Loading...
1/*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14#include <linux/module.h>
15#include <linux/openvswitch.h>
16#include <linux/tcp.h>
17#include <linux/udp.h>
18#include <linux/sctp.h>
19#include <net/ip.h>
20#include <net/netfilter/nf_conntrack_core.h>
21#include <net/netfilter/nf_conntrack_helper.h>
22#include <net/netfilter/nf_conntrack_labels.h>
23#include <net/netfilter/nf_conntrack_seqadj.h>
24#include <net/netfilter/nf_conntrack_zones.h>
25#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27#ifdef CONFIG_NF_NAT_NEEDED
28#include <linux/netfilter/nf_nat.h>
29#include <net/netfilter/nf_nat_core.h>
30#include <net/netfilter/nf_nat_l3proto.h>
31#endif
32
33#include "datapath.h"
34#include "conntrack.h"
35#include "flow.h"
36#include "flow_netlink.h"
37
38struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41};
42
43/* Metadata mark for masked write to conntrack mark */
44struct md_mark {
45 u32 value;
46 u32 mask;
47};
48
49/* Metadata label for masked write to conntrack label. */
50struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53};
54
55enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59};
60
61/* Conntrack action context for execution. */
62struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71#ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73#endif
74};
75
76static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78static u16 key_to_nfproto(const struct sw_flow_key *key)
79{
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88}
89
90/* Map SKB connection state into the values used by flow definition. */
91static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92{
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121}
122
123static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124{
125#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127#else
128 return 0;
129#endif
130}
131
132static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134{
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = sizeof(cl->bits);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148}
149
150static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153{
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158}
159
160/* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169{
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201}
202
203/* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207{
208 ovs_ct_update_key(skb, NULL, key, false, false);
209}
210
211int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212{
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230}
231
232static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234{
235#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253#else
254 return -ENOTSUPP;
255#endif
256}
257
258static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261{
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287}
288
289/* 'skb' should already be pulled to nh_ofs. */
290static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291{
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346}
347
348/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353{
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
371 err = nf_ct_frag6_gather(net, skb, user);
372 if (err) {
373 if (err != -EINPROGRESS)
374 kfree_skb(skb);
375 return err;
376 }
377
378 key->ip.proto = ipv6_hdr(skb)->nexthdr;
379 ovs_cb.mru = IP6CB(skb)->frag_max_size;
380#endif
381 } else {
382 kfree_skb(skb);
383 return -EPFNOSUPPORT;
384 }
385
386 key->ip.frag = OVS_FRAG_TYPE_NONE;
387 skb_clear_hash(skb);
388 skb->ignore_df = 1;
389 *OVS_CB(skb) = ovs_cb;
390
391 return 0;
392}
393
394static struct nf_conntrack_expect *
395ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
396 u16 proto, const struct sk_buff *skb)
397{
398 struct nf_conntrack_tuple tuple;
399
400 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
401 return NULL;
402 return __nf_ct_expect_find(net, zone, &tuple);
403}
404
405/* This replicates logic from nf_conntrack_core.c that is not exported. */
406static enum ip_conntrack_info
407ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
408{
409 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
410
411 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
412 return IP_CT_ESTABLISHED_REPLY;
413 /* Once we've had two way comms, always ESTABLISHED. */
414 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
415 return IP_CT_ESTABLISHED;
416 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
417 return IP_CT_RELATED;
418 return IP_CT_NEW;
419}
420
421/* Find an existing connection which this packet belongs to without
422 * re-attributing statistics or modifying the connection state. This allows an
423 * skb->nfct lost due to an upcall to be recovered during actions execution.
424 *
425 * Must be called with rcu_read_lock.
426 *
427 * On success, populates skb->nfct and skb->nfctinfo, and returns the
428 * connection. Returns NULL if there is no existing entry.
429 */
430static struct nf_conn *
431ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
432 u8 l3num, struct sk_buff *skb)
433{
434 struct nf_conntrack_l3proto *l3proto;
435 struct nf_conntrack_l4proto *l4proto;
436 struct nf_conntrack_tuple tuple;
437 struct nf_conntrack_tuple_hash *h;
438 struct nf_conn *ct;
439 unsigned int dataoff;
440 u8 protonum;
441
442 l3proto = __nf_ct_l3proto_find(l3num);
443 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
444 &protonum) <= 0) {
445 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
446 return NULL;
447 }
448 l4proto = __nf_ct_l4proto_find(l3num, protonum);
449 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
450 protonum, net, &tuple, l3proto, l4proto)) {
451 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
452 return NULL;
453 }
454
455 /* look for tuple match */
456 h = nf_conntrack_find_get(net, zone, &tuple);
457 if (!h)
458 return NULL; /* Not found. */
459
460 ct = nf_ct_tuplehash_to_ctrack(h);
461
462 skb->nfct = &ct->ct_general;
463 skb->nfctinfo = ovs_ct_get_info(h);
464 return ct;
465}
466
467/* Determine whether skb->nfct is equal to the result of conntrack lookup. */
468static bool skb_nfct_cached(struct net *net,
469 const struct sw_flow_key *key,
470 const struct ovs_conntrack_info *info,
471 struct sk_buff *skb)
472{
473 enum ip_conntrack_info ctinfo;
474 struct nf_conn *ct;
475
476 ct = nf_ct_get(skb, &ctinfo);
477 /* If no ct, check if we have evidence that an existing conntrack entry
478 * might be found for this skb. This happens when we lose a skb->nfct
479 * due to an upcall. If the connection was not confirmed, it is not
480 * cached and needs to be run through conntrack again.
481 */
482 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
483 !(key->ct.state & OVS_CS_F_INVALID) &&
484 key->ct.zone == info->zone.id)
485 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
486 if (!ct)
487 return false;
488 if (!net_eq(net, read_pnet(&ct->ct_net)))
489 return false;
490 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
491 return false;
492 if (info->helper) {
493 struct nf_conn_help *help;
494
495 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
496 if (help && rcu_access_pointer(help->helper) != info->helper)
497 return false;
498 }
499
500 return true;
501}
502
503#ifdef CONFIG_NF_NAT_NEEDED
504/* Modelled after nf_nat_ipv[46]_fn().
505 * range is only used for new, uninitialized NAT state.
506 * Returns either NF_ACCEPT or NF_DROP.
507 */
508static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
509 enum ip_conntrack_info ctinfo,
510 const struct nf_nat_range *range,
511 enum nf_nat_manip_type maniptype)
512{
513 int hooknum, nh_off, err = NF_ACCEPT;
514
515 nh_off = skb_network_offset(skb);
516 skb_pull_rcsum(skb, nh_off);
517
518 /* See HOOK2MANIP(). */
519 if (maniptype == NF_NAT_MANIP_SRC)
520 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
521 else
522 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
523
524 switch (ctinfo) {
525 case IP_CT_RELATED:
526 case IP_CT_RELATED_REPLY:
527 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
528 skb->protocol == htons(ETH_P_IP) &&
529 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
530 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
531 hooknum))
532 err = NF_DROP;
533 goto push;
534 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
535 skb->protocol == htons(ETH_P_IPV6)) {
536 __be16 frag_off;
537 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
538 int hdrlen = ipv6_skip_exthdr(skb,
539 sizeof(struct ipv6hdr),
540 &nexthdr, &frag_off);
541
542 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
543 if (!nf_nat_icmpv6_reply_translation(skb, ct,
544 ctinfo,
545 hooknum,
546 hdrlen))
547 err = NF_DROP;
548 goto push;
549 }
550 }
551 /* Non-ICMP, fall thru to initialize if needed. */
552 case IP_CT_NEW:
553 /* Seen it before? This can happen for loopback, retrans,
554 * or local packets.
555 */
556 if (!nf_nat_initialized(ct, maniptype)) {
557 /* Initialize according to the NAT action. */
558 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
559 /* Action is set up to establish a new
560 * mapping.
561 */
562 ? nf_nat_setup_info(ct, range, maniptype)
563 : nf_nat_alloc_null_binding(ct, hooknum);
564 if (err != NF_ACCEPT)
565 goto push;
566 }
567 break;
568
569 case IP_CT_ESTABLISHED:
570 case IP_CT_ESTABLISHED_REPLY:
571 break;
572
573 default:
574 err = NF_DROP;
575 goto push;
576 }
577
578 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
579push:
580 skb_push(skb, nh_off);
581 skb_postpush_rcsum(skb, skb->data, nh_off);
582
583 return err;
584}
585
586static void ovs_nat_update_key(struct sw_flow_key *key,
587 const struct sk_buff *skb,
588 enum nf_nat_manip_type maniptype)
589{
590 if (maniptype == NF_NAT_MANIP_SRC) {
591 __be16 src;
592
593 key->ct.state |= OVS_CS_F_SRC_NAT;
594 if (key->eth.type == htons(ETH_P_IP))
595 key->ipv4.addr.src = ip_hdr(skb)->saddr;
596 else if (key->eth.type == htons(ETH_P_IPV6))
597 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
598 sizeof(key->ipv6.addr.src));
599 else
600 return;
601
602 if (key->ip.proto == IPPROTO_UDP)
603 src = udp_hdr(skb)->source;
604 else if (key->ip.proto == IPPROTO_TCP)
605 src = tcp_hdr(skb)->source;
606 else if (key->ip.proto == IPPROTO_SCTP)
607 src = sctp_hdr(skb)->source;
608 else
609 return;
610
611 key->tp.src = src;
612 } else {
613 __be16 dst;
614
615 key->ct.state |= OVS_CS_F_DST_NAT;
616 if (key->eth.type == htons(ETH_P_IP))
617 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
618 else if (key->eth.type == htons(ETH_P_IPV6))
619 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
620 sizeof(key->ipv6.addr.dst));
621 else
622 return;
623
624 if (key->ip.proto == IPPROTO_UDP)
625 dst = udp_hdr(skb)->dest;
626 else if (key->ip.proto == IPPROTO_TCP)
627 dst = tcp_hdr(skb)->dest;
628 else if (key->ip.proto == IPPROTO_SCTP)
629 dst = sctp_hdr(skb)->dest;
630 else
631 return;
632
633 key->tp.dst = dst;
634 }
635}
636
637/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
638static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
639 const struct ovs_conntrack_info *info,
640 struct sk_buff *skb, struct nf_conn *ct,
641 enum ip_conntrack_info ctinfo)
642{
643 enum nf_nat_manip_type maniptype;
644 int err;
645
646 if (nf_ct_is_untracked(ct)) {
647 /* A NAT action may only be performed on tracked packets. */
648 return NF_ACCEPT;
649 }
650
651 /* Add NAT extension if not confirmed yet. */
652 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
653 return NF_ACCEPT; /* Can't NAT. */
654
655 /* Determine NAT type.
656 * Check if the NAT type can be deduced from the tracked connection.
657 * Make sure new expected connections (IP_CT_RELATED) are NATted only
658 * when committing.
659 */
660 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
661 ct->status & IPS_NAT_MASK &&
662 (ctinfo != IP_CT_RELATED || info->commit)) {
663 /* NAT an established or related connection like before. */
664 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
665 /* This is the REPLY direction for a connection
666 * for which NAT was applied in the forward
667 * direction. Do the reverse NAT.
