Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2015 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/openvswitch.h>
  16#include <linux/tcp.h>
  17#include <linux/udp.h>
  18#include <linux/sctp.h>
 
  19#include <net/ip.h>
 
  20#include <net/netfilter/nf_conntrack_core.h>
 
  21#include <net/netfilter/nf_conntrack_helper.h>
  22#include <net/netfilter/nf_conntrack_labels.h>
  23#include <net/netfilter/nf_conntrack_seqadj.h>
 
  24#include <net/netfilter/nf_conntrack_zones.h>
  25#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
 
  26
  27#ifdef CONFIG_NF_NAT_NEEDED
  28#include <linux/netfilter/nf_nat.h>
  29#include <net/netfilter/nf_nat_core.h>
  30#include <net/netfilter/nf_nat_l3proto.h>
  31#endif
  32
 
 
  33#include "datapath.h"
  34#include "conntrack.h"
  35#include "flow.h"
  36#include "flow_netlink.h"
  37
  38struct ovs_ct_len_tbl {
  39	int maxlen;
  40	int minlen;
  41};
  42
  43/* Metadata mark for masked write to conntrack mark */
  44struct md_mark {
  45	u32 value;
  46	u32 mask;
  47};
  48
  49/* Metadata label for masked write to conntrack label. */
  50struct md_labels {
  51	struct ovs_key_ct_labels value;
  52	struct ovs_key_ct_labels mask;
  53};
  54
  55enum ovs_ct_nat {
  56	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  57	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  58	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  59};
  60
  61/* Conntrack action context for execution. */
  62struct ovs_conntrack_info {
  63	struct nf_conntrack_helper *helper;
  64	struct nf_conntrack_zone zone;
  65	struct nf_conn *ct;
  66	u8 commit : 1;
  67	u8 nat : 3;                 /* enum ovs_ct_nat */
 
 
  68	u16 family;
 
  69	struct md_mark mark;
  70	struct md_labels labels;
  71#ifdef CONFIG_NF_NAT_NEEDED
  72	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
 
 
  73#endif
  74};
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
  77
  78static u16 key_to_nfproto(const struct sw_flow_key *key)
  79{
  80	switch (ntohs(key->eth.type)) {
  81	case ETH_P_IP:
  82		return NFPROTO_IPV4;
  83	case ETH_P_IPV6:
  84		return NFPROTO_IPV6;
  85	default:
  86		return NFPROTO_UNSPEC;
  87	}
  88}
  89
  90/* Map SKB connection state into the values used by flow definition. */
  91static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
  92{
  93	u8 ct_state = OVS_CS_F_TRACKED;
  94
  95	switch (ctinfo) {
  96	case IP_CT_ESTABLISHED_REPLY:
  97	case IP_CT_RELATED_REPLY:
  98		ct_state |= OVS_CS_F_REPLY_DIR;
  99		break;
 100	default:
 101		break;
 102	}
 103
 104	switch (ctinfo) {
 105	case IP_CT_ESTABLISHED:
 106	case IP_CT_ESTABLISHED_REPLY:
 107		ct_state |= OVS_CS_F_ESTABLISHED;
 108		break;
 109	case IP_CT_RELATED:
 110	case IP_CT_RELATED_REPLY:
 111		ct_state |= OVS_CS_F_RELATED;
 112		break;
 113	case IP_CT_NEW:
 114		ct_state |= OVS_CS_F_NEW;
 115		break;
 116	default:
 117		break;
 118	}
 119
 120	return ct_state;
 121}
 122
 123static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 124{
 125#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 126	return ct ? ct->mark : 0;
 127#else
 128	return 0;
 129#endif
 130}
 131
 
 
 
 
 
 132static void ovs_ct_get_labels(const struct nf_conn *ct,
 133			      struct ovs_key_ct_labels *labels)
 134{
 135	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 136
 137	if (cl) {
 138		size_t len = sizeof(cl->bits);
 
 
 
 139
 140		if (len > OVS_CT_LABELS_LEN)
 141			len = OVS_CT_LABELS_LEN;
 142		else if (len < OVS_CT_LABELS_LEN)
 143			memset(labels, 0, OVS_CT_LABELS_LEN);
 144		memcpy(labels, cl->bits, len);
 
 
 
 145	} else {
 146		memset(labels, 0, OVS_CT_LABELS_LEN);
 
 147	}
 148}
 149
 150static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 151				const struct nf_conntrack_zone *zone,
 152				const struct nf_conn *ct)
 153{
 154	key->ct.state = state;
 155	key->ct.zone = zone->id;
 156	key->ct.mark = ovs_ct_get_mark(ct);
 157	ovs_ct_get_labels(ct, &key->ct.labels);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 159
 160/* Update 'key' based on skb->nfct.  If 'post_ct' is true, then OVS has
 161 * previously sent the packet to conntrack via the ct action.  If
 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 163 * initialized from the connection status.
 164 */
 165static void ovs_ct_update_key(const struct sk_buff *skb,
 166			      const struct ovs_conntrack_info *info,
 167			      struct sw_flow_key *key, bool post_ct,
 168			      bool keep_nat_flags)
 169{
 170	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 171	enum ip_conntrack_info ctinfo;
 172	struct nf_conn *ct;
 173	u8 state = 0;
 174
 175	ct = nf_ct_get(skb, &ctinfo);
 176	if (ct) {
 177		state = ovs_ct_get_state(ctinfo);
 178		/* All unconfirmed entries are NEW connections. */
 179		if (!nf_ct_is_confirmed(ct))
 180			state |= OVS_CS_F_NEW;
 181		/* OVS persists the related flag for the duration of the
 182		 * connection.
 183		 */
 184		if (ct->master)
 185			state |= OVS_CS_F_RELATED;
 186		if (keep_nat_flags) {
 187			state |= key->ct.state & OVS_CS_F_NAT_MASK;
 188		} else {
 189			if (ct->status & IPS_SRC_NAT)
 190				state |= OVS_CS_F_SRC_NAT;
 191			if (ct->status & IPS_DST_NAT)
 192				state |= OVS_CS_F_DST_NAT;
 193		}
 194		zone = nf_ct_zone(ct);
 195	} else if (post_ct) {
 196		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 197		if (info)
 198			zone = &info->zone;
 199	}
 200	__ovs_ct_update_key(key, state, zone, ct);
 201}
 202
 203/* This is called to initialize CT key fields possibly coming in from the local
 204 * stack.
 205 */
 206void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
 
 
 207{
 208	ovs_ct_update_key(skb, NULL, key, false, false);
 209}
 210
 211int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
 
 212{
 213	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
 214		return -EMSGSIZE;
 215
 216	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 217	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
 218		return -EMSGSIZE;
 219
 220	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 221	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
 222		return -EMSGSIZE;
 223
 224	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 225	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
 226		    &key->ct.labels))
 227		return -EMSGSIZE;
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229	return 0;
 230}
 231
 232static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
 233			   u32 ct_mark, u32 mask)
 234{
 235#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 236	enum ip_conntrack_info ctinfo;
 237	struct nf_conn *ct;
 238	u32 new_mark;
 239
 240	/* The connection could be invalid, in which case set_mark is no-op. */
 241	ct = nf_ct_get(skb, &ctinfo);
 242	if (!ct)
 243		return 0;
 244
 245	new_mark = ct_mark | (ct->mark & ~(mask));
 246	if (ct->mark != new_mark) {
 247		ct->mark = new_mark;
 248		nf_conntrack_event_cache(IPCT_MARK, ct);
 249		key->ct.mark = new_mark;
 250	}
 251
 252	return 0;
 253#else
 254	return -ENOTSUPP;
 255#endif
 256}
 257
 258static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
 259			     const struct ovs_key_ct_labels *labels,
 260			     const struct ovs_key_ct_labels *mask)
 261{
 262	enum ip_conntrack_info ctinfo;
 263	struct nf_conn_labels *cl;
 264	struct nf_conn *ct;
 265	int err;
 266
 267	/* The connection could be invalid, in which case set_label is no-op.*/
 268	ct = nf_ct_get(skb, &ctinfo);
 269	if (!ct)
 270		return 0;
 271
 272	cl = nf_ct_labels_find(ct);
 273	if (!cl) {
 274		nf_ct_labels_ext_add(ct);
 275		cl = nf_ct_labels_find(ct);
 276	}
 277	if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
 278		return -ENOSPC;
 279
 280	err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
 281				    OVS_CT_LABELS_LEN / sizeof(u32));
 282	if (err)
 283		return err;
 284
 285	ovs_ct_get_labels(ct, &key->ct.labels);
 286	return 0;
 287}
 288
 289/* 'skb' should already be pulled to nh_ofs. */
 290static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
 
