Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2015 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/openvswitch.h>
  16#include <linux/tcp.h>
  17#include <linux/udp.h>
  18#include <linux/sctp.h>
 
  19#include <net/ip.h>
 
  20#include <net/netfilter/nf_conntrack_core.h>
 
  21#include <net/netfilter/nf_conntrack_helper.h>
  22#include <net/netfilter/nf_conntrack_labels.h>
  23#include <net/netfilter/nf_conntrack_seqadj.h>
 
  24#include <net/netfilter/nf_conntrack_zones.h>
  25#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
 
  26
  27#ifdef CONFIG_NF_NAT_NEEDED
  28#include <linux/netfilter/nf_nat.h>
  29#include <net/netfilter/nf_nat_core.h>
  30#include <net/netfilter/nf_nat_l3proto.h>
  31#endif
  32
  33#include "datapath.h"
  34#include "conntrack.h"
  35#include "flow.h"
  36#include "flow_netlink.h"
  37
  38struct ovs_ct_len_tbl {
  39	int maxlen;
  40	int minlen;
  41};
  42
  43/* Metadata mark for masked write to conntrack mark */
  44struct md_mark {
  45	u32 value;
  46	u32 mask;
  47};
  48
  49/* Metadata label for masked write to conntrack label. */
  50struct md_labels {
  51	struct ovs_key_ct_labels value;
  52	struct ovs_key_ct_labels mask;
  53};
  54
  55enum ovs_ct_nat {
  56	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  57	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  58	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  59};
  60
  61/* Conntrack action context for execution. */
  62struct ovs_conntrack_info {
  63	struct nf_conntrack_helper *helper;
  64	struct nf_conntrack_zone zone;
  65	struct nf_conn *ct;
  66	u8 commit : 1;
  67	u8 nat : 3;                 /* enum ovs_ct_nat */
 
 
  68	u16 family;
 
  69	struct md_mark mark;
  70	struct md_labels labels;
  71#ifdef CONFIG_NF_NAT_NEEDED
  72	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
 
 
  73#endif
  74};
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
  77
  78static u16 key_to_nfproto(const struct sw_flow_key *key)
  79{
  80	switch (ntohs(key->eth.type)) {
  81	case ETH_P_IP:
  82		return NFPROTO_IPV4;
  83	case ETH_P_IPV6:
  84		return NFPROTO_IPV6;
  85	default:
  86		return NFPROTO_UNSPEC;
  87	}
  88}
  89
  90/* Map SKB connection state into the values used by flow definition. */
  91static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
  92{
  93	u8 ct_state = OVS_CS_F_TRACKED;
  94
  95	switch (ctinfo) {
  96	case IP_CT_ESTABLISHED_REPLY:
  97	case IP_CT_RELATED_REPLY:
  98		ct_state |= OVS_CS_F_REPLY_DIR;
  99		break;
 100	default:
 101		break;
 102	}
 103
 104	switch (ctinfo) {
 105	case IP_CT_ESTABLISHED:
 106	case IP_CT_ESTABLISHED_REPLY:
 107		ct_state |= OVS_CS_F_ESTABLISHED;
 108		break;
 109	case IP_CT_RELATED:
 110	case IP_CT_RELATED_REPLY:
 111		ct_state |= OVS_CS_F_RELATED;
 112		break;
 113	case IP_CT_NEW:
 114		ct_state |= OVS_CS_F_NEW;
 115		break;
 116	default:
 117		break;
 118	}
 119
 120	return ct_state;
 121}
 122
 123static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 124{
 125#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 126	return ct ? ct->mark : 0;
 127#else
 128	return 0;
 129#endif
 130}
 131
 
 
 
 
 
 132static void ovs_ct_get_labels(const struct nf_conn *ct,
 133			      struct ovs_key_ct_labels *labels)
 134{
 135	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 136
 137	if (cl) {
 138		size_t len = sizeof(cl->bits);
 
 
 
 139
 140		if (len > OVS_CT_LABELS_LEN)
 141			len = OVS_CT_LABELS_LEN;
 142		else if (len < OVS_CT_LABELS_LEN)
 143			memset(labels, 0, OVS_CT_LABELS_LEN);
 144		memcpy(labels, cl->bits, len);
 
 
 
 145	} else {
 146		memset(labels, 0, OVS_CT_LABELS_LEN);
 
 147	}
 148}
 149
 150static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 151				const struct nf_conntrack_zone *zone,
 152				const struct nf_conn *ct)
 153{
 154	key->ct.state = state;
 155	key->ct.zone = zone->id;
 156	key->ct.mark = ovs_ct_get_mark(ct);
 157	ovs_ct_get_labels(ct, &key->ct.labels);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 159
 160/* Update 'key' based on skb->nfct.  If 'post_ct' is true, then OVS has
 161 * previously sent the packet to conntrack via the ct action.  If
 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 163 * initialized from the connection status.
 164 */
 165static void ovs_ct_update_key(const struct sk_buff *skb,
 166			      const struct ovs_conntrack_info *info,
 167			      struct sw_flow_key *key, bool post_ct,
 168			      bool keep_nat_flags)
 169{
 170	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 171	enum ip_conntrack_info ctinfo;
 172	struct nf_conn *ct;
 173	u8 state = 0;
 174
 175	ct = nf_ct_get(skb, &ctinfo);
 176	if (ct) {
 177		state = ovs_ct_get_state(ctinfo);
 178		/* All unconfirmed entries are NEW connections. */
 179		if (!nf_ct_is_confirmed(ct))
 180			state |= OVS_CS_F_NEW;
 181		/* OVS persists the related flag for the duration of the
 182		 * connection.
 183		 */
 184		if (ct->master)
 185			state |= OVS_CS_F_RELATED;
 186		if (keep_nat_flags) {
 187			state |= key->ct.state & OVS_CS_F_NAT_MASK;
 188		} else {
 189			if (ct->status & IPS_SRC_NAT)
 190				state |= OVS_CS_F_SRC_NAT;
 191			if (ct->status & IPS_DST_NAT)
 192				state |= OVS_CS_F_DST_NAT;
 193		}
 194		zone = nf_ct_zone(ct);
 195	} else if (post_ct) {
 196		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 197		if (info)
 198			zone = &info->zone;
 199	}
 200	__ovs_ct_update_key(key, state, zone, ct);
 201}
 202
 203/* This is called to initialize CT key fields possibly coming in from the local
 204 * stack.
 205 */
 206void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
 207{
 208	ovs_ct_update_key(skb, NULL, key, false, false);
 209}
 210
 211int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
 
 212{
 213	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
 214		return -EMSGSIZE;
 215
 216	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 217	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
 218		return -EMSGSIZE;
 219
 220	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 221	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
 222		return -EMSGSIZE;
 223
 224	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 225	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
 226		    &key->ct.labels))
 227		return -EMSGSIZE;
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229	return 0;
 230}
 231
 232static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
 233			   u32 ct_mark, u32 mask)
 234{
 235#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 236	enum ip_conntrack_info ctinfo;
 237	struct nf_conn *ct;
 238	u32 new_mark;
 239
 240	/* The connection could be invalid, in which case set_mark is no-op. */
 241	ct = nf_ct_get(skb, &ctinfo);
 242	if (!ct)
 243		return 0;
 244
 245	new_mark = ct_mark | (ct->mark & ~(mask));
 246	if (ct->mark != new_mark) {
 247		ct->mark = new_mark;
 248		nf_conntrack_event_cache(IPCT_MARK, ct);
 
 249		key->ct.mark = new_mark;
 250	}
 251
 252	return 0;
 253#else
 254	return -ENOTSUPP;
 255#endif
 256}
 257
 258static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
 259			     const struct ovs_key_ct_labels *labels,
 260			     const struct ovs_key_ct_labels *mask)
 261{
 262	enum ip_conntrack_info ctinfo;
 263	struct nf_conn_labels *cl;
 264	struct nf_conn *ct;
 265	int err;
 266
 267	/* The connection could be invalid, in which case set_label is no-op.*/
 268	ct = nf_ct_get(skb, &ctinfo);
 269	if (!ct)
 270		return 0;
 271
 272	cl = nf_ct_labels_find(ct);
 273	if (!cl) {
 274		nf_ct_labels_ext_add(ct);
 275		cl = nf_ct_labels_find(ct);
 276	}
 277	if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278		return -ENOSPC;
 279
 280	err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
 281				    OVS_CT_LABELS_LEN / sizeof(u32));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282	if (err)
 283		return err;
 284
 285	ovs_ct_get_labels(ct, &key->ct.labels);
 
 286	return 0;
 287}
 288
 289/* 'skb' should already be pulled to nh_ofs. */
 290static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
 291{
 292	const struct nf_conntrack_helper *helper;
 293	const struct nf_conn_help *help;
 294	enum ip_conntrack_info ctinfo;
 295	unsigned int protoff;
 296	struct nf_conn *ct;
 297	int err;
 298
 299	ct = nf_ct_get(skb, &ctinfo);
 300	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
 301		return NF_ACCEPT;
 302
 303	help = nfct_help(ct);
 304	if (!help)
 305		return NF_ACCEPT;
 306
 307	helper = rcu_dereference(help->helper);
 308	if (!helper)
 309		return NF_ACCEPT;
 310
 311	switch (proto) {
 312	case NFPROTO_IPV4:
 313		protoff = ip_hdrlen(skb);
 314		break;
 315	case NFPROTO_IPV6: {
 316		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 317		__be16 frag_off;
 318		int ofs;
 319
 320		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
 321				       &frag_off);
 322		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
 323			pr_debug("proto header not found\n");
 324			return NF_ACCEPT;
 325		}
 326		protoff = ofs;
 327		break;
 328	}
 329	default:
 330		WARN_ONCE(1, "helper invoked on non-IP family!");
 331		return NF_DROP;
 332	}
 333
 334	err = helper->help(skb, protoff, ct, ctinfo);
 335	if (err != NF_ACCEPT)
 336		return err;
 337
 338	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
 339	 * FTP with NAT) adusting the TCP payload size when mangling IP
 340	 * addresses and/or port numbers in the text-based control connection.
 341	 */
 342	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
 343	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
 344		return NF_DROP;
 345	return NF_ACCEPT;
 346}
 347
 348/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 349 * value if 'skb' is freed.
 350 */
 351static int handle_fragments(struct net *net, struct sw_flow_key *key,
 352			    u16 zone, struct sk_buff *skb)
 353{
 354	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 355	int err;
 356
 357	if (key->eth.type == htons(ETH_P_IP)) {
 358		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 359
 360		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 361		err = ip_defrag(net, skb, user);
 362		if (err)
 363			return err;
 364
 365		ovs_cb.mru = IPCB(skb)->frag_max_size;
 366#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 367	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 368		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 369
 370		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 371		err = nf_ct_frag6_gather(net, skb, user);
 372		if (err) {
 373			if (err != -EINPROGRESS)
 374				kfree_skb(skb);
 375			return err;
 376		}
 377
 378		key->ip.proto = ipv6_hdr(skb)->nexthdr;
 379		ovs_cb.mru = IP6CB(skb)->frag_max_size;
 380#endif
 381	} else {
 382		kfree_skb(skb);
 383		return -EPFNOSUPPORT;
 384	}
 385
 
 
 
 
 
 386	key->ip.frag = OVS_FRAG_TYPE_NONE;
 387	skb_clear_hash(skb);
 388	skb->ignore_df = 1;
 389	*OVS_CB(skb) = ovs_cb;
 390
 391	return 0;
 392}
 393
 394static struct nf_conntrack_expect *
 395ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 396		   u16 proto, const struct sk_buff *skb)
 397{
 398	struct nf_conntrack_tuple tuple;
 
 399
 400	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 401		return NULL;
 402	return __nf_ct_expect_find(net, zone, &tuple);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403}
 404
 405/* This replicates logic from nf_conntrack_core.c that is not exported. */
 406static enum ip_conntrack_info
 407ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 408{
 409	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 410
 411	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 412		return IP_CT_ESTABLISHED_REPLY;
 413	/* Once we've had two way comms, always ESTABLISHED. */
 414	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 415		return IP_CT_ESTABLISHED;
 416	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 417		return IP_CT_RELATED;
 418	return IP_CT_NEW;
 419}
 420
 421/* Find an existing connection which this packet belongs to without
 422 * re-attributing statistics or modifying the connection state.  This allows an
 423 * skb->nfct lost due to an upcall to be recovered during actions execution.
 424 *
 425 * Must be called with rcu_read_lock.
 426 *
 427 * On success, populates skb->nfct and skb->nfctinfo, and returns the
 428 * connection.  Returns NULL if there is no existing entry.
 429 */
 430static struct nf_conn *
 431ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 432		     u8 l3num, struct sk_buff *skb)
 433{
 434	struct nf_conntrack_l3proto *l3proto;
 435	struct nf_conntrack_l4proto *l4proto;
 436	struct nf_conntrack_tuple tuple;
 437	struct nf_conntrack_tuple_hash *h;
 438	struct nf_conn *ct;
 439	unsigned int dataoff;
 440	u8 protonum;
 441
 442	l3proto = __nf_ct_l3proto_find(l3num);
 443	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
 444				 &protonum) <= 0) {
 445		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
 446		return NULL;
 447	}
 448	l4proto = __nf_ct_l4proto_find(l3num, protonum);
 449	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
 450			     protonum, net, &tuple, l3proto, l4proto)) {
 451		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 452		return NULL;
 453	}
 454
 
 
 
 
 
 
 
 
 
 
 