668 */
669 maniptype = ct->status & IPS_SRC_NAT
670 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
671 else
672 maniptype = ct->status & IPS_SRC_NAT
673 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
674 } else if (info->nat & OVS_CT_SRC_NAT) {
675 maniptype = NF_NAT_MANIP_SRC;
676 } else if (info->nat & OVS_CT_DST_NAT) {
677 maniptype = NF_NAT_MANIP_DST;
678 } else {
679 return NF_ACCEPT; /* Connection is not NATed. */
680 }
681 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
682
683 /* Mark NAT done if successful and update the flow key. */
684 if (err == NF_ACCEPT)
685 ovs_nat_update_key(key, skb, maniptype);
686
687 return err;
688}
689#else /* !CONFIG_NF_NAT_NEEDED */
690static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
691 const struct ovs_conntrack_info *info,
692 struct sk_buff *skb, struct nf_conn *ct,
693 enum ip_conntrack_info ctinfo)
694{
695 return NF_ACCEPT;
696}
697#endif
698
699/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
700 * not done already. Update key with new CT state after passing the packet
701 * through conntrack.
702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
703 * set to NULL and 0 will be returned.
704 */
705static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
706 const struct ovs_conntrack_info *info,
707 struct sk_buff *skb)
708{
709 /* If we are recirculating packets to match on conntrack fields and
710 * committing with a separate conntrack action, then we don't need to
711 * actually run the packet through conntrack twice unless it's for a
712 * different zone.
713 */
714 bool cached = skb_nfct_cached(net, key, info, skb);
715 enum ip_conntrack_info ctinfo;
716 struct nf_conn *ct;
717
718 if (!cached) {
719 struct nf_conn *tmpl = info->ct;
720 int err;
721
722 /* Associate skb with specified zone. */
723 if (tmpl) {
724 if (skb->nfct)
725 nf_conntrack_put(skb->nfct);
726 nf_conntrack_get(&tmpl->ct_general);
727 skb->nfct = &tmpl->ct_general;
728 skb->nfctinfo = IP_CT_NEW;
729 }
730
731 err = nf_conntrack_in(net, info->family,
732 NF_INET_PRE_ROUTING, skb);
733 if (err != NF_ACCEPT)
734 return -ENOENT;
735
736 /* Clear CT state NAT flags to mark that we have not yet done
737 * NAT after the nf_conntrack_in() call. We can actually clear
738 * the whole state, as it will be re-initialized below.
739 */
740 key->ct.state = 0;
741
742 /* Update the key, but keep the NAT flags. */
743 ovs_ct_update_key(skb, info, key, true, true);
744 }
745
746 ct = nf_ct_get(skb, &ctinfo);
747 if (ct) {
748 /* Packets starting a new connection must be NATted before the
749 * helper, so that the helper knows about the NAT. We enforce
750 * this by delaying both NAT and helper calls for unconfirmed
751 * connections until the committing CT action. For later
752 * packets NAT and Helper may be called in either order.
753 *
754 * NAT will be done only if the CT action has NAT, and only
755 * once per packet (per zone), as guarded by the NAT bits in
756 * the key->ct.state.
757 */
758 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
759 (nf_ct_is_confirmed(ct) || info->commit) &&
760 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
761 return -EINVAL;
762 }
763
764 /* Userspace may decide to perform a ct lookup without a helper
765 * specified followed by a (recirculate and) commit with one.
766 * Therefore, for unconfirmed connections which we will commit,
767 * we need to attach the helper here.
768 */
769 if (!nf_ct_is_confirmed(ct) && info->commit &&
770 info->helper && !nfct_help(ct)) {
771 int err = __nf_ct_try_assign_helper(ct, info->ct,
772 GFP_ATOMIC);
773 if (err)
774 return err;
775 }
776
777 /* Call the helper only if:
778 * - nf_conntrack_in() was executed above ("!cached") for a
779 * confirmed connection, or
780 * - When committing an unconfirmed connection.
781 */
782 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
783 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
784 return -EINVAL;
785 }
786 }
787
788 return 0;
789}
790
791/* Lookup connection and read fields into key. */
792static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
793 const struct ovs_conntrack_info *info,
794 struct sk_buff *skb)
795{
796 struct nf_conntrack_expect *exp;
797
798 /* If we pass an expected packet through nf_conntrack_in() the
799 * expectation is typically removed, but the packet could still be
800 * lost in upcall processing. To prevent this from happening we
801 * perform an explicit expectation lookup. Expected connections are
802 * always new, and will be passed through conntrack only when they are
803 * committed, as it is OK to remove the expectation at that time.
804 */
805 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
806 if (exp) {
807 u8 state;
808
809 /* NOTE: New connections are NATted and Helped only when
810 * committed, so we are not calling into NAT here.
811 */
812 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
813 __ovs_ct_update_key(key, state, &info->zone, exp->master);
814 } else {
815 struct nf_conn *ct;
816 int err;
817
818 err = __ovs_ct_lookup(net, key, info, skb);
819 if (err)
820 return err;
821
822 ct = (struct nf_conn *)skb->nfct;
823 if (ct)
824 nf_ct_deliver_cached_events(ct);
825 }
826
827 return 0;
828}
829
830static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
831{
832 size_t i;
833
834 for (i = 0; i < sizeof(*labels); i++)
835 if (labels->ct_labels[i])
836 return true;
837
838 return false;
839}
840
841/* Lookup connection and confirm if unconfirmed. */
842static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
843 const struct ovs_conntrack_info *info,
844 struct sk_buff *skb)
845{
846 int err;
847
848 err = __ovs_ct_lookup(net, key, info, skb);
849 if (err)
850 return err;
851
852 /* Apply changes before confirming the connection so that the initial
853 * conntrack NEW netlink event carries the values given in the CT
854 * action.
855 */
856 if (info->mark.mask) {
857 err = ovs_ct_set_mark(skb, key, info->mark.value,
858 info->mark.mask);
859 if (err)
860 return err;
861 }
862 if (labels_nonzero(&info->labels.mask)) {
863 err = ovs_ct_set_labels(skb, key, &info->labels.value,
864 &info->labels.mask);
865 if (err)
866 return err;
867 }
868 /* This will take care of sending queued events even if the connection
869 * is already confirmed.
870 */
871 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
872 return -EINVAL;
873
874 return 0;
875}
876
877/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
878 * value if 'skb' is freed.
879 */
880int ovs_ct_execute(struct net *net, struct sk_buff *skb,
881 struct sw_flow_key *key,
882 const struct ovs_conntrack_info *info)
883{
884 int nh_ofs;
885 int err;
886
887 /* The conntrack module expects to be working at L3. */
888 nh_ofs = skb_network_offset(skb);
889 skb_pull_rcsum(skb, nh_ofs);
890
891 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
892 err = handle_fragments(net, key, info->zone.id, skb);
893 if (err)
894 return err;
895 }
896
897 if (info->commit)
898 err = ovs_ct_commit(net, key, info, skb);
899 else
900 err = ovs_ct_lookup(net, key, info, skb);
901
902 skb_push(skb, nh_ofs);
903 skb_postpush_rcsum(skb, skb->data, nh_ofs);
904 if (err)
905 kfree_skb(skb);
906 return err;
907}
908
909static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
910 const struct sw_flow_key *key, bool log)
911{
912 struct nf_conntrack_helper *helper;
913 struct nf_conn_help *help;
914
915 helper = nf_conntrack_helper_try_module_get(name, info->family,
916 key->ip.proto);
917 if (!helper) {
918 OVS_NLERR(log, "Unknown helper \"%s\"", name);
919 return -EINVAL;
920 }
921
922 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
923 if (!help) {
924 module_put(helper->me);
925 return -ENOMEM;
926 }
927
928 rcu_assign_pointer(help->helper, helper);
929 info->helper = helper;
930 return 0;
931}
932
933#ifdef CONFIG_NF_NAT_NEEDED
934static int parse_nat(const struct nlattr *attr,
935 struct ovs_conntrack_info *info, bool log)
936{
937 struct nlattr *a;
938 int rem;
939 bool have_ip_max = false;
940 bool have_proto_max = false;
941 bool ip_vers = (info->family == NFPROTO_IPV6);
942
943 nla_for_each_nested(a, attr, rem) {
944 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
945 [OVS_NAT_ATTR_SRC] = {0, 0},
946 [OVS_NAT_ATTR_DST] = {0, 0},
947 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
948 sizeof(struct in6_addr)},
949 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
950 sizeof(struct in6_addr)},
951 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
952 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
953 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
954 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
955 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
956 };
957 int type = nla_type(a);
958
959 if (type > OVS_NAT_ATTR_MAX) {
960 OVS_NLERR(log,
961 "Unknown NAT attribute (type=%d, max=%d).\n",
962 type, OVS_NAT_ATTR_MAX);
963 return -EINVAL;
964 }
965
966 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
967 OVS_NLERR(log,
968 "NAT attribute type %d has unexpected length (%d != %d).\n",
969 type, nla_len(a),
970 ovs_nat_attr_lens[type][ip_vers]);
971 return -EINVAL;
972 }
973
974 switch (type) {
975 case OVS_NAT_ATTR_SRC:
976 case OVS_NAT_ATTR_DST:
977 if (info->nat) {
978 OVS_NLERR(log,
979 "Only one type of NAT may be specified.\n"
980 );
981 return -ERANGE;
982 }
983 info->nat |= OVS_CT_NAT;
984 info->nat |= ((type == OVS_NAT_ATTR_SRC)
985 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
986 break;
987
988 case OVS_NAT_ATTR_IP_MIN:
989 nla_memcpy(&info->range.min_addr, a,
990 sizeof(info->range.min_addr));
991 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
992 break;
993
994 case OVS_NAT_ATTR_IP_MAX:
995 have_ip_max = true;
996 nla_memcpy(&info->range.max_addr, a,
997 sizeof(info->range.max_addr));
998 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
999 break;
1000
1001 case OVS_NAT_ATTR_PROTO_MIN:
1002 info->range.min_proto.all = htons(nla_get_u16(a));
1003 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004 break;
1005
1006 case OVS_NAT_ATTR_PROTO_MAX:
1007 have_proto_max = true;
1008 info->range.max_proto.all = htons(nla_get_u16(a));
1009 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010 break;
1011