 
 
 
 
 291{
 292	const struct nf_conntrack_helper *helper;
 293	const struct nf_conn_help *help;
 294	enum ip_conntrack_info ctinfo;
 295	unsigned int protoff;
 296	struct nf_conn *ct;
 297	int err;
 298
 299	ct = nf_ct_get(skb, &ctinfo);
 300	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
 301		return NF_ACCEPT;
 302
 303	help = nfct_help(ct);
 304	if (!help)
 305		return NF_ACCEPT;
 306
 307	helper = rcu_dereference(help->helper);
 308	if (!helper)
 309		return NF_ACCEPT;
 310
 311	switch (proto) {
 312	case NFPROTO_IPV4:
 313		protoff = ip_hdrlen(skb);
 314		break;
 315	case NFPROTO_IPV6: {
 316		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 317		__be16 frag_off;
 318		int ofs;
 319
 320		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
 321				       &frag_off);
 322		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
 323			pr_debug("proto header not found\n");
 324			return NF_ACCEPT;
 325		}
 326		protoff = ofs;
 327		break;
 328	}
 329	default:
 330		WARN_ONCE(1, "helper invoked on non-IP family!");
 331		return NF_DROP;
 332	}
 333
 334	err = helper->help(skb, protoff, ct, ctinfo);
 335	if (err != NF_ACCEPT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336		return err;
 337
 338	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
 339	 * FTP with NAT) adusting the TCP payload size when mangling IP
 340	 * addresses and/or port numbers in the text-based control connection.
 341	 */
 342	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
 343	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
 344		return NF_DROP;
 345	return NF_ACCEPT;
 346}
 347
 348/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 349 * value if 'skb' is freed.
 350 */
 351static int handle_fragments(struct net *net, struct sw_flow_key *key,
 352			    u16 zone, struct sk_buff *skb)
 353{
 354	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 355	int err;
 356
 357	if (key->eth.type == htons(ETH_P_IP)) {
 358		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 359
 360		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 361		err = ip_defrag(net, skb, user);
 362		if (err)
 363			return err;
 364
 365		ovs_cb.mru = IPCB(skb)->frag_max_size;
 366#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 367	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 368		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 369
 370		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 371		err = nf_ct_frag6_gather(net, skb, user);
 372		if (err) {
 373			if (err != -EINPROGRESS)
 374				kfree_skb(skb);
 375			return err;
 376		}
 377
 378		key->ip.proto = ipv6_hdr(skb)->nexthdr;
 379		ovs_cb.mru = IP6CB(skb)->frag_max_size;
 380#endif
 381	} else {
 382		kfree_skb(skb);
 383		return -EPFNOSUPPORT;
 384	}
 385
 
 
 
 
 
 386	key->ip.frag = OVS_FRAG_TYPE_NONE;
 387	skb_clear_hash(skb);
 388	skb->ignore_df = 1;
 389	*OVS_CB(skb) = ovs_cb;
 390
 391	return 0;
 392}
 393
 394static struct nf_conntrack_expect *
 395ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 396		   u16 proto, const struct sk_buff *skb)
 397{
 398	struct nf_conntrack_tuple tuple;
 
 399
 400	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 401		return NULL;
 402	return __nf_ct_expect_find(net, zone, &tuple);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403}
 404
 405/* This replicates logic from nf_conntrack_core.c that is not exported. */
 406static enum ip_conntrack_info
 407ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 408{
 409	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 410
 411	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 412		return IP_CT_ESTABLISHED_REPLY;
 413	/* Once we've had two way comms, always ESTABLISHED. */
 414	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 415		return IP_CT_ESTABLISHED;
 416	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 417		return IP_CT_RELATED;
 418	return IP_CT_NEW;
 419}
 420
 421/* Find an existing connection which this packet belongs to without
 422 * re-attributing statistics or modifying the connection state.  This allows an
 423 * skb->nfct lost due to an upcall to be recovered during actions execution.
 424 *
 425 * Must be called with rcu_read_lock.
 426 *
 427 * On success, populates skb->nfct and skb->nfctinfo, and returns the
 428 * connection.  Returns NULL if there is no existing entry.
 429 */
 430static struct nf_conn *
 431ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 432		     u8 l3num, struct sk_buff *skb)
 433{
 434	struct nf_conntrack_l3proto *l3proto;
 435	struct nf_conntrack_l4proto *l4proto;
 436	struct nf_conntrack_tuple tuple;
 437	struct nf_conntrack_tuple_hash *h;
 438	struct nf_conn *ct;
 439	unsigned int dataoff;
 440	u8 protonum;
 441
 442	l3proto = __nf_ct_l3proto_find(l3num);
 443	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
 444				 &protonum) <= 0) {
 445		pr_debug("ovs_ct_find_existing: Can't get protonum\n");
 446		return NULL;
 447	}
 448	l4proto = __nf_ct_l4proto_find(l3num, protonum);
 449	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
 450			     protonum, net, &tuple, l3proto, l4proto)) {
 451		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 452		return NULL;
 453	}
 454
 
 
 
 
 
 
 
 
 
 
 
 455	/* look for tuple match */
 456	h = nf_conntrack_find_get(net, zone, &tuple);
 457	if (!h)
 458		return NULL;   /* Not found. */
 459
 460	ct = nf_ct_tuplehash_to_ctrack(h);
 461
 462	skb->nfct = &ct->ct_general;
 463	skb->nfctinfo = ovs_ct_get_info(h);
 
 
 
 
 
 
 464	return ct;
 465}
 466
 467/* Determine whether skb->nfct is equal to the result of conntrack lookup. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468static bool skb_nfct_cached(struct net *net,
 469			    const struct sw_flow_key *key,
 470			    const struct ovs_conntrack_info *info,
 471			    struct sk_buff *skb)
 472{
 473	enum ip_conntrack_info ctinfo;
 474	struct nf_conn *ct;
 
 475
 476	ct = nf_ct_get(skb, &ctinfo);
 477	/* If no ct, check if we have evidence that an existing conntrack entry
 478	 * might be found for this skb.  This happens when we lose a skb->nfct
 479	 * due to an upcall.  If the connection was not confirmed, it is not
 480	 * cached and needs to be run through conntrack again.
 481	 */
 482	if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
 483	    !(key->ct.state & OVS_CS_F_INVALID) &&
 484	    key->ct.zone == info->zone.id)
 485		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
 486	if (!ct)
 
 
 
 
 
 487		return false;
 
 488	if (!net_eq(net, read_pnet(&ct->ct_net)))
 489		return false;
 490	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 491		return false;
 492	if (info->helper) {
 493		struct nf_conn_help *help;
 494
 495		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 496		if (help && rcu_access_pointer(help->helper) != info->helper)
 497			return false;
 498	}
 
 
 499
 500	return true;
 501}
 502
 503#ifdef CONFIG_NF_NAT_NEEDED
 504/* Modelled after nf_nat_ipv[46]_fn().
 505 * range is only used for new, uninitialized NAT state.
 506 * Returns either NF_ACCEPT or NF_DROP.
 507 */
 508static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
 509			      enum ip_conntrack_info ctinfo,
 510			      const struct nf_nat_range *range,
 511			      enum nf_nat_manip_type maniptype)
 512{
 513	int hooknum, nh_off, err = NF_ACCEPT;
 514
 515	nh_off = skb_network_offset(skb);
 516	skb_pull_rcsum(skb, nh_off);
 517
 518	/* See HOOK2MANIP(). */
 519	if (maniptype == NF_NAT_MANIP_SRC)
 520		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
 521	else
 522		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
 523
 524	switch (ctinfo) {
 525	case IP_CT_RELATED:
 526	case IP_CT_RELATED_REPLY:
 527		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
 528		    skb->protocol == htons(ETH_P_IP) &&
 529		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
 530			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
 531							   hooknum))
 532				err = NF_DROP;
 533			goto push;
 534		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
 535			   skb->protocol == htons(ETH_P_IPV6)) {
 536			__be16 frag_off;
 537			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
 538			int hdrlen = ipv6_skip_exthdr(skb,
 539						      sizeof(struct ipv6hdr),
 540						      &nexthdr, &frag_off);
 541
 542			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
 543				if (!nf_nat_icmpv6_reply_translation(skb, ct,
 544								     ctinfo,
 545								     hooknum,
 546								     hdrlen))
 547					err = NF_DROP;
 548				goto push;
 549			}
 550		}
 551		/* Non-ICMP, fall thru to initialize if needed. */
 552	case IP_CT_NEW:
 553		/* Seen it before?  This can happen for loopback, retrans,
 554		 * or local packets.
 555		 */
 556		if (!nf_nat_initialized(ct, maniptype)) {
 557			/* Initialize according to the NAT action. */
 558			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
 559				/* Action is set up to establish a new
 560				 * mapping.
 561				 */
 562				? nf_nat_setup_info(ct, range, maniptype)
 563				: nf_nat_alloc_null_binding(ct, hooknum);
 564			if (err != NF_ACCEPT)
 565				goto push;
 566		}
 567		break;
 568
 569	case IP_CT_ESTABLISHED:
 570	case IP_CT_ESTABLISHED_REPLY:
 571		break;
 572
 573	default:
 574		err = NF_DROP;
 575		goto push;
 576	}
 577
 578	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
 579push:
 580	skb_push(skb, nh_off);
 581	skb_postpush_rcsum(skb, skb->data, nh_off);
 582
 583	return err;
 584}
 585
 