 455	/* look for tuple match */
 456	h = nf_conntrack_find_get(net, zone, &tuple);
 457	if (!h)
 458		return NULL;   /* Not found. */
 459
 460	ct = nf_ct_tuplehash_to_ctrack(h);
 461
 462	skb->nfct = &ct->ct_general;
 463	skb->nfctinfo = ovs_ct_get_info(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464	return ct;
 465}
 466
 467/* Determine whether skb->nfct is equal to the result of conntrack lookup. */
 468static bool skb_nfct_cached(struct net *net,
 469			    const struct sw_flow_key *key,
 470			    const struct ovs_conntrack_info *info,
 471			    struct sk_buff *skb)
 472{
 473	enum ip_conntrack_info ctinfo;
 474	struct nf_conn *ct;
 
 475
 476	ct = nf_ct_get(skb, &ctinfo);
 477	/* If no ct, check if we have evidence that an existing conntrack entry
 478	 * might be found for this skb.  This happens when we lose a skb->nfct
 479	 * due to an upcall.  If the connection was not confirmed, it is not
 480	 * cached and needs to be run through conntrack again.
 481	 */
 482	if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
 483	    !(key->ct.state & OVS_CS_F_INVALID) &&
 484	    key->ct.zone == info->zone.id)
 485		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
 486	if (!ct)
 
 
 
 
 
 487		return false;
 
 488	if (!net_eq(net, read_pnet(&ct->ct_net)))
 489		return false;
 490	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 491		return false;
 492	if (info->helper) {
 493		struct nf_conn_help *help;
 494
 495		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 496		if (help && rcu_access_pointer(help->helper) != info->helper)
 497			return false;
 498	}
 
 
 499
 500	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501}
 502
 503#ifdef CONFIG_NF_NAT_NEEDED
 504/* Modelled after nf_nat_ipv[46]_fn().
 505 * range is only used for new, uninitialized NAT state.
 506 * Returns either NF_ACCEPT or NF_DROP.
 507 */
 508static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
 509			      enum ip_conntrack_info ctinfo,
 510			      const struct nf_nat_range *range,
 511			      enum nf_nat_manip_type maniptype)
 512{
 513	int hooknum, nh_off, err = NF_ACCEPT;
 514
 515	nh_off = skb_network_offset(skb);
 516	skb_pull_rcsum(skb, nh_off);
 517
 518	/* See HOOK2MANIP(). */
 519	if (maniptype == NF_NAT_MANIP_SRC)
 520		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
 521	else
 522		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
 523
 524	switch (ctinfo) {
 525	case IP_CT_RELATED:
 526	case IP_CT_RELATED_REPLY:
 527		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
 528		    skb->protocol == htons(ETH_P_IP) &&
 529		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
 530			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
 531							   hooknum))
 532				err = NF_DROP;
 533			goto push;
 534		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
 535			   skb->protocol == htons(ETH_P_IPV6)) {
 536			__be16 frag_off;
 537			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 538			int hdrlen = ipv6_skip_exthdr(skb,
 539						      sizeof(struct ipv6hdr),
 540						      &nexthdr, &frag_off);
 541
 542			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
 543				if (!nf_nat_icmpv6_reply_translation(skb, ct,
 544								     ctinfo,
 545								     hooknum,
 546								     hdrlen))
 547					err = NF_DROP;
 548				goto push;
 549			}
 550		}
 551		/* Non-ICMP, fall thru to initialize if needed. */
 
 552	case IP_CT_NEW:
 553		/* Seen it before?  This can happen for loopback, retrans,
 554		 * or local packets.
 555		 */
 556		if (!nf_nat_initialized(ct, maniptype)) {
 557			/* Initialize according to the NAT action. */
 558			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
 559				/* Action is set up to establish a new
 560				 * mapping.
 561				 */
 562				? nf_nat_setup_info(ct, range, maniptype)
 563				: nf_nat_alloc_null_binding(ct, hooknum);
 564			if (err != NF_ACCEPT)
 565				goto push;
 566		}
 567		break;
 568
 569	case IP_CT_ESTABLISHED:
 570	case IP_CT_ESTABLISHED_REPLY:
 571		break;
 572
 573	default:
 574		err = NF_DROP;
 575		goto push;
 576	}
 577
 578	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
 579push:
 580	skb_push(skb, nh_off);
 581	skb_postpush_rcsum(skb, skb->data, nh_off);
 582
 583	return err;
 584}
 585
 586static void ovs_nat_update_key(struct sw_flow_key *key,
 587			       const struct sk_buff *skb,
 588			       enum nf_nat_manip_type maniptype)
 589{
 590	if (maniptype == NF_NAT_MANIP_SRC) {
 591		__be16 src;
 592
 593		key->ct.state |= OVS_CS_F_SRC_NAT;
 594		if (key->eth.type == htons(ETH_P_IP))
 595			key->ipv4.addr.src = ip_hdr(skb)->saddr;
 596		else if (key->eth.type == htons(ETH_P_IPV6))
 597			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 598			       sizeof(key->ipv6.addr.src));
 599		else
 600			return;
 601
 602		if (key->ip.proto == IPPROTO_UDP)
 603			src = udp_hdr(skb)->source;
 604		else if (key->ip.proto == IPPROTO_TCP)
 605			src = tcp_hdr(skb)->source;
 606		else if (key->ip.proto == IPPROTO_SCTP)
 607			src = sctp_hdr(skb)->source;
 608		else
 609			return;
 610
 611		key->tp.src = src;
 612	} else {
 613		__be16 dst;
 614
 615		key->ct.state |= OVS_CS_F_DST_NAT;
 616		if (key->eth.type == htons(ETH_P_IP))
 617			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 618		else if (key->eth.type == htons(ETH_P_IPV6))
 619			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 620			       sizeof(key->ipv6.addr.dst));
 621		else
 622			return;
 623
 624		if (key->ip.proto == IPPROTO_UDP)
 625			dst = udp_hdr(skb)->dest;
 626		else if (key->ip.proto == IPPROTO_TCP)
 627			dst = tcp_hdr(skb)->dest;
 628		else if (key->ip.proto == IPPROTO_SCTP)
 629			dst = sctp_hdr(skb)->dest;
 630		else
 631			return;
 632
 633		key->tp.dst = dst;
 634	}
 635}
 636
 637/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 638static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 639		      const struct ovs_conntrack_info *info,
 640		      struct sk_buff *skb, struct nf_conn *ct,
 641		      enum ip_conntrack_info ctinfo)
 642{
 643	enum nf_nat_manip_type maniptype;
 644	int err;
 645
 646	if (nf_ct_is_untracked(ct)) {
 647		/* A NAT action may only be performed on tracked packets. */
 648		return NF_ACCEPT;
 649	}
 650
 651	/* Add NAT extension if not confirmed yet. */
 652	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
 653		return NF_ACCEPT;   /* Can't NAT. */
 654
 655	/* Determine NAT type.
 656	 * Check if the NAT type can be deduced from the tracked connection.
 657	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
 658	 * when committing.
 659	 */
 660	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
 661	    ct->status & IPS_NAT_MASK &&
 662	    (ctinfo != IP_CT_RELATED || info->commit)) {
 663		/* NAT an established or related connection like before. */
 664		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
 665			/* This is the REPLY direction for a connection
 666			 * for which NAT was applied in the forward
 667			 * direction.  Do the reverse NAT.
 668			 */
 669			maniptype = ct->status & IPS_SRC_NAT
 670				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
 671		else
 672			maniptype = ct->status & IPS_SRC_NAT
 673				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
 674	} else if (info->nat & OVS_CT_SRC_NAT) {
 675		maniptype = NF_NAT_MANIP_SRC;
 676	} else if (info->nat & OVS_CT_DST_NAT) {
 677		maniptype = NF_NAT_MANIP_DST;
 678	} else {
 679		return NF_ACCEPT; /* Connection is not NATed. */
 680	}
 681	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683	/* Mark NAT done if successful and update the flow key. */
 684	if (err == NF_ACCEPT)
 685		ovs_nat_update_key(key, skb, maniptype);
 686
 687	return err;
 688}
 689#else /* !CONFIG_NF_NAT_NEEDED */
 690static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 691		      const struct ovs_conntrack_info *info,
 692		      struct sk_buff *skb, struct nf_conn *ct,
 693		      enum ip_conntrack_info ctinfo)
 694{
 695	return NF_ACCEPT;
 696}
 697#endif
 698
 699/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 700 * not done already.  Update key with new CT state after passing the packet
 701 * through conntrack.
 702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
 703 * set to NULL and 0 will be returned.
 704 */
 705static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 706			   const struct ovs_conntrack_info *info,
 707			   struct sk_buff *skb)
 708{
 709	/* If we are recirculating packets to match on conntrack fields and
 710	 * committing with a separate conntrack action,  then we don't need to
 711	 * actually run the packet through conntrack twice unless it's for a
 712	 * different zone.
 713	 */
 714	bool cached = skb_nfct_cached(net, key, info, skb);
 715	enum ip_conntrack_info ctinfo;
 716	struct nf_conn *ct;
 717
 718	if (!cached) {
 
 
 
 
 
 719		struct nf_conn *tmpl = info->ct;
 720		int err;
 721
 722		/* Associate skb with specified zone. */
 723		if (tmpl) {
 724			if (skb->nfct)
 725				nf_conntrack_put(skb->nfct);
 726			nf_conntrack_get(&tmpl->ct_general);
 727			skb->nfct = &tmpl->ct_general;
 728			skb->nfctinfo = IP_CT_NEW;
 729		}
 730
 731		err = nf_conntrack_in(net, info->family,
 732				      NF_INET_PRE_ROUTING, skb);
 733		if (err != NF_ACCEPT)
 734			return -ENOENT;
 735
 736		/* Clear CT state NAT flags to mark that we have not yet done
 737		 * NAT after the nf_conntrack_in() call.  We can actually clear
 738		 * the whole state, as it will be re-initialized below.
 739		 */
 740		key->ct.state = 0;
 741
 742		/* Update the key, but keep the NAT flags. */
 743		ovs_ct_update_key(skb, info, key, true, true);
 744	}
 745
 746	ct = nf_ct_get(skb, &ctinfo);
 747	if (ct) {
 
 
 748		/* Packets starting a new connection must be NATted before the
 749		 * helper, so that the helper knows about the NAT.  We enforce
 750		 * this by delaying both NAT and helper calls for unconfirmed
 751		 * connections until the committing CT action.  For later
 752		 * packets NAT and Helper may be called in either order.
 753		 *
 754		 * NAT will be done only if the CT action has NAT, and only
 755		 * once per packet (per zone), as guarded by the NAT bits in
 756		 * the key->ct.state.
 757		 */
 758		if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
 759		    (nf_ct_is_confirmed(ct) || info->commit) &&
 760		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 761			return -EINVAL;
 762		}
 763
 764		/* Userspace may decide to perform a ct lookup without a helper
 765		 * specified followed by a (recirculate and) commit with one.
 766		 * Therefore, for unconfirmed connections which we will commit,
 767		 * we need to attach the helper here.
 
 768		 */
 769		if (!nf_ct_is_confirmed(ct) && info->commit &&
 770		    info->helper && !nfct_help(ct)) {
 771			int err = __nf_ct_try_assign_helper(ct, info->ct,
 772							    GFP_ATOMIC);
 773			if (err)
 774				return err;
 
 
 
 
 
 
 
 775		}
 776
 777		/* Call the helper only if:
 778		 * - nf_conntrack_in() was executed above ("!cached") for a
 779		 *   confirmed connection, or
 
 780		 * - When committing an unconfirmed connection.
 781		 */
 782		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
 
 783		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
 784			return -EINVAL;
 785		}
 786	}
 787
 788	return 0;
 789}
 790
 791/* Lookup connection and read fields into key. */
 792static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 793			 const struct ovs_conntrack_info *info,
 794			 struct sk_buff *skb)
 795{
 796	struct nf_conntrack_expect *exp;
 797
 798	/* If we pass an expected packet through nf_conntrack_in() the
 799	 * expectation is typically removed, but the packet could still be
 800	 * lost in upcall processing.  To prevent this from happening we
 801	 * perform an explicit expectation lookup.  Expected connections are
 802	 * always new, and will be passed through conntrack only when they are
 803	 * committed, as it is OK to remove the expectation at that time.
 804	 */
 805	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
 806	if (exp) {
 807		u8 state;
 808
 809		/* NOTE: New connections are NATted and Helped only when
 810		 * committed, so we are not calling into NAT here.
 811		 */
 812		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
 813		__ovs_ct_update_key(key, state, &info->zone, exp->master);
 814	} else {
 815		struct nf_conn *ct;
 816		int err;
 817
 818		err = __ovs_ct_lookup(net, key, info, skb);
 819		if (err)
 820			return err;
 821
 822		ct = (struct nf_conn *)skb->nfct;
 823		if (ct)
 824			nf_ct_deliver_cached_events(ct);
 825	}
 826
 827	return 0;
 828}
 829
 830static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
 831{
 832	size_t i;
 833
 834	for (i = 0; i < sizeof(*labels); i++)
 835		if (labels->ct_labels[i])
 836			return true;
 837
 838	return false;
 839}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841/* Lookup connection and confirm if unconfirmed. */
 842static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
 843			 const struct ovs_conntrack_info *info,
 844			 struct sk_buff *skb)
 845{
 
 
 846	int err;
 847
 848	err = __ovs_ct_lookup(net, key, info, skb);
 849	if (err)
 850		return err;
 851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	/* Apply changes before confirming the connection so that the initial
 853	 * conntrack NEW netlink event carries the values given in the CT
 854	 * action.
 855	 */
 856	if (info->mark.mask) {
 857		err = ovs_ct_set_mark(skb, key, info->mark.value,
 858				      info->mark.mask);
 859		if (err)
 860			return err;
 861	}
 862	if (labels_nonzero(&info->labels.mask)) {
 863		err = ovs_ct_set_labels(skb, key, &info->labels.value,
 
 
 
 
 