1012 case OVS_NAT_ATTR_PERSISTENT:
1013 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014 break;
1015
1016 case OVS_NAT_ATTR_PROTO_HASH:
1017 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018 break;
1019
1020 case OVS_NAT_ATTR_PROTO_RANDOM:
1021 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022 break;
1023
1024 default:
1025 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026 return -EINVAL;
1027 }
1028 }
1029
1030 if (rem > 0) {
1031 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032 return -EINVAL;
1033 }
1034 if (!info->nat) {
1035 /* Do not allow flags if no type is given. */
1036 if (info->range.flags) {
1037 OVS_NLERR(log,
1038 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039 );
1040 return -EINVAL;
1041 }
1042 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1043 } else if (!info->commit) {
1044 OVS_NLERR(log,
1045 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046 );
1047 return -EINVAL;
1048 }
1049 /* Allow missing IP_MAX. */
1050 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051 memcpy(&info->range.max_addr, &info->range.min_addr,
1052 sizeof(info->range.max_addr));
1053 }
1054 /* Allow missing PROTO_MAX. */
1055 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056 !have_proto_max) {
1057 info->range.max_proto.all = info->range.min_proto.all;
1058 }
1059 return 0;
1060}
1061#endif
1062
1063static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1065 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1066 .maxlen = sizeof(u16) },
1067 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1068 .maxlen = sizeof(struct md_mark) },
1069 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1070 .maxlen = sizeof(struct md_labels) },
1071 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1072 .maxlen = NF_CT_HELPER_NAME_LEN },
1073#ifdef CONFIG_NF_NAT_NEEDED
1074 /* NAT length is checked when parsing the nested attributes. */
1075 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1076#endif
1077};
1078
1079static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080 const char **helper, bool log)
1081{
1082 struct nlattr *a;
1083 int rem;
1084
1085 nla_for_each_nested(a, attr, rem) {
1086 int type = nla_type(a);
1087 int maxlen = ovs_ct_attr_lens[type].maxlen;
1088 int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090 if (type > OVS_CT_ATTR_MAX) {
1091 OVS_NLERR(log,
1092 "Unknown conntrack attr (type=%d, max=%d)",
1093 type, OVS_CT_ATTR_MAX);
1094 return -EINVAL;
1095 }
1096 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097 OVS_NLERR(log,
1098 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099 type, nla_len(a), maxlen);
1100 return -EINVAL;
1101 }
1102
1103 switch (type) {
1104 case OVS_CT_ATTR_COMMIT:
1105 info->commit = true;
1106 break;
1107#ifdef CONFIG_NF_CONNTRACK_ZONES
1108 case OVS_CT_ATTR_ZONE:
1109 info->zone.id = nla_get_u16(a);
1110 break;
1111#endif
1112#ifdef CONFIG_NF_CONNTRACK_MARK
1113 case OVS_CT_ATTR_MARK: {
1114 struct md_mark *mark = nla_data(a);
1115
1116 if (!mark->mask) {
1117 OVS_NLERR(log, "ct_mark mask cannot be 0");
1118 return -EINVAL;
1119 }
1120 info->mark = *mark;
1121 break;
1122 }
1123#endif
1124#ifdef CONFIG_NF_CONNTRACK_LABELS
1125 case OVS_CT_ATTR_LABELS: {
1126 struct md_labels *labels = nla_data(a);
1127
1128 if (!labels_nonzero(&labels->mask)) {
1129 OVS_NLERR(log, "ct_labels mask cannot be 0");
1130 return -EINVAL;
1131 }
1132 info->labels = *labels;
1133 break;
1134 }
1135#endif
1136 case OVS_CT_ATTR_HELPER:
1137 *helper = nla_data(a);
1138 if (!memchr(*helper, '\0', nla_len(a))) {
1139 OVS_NLERR(log, "Invalid conntrack helper");
1140 return -EINVAL;
1141 }
1142 break;
1143#ifdef CONFIG_NF_NAT_NEEDED
1144 case OVS_CT_ATTR_NAT: {
1145 int err = parse_nat(a, info, log);
1146
1147 if (err)
1148 return err;
1149 break;
1150 }
1151#endif
1152 default:
1153 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154 type);
1155 return -EINVAL;
1156 }
1157 }
1158
1159#ifdef CONFIG_NF_CONNTRACK_MARK
1160 if (!info->commit && info->mark.mask) {
1161 OVS_NLERR(log,
1162 "Setting conntrack mark requires 'commit' flag.");
1163 return -EINVAL;
1164 }
1165#endif
1166#ifdef CONFIG_NF_CONNTRACK_LABELS
1167 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168 OVS_NLERR(log,
1169 "Setting conntrack labels requires 'commit' flag.");
1170 return -EINVAL;
1171 }
1172#endif
1173 if (rem > 0) {
1174 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179}
1180
1181bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182{
1183 if (attr == OVS_KEY_ATTR_CT_STATE)
1184 return true;
1185 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186 attr == OVS_KEY_ATTR_CT_ZONE)
1187 return true;
1188 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189 attr == OVS_KEY_ATTR_CT_MARK)
1190 return true;
1191 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192 attr == OVS_KEY_ATTR_CT_LABELS) {
1193 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195 return ovs_net->xt_label;
1196 }
1197
1198 return false;
1199}
1200
1201int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202 const struct sw_flow_key *key,
1203 struct sw_flow_actions **sfa, bool log)
1204{
1205 struct ovs_conntrack_info ct_info;
1206 const char *helper = NULL;
1207 u16 family;
1208 int err;
1209
1210 family = key_to_nfproto(key);
1211 if (family == NFPROTO_UNSPEC) {
1212 OVS_NLERR(log, "ct family unspecified");
1213 return -EINVAL;
1214 }
1215
1216 memset(&ct_info, 0, sizeof(ct_info));
1217 ct_info.family = family;
1218
1219 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220 NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222 err = parse_ct(attr, &ct_info, &helper, log);
1223 if (err)
1224 return err;
1225
1226 /* Set up template for tracking connections in specific zones. */
1227 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228 if (!ct_info.ct) {
1229 OVS_NLERR(log, "Failed to allocate conntrack template");
1230 return -ENOMEM;
1231 }
1232
1233 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234 nf_conntrack_get(&ct_info.ct->ct_general);
1235
1236 if (helper) {
1237 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238 if (err)
1239 goto err_free_ct;
1240 }
1241
1242 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243 sizeof(ct_info), log);
1244 if (err)
1245 goto err_free_ct;
1246
1247 return 0;
1248err_free_ct:
1249 __ovs_ct_free_action(&ct_info);
1250 return err;
1251}
1252
1253#ifdef CONFIG_NF_NAT_NEEDED
1254static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255 struct sk_buff *skb)
1256{
1257 struct nlattr *start;
1258
1259 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260 if (!start)
1261 return false;
1262
1263 if (info->nat & OVS_CT_SRC_NAT) {
1264 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265 return false;
1266 } else if (info->nat & OVS_CT_DST_NAT) {
1267 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268 return false;
1269 } else {
1270 goto out;
1271 }
1272
1273 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275 info->family == NFPROTO_IPV4) {
1276 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277 info->range.min_addr.ip) ||
1278 (info->range.max_addr.ip
1279 != info->range.min_addr.ip &&
1280 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281 info->range.max_addr.ip))))
1282 return false;
1283 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284 info->family == NFPROTO_IPV6) {
1285 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286 &info->range.min_addr.in6) ||
1287 (memcmp(&info->range.max_addr.in6,
1288 &info->range.min_addr.in6,
1289 sizeof(info->range.max_addr.in6)) &&
1290 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291 &info->range.max_addr.in6))))
1292 return false;
1293 } else {
1294 return false;
1295 }
1296 }
1297 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299 ntohs(info->range.min_proto.all)) ||
1300 (info->range.max_proto.all != info->range.min_proto.all &&
1301 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302 ntohs(info->range.max_proto.all)))))
1303 return false;
1304
1305 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307 return false;
1308 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310 return false;
1311 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313 return false;
1314out:
1315 nla_nest_end(skb, start);
1316
1317 return true;
1318}
1319#endif
1320
1321int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322 struct sk_buff *skb)
1323{
1324 struct nlattr *start;
1325
1326 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327 if (!start)
1328 return -EMSGSIZE;
1329
1330 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1331 return -EMSGSIZE;
1332 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334 return -EMSGSIZE;
1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337 &ct_info->mark))
1338 return -EMSGSIZE;
1339 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340 labels_nonzero(&ct_info->labels.mask) &&
1341 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342 &ct_info->labels))
1343 return -EMSGSIZE;
1344 if (ct_info->helper) {
1345 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346 ct_info->helper->name))
1347 return -EMSGSIZE;
1348 }
1349#ifdef CONFIG_NF_NAT_NEEDED
1350 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351 return -EMSGSIZE;
1352#endif
1353 nla_nest_end(skb, start);
1354
1355 return 0;
1356}
1357
1358void ovs_ct_free_action(const struct nlattr *a)
1359{
1360 struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362 __ovs_ct_free_action(ct_info);
1363}
1364
1365static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366{
1367 if (ct_info->helper)
1368 module_put(ct_info->helper->me);
1369 if (ct_info->ct)
1370 nf_ct_tmpl_free(ct_info->ct);
1371}
1372
1373void ovs_ct_init(struct net *net)
1374{
1375 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378 if (nf_connlabels_get(net, n_bits - 1)) {
1379 ovs_net->xt_label = false;
1380 OVS_NLERR(true, "Failed to set connlabel length");
1381 } else {
1382 ovs_net->xt_label = true;
1383 }
1384}
1385
1386void ovs_ct_exit(struct net *net)
1387{
1388 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1389
1390 if (ovs_net->xt_label)
1391 nf_connlabels_put(net);
1392}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015 Nicira, Inc.