 586static void ovs_nat_update_key(struct sw_flow_key *key,
 587			       const struct sk_buff *skb,
 588			       enum nf_nat_manip_type maniptype)
 589{
 590	if (maniptype == NF_NAT_MANIP_SRC) {
 591		__be16 src;
 592
 593		key->ct.state |= OVS_CS_F_SRC_NAT;
 594		if (key->eth.type == htons(ETH_P_IP))
 595			key->ipv4.addr.src = ip_hdr(skb)->saddr;
 596		else if (key->eth.type == htons(ETH_P_IPV6))
 597			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 598			       sizeof(key->ipv6.addr.src));
 599		else
 600			return;
 601
 602		if (key->ip.proto == IPPROTO_UDP)
 603			src = udp_hdr(skb)->source;
 604		else if (key->ip.proto == IPPROTO_TCP)
 605			src = tcp_hdr(skb)->source;
 606		else if (key->ip.proto == IPPROTO_SCTP)
 607			src = sctp_hdr(skb)->source;
 608		else
 609			return;
 610
 611		key->tp.src = src;
 612	} else {
 613		__be16 dst;
 614
 615		key->ct.state |= OVS_CS_F_DST_NAT;
 616		if (key->eth.type == htons(ETH_P_IP))
 617			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 618		else if (key->eth.type == htons(ETH_P_IPV6))
 619			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 620			       sizeof(key->ipv6.addr.dst));
 621		else
 622			return;
 623
 624		if (key->ip.proto == IPPROTO_UDP)
 625			dst = udp_hdr(skb)->dest;
 626		else if (key->ip.proto == IPPROTO_TCP)
 627			dst = tcp_hdr(skb)->dest;
 628		else if (key->ip.proto == IPPROTO_SCTP)
 629			dst = sctp_hdr(skb)->dest;
 630		else
 631			return;
 632
 633		key->tp.dst = dst;
 634	}
 635}
 636
 637/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 638static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 639		      const struct ovs_conntrack_info *info,
 640		      struct sk_buff *skb, struct nf_conn *ct,
 641		      enum ip_conntrack_info ctinfo)
 642{
 643	enum nf_nat_manip_type maniptype;
 644	int err;
 645
 646	if (nf_ct_is_untracked(ct)) {
 647		/* A NAT action may only be performed on tracked packets. */
 648		return NF_ACCEPT;
 649	}
 650
 651	/* Add NAT extension if not confirmed yet. */
 652	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
 653		return NF_ACCEPT;   /* Can't NAT. */
 654
 655	/* Determine NAT type.
 656	 * Check if the NAT type can be deduced from the tracked connection.
 657	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
 658	 * when committing.
 659	 */
 660	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
 661	    ct->status & IPS_NAT_MASK &&
 662	    (ctinfo != IP_CT_RELATED || info->commit)) {
 663		/* NAT an established or related connection like before. */
 664		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
 665			/* This is the REPLY direction for a connection
 666			 * for which NAT was applied in the forward
 667			 * direction.  Do the reverse NAT.
 668			 */
 669			maniptype = ct->status & IPS_SRC_NAT
 670				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
 671		else
 672			maniptype = ct->status & IPS_SRC_NAT
 673				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
 674	} else if (info->nat & OVS_CT_SRC_NAT) {
 675		maniptype = NF_NAT_MANIP_SRC;
 676	} else if (info->nat & OVS_CT_DST_NAT) {
 677		maniptype = NF_NAT_MANIP_DST;
 678	} else {
 679		return NF_ACCEPT; /* Connection is not NATed. */
 680	}
 681	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
 682
 683	/* Mark NAT done if successful and update the flow key. */
 684	if (err == NF_ACCEPT)
 685		ovs_nat_update_key(key, skb, maniptype);
 686
 687	return err;
 688}
 689#else /* !CONFIG_NF_NAT_NEEDED */
 690static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 691		      const struct ovs_conntrack_info *info,
 692		      struct sk_buff *skb, struct nf_conn *ct,
 693		      enum ip_conntrack_info ctinfo)
 694{
 695	return NF_ACCEPT;
 696}
 697#endif
 698
 699/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 700 * not done already.  Update key with new CT state after passing the packet
 701 * through conntrack.
 702 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
 703 * set to NULL and 0 will be returned.
 704 */
 705static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 706			   const struct ovs_conntrack_info *info,
 707			   struct sk_buff *skb)
 708{
 709	/* If we are recirculating packets to match on conntrack fields and
 710	 * committing with a separate conntrack action,  then we don't need to
 711	 * actually run the packet through conntrack twice unless it's for a
 712	 * different zone.
 713	 */
 714	bool cached = skb_nfct_cached(net, key, info, skb);
 715	enum ip_conntrack_info ctinfo;
 716	struct nf_conn *ct;
 717
 718	if (!cached) {
 
 
 
 
 
 719		struct nf_conn *tmpl = info->ct;
 720		int err;
 721
 722		/* Associate skb with specified zone. */
 723		if (tmpl) {
 724			if (skb->nfct)
 725				nf_conntrack_put(skb->nfct);
 726			nf_conntrack_get(&tmpl->ct_general);
 727			skb->nfct = &tmpl->ct_general;
 728			skb->nfctinfo = IP_CT_NEW;
 729		}
 730
 731		err = nf_conntrack_in(net, info->family,
 732				      NF_INET_PRE_ROUTING, skb);
 733		if (err != NF_ACCEPT)
 734			return -ENOENT;
 735
 736		/* Clear CT state NAT flags to mark that we have not yet done
 737		 * NAT after the nf_conntrack_in() call.  We can actually clear
 738		 * the whole state, as it will be re-initialized below.
 739		 */
 740		key->ct.state = 0;
 741
 742		/* Update the key, but keep the NAT flags. */
 743		ovs_ct_update_key(skb, info, key, true, true);
 744	}
 745
 746	ct = nf_ct_get(skb, &ctinfo);
 747	if (ct) {
 
 
 748		/* Packets starting a new connection must be NATted before the
 749		 * helper, so that the helper knows about the NAT.  We enforce
 750		 * this by delaying both NAT and helper calls for unconfirmed
 751		 * connections until the committing CT action.  For later
 752		 * packets NAT and Helper may be called in either order.
 753		 *
 754		 * NAT will be done only if the CT action has NAT, and only
 755		 * once per packet (per zone), as guarded by the NAT bits in
 756		 * the key->ct.state.
 757		 */
 758		if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
 759		    (nf_ct_is_confirmed(ct) || info->commit) &&
 760		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 761			return -EINVAL;
 762		}
 763
 764		/* Userspace may decide to perform a ct lookup without a helper
 765		 * specified followed by a (recirculate and) commit with one.
 766		 * Therefore, for unconfirmed connections which we will commit,
 767		 * we need to attach the helper here.
 