 
 864					&info->labels.mask);
 865		if (err)
 866			return err;
 867	}
 868	/* This will take care of sending queued events even if the connection
 869	 * is already confirmed.
 870	 */
 871	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
 872		return -EINVAL;
 873
 874	return 0;
 875}
 876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 878 * value if 'skb' is freed.
 879 */
 880int ovs_ct_execute(struct net *net, struct sk_buff *skb,
 881		   struct sw_flow_key *key,
 882		   const struct ovs_conntrack_info *info)
 883{
 884	int nh_ofs;
 885	int err;
 886
 887	/* The conntrack module expects to be working at L3. */
 888	nh_ofs = skb_network_offset(skb);
 889	skb_pull_rcsum(skb, nh_ofs);
 890
 
 
 
 
 891	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
 892		err = handle_fragments(net, key, info->zone.id, skb);
 893		if (err)
 894			return err;
 895	}
 896
 897	if (info->commit)
 898		err = ovs_ct_commit(net, key, info, skb);
 899	else
 900		err = ovs_ct_lookup(net, key, info, skb);
 901
 902	skb_push(skb, nh_ofs);
 903	skb_postpush_rcsum(skb, skb->data, nh_ofs);
 904	if (err)
 905		kfree_skb(skb);
 906	return err;
 907}
 908
 
 
 
 
 
 
 
 
 
 
 
 909static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
 910			     const struct sw_flow_key *key, bool log)
 911{
 912	struct nf_conntrack_helper *helper;
 913	struct nf_conn_help *help;
 
 914
 915	helper = nf_conntrack_helper_try_module_get(name, info->family,
 916						    key->ip.proto);
 917	if (!helper) {
 918		OVS_NLERR(log, "Unknown helper \"%s\"", name);
 919		return -EINVAL;
 920	}
 921
 922	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
 923	if (!help) {
 924		module_put(helper->me);
 925		return -ENOMEM;
 926	}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 928	rcu_assign_pointer(help->helper, helper);
 929	info->helper = helper;
 930	return 0;
 931}
 932
 933#ifdef CONFIG_NF_NAT_NEEDED
 934static int parse_nat(const struct nlattr *attr,
 935		     struct ovs_conntrack_info *info, bool log)
 936{
 937	struct nlattr *a;
 938	int rem;
 939	bool have_ip_max = false;
 940	bool have_proto_max = false;
 941	bool ip_vers = (info->family == NFPROTO_IPV6);
 942
 943	nla_for_each_nested(a, attr, rem) {
 944		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
 945			[OVS_NAT_ATTR_SRC] = {0, 0},
 946			[OVS_NAT_ATTR_DST] = {0, 0},
 947			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
 948						 sizeof(struct in6_addr)},
 949			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
 950						 sizeof(struct in6_addr)},
 951			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
 952			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
 953			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
 954			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
 955			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
 956		};
 957		int type = nla_type(a);
 958
 959		if (type > OVS_NAT_ATTR_MAX) {
 960			OVS_NLERR(log,
 961				  "Unknown NAT attribute (type=%d, max=%d).\n",
 962				  type, OVS_NAT_ATTR_MAX);
 963			return -EINVAL;
 964		}
 965
 966		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
 967			OVS_NLERR(log,
 968				  "NAT attribute type %d has unexpected length (%d != %d).\n",
 969				  type, nla_len(a),
 970				  ovs_nat_attr_lens[type][ip_vers]);
 971			return -EINVAL;
 972		}
 973
 974		switch (type) {
 975		case OVS_NAT_ATTR_SRC:
 976		case OVS_NAT_ATTR_DST:
 977			if (info->nat) {
 978				OVS_NLERR(log,
 979					  "Only one type of NAT may be specified.\n"
 980					  );
 981				return -ERANGE;
 982			}
 983			info->nat |= OVS_CT_NAT;
 984			info->nat |= ((type == OVS_NAT_ATTR_SRC)
 985					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
 986			break;
 987
 988		case OVS_NAT_ATTR_IP_MIN:
 989			nla_memcpy(&info->range.min_addr, a,
 990				   sizeof(info->range.min_addr));
 991			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
 992			break;
 993
 994		case OVS_NAT_ATTR_IP_MAX:
 995			have_ip_max = true;
 996			nla_memcpy(&info->range.max_addr, a,
 997				   sizeof(info->range.max_addr));
 998			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
 999			break;
1000
1001		case OVS_NAT_ATTR_PROTO_MIN:
1002			info->range.min_proto.all = htons(nla_get_u16(a));
1003			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004			break;
1005
1006		case OVS_NAT_ATTR_PROTO_MAX:
1007			have_proto_max = true;
1008			info->range.max_proto.all = htons(nla_get_u16(a));
1009			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010			break;
1011
1012		case OVS_NAT_ATTR_PERSISTENT:
1013			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014			break;
1015
1016		case OVS_NAT_ATTR_PROTO_HASH:
1017			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018			break;
1019
1020		case OVS_NAT_ATTR_PROTO_RANDOM:
1021			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022			break;
1023
1024		default:
1025			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026			return -EINVAL;
1027		}
1028	}
1029
1030	if (rem > 0) {
1031		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032		return -EINVAL;
1033	}
1034	if (!info->nat) {
1035		/* Do not allow flags if no type is given. */
1036		if (info->range.flags) {
1037			OVS_NLERR(log,
1038				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039				  );
1040			return -EINVAL;
1041		}
1042		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1043	} else if (!info->commit) {
1044		OVS_NLERR(log,
1045			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046			  );
1047		return -EINVAL;
1048	}
1049	/* Allow missing IP_MAX. */
1050	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051		memcpy(&info->range.max_addr, &info->range.min_addr,
1052		       sizeof(info->range.max_addr));
1053	}
1054	/* Allow missing PROTO_MAX. */
1055	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056	    !have_proto_max) {
1057		info->range.max_proto.all = info->range.min_proto.all;
1058	}
1059	return 0;
1060}
1061#endif
1062
1063static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
 
1065	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1066				    .maxlen = sizeof(u16) },
1067	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1068				    .maxlen = sizeof(struct md_mark) },
1069	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1070				    .maxlen = sizeof(struct md_labels) },
1071	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1072				    .maxlen = NF_CT_HELPER_NAME_LEN },
1073#ifdef CONFIG_NF_NAT_NEEDED
1074	/* NAT length is checked when parsing the nested attributes. */
1075	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1076#endif
 
 
 
 
1077};
1078
1079static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080		    const char **helper, bool log)
1081{
1082	struct nlattr *a;
1083	int rem;
1084
1085	nla_for_each_nested(a, attr, rem) {
1086		int type = nla_type(a);
1087		int maxlen = ovs_ct_attr_lens[type].maxlen;
1088		int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090		if (type > OVS_CT_ATTR_MAX) {
1091			OVS_NLERR(log,
1092				  "Unknown conntrack attr (type=%d, max=%d)",
1093				  type, OVS_CT_ATTR_MAX);
1094			return -EINVAL;
1095		}
 
 
 
1096		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097			OVS_NLERR(log,
1098				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099				  type, nla_len(a), maxlen);
1100			return -EINVAL;
1101		}
1102
1103		switch (type) {
 
 
 
1104		case OVS_CT_ATTR_COMMIT:
1105			info->commit = true;
1106			break;
1107#ifdef CONFIG_NF_CONNTRACK_ZONES
1108		case OVS_CT_ATTR_ZONE:
1109			info->zone.id = nla_get_u16(a);
1110			break;
1111#endif
1112#ifdef CONFIG_NF_CONNTRACK_MARK
1113		case OVS_CT_ATTR_MARK: {
1114			struct md_mark *mark = nla_data(a);
1115
1116			if (!mark->mask) {
1117				OVS_NLERR(log, "ct_mark mask cannot be 0");
1118				return -EINVAL;
1119			}
1120			info->mark = *mark;
1121			break;
1122		}
1123#endif
1124#ifdef CONFIG_NF_CONNTRACK_LABELS
1125		case OVS_CT_ATTR_LABELS: {
1126			struct md_labels *labels = nla_data(a);
1127
1128			if (!labels_nonzero(&labels->mask)) {
1129				OVS_NLERR(log, "ct_labels mask cannot be 0");
1130				return -EINVAL;
1131			}
1132			info->labels = *labels;
1133			break;
1134		}
1135#endif
1136		case OVS_CT_ATTR_HELPER:
1137			*helper = nla_data(a);
1138			if (!memchr(*helper, '\0', nla_len(a))) {
1139				OVS_NLERR(log, "Invalid conntrack helper");
1140				return -EINVAL;
1141			}
1142			break;
1143#ifdef CONFIG_NF_NAT_NEEDED
1144		case OVS_CT_ATTR_NAT: {
1145			int err = parse_nat(a, info, log);
1146
1147			if (err)
1148				return err;
1149			break;
1150		}
1151#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152		default:
1153			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154				  type);
1155			return -EINVAL;
1156		}
1157	}
1158
1159#ifdef CONFIG_NF_CONNTRACK_MARK
1160	if (!info->commit && info->mark.mask) {
1161		OVS_NLERR(log,
1162			  "Setting conntrack mark requires 'commit' flag.");
1163		return -EINVAL;
1164	}
1165#endif
1166#ifdef CONFIG_NF_CONNTRACK_LABELS
1167	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168		OVS_NLERR(log,
1169			  "Setting conntrack labels requires 'commit' flag.");
1170		return -EINVAL;
1171	}
1172#endif
1173	if (rem > 0) {
1174		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182{
1183	if (attr == OVS_KEY_ATTR_CT_STATE)
1184		return true;
1185	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186	    attr == OVS_KEY_ATTR_CT_ZONE)
1187		return true;
1188	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189	    attr == OVS_KEY_ATTR_CT_MARK)
1190		return true;
1191	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192	    attr == OVS_KEY_ATTR_CT_LABELS) {
1193		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195		return ovs_net->xt_label;
1196	}
1197
1198	return false;
1199}
1200
1201int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202		       const struct sw_flow_key *key,
1203		       struct sw_flow_actions **sfa,  bool log)
1204{
1205	struct ovs_conntrack_info ct_info;
1206	const char *helper = NULL;
1207	u16 family;
1208	int err;
1209
1210	family = key_to_nfproto(key);
1211	if (family == NFPROTO_UNSPEC) {
1212		OVS_NLERR(log, "ct family unspecified");
1213		return -EINVAL;
1214	}
1215
1216	memset(&ct_info, 0, sizeof(ct_info));
1217	ct_info.family = family;
1218
1219	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220			NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222	err = parse_ct(attr, &ct_info, &helper, log);
1223	if (err)
1224		return err;
1225
1226	/* Set up template for tracking connections in specific zones. */
1227	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228	if (!ct_info.ct) {
1229		OVS_NLERR(log, "Failed to allocate conntrack template");
1230		return -ENOMEM;
1231	}
1232
1233	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234	nf_conntrack_get(&ct_info.ct->ct_general);
 
 
 
 
 
 
 
 
1235
1236	if (helper) {
1237		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238		if (err)
1239			goto err_free_ct;
1240	}
1241
1242	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243				 sizeof(ct_info), log);
1244	if (err)
1245		goto err_free_ct;
1246
 
 
1247	return 0;
1248err_free_ct:
1249	__ovs_ct_free_action(&ct_info);
1250	return err;
1251}
1252
1253#ifdef CONFIG_NF_NAT_NEEDED
1254static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255			       struct sk_buff *skb)
1256{
1257	struct nlattr *start;
1258
1259	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260	if (!start)
1261		return false;
1262
1263	if (info->nat & OVS_CT_SRC_NAT) {
1264		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265			return false;
1266	} else if (info->nat & OVS_CT_DST_NAT) {
1267		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268			return false;
1269	} else {
1270		goto out;
1271	}
1272
1273	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275		    info->family == NFPROTO_IPV4) {
1276			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277					    info->range.min_addr.ip) ||
1278			    (info->range.max_addr.ip
1279			     != info->range.min_addr.ip &&
1280			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281					      info->range.max_addr.ip))))
1282				return false;
1283		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284			   info->family == NFPROTO_IPV6) {
1285			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286					     &info->range.min_addr.in6) ||
1287			    (memcmp(&info->range.max_addr.in6,
1288				    &info->range.min_addr.in6,
1289				    sizeof(info->range.max_addr.in6)) &&
1290			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291					       &info->range.max_addr.in6))))
1292				return false;
1293		} else {
1294			return false;
1295		}
1296	}
1297	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299			 ntohs(info->range.min_proto.all)) ||
1300	     (info->range.max_proto.all != info->range.min_proto.all &&
1301	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302			  ntohs(info->range.max_proto.all)))))
1303		return false;
1304
1305	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307		return false;
1308	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310		return false;
1311	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313		return false;
1314out:
1315	nla_nest_end(skb, start);
1316
1317	return true;
1318}
1319#endif
1320
1321int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322			  struct sk_buff *skb)
1323{
1324	struct nlattr *start;
1325
1326	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327	if (!start)
1328		return -EMSGSIZE;
1329
1330	if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
 
 
1331		return -EMSGSIZE;
1332	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334		return -EMSGSIZE;
1335	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337		    &ct_info->mark))
1338		return -EMSGSIZE;
1339	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340	    labels_nonzero(&ct_info->labels.mask) &&
1341	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342		    &ct_info->labels))
1343		return -EMSGSIZE;
1344	if (ct_info->helper) {
1345		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346				   ct_info->helper->name))
1347			return -EMSGSIZE;
1348	}
1349#ifdef CONFIG_NF_NAT_NEEDED
 
 
 
 
 
 
 
 
1350	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351		return -EMSGSIZE;
1352#endif
1353	nla_nest_end(skb, start);
1354
1355	return 0;
1356}
1357
1358void ovs_ct_free_action(const struct nlattr *a)
1359{
1360	struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362	__ovs_ct_free_action(ct_info);
1363}
1364
1365static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366{
1367	if (ct_info->helper)
1368		module_put(ct_info->helper->me);
1369	if (ct_info->ct)
 