4 */
5
6#include <linux/module.h>
7#include <linux/openvswitch.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/sctp.h>
11#include <linux/static_key.h>
12#include <net/ip.h>
13#include <net/genetlink.h>
14#include <net/netfilter/nf_conntrack_core.h>
15#include <net/netfilter/nf_conntrack_count.h>
16#include <net/netfilter/nf_conntrack_helper.h>
17#include <net/netfilter/nf_conntrack_labels.h>
18#include <net/netfilter/nf_conntrack_seqadj.h>
19#include <net/netfilter/nf_conntrack_timeout.h>
20#include <net/netfilter/nf_conntrack_zones.h>
21#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22#include <net/ipv6_frag.h>
23
24#if IS_ENABLED(CONFIG_NF_NAT)
25#include <net/netfilter/nf_nat.h>
26#endif
27
28#include <net/netfilter/nf_conntrack_act_ct.h>
29
30#include "datapath.h"
31#include "conntrack.h"
32#include "flow.h"
33#include "flow_netlink.h"
34
35struct ovs_ct_len_tbl {
36 int maxlen;
37 int minlen;
38};
39
40/* Metadata mark for masked write to conntrack mark */
41struct md_mark {
42 u32 value;
43 u32 mask;
44};
45
46/* Metadata label for masked write to conntrack label. */
47struct md_labels {
48 struct ovs_key_ct_labels value;
49 struct ovs_key_ct_labels mask;
50};
51
52enum ovs_ct_nat {
53 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
54 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
55 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
56};
57
58/* Conntrack action context for execution. */
59struct ovs_conntrack_info {
60 struct nf_conntrack_helper *helper;
61 struct nf_conntrack_zone zone;
62 struct nf_conn *ct;
63 u8 commit : 1;
64 u8 nat : 3; /* enum ovs_ct_nat */
65 u8 force : 1;
66 u8 have_eventmask : 1;
67 u16 family;
68 u32 eventmask; /* Mask of 1 << IPCT_*. */
69 struct md_mark mark;
70 struct md_labels labels;
71 char timeout[CTNL_TIMEOUT_NAME_MAX];
72 struct nf_ct_timeout *nf_ct_timeout;
73#if IS_ENABLED(CONFIG_NF_NAT)
74 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
75#endif
76};
77
78#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
79#define OVS_CT_LIMIT_UNLIMITED 0
80#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
81#define CT_LIMIT_HASH_BUCKETS 512
82static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
83
84struct ovs_ct_limit {
85 /* Elements in ovs_ct_limit_info->limits hash table */
86 struct hlist_node hlist_node;
87 struct rcu_head rcu;
88 u16 zone;
89 u32 limit;
90};
91
92struct ovs_ct_limit_info {
93 u32 default_limit;
94 struct hlist_head *limits;
95 struct nf_conncount_data *data;
96};
97
98static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
99 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
100};
101#endif
102
103static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
104
105static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
106
107static u16 key_to_nfproto(const struct sw_flow_key *key)
108{
109 switch (ntohs(key->eth.type)) {
110 case ETH_P_IP:
111 return NFPROTO_IPV4;
112 case ETH_P_IPV6:
113 return NFPROTO_IPV6;
114 default:
115 return NFPROTO_UNSPEC;
116 }
117}
118
119/* Map SKB connection state into the values used by flow definition. */
120static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
121{
122 u8 ct_state = OVS_CS_F_TRACKED;
123
124 switch (ctinfo) {
125 case IP_CT_ESTABLISHED_REPLY:
126 case IP_CT_RELATED_REPLY:
127 ct_state |= OVS_CS_F_REPLY_DIR;
128 break;
129 default:
130 break;
131 }
132
133 switch (ctinfo) {
134 case IP_CT_ESTABLISHED:
135 case IP_CT_ESTABLISHED_REPLY:
136 ct_state |= OVS_CS_F_ESTABLISHED;
137 break;
138 case IP_CT_RELATED:
139 case IP_CT_RELATED_REPLY:
140 ct_state |= OVS_CS_F_RELATED;
141 break;
142 case IP_CT_NEW:
143 ct_state |= OVS_CS_F_NEW;
144 break;
145 default:
146 break;
147 }
148
149 return ct_state;
150}
151
152static u32 ovs_ct_get_mark(const struct nf_conn *ct)
153{
154#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
155 return ct ? READ_ONCE(ct->mark) : 0;
156#else
157 return 0;
158#endif
159}
160
161/* Guard against conntrack labels max size shrinking below 128 bits. */
162#if NF_CT_LABELS_MAX_SIZE < 16
163#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
164#endif
165
166static void ovs_ct_get_labels(const struct nf_conn *ct,
167 struct ovs_key_ct_labels *labels)
168{
169 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
170
171 if (cl)
172 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
173 else
174 memset(labels, 0, OVS_CT_LABELS_LEN);
175}
176
177static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
178 const struct nf_conntrack_tuple *orig,
179 u8 icmp_proto)
180{
181 key->ct_orig_proto = orig->dst.protonum;
182 if (orig->dst.protonum == icmp_proto) {
183 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
184 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
185 } else {
186 key->ct.orig_tp.src = orig->src.u.all;
187 key->ct.orig_tp.dst = orig->dst.u.all;
188 }
189}
190
191static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
192 const struct nf_conntrack_zone *zone,
193 const struct nf_conn *ct)
194{
195 key->ct_state = state;
196 key->ct_zone = zone->id;
197 key->ct.mark = ovs_ct_get_mark(ct);
198 ovs_ct_get_labels(ct, &key->ct.labels);
199
200 if (ct) {
201 const struct nf_conntrack_tuple *orig;
202
203 /* Use the master if we have one. */
204 if (ct->master)
205 ct = ct->master;
206 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
207
208 /* IP version must match with the master connection. */
209 if (key->eth.type == htons(ETH_P_IP) &&
210 nf_ct_l3num(ct) == NFPROTO_IPV4) {
211 key->ipv4.ct_orig.src = orig->src.u3.ip;
212 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
213 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
214 return;
215 } else if (key->eth.type == htons(ETH_P_IPV6) &&
216 !sw_flow_key_is_nd(key) &&
217 nf_ct_l3num(ct) == NFPROTO_IPV6) {
218 key->ipv6.ct_orig.src = orig->src.u3.in6;
219 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
220 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
221 return;
222 }
223 }
224 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
225 * original direction key fields.
226 */
227 key->ct_orig_proto = 0;
228}
229
230/* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
231 * previously sent the packet to conntrack via the ct action. If
232 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
233 * initialized from the connection status.
234 */
235static void ovs_ct_update_key(const struct sk_buff *skb,
236 const struct ovs_conntrack_info *info,
237 struct sw_flow_key *key, bool post_ct,
238 bool keep_nat_flags)
239{
240 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
241 enum ip_conntrack_info ctinfo;
242 struct nf_conn *ct;
243 u8 state = 0;
244
245 ct = nf_ct_get(skb, &ctinfo);
246 if (ct) {
247 state = ovs_ct_get_state(ctinfo);
248 /* All unconfirmed entries are NEW connections. */
249 if (!nf_ct_is_confirmed(ct))
250 state |= OVS_CS_F_NEW;
251 /* OVS persists the related flag for the duration of the
252 * connection.
253 */
254 if (ct->master)
255 state |= OVS_CS_F_RELATED;
256 if (keep_nat_flags) {
257 state |= key->ct_state & OVS_CS_F_NAT_MASK;
258 } else {
259 if (ct->status & IPS_SRC_NAT)
260 state |= OVS_CS_F_SRC_NAT;
261 if (ct->status & IPS_DST_NAT)
262 state |= OVS_CS_F_DST_NAT;
263 }
264 zone = nf_ct_zone(ct);
265 } else if (post_ct) {
266 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
267 if (info)
268 zone = &info->zone;
269 }
270 __ovs_ct_update_key(key, state, zone, ct);
271}
272
273/* This is called to initialize CT key fields possibly coming in from the local
274 * stack.
275 */
276void ovs_ct_fill_key(const struct sk_buff *skb,
277 struct sw_flow_key *key,
278 bool post_ct)
279{
280 ovs_ct_update_key(skb, NULL, key, post_ct, false);
281}
282
283int ovs_ct_put_key(const struct sw_flow_key *swkey,
284 const struct sw_flow_key *output, struct sk_buff *skb)
285{
286 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
287 return -EMSGSIZE;
288
289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
290 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
291 return -EMSGSIZE;
292
293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
294 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
295 return -EMSGSIZE;
296
297 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
298 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
299 &output->ct.labels))
300 return -EMSGSIZE;
301
302 if (swkey->ct_orig_proto) {
303 if (swkey->eth.type == htons(ETH_P_IP)) {
304 struct ovs_key_ct_tuple_ipv4 orig;
305
306 memset(&orig, 0, sizeof(orig));
307 orig.ipv4_src = output->ipv4.ct_orig.src;
308 orig.ipv4_dst = output->ipv4.ct_orig.dst;
309 orig.src_port = output->ct.orig_tp.src;
310 orig.dst_port = output->ct.orig_tp.dst;
311 orig.ipv4_proto = output->ct_orig_proto;
312
313 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
314 sizeof(orig), &orig))
315 return -EMSGSIZE;
316 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
317 struct ovs_key_ct_tuple_ipv6 orig;
318
319 memset(&orig, 0, sizeof(orig));
320 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
321 sizeof(orig.ipv6_src));
322 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
323 sizeof(orig.ipv6_dst));
324 orig.src_port = output->ct.orig_tp.src;
325 orig.dst_port = output->ct.orig_tp.dst;
326 orig.ipv6_proto = output->ct_orig_proto;
327
328 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
329 sizeof(orig), &orig))
330 return -EMSGSIZE;
331 }
332 }
333
334 return 0;
335}
336
337static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
338 u32 ct_mark, u32 mask)
339{
340#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
341 u32 new_mark;
342
343 new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
344 if (READ_ONCE(ct->mark) != new_mark) {
345 WRITE_ONCE(ct->mark, new_mark);
346 if (nf_ct_is_confirmed(ct))
347 nf_conntrack_event_cache(IPCT_MARK, ct);
348 key->ct.mark = new_mark;
349 }
350
351 return 0;
352#else
353 return -ENOTSUPP;
354#endif
355}
356
357static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
358{
359 struct nf_conn_labels *cl;
360
361 cl = nf_ct_labels_find(ct);
362 if (!cl) {
363 nf_ct_labels_ext_add(ct);
364 cl = nf_ct_labels_find(ct);
365 }
366
367 return cl;
368}
369
370/* Initialize labels for a new, yet to be committed conntrack entry. Note that
371 * since the new connection is not yet confirmed, and thus no-one else has
372 * access to it's labels, we simply write them over.
373 */
374static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
375 const struct ovs_key_ct_labels *labels,
376 const struct ovs_key_ct_labels *mask)
377{
378 struct nf_conn_labels *cl, *master_cl;
379 bool have_mask = labels_nonzero(mask);
380
381 /* Inherit master's labels to the related connection? */
382 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
383
384 if (!master_cl && !have_mask)
385 return 0; /* Nothing to do. */
386
387 cl = ovs_ct_get_conn_labels(ct);
388 if (!cl)
389 return -ENOSPC;
390
391 /* Inherit the master's labels, if any. */
392 if (master_cl)
393 *cl = *master_cl;
394
395 if (have_mask) {
396 u32 *dst = (u32 *)cl->bits;
397 int i;
398
399 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
400 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
401 (labels->ct_labels_32[i]
402 & mask->ct_labels_32[i]);
403 }
404
405 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
406 * IPCT_LABEL bit is set in the event cache.
407 */
408 nf_conntrack_event_cache(IPCT_LABEL, ct);
409
410 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
411
412 return 0;
413}
414
415static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
416 const struct ovs_key_ct_labels *labels,
417 const struct ovs_key_ct_labels *mask)
418{
419 struct nf_conn_labels *cl;
420 int err;
421
422 cl = ovs_ct_get_conn_labels(ct);
423 if (!cl)
424 return -ENOSPC;
425
426 err = nf_connlabels_replace(ct, labels->ct_labels_32,
427 mask->ct_labels_32,
428 OVS_CT_LABELS_LEN_32);
429 if (err)
430 return err;
431
432 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
433
434 return 0;
435}
436
437/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
438 * value if 'skb' is freed.
439 */
440static int handle_fragments(struct net *net, struct sw_flow_key *key,
441 u16 zone, struct sk_buff *skb)
442{
443 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
444 int err;
445
446 if (key->eth.type == htons(ETH_P_IP)) {
447 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
448
449 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
450 err = ip_defrag(net, skb, user);
451 if (err)
452 return err;
453
454 ovs_cb.mru = IPCB(skb)->frag_max_size;
455#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
456 } else if (key->eth.type == htons(ETH_P_IPV6)) {
457 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
458
459 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
460 err = nf_ct_frag6_gather(net, skb, user);
461 if (err) {
462 if (err != -EINPROGRESS)
463 kfree_skb(skb);
464 return err;
465 }
466
467 key->ip.proto = ipv6_hdr(skb)->nexthdr;
468 ovs_cb.mru = IP6CB(skb)->frag_max_size;
469#endif
470 } else {
471 kfree_skb(skb);
472 return -EPFNOSUPPORT;
473 }
474
475 /* The key extracted from the fragment that completed this datagram
476 * likely didn't have an L4 header, so regenerate it.
477 */
478 ovs_flow_key_update_l3l4(skb, key);
479
480 key->ip.frag = OVS_FRAG_TYPE_NONE;
481 skb_clear_hash(skb);
482 skb->ignore_df = 1;
483 *OVS_CB(skb) = ovs_cb;
484
485 return 0;
486}
487
488static struct nf_conntrack_expect *
489ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
490 u16 proto, const struct sk_buff *skb)
491{
492 struct nf_conntrack_tuple tuple;
493 struct nf_conntrack_expect *exp;
494
495 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
496 return NULL;
497
498 exp = __nf_ct_expect_find(net, zone, &tuple);
499 if (exp) {
500 struct nf_conntrack_tuple_hash *h;
501
502 /* Delete existing conntrack entry, if it clashes with the
503 * expectation. This can happen since conntrack ALGs do not
504 * check for clashes between (new) expectations and existing
505 * conntrack entries. nf_conntrack_in() will check the
506 * expectations only if a conntrack entry can not be found,
507 * which can lead to OVS finding the expectation (here) in the
508 * init direction, but which will not be removed by the
509 * nf_conntrack_in() call, if a matching conntrack entry is
510 * found instead. In this case all init direction packets
511 * would be reported as new related packets, while reply
512 * direction packets would be reported as un-related
513 * established packets.