 768		 */
 769		if (!nf_ct_is_confirmed(ct) && info->commit &&
 770		    info->helper && !nfct_help(ct)) {
 771			int err = __nf_ct_try_assign_helper(ct, info->ct,
 772							    GFP_ATOMIC);
 773			if (err)
 774				return err;
 
 
 
 
 
 
 
 775		}
 776
 777		/* Call the helper only if:
 778		 * - nf_conntrack_in() was executed above ("!cached") for a
 779		 *   confirmed connection, or
 
 780		 * - When committing an unconfirmed connection.
 781		 */
 782		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
 783		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
 
 784			return -EINVAL;
 785		}
 
 
 
 
 
 
 
 
 
 
 786	}
 787
 788	return 0;
 789}
 790
 791/* Lookup connection and read fields into key. */
 792static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 793			 const struct ovs_conntrack_info *info,
 794			 struct sk_buff *skb)
 795{
 796	struct nf_conntrack_expect *exp;
 797
 798	/* If we pass an expected packet through nf_conntrack_in() the
 799	 * expectation is typically removed, but the packet could still be
 800	 * lost in upcall processing.  To prevent this from happening we
 801	 * perform an explicit expectation lookup.  Expected connections are
 802	 * always new, and will be passed through conntrack only when they are
 803	 * committed, as it is OK to remove the expectation at that time.
 804	 */
 805	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
 806	if (exp) {
 807		u8 state;
 808
 809		/* NOTE: New connections are NATted and Helped only when
 810		 * committed, so we are not calling into NAT here.
 811		 */
 812		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
 813		__ovs_ct_update_key(key, state, &info->zone, exp->master);
 814	} else {
 815		struct nf_conn *ct;
 816		int err;
 817
 818		err = __ovs_ct_lookup(net, key, info, skb);
 819		if (err)
 820			return err;
 821
 822		ct = (struct nf_conn *)skb->nfct;
 823		if (ct)
 824			nf_ct_deliver_cached_events(ct);
 825	}
 826
 827	return 0;
 828}
 829
 830static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
 831{
 832	size_t i;
 833
 834	for (i = 0; i < sizeof(*labels); i++)
 835		if (labels->ct_labels[i])
 836			return true;
 837
 838	return false;
 839}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841/* Lookup connection and confirm if unconfirmed. */
 842static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
 843			 const struct ovs_conntrack_info *info,
 844			 struct sk_buff *skb)
 845{
 
 
 846	int err;
 847
 848	err = __ovs_ct_lookup(net, key, info, skb);
 849	if (err)
 850		return err;
 851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	/* Apply changes before confirming the connection so that the initial
 853	 * conntrack NEW netlink event carries the values given in the CT
 854	 * action.
 855	 */
 856	if (info->mark.mask) {
 857		err = ovs_ct_set_mark(skb, key, info->mark.value,
 858				      info->mark.mask);
 859		if (err)
 860			return err;
 861	}
 862	if (labels_nonzero(&info->labels.mask)) {
 863		err = ovs_ct_set_labels(skb, key, &info->labels.value,
 
 
 
 
 
 
 
 
 864					&info->labels.mask);
 865		if (err)
 866			return err;
 867	}
 868	/* This will take care of sending queued events even if the connection
 869	 * is already confirmed.
 870	 */
 871	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
 872		return -EINVAL;
 873
 874	return 0;
 875}
 876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 878 * value if 'skb' is freed.
 879 */
 880int ovs_ct_execute(struct net *net, struct sk_buff *skb,
 881		   struct sw_flow_key *key,
 882		   const struct ovs_conntrack_info *info)
 883{
 884	int nh_ofs;
 885	int err;
 886
 887	/* The conntrack module expects to be working at L3. */
 888	nh_ofs = skb_network_offset(skb);
 889	skb_pull_rcsum(skb, nh_ofs);
 890
 
 
 
 
 891	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
 892		err = handle_fragments(net, key, info->zone.id, skb);
 893		if (err)
 894			return err;
 895	}
 896
 897	if (info->commit)
 898		err = ovs_ct_commit(net, key, info, skb);
 899	else
 900		err = ovs_ct_lookup(net, key, info, skb);
 901
 902	skb_push(skb, nh_ofs);
 903	skb_postpush_rcsum(skb, skb->data, nh_ofs);
 904	if (err)
 905		kfree_skb(skb);
 906	return err;
 907}
 908
 909static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
 910			     const struct sw_flow_key *key, bool log)
 911{
 912	struct nf_conntrack_helper *helper;
 913	struct nf_conn_help *help;
 914
 915	helper = nf_conntrack_helper_try_module_get(name, info->family,
 916						    key->ip.proto);
 917	if (!helper) {
 918		OVS_NLERR(log, "Unknown helper \"%s\"", name);
 919		return -EINVAL;
 920	}
 921
 922	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
 923	if (!help) {
 924		module_put(helper->me);
 925		return -ENOMEM;
 926	}
 927
 928	rcu_assign_pointer(help->helper, helper);
 929	info->helper = helper;
 930	return 0;
 931}
 932
 933#ifdef CONFIG_NF_NAT_NEEDED
 934static int parse_nat(const struct nlattr *attr,
 935		     struct ovs_conntrack_info *info, bool log)
 936{
 937	struct nlattr *a;
 938	int rem;
 939	bool have_ip_max = false;
 940	bool have_proto_max = false;
 941	bool ip_vers = (info->family == NFPROTO_IPV6);
 942
 943	nla_for_each_nested(a, attr, rem) {
 944		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
 945			[OVS_NAT_ATTR_SRC] = {0, 0},
 946			[OVS_NAT_ATTR_DST] = {0, 0},
 947			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
 948						 sizeof(struct in6_addr)},
 949			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
 950						 sizeof(struct in6_addr)},
 951			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
 952			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
 953			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
 954			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
 955			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
 956		};
 957		int type = nla_type(a);
 958
 959		if (type > OVS_NAT_ATTR_MAX) {
 960			OVS_NLERR(log,
 961				  "Unknown NAT attribute (type=%d, max=%d).\n",
 962				  type, OVS_NAT_ATTR_MAX);
 963			return -EINVAL;
 964		}
 965
 966		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
 967			OVS_NLERR(log,
 968				  "NAT attribute type %d has unexpected length (%d != %d).\n",
 969				  type, nla_len(a),
 970				  ovs_nat_attr_lens[type][ip_vers]);
 971			return -EINVAL;
 972		}
 973
 974		switch (type) {
 975		case OVS_NAT_ATTR_SRC:
 976		case OVS_NAT_ATTR_DST:
 977			if (info->nat) {
 978				OVS_NLERR(log,
 979					  "Only one type of NAT may be specified.\n"
 980					  );
 981				return -ERANGE;
 982			}
 983			info->nat |= OVS_CT_NAT;
 984			info->nat |= ((type == OVS_NAT_ATTR_SRC)
 985					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
 986			break;
 987
 988		case OVS_NAT_ATTR_IP_MIN:
 989			nla_memcpy(&info->range.min_addr, a,
 990				   sizeof(info->range.min_addr));
 991			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
 992			break;
 993
 994		case OVS_NAT_ATTR_IP_MAX:
 995			have_ip_max = true;
 996			nla_memcpy(&info->range.max_addr, a,
 997				   sizeof(info->range.max_addr));
 998			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
 999			break;
1000
1001		case OVS_NAT_ATTR_PROTO_MIN:
1002			info->range.min_proto.all = htons(nla_get_u16(a));
1003			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004			break;
1005
1006		case OVS_NAT_ATTR_PROTO_MAX:
1007			have_proto_max = true;
1008			info->range.max_proto.all = htons(nla_get_u16(a));
1009			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010			break;
1011
1012		case OVS_NAT_ATTR_PERSISTENT:
1013			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014			break;
1015
1016		case OVS_NAT_ATTR_PROTO_HASH:
1017			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018			break;
1019
1020		case OVS_NAT_ATTR_PROTO_RANDOM:
1021			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022			break;
1023
1024		default:
1025			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026			return -EINVAL;
1027		}
1028	}
1029
1030	if (rem > 0) {
1031		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032		return -EINVAL;
1033	}
1034	if (!info->nat) {
1035		/* Do not allow flags if no type is given. */
1036		if (info->range.flags) {
1037			OVS_NLERR(log,
1038				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039				  );
1040			return -EINVAL;
1041		}
1042		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1043	} else if (!info->commit) {
1044		OVS_NLERR(log,
1045			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046			  );
1047		return -EINVAL;
1048	}
1049	/* Allow missing IP_MAX. */
1050	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051		memcpy(&info->range.max_addr, &info->range.min_addr,
1052		       sizeof(info->range.max_addr));
1053	}
1054	/* Allow missing PROTO_MAX. */
1055	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056	    !have_proto_max) {
1057		info->range.max_proto.all = info->range.min_proto.all;
1058	}
1059	return 0;
1060}
1061#endif
1062
1063static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
 
1065	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1066				    .maxlen = sizeof(u16) },
1067	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1068				    .maxlen = sizeof(struct md_mark) },
1069	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1070				    .maxlen = sizeof(struct md_labels) },
1071	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1072				    .maxlen = NF_CT_HELPER_NAME_LEN },
1073#ifdef CONFIG_NF_NAT_NEEDED
1074	/* NAT length is checked when parsing the nested attributes. */
1075	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1076#endif
 