 
 
 
 
 
 
1370		nf_ct_tmpl_free(ct_info->ct);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371}
1372
1373void ovs_ct_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374{
1375	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378	if (nf_connlabels_get(net, n_bits - 1)) {
1379		ovs_net->xt_label = false;
1380		OVS_NLERR(true, "Failed to set connlabel length");
1381	} else {
1382		ovs_net->xt_label = true;
1383	}
 
 
 
 
 
 
1384}
1385
1386void ovs_ct_exit(struct net *net)
1387{
1388	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
 
 
 
 
1389
1390	if (ovs_net->xt_label)
1391		nf_connlabels_put(net);
1392}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 Nicira, Inc.
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/openvswitch.h>
   8#include <linux/tcp.h>
   9#include <linux/udp.h>
  10#include <linux/sctp.h>
  11#include <linux/static_key.h>
  12#include <net/ip.h>
  13#include <net/genetlink.h>
  14#include <net/netfilter/nf_conntrack_core.h>
  15#include <net/netfilter/nf_conntrack_count.h>
  16#include <net/netfilter/nf_conntrack_helper.h>
  17#include <net/netfilter/nf_conntrack_labels.h>
  18#include <net/netfilter/nf_conntrack_seqadj.h>
  19#include <net/netfilter/nf_conntrack_timeout.h>
  20#include <net/netfilter/nf_conntrack_zones.h>
  21#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
  22#include <net/ipv6_frag.h>
  23
  24#if IS_ENABLED(CONFIG_NF_NAT)
  25#include <net/netfilter/nf_nat.h>
 
 
  26#endif
  27
  28#include "datapath.h"
  29#include "conntrack.h"
  30#include "flow.h"
  31#include "flow_netlink.h"
  32
  33struct ovs_ct_len_tbl {
  34	int maxlen;
  35	int minlen;
  36};
  37
  38/* Metadata mark for masked write to conntrack mark */
  39struct md_mark {
  40	u32 value;
  41	u32 mask;
  42};
  43
  44/* Metadata label for masked write to conntrack label. */
  45struct md_labels {
  46	struct ovs_key_ct_labels value;
  47	struct ovs_key_ct_labels mask;
  48};
  49
  50enum ovs_ct_nat {
  51	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  52	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  53	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  54};
  55
  56/* Conntrack action context for execution. */
  57struct ovs_conntrack_info {
  58	struct nf_conntrack_helper *helper;
  59	struct nf_conntrack_zone zone;
  60	struct nf_conn *ct;
  61	u8 commit : 1;
  62	u8 nat : 3;                 /* enum ovs_ct_nat */
  63	u8 force : 1;
  64	u8 have_eventmask : 1;
  65	u16 family;
  66	u32 eventmask;              /* Mask of 1 << IPCT_*. */
  67	struct md_mark mark;
  68	struct md_labels labels;
  69	char timeout[CTNL_TIMEOUT_NAME_MAX];
  70	struct nf_ct_timeout *nf_ct_timeout;
  71#if IS_ENABLED(CONFIG_NF_NAT)
  72	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
  73#endif
  74};
  75
  76#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
  77#define OVS_CT_LIMIT_UNLIMITED	0
  78#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
  79#define CT_LIMIT_HASH_BUCKETS 512
  80static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
  81
  82struct ovs_ct_limit {
  83	/* Elements in ovs_ct_limit_info->limits hash table */
  84	struct hlist_node hlist_node;
  85	struct rcu_head rcu;
  86	u16 zone;
  87	u32 limit;
  88};
  89
  90struct ovs_ct_limit_info {
  91	u32 default_limit;
  92	struct hlist_head *limits;
  93	struct nf_conncount_data *data;
  94};
  95
  96static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
  97	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
  98};
  99#endif
 100
 101static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
 102
 103static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
 104
 105static u16 key_to_nfproto(const struct sw_flow_key *key)
 106{
 107	switch (ntohs(key->eth.type)) {
 108	case ETH_P_IP:
 109		return NFPROTO_IPV4;
 110	case ETH_P_IPV6:
 111		return NFPROTO_IPV6;
 112	default:
 113		return NFPROTO_UNSPEC;
 114	}
 115}
 116
 117/* Map SKB connection state into the values used by flow definition. */
 118static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
 119{
 120	u8 ct_state = OVS_CS_F_TRACKED;
 121
 122	switch (ctinfo) {
 123	case IP_CT_ESTABLISHED_REPLY:
 124	case IP_CT_RELATED_REPLY:
 125		ct_state |= OVS_CS_F_REPLY_DIR;
 126		break;
 127	default:
 128		break;
 129	}
 130
 131	switch (ctinfo) {
 132	case IP_CT_ESTABLISHED:
 133	case IP_CT_ESTABLISHED_REPLY:
 134		ct_state |= OVS_CS_F_ESTABLISHED;
 135		break;
 136	case IP_CT_RELATED:
 137	case IP_CT_RELATED_REPLY:
 138		ct_state |= OVS_CS_F_RELATED;
 139		break;
 140	case IP_CT_NEW:
 141		ct_state |= OVS_CS_F_NEW;
 142		break;
 143	default:
 144		break;
 145	}
 146
 147	return ct_state;
 148}
 149
 150static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 151{
 152#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 153	return ct ? ct->mark : 0;
 154#else
 155	return 0;
 156#endif
 157}
 158
 159/* Guard against conntrack labels max size shrinking below 128 bits. */
 160#if NF_CT_LABELS_MAX_SIZE < 16
 161#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
 162#endif
 163
 164static void ovs_ct_get_labels(const struct nf_conn *ct,
 165			      struct ovs_key_ct_labels *labels)
 166{
 167	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 168
 169	if (cl)
 170		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
 171	else
 172		memset(labels, 0, OVS_CT_LABELS_LEN);
 173}
 174
 175static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
 176					const struct nf_conntrack_tuple *orig,
 177					u8 icmp_proto)
 178{
 179	key->ct_orig_proto = orig->dst.protonum;
 180	if (orig->dst.protonum == icmp_proto) {
 181		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
 182		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
 183	} else {
 184		key->ct.orig_tp.src = orig->src.u.all;
 185		key->ct.orig_tp.dst = orig->dst.u.all;
 186	}
 187}
 188
 189static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 190				const struct nf_conntrack_zone *zone,
 191				const struct nf_conn *ct)
 192{
 193	key->ct_state = state;
 194	key->ct_zone = zone->id;
 195	key->ct.mark = ovs_ct_get_mark(ct);
 196	ovs_ct_get_labels(ct, &key->ct.labels);
 197
 198	if (ct) {
 199		const struct nf_conntrack_tuple *orig;
 200
 201		/* Use the master if we have one. */
 202		if (ct->master)
 203			ct = ct->master;
 204		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
 205
 206		/* IP version must match with the master connection. */
 207		if (key->eth.type == htons(ETH_P_IP) &&
 208		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
 209			key->ipv4.ct_orig.src = orig->src.u3.ip;
 210			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
 211			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
 212			return;
 213		} else if (key->eth.type == htons(ETH_P_IPV6) &&
 214			   !sw_flow_key_is_nd(key) &&
 215			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
 216			key->ipv6.ct_orig.src = orig->src.u3.in6;
 217			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
 218			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
 219			return;
 220		}
 221	}
 222	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
 223	 * original direction key fields.
 224	 */
 225	key->ct_orig_proto = 0;
 226}
 227
 228/* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
 229 * previously sent the packet to conntrack via the ct action.  If
 230 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 231 * initialized from the connection status.
 232 */
 233static void ovs_ct_update_key(const struct sk_buff *skb,
 234			      const struct ovs_conntrack_info *info,
 235			      struct sw_flow_key *key, bool post_ct,
 236			      bool keep_nat_flags)
 237{
 238	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 239	enum ip_conntrack_info ctinfo;
 240	struct nf_conn *ct;
 241	u8 state = 0;
 242
 243	ct = nf_ct_get(skb, &ctinfo);
 244	if (ct) {
 245		state = ovs_ct_get_state(ctinfo);
 246		/* All unconfirmed entries are NEW connections. */
 247		if (!nf_ct_is_confirmed(ct))
 248			state |= OVS_CS_F_NEW;
 249		/* OVS persists the related flag for the duration of the
 250		 * connection.
 251		 */
 252		if (ct->master)
 253			state |= OVS_CS_F_RELATED;
 254		if (keep_nat_flags) {
 255			state |= key->ct_state & OVS_CS_F_NAT_MASK;
 256		} else {
 257			if (ct->status & IPS_SRC_NAT)
 258				state |= OVS_CS_F_SRC_NAT;
 259			if (ct->status & IPS_DST_NAT)
 260				state |= OVS_CS_F_DST_NAT;
 261		}
 262		zone = nf_ct_zone(ct);
 263	} else if (post_ct) {
 264		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 265		if (info)
 266			zone = &info->zone;
 267	}
 268	__ovs_ct_update_key(key, state, zone, ct);
 269}
 270
 271/* This is called to initialize CT key fields possibly coming in from the local
 272 * stack.
 273 */
 274void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
 275{
 276	ovs_ct_update_key(skb, NULL, key, false, false);
 277}
 278
 279int ovs_ct_put_key(const struct sw_flow_key *swkey,
 280		   const struct sw_flow_key *output, struct sk_buff *skb)
 281{
 282	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
 283		return -EMSGSIZE;
 284
 285	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 286	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
 287		return -EMSGSIZE;
 288
 289	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 290	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
 291		return -EMSGSIZE;
 292
 293	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 294	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
 295		    &output->ct.labels))
 296		return -EMSGSIZE;
 297
 298	if (swkey->ct_orig_proto) {
 299		if (swkey->eth.type == htons(ETH_P_IP)) {
 300			struct ovs_key_ct_tuple_ipv4 orig;
 301
 302			memset(&orig, 0, sizeof(orig));
 303			orig.ipv4_src = output->ipv4.ct_orig.src;
 304			orig.ipv4_dst = output->ipv4.ct_orig.dst;
 305			orig.src_port = output->ct.orig_tp.src;
 306			orig.dst_port = output->ct.orig_tp.dst;
 307			orig.ipv4_proto = output->ct_orig_proto;
 308
 309			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
 310				    sizeof(orig), &orig))
 311				return -EMSGSIZE;
 312		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 313			struct ovs_key_ct_tuple_ipv6 orig;
 314
 315			memset(&orig, 0, sizeof(orig));
 316			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
 317			       sizeof(orig.ipv6_src));
 318			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
 319			       sizeof(orig.ipv6_dst));
 320			orig.src_port = output->ct.orig_tp.src;
 321			orig.dst_port = output->ct.orig_tp.dst;
 322			orig.ipv6_proto = output->ct_orig_proto;
 323
 324			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
 325				    sizeof(orig), &orig))
 326				return -EMSGSIZE;
 327		}
 328	}
 329
 330	return 0;
 331}
 332
 333static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
 334			   u32 ct_mark, u32 mask)
 335{
 336#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 
 
 337	u32 new_mark;
 338
 
 
 
 
 
 339	new_mark = ct_mark | (ct->mark & ~(mask));
 340	if (ct->mark != new_mark) {
 341		ct->mark = new_mark;
 342		if (nf_ct_is_confirmed(ct))
 343			nf_conntrack_event_cache(IPCT_MARK, ct);
 344		key->ct.mark = new_mark;
 345	}
 346
 347	return 0;
 348#else
 349	return -ENOTSUPP;
 350#endif
 351}
 352
 353static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
 
 
 354{
 
 355	struct nf_conn_labels *cl;
 
 
 
 
 
 
 