514 */
515 h = nf_conntrack_find_get(net, zone, &tuple);
516 if (h) {
517 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
518
519 nf_ct_delete(ct, 0, 0);
520 nf_ct_put(ct);
521 }
522 }
523
524 return exp;
525}
526
527/* This replicates logic from nf_conntrack_core.c that is not exported. */
528static enum ip_conntrack_info
529ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
530{
531 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
532
533 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
534 return IP_CT_ESTABLISHED_REPLY;
535 /* Once we've had two way comms, always ESTABLISHED. */
536 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
537 return IP_CT_ESTABLISHED;
538 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
539 return IP_CT_RELATED;
540 return IP_CT_NEW;
541}
542
543/* Find an existing connection which this packet belongs to without
544 * re-attributing statistics or modifying the connection state. This allows an
545 * skb->_nfct lost due to an upcall to be recovered during actions execution.
546 *
547 * Must be called with rcu_read_lock.
548 *
549 * On success, populates skb->_nfct and returns the connection. Returns NULL
550 * if there is no existing entry.
551 */
552static struct nf_conn *
553ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
554 u8 l3num, struct sk_buff *skb, bool natted)
555{
556 struct nf_conntrack_tuple tuple;
557 struct nf_conntrack_tuple_hash *h;
558 struct nf_conn *ct;
559
560 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
561 net, &tuple)) {
562 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
563 return NULL;
564 }
565
566 /* Must invert the tuple if skb has been transformed by NAT. */
567 if (natted) {
568 struct nf_conntrack_tuple inverse;
569
570 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
571 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
572 return NULL;
573 }
574 tuple = inverse;
575 }
576
577 /* look for tuple match */
578 h = nf_conntrack_find_get(net, zone, &tuple);
579 if (!h)
580 return NULL; /* Not found. */
581
582 ct = nf_ct_tuplehash_to_ctrack(h);
583
584 /* Inverted packet tuple matches the reverse direction conntrack tuple,
585 * select the other tuplehash to get the right 'ctinfo' bits for this
586 * packet.
587 */
588 if (natted)
589 h = &ct->tuplehash[!h->tuple.dst.dir];
590
591 nf_ct_set(skb, ct, ovs_ct_get_info(h));
592 return ct;
593}
594
595static
596struct nf_conn *ovs_ct_executed(struct net *net,
597 const struct sw_flow_key *key,
598 const struct ovs_conntrack_info *info,
599 struct sk_buff *skb,
600 bool *ct_executed)
601{
602 struct nf_conn *ct = NULL;
603
604 /* If no ct, check if we have evidence that an existing conntrack entry
605 * might be found for this skb. This happens when we lose a skb->_nfct
606 * due to an upcall, or if the direction is being forced. If the
607 * connection was not confirmed, it is not cached and needs to be run
608 * through conntrack again.
609 */
610 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
611 !(key->ct_state & OVS_CS_F_INVALID) &&
612 (key->ct_zone == info->zone.id);
613
614 if (*ct_executed || (!key->ct_state && info->force)) {
615 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
616 !!(key->ct_state &
617 OVS_CS_F_NAT_MASK));
618 }
619
620 return ct;
621}
622
623/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
624static bool skb_nfct_cached(struct net *net,
625 const struct sw_flow_key *key,
626 const struct ovs_conntrack_info *info,
627 struct sk_buff *skb)
628{
629 enum ip_conntrack_info ctinfo;
630 struct nf_conn *ct;
631 bool ct_executed = true;
632
633 ct = nf_ct_get(skb, &ctinfo);
634 if (!ct)
635 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
636
637 if (ct)
638 nf_ct_get(skb, &ctinfo);
639 else
640 return false;
641
642 if (!net_eq(net, read_pnet(&ct->ct_net)))
643 return false;
644 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
645 return false;
646 if (info->helper) {
647 struct nf_conn_help *help;
648
649 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
650 if (help && rcu_access_pointer(help->helper) != info->helper)
651 return false;
652 }
653 if (info->nf_ct_timeout) {
654 struct nf_conn_timeout *timeout_ext;
655
656 timeout_ext = nf_ct_timeout_find(ct);
657 if (!timeout_ext || info->nf_ct_timeout !=
658 rcu_dereference(timeout_ext->timeout))
659 return false;
660 }
661 /* Force conntrack entry direction to the current packet? */
662 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
663 /* Delete the conntrack entry if confirmed, else just release
664 * the reference.
665 */
666 if (nf_ct_is_confirmed(ct))
667 nf_ct_delete(ct, 0, 0);
668
669 nf_ct_put(ct);
670 nf_ct_set(skb, NULL, 0);
671 return false;
672 }
673
674 return ct_executed;
675}
676
677#if IS_ENABLED(CONFIG_NF_NAT)
678static void ovs_nat_update_key(struct sw_flow_key *key,
679 const struct sk_buff *skb,
680 enum nf_nat_manip_type maniptype)
681{
682 if (maniptype == NF_NAT_MANIP_SRC) {
683 __be16 src;
684
685 key->ct_state |= OVS_CS_F_SRC_NAT;
686 if (key->eth.type == htons(ETH_P_IP))
687 key->ipv4.addr.src = ip_hdr(skb)->saddr;
688 else if (key->eth.type == htons(ETH_P_IPV6))
689 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
690 sizeof(key->ipv6.addr.src));
691 else
692 return;
693
694 if (key->ip.proto == IPPROTO_UDP)
695 src = udp_hdr(skb)->source;
696 else if (key->ip.proto == IPPROTO_TCP)
697 src = tcp_hdr(skb)->source;
698 else if (key->ip.proto == IPPROTO_SCTP)
699 src = sctp_hdr(skb)->source;
700 else
701 return;
702
703 key->tp.src = src;
704 } else {
705 __be16 dst;
706
707 key->ct_state |= OVS_CS_F_DST_NAT;
708 if (key->eth.type == htons(ETH_P_IP))
709 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
710 else if (key->eth.type == htons(ETH_P_IPV6))
711 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
712 sizeof(key->ipv6.addr.dst));
713 else
714 return;
715
716 if (key->ip.proto == IPPROTO_UDP)
717 dst = udp_hdr(skb)->dest;
718 else if (key->ip.proto == IPPROTO_TCP)
719 dst = tcp_hdr(skb)->dest;
720 else if (key->ip.proto == IPPROTO_SCTP)
721 dst = sctp_hdr(skb)->dest;
722 else
723 return;
724
725 key->tp.dst = dst;
726 }
727}
728
729/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
730static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
731 const struct ovs_conntrack_info *info,
732 struct sk_buff *skb, struct nf_conn *ct,
733 enum ip_conntrack_info ctinfo)
734{
735 int err, action = 0;
736
737 if (!(info->nat & OVS_CT_NAT))
738 return NF_ACCEPT;
739 if (info->nat & OVS_CT_SRC_NAT)
740 action |= BIT(NF_NAT_MANIP_SRC);
741 if (info->nat & OVS_CT_DST_NAT)
742 action |= BIT(NF_NAT_MANIP_DST);
743
744 err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit);
745
746 if (action & BIT(NF_NAT_MANIP_SRC))
747 ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC);
748 if (action & BIT(NF_NAT_MANIP_DST))
749 ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST);
750
751 return err;
752}
753#else /* !CONFIG_NF_NAT */
754static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
755 const struct ovs_conntrack_info *info,
756 struct sk_buff *skb, struct nf_conn *ct,
757 enum ip_conntrack_info ctinfo)
758{
759 return NF_ACCEPT;
760}
761#endif
762
763/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
764 * not done already. Update key with new CT state after passing the packet
765 * through conntrack.
766 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
767 * set to NULL and 0 will be returned.
768 */
769static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
770 const struct ovs_conntrack_info *info,
771 struct sk_buff *skb)
772{
773 /* If we are recirculating packets to match on conntrack fields and
774 * committing with a separate conntrack action, then we don't need to
775 * actually run the packet through conntrack twice unless it's for a
776 * different zone.
777 */
778 bool cached = skb_nfct_cached(net, key, info, skb);
779 enum ip_conntrack_info ctinfo;
780 struct nf_conn *ct;
781
782 if (!cached) {
783 struct nf_hook_state state = {
784 .hook = NF_INET_PRE_ROUTING,
785 .pf = info->family,
786 .net = net,
787 };
788 struct nf_conn *tmpl = info->ct;
789 int err;
790
791 /* Associate skb with specified zone. */
792 if (tmpl) {
793 ct = nf_ct_get(skb, &ctinfo);
794 nf_ct_put(ct);
795 nf_conntrack_get(&tmpl->ct_general);
796 nf_ct_set(skb, tmpl, IP_CT_NEW);
797 }
798
799 err = nf_conntrack_in(skb, &state);
800 if (err != NF_ACCEPT)
801 return -ENOENT;
802
803 /* Clear CT state NAT flags to mark that we have not yet done
804 * NAT after the nf_conntrack_in() call. We can actually clear
805 * the whole state, as it will be re-initialized below.
806 */
807 key->ct_state = 0;
808
809 /* Update the key, but keep the NAT flags. */
810 ovs_ct_update_key(skb, info, key, true, true);
811 }
812
813 ct = nf_ct_get(skb, &ctinfo);
814 if (ct) {
815 bool add_helper = false;
816
817 /* Packets starting a new connection must be NATted before the
818 * helper, so that the helper knows about the NAT. We enforce
819 * this by delaying both NAT and helper calls for unconfirmed
820 * connections until the committing CT action. For later
821 * packets NAT and Helper may be called in either order.
822 *
823 * NAT will be done only if the CT action has NAT, and only
824 * once per packet (per zone), as guarded by the NAT bits in
825 * the key->ct_state.
826 */
827 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
828 (nf_ct_is_confirmed(ct) || info->commit) &&
829 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
830 return -EINVAL;
831 }
832
833 /* Userspace may decide to perform a ct lookup without a helper
834 * specified followed by a (recirculate and) commit with one,
835 * or attach a helper in a later commit. Therefore, for
836 * connections which we will commit, we may need to attach
837 * the helper here.
838 */
839 if (!nf_ct_is_confirmed(ct) && info->commit &&
840 info->helper && !nfct_help(ct)) {
841 int err = __nf_ct_try_assign_helper(ct, info->ct,
842 GFP_ATOMIC);
843 if (err)
844 return err;
845 add_helper = true;
846
847 /* helper installed, add seqadj if NAT is required */
848 if (info->nat && !nfct_seqadj(ct)) {
849 if (!nfct_seqadj_ext_add(ct))
850 return -EINVAL;
851 }
852 }
853
854 /* Call the helper only if:
855 * - nf_conntrack_in() was executed above ("!cached") or a
856 * helper was just attached ("add_helper") for a confirmed
857 * connection, or
858 * - When committing an unconfirmed connection.
859 */
860 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
861 info->commit) &&
862 nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) {
863 return -EINVAL;
864 }
865
866 if (nf_ct_protonum(ct) == IPPROTO_TCP &&
867 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
868 /* Be liberal for tcp packets so that out-of-window
869 * packets are not marked invalid.