 
 
 
1077};
1078
1079static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080		    const char **helper, bool log)
1081{
1082	struct nlattr *a;
1083	int rem;
1084
1085	nla_for_each_nested(a, attr, rem) {
1086		int type = nla_type(a);
1087		int maxlen = ovs_ct_attr_lens[type].maxlen;
1088		int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090		if (type > OVS_CT_ATTR_MAX) {
1091			OVS_NLERR(log,
1092				  "Unknown conntrack attr (type=%d, max=%d)",
1093				  type, OVS_CT_ATTR_MAX);
1094			return -EINVAL;
1095		}
 
 
 
1096		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097			OVS_NLERR(log,
1098				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099				  type, nla_len(a), maxlen);
1100			return -EINVAL;
1101		}
1102
1103		switch (type) {
 
 
 
1104		case OVS_CT_ATTR_COMMIT:
1105			info->commit = true;
1106			break;
1107#ifdef CONFIG_NF_CONNTRACK_ZONES
1108		case OVS_CT_ATTR_ZONE:
1109			info->zone.id = nla_get_u16(a);
1110			break;
1111#endif
1112#ifdef CONFIG_NF_CONNTRACK_MARK
1113		case OVS_CT_ATTR_MARK: {
1114			struct md_mark *mark = nla_data(a);
1115
1116			if (!mark->mask) {
1117				OVS_NLERR(log, "ct_mark mask cannot be 0");
1118				return -EINVAL;
1119			}
1120			info->mark = *mark;
1121			break;
1122		}
1123#endif
1124#ifdef CONFIG_NF_CONNTRACK_LABELS
1125		case OVS_CT_ATTR_LABELS: {
1126			struct md_labels *labels = nla_data(a);
1127
1128			if (!labels_nonzero(&labels->mask)) {
1129				OVS_NLERR(log, "ct_labels mask cannot be 0");
1130				return -EINVAL;
1131			}
1132			info->labels = *labels;
1133			break;
1134		}
1135#endif
1136		case OVS_CT_ATTR_HELPER:
1137			*helper = nla_data(a);
1138			if (!memchr(*helper, '\0', nla_len(a))) {
1139				OVS_NLERR(log, "Invalid conntrack helper");
1140				return -EINVAL;
1141			}
1142			break;
1143#ifdef CONFIG_NF_NAT_NEEDED
1144		case OVS_CT_ATTR_NAT: {
1145			int err = parse_nat(a, info, log);
1146
1147			if (err)
1148				return err;
1149			break;
1150		}
1151#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152		default:
1153			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154				  type);
1155			return -EINVAL;
1156		}
1157	}
1158
1159#ifdef CONFIG_NF_CONNTRACK_MARK
1160	if (!info->commit && info->mark.mask) {
1161		OVS_NLERR(log,
1162			  "Setting conntrack mark requires 'commit' flag.");
1163		return -EINVAL;
1164	}
1165#endif
1166#ifdef CONFIG_NF_CONNTRACK_LABELS
1167	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168		OVS_NLERR(log,
1169			  "Setting conntrack labels requires 'commit' flag.");
1170		return -EINVAL;
1171	}
1172#endif
1173	if (rem > 0) {
1174		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182{
1183	if (attr == OVS_KEY_ATTR_CT_STATE)
1184		return true;
1185	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186	    attr == OVS_KEY_ATTR_CT_ZONE)
1187		return true;
1188	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189	    attr == OVS_KEY_ATTR_CT_MARK)
1190		return true;
1191	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192	    attr == OVS_KEY_ATTR_CT_LABELS) {
1193		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195		return ovs_net->xt_label;
1196	}
1197
1198	return false;
1199}
1200
1201int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202		       const struct sw_flow_key *key,
1203		       struct sw_flow_actions **sfa,  bool log)
1204{
1205	struct ovs_conntrack_info ct_info;
1206	const char *helper = NULL;
1207	u16 family;
1208	int err;
1209
1210	family = key_to_nfproto(key);
1211	if (family == NFPROTO_UNSPEC) {
1212		OVS_NLERR(log, "ct family unspecified");
1213		return -EINVAL;
1214	}
1215
1216	memset(&ct_info, 0, sizeof(ct_info));
1217	ct_info.family = family;
1218
1219	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220			NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222	err = parse_ct(attr, &ct_info, &helper, log);
1223	if (err)
1224		return err;
1225
1226	/* Set up template for tracking connections in specific zones. */
1227	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228	if (!ct_info.ct) {
1229		OVS_NLERR(log, "Failed to allocate conntrack template");
1230		return -ENOMEM;
1231	}
1232
1233	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234	nf_conntrack_get(&ct_info.ct->ct_general);
 
 
 
 
 
 
 
 
1235
1236	if (helper) {
1237		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238		if (err)
 
 
1239			goto err_free_ct;
 
1240	}
1241
1242	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243				 sizeof(ct_info), log);
1244	if (err)
1245		goto err_free_ct;
1246
 
1247	return 0;
1248err_free_ct:
1249	__ovs_ct_free_action(&ct_info);
1250	return err;
1251}
1252
1253#ifdef CONFIG_NF_NAT_NEEDED
1254static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255			       struct sk_buff *skb)
1256{
1257	struct nlattr *start;
1258
1259	start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260	if (!start)
1261		return false;
1262
1263	if (info->nat & OVS_CT_SRC_NAT) {
1264		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265			return false;
1266	} else if (info->nat & OVS_CT_DST_NAT) {
1267		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268			return false;
1269	} else {
1270		goto out;
1271	}
1272
1273	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275		    info->family == NFPROTO_IPV4) {
1276			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277					    info->range.min_addr.ip) ||
1278			    (info->range.max_addr.ip
1279			     != info->range.min_addr.ip &&
1280			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281					      info->range.max_addr.ip))))
1282				return false;
1283		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284			   info->family == NFPROTO_IPV6) {
1285			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286					     &info->range.min_addr.in6) ||
1287			    (memcmp(&info->range.max_addr.in6,
1288				    &info->range.min_addr.in6,
1289				    sizeof(info->range.max_addr.in6)) &&
1290			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291					       &info->range.max_addr.in6))))
1292				return false;
1293		} else {
1294			return false;
1295		}
1296	}
1297	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299			 ntohs(info->range.min_proto.all)) ||
1300	     (info->range.max_proto.all != info->range.min_proto.all &&
1301	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302			  ntohs(info->range.max_proto.all)))))
1303		return false;
1304
1305	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307		return false;
1308	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310		return false;
1311	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313		return false;
1314out:
1315	nla_nest_end(skb, start);
1316
1317	return true;
1318}
1319#endif
1320
1321int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322			  struct sk_buff *skb)
1323{
1324	struct nlattr *start;
1325
1326	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327	if (!start)
1328		return -EMSGSIZE;
1329
1330	if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
 
 
1331		return -EMSGSIZE;
1332	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334		return -EMSGSIZE;
1335	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337		    &ct_info->mark))
1338		return -EMSGSIZE;
1339	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340	    labels_nonzero(&ct_info->labels.mask) &&
1341	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342		    &ct_info->labels))
1343		return -EMSGSIZE;
1344	if (ct_info->helper) {
1345		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346				   ct_info->helper->name))
1347			return -EMSGSIZE;
1348	}
1349#ifdef CONFIG_NF_NAT_NEEDED
 
 
 
 
 
 
 
 
1350	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351		return -EMSGSIZE;
1352#endif
1353	nla_nest_end(skb, start);
1354
1355	return 0;
1356}
1357
1358void ovs_ct_free_action(const struct nlattr *a)
1359{
1360	struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362	__ovs_ct_free_action(ct_info);
1363}
1364
1365static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366{
1367	if (ct_info->helper)
1368		module_put(ct_info->helper->me);
1369	if (ct_info->ct)
 
 
 
 
 
 
 
1370		nf_ct_tmpl_free(ct_info->ct);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371}
1372
1373void ovs_ct_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374{
1375	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378	if (nf_connlabels_get(net, n_bits - 1)) {
1379		ovs_net->xt_label = false;
1380		OVS_NLERR(true, "Failed to set connlabel length");
1381	} else {
1382		ovs_net->xt_label = true;
1383	}
 
 
 
 
 
 
1384}
1385
1386void ovs_ct_exit(struct net *net)
1387{
1388	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
 
 
 