 356
 357	cl = nf_ct_labels_find(ct);
 358	if (!cl) {
 359		nf_ct_labels_ext_add(ct);
 360		cl = nf_ct_labels_find(ct);
 361	}
 362
 363	return cl;
 364}
 365
 366/* Initialize labels for a new, yet to be committed conntrack entry.  Note that
 367 * since the new connection is not yet confirmed, and thus no-one else has
 368 * access to it's labels, we simply write them over.
 369 */
 370static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
 371			      const struct ovs_key_ct_labels *labels,
 372			      const struct ovs_key_ct_labels *mask)
 373{
 374	struct nf_conn_labels *cl, *master_cl;
 375	bool have_mask = labels_nonzero(mask);
 376
 377	/* Inherit master's labels to the related connection? */
 378	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
 379
 380	if (!master_cl && !have_mask)
 381		return 0;   /* Nothing to do. */
 382
 383	cl = ovs_ct_get_conn_labels(ct);
 384	if (!cl)
 385		return -ENOSPC;
 386
 387	/* Inherit the master's labels, if any. */
 388	if (master_cl)
 389		*cl = *master_cl;
 390
 391	if (have_mask) {
 392		u32 *dst = (u32 *)cl->bits;
 393		int i;
 394
 395		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 396			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
 397				(labels->ct_labels_32[i]
 398				 & mask->ct_labels_32[i]);
 399	}
 400
 401	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
 402	 * IPCT_LABEL bit is set in the event cache.
 403	 */
 404	nf_conntrack_event_cache(IPCT_LABEL, ct);
 405
 406	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 407
 408	return 0;
 409}
 410
 411static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
 412			     const struct ovs_key_ct_labels *labels,
 413			     const struct ovs_key_ct_labels *mask)
 414{
 415	struct nf_conn_labels *cl;
 416	int err;
 417
 418	cl = ovs_ct_get_conn_labels(ct);
 419	if (!cl)
 420		return -ENOSPC;
 421
 422	err = nf_connlabels_replace(ct, labels->ct_labels_32,
 423				    mask->ct_labels_32,
 424				    OVS_CT_LABELS_LEN_32);
 425	if (err)
 426		return err;
 427
 428	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 429
 430	return 0;
 431}
 432
 433/* 'skb' should already be pulled to nh_ofs. */
 434static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
 435{
 436	const struct nf_conntrack_helper *helper;
 437	const struct nf_conn_help *help;
 438	enum ip_conntrack_info ctinfo;
 439	unsigned int protoff;
 440	struct nf_conn *ct;
 441	int err;
 442
 443	ct = nf_ct_get(skb, &ctinfo);
 444	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
 445		return NF_ACCEPT;
 446
 447	help = nfct_help(ct);
 448	if (!help)
 449		return NF_ACCEPT;
 450
 451	helper = rcu_dereference(help->helper);
 452	if (!helper)
 453		return NF_ACCEPT;
 454
 455	switch (proto) {
 456	case NFPROTO_IPV4:
 457		protoff = ip_hdrlen(skb);
 458		break;
 459	case NFPROTO_IPV6: {
 460		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 461		__be16 frag_off;
 462		int ofs;
 463
 464		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
 465				       &frag_off);
 466		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
 467			pr_debug("proto header not found\n");
 468			return NF_ACCEPT;
 469		}
 470		protoff = ofs;
 471		break;
 472	}
 473	default:
 474		WARN_ONCE(1, "helper invoked on non-IP family!");
 475		return NF_DROP;
 476	}
 477
 478	err = helper->help(skb, protoff, ct, ctinfo);
 479	if (err != NF_ACCEPT)
 480		return err;
 481
 482	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
 483	 * FTP with NAT) adusting the TCP payload size when mangling IP
 484	 * addresses and/or port numbers in the text-based control connection.
 485	 */
 486	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
 487	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
 488		return NF_DROP;
 489	return NF_ACCEPT;
 490}
 491
 492/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 493 * value if 'skb' is freed.
 494 */
 495static int handle_fragments(struct net *net, struct sw_flow_key *key,
 496			    u16 zone, struct sk_buff *skb)
 497{
 498	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 499	int err;
 500
 501	if (key->eth.type == htons(ETH_P_IP)) {
 502		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 503
 504		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 505		err = ip_defrag(net, skb, user);
 506		if (err)
 507			return err;
 508
 509		ovs_cb.mru = IPCB(skb)->frag_max_size;
 510#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 511	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 512		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 513
 514		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 515		err = nf_ct_frag6_gather(net, skb, user);
 516		if (err) {
 517			if (err != -EINPROGRESS)
 518				kfree_skb(skb);
 519			return err;
 520		}
 521
 522		key->ip.proto = ipv6_hdr(skb)->nexthdr;
 523		ovs_cb.mru = IP6CB(skb)->frag_max_size;
 524#endif
 525	} else {
 526		kfree_skb(skb);
 527		return -EPFNOSUPPORT;
 528	}
 529
 530	/* The key extracted from the fragment that completed this datagram
 531	 * likely didn't have an L4 header, so regenerate it.
 532	 */
 533	ovs_flow_key_update_l3l4(skb, key);
 534
 535	key->ip.frag = OVS_FRAG_TYPE_NONE;
 536	skb_clear_hash(skb);
 537	skb->ignore_df = 1;
 538	*OVS_CB(skb) = ovs_cb;
 539
 540	return 0;
 541}
 542
 543static struct nf_conntrack_expect *
 544ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 545		   u16 proto, const struct sk_buff *skb)
 546{
 547	struct nf_conntrack_tuple tuple;
 548	struct nf_conntrack_expect *exp;
 549
 550	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 551		return NULL;
 552
 553	exp = __nf_ct_expect_find(net, zone, &tuple);
 554	if (exp) {
 555		struct nf_conntrack_tuple_hash *h;
 556
 557		/* Delete existing conntrack entry, if it clashes with the
 558		 * expectation.  This can happen since conntrack ALGs do not
 559		 * check for clashes between (new) expectations and existing
 560		 * conntrack entries.  nf_conntrack_in() will check the
 561		 * expectations only if a conntrack entry can not be found,
 562		 * which can lead to OVS finding the expectation (here) in the
 563		 * init direction, but which will not be removed by the
 564		 * nf_conntrack_in() call, if a matching conntrack entry is
 565		 * found instead.  In this case all init direction packets
 566		 * would be reported as new related packets, while reply
 567		 * direction packets would be reported as un-related
 568		 * established packets.
 569		 */
 570		h = nf_conntrack_find_get(net, zone, &tuple);
 571		if (h) {
 572			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 573
 574			nf_ct_delete(ct, 0, 0);
 575			nf_conntrack_put(&ct->ct_general);
 576		}
 577	}
 578
 579	return exp;
 580}
 581
 582/* This replicates logic from nf_conntrack_core.c that is not exported. */
 583static enum ip_conntrack_info
 584ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 585{
 586	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 587
 588	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 589		return IP_CT_ESTABLISHED_REPLY;
 590	/* Once we've had two way comms, always ESTABLISHED. */
 591	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 592		return IP_CT_ESTABLISHED;
 593	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 594		return IP_CT_RELATED;
 595	return IP_CT_NEW;
 596}
 597
 598/* Find an existing connection which this packet belongs to without
 599 * re-attributing statistics or modifying the connection state.  This allows an
 600 * skb->_nfct lost due to an upcall to be recovered during actions execution.
 601 *
 602 * Must be called with rcu_read_lock.
 603 *
 604 * On success, populates skb->_nfct and returns the connection.  Returns NULL
 605 * if there is no existing entry.
 606 */
 607static struct nf_conn *
 608ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 609		     u8 l3num, struct sk_buff *skb, bool natted)
 610{
 
 
 611	struct nf_conntrack_tuple tuple;
 612	struct nf_conntrack_tuple_hash *h;
 613	struct nf_conn *ct;
 
 
 614
 615	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
 616			       net, &tuple)) {
 
 
 
 
 
 
 
 617		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 618		return NULL;
 619	}
 620
 621	/* Must invert the tuple if skb has been transformed by NAT. */
 622	if (natted) {
 623		struct nf_conntrack_tuple inverse;
 624
 625		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
 626			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
 627			return NULL;
 628		}
 629		tuple = inverse;
 630	}
 631
 632	/* look for tuple match */
 633	h = nf_conntrack_find_get(net, zone, &tuple);
 634	if (!h)
 635		return NULL;   /* Not found. */
 636
 637	ct = nf_ct_tuplehash_to_ctrack(h);
 638
 639	/* Inverted packet tuple matches the reverse direction conntrack tuple,
 640	 * select the other tuplehash to get the right 'ctinfo' bits for this
 641	 * packet.
 642	 */
 643	if (natted)
 644		h = &ct->tuplehash[!h->tuple.dst.dir];
 645
 646	nf_ct_set(skb, ct, ovs_ct_get_info(h));
 647	return ct;
 648}
 649
 650static
 651struct nf_conn *ovs_ct_executed(struct net *net,
 652				const struct sw_flow_key *key,
 653				const struct ovs_conntrack_info *info,
 654				struct sk_buff *skb,
 655				bool *ct_executed)
 656{
 657	struct nf_conn *ct = NULL;
 658
 659	/* If no ct, check if we have evidence that an existing conntrack entry
 660	 * might be found for this skb.  This happens when we lose a skb->_nfct
 661	 * due to an upcall, or if the direction is being forced.  If the
 662	 * connection was not confirmed, it is not cached and needs to be run
 663	 * through conntrack again.
 664	 */
 665	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
 666		       !(key->ct_state & OVS_CS_F_INVALID) &&
 667		       (key->ct_zone == info->zone.id);
 668
 669	if (*ct_executed || (!key->ct_state && info->force)) {
 670		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
 671					  !!(key->ct_state &
 672					  OVS_CS_F_NAT_MASK));
 673	}
 674
 675	return ct;
 676}
 677
 678/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
 679static bool skb_nfct_cached(struct net *net,
 680			    const struct sw_flow_key *key,
 681			    const struct ovs_conntrack_info *info,
 682			    struct sk_buff *skb)
 683{
 684	enum ip_conntrack_info ctinfo;
 685	struct nf_conn *ct;
 686	bool ct_executed = true;
 687
 688	ct = nf_ct_get(skb, &ctinfo);
 
 
 
 
 
 
 
 
 
 689	if (!ct)
 690		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
 691
 692	if (ct)
 693		nf_ct_get(skb, &ctinfo);
 694	else
 695		return false;
 696
 697	if (!net_eq(net, read_pnet(&ct->ct_net)))
 698		return false;
 699	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 700		return false;
 701	if (info->helper) {
 702		struct nf_conn_help *help;
 703
 704		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 705		if (help && rcu_access_pointer(help->helper) != info->helper)
 706			return false;
 707	}
 708	if (info->nf_ct_timeout) {
 709		struct nf_conn_timeout *timeout_ext;
 710
 711		timeout_ext = nf_ct_timeout_find(ct);
 712		if (!timeout_ext || info->nf_ct_timeout !=
 713		    rcu_dereference(timeout_ext->timeout))
 714			return false;
 715	}
 716	/* Force conntrack entry direction to the current packet? */
 717	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
 718		/* Delete the conntrack entry if confirmed, else just release
 719		 * the reference.
 720		 */
 721		if (nf_ct_is_confirmed(ct))
 722			nf_ct_delete(ct, 0, 0);
 723
 724		nf_conntrack_put(&ct->ct_general);
 725		nf_ct_set(skb, NULL, 0);
 726		return false;
 727	}
 728
 729	return ct_executed;
 730}
 731
 732#if IS_ENABLED(CONFIG_NF_NAT)
 733/* Modelled after nf_nat_ipv[46]_fn().
 734 * range is only used for new, uninitialized NAT state.
 735 * Returns either NF_ACCEPT or NF_DROP.
 736 */
 737static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
 738			      enum ip_conntrack_info ctinfo,
 739			      const struct nf_nat_range2 *range,
 740			      enum nf_nat_manip_type maniptype)
 741{
 742	int hooknum, nh_off, err = NF_ACCEPT;
 743
 744	nh_off = skb_network_offset(skb);
 745	skb_pull_rcsum(skb, nh_off);
 746
 747	/* See HOOK2MANIP(). */
 748	if (maniptype == NF_NAT_MANIP_SRC)
 749		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
 750	else
 751		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
 752
 753	switch (ctinfo) {
 754	case IP_CT_RELATED:
 755	case IP_CT_RELATED_REPLY:
 756		if (IS_ENABLED(CONFIG_NF_NAT) &&
 757		    skb->protocol == htons(ETH_P_IP) &&
 758		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
 759			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
 760							   hooknum))
 761				err = NF_DROP;
 762			goto push;
 763		} else if (IS_ENABLED(CONFIG_IPV6) &&
 764			   skb->protocol == htons(ETH_P_IPV6)) {
 765			__be16 frag_off;
 766			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 767			int hdrlen = ipv6_skip_exthdr(skb,
 768						      sizeof(struct ipv6hdr),
 769						      &nexthdr, &frag_off);
 770
 771			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
 772				if (!nf_nat_icmpv6_reply_translation(skb, ct,
 773								     ctinfo,
 774								     hooknum,
 775								     hdrlen))
 776					err = NF_DROP;
 777				goto push;
 778			}
 779		}
 780		/* Non-ICMP, fall thru to initialize if needed. */
 781		fallthrough;
 782	case IP_CT_NEW:
 783		/* Seen it before?  This can happen for loopback, retrans,
 784		 * or local packets.
 785		 */
 786		if (!nf_nat_initialized(ct, maniptype)) {
 787			/* Initialize according to the NAT action. */
 788			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
 789				/* Action is set up to establish a new
 790				 * mapping.
 791				 */
 792				? nf_nat_setup_info(ct, range, maniptype)
 793				: nf_nat_alloc_null_binding(ct, hooknum);
 794			if (err != NF_ACCEPT)
 795				goto push;
 796		}
 797		break;
 798
 799	case IP_CT_ESTABLISHED:
 800	case IP_CT_ESTABLISHED_REPLY:
 801		break;
 802
 803	default:
 804		err = NF_DROP;
 805		goto push;
 806	}
 807
 808	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
 809push:
 810	skb_push(skb, nh_off);
 811	skb_postpush_rcsum(skb, skb->data, nh_off);
 812
 813	return err;
 814}
 815
 816static void ovs_nat_update_key(struct sw_flow_key *key,
 817			       const struct sk_buff *skb,
 818			       enum nf_nat_manip_type maniptype)
 819{
 820	if (maniptype == NF_NAT_MANIP_SRC) {
 821		__be16 src;
 822
 823		key->ct_state |= OVS_CS_F_SRC_NAT;
 824		if (key->eth.type == htons(ETH_P_IP))
 825			key->ipv4.addr.src = ip_hdr(skb)->saddr;
 826		else if (key->eth.type == htons(ETH_P_IPV6))
 827			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 828			       sizeof(key->ipv6.addr.src));
 829		else
 830			return;
 831
 832		if (key->ip.proto == IPPROTO_UDP)
 833			src = udp_hdr(skb)->source;
 834		else if (key->ip.proto == IPPROTO_TCP)
 835			src = tcp_hdr(skb)->source;
 836		else if (key->ip.proto == IPPROTO_SCTP)
 837			src = sctp_hdr(skb)->source;
 838		else
 839			return;
 840
 841		key->tp.src = src;
 842	} else {
 843		__be16 dst;
 844
 845		key->ct_state |= OVS_CS_F_DST_NAT;
 846		if (key->eth.type == htons(ETH_P_IP))
 847			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 848		else if (key->eth.type == htons(ETH_P_IPV6))
 849			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 850			       sizeof(key->ipv6.addr.dst));
 851		else
 852			return;
 853
 854		if (key->ip.proto == IPPROTO_UDP)
 855			dst = udp_hdr(skb)->dest;
 856		else if (key->ip.proto == IPPROTO_TCP)
 857			dst = tcp_hdr(skb)->dest;
 858		else if (key->ip.proto == IPPROTO_SCTP)
 859			dst = sctp_hdr(skb)->dest;
 860		else
 861			return;
 862
 863		key->tp.dst = dst;
 864	}
 865}
 866
 867/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 868static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 869		      const struct ovs_conntrack_info *info,
 870		      struct sk_buff *skb, struct nf_conn *ct,
 871		      enum ip_conntrack_info ctinfo)
 872{
 873	enum nf_nat_manip_type maniptype;
 874	int err;
 875
 
