT_*. */
71 struct md_mark mark;
72 struct md_labels labels;
73 char timeout[CTNL_TIMEOUT_NAME_MAX];
74 struct nf_ct_timeout *nf_ct_timeout;
75#if IS_ENABLED(CONFIG_NF_NAT)
76 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
77#endif
78};
79
80#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
81#define OVS_CT_LIMIT_UNLIMITED 0
82#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
83#define CT_LIMIT_HASH_BUCKETS 512
84static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
85
86struct ovs_ct_limit {
87 /* Elements in ovs_ct_limit_info->limits hash table */
88 struct hlist_node hlist_node;
89 struct rcu_head rcu;
90 u16 zone;
91 u32 limit;
92};
93
94struct ovs_ct_limit_info {
95 u32 default_limit;
96 struct hlist_head *limits;
97 struct nf_conncount_data *data;
98};
99
100static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
101 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
102};
103#endif
104
105static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
106
107static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
108
109static u16 key_to_nfproto(const struct sw_flow_key *key)
110{
111 switch (ntohs(key->eth.type)) {
112 case ETH_P_IP:
113 return NFPROTO_IPV4;
114 case ETH_P_IPV6:
115 return NFPROTO_IPV6;
116 default:
117 return NFPROTO_UNSPEC;
118 }
119}
120
121/* Map SKB connection state into the values used by flow definition. */
122static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
123{
124 u8 ct_state = OVS_CS_F_TRACKED;
125
126 switch (ctinfo) {
127 case IP_CT_ESTABLISHED_REPLY:
128 case IP_CT_RELATED_REPLY:
129 ct_state |= OVS_CS_F_REPLY_DIR;
130 break;
131 default:
132 break;
133 }
134
135 switch (ctinfo) {
136 case IP_CT_ESTABLISHED:
137 case IP_CT_ESTABLISHED_REPLY:
138 ct_state |= OVS_CS_F_ESTABLISHED;
139 break;
140 case IP_CT_RELATED:
141 case IP_CT_RELATED_REPLY:
142 ct_state |= OVS_CS_F_RELATED;
143 break;
144 case IP_CT_NEW:
145 ct_state |= OVS_CS_F_NEW;
146 break;
147 default:
148 break;
149 }
150
151 return ct_state;
152}
153
154static u32 ovs_ct_get_mark(const struct nf_conn *ct)
155{
156#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
157 return ct ? READ_ONCE(ct->mark) : 0;
158#else
159 return 0;
160#endif
161}
162
163/* Guard against conntrack labels max size shrinking below 128 bits. */
164#if NF_CT_LABELS_MAX_SIZE < 16
165#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
166#endif
167
168static void ovs_ct_get_labels(const struct nf_conn *ct,
169 struct ovs_key_ct_labels *labels)
170{
171 struct nf_conn_labels *cl = NULL;
172
173 if (ct) {
174 if (ct->master && !nf_ct_is_confirmed(ct))
175 ct = ct->master;
176 cl = nf_ct_labels_find(ct);
177 }
178 if (cl)
179 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
180 else
181 memset(labels, 0, OVS_CT_LABELS_LEN);
182}
183
184static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
185 const struct nf_conntrack_tuple *orig,
186 u8 icmp_proto)
187{
188 key->ct_orig_proto = orig->dst.protonum;
189 if (orig->dst.protonum == icmp_proto) {
190 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
191 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
192 } else {
193 key->ct.orig_tp.src = orig->src.u.all;
194 key->ct.orig_tp.dst = orig->dst.u.all;
195 }
196}
197
198static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
199 const struct nf_conntrack_zone *zone,
200 const struct nf_conn *ct)
201{
202 key->ct_state = state;
203 key->ct_zone = zone->id;
204 key->ct.mark = ovs_ct_get_mark(ct);
205 ovs_ct_get_labels(ct, &key->ct.labels);
206
207 if (ct) {
208 const struct nf_conntrack_tuple *orig;
209
210 /* Use the master if we have one. */
211 if (ct->master)
212 ct = ct->master;
213 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
214
215 /* IP version must match with the master connection. */
216 if (key->eth.type == htons(ETH_P_IP) &&
217 nf_ct_l3num(ct) == NFPROTO_IPV4) {
218 key->ipv4.ct_orig.src = orig->src.u3.ip;
219 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
220 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
221 return;
222 } else if (key->eth.type == htons(ETH_P_IPV6) &&
223 !sw_flow_key_is_nd(key) &&
224 nf_ct_l3num(ct) == NFPROTO_IPV6) {
225 key->ipv6.ct_orig.src = orig->src.u3.in6;
226 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
227 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
228 return;
229 }
230 }
231 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
232 * original direction key fields.
233 */
234 key->ct_orig_proto = 0;
235}
236
237/* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
238 * previously sent the packet to conntrack via the ct action. If
239 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
240 * initialized from the connection status.
241 */
242static void ovs_ct_update_key(const struct sk_buff *skb,
243 const struct ovs_conntrack_info *info,
244 struct sw_flow_key *key, bool post_ct,
245 bool keep_nat_flags)
246{
247 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
248 enum ip_conntrack_info ctinfo;
249 struct nf_conn *ct;
250 u8 state = 0;
251
252 ct = nf_ct_get(skb, &ctinfo);
253 if (ct) {
254 state = ovs_ct_get_state(ctinfo);
255 /* All unconfirmed entries are NEW connections. */
256 if (!nf_ct_is_confirmed(ct))
257 state |= OVS_CS_F_NEW;
258 /* OVS persists the related flag for the duration of the
259 * connection.
260 */
261 if (ct->master)
262 state |= OVS_CS_F_RELATED;
263 if (keep_nat_flags) {
264 state |= key->ct_state & OVS_CS_F_NAT_MASK;
265 } else {
266 if (ct->status & IPS_SRC_NAT)
267 state |= OVS_CS_F_SRC_NAT;
268 if (ct->status & IPS_DST_NAT)
269 state |= OVS_CS_F_DST_NAT;
270 }
271 zone = nf_ct_zone(ct);
272 } else if (post_ct) {
273 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
274 if (info)
275 zone = &info->zone;
276 }
277 __ovs_ct_update_key(key, state, zone, ct);
278}
279
280/* This is called to initialize CT key fields possibly coming in from the local
281 * stack.