870 */
871 nf_ct_set_tcp_be_liberal(ct);
872 }
873
874 nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
875 }
876
877 return 0;
878}
879
880/* Lookup connection and read fields into key. */
881static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
882 const struct ovs_conntrack_info *info,
883 struct sk_buff *skb)
884{
885 struct nf_conntrack_expect *exp;
886
887 /* If we pass an expected packet through nf_conntrack_in() the
888 * expectation is typically removed, but the packet could still be
889 * lost in upcall processing. To prevent this from happening we
890 * perform an explicit expectation lookup. Expected connections are
891 * always new, and will be passed through conntrack only when they are
892 * committed, as it is OK to remove the expectation at that time.
893 */
894 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
895 if (exp) {
896 u8 state;
897
898 /* NOTE: New connections are NATted and Helped only when
899 * committed, so we are not calling into NAT here.
900 */
901 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
902 __ovs_ct_update_key(key, state, &info->zone, exp->master);
903 } else {
904 struct nf_conn *ct;
905 int err;
906
907 err = __ovs_ct_lookup(net, key, info, skb);
908 if (err)
909 return err;
910
911 ct = (struct nf_conn *)skb_nfct(skb);
912 if (ct)
913 nf_ct_deliver_cached_events(ct);
914 }
915
916 return 0;
917}
918
919static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
920{
921 size_t i;
922
923 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
924 if (labels->ct_labels_32[i])
925 return true;
926
927 return false;
928}
929
930#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
931static struct hlist_head *ct_limit_hash_bucket(
932 const struct ovs_ct_limit_info *info, u16 zone)
933{
934 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
935}
936
937/* Call with ovs_mutex */
938static void ct_limit_set(const struct ovs_ct_limit_info *info,
939 struct ovs_ct_limit *new_ct_limit)
940{
941 struct ovs_ct_limit *ct_limit;
942 struct hlist_head *head;
943
944 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
945 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
946 if (ct_limit->zone == new_ct_limit->zone) {
947 hlist_replace_rcu(&ct_limit->hlist_node,
948 &new_ct_limit->hlist_node);
949 kfree_rcu(ct_limit, rcu);
950 return;
951 }
952 }
953
954 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
955}
956
957/* Call with ovs_mutex */
958static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
959{
960 struct ovs_ct_limit *ct_limit;
961 struct hlist_head *head;
962 struct hlist_node *n;
963
964 head = ct_limit_hash_bucket(info, zone);
965 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
966 if (ct_limit->zone == zone) {
967 hlist_del_rcu(&ct_limit->hlist_node);
968 kfree_rcu(ct_limit, rcu);
969 return;
970 }
971 }
972}
973
974/* Call with RCU read lock */
975static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
976{
977 struct ovs_ct_limit *ct_limit;
978 struct hlist_head *head;
979
980 head = ct_limit_hash_bucket(info, zone);
981 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
982 if (ct_limit->zone == zone)
983 return ct_limit->limit;
984 }
985
986 return info->default_limit;
987}
988
989static int ovs_ct_check_limit(struct net *net,
990 const struct ovs_conntrack_info *info,
991 const struct nf_conntrack_tuple *tuple)
992{
993 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
994 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
995 u32 per_zone_limit, connections;
996 u32 conncount_key;
997
998 conncount_key = info->zone.id;
999
1000 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1001 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1002 return 0;
1003
1004 connections = nf_conncount_count(net, ct_limit_info->data,
1005 &conncount_key, tuple, &info->zone);
1006 if (connections > per_zone_limit)
1007 return -ENOMEM;
1008
1009 return 0;
1010}
1011#endif
1012
1013/* Lookup connection and confirm if unconfirmed. */
1014static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1015 const struct ovs_conntrack_info *info,
1016 struct sk_buff *skb)
1017{
1018 enum ip_conntrack_info ctinfo;
1019 struct nf_conn *ct;
1020 int err;
1021
1022 err = __ovs_ct_lookup(net, key, info, skb);
1023 if (err)
1024 return err;
1025
1026 /* The connection could be invalid, in which case this is a no-op.*/
1027 ct = nf_ct_get(skb, &ctinfo);
1028 if (!ct)
1029 return 0;
1030
1031#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1032 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1033 if (!nf_ct_is_confirmed(ct)) {
1034 err = ovs_ct_check_limit(net, info,
1035 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1036 if (err) {
1037 net_warn_ratelimited("openvswitch: zone: %u "
1038 "exceeds conntrack limit\n",
1039 info->zone.id);
1040 return err;
1041 }
1042 }
1043 }
1044#endif
1045
1046 /* Set the conntrack event mask if given. NEW and DELETE events have
1047 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1048 * typically would receive many kinds of updates. Setting the event
1049 * mask allows those events to be filtered. The set event mask will
1050 * remain in effect for the lifetime of the connection unless changed
1051 * by a further CT action with both the commit flag and the eventmask
1052 * option. */
1053 if (info->have_eventmask) {
1054 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1055
1056 if (cache)
1057 cache->ctmask = info->eventmask;
1058 }
1059
1060 /* Apply changes before confirming the connection so that the initial
1061 * conntrack NEW netlink event carries the values given in the CT
1062 * action.
1063 */
1064 if (info->mark.mask) {
1065 err = ovs_ct_set_mark(ct, key, info->mark.value,
1066 info->mark.mask);
1067 if (err)
1068 return err;
1069 }
1070 if (!nf_ct_is_confirmed(ct)) {
1071 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1072 &info->labels.mask);
1073 if (err)
1074 return err;
1075
1076 nf_conn_act_ct_ext_add(ct);
1077 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1078 labels_nonzero(&info->labels.mask)) {
1079 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1080 &info->labels.mask);
1081 if (err)
1082 return err;
1083 }
1084 /* This will take care of sending queued events even if the connection
1085 * is already confirmed.
1086 */
1087 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1088 return -EINVAL;
1089
1090 return 0;
1091}
1092
1093/* Trim the skb to the length specified by the IP/IPv6 header,
1094 * removing any trailing lower-layer padding. This prepares the skb
1095 * for higher-layer processing that assumes skb->len excludes padding
1096 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1097 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1098 */
1099static int ovs_skb_network_trim(struct sk_buff *skb)
1100{
1101 unsigned int len;
1102 int err;
1103
1104 switch (skb->protocol) {
1105 case htons(ETH_P_IP):
1106 len = ntohs(ip_hdr(skb)->tot_len);
1107 break;
1108 case htons(ETH_P_IPV6):
1109 len = sizeof(struct ipv6hdr)
1110 + ntohs(ipv6_hdr(skb)->payload_len);
1111 break;
1112 default:
1113 len = skb->len;
1114 }
1115
1116 err = pskb_trim_rcsum(skb, len);
1117 if (err)
1118 kfree_skb(skb);
1119
1120 return err;
1121}
1122
1123/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1124 * value if 'skb' is freed.
1125 */
1126int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1127 struct sw_flow_key *key,
1128 const struct ovs_conntrack_info *info)
1129{
1130 int nh_ofs;
1131 int err;
1132
1133 /* The conntrack module expects to be working at L3. */
1134 nh_ofs = skb_network_offset(skb);
1135 skb_pull_rcsum(skb, nh_ofs);
1136
1137 err = ovs_skb_network_trim(skb);
1138 if (err)
1139 return err;
1140
1141 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1142 err = handle_fragments(net, key, info->zone.id, skb);
1143 if (err)
1144 return err;
1145 }
1146
1147 if (info->commit)
1148 err = ovs_ct_commit(net, key, info, skb);
1149 else
1150 err = ovs_ct_lookup(net, key, info, skb);
1151
1152 skb_push_rcsum(skb, nh_ofs);
1153 if (err)
1154 kfree_skb(skb);
1155 return err;
1156}
1157
1158int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1159{
1160 enum ip_conntrack_info ctinfo;
1161 struct nf_conn *ct;
1162
1163 ct = nf_ct_get(skb, &ctinfo);
1164
1165 nf_ct_put(ct);
1166 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1167
1168 if (key)
1169 ovs_ct_fill_key(skb, key, false);
1170
1171 return 0;
1172}
1173
1174#if IS_ENABLED(CONFIG_NF_NAT)
1175static int parse_nat(const struct nlattr *attr,
1176 struct ovs_conntrack_info *info, bool log)
1177{
1178 struct nlattr *a;
1179 int rem;
1180 bool have_ip_max = false;
1181 bool have_proto_max = false;
1182 bool ip_vers = (info->family == NFPROTO_IPV6);
1183
1184 nla_for_each_nested(a, attr, rem) {
1185 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1186 [OVS_NAT_ATTR_SRC] = {0, 0},
1187 [OVS_NAT_ATTR_DST] = {0, 0},
1188 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1189 sizeof(struct in6_addr)},
1190 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1191 sizeof(struct in6_addr)},
1192 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1193 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1194 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1195 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1196 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1197 };
1198 int type = nla_type(a);
1199
1200 if (type > OVS_NAT_ATTR_MAX) {
1201 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1202 type, OVS_NAT_ATTR_MAX);
1203 return -EINVAL;
1204 }
1205
1206 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1207 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1208 type, nla_len(a),
1209 ovs_nat_attr_lens[type][ip_vers]);
1210 return -EINVAL;
1211 }
1212
1213 switch (type) {
1214 case OVS_NAT_ATTR_SRC:
1215 case OVS_NAT_ATTR_DST:
1216 if (info->nat) {
1217 OVS_NLERR(log, "Only one type of NAT may be specified");
1218 return -ERANGE;
1219 }
1220 info->nat |= OVS_CT_NAT;
1221 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1222 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1223 break;
1224
1225 case OVS_NAT_ATTR_IP_MIN:
1226 nla_memcpy(&info->range.min_addr, a,
1227 sizeof(info->range.min_addr));
1228 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1229 break;
1230
1231 case OVS_NAT_ATTR_IP_MAX:
1232 have_ip_max = true;
1233 nla_memcpy(&info->range.max_addr, a,
1234 sizeof(info->range.max_addr));
1235 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1236 break;
1237
1238 case OVS_NAT_ATTR_PROTO_MIN:
1239 info->range.min_proto.all = htons(nla_get_u16(a));
1240 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1241 break;
1242
1243 case OVS_NAT_ATTR_PROTO_MAX:
1244 have_proto_max = true;
1245 info->range.max_proto.all = htons(nla_get_u16(a));
1246 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1247 break;
1248
1249 case OVS_NAT_ATTR_PERSISTENT:
1250 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1251 break;
1252
1253 case OVS_NAT_ATTR_PROTO_HASH:
1254 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1255 break;
1256
1257 case OVS_NAT_ATTR_PROTO_RANDOM:
1258 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1259 break;
1260
1261 default:
1262 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1263 return -EINVAL;
1264 }
1265 }
1266
1267 if (rem > 0) {
1268 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1269 return -EINVAL;
1270 }
1271 if (!info->nat) {
1272 /* Do not allow flags if no type is given. */
1273 if (info->range.flags) {
1274 OVS_NLERR(log,
1275 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1276 );
1277 return -EINVAL;
1278 }
1279 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1280 } else if (!info->commit) {
1281 OVS_NLERR(log,
1282 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1283 );