 
 
 
 
 876	/* Add NAT extension if not confirmed yet. */
 877	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
 878		return NF_ACCEPT;   /* Can't NAT. */
 879
 880	/* Determine NAT type.
 881	 * Check if the NAT type can be deduced from the tracked connection.
 882	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
 883	 * when committing.
 884	 */
 885	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
 886	    ct->status & IPS_NAT_MASK &&
 887	    (ctinfo != IP_CT_RELATED || info->commit)) {
 888		/* NAT an established or related connection like before. */
 889		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
 890			/* This is the REPLY direction for a connection
 891			 * for which NAT was applied in the forward
 892			 * direction.  Do the reverse NAT.
 893			 */
 894			maniptype = ct->status & IPS_SRC_NAT
 895				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
 896		else
 897			maniptype = ct->status & IPS_SRC_NAT
 898				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
 899	} else if (info->nat & OVS_CT_SRC_NAT) {
 900		maniptype = NF_NAT_MANIP_SRC;
 901	} else if (info->nat & OVS_CT_DST_NAT) {
 902		maniptype = NF_NAT_MANIP_DST;
 903	} else {
 904		return NF_ACCEPT; /* Connection is not NATed. */
 905	}
 906	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
 907
 908	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
 909		if (ct->status & IPS_SRC_NAT) {
 910			if (maniptype == NF_NAT_MANIP_SRC)
 911				maniptype = NF_NAT_MANIP_DST;
 912			else
 913				maniptype = NF_NAT_MANIP_SRC;
 914
 915			err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
 916						 maniptype);
 917		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
 918			err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
 919						 NF_NAT_MANIP_SRC);
 920		}
 921	}
 922
 923	/* Mark NAT done if successful and update the flow key. */
 924	if (err == NF_ACCEPT)
 925		ovs_nat_update_key(key, skb, maniptype);
 926
 927	return err;
 928}
 929#else /* !CONFIG_NF_NAT */
 930static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 931		      const struct ovs_conntrack_info *info,
 932		      struct sk_buff *skb, struct nf_conn *ct,
 933		      enum ip_conntrack_info ctinfo)
 934{
 935	return NF_ACCEPT;
 936}
 937#endif
 938
 939/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 940 * not done already.  Update key with new CT state after passing the packet
 941 * through conntrack.
 942 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
 943 * set to NULL and 0 will be returned.
 944 */
 945static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 946			   const struct ovs_conntrack_info *info,
 947			   struct sk_buff *skb)
 948{
 949	/* If we are recirculating packets to match on conntrack fields and
 950	 * committing with a separate conntrack action,  then we don't need to
 951	 * actually run the packet through conntrack twice unless it's for a
 952	 * different zone.
 953	 */
 954	bool cached = skb_nfct_cached(net, key, info, skb);
 955	enum ip_conntrack_info ctinfo;
 956	struct nf_conn *ct;
 957
 958	if (!cached) {
 959		struct nf_hook_state state = {
 960			.hook = NF_INET_PRE_ROUTING,
 961			.pf = info->family,
 962			.net = net,
 963		};
 964		struct nf_conn *tmpl = info->ct;
 965		int err;
 966
 967		/* Associate skb with specified zone. */
 968		if (tmpl) {
 969			if (skb_nfct(skb))
 970				nf_conntrack_put(skb_nfct(skb));
 971			nf_conntrack_get(&tmpl->ct_general);
 972			nf_ct_set(skb, tmpl, IP_CT_NEW);
 
 973		}
 974
 975		err = nf_conntrack_in(skb, &state);
 
 976		if (err != NF_ACCEPT)
 977			return -ENOENT;
 978
 979		/* Clear CT state NAT flags to mark that we have not yet done
 980		 * NAT after the nf_conntrack_in() call.  We can actually clear
 981		 * the whole state, as it will be re-initialized below.
 982		 */
 983		key->ct_state = 0;
 984
 985		/* Update the key, but keep the NAT flags. */
 986		ovs_ct_update_key(skb, info, key, true, true);
 987	}
 988
 989	ct = nf_ct_get(skb, &ctinfo);
 990	if (ct) {
 991		bool add_helper = false;
 992
 993		/* Packets starting a new connection must be NATted before the
 994		 * helper, so that the helper knows about the NAT.  We enforce
 995		 * this by delaying both NAT and helper calls for unconfirmed
 996		 * connections until the committing CT action.  For later
 997		 * packets NAT and Helper may be called in either order.
 998		 *
 999		 * NAT will be done only if the CT action has NAT, and only
1000		 * once per packet (per zone), as guarded by the NAT bits in
1001		 * the key->ct_state.
1002		 */
1003		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1004		    (nf_ct_is_confirmed(ct) || info->commit) &&
1005		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1006			return -EINVAL;
1007		}
1008
1009		/* Userspace may decide to perform a ct lookup without a helper
1010		 * specified followed by a (recirculate and) commit with one,
1011		 * or attach a helper in a later commit.  Therefore, for
1012		 * connections which we will commit, we may need to attach
1013		 * the helper here.
1014		 */
1015		if (info->commit && info->helper && !nfct_help(ct)) {
 
1016			int err = __nf_ct_try_assign_helper(ct, info->ct,
1017							    GFP_ATOMIC);
1018			if (err)
1019				return err;
1020			add_helper = true;
1021
1022			/* helper installed, add seqadj if NAT is required */
1023			if (info->nat && !nfct_seqadj(ct)) {
1024				if (!nfct_seqadj_ext_add(ct))
1025					return -EINVAL;
1026			}
1027		}
1028
1029		/* Call the helper only if:
1030		 * - nf_conntrack_in() was executed above ("!cached") or a
1031		 *   helper was just attached ("add_helper") for a confirmed
1032		 *   connection, or
1033		 * - When committing an unconfirmed connection.
1034		 */
1035		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1036					      info->commit) &&
1037		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1038			return -EINVAL;
1039		}
1040	}
1041
1042	return 0;
1043}
1044
1045/* Lookup connection and read fields into key. */
1046static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1047			 const struct ovs_conntrack_info *info,
1048			 struct sk_buff *skb)
1049{
1050	struct nf_conntrack_expect *exp;
1051
1052	/* If we pass an expected packet through nf_conntrack_in() the
1053	 * expectation is typically removed, but the packet could still be
1054	 * lost in upcall processing.  To prevent this from happening we
1055	 * perform an explicit expectation lookup.  Expected connections are
1056	 * always new, and will be passed through conntrack only when they are
1057	 * committed, as it is OK to remove the expectation at that time.
1058	 */
1059	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1060	if (exp) {
1061		u8 state;
1062
1063		/* NOTE: New connections are NATted and Helped only when
1064		 * committed, so we are not calling into NAT here.
1065		 */
1066		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1067		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1068	} else {
1069		struct nf_conn *ct;
1070		int err;
1071
1072		err = __ovs_ct_lookup(net, key, info, skb);
1073		if (err)
1074			return err;
1075
1076		ct = (struct nf_conn *)skb_nfct(skb);
1077		if (ct)
1078			nf_ct_deliver_cached_events(ct);
1079	}
1080
1081	return 0;
1082}
1083
1084static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1085{
1086	size_t i;
1087
1088	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1089		if (labels->ct_labels_32[i])
1090			return true;
1091
1092	return false;
1093}
1094
1095#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1096static struct hlist_head *ct_limit_hash_bucket(
1097	const struct ovs_ct_limit_info *info, u16 zone)
1098{
1099	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1100}
1101
1102/* Call with ovs_mutex */
1103static void ct_limit_set(const struct ovs_ct_limit_info *info,
1104			 struct ovs_ct_limit *new_ct_limit)
1105{
1106	struct ovs_ct_limit *ct_limit;
1107	struct hlist_head *head;
1108
1109	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1110	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1111		if (ct_limit->zone == new_ct_limit->zone) {
1112			hlist_replace_rcu(&ct_limit->hlist_node,
1113					  &new_ct_limit->hlist_node);
1114			kfree_rcu(ct_limit, rcu);
1115			return;
1116		}
1117	}
1118
1119	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1120}
1121
1122/* Call with ovs_mutex */
1123static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1124{
1125	struct ovs_ct_limit *ct_limit;
1126	struct hlist_head *head;
1127	struct hlist_node *n;
1128
1129	head = ct_limit_hash_bucket(info, zone);
1130	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1131		if (ct_limit->zone == zone) {
1132			hlist_del_rcu(&ct_limit->hlist_node);
1133			kfree_rcu(ct_limit, rcu);
1134			return;
1135		}
1136	}
1137}
1138
1139/* Call with RCU read lock */
1140static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1141{
1142	struct ovs_ct_limit *ct_limit;
1143	struct hlist_head *head;
1144
1145	head = ct_limit_hash_bucket(info, zone);
1146	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1147		if (ct_limit->zone == zone)
1148			return ct_limit->limit;
1149	}
1150
1151	return info->default_limit;
1152}
1153
1154static int ovs_ct_check_limit(struct net *net,
1155			      const struct ovs_conntrack_info *info,
1156			      const struct nf_conntrack_tuple *tuple)
1157{
1158	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1159	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1160	u32 per_zone_limit, connections;
1161	u32 conncount_key;
1162
1163	conncount_key = info->zone.id;
1164
1165	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1166	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1167		return 0;
1168
1169	connections = nf_conncount_count(net, ct_limit_info->data,
1170					 &conncount_key, tuple, &info->zone);
1171	if (connections > per_zone_limit)
1172		return -ENOMEM;
1173
1174	return 0;
1175}
1176#endif
1177
1178/* Lookup connection and confirm if unconfirmed. */
1179static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1180			 const struct ovs_conntrack_info *info,
1181			 struct sk_buff *skb)
1182{
1183	enum ip_conntrack_info ctinfo;
1184	struct nf_conn *ct;
1185	int err;
1186
1187	err = __ovs_ct_lookup(net, key, info, skb);
1188	if (err)
1189		return err;
1190
1191	/* The connection could be invalid, in which case this is a no-op.*/
1192	ct = nf_ct_get(skb, &ctinfo);
1193	if (!ct)
1194		return 0;
1195
1196#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1197	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1198		if (!nf_ct_is_confirmed(ct)) {
1199			err = ovs_ct_check_limit(net, info,
1200				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1201			if (err) {
1202				net_warn_ratelimited("openvswitch: zone: %u "
1203					"exceeds conntrack limit\n",
1204					info->zone.id);
1205				return err;
1206			}
1207		}
1208	}
1209#endif
1210
1211	/* Set the conntrack event mask if given.  NEW and DELETE events have
1212	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1213	 * typically would receive many kinds of updates.  Setting the event
1214	 * mask allows those events to be filtered.  The set event mask will
1215	 * remain in effect for the lifetime of the connection unless changed
1216	 * by a further CT action with both the commit flag and the eventmask
1217	 * option. */
1218	if (info->have_eventmask) {
1219		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1220
1221		if (cache)
1222			cache->ctmask = info->eventmask;
1223	}
1224
1225	/* Apply changes before confirming the connection so that the initial
1226	 * conntrack NEW netlink event carries the values given in the CT
1227	 * action.
1228	 */
1229	if (info->mark.mask) {
1230		err = ovs_ct_set_mark(ct, key, info->mark.value,
1231				      info->mark.mask);
1232		if (err)
1233			return err;
1234	}
1235	if (!nf_ct_is_confirmed(ct)) {
1236		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1237					 &info->labels.mask);
1238		if (err)
1239			return err;
1240	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1241		   labels_nonzero(&info->labels.mask)) {
1242		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1243					&info->labels.mask);
1244		if (err)
1245			return err;
1246	}
1247	/* This will take care of sending queued events even if the connection
1248	 * is already confirmed.
1249	 */
1250	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1251		return -EINVAL;
1252
1253	return 0;
1254}
1255
1256/* Trim the skb to the length specified by the IP/IPv6 header,
1257 * removing any trailing lower-layer padding. This prepares the skb
1258 * for higher-layer processing that assumes skb->len excludes padding
1259 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1260 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1261 */
1262static int ovs_skb_network_trim(struct sk_buff *skb)
1263{
1264	unsigned int len;
1265	int err;
1266
1267	switch (skb->protocol) {
1268	case htons(ETH_P_IP):
1269		len = ntohs(ip_hdr(skb)->tot_len);
1270		break;
1271	case htons(ETH_P_IPV6):
1272		len = sizeof(struct ipv6hdr)
1273			+ ntohs(ipv6_hdr(skb)->payload_len);
1274		break;
1275	default:
1276		len = skb->len;
1277	}
1278
1279	err = pskb_trim_rcsum(skb, len);
1280	if (err)
1281		kfree_skb(skb);
1282
1283	return err;
1284}
1285
1286/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1287 * value if 'skb' is freed.
1288 */
1289int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1290		   struct sw_flow_key *key,
1291		   const struct ovs_conntrack_info *info)
1292{
1293	int nh_ofs;
1294	int err;
1295
1296	/* The conntrack module expects to be working at L3. */
1297	nh_ofs = skb_network_offset(skb);
1298	skb_pull_rcsum(skb, nh_ofs);
1299
1300	err = ovs_skb_network_trim(skb);
1301	if (err)
1302		return err;
1303
1304	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1305		err = handle_fragments(net, key, info->zone.id, skb);
1306		if (err)
1307			return err;
1308	}
1309
1310	if (info->commit)
1311		err = ovs_ct_commit(net, key, info, skb);
1312	else
1313		err = ovs_ct_lookup(net, key, info, skb);
1314
1315	skb_push(skb, nh_ofs);
1316	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1317	if (err)
1318		kfree_skb(skb);
1319	return err;
1320}
1321
1322int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1323{
1324	if (skb_nfct(skb)) {
1325		nf_conntrack_put(skb_nfct(skb));
1326		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1327		ovs_ct_fill_key(skb, key);
1328	}
1329
1330	return 0;
1331}
1332
1333static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1334			     const struct sw_flow_key *key, bool log)
1335{
1336	struct nf_conntrack_helper *helper;
1337	struct nf_conn_help *help;
1338	int ret = 0;
1339
1340	helper = nf_conntrack_helper_try_module_get(name, info->family,
1341						    key->ip.proto);
1342	if (!helper) {
1343		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1344		return -EINVAL;
1345	}
1346
1347	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1348	if (!help) {
1349		nf_conntrack_helper_put(helper);
1350		return -ENOMEM;
1351	}
1352
1353#if IS_ENABLED(CONFIG_NF_NAT)
1354	if (info->nat) {
1355		ret = nf_nat_helper_try_module_get(name, info->family,
1356						   key->ip.proto);
1357		if (ret) {
1358			nf_conntrack_helper_put(helper);
1359			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1360				  name, ret);
1361			return ret;
1362		}
1363	}
1364#endif
1365	rcu_assign_pointer(help->helper, helper);
1366	info->helper = helper;
1367	return ret;
1368}
1369
1370#if IS_ENABLED(CONFIG_NF_NAT)
1371static int parse_nat(const struct nlattr *attr,
1372		     struct ovs_conntrack_info *info, bool log)
1373{
1374	struct nlattr *a;
1375	int rem;
1376	bool have_ip_max = false;
1377	bool have_proto_max = false;
1378	bool ip_vers = (info->family == NFPROTO_IPV6);
1379
1380	nla_for_each_nested(a, attr, rem) {
1381		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1382			[OVS_NAT_ATTR_SRC] = {0, 0},
1383			[OVS_NAT_ATTR_DST] = {0, 0},
1384			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1385						 sizeof(struct in6_addr)},
1386			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1387						 sizeof(struct in6_addr)},
1388			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1389			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1390			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1391			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1392			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1393		};
1394		int type = nla_type(a);
1395
1396		if (type > OVS_NAT_ATTR_MAX) {
1397			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
 