282 */
283void ovs_ct_fill_key(const struct sk_buff *skb,
284 struct sw_flow_key *key,
285 bool post_ct)
286{
287 ovs_ct_update_key(skb, NULL, key, post_ct, false);
288}
289
290int ovs_ct_put_key(const struct sw_flow_key *swkey,
291 const struct sw_flow_key *output, struct sk_buff *skb)
292{
293 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
294 return -EMSGSIZE;
295
296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
297 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
298 return -EMSGSIZE;
299
300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
301 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
302 return -EMSGSIZE;
303
304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
305 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
306 &output->ct.labels))
307 return -EMSGSIZE;
308
309 if (swkey->ct_orig_proto) {
310 if (swkey->eth.type == htons(ETH_P_IP)) {
311 struct ovs_key_ct_tuple_ipv4 orig;
312
313 memset(&orig, 0, sizeof(orig));
314 orig.ipv4_src = output->ipv4.ct_orig.src;
315 orig.ipv4_dst = output->ipv4.ct_orig.dst;
316 orig.src_port = output->ct.orig_tp.src;
317 orig.dst_port = output->ct.orig_tp.dst;
318 orig.ipv4_proto = output->ct_orig_proto;
319
320 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
321 sizeof(orig), &orig))
322 return -EMSGSIZE;
323 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
324 struct ovs_key_ct_tuple_ipv6 orig;
325
326 memset(&orig, 0, sizeof(orig));
327 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
328 sizeof(orig.ipv6_src));
329 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
330 sizeof(orig.ipv6_dst));
331 orig.src_port = output->ct.orig_tp.src;
332 orig.dst_port = output->ct.orig_tp.dst;
333 orig.ipv6_proto = output->ct_orig_proto;
334
335 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
336 sizeof(orig), &orig))
337 return -EMSGSIZE;
338 }
339 }
340
341 return 0;
342}
343
344static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
345 u32 ct_mark, u32 mask)
346{
347#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
348 u32 new_mark;
349
350 new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
351 if (READ_ONCE(ct->mark) != new_mark) {
352 WRITE_ONCE(ct->mark, new_mark);
353 if (nf_ct_is_confirmed(ct))
354 nf_conntrack_event_cache(IPCT_MARK, ct);
355 key->ct.mark = new_mark;
356 }
357
358 return 0;
359#else
360 return -ENOTSUPP;
361#endif
362}
363
364static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
365{
366 struct nf_conn_labels *cl;
367
368 cl = nf_ct_labels_find(ct);
369 if (!cl) {
370 nf_ct_labels_ext_add(ct);
371 cl = nf_ct_labels_find(ct);
372 }
373
374 return cl;
375}
376
377/* Initialize labels for a new, yet to be committed conntrack entry. Note that
378 * since the new connection is not yet confirmed, and thus no-one else has
379 * access to it's labels, we simply write them over.
380 */
381static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
382 const struct ovs_key_ct_labels *labels,
383 const struct ovs_key_ct_labels *mask)
384{
385 struct nf_conn_labels *cl, *master_cl;
386 bool have_mask = labels_nonzero(mask);
387
388 /* Inherit master's labels to the related connection? */
389 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
390
391 if (!master_cl && !have_mask)
392 return 0; /* Nothing to do. */
393
394 cl = ovs_ct_get_conn_labels(ct);
395 if (!cl)
396 return -ENOSPC;
397
398 /* Inherit the master's labels, if any. */
399 if (master_cl)
400 *cl = *master_cl;
401
402 if (have_mask) {
403 u32 *dst = (u32 *)cl->bits;
404 int i;
405
406 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
407 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
408 (labels->ct_labels_32[i]
409 & mask->ct_labels_32[i]);
410 }
411
412 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
413 * IPCT_LABEL bit is set in the event cache.
414 */
415 nf_conntrack_event_cache(IPCT_LABEL, ct);
416
417 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
418
419 return 0;
420}
421
422static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
423 const struct ovs_key_ct_labels *labels,
424 const struct ovs_key_ct_labels *mask)
425{
426 struct nf_conn_labels *cl;
427 int err;
428
429 cl = ovs_ct_get_conn_labels(ct);
430 if (!cl)
431 return -ENOSPC;
432
433 err = nf_connlabels_replace(ct, labels->ct_labels_32,
434 mask->ct_labels_32,
435 OVS_CT_LABELS_LEN_32);
436 if (err)
437 return err;
438
439 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
440
441 return 0;
442}
443
444static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key,
445 u16 zone, int family, struct sk_buff *skb)
446{
447 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
448 int err;
449
450 err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru);
451 if (err)
452 return err;
453
454 /* The key extracted from the fragment that completed this datagram
455 * likely didn't have an L4 header, so regenerate it.
456 */
457 ovs_flow_key_update_l3l4(skb, key);
458 key->ip.frag = OVS_FRAG_TYPE_NONE;
459 *OVS_CB(skb) = ovs_cb;
460
461 return 0;
462}
463
464/* This replicates logic from nf_conntrack_core.c that is not exported. */
465static enum ip_conntrack_info
466ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
467{
468 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
469
470 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
471 return IP_CT_ESTABLISHED_REPLY;
472 /* Once we've had two way comms, always ESTABLISHED. */
473 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
474 return IP_CT_ESTABLISHED;
475 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
476 return IP_CT_RELATED;
477 return IP_CT_NEW;
478}
479
480/* Find an existing connection which this packet belongs to without
481 * re-attributing statistics or modifying the connection state. This allows an
482 * skb->_nfct lost due to an upcall to be recovered during actions execution.
483 *
484 * Must be called with rcu_read_lock.
485 *
486 * On success, populates skb->_nfct and returns the connection. Returns NULL
487 * if there is no existing entry.
488 */
489static struct nf_conn *
490ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
491 u8 l3num, struct sk_buff *skb, bool natted)
492{
493 struct nf_conntrack_tuple tuple;
494 struct nf_conntrack_tuple_hash *h;
495 struct nf_conn *ct;
496
497 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
498 net, &tuple)) {
499 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
500 return NULL;
501 }
502
503 /* Must invert the tuple if skb has been transformed by NAT. */
504 if (natted) {
505 struct nf_conntrack_tuple inverse;
506
507 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
508 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
509 return NULL;
510 }
511 tuple = inverse;
512 }
513
514 /* look for tuple match */
515 h = nf_conntrack_find_get(net, zone, &tuple);
516 if (!h)
517 return NULL; /* Not found. */
518
519 ct = nf_ct_tuplehash_to_ctrack(h);
520
521 /* Inverted packet tuple matches the reverse direction conntrack tuple,
522 * select the other tuplehash to get the right 'ctinfo' bits for this
523 * packet.
524 */
525 if (natted)
526 h = &ct->tuplehash[!h->tuple.dst.dir];
527
528 nf_ct_set(skb, ct, ovs_ct_get_info(h));
529 return ct;
530}
531
532static
533struct nf_conn *ovs_ct_executed(struct net *net,
534 const struct sw_flow_key *key,
535 const struct ovs_conntrack_info *info,
536 struct sk_buff *skb,
537 bool *ct_executed)
538{
539 struct nf_conn *ct = NULL;
540
541 /* If no ct, check if we have evidence that an existing conntrack entry
542 * might be found for this skb. This happens when we lose a skb->_nfct
543 * due to an upcall, or if the direction is being forced. If the
544 * connection was not confirmed, it is not cached and needs to be run
545 * through conntrack again.