1284 return -EINVAL;
1285 }
1286 /* Allow missing IP_MAX. */
1287 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1288 memcpy(&info->range.max_addr, &info->range.min_addr,
1289 sizeof(info->range.max_addr));
1290 }
1291 /* Allow missing PROTO_MAX. */
1292 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1293 !have_proto_max) {
1294 info->range.max_proto.all = info->range.min_proto.all;
1295 }
1296 return 0;
1297}
1298#endif
1299
1300static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1301 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1302 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1303 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1304 .maxlen = sizeof(u16) },
1305 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1306 .maxlen = sizeof(struct md_mark) },
1307 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1308 .maxlen = sizeof(struct md_labels) },
1309 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1310 .maxlen = NF_CT_HELPER_NAME_LEN },
1311#if IS_ENABLED(CONFIG_NF_NAT)
1312 /* NAT length is checked when parsing the nested attributes. */
1313 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1314#endif
1315 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1316 .maxlen = sizeof(u32) },
1317 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1318 .maxlen = CTNL_TIMEOUT_NAME_MAX },
1319};
1320
1321static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1322 const char **helper, bool log)
1323{
1324 struct nlattr *a;
1325 int rem;
1326
1327 nla_for_each_nested(a, attr, rem) {
1328 int type = nla_type(a);
1329 int maxlen;
1330 int minlen;
1331
1332 if (type > OVS_CT_ATTR_MAX) {
1333 OVS_NLERR(log,
1334 "Unknown conntrack attr (type=%d, max=%d)",
1335 type, OVS_CT_ATTR_MAX);
1336 return -EINVAL;
1337 }
1338
1339 maxlen = ovs_ct_attr_lens[type].maxlen;
1340 minlen = ovs_ct_attr_lens[type].minlen;
1341 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1342 OVS_NLERR(log,
1343 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1344 type, nla_len(a), maxlen);
1345 return -EINVAL;
1346 }
1347
1348 switch (type) {
1349 case OVS_CT_ATTR_FORCE_COMMIT:
1350 info->force = true;
1351 fallthrough;
1352 case OVS_CT_ATTR_COMMIT:
1353 info->commit = true;
1354 break;
1355#ifdef CONFIG_NF_CONNTRACK_ZONES
1356 case OVS_CT_ATTR_ZONE:
1357 info->zone.id = nla_get_u16(a);
1358 break;
1359#endif
1360#ifdef CONFIG_NF_CONNTRACK_MARK
1361 case OVS_CT_ATTR_MARK: {
1362 struct md_mark *mark = nla_data(a);
1363
1364 if (!mark->mask) {
1365 OVS_NLERR(log, "ct_mark mask cannot be 0");
1366 return -EINVAL;
1367 }
1368 info->mark = *mark;
1369 break;
1370 }
1371#endif
1372#ifdef CONFIG_NF_CONNTRACK_LABELS
1373 case OVS_CT_ATTR_LABELS: {
1374 struct md_labels *labels = nla_data(a);
1375
1376 if (!labels_nonzero(&labels->mask)) {
1377 OVS_NLERR(log, "ct_labels mask cannot be 0");
1378 return -EINVAL;
1379 }
1380 info->labels = *labels;
1381 break;
1382 }
1383#endif
1384 case OVS_CT_ATTR_HELPER:
1385 *helper = nla_data(a);
1386 if (!memchr(*helper, '\0', nla_len(a))) {
1387 OVS_NLERR(log, "Invalid conntrack helper");
1388 return -EINVAL;
1389 }
1390 break;
1391#if IS_ENABLED(CONFIG_NF_NAT)
1392 case OVS_CT_ATTR_NAT: {
1393 int err = parse_nat(a, info, log);
1394
1395 if (err)
1396 return err;
1397 break;
1398 }
1399#endif
1400 case OVS_CT_ATTR_EVENTMASK:
1401 info->have_eventmask = true;
1402 info->eventmask = nla_get_u32(a);
1403 break;
1404#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1405 case OVS_CT_ATTR_TIMEOUT:
1406 memcpy(info->timeout, nla_data(a), nla_len(a));
1407 if (!memchr(info->timeout, '\0', nla_len(a))) {
1408 OVS_NLERR(log, "Invalid conntrack timeout");
1409 return -EINVAL;
1410 }
1411 break;
1412#endif
1413
1414 default:
1415 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1416 type);
1417 return -EINVAL;
1418 }
1419 }
1420
1421#ifdef CONFIG_NF_CONNTRACK_MARK
1422 if (!info->commit && info->mark.mask) {
1423 OVS_NLERR(log,
1424 "Setting conntrack mark requires 'commit' flag.");
1425 return -EINVAL;
1426 }
1427#endif
1428#ifdef CONFIG_NF_CONNTRACK_LABELS
1429 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1430 OVS_NLERR(log,
1431 "Setting conntrack labels requires 'commit' flag.");
1432 return -EINVAL;
1433 }
1434#endif
1435 if (rem > 0) {
1436 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1437 return -EINVAL;
1438 }
1439
1440 return 0;
1441}
1442
1443bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1444{
1445 if (attr == OVS_KEY_ATTR_CT_STATE)
1446 return true;
1447 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1448 attr == OVS_KEY_ATTR_CT_ZONE)
1449 return true;
1450 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1451 attr == OVS_KEY_ATTR_CT_MARK)
1452 return true;
1453 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1454 attr == OVS_KEY_ATTR_CT_LABELS) {
1455 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1456
1457 return ovs_net->xt_label;
1458 }
1459
1460 return false;
1461}
1462
1463int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1464 const struct sw_flow_key *key,
1465 struct sw_flow_actions **sfa, bool log)
1466{
1467 struct ovs_conntrack_info ct_info;
1468 const char *helper = NULL;
1469 u16 family;
1470 int err;
1471
1472 family = key_to_nfproto(key);
1473 if (family == NFPROTO_UNSPEC) {
1474 OVS_NLERR(log, "ct family unspecified");
1475 return -EINVAL;
1476 }
1477
1478 memset(&ct_info, 0, sizeof(ct_info));
1479 ct_info.family = family;
1480
1481 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1482 NF_CT_DEFAULT_ZONE_DIR, 0);
1483
1484 err = parse_ct(attr, &ct_info, &helper, log);
1485 if (err)
1486 return err;
1487
1488 /* Set up template for tracking connections in specific zones. */
1489 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1490 if (!ct_info.ct) {
1491 OVS_NLERR(log, "Failed to allocate conntrack template");
1492 return -ENOMEM;
1493 }
1494
1495 if (ct_info.timeout[0]) {
1496 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1497 ct_info.timeout))
1498 pr_info_ratelimited("Failed to associated timeout "
1499 "policy `%s'\n", ct_info.timeout);
1500 else
1501 ct_info.nf_ct_timeout = rcu_dereference(
1502 nf_ct_timeout_find(ct_info.ct)->timeout);
1503
1504 }
1505
1506 if (helper) {
1507 err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family,
1508 key->ip.proto, ct_info.nat, &ct_info.helper);
1509 if (err) {
1510 OVS_NLERR(log, "Failed to add %s helper %d", helper, err);
1511 goto err_free_ct;
1512 }
1513 }
1514
1515 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1516 sizeof(ct_info), log);
1517 if (err)
1518 goto err_free_ct;
1519
1520 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1521 return 0;
1522err_free_ct:
1523 __ovs_ct_free_action(&ct_info);
1524 return err;
1525}
1526
1527#if IS_ENABLED(CONFIG_NF_NAT)
1528static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1529 struct sk_buff *skb)
1530{
1531 struct nlattr *start;
1532
1533 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1534 if (!start)
1535 return false;
1536
1537 if (info->nat & OVS_CT_SRC_NAT) {
1538 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1539 return false;
1540 } else if (info->nat & OVS_CT_DST_NAT) {
1541 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1542 return false;
1543 } else {
1544 goto out;
1545 }
1546
1547 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1548 if (IS_ENABLED(CONFIG_NF_NAT) &&
1549 info->family == NFPROTO_IPV4) {
1550 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1551 info->range.min_addr.ip) ||
1552 (info->range.max_addr.ip
1553 != info->range.min_addr.ip &&
1554 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1555 info->range.max_addr.ip))))
1556 return false;
1557 } else if (IS_ENABLED(CONFIG_IPV6) &&
1558 info->family == NFPROTO_IPV6) {
1559 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1560 &info->range.min_addr.in6) ||
1561 (memcmp(&info->range.max_addr.in6,
1562 &info->range.min_addr.in6,
1563 sizeof(info->range.max_addr.in6)) &&
1564 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1565 &info->range.max_addr.in6))))
1566 return false;
1567 } else {
1568 return false;
1569 }
1570 }
1571 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1572 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1573 ntohs(info->range.min_proto.all)) ||
1574 (info->range.max_proto.all != info->range.min_proto.all &&
1575 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1576 ntohs(info->range.max_proto.all)))))
1577 return false;
1578
1579 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1580 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1581 return false;
1582 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1583 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1584 return false;
1585 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1586 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1587 return false;
1588out:
1589 nla_nest_end(skb, start);
1590
1591 return true;
1592}
1593#endif
1594
1595int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1596 struct sk_buff *skb)
1597{
1598 struct nlattr *start;
1599
1600 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1601 if (!start)
1602 return -EMSGSIZE;
1603
1604 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1605 ? OVS_CT_ATTR_FORCE_COMMIT
1606 : OVS_CT_ATTR_COMMIT))
1607 return -EMSGSIZE;
1608 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1609 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1610 return -EMSGSIZE;
1611 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1612 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1613 &ct_info->mark))
1614 return -EMSGSIZE;
1615 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1616 labels_nonzero(&ct_info->labels.mask) &&
1617 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1618 &ct_info->labels))
1619 return -EMSGSIZE;
1620 if (ct_info->helper) {
1621 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1622 ct_info->helper->name))
1623 return -EMSGSIZE;
1624 }
1625 if (ct_info->have_eventmask &&
1626 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1627 return -EMSGSIZE;
1628 if (ct_info->timeout[0]) {
1629 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1630 return -EMSGSIZE;
1631 }
1632
1633#if IS_ENABLED(CONFIG_NF_NAT)
1634 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1635 return -EMSGSIZE;
1636#endif
1637 nla_nest_end(skb, start);
1638
1639 return 0;
1640}
1641
1642void ovs_ct_free_action(const struct nlattr *a)
1643{
1644 struct ovs_conntrack_info *ct_info = nla_data(a);
1645
1646 __ovs_ct_free_action(ct_info);
1647}
1648
1649static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1650{
1651 if (ct_info->helper) {
1652#if IS_ENABLED(CONFIG_NF_NAT)
1653 if (ct_info->nat)
1654 nf_nat_helper_put(ct_info->helper);
1655#endif
1656 nf_conntrack_helper_put(ct_info->helper);
1657 }
1658 if (ct_info->ct) {
1659 if (ct_info->timeout[0])
1660 nf_ct_destroy_timeout(ct_info->ct);
1661 nf_ct_tmpl_free(ct_info->ct);
1662 }
1663}
1664
1665#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1666static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1667{
1668 int i, err;
1669
1670 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1671 GFP_KERNEL);
1672 if (!ovs_net->ct_limit_info)
1673 return -ENOMEM;
1674
1675 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1676 ovs_net->ct_limit_info->limits =
1677 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1678 GFP_KERNEL);
1679 if (!ovs_net->ct_limit_info->limits) {
1680 kfree(ovs_net->ct_limit_info);
1681 return -ENOMEM;
1682 }
1683
1684 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1685 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1686
1687 ovs_net->ct_limit_info->data =
1688 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1689