1398				  type, OVS_NAT_ATTR_MAX);
1399			return -EINVAL;
1400		}
1401
1402		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1403			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
 
1404				  type, nla_len(a),
1405				  ovs_nat_attr_lens[type][ip_vers]);
1406			return -EINVAL;
1407		}
1408
1409		switch (type) {
1410		case OVS_NAT_ATTR_SRC:
1411		case OVS_NAT_ATTR_DST:
1412			if (info->nat) {
1413				OVS_NLERR(log, "Only one type of NAT may be specified");
 
 
1414				return -ERANGE;
1415			}
1416			info->nat |= OVS_CT_NAT;
1417			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1418					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1419			break;
1420
1421		case OVS_NAT_ATTR_IP_MIN:
1422			nla_memcpy(&info->range.min_addr, a,
1423				   sizeof(info->range.min_addr));
1424			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1425			break;
1426
1427		case OVS_NAT_ATTR_IP_MAX:
1428			have_ip_max = true;
1429			nla_memcpy(&info->range.max_addr, a,
1430				   sizeof(info->range.max_addr));
1431			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1432			break;
1433
1434		case OVS_NAT_ATTR_PROTO_MIN:
1435			info->range.min_proto.all = htons(nla_get_u16(a));
1436			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1437			break;
1438
1439		case OVS_NAT_ATTR_PROTO_MAX:
1440			have_proto_max = true;
1441			info->range.max_proto.all = htons(nla_get_u16(a));
1442			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1443			break;
1444
1445		case OVS_NAT_ATTR_PERSISTENT:
1446			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1447			break;
1448
1449		case OVS_NAT_ATTR_PROTO_HASH:
1450			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1451			break;
1452
1453		case OVS_NAT_ATTR_PROTO_RANDOM:
1454			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1455			break;
1456
1457		default:
1458			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1459			return -EINVAL;
1460		}
1461	}
1462
1463	if (rem > 0) {
1464		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1465		return -EINVAL;
1466	}
1467	if (!info->nat) {
1468		/* Do not allow flags if no type is given. */
1469		if (info->range.flags) {
1470			OVS_NLERR(log,
1471				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1472				  );
1473			return -EINVAL;
1474		}
1475		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1476	} else if (!info->commit) {
1477		OVS_NLERR(log,
1478			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1479			  );
1480		return -EINVAL;
1481	}
1482	/* Allow missing IP_MAX. */
1483	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1484		memcpy(&info->range.max_addr, &info->range.min_addr,
1485		       sizeof(info->range.max_addr));
1486	}
1487	/* Allow missing PROTO_MAX. */
1488	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1489	    !have_proto_max) {
1490		info->range.max_proto.all = info->range.min_proto.all;
1491	}
1492	return 0;
1493}
1494#endif
1495
1496static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1497	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1498	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1499	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1500				    .maxlen = sizeof(u16) },
1501	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1502				    .maxlen = sizeof(struct md_mark) },
1503	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1504				    .maxlen = sizeof(struct md_labels) },
1505	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1506				    .maxlen = NF_CT_HELPER_NAME_LEN },
1507#if IS_ENABLED(CONFIG_NF_NAT)
1508	/* NAT length is checked when parsing the nested attributes. */
1509	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1510#endif
1511	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1512				    .maxlen = sizeof(u32) },
1513	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1514				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1515};
1516
1517static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1518		    const char **helper, bool log)
1519{
1520	struct nlattr *a;
1521	int rem;
1522
1523	nla_for_each_nested(a, attr, rem) {
1524		int type = nla_type(a);
1525		int maxlen;
1526		int minlen;
1527
1528		if (type > OVS_CT_ATTR_MAX) {
1529			OVS_NLERR(log,
1530				  "Unknown conntrack attr (type=%d, max=%d)",
1531				  type, OVS_CT_ATTR_MAX);
1532			return -EINVAL;
1533		}
1534
1535		maxlen = ovs_ct_attr_lens[type].maxlen;
1536		minlen = ovs_ct_attr_lens[type].minlen;
1537		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1538			OVS_NLERR(log,
1539				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1540				  type, nla_len(a), maxlen);
1541			return -EINVAL;
1542		}
1543
1544		switch (type) {
1545		case OVS_CT_ATTR_FORCE_COMMIT:
1546			info->force = true;
1547			fallthrough;
1548		case OVS_CT_ATTR_COMMIT:
1549			info->commit = true;
1550			break;
1551#ifdef CONFIG_NF_CONNTRACK_ZONES
1552		case OVS_CT_ATTR_ZONE:
1553			info->zone.id = nla_get_u16(a);
1554			break;
1555#endif
1556#ifdef CONFIG_NF_CONNTRACK_MARK
1557		case OVS_CT_ATTR_MARK: {
1558			struct md_mark *mark = nla_data(a);
1559
1560			if (!mark->mask) {
1561				OVS_NLERR(log, "ct_mark mask cannot be 0");
1562				return -EINVAL;
1563			}
1564			info->mark = *mark;
1565			break;
1566		}
1567#endif
1568#ifdef CONFIG_NF_CONNTRACK_LABELS
1569		case OVS_CT_ATTR_LABELS: {
1570			struct md_labels *labels = nla_data(a);
1571
1572			if (!labels_nonzero(&labels->mask)) {
1573				OVS_NLERR(log, "ct_labels mask cannot be 0");
1574				return -EINVAL;
1575			}
1576			info->labels = *labels;
1577			break;
1578		}
1579#endif
1580		case OVS_CT_ATTR_HELPER:
1581			*helper = nla_data(a);
1582			if (!memchr(*helper, '\0', nla_len(a))) {
1583				OVS_NLERR(log, "Invalid conntrack helper");
1584				return -EINVAL;
1585			}
1586			break;
1587#if IS_ENABLED(CONFIG_NF_NAT)
1588		case OVS_CT_ATTR_NAT: {
1589			int err = parse_nat(a, info, log);
1590
1591			if (err)
1592				return err;
1593			break;
1594		}
1595#endif
1596		case OVS_CT_ATTR_EVENTMASK:
1597			info->have_eventmask = true;
1598			info->eventmask = nla_get_u32(a);
1599			break;
1600#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1601		case OVS_CT_ATTR_TIMEOUT:
1602			memcpy(info->timeout, nla_data(a), nla_len(a));
1603			if (!memchr(info->timeout, '\0', nla_len(a))) {
1604				OVS_NLERR(log, "Invalid conntrack timeout");
1605				return -EINVAL;
1606			}
1607			break;
1608#endif
1609
1610		default:
1611			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1612				  type);
1613			return -EINVAL;
1614		}
1615	}
1616
1617#ifdef CONFIG_NF_CONNTRACK_MARK
1618	if (!info->commit && info->mark.mask) {
1619		OVS_NLERR(log,
1620			  "Setting conntrack mark requires 'commit' flag.");
1621		return -EINVAL;
1622	}
1623#endif
1624#ifdef CONFIG_NF_CONNTRACK_LABELS
1625	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1626		OVS_NLERR(log,
1627			  "Setting conntrack labels requires 'commit' flag.");
1628		return -EINVAL;
1629	}
1630#endif
1631	if (rem > 0) {
1632		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1633		return -EINVAL;
1634	}
1635
1636	return 0;
1637}
1638
1639bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1640{
1641	if (attr == OVS_KEY_ATTR_CT_STATE)
1642		return true;
1643	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1644	    attr == OVS_KEY_ATTR_CT_ZONE)
1645		return true;
1646	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1647	    attr == OVS_KEY_ATTR_CT_MARK)
1648		return true;
1649	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1650	    attr == OVS_KEY_ATTR_CT_LABELS) {
1651		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1652
1653		return ovs_net->xt_label;
1654	}
1655
1656	return false;
1657}
1658
1659int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1660		       const struct sw_flow_key *key,
1661		       struct sw_flow_actions **sfa,  bool log)
1662{
1663	struct ovs_conntrack_info ct_info;
1664	const char *helper = NULL;
1665	u16 family;
1666	int err;
1667
1668	family = key_to_nfproto(key);
1669	if (family == NFPROTO_UNSPEC) {
1670		OVS_NLERR(log, "ct family unspecified");
1671		return -EINVAL;
1672	}
1673
1674	memset(&ct_info, 0, sizeof(ct_info));
1675	ct_info.family = family;
1676
1677	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1678			NF_CT_DEFAULT_ZONE_DIR, 0);
1679
1680	err = parse_ct(attr, &ct_info, &helper, log);
1681	if (err)
1682		return err;
1683
1684	/* Set up template for tracking connections in specific zones. */
1685	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1686	if (!ct_info.ct) {
1687		OVS_NLERR(log, "Failed to allocate conntrack template");
1688		return -ENOMEM;
1689	}
1690
1691	if (ct_info.timeout[0]) {
1692		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1693				      ct_info.timeout))
1694			pr_info_ratelimited("Failed to associated timeout "
1695					    "policy `%s'\n", ct_info.timeout);
1696		else
1697			ct_info.nf_ct_timeout = rcu_dereference(
1698				nf_ct_timeout_find(ct_info.ct)->timeout);
1699
1700	}
1701
1702	if (helper) {
1703		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1704		if (err)
1705			goto err_free_ct;
1706	}
1707
1708	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1709				 sizeof(ct_info), log);
1710	if (err)
1711		goto err_free_ct;
1712
1713	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1714	nf_conntrack_get(&ct_info.ct->ct_general);
1715	return 0;
1716err_free_ct:
1717	__ovs_ct_free_action(&ct_info);
1718	return err;
1719}
1720
1721#if IS_ENABLED(CONFIG_NF_NAT)
1722static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1723			       struct sk_buff *skb)
1724{
1725	struct nlattr *start;
1726
1727	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1728	if (!start)
1729		return false;
1730
1731	if (info->nat & OVS_CT_SRC_NAT) {
1732		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1733			return false;
1734	} else if (info->nat & OVS_CT_DST_NAT) {
1735		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1736			return false;
1737	} else {
1738		goto out;
1739	}
1740
1741	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1742		if (IS_ENABLED(CONFIG_NF_NAT) &&
1743		    info->family == NFPROTO_IPV4) {
1744			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1745					    info->range.min_addr.ip) ||
1746			    (info->range.max_addr.ip
1747			     != info->range.min_addr.ip &&
1748			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1749					      info->range.max_addr.ip))))
1750				return false;
1751		} else if (IS_ENABLED(CONFIG_IPV6) &&
1752			   info->family == NFPROTO_IPV6) {
1753			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1754					     &info->range.min_addr.in6) ||
1755			    (memcmp(&info->range.max_addr.in6,
1756				    &info->range.min_addr.in6,
1757				    sizeof(info->range.max_addr.in6)) &&
1758			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1759					       &info->range.max_addr.in6))))
1760				return false;
1761		} else {
1762			return false;
1763		}
1764	}
1765	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1766	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1767			 ntohs(info->range.min_proto.all)) ||
1768	     (info->range.max_proto.all != info->range.min_proto.all &&
1769	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1770			  ntohs(info->range.max_proto.all)))))
1771		return false;
1772
1773	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1774	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1775		return false;
1776	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1777	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1778		return false;
1779	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1780	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1781		return false;
1782out:
1783	nla_nest_end(skb, start);
1784
1785	return true;
1786}
1787#endif
1788
1789int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1790			  struct sk_buff *skb)
1791{
1792	struct nlattr *start;
1793
1794	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1795	if (!start)
1796		return -EMSGSIZE;
1797
1798	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1799					    ? OVS_CT_ATTR_FORCE_COMMIT
1800					    : OVS_CT_ATTR_COMMIT))
1801		return -EMSGSIZE;
1802	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1803	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1804		return -EMSGSIZE;
1805	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1806	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1807		    &ct_info->mark))
1808		return -EMSGSIZE;
1809	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1810	    labels_nonzero(&ct_info->labels.mask) &&
1811	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1812		    &ct_info->labels))
1813		return -EMSGSIZE;
1814	if (ct_info->helper) {
1815		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1816				   ct_info->helper->name))
1817			return -EMSGSIZE;
1818	}
1819	if (ct_info->have_eventmask &&
1820	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1821		return -EMSGSIZE;
1822	if (ct_info->timeout[0]) {
1823		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1824			return -EMSGSIZE;
1825	}
1826
1827#if IS_ENABLED(CONFIG_NF_NAT)
1828	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1829		return -EMSGSIZE;
1830#endif
1831	nla_nest_end(skb, start);
1832
1833	return 0;
1834}
1835
1836void ovs_ct_free_action(const struct nlattr *a)
1837{
1838	struct ovs_conntrack_info *ct_info = nla_data(a);
1839