546 */
547 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
548 !(key->ct_state & OVS_CS_F_INVALID) &&
549 (key->ct_zone == info->zone.id);
550
551 if (*ct_executed || (!key->ct_state && info->force)) {
552 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
553 !!(key->ct_state &
554 OVS_CS_F_NAT_MASK));
555 }
556
557 return ct;
558}
559
560/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
561static bool skb_nfct_cached(struct net *net,
562 const struct sw_flow_key *key,
563 const struct ovs_conntrack_info *info,
564 struct sk_buff *skb)
565{
566 enum ip_conntrack_info ctinfo;
567 struct nf_conn *ct;
568 bool ct_executed = true;
569
570 ct = nf_ct_get(skb, &ctinfo);
571 if (!ct)
572 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
573
574 if (ct)
575 nf_ct_get(skb, &ctinfo);
576 else
577 return false;
578
579 if (!net_eq(net, read_pnet(&ct->ct_net)))
580 return false;
581 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
582 return false;
583 if (info->helper) {
584 struct nf_conn_help *help;
585
586 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
587 if (help && rcu_access_pointer(help->helper) != info->helper)
588 return false;
589 }
590 if (info->nf_ct_timeout) {
591 struct nf_conn_timeout *timeout_ext;
592
593 timeout_ext = nf_ct_timeout_find(ct);
594 if (!timeout_ext || info->nf_ct_timeout !=
595 rcu_dereference(timeout_ext->timeout))
596 return false;
597 }
598 /* Force conntrack entry direction to the current packet? */
599 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
600 /* Delete the conntrack entry if confirmed, else just release
601 * the reference.
602 */
603 if (nf_ct_is_confirmed(ct))
604 nf_ct_delete(ct, 0, 0);
605
606 nf_ct_put(ct);
607 nf_ct_set(skb, NULL, 0);
608 return false;
609 }
610
611 return ct_executed;
612}
613
614#if IS_ENABLED(CONFIG_NF_NAT)
615static void ovs_nat_update_key(struct sw_flow_key *key,
616 const struct sk_buff *skb,
617 enum nf_nat_manip_type maniptype)
618{
619 if (maniptype == NF_NAT_MANIP_SRC) {
620 __be16 src;
621
622 key->ct_state |= OVS_CS_F_SRC_NAT;
623 if (key->eth.type == htons(ETH_P_IP))
624 key->ipv4.addr.src = ip_hdr(skb)->saddr;
625 else if (key->eth.type == htons(ETH_P_IPV6))
626 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
627 sizeof(key->ipv6.addr.src));
628 else
629 return;
630
631 if (key->ip.proto == IPPROTO_UDP)
632 src = udp_hdr(skb)->source;
633 else if (key->ip.proto == IPPROTO_TCP)
634 src = tcp_hdr(skb)->source;
635 else if (key->ip.proto == IPPROTO_SCTP)
636 src = sctp_hdr(skb)->source;
637 else
638 return;
639
640 key->tp.src = src;
641 } else {
642 __be16 dst;
643
644 key->ct_state |= OVS_CS_F_DST_NAT;
645 if (key->eth.type == htons(ETH_P_IP))
646 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
647 else if (key->eth.type == htons(ETH_P_IPV6))
648 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
649 sizeof(key->ipv6.addr.dst));
650 else
651 return;
652
653 if (key->ip.proto == IPPROTO_UDP)
654 dst = udp_hdr(skb)->dest;
655 else if (key->ip.proto == IPPROTO_TCP)
656 dst = tcp_hdr(skb)->dest;
657 else if (key->ip.proto == IPPROTO_SCTP)
658 dst = sctp_hdr(skb)->dest;
659 else
660 return;
661
662 key->tp.dst = dst;
663 }
664}
665
666/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
667static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
668 const struct ovs_conntrack_info *info,
669 struct sk_buff *skb, struct nf_conn *ct,
670 enum ip_conntrack_info ctinfo)
671{
672 int err, action = 0;
673
674 if (!(info->nat & OVS_CT_NAT))
675 return NF_ACCEPT;
676 if (info->nat & OVS_CT_SRC_NAT)
677 action |= BIT(NF_NAT_MANIP_SRC);
678 if (info->nat & OVS_CT_DST_NAT)
679 action |= BIT(NF_NAT_MANIP_DST);
680
681 err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit);
682 if (err != NF_ACCEPT)
683 return err;
684
685 if (action & BIT(NF_NAT_MANIP_SRC))
686 ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC);
687 if (action & BIT(NF_NAT_MANIP_DST))
688 ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST);
689
690 return err;
691}
692#else /* !CONFIG_NF_NAT */
693static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
694 const struct ovs_conntrack_info *info,
695 struct sk_buff *skb, struct nf_conn *ct,
696 enum ip_conntrack_info ctinfo)
697{
698 return NF_ACCEPT;
699}
700#endif
701
702static int verdict_to_errno(unsigned int verdict)
703{
704 switch (verdict & NF_VERDICT_MASK) {
705 case NF_ACCEPT:
706 return 0;
707 case NF_DROP:
708 return -EINVAL;
709 case NF_STOLEN:
710 return -EINPROGRESS;
711 default:
712 break;
713 }
714
715 return -EINVAL;
716}
717
718/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
719 * not done already. Update key with new CT state after passing the packet
720 * through conntrack.
721 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
722 * set to NULL and 0 will be returned.
723 */
724static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
725 const struct ovs_conntrack_info *info,
726 struct sk_buff *skb)
727{
728 /* If we are recirculating packets to match on conntrack fields and
729 * committing with a separate conntrack action, then we don't need to
730 * actually run the packet through conntrack twice unless it's for a
731 * different zone.
732 */
733 bool cached = skb_nfct_cached(net, key, info, skb);
734 enum ip_conntrack_info ctinfo;
735 struct nf_conn *ct;
736
737 if (!cached) {
738 struct nf_hook_state state = {
739 .hook = NF_INET_PRE_ROUTING,
740 .pf = info->family,
741 .net = net,
742 };
743 struct nf_conn *tmpl = info->ct;
744 int err;
745
746 /* Associate skb with specified zone. */
747 if (tmpl) {
748 ct = nf_ct_get(skb, &ctinfo);
749 nf_ct_put(ct);
750 nf_conntrack_get(&tmpl->ct_general);
751 nf_ct_set(skb, tmpl, IP_CT_NEW);
752 }
753
754 err = nf_conntrack_in(skb, &state);
755 if (err != NF_ACCEPT)
756 return verdict_to_errno(err);
757
758 /* Clear CT state NAT flags to mark that we have not yet done
759 * NAT after the nf_conntrack_in() call. We can actually clear
760 * the whole state, as it will be re-initialized below.
761 */
762 key->ct_state = 0;
763
764 /* Update the key, but keep the NAT flags. */
765 ovs_ct_update_key(skb, info, key, true, true);
766 }
767
768 ct = nf_ct_get(skb, &ctinfo);
769 if (ct) {
770 bool add_helper = false;
771
772 /* Packets starting a new connection must be NATted before the
773 * helper, so that the helper knows about the NAT. We enforce
774 * this by delaying both NAT and helper calls for unconfirmed
775 * connections until the committing CT action. For later
776 * packets NAT and Helper may be called in either order.