1690 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1691 err = PTR_ERR(ovs_net->ct_limit_info->data);
1692 kfree(ovs_net->ct_limit_info->limits);
1693 kfree(ovs_net->ct_limit_info);
1694 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1695 return err;
1696 }
1697 return 0;
1698}
1699
1700static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1701{
1702 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1703 int i;
1704
1705 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1706 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1707 struct hlist_head *head = &info->limits[i];
1708 struct ovs_ct_limit *ct_limit;
1709
1710 hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1711 lockdep_ovsl_is_held())
1712 kfree_rcu(ct_limit, rcu);
1713 }
1714 kfree(info->limits);
1715 kfree(info);
1716}
1717
1718static struct sk_buff *
1719ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1720 struct ovs_header **ovs_reply_header)
1721{
1722 struct ovs_header *ovs_header = info->userhdr;
1723 struct sk_buff *skb;
1724
1725 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1726 if (!skb)
1727 return ERR_PTR(-ENOMEM);
1728
1729 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1730 info->snd_seq,
1731 &dp_ct_limit_genl_family, 0, cmd);
1732
1733 if (!*ovs_reply_header) {
1734 nlmsg_free(skb);
1735 return ERR_PTR(-EMSGSIZE);
1736 }
1737 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1738
1739 return skb;
1740}
1741
1742static bool check_zone_id(int zone_id, u16 *pzone)
1743{
1744 if (zone_id >= 0 && zone_id <= 65535) {
1745 *pzone = (u16)zone_id;
1746 return true;
1747 }
1748 return false;
1749}
1750
1751static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1752 struct ovs_ct_limit_info *info)
1753{
1754 struct ovs_zone_limit *zone_limit;
1755 int rem;
1756 u16 zone;
1757
1758 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1759 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1760
1761 while (rem >= sizeof(*zone_limit)) {
1762 if (unlikely(zone_limit->zone_id ==
1763 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1764 ovs_lock();
1765 info->default_limit = zone_limit->limit;
1766 ovs_unlock();
1767 } else if (unlikely(!check_zone_id(
1768 zone_limit->zone_id, &zone))) {
1769 OVS_NLERR(true, "zone id is out of range");
1770 } else {
1771 struct ovs_ct_limit *ct_limit;
1772
1773 ct_limit = kmalloc(sizeof(*ct_limit),
1774 GFP_KERNEL_ACCOUNT);
1775 if (!ct_limit)
1776 return -ENOMEM;
1777
1778 ct_limit->zone = zone;
1779 ct_limit->limit = zone_limit->limit;
1780
1781 ovs_lock();
1782 ct_limit_set(info, ct_limit);
1783 ovs_unlock();
1784 }
1785 rem -= NLA_ALIGN(sizeof(*zone_limit));
1786 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1787 NLA_ALIGN(sizeof(*zone_limit)));
1788 }
1789
1790 if (rem)
1791 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1792
1793 return 0;
1794}
1795
1796static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1797 struct ovs_ct_limit_info *info)
1798{
1799 struct ovs_zone_limit *zone_limit;
1800 int rem;
1801 u16 zone;
1802
1803 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1804 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1805
1806 while (rem >= sizeof(*zone_limit)) {
1807 if (unlikely(zone_limit->zone_id ==
1808 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1809 ovs_lock();
1810 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1811 ovs_unlock();
1812 } else if (unlikely(!check_zone_id(
1813 zone_limit->zone_id, &zone))) {
1814 OVS_NLERR(true, "zone id is out of range");
1815 } else {
1816 ovs_lock();
1817 ct_limit_del(info, zone);
1818 ovs_unlock();
1819 }
1820 rem -= NLA_ALIGN(sizeof(*zone_limit));
1821 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1822 NLA_ALIGN(sizeof(*zone_limit)));
1823 }
1824
1825 if (rem)
1826 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1827
1828 return 0;
1829}
1830
1831static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1832 struct sk_buff *reply)
1833{
1834 struct ovs_zone_limit zone_limit = {
1835 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
1836 .limit = info->default_limit,
1837 };
1838
1839 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1840}
1841
1842static int __ovs_ct_limit_get_zone_limit(struct net *net,
1843 struct nf_conncount_data *data,
1844 u16 zone_id, u32 limit,
1845 struct sk_buff *reply)
1846{
1847 struct nf_conntrack_zone ct_zone;
1848 struct ovs_zone_limit zone_limit;
1849 u32 conncount_key = zone_id;
1850
1851 zone_limit.zone_id = zone_id;
1852 zone_limit.limit = limit;
1853 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1854
1855 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1856 &ct_zone);
1857 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1858}
1859
1860static int ovs_ct_limit_get_zone_limit(struct net *net,
1861 struct nlattr *nla_zone_limit,
1862 struct ovs_ct_limit_info *info,
1863 struct sk_buff *reply)
1864{
1865 struct ovs_zone_limit *zone_limit;
1866 int rem, err;
1867 u32 limit;
1868 u16 zone;
1869
1870 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1871 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1872
1873 while (rem >= sizeof(*zone_limit)) {
1874 if (unlikely(zone_limit->zone_id ==
1875 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1876 err = ovs_ct_limit_get_default_limit(info, reply);
1877 if (err)
1878 return err;
1879 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
1880 &zone))) {
1881 OVS_NLERR(true, "zone id is out of range");
1882 } else {
1883 rcu_read_lock();
1884 limit = ct_limit_get(info, zone);
1885 rcu_read_unlock();
1886
1887 err = __ovs_ct_limit_get_zone_limit(
1888 net, info->data, zone, limit, reply);
1889 if (err)
1890 return err;
1891 }
1892 rem -= NLA_ALIGN(sizeof(*zone_limit));
1893 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1894 NLA_ALIGN(sizeof(*zone_limit)));
1895 }
1896
1897 if (rem)
1898 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
1899
1900 return 0;
1901}
1902
1903static int ovs_ct_limit_get_all_zone_limit(struct net *net,
1904 struct ovs_ct_limit_info *info,
1905 struct sk_buff *reply)
1906{
1907 struct ovs_ct_limit *ct_limit;
1908 struct hlist_head *head;
1909 int i, err = 0;
1910
1911 err = ovs_ct_limit_get_default_limit(info, reply);
1912 if (err)
1913 return err;
1914
1915 rcu_read_lock();
1916 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1917 head = &info->limits[i];
1918 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1919 err = __ovs_ct_limit_get_zone_limit(net, info->data,
1920 ct_limit->zone, ct_limit->limit, reply);
1921 if (err)
1922 goto exit_err;
1923 }
1924 }
1925
1926exit_err:
1927 rcu_read_unlock();
1928 return err;
1929}
1930
1931static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
1932{
1933 struct nlattr **a = info->attrs;
1934 struct sk_buff *reply;
1935 struct ovs_header *ovs_reply_header;
1936 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1937 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1938 int err;
1939
1940 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
1941 &ovs_reply_header);
1942 if (IS_ERR(reply))
1943 return PTR_ERR(reply);
1944
1945 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1946 err = -EINVAL;
1947 goto exit_err;
1948 }
1949
1950 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1951 ct_limit_info);
1952 if (err)
1953 goto exit_err;
1954
1955 static_branch_enable(&ovs_ct_limit_enabled);
1956
1957 genlmsg_end(reply, ovs_reply_header);
1958 return genlmsg_reply(reply, info);
1959
1960exit_err:
1961 nlmsg_free(reply);
1962 return err;
1963}
1964
1965static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
1966{
1967 struct nlattr **a = info->attrs;
1968 struct sk_buff *reply;
1969 struct ovs_header *ovs_reply_header;
1970 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1971 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1972 int err;
1973
1974 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
1975 &ovs_reply_header);
1976 if (IS_ERR(reply))
1977 return PTR_ERR(reply);
1978
1979 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1980 err = -EINVAL;
1981 goto exit_err;
1982 }
1983
1984 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1985 ct_limit_info);
1986 if (err)
1987 goto exit_err;
1988
1989 genlmsg_end(reply, ovs_reply_header);
1990 return genlmsg_reply(reply, info);
1991
1992exit_err:
1993 nlmsg_free(reply);
1994 return err;
1995}
1996
1997static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
1998{
1999 struct nlattr **a = info->attrs;
2000 struct nlattr *nla_reply;
2001 struct sk_buff *reply;
2002 struct ovs_header *ovs_reply_header;
2003 struct net *net = sock_net(skb->sk);
2004 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2005 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2006 int err;
2007
2008 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2009 &ovs_reply_header);
2010 if (IS_ERR(reply))
2011 return PTR_ERR(reply);
2012
2013 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2014 if (!nla_reply) {
2015 err = -EMSGSIZE;
2016 goto exit_err;
2017 }
2018
2019 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2020 err = ovs_ct_limit_get_zone_limit(
2021 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2022 reply);
2023 if (err)
2024 goto exit_err;
2025 } else {
2026 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2027 reply);
2028 if (err)
2029 goto exit_err;
2030 }
2031
2032 nla_nest_end(reply, nla_reply);
2033 genlmsg_end(reply, ovs_reply_header);
2034 return genlmsg_reply(reply, info);
2035
2036exit_err:
2037 nlmsg_free(reply);
2038 return err;
2039}
2040
2041static const struct genl_small_ops ct_limit_genl_ops[] = {
2042 { .cmd = OVS_CT_LIMIT_CMD_SET,
2043 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2044 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2045 * privilege.
2046 */
2047 .doit = ovs_ct_limit_cmd_set,
2048 },
2049 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2050 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2051 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2052 * privilege.
2053 */
2054 .doit = ovs_ct_limit_cmd_del,
2055 },
2056 { .cmd = OVS_CT_LIMIT_CMD_GET,
2057 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2058 .flags = 0, /* OK for unprivileged users. */
2059 .doit = ovs_ct_limit_cmd_get,
2060 },
2061};
2062
2063static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2064 .name = OVS_CT_LIMIT_MCGROUP,
2065};
2066
2067struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2068 .hdrsize = sizeof(struct ovs_header),
2069 .name = OVS_CT_LIMIT_FAMILY,
2070 .version = OVS_CT_LIMIT_VERSION,
2071 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2072 .policy = ct_limit_policy,
2073 .netnsok = true,
2074 .parallel_ops = true,
2075 .small_ops = ct_limit_genl_ops,
2076 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2077 .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1,
2078 .mcgrps = &ovs_ct_limit_multicast_group,
2079 .n_mcgrps = 1,
2080 .module = THIS_MODULE,
2081};
2082#endif
2083
2084int ovs_ct_init(struct net *net)
2085{
2086 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2087 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2088
2089 if (nf_connlabels_get(net, n_bits - 1)) {
2090 ovs_net->xt_label = false;
2091 OVS_NLERR(true, "Failed to set connlabel length");
2092 } else {
2093 ovs_net->xt_label = true;
2094 }
2095
2096#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2097 return ovs_ct_limit_init(net, ovs_net);
2098#else
2099 return 0;
2100#endif
2101}
2102
2103void ovs_ct_exit(struct net *net)
2104{
2105 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2106
2107#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2108 ovs_ct_limit_exit(net, ovs_net);
2109#endif
2110
2111 if (ovs_net->xt_label)
2112 nf_connlabels_put(net);
2113}