1840	__ovs_ct_free_action(ct_info);
1841}
1842
1843static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1844{
1845	if (ct_info->helper) {
1846#if IS_ENABLED(CONFIG_NF_NAT)
1847		if (ct_info->nat)
1848			nf_nat_helper_put(ct_info->helper);
1849#endif
1850		nf_conntrack_helper_put(ct_info->helper);
1851	}
1852	if (ct_info->ct) {
1853		if (ct_info->timeout[0])
1854			nf_ct_destroy_timeout(ct_info->ct);
1855		nf_ct_tmpl_free(ct_info->ct);
1856	}
1857}
1858
1859#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1860static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1861{
1862	int i, err;
1863
1864	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1865					 GFP_KERNEL);
1866	if (!ovs_net->ct_limit_info)
1867		return -ENOMEM;
1868
1869	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1870	ovs_net->ct_limit_info->limits =
1871		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1872			      GFP_KERNEL);
1873	if (!ovs_net->ct_limit_info->limits) {
1874		kfree(ovs_net->ct_limit_info);
1875		return -ENOMEM;
1876	}
1877
1878	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1879		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1880
1881	ovs_net->ct_limit_info->data =
1882		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1883
1884	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1885		err = PTR_ERR(ovs_net->ct_limit_info->data);
1886		kfree(ovs_net->ct_limit_info->limits);
1887		kfree(ovs_net->ct_limit_info);
1888		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1889		return err;
1890	}
1891	return 0;
1892}
1893
1894static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1895{
1896	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1897	int i;
1898
1899	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1900	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1901		struct hlist_head *head = &info->limits[i];
1902		struct ovs_ct_limit *ct_limit;
1903
1904		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1905					 lockdep_ovsl_is_held())
1906			kfree_rcu(ct_limit, rcu);
1907	}
1908	kfree(ovs_net->ct_limit_info->limits);
1909	kfree(ovs_net->ct_limit_info);
1910}
1911
1912static struct sk_buff *
1913ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1914			     struct ovs_header **ovs_reply_header)
1915{
1916	struct ovs_header *ovs_header = info->userhdr;
1917	struct sk_buff *skb;
1918
1919	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1920	if (!skb)
1921		return ERR_PTR(-ENOMEM);
1922
1923	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1924					info->snd_seq,
1925					&dp_ct_limit_genl_family, 0, cmd);
1926
1927	if (!*ovs_reply_header) {
1928		nlmsg_free(skb);
1929		return ERR_PTR(-EMSGSIZE);
1930	}
1931	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1932
1933	return skb;
1934}
1935
1936static bool check_zone_id(int zone_id, u16 *pzone)
1937{
1938	if (zone_id >= 0 && zone_id <= 65535) {
1939		*pzone = (u16)zone_id;
1940		return true;
1941	}
1942	return false;
1943}
1944
1945static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1946				       struct ovs_ct_limit_info *info)
1947{
1948	struct ovs_zone_limit *zone_limit;
1949	int rem;
1950	u16 zone;
1951
1952	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1953	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1954
1955	while (rem >= sizeof(*zone_limit)) {
1956		if (unlikely(zone_limit->zone_id ==
1957				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1958			ovs_lock();
1959			info->default_limit = zone_limit->limit;
1960			ovs_unlock();
1961		} else if (unlikely(!check_zone_id(
1962				zone_limit->zone_id, &zone))) {
1963			OVS_NLERR(true, "zone id is out of range");
1964		} else {
1965			struct ovs_ct_limit *ct_limit;
1966
1967			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1968			if (!ct_limit)
1969				return -ENOMEM;
1970
1971			ct_limit->zone = zone;
1972			ct_limit->limit = zone_limit->limit;
1973
1974			ovs_lock();
1975			ct_limit_set(info, ct_limit);
1976			ovs_unlock();
1977		}
1978		rem -= NLA_ALIGN(sizeof(*zone_limit));
1979		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1980				NLA_ALIGN(sizeof(*zone_limit)));
1981	}
1982
1983	if (rem)
1984		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1985
1986	return 0;
1987}
1988
1989static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1990				       struct ovs_ct_limit_info *info)
1991{
1992	struct ovs_zone_limit *zone_limit;
1993	int rem;
1994	u16 zone;
1995
1996	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1997	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1998
1999	while (rem >= sizeof(*zone_limit)) {
2000		if (unlikely(zone_limit->zone_id ==
2001				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2002			ovs_lock();
2003			info->default_limit = OVS_CT_LIMIT_DEFAULT;
2004			ovs_unlock();
2005		} else if (unlikely(!check_zone_id(
2006				zone_limit->zone_id, &zone))) {
2007			OVS_NLERR(true, "zone id is out of range");
2008		} else {
2009			ovs_lock();
2010			ct_limit_del(info, zone);
2011			ovs_unlock();
2012		}
2013		rem -= NLA_ALIGN(sizeof(*zone_limit));
2014		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2015				NLA_ALIGN(sizeof(*zone_limit)));
2016	}
2017
2018	if (rem)
2019		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2020
2021	return 0;
2022}
2023
2024static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2025					  struct sk_buff *reply)
2026{
2027	struct ovs_zone_limit zone_limit;
2028	int err;
2029
2030	zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2031	zone_limit.limit = info->default_limit;
2032	err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2033	if (err)
2034		return err;
2035
2036	return 0;
2037}
2038
2039static int __ovs_ct_limit_get_zone_limit(struct net *net,
2040					 struct nf_conncount_data *data,
2041					 u16 zone_id, u32 limit,
2042					 struct sk_buff *reply)
2043{
2044	struct nf_conntrack_zone ct_zone;
2045	struct ovs_zone_limit zone_limit;
2046	u32 conncount_key = zone_id;
2047
2048	zone_limit.zone_id = zone_id;
2049	zone_limit.limit = limit;
2050	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2051
2052	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2053					      &ct_zone);
2054	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2055}
2056
2057static int ovs_ct_limit_get_zone_limit(struct net *net,
2058				       struct nlattr *nla_zone_limit,
2059				       struct ovs_ct_limit_info *info,
2060				       struct sk_buff *reply)
2061{
2062	struct ovs_zone_limit *zone_limit;
2063	int rem, err;
2064	u32 limit;
2065	u16 zone;
2066
2067	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2068	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2069
2070	while (rem >= sizeof(*zone_limit)) {
2071		if (unlikely(zone_limit->zone_id ==
2072				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2073			err = ovs_ct_limit_get_default_limit(info, reply);
2074			if (err)
2075				return err;
2076		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2077							&zone))) {
2078			OVS_NLERR(true, "zone id is out of range");
2079		} else {
2080			rcu_read_lock();
2081			limit = ct_limit_get(info, zone);
2082			rcu_read_unlock();
2083
2084			err = __ovs_ct_limit_get_zone_limit(
2085				net, info->data, zone, limit, reply);
2086			if (err)
2087				return err;
2088		}
2089		rem -= NLA_ALIGN(sizeof(*zone_limit));
2090		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2091				NLA_ALIGN(sizeof(*zone_limit)));
2092	}
2093
2094	if (rem)
2095		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2096
2097	return 0;
2098}
2099
2100static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2101					   struct ovs_ct_limit_info *info,
2102					   struct sk_buff *reply)
2103{
2104	struct ovs_ct_limit *ct_limit;
2105	struct hlist_head *head;
2106	int i, err = 0;
2107
2108	err = ovs_ct_limit_get_default_limit(info, reply);
2109	if (err)
2110		return err;
2111
2112	rcu_read_lock();
2113	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2114		head = &info->limits[i];
2115		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2116			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2117				ct_limit->zone, ct_limit->limit, reply);
2118			if (err)
2119				goto exit_err;
2120		}
2121	}
2122
2123exit_err:
2124	rcu_read_unlock();
2125	return err;
2126}
2127
2128static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2129{
2130	struct nlattr **a = info->attrs;
2131	struct sk_buff *reply;
2132	struct ovs_header *ovs_reply_header;
2133	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2134	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2135	int err;
2136
2137	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2138					     &ovs_reply_header);
2139	if (IS_ERR(reply))
2140		return PTR_ERR(reply);
2141
2142	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2143		err = -EINVAL;
2144		goto exit_err;
2145	}
2146
2147	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2148					  ct_limit_info);
2149	if (err)
2150		goto exit_err;
2151
2152	static_branch_enable(&ovs_ct_limit_enabled);
2153
2154	genlmsg_end(reply, ovs_reply_header);
2155	return genlmsg_reply(reply, info);
2156
2157exit_err:
2158	nlmsg_free(reply);
2159	return err;
2160}
2161
2162static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2163{
2164	struct nlattr **a = info->attrs;
2165	struct sk_buff *reply;
2166	struct ovs_header *ovs_reply_header;
2167	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2168	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2169	int err;
2170
2171	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2172					     &ovs_reply_header);
2173	if (IS_ERR(reply))
2174		return PTR_ERR(reply);
2175
2176	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2177		err = -EINVAL;
2178		goto exit_err;
2179	}
2180
2181	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2182					  ct_limit_info);
2183	if (err)
2184		goto exit_err;
2185
2186	genlmsg_end(reply, ovs_reply_header);
2187	return genlmsg_reply(reply, info);
2188
2189exit_err:
2190	nlmsg_free(reply);
2191	return err;
2192}
2193
2194static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2195{
2196	struct nlattr **a = info->attrs;
2197	struct nlattr *nla_reply;
2198	struct sk_buff *reply;
2199	struct ovs_header *ovs_reply_header;
2200	struct net *net = sock_net(skb->sk);
2201	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2202	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2203	int err;
2204
2205	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2206					     &ovs_reply_header);
2207	if (IS_ERR(reply))
2208		return PTR_ERR(reply);
2209
2210	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2211	if (!nla_reply) {
2212		err = -EMSGSIZE;
2213		goto exit_err;
2214	}
2215
2216	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2217		err = ovs_ct_limit_get_zone_limit(
2218			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2219			reply);
2220		if (err)
2221			goto exit_err;
2222	} else {
2223		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2224						      reply);
2225		if (err)
2226			goto exit_err;
2227	}
2228
2229	nla_nest_end(reply, nla_reply);
2230	genlmsg_end(reply, ovs_reply_header);
2231	return genlmsg_reply(reply, info);
2232
2233exit_err:
2234	nlmsg_free(reply);
2235	return err;
2236}
2237
2238static struct genl_ops ct_limit_genl_ops[] = {
2239	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2240		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2241		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2242					   * privilege. */
2243		.doit = ovs_ct_limit_cmd_set,
2244	},
2245	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2246		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2247		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2248					   * privilege. */
2249		.doit = ovs_ct_limit_cmd_del,
2250	},
2251	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2252		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2253		.flags = 0,		  /* OK for unprivileged users. */
2254		.doit = ovs_ct_limit_cmd_get,
2255	},
2256};
2257
2258static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2259	.name = OVS_CT_LIMIT_MCGROUP,
2260};
2261
2262struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2263	.hdrsize = sizeof(struct ovs_header),
2264	.name = OVS_CT_LIMIT_FAMILY,
2265	.version = OVS_CT_LIMIT_VERSION,
2266	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2267	.policy = ct_limit_policy,
2268	.netnsok = true,
2269	.parallel_ops = true,
2270	.ops = ct_limit_genl_ops,
2271	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2272	.mcgrps = &ovs_ct_limit_multicast_group,
2273	.n_mcgrps = 1,
2274	.module = THIS_MODULE,
2275};
2276#endif
2277
2278int ovs_ct_init(struct net *net)
2279{
2280	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2281	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2282
2283	if (nf_connlabels_get(net, n_bits - 1)) {
2284		ovs_net->xt_label = false;
2285		OVS_NLERR(true, "Failed to set connlabel length");
2286	} else {
2287		ovs_net->xt_label = true;
2288	}
2289
2290#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2291	return ovs_ct_limit_init(net, ovs_net);
2292#else
2293	return 0;
2294#endif
2295}
2296
2297void ovs_ct_exit(struct net *net)
2298{
2299	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2300
2301#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2302	ovs_ct_limit_exit(net, ovs_net);
2303#endif
2304
2305	if (ovs_net->xt_label)
2306		nf_connlabels_put(net);
2307}