777 *
778 * NAT will be done only if the CT action has NAT, and only
779 * once per packet (per zone), as guarded by the NAT bits in
780 * the key->ct_state.
781 */
782 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
783 (nf_ct_is_confirmed(ct) || info->commit)) {
784 int err = ovs_ct_nat(net, key, info, skb, ct, ctinfo);
785
786 err = verdict_to_errno(err);
787 if (err)
788 return err;
789 }
790
791 /* Userspace may decide to perform a ct lookup without a helper
792 * specified followed by a (recirculate and) commit with one,
793 * or attach a helper in a later commit. Therefore, for
794 * connections which we will commit, we may need to attach
795 * the helper here.
796 */
797 if (!nf_ct_is_confirmed(ct) && info->commit &&
798 info->helper && !nfct_help(ct)) {
799 int err = __nf_ct_try_assign_helper(ct, info->ct,
800 GFP_ATOMIC);
801 if (err)
802 return err;
803 add_helper = true;
804
805 /* helper installed, add seqadj if NAT is required */
806 if (info->nat && !nfct_seqadj(ct)) {
807 if (!nfct_seqadj_ext_add(ct))
808 return -EINVAL;
809 }
810 }
811
812 /* Call the helper only if:
813 * - nf_conntrack_in() was executed above ("!cached") or a
814 * helper was just attached ("add_helper") for a confirmed
815 * connection, or
816 * - When committing an unconfirmed connection.
817 */
818 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
819 info->commit)) {
820 int err = nf_ct_helper(skb, ct, ctinfo, info->family);
821
822 err = verdict_to_errno(err);
823 if (err)
824 return err;
825 }
826
827 if (nf_ct_protonum(ct) == IPPROTO_TCP &&
828 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
829 /* Be liberal for tcp packets so that out-of-window
830 * packets are not marked invalid.
831 */
832 nf_ct_set_tcp_be_liberal(ct);
833 }
834
835 nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
836 }
837
838 return 0;
839}
840
841/* Lookup connection and read fields into key. */
842static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
843 const struct ovs_conntrack_info *info,
844 struct sk_buff *skb)
845{
846 struct nf_conn *ct;
847 int err;
848
849 err = __ovs_ct_lookup(net, key, info, skb);
850 if (err)
851 return err;
852
853 ct = (struct nf_conn *)skb_nfct(skb);
854 if (ct)
855 nf_ct_deliver_cached_events(ct);
856
857 return 0;
858}
859
860static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
861{
862 size_t i;
863
864 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
865 if (labels->ct_labels_32[i])
866 return true;
867
868 return false;
869}
870
871#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
872static struct hlist_head *ct_limit_hash_bucket(
873 const struct ovs_ct_limit_info *info, u16 zone)
874{
875 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
876}
877
878/* Call with ovs_mutex */
879static void ct_limit_set(const struct ovs_ct_limit_info *info,
880 struct ovs_ct_limit *new_ct_limit)
881{
882 struct ovs_ct_limit *ct_limit;
883 struct hlist_head *head;
884
885 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
886 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
887 if (ct_limit->zone == new_ct_limit->zone) {
888 hlist_replace_rcu(&ct_limit->hlist_node,
889 &new_ct_limit->hlist_node);
890 kfree_rcu(ct_limit, rcu);
891 return;
892 }
893 }
894
895 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
896}
897
898/* Call with ovs_mutex */
899static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
900{
901 struct ovs_ct_limit *ct_limit;
902 struct hlist_head *head;
903 struct hlist_node *n;
904
905 head = ct_limit_hash_bucket(info, zone);
906 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
907 if (ct_limit->zone == zone) {
908 hlist_del_rcu(&ct_limit->hlist_node);
909 kfree_rcu(ct_limit, rcu);
910 return;
911 }
912 }
913}
914
915/* Call with RCU read lock */
916static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
917{
918 struct ovs_ct_limit *ct_limit;
919 struct hlist_head *head;
920
921 head = ct_limit_hash_bucket(info, zone);
922 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
923 if (ct_limit->zone == zone)
924 return ct_limit->limit;
925 }
926
927 return info->default_limit;
928}
929
930static int ovs_ct_check_limit(struct net *net,
931 const struct ovs_conntrack_info *info,
932 const struct nf_conntrack_tuple *tuple)
933{
934 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
935 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
936 u32 per_zone_limit, connections;
937 u32 conncount_key;
938
939 conncount_key = info->zone.id;
940
941 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
942 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
943 return 0;
944
945 connections = nf_conncount_count(net, ct_limit_info->data,
946 &conncount_key, tuple, &info->zone);
947 if (connections > per_zone_limit)
948 return -ENOMEM;
949
950 return 0;
951}
952#endif
953
954/* Lookup connection and confirm if unconfirmed. */
955static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
956 const struct ovs_conntrack_info *info,
957 struct sk_buff *skb)
958{
959 enum ip_conntrack_info ctinfo;
960 struct nf_conn *ct;
961 int err;
962
963 err = __ovs_ct_lookup(net, key, info, skb);
964 if (err)
965 return err;
966
967 /* The connection could be invalid, in which case this is a no-op.*/
968 ct = nf_ct_get(skb, &ctinfo);
969 if (!ct)
970 return 0;
971
972#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
973 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
974 if (!nf_ct_is_confirmed(ct)) {
975 err = ovs_ct_check_limit(net, info,
976 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
977 if (err) {
978 net_warn_ratelimited("openvswitch: zone: %u "
979 "exceeds conntrack limit\n",
980 info->zone.id);
981 return err;
982 }
983 }
984 }
985#endif
986
987 /* Set the conntrack event mask if given. NEW and DELETE events have
988 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
989 * typically would receive many kinds of updates. Setting the event
990 * mask allows those events to be filtered. The set event mask will
991 * remain in effect for the lifetime of the connection unless changed
992 * by a further CT action with both the commit flag and the eventmask
993 * option. */
994 if (info->have_eventmask) {
995 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
996
997 if (cache)
998 cache->ctmask = info->eventmask;
999 }
1000
1001 /* Apply changes before confirming the connection so that the initial
1002 * conntrack NEW netlink event carries the values given in the CT
1003 * action.
1004 */
1005 if (info->mark.mask) {
1006 err = ovs_ct_set_mark(ct, key, info->mark.value,
1007 info->mark.mask);
1008 if (err)
1009 return err;
1010 }
1011 if (!nf_ct_is_confirmed(ct)) {
1012 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1013 &info->labels.mask);
1014 if (err)
1015 return err;
1016
1017 nf_conn_act_ct_ext_add(skb, ct, ctinfo);
1018 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1019 labels_nonzero(&info->labels.mask)) {
1020 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1021 &info->labels.mask);
1022 if (err)
1023 return err;
1024 }
1025 /* This will take care of sending queued events even if the connection
1026 * is already confirmed.
1027 */
1028 err = nf_conntrack_confirm(skb);
1029
1030 return verdict_to_errno(err);
1031}
1032
1033/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1034 * value if 'skb' is freed.