 
1389
1390	if (ovs_net->xt_label)
1391		nf_connlabels_put(net);
1392}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 Nicira, Inc.
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/openvswitch.h>
   8#include <linux/tcp.h>
   9#include <linux/udp.h>
  10#include <linux/sctp.h>
  11#include <linux/static_key.h>
  12#include <net/ip.h>
  13#include <net/genetlink.h>
  14#include <net/netfilter/nf_conntrack_core.h>
  15#include <net/netfilter/nf_conntrack_count.h>
  16#include <net/netfilter/nf_conntrack_helper.h>
  17#include <net/netfilter/nf_conntrack_labels.h>
  18#include <net/netfilter/nf_conntrack_seqadj.h>
  19#include <net/netfilter/nf_conntrack_timeout.h>
  20#include <net/netfilter/nf_conntrack_zones.h>
  21#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
  22#include <net/ipv6_frag.h>
  23
  24#if IS_ENABLED(CONFIG_NF_NAT)
  25#include <net/netfilter/nf_nat.h>
 
 
  26#endif
  27
  28#include <net/netfilter/nf_conntrack_act_ct.h>
  29
  30#include "datapath.h"
  31#include "conntrack.h"
  32#include "flow.h"
  33#include "flow_netlink.h"
  34
  35struct ovs_ct_len_tbl {
  36	int maxlen;
  37	int minlen;
  38};
  39
  40/* Metadata mark for masked write to conntrack mark */
  41struct md_mark {
  42	u32 value;
  43	u32 mask;
  44};
  45
  46/* Metadata label for masked write to conntrack label. */
  47struct md_labels {
  48	struct ovs_key_ct_labels value;
  49	struct ovs_key_ct_labels mask;
  50};
  51
  52enum ovs_ct_nat {
  53	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
  54	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
  55	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
  56};
  57
  58/* Conntrack action context for execution. */
  59struct ovs_conntrack_info {
  60	struct nf_conntrack_helper *helper;
  61	struct nf_conntrack_zone zone;
  62	struct nf_conn *ct;
  63	u8 commit : 1;
  64	u8 nat : 3;                 /* enum ovs_ct_nat */
  65	u8 force : 1;
  66	u8 have_eventmask : 1;
  67	u16 family;
  68	u32 eventmask;              /* Mask of 1 << IPCT_*. */
  69	struct md_mark mark;
  70	struct md_labels labels;
  71	char timeout[CTNL_TIMEOUT_NAME_MAX];
  72	struct nf_ct_timeout *nf_ct_timeout;
  73#if IS_ENABLED(CONFIG_NF_NAT)
  74	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
  75#endif
  76};
  77
  78#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
  79#define OVS_CT_LIMIT_UNLIMITED	0
  80#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
  81#define CT_LIMIT_HASH_BUCKETS 512
  82static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
  83
  84struct ovs_ct_limit {
  85	/* Elements in ovs_ct_limit_info->limits hash table */
  86	struct hlist_node hlist_node;
  87	struct rcu_head rcu;
  88	u16 zone;
  89	u32 limit;
  90};
  91
  92struct ovs_ct_limit_info {
  93	u32 default_limit;
  94	struct hlist_head *limits;
  95	struct nf_conncount_data *data;
  96};
  97
  98static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
  99	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
 100};
 101#endif
 102
 103static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
 104
 105static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
 106
 107static u16 key_to_nfproto(const struct sw_flow_key *key)
 108{
 109	switch (ntohs(key->eth.type)) {
 110	case ETH_P_IP:
 111		return NFPROTO_IPV4;
 112	case ETH_P_IPV6:
 113		return NFPROTO_IPV6;
 114	default:
 115		return NFPROTO_UNSPEC;
 116	}
 117}
 118
 119/* Map SKB connection state into the values used by flow definition. */
 120static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
 121{
 122	u8 ct_state = OVS_CS_F_TRACKED;
 123
 124	switch (ctinfo) {
 125	case IP_CT_ESTABLISHED_REPLY:
 126	case IP_CT_RELATED_REPLY:
 127		ct_state |= OVS_CS_F_REPLY_DIR;
 128		break;
 129	default:
 130		break;
 131	}
 132
 133	switch (ctinfo) {
 134	case IP_CT_ESTABLISHED:
 135	case IP_CT_ESTABLISHED_REPLY:
 136		ct_state |= OVS_CS_F_ESTABLISHED;
 137		break;
 138	case IP_CT_RELATED:
 139	case IP_CT_RELATED_REPLY:
 140		ct_state |= OVS_CS_F_RELATED;
 141		break;
 142	case IP_CT_NEW:
 143		ct_state |= OVS_CS_F_NEW;
 144		break;
 145	default:
 146		break;
 147	}
 148
 149	return ct_state;
 150}
 151
 152static u32 ovs_ct_get_mark(const struct nf_conn *ct)
 153{
 154#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 155	return ct ? READ_ONCE(ct->mark) : 0;
 156#else
 157	return 0;
 158#endif
 159}
 160
 161/* Guard against conntrack labels max size shrinking below 128 bits. */
 162#if NF_CT_LABELS_MAX_SIZE < 16
 163#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
 164#endif
 165
 166static void ovs_ct_get_labels(const struct nf_conn *ct,
 167			      struct ovs_key_ct_labels *labels)
 168{
 169	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
 170
 171	if (cl)
 172		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
 173	else
 174		memset(labels, 0, OVS_CT_LABELS_LEN);
 175}
 176
 177static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
 178					const struct nf_conntrack_tuple *orig,
 179					u8 icmp_proto)
 180{
 181	key->ct_orig_proto = orig->dst.protonum;
 182	if (orig->dst.protonum == icmp_proto) {
 183		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
 184		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
 185	} else {
 186		key->ct.orig_tp.src = orig->src.u.all;
 187		key->ct.orig_tp.dst = orig->dst.u.all;
 188	}
 189}
 190
 191static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
 192				const struct nf_conntrack_zone *zone,
 193				const struct nf_conn *ct)
 194{
 195	key->ct_state = state;
 196	key->ct_zone = zone->id;
 197	key->ct.mark = ovs_ct_get_mark(ct);
 198	ovs_ct_get_labels(ct, &key->ct.labels);
 199
 200	if (ct) {
 201		const struct nf_conntrack_tuple *orig;
 202
 203		/* Use the master if we have one. */
 204		if (ct->master)
 205			ct = ct->master;
 206		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
 207
 208		/* IP version must match with the master connection. */
 209		if (key->eth.type == htons(ETH_P_IP) &&
 210		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
 211			key->ipv4.ct_orig.src = orig->src.u3.ip;
 212			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
 213			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
 214			return;
 215		} else if (key->eth.type == htons(ETH_P_IPV6) &&
 216			   !sw_flow_key_is_nd(key) &&
 217			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
 218			key->ipv6.ct_orig.src = orig->src.u3.in6;
 219			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
 220			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
 221			return;
 222		}
 223	}
 224	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
 225	 * original direction key fields.
 226	 */
 227	key->ct_orig_proto = 0;
 228}
 229
 230/* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
 231 * previously sent the packet to conntrack via the ct action.  If
 232 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
 233 * initialized from the connection status.
 234 */
 235static void ovs_ct_update_key(const struct sk_buff *skb,
 236			      const struct ovs_conntrack_info *info,
 237			      struct sw_flow_key *key, bool post_ct,
 238			      bool keep_nat_flags)
 239{
 240	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
 241	enum ip_conntrack_info ctinfo;
 242	struct nf_conn *ct;
 243	u8 state = 0;
 244
 245	ct = nf_ct_get(skb, &ctinfo);
 246	if (ct) {
 247		state = ovs_ct_get_state(ctinfo);
 248		/* All unconfirmed entries are NEW connections. */
 249		if (!nf_ct_is_confirmed(ct))
 250			state |= OVS_CS_F_NEW;
 251		/* OVS persists the related flag for the duration of the
 252		 * connection.
 253		 */
 254		if (ct->master)
 255			state |= OVS_CS_F_RELATED;
 256		if (keep_nat_flags) {
 257			state |= key->ct_state & OVS_CS_F_NAT_MASK;
 258		} else {
 259			if (ct->status & IPS_SRC_NAT)
 260				state |= OVS_CS_F_SRC_NAT;
 261			if (ct->status & IPS_DST_NAT)
 262				state |= OVS_CS_F_DST_NAT;
 263		}
 264		zone = nf_ct_zone(ct);
 265	} else if (post_ct) {
 266		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
 267		if (info)
 268			zone = &info->zone;
 269	}
 270	__ovs_ct_update_key(key, state, zone, ct);
 271}
 272
 273/* This is called to initialize CT key fields possibly coming in from the local
 274 * stack.
 275 */
 276void ovs_ct_fill_key(const struct sk_buff *skb,
 277		     struct sw_flow_key *key,
 278		     bool post_ct)
 279{
 280	ovs_ct_update_key(skb, NULL, key, post_ct, false);
 281}
 282
 283int ovs_ct_put_key(const struct sw_flow_key *swkey,
 284		   const struct sw_flow_key *output, struct sk_buff *skb)
 285{
 286	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
 287		return -EMSGSIZE;
 288
 289	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
 290	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
 291		return -EMSGSIZE;
 292
 293	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
 294	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
 295		return -EMSGSIZE;
 296
 297	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
 298	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
 299		    &output->ct.labels))
 300		return -EMSGSIZE;
 301
 302	if (swkey->ct_orig_proto) {
 303		if (swkey->eth.type == htons(ETH_P_IP)) {
 304			struct ovs_key_ct_tuple_ipv4 orig;
 305
 306			memset(&orig, 0, sizeof(orig));
 307			orig.ipv4_src = output->ipv4.ct_orig.src;
 308			orig.ipv4_dst = output->ipv4.ct_orig.dst;
 309			orig.src_port = output->ct.orig_tp.src;
 310			orig.dst_port = output->ct.orig_tp.dst;
 311			orig.ipv4_proto = output->ct_orig_proto;
 312
 313			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
 314				    sizeof(orig), &orig))
 315				return -EMSGSIZE;
 316		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 317			struct ovs_key_ct_tuple_ipv6 orig;
 318
 319			memset(&orig, 0, sizeof(orig));
 320			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
 321			       sizeof(orig.ipv6_src));
 322			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
 323			       sizeof(orig.ipv6_dst));
 324			orig.src_port = output->ct.orig_tp.src;
 325			orig.dst_port = output->ct.orig_tp.dst;
 326			orig.ipv6_proto = output->ct_orig_proto;
 327
 328			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
 329				    sizeof(orig), &orig))
 330				return -EMSGSIZE;
 331		}
 332	}
 333
 334	return 0;
 335}
 336
 337static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
 338			   u32 ct_mark, u32 mask)
 339{
 340#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 
 