1035 */
1036int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1037 struct sw_flow_key *key,
1038 const struct ovs_conntrack_info *info)
1039{
1040 int nh_ofs;
1041 int err;
1042
1043 /* The conntrack module expects to be working at L3. */
1044 nh_ofs = skb_network_offset(skb);
1045 skb_pull_rcsum(skb, nh_ofs);
1046
1047 err = nf_ct_skb_network_trim(skb, info->family);
1048 if (err) {
1049 kfree_skb(skb);
1050 return err;
1051 }
1052
1053 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1054 err = ovs_ct_handle_fragments(net, key, info->zone.id,
1055 info->family, skb);
1056 if (err)
1057 return err;
1058 }
1059
1060 if (info->commit)
1061 err = ovs_ct_commit(net, key, info, skb);
1062 else
1063 err = ovs_ct_lookup(net, key, info, skb);
1064
1065 /* conntrack core returned NF_STOLEN */
1066 if (err == -EINPROGRESS)
1067 return err;
1068
1069 skb_push_rcsum(skb, nh_ofs);
1070 if (err)
1071 ovs_kfree_skb_reason(skb, OVS_DROP_CONNTRACK);
1072 return err;
1073}
1074
1075int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1076{
1077 enum ip_conntrack_info ctinfo;
1078 struct nf_conn *ct;
1079
1080 ct = nf_ct_get(skb, &ctinfo);
1081
1082 nf_ct_put(ct);
1083 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1084
1085 if (key)
1086 ovs_ct_fill_key(skb, key, false);
1087
1088 return 0;
1089}
1090
1091#if IS_ENABLED(CONFIG_NF_NAT)
1092static int parse_nat(const struct nlattr *attr,
1093 struct ovs_conntrack_info *info, bool log)
1094{
1095 struct nlattr *a;
1096 int rem;
1097 bool have_ip_max = false;
1098 bool have_proto_max = false;
1099 bool ip_vers = (info->family == NFPROTO_IPV6);
1100
1101 nla_for_each_nested(a, attr, rem) {
1102 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1103 [OVS_NAT_ATTR_SRC] = {0, 0},
1104 [OVS_NAT_ATTR_DST] = {0, 0},
1105 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1106 sizeof(struct in6_addr)},
1107 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1108 sizeof(struct in6_addr)},
1109 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1110 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1111 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1112 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1113 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1114 };
1115 int type = nla_type(a);
1116
1117 if (type > OVS_NAT_ATTR_MAX) {
1118 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1119 type, OVS_NAT_ATTR_MAX);
1120 return -EINVAL;
1121 }
1122
1123 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1124 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1125 type, nla_len(a),
1126 ovs_nat_attr_lens[type][ip_vers]);
1127 return -EINVAL;
1128 }
1129
1130 switch (type) {
1131 case OVS_NAT_ATTR_SRC:
1132 case OVS_NAT_ATTR_DST:
1133 if (info->nat) {
1134 OVS_NLERR(log, "Only one type of NAT may be specified");
1135 return -ERANGE;
1136 }
1137 info->nat |= OVS_CT_NAT;
1138 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1139 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1140 break;
1141
1142 case OVS_NAT_ATTR_IP_MIN:
1143 nla_memcpy(&info->range.min_addr, a,
1144 sizeof(info->range.min_addr));
1145 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1146 break;
1147
1148 case OVS_NAT_ATTR_IP_MAX:
1149 have_ip_max = true;
1150 nla_memcpy(&info->range.max_addr, a,
1151 sizeof(info->range.max_addr));
1152 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1153 break;
1154
1155 case OVS_NAT_ATTR_PROTO_MIN:
1156 info->range.min_proto.all = htons(nla_get_u16(a));
1157 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1158 break;
1159
1160 case OVS_NAT_ATTR_PROTO_MAX:
1161 have_proto_max = true;
1162 info->range.max_proto.all = htons(nla_get_u16(a));
1163 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1164 break;
1165
1166 case OVS_NAT_ATTR_PERSISTENT:
1167 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1168 break;
1169
1170 case OVS_NAT_ATTR_PROTO_HASH:
1171 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1172 break;
1173
1174 case OVS_NAT_ATTR_PROTO_RANDOM:
1175 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1176 break;
1177
1178 default:
1179 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1180 return -EINVAL;
1181 }
1182 }
1183
1184 if (rem > 0) {
1185 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1186 return -EINVAL;
1187 }
1188 if (!info->nat) {
1189 /* Do not allow flags if no type is given. */
1190 if (info->range.flags) {
1191 OVS_NLERR(log,
1192 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1193 );
1194 return -EINVAL;
1195 }
1196 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1197 } else if (!info->commit) {
1198 OVS_NLERR(log,
1199 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1200 );
1201 return -EINVAL;
1202 }
1203 /* Allow missing IP_MAX. */
1204 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1205 memcpy(&info->range.max_addr, &info->range.min_addr,
1206 sizeof(info->range.max_addr));
1207 }
1208 /* Allow missing PROTO_MAX. */
1209 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1210 !have_proto_max) {
1211 info->range.max_proto.all = info->range.min_proto.all;
1212 }
1213 return 0;
1214}
1215#endif
1216
1217static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1218 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1219 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1220 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1221 .maxlen = sizeof(u16) },
1222 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1223 .maxlen = sizeof(struct md_mark) },
1224 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1225 .maxlen = sizeof(struct md_labels) },
1226 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1227 .maxlen = NF_CT_HELPER_NAME_LEN },
1228#if IS_ENABLED(CONFIG_NF_NAT)
1229 /* NAT length is checked when parsing the nested attributes. */
1230 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1231#endif
1232 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1233 .maxlen = sizeof(u32) },
1234 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1235 .maxlen = CTNL_TIMEOUT_NAME_MAX },
1236};
1237
1238static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1239 const char **helper, bool log)
1240{
1241 struct nlattr *a;
1242 int rem;
1243
1244 nla_for_each_nested(a, attr, rem) {
1245 int type = nla_type(a);
1246 int maxlen;
1247 int minlen;
1248
1249 if (type > OVS_CT_ATTR_MAX) {
1250 OVS_NLERR(log,
1251 "Unknown conntrack attr (type=%d, max=%d)",
1252 type, OVS_CT_ATTR_MAX);
1253 return -EINVAL;
1254 }
1255
1256 maxlen = ovs_ct_attr_lens[type].maxlen;
1257 minlen = ovs_ct_attr_lens[type].minlen;
1258 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1259 OVS_NLERR(log,
1260 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1261 type, nla_len(a), maxlen);
1262 return -EINVAL;
1263 }
1264
1265 switch (type) {
1266 case OVS_CT_ATTR_FORCE_COMMIT:
1267 info->force = true;
1268 fallthrough;
1269 case OVS_CT_ATTR_COMMIT:
1270 info->commit = true;
1271 break;
1272#ifdef CONFIG_NF_CONNTRACK_ZONES
1273 case OVS_CT_ATTR_ZONE:
1274 info->zone.id = nla_get_u16(a);
1275 break;
1276#endif
1277#ifdef CONFIG_NF_CONNTRACK_MARK
1278 case OVS_CT_ATTR_MARK: {
1279 struct md_mark *mark = nla_data(a);
1280
1281 if (!mark->mask) {
1282 OVS_NLERR(log, "ct_mark mask cannot be 0");
1283 return -EINVAL;
1284 }
1285 info->mark = *mark;
1286 break;
1287 }
1288#endif
1289#ifdef CONFIG_NF_CONNTRACK_LABELS
1290 case OVS_CT_ATTR_LABELS: {
1291 struct md_labels *labels = nla_data(a);
1292
1293 if (!labels_nonzero(&labels->mask)) {
1294 OVS_NLERR(log, "ct_labels mask cannot be 0");
1295 return -EINVAL;
1296 }
1297 info->labels = *labels;
1298 break;
1299 }
1300#endif
1301 case OVS_CT_ATTR_HELPER:
1302 *helper = nla_data(a);
1303 if (!string_is_terminated(*helper, nla_len(a))) {
1304 OVS_NLERR(log, "Invalid conntrack helper");
1305 return -EINVAL;
1306 }
1307 break;
1308#if IS_ENABLED(CONFIG_NF_NAT)
1309 case OVS_CT_ATTR_NAT: {
1310 int err = parse_nat(a, info, log);
1311
1312 if (err)
1313 return err;
1314 break;
1315 }
1316#endif
1317 case OVS_CT_ATTR_EVENTMASK:
1318 info->have_eventmask = true;
1319 info->eventmask = nla_get_u32(a);
1320 break;
1321#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1322 case OVS_CT_ATTR_TIMEOUT:
1323 memcpy(info->timeout, nla_data(a), nla_len(a));
1324 if (!string_is_terminated(info->timeout, nla_len(a))) {
1325 OVS_NLERR(log, "Invalid conntrack timeout");
1326 return -EINVAL;
1327 }
1328 break;
1329#endif
1330
1331 default:
1332 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1333 type);
1334 return -EINVAL;
1335 }
1336 }
1337
1338#ifdef CONFIG_NF_CONNTRACK_MARK
1339 if (!info->commit && info->mark.mask) {
1340 OVS_NLERR(log,
1341 "Setting conntrack mark requires 'commit' flag.");
1342 return -EINVAL;
1343 }
1344#endif
1345#ifdef CONFIG_NF_CONNTRACK_LABELS
1346 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1347 OVS_NLERR(log,
1348 "Setting conntrack labels requires 'commit' flag.");
1349 return -EINVAL;
1350 }
1351#endif
1352 if (rem > 0) {
1353 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1354 return -EINVAL;
1355 }
1356
1357 return 0;
1358}
1359
1360bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1361{
1362 if (attr == OVS_KEY_ATTR_CT_STATE)
1363 return true;
1364 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1365 attr == OVS_KEY_ATTR_CT_ZONE)
1366 return true;
1367 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1368 attr == OVS_KEY_ATTR_CT_MARK)
1369 return true;
1370 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1371 attr == OVS_KEY_ATTR_CT_LABELS)
1372 return true;
1373
1374 return false;
1375}
1376
1377int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1378 const struct sw_flow_key *key,
1379 struct sw_flow_actions **sfa, bool log)
1380{
1381 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1382 struct ovs_conntrack_info ct_info;
1383 const char *helper = NULL;
1384 u16 family;
1385 int err;
1386
1387 family = key_to_nfproto(key);
1388 if (family == NFPROTO_UNSPEC) {
1389 OVS_NLERR(log, "ct family unspecified");
1390 return -EINVAL;
1391 }
1392
1393 memset(&ct_info, 0, sizeof(ct_info));
1394 ct_info.family = family;
1395
1396 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1397 NF_CT_DEFAULT_ZONE_DIR, 0);
1398
1399 err = parse_ct(attr, &ct_info, &helper, log);
1400 if (err)
1401 return err;
1402
1403 /* Set up template for tracking connections in specific zones. */
1404 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1405 if (!ct_info.ct) {
1406 OVS_NLERR(log, "Failed to allocate conntrack template");
1407 return -ENOMEM;
1408 }
1409
1410 if (nf_connlabels_get(net, n_bits - 1)) {
1411 nf_ct_tmpl_free(ct_info.ct);
1412 OVS_NLERR(log, "Failed to set connlabel length");
1413 return -EOPNOTSUPP;
1414 }
1415
1416 if (ct_info.timeout[0]) {
1417 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1418 ct_info.timeout))
1419 OVS_NLERR(log,
1420 "Failed to associated timeout policy '%s'",
1421 ct_info.timeout);
1422 else
1423 ct_info.nf_ct_timeout = rcu_dereference(
1424 nf_ct_timeout_find(ct_info.ct)->timeout);
1425
1426 }
1427
1428 if (helper) {
1429 err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family,
1430 key->ip.proto, ct_info.nat, &ct_info.helper);
1431 if (err) {
1432 OVS_NLERR(log, "Failed to add %s helper %d", helper, err);
1433 goto err_free_ct;
1434 }
1435 }
1436
1437 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1438 sizeof(ct_info), log);
1439 if (err)
1440 goto err_free_ct;
1441
1442 if (ct_info.commit)
1443 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1444 return 0;
1445err_free_ct:
1446 __ovs_ct_free_action(&ct_info);
1447 return err;
1448}
1449
1450#if IS_ENABLED(CONFIG_NF_NAT)
1451static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1452 struct sk_buff *skb)
1453{
1454 struct nlattr *start;
1455
1456 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1457 if (!start)
1458 return false;
1459
1460 if (info->nat & OVS_CT_SRC_NAT) {
1461 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1462 return false;
1463 } else if (info->nat & OVS_CT_DST_NAT) {
1464 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1465 return false;
1466 } else {
1467 goto out;
1468 }
1469
1470 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1471 if (IS_ENABLED(CONFIG_NF_NAT) &&
1472 info->family == NFPROTO_IPV4) {
1473 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1474 info->range.min_addr.ip) ||
1475 (info->range.max_addr.ip
1476 != info->range.min_addr.ip &&
1477 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1478 info->range.max_addr.ip))))
1479 return false;
1480 } else if (IS_ENABLED(CONFIG_IPV6) &&
1481 info->family == NFPROTO_IPV6) {
1482 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1483 &info->range.min_addr.in6) ||
1484 (memcmp(&info->range.max_addr.in6,
1485 &info->range.min_addr.in6,
1486 sizeof(info->range.max_addr.in6)) &&
1487 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1488 &info->range.max_addr.in6))))
1489 return false;
1490 } else {
1491 return false;
1492 }
1493 }
1494 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1495 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1496 ntohs(info->range.min_proto.all)) ||
1497 (info->range.max_proto.all != info->range.min_proto.all &&
1498 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1499 ntohs(info->range.max_proto.all)))))
1500 return false;
1501
1502 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1503 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1504 return false;
1505 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1506 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1507 return false;
1508 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1509 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1510 return false;
1511out:
1512 nla_nest_end(skb, start);
1513
1514 return true;
1515}
1516#endif
1517
1518int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1519 struct sk_buff *skb)
1520{
1521 struct nlattr *start;
1522
1523 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1524 if (!start)
1525 return -EMSGSIZE;