 341	u32 new_mark;
 342
 343	new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
 344	if (READ_ONCE(ct->mark) != new_mark) {
 345		WRITE_ONCE(ct->mark, new_mark);
 346		if (nf_ct_is_confirmed(ct))
 347			nf_conntrack_event_cache(IPCT_MARK, ct);
 
 
 
 
 348		key->ct.mark = new_mark;
 349	}
 350
 351	return 0;
 352#else
 353	return -ENOTSUPP;
 354#endif
 355}
 356
 357static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
 
 
 358{
 
 359	struct nf_conn_labels *cl;
 
 
 
 
 
 
 
 360
 361	cl = nf_ct_labels_find(ct);
 362	if (!cl) {
 363		nf_ct_labels_ext_add(ct);
 364		cl = nf_ct_labels_find(ct);
 365	}
 
 
 
 
 
 
 
 366
 367	return cl;
 
 368}
 369
 370/* Initialize labels for a new, yet to be committed conntrack entry.  Note that
 371 * since the new connection is not yet confirmed, and thus no-one else has
 372 * access to it's labels, we simply write them over.
 373 */
 374static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
 375			      const struct ovs_key_ct_labels *labels,
 376			      const struct ovs_key_ct_labels *mask)
 377{
 378	struct nf_conn_labels *cl, *master_cl;
 379	bool have_mask = labels_nonzero(mask);
 
 
 
 
 380
 381	/* Inherit master's labels to the related connection? */
 382	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
 
 383
 384	if (!master_cl && !have_mask)
 385		return 0;   /* Nothing to do. */
 
 386
 387	cl = ovs_ct_get_conn_labels(ct);
 388	if (!cl)
 389		return -ENOSPC;
 390
 391	/* Inherit the master's labels, if any. */
 392	if (master_cl)
 393		*cl = *master_cl;
 394
 395	if (have_mask) {
 396		u32 *dst = (u32 *)cl->bits;
 397		int i;
 398
 399		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 400			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
 401				(labels->ct_labels_32[i]
 402				 & mask->ct_labels_32[i]);
 
 
 
 
 
 
 
 
 
 403	}
 404
 405	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
 406	 * IPCT_LABEL bit is set in the event cache.
 407	 */
 408	nf_conntrack_event_cache(IPCT_LABEL, ct);
 409
 410	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 411
 412	return 0;
 413}
 414
 415static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
 416			     const struct ovs_key_ct_labels *labels,
 417			     const struct ovs_key_ct_labels *mask)
 418{
 419	struct nf_conn_labels *cl;
 420	int err;
 421
 422	cl = ovs_ct_get_conn_labels(ct);
 423	if (!cl)
 424		return -ENOSPC;
 425
 426	err = nf_connlabels_replace(ct, labels->ct_labels_32,
 427				    mask->ct_labels_32,
 428				    OVS_CT_LABELS_LEN_32);
 429	if (err)
 430		return err;
 431
 432	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
 433
 434	return 0;
 
 
 
 
 
 435}
 436
 437/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
 438 * value if 'skb' is freed.
 439 */
 440static int handle_fragments(struct net *net, struct sw_flow_key *key,
 441			    u16 zone, struct sk_buff *skb)
 442{
 443	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
 444	int err;
 445
 446	if (key->eth.type == htons(ETH_P_IP)) {
 447		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
 448
 449		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 450		err = ip_defrag(net, skb, user);
 451		if (err)
 452			return err;
 453
 454		ovs_cb.mru = IPCB(skb)->frag_max_size;
 455#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
 456	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 457		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
 458
 459		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
 460		err = nf_ct_frag6_gather(net, skb, user);
 461		if (err) {
 462			if (err != -EINPROGRESS)
 463				kfree_skb(skb);
 464			return err;
 465		}
 466
 467		key->ip.proto = ipv6_hdr(skb)->nexthdr;
 468		ovs_cb.mru = IP6CB(skb)->frag_max_size;
 469#endif
 470	} else {
 471		kfree_skb(skb);
 472		return -EPFNOSUPPORT;
 473	}
 474
 475	/* The key extracted from the fragment that completed this datagram
 476	 * likely didn't have an L4 header, so regenerate it.
 477	 */
 478	ovs_flow_key_update_l3l4(skb, key);
 479
 480	key->ip.frag = OVS_FRAG_TYPE_NONE;
 481	skb_clear_hash(skb);
 482	skb->ignore_df = 1;
 483	*OVS_CB(skb) = ovs_cb;
 484
 485	return 0;
 486}
 487
 488static struct nf_conntrack_expect *
 489ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
 490		   u16 proto, const struct sk_buff *skb)
 491{
 492	struct nf_conntrack_tuple tuple;
 493	struct nf_conntrack_expect *exp;
 494
 495	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
 496		return NULL;
 497
 498	exp = __nf_ct_expect_find(net, zone, &tuple);
 499	if (exp) {
 500		struct nf_conntrack_tuple_hash *h;
 501
 502		/* Delete existing conntrack entry, if it clashes with the
 503		 * expectation.  This can happen since conntrack ALGs do not
 504		 * check for clashes between (new) expectations and existing
 505		 * conntrack entries.  nf_conntrack_in() will check the
 506		 * expectations only if a conntrack entry can not be found,
 507		 * which can lead to OVS finding the expectation (here) in the
 508		 * init direction, but which will not be removed by the
 509		 * nf_conntrack_in() call, if a matching conntrack entry is
 510		 * found instead.  In this case all init direction packets
 511		 * would be reported as new related packets, while reply
 512		 * direction packets would be reported as un-related
 513		 * established packets.
 514		 */
 515		h = nf_conntrack_find_get(net, zone, &tuple);
 516		if (h) {
 517			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 518
 519			nf_ct_delete(ct, 0, 0);
 520			nf_ct_put(ct);
 521		}
 522	}
 523
 524	return exp;
 525}
 526
 527/* This replicates logic from nf_conntrack_core.c that is not exported. */
 528static enum ip_conntrack_info
 529ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
 530{
 531	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 532
 533	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
 534		return IP_CT_ESTABLISHED_REPLY;
 535	/* Once we've had two way comms, always ESTABLISHED. */
 536	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
 537		return IP_CT_ESTABLISHED;
 538	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
 539		return IP_CT_RELATED;
 540	return IP_CT_NEW;
 541}
 542
 543/* Find an existing connection which this packet belongs to without
 544 * re-attributing statistics or modifying the connection state.  This allows an
 545 * skb->_nfct lost due to an upcall to be recovered during actions execution.
 546 *
 547 * Must be called with rcu_read_lock.
 548 *
 549 * On success, populates skb->_nfct and returns the connection.  Returns NULL
 550 * if there is no existing entry.
 551 */
 552static struct nf_conn *
 553ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
 554		     u8 l3num, struct sk_buff *skb, bool natted)
 555{
 