1526
1527 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1528 ? OVS_CT_ATTR_FORCE_COMMIT
1529 : OVS_CT_ATTR_COMMIT))
1530 return -EMSGSIZE;
1531 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1532 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1533 return -EMSGSIZE;
1534 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1535 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1536 &ct_info->mark))
1537 return -EMSGSIZE;
1538 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1539 labels_nonzero(&ct_info->labels.mask) &&
1540 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1541 &ct_info->labels))
1542 return -EMSGSIZE;
1543 if (ct_info->helper) {
1544 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1545 ct_info->helper->name))
1546 return -EMSGSIZE;
1547 }
1548 if (ct_info->have_eventmask &&
1549 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1550 return -EMSGSIZE;
1551 if (ct_info->timeout[0]) {
1552 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1553 return -EMSGSIZE;
1554 }
1555
1556#if IS_ENABLED(CONFIG_NF_NAT)
1557 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1558 return -EMSGSIZE;
1559#endif
1560 nla_nest_end(skb, start);
1561
1562 return 0;
1563}
1564
1565void ovs_ct_free_action(const struct nlattr *a)
1566{
1567 struct ovs_conntrack_info *ct_info = nla_data(a);
1568
1569 __ovs_ct_free_action(ct_info);
1570}
1571
1572static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1573{
1574 if (ct_info->helper) {
1575#if IS_ENABLED(CONFIG_NF_NAT)
1576 if (ct_info->nat)
1577 nf_nat_helper_put(ct_info->helper);
1578#endif
1579 nf_conntrack_helper_put(ct_info->helper);
1580 }
1581 if (ct_info->ct) {
1582 if (ct_info->timeout[0])
1583 nf_ct_destroy_timeout(ct_info->ct);
1584 nf_connlabels_put(nf_ct_net(ct_info->ct));
1585 nf_ct_tmpl_free(ct_info->ct);
1586 }
1587}
1588
1589#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1590static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1591{
1592 int i, err;
1593
1594 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1595 GFP_KERNEL);
1596 if (!ovs_net->ct_limit_info)
1597 return -ENOMEM;
1598
1599 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1600 ovs_net->ct_limit_info->limits =
1601 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1602 GFP_KERNEL);
1603 if (!ovs_net->ct_limit_info->limits) {
1604 kfree(ovs_net->ct_limit_info);
1605 return -ENOMEM;
1606 }
1607
1608 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1609 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1610
1611 ovs_net->ct_limit_info->data = nf_conncount_init(net, sizeof(u32));
1612
1613 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1614 err = PTR_ERR(ovs_net->ct_limit_info->data);
1615 kfree(ovs_net->ct_limit_info->limits);
1616 kfree(ovs_net->ct_limit_info);
1617 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1618 return err;
1619 }
1620 return 0;
1621}
1622
1623static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1624{
1625 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1626 int i;
1627
1628 nf_conncount_destroy(net, info->data);
1629 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1630 struct hlist_head *head = &info->limits[i];
1631 struct ovs_ct_limit *ct_limit;
1632 struct hlist_node *next;
1633
1634 hlist_for_each_entry_safe(ct_limit, next, head, hlist_node)
1635 kfree_rcu(ct_limit, rcu);
1636 }
1637 kfree(info->limits);
1638 kfree(info);
1639}
1640
1641static struct sk_buff *
1642ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1643 struct ovs_header **ovs_reply_header)
1644{
1645 struct ovs_header *ovs_header = genl_info_userhdr(info);
1646 struct sk_buff *skb;
1647
1648 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1649 if (!skb)
1650 return ERR_PTR(-ENOMEM);
1651
1652 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1653 info->snd_seq,
1654 &dp_ct_limit_genl_family, 0, cmd);
1655
1656 if (!*ovs_reply_header) {
1657 nlmsg_free(skb);
1658 return ERR_PTR(-EMSGSIZE);
1659 }
1660 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1661
1662 return skb;
1663}
1664
1665static bool check_zone_id(int zone_id, u16 *pzone)
1666{
1667 if (zone_id >= 0 && zone_id <= 65535) {
1668 *pzone = (u16)zone_id;
1669 return true;
1670 }
1671 return false;
1672}
1673
1674static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1675 struct ovs_ct_limit_info *info)
1676{
1677 struct ovs_zone_limit *zone_limit;
1678 int rem;
1679 u16 zone;
1680
1681 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1682 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1683
1684 while (rem >= sizeof(*zone_limit)) {
1685 if (unlikely(zone_limit->zone_id ==
1686 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1687 ovs_lock();
1688 info->default_limit = zone_limit->limit;
1689 ovs_unlock();
1690 } else if (unlikely(!check_zone_id(
1691 zone_limit->zone_id, &zone))) {
1692 OVS_NLERR(true, "zone id is out of range");
1693 } else {
1694 struct ovs_ct_limit *ct_limit;
1695
1696 ct_limit = kmalloc(sizeof(*ct_limit),
1697 GFP_KERNEL_ACCOUNT);
1698 if (!ct_limit)
1699 return -ENOMEM;
1700
1701 ct_limit->zone = zone;
1702 ct_limit->limit = zone_limit->limit;
1703
1704 ovs_lock();
1705 ct_limit_set(info, ct_limit);
1706 ovs_unlock();
1707 }
1708 rem -= NLA_ALIGN(sizeof(*zone_limit));
1709 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1710 NLA_ALIGN(sizeof(*zone_limit)));
1711 }
1712
1713 if (rem)
1714 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1715
1716 return 0;
1717}
1718
1719static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1720 struct ovs_ct_limit_info *info)
1721{
1722 struct ovs_zone_limit *zone_limit;
1723 int rem;
1724 u16 zone;
1725
1726 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1727 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1728
1729 while (rem >= sizeof(*zone_limit)) {
1730 if (unlikely(zone_limit->zone_id ==
1731 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1732 ovs_lock();
1733 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1734 ovs_unlock();
1735 } else if (unlikely(!check_zone_id(
1736 zone_limit->zone_id, &zone))) {
1737 OVS_NLERR(true, "zone id is out of range");
1738 } else {
1739 ovs_lock();
1740 ct_limit_del(info, zone);
1741 ovs_unlock();
1742 }
1743 rem -= NLA_ALIGN(sizeof(*zone_limit));
1744 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1745 NLA_ALIGN(sizeof(*zone_limit)));
1746 }
1747
1748 if (rem)
1749 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1750
1751 return 0;
1752}
1753
1754static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1755 struct sk_buff *reply)
1756{
1757 struct ovs_zone_limit zone_limit = {
1758 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
1759 .limit = info->default_limit,
1760 };
1761
1762 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1763}
1764
1765static int __ovs_ct_limit_get_zone_limit(struct net *net,
1766 struct nf_conncount_data *data,
1767 u16 zone_id, u32 limit,
1768 struct sk_buff *reply)
1769{
1770 struct nf_conntrack_zone ct_zone;
1771 struct ovs_zone_limit zone_limit;
1772 u32 conncount_key = zone_id;
1773
1774 zone_limit.zone_id = zone_id;
1775 zone_limit.limit = limit;
1776 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1777
1778 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1779 &ct_zone);
1780 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1781}
1782
1783static int ovs_ct_limit_get_zone_limit(struct net *net,
1784 struct nlattr *nla_zone_limit,
1785 struct ovs_ct_limit_info *info,
1786 struct sk_buff *reply)
1787{
1788 struct ovs_zone_limit *zone_limit;
1789 int rem, err;
1790 u32 limit;
1791 u16 zone;
1792
1793 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1794 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1795
1796 while (rem >= sizeof(*zone_limit)) {
1797 if (unlikely(zone_limit->zone_id ==
1798 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1799 err = ovs_ct_limit_get_default_limit(info, reply);
1800 if (err)
1801 return err;
1802 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
1803 &zone))) {
1804 OVS_NLERR(true, "zone id is out of range");
1805 } else {
1806 rcu_read_lock();
1807 limit = ct_limit_get(info, zone);
1808 rcu_read_unlock();
1809
1810 err = __ovs_ct_limit_get_zone_limit(
1811 net, info->data, zone, limit, reply);
1812 if (err)
1813 return err;
1814 }
1815 rem -= NLA_ALIGN(sizeof(*zone_limit));
1816 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1817 NLA_ALIGN(sizeof(*zone_limit)));
1818 }
1819
1820 if (rem)
1821 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
1822
1823 return 0;
1824}
1825
1826static int ovs_ct_limit_get_all_zone_limit(struct net *net,
1827 struct ovs_ct_limit_info *info,
1828 struct sk_buff *reply)
1829{
1830 struct ovs_ct_limit *ct_limit;
1831 struct hlist_head *head;
1832 int i, err = 0;
1833
1834 err = ovs_ct_limit_get_default_limit(info, reply);
1835 if (err)
1836 return err;
1837
1838 rcu_read_lock();
1839 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1840 head = &info->limits[i];
1841 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1842 err = __ovs_ct_limit_get_zone_limit(net, info->data,
1843 ct_limit->zone, ct_limit->limit, reply);
1844 if (err)
1845 goto exit_err;
1846 }
1847 }
1848
1849exit_err:
1850 rcu_read_unlock();
1851 return err;
1852}
1853
1854static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
1855{
1856 struct nlattr **a = info->attrs;
1857 struct sk_buff *reply;
1858 struct ovs_header *ovs_reply_header;
1859 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1860 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1861 int err;
1862
1863 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
1864 &ovs_reply_header);
1865 if (IS_ERR(reply))
1866 return PTR_ERR(reply);
1867
1868 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1869 err = -EINVAL;
1870 goto exit_err;
1871 }
1872
1873 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1874 ct_limit_info);
1875 if (err)
1876 goto exit_err;
1877
1878 static_branch_enable(&ovs_ct_limit_enabled);
1879
1880 genlmsg_end(reply, ovs_reply_header);
1881 return genlmsg_reply(reply, info);
1882
1883exit_err:
1884 nlmsg_free(reply);
1885 return err;
1886}
1887
1888static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
1889{
1890 struct nlattr **a = info->attrs;
1891 struct sk_buff *reply;
1892 struct ovs_header *ovs_reply_header;
1893 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1894 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1895 int err;
1896
1897 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
1898 &ovs_reply_header);
1899 if (IS_ERR(reply))
1900 return PTR_ERR(reply);
1901
1902 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1903 err = -EINVAL;
1904 goto exit_err;
1905 }
1906
1907 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1908 ct_limit_info);
1909 if (err)
1910 goto exit_err;
1911
1912 genlmsg_end(reply, ovs_reply_header);
1913 return genlmsg_reply(reply, info);
1914
1915exit_err:
1916 nlmsg_free(reply);
1917 return err;
1918}
1919
1920static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
1921{
1922 struct nlattr **a = info->attrs;
1923 struct nlattr *nla_reply;
1924 struct sk_buff *reply;
1925 struct ovs_header *ovs_reply_header;
1926 struct net *net = sock_net(skb->sk);
1927 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1928 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1929 int err;
1930
1931 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
1932 &ovs_reply_header);
1933 if (IS_ERR(reply))
1934 return PTR_ERR(reply);
1935
1936 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
1937 if (!nla_reply) {
1938 err = -EMSGSIZE;
1939 goto exit_err;
1940 }
1941
1942 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1943 err = ovs_ct_limit_get_zone_limit(
1944 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
1945 reply);
1946 if (err)
1947 goto exit_err;
1948 } else {
1949 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
1950 reply);
1951 if (err)
1952 goto exit_err;
1953 }
1954
1955 nla_nest_end(reply, nla_reply);
1956 genlmsg_end(reply, ovs_reply_header);
1957 return genlmsg_reply(reply, info);
1958
1959exit_err:
1960 nlmsg_free(reply);
1961 return err;
1962}
1963
1964static const struct genl_small_ops ct_limit_genl_ops[] = {
1965 { .cmd = OVS_CT_LIMIT_CMD_SET,
1966 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1967 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1968 * privilege.
1969 */
1970 .doit = ovs_ct_limit_cmd_set,
1971 },
1972 { .cmd = OVS_CT_LIMIT_CMD_DEL,
1973 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1974 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
1975 * privilege.
1976 */
1977 .doit = ovs_ct_limit_cmd_del,
1978 },
1979 { .cmd = OVS_CT_LIMIT_CMD_GET,
1980 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1981 .flags = 0, /* OK for unprivileged users. */
1982 .doit = ovs_ct_limit_cmd_get,
1983 },
1984};
1985
1986static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
1987 .name = OVS_CT_LIMIT_MCGROUP,
1988};
1989
1990struct genl_family dp_ct_limit_genl_family __ro_after_init = {
1991 .hdrsize = sizeof(struct ovs_header),
1992 .name = OVS_CT_LIMIT_FAMILY,
1993 .version = OVS_CT_LIMIT_VERSION,
1994 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
1995 .policy = ct_limit_policy,
1996 .netnsok = true,
1997 .parallel_ops = true,
1998 .small_ops = ct_limit_genl_ops,
1999 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2000 .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1,
2001 .mcgrps = &ovs_ct_limit_multicast_group,
2002 .n_mcgrps = 1,
2003 .module = THIS_MODULE,
2004};
2005#endif
2006
2007int ovs_ct_init(struct net *net)
2008{
2009#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2010 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2011
2012 return ovs_ct_limit_init(net, ovs_net);
2013#else
2014 return 0;
2015#endif
2016}
2017
2018void ovs_ct_exit(struct net *net)
2019{
2020#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2021 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2022
2023 ovs_ct_limit_exit(net, ovs_net);
2024#endif
2025}