 
 556	struct nf_conntrack_tuple tuple;
 557	struct nf_conntrack_tuple_hash *h;
 558	struct nf_conn *ct;
 
 
 559
 560	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
 561			       net, &tuple)) {
 
 
 
 
 
 
 
 562		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
 563		return NULL;
 564	}
 565
 566	/* Must invert the tuple if skb has been transformed by NAT. */
 567	if (natted) {
 568		struct nf_conntrack_tuple inverse;
 569
 570		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
 571			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
 572			return NULL;
 573		}
 574		tuple = inverse;
 575	}
 576
 577	/* look for tuple match */
 578	h = nf_conntrack_find_get(net, zone, &tuple);
 579	if (!h)
 580		return NULL;   /* Not found. */
 581
 582	ct = nf_ct_tuplehash_to_ctrack(h);
 583
 584	/* Inverted packet tuple matches the reverse direction conntrack tuple,
 585	 * select the other tuplehash to get the right 'ctinfo' bits for this
 586	 * packet.
 587	 */
 588	if (natted)
 589		h = &ct->tuplehash[!h->tuple.dst.dir];
 590
 591	nf_ct_set(skb, ct, ovs_ct_get_info(h));
 592	return ct;
 593}
 594
 595static
 596struct nf_conn *ovs_ct_executed(struct net *net,
 597				const struct sw_flow_key *key,
 598				const struct ovs_conntrack_info *info,
 599				struct sk_buff *skb,
 600				bool *ct_executed)
 601{
 602	struct nf_conn *ct = NULL;
 603
 604	/* If no ct, check if we have evidence that an existing conntrack entry
 605	 * might be found for this skb.  This happens when we lose a skb->_nfct
 606	 * due to an upcall, or if the direction is being forced.  If the
 607	 * connection was not confirmed, it is not cached and needs to be run
 608	 * through conntrack again.
 609	 */
 610	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
 611		       !(key->ct_state & OVS_CS_F_INVALID) &&
 612		       (key->ct_zone == info->zone.id);
 613
 614	if (*ct_executed || (!key->ct_state && info->force)) {
 615		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
 616					  !!(key->ct_state &
 617					  OVS_CS_F_NAT_MASK));
 618	}
 619
 620	return ct;
 621}
 622
 623/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
 624static bool skb_nfct_cached(struct net *net,
 625			    const struct sw_flow_key *key,
 626			    const struct ovs_conntrack_info *info,
 627			    struct sk_buff *skb)
 628{
 629	enum ip_conntrack_info ctinfo;
 630	struct nf_conn *ct;
 631	bool ct_executed = true;
 632
 633	ct = nf_ct_get(skb, &ctinfo);
 
 
 
 
 
 
 
 
 
 634	if (!ct)
 635		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
 636
 637	if (ct)
 638		nf_ct_get(skb, &ctinfo);
 639	else
 640		return false;
 641
 642	if (!net_eq(net, read_pnet(&ct->ct_net)))
 643		return false;
 644	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
 645		return false;
 646	if (info->helper) {
 647		struct nf_conn_help *help;
 648
 649		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
 650		if (help && rcu_access_pointer(help->helper) != info->helper)
 651			return false;
 652	}
 653	if (info->nf_ct_timeout) {
 654		struct nf_conn_timeout *timeout_ext;
 655
 656		timeout_ext = nf_ct_timeout_find(ct);
 657		if (!timeout_ext || info->nf_ct_timeout !=
 658		    rcu_dereference(timeout_ext->timeout))
 659			return false;
 660	}
 661	/* Force conntrack entry direction to the current packet? */
 662	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
 663		/* Delete the conntrack entry if confirmed, else just release
 664		 * the reference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665		 */
 666		if (nf_ct_is_confirmed(ct))
 667			nf_ct_delete(ct, 0, 0);
 
 
 
 
 
 
 
 
 
 
 668
 669		nf_ct_put(ct);
 670		nf_ct_set(skb, NULL, 0);
 671		return false;
 
 
 
 
 672	}
 673
 674	return ct_executed;
 
 
 
 
 
 675}
 676
 677#if IS_ENABLED(CONFIG_NF_NAT)
 678static void ovs_nat_update_key(struct sw_flow_key *key,
 679			       const struct sk_buff *skb,
 680			       enum nf_nat_manip_type maniptype)
 681{
 682	if (maniptype == NF_NAT_MANIP_SRC) {
 683		__be16 src;
 684
 685		key->ct_state |= OVS_CS_F_SRC_NAT;
 686		if (key->eth.type == htons(ETH_P_IP))
 687			key->ipv4.addr.src = ip_hdr(skb)->saddr;
 688		else if (key->eth.type == htons(ETH_P_IPV6))
 689			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
 690			       sizeof(key->ipv6.addr.src));
 691		else
 692			return;
 693
 694		if (key->ip.proto == IPPROTO_UDP)
 695			src = udp_hdr(skb)->source;
 696		else if (key->ip.proto == IPPROTO_TCP)
 697			src = tcp_hdr(skb)->source;
 698		else if (key->ip.proto == IPPROTO_SCTP)
 699			src = sctp_hdr(skb)->source;
 700		else
 701			return;
 702
 703		key->tp.src = src;
 704	} else {
 705		__be16 dst;
 706
 707		key->ct_state |= OVS_CS_F_DST_NAT;
 708		if (key->eth.type == htons(ETH_P_IP))
 709			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
 710		else if (key->eth.type == htons(ETH_P_IPV6))
 711			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
 712			       sizeof(key->ipv6.addr.dst));
 713		else
 714			return;
 715
 716		if (key->ip.proto == IPPROTO_UDP)
 717			dst = udp_hdr(skb)->dest;
 718		else if (key->ip.proto == IPPROTO_TCP)
 719			dst = tcp_hdr(skb)->dest;
 720		else if (key->ip.proto == IPPROTO_SCTP)
 721			dst = sctp_hdr(skb)->dest;
 722		else
 723			return;
 724
 725		key->tp.dst = dst;
 726	}
 727}
 728
 729/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
 730static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 731		      const struct ovs_conntrack_info *info,
 732		      struct sk_buff *skb, struct nf_conn *ct,
 733		      enum ip_conntrack_info ctinfo)
 734{
 735	int err, action = 0;
 
 736
 737	if (!(info->nat & OVS_CT_NAT))
 
 738		return NF_ACCEPT;
 739	if (info->nat & OVS_CT_SRC_NAT)
 740		action |= BIT(NF_NAT_MANIP_SRC);
 741	if (info->nat & OVS_CT_DST_NAT)
 742		action |= BIT(NF_NAT_MANIP_DST);
 743
 744	err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit);
 745
 746	if (action & BIT(NF_NAT_MANIP_SRC))
 747		ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC);
 748	if (action & BIT(NF_NAT_MANIP_DST))
 749		ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750
 751	return err;
 752}
 753#else /* !CONFIG_NF_NAT */
 754static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
 755		      const struct ovs_conntrack_info *info,
 756		      struct sk_buff *skb, struct nf_conn *ct,
 757		      enum ip_conntrack_info ctinfo)
 758{
 759	return NF_ACCEPT;
 760}
 761#endif
 762
 763/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
 764 * not done already.  Update key with new CT state after passing the packet
 765 * through conntrack.
 766 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
 767 * set to NULL and 0 will be returned.
 768 */
 769static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 770			   const struct ovs_conntrack_info *info,
 771			   struct sk_buff *skb)
 772{
 773	/* If we are recirculating packets to match on conntrack fields and
 774	 * committing with a separate conntrack action,  then we don't need to
 775	 * actually run the packet through conntrack twice unless it's for a
 776	 * different zone.
 777	 */
 778	bool cached = skb_nfct_cached(net, key, info, skb);
 779	enum ip_conntrack_info ctinfo;
 780	struct nf_conn *ct;
 781
 782	if (!cached) {
 783		struct nf_hook_state state = {
 784			.hook = NF_INET_PRE_ROUTING,
 785			.pf = info->family,
 786			.net = net,
 787		};
 788		struct nf_conn *tmpl = info->ct;
 789		int err;
 790
 791		/* Associate skb with specified zone. */
 792		if (tmpl) {
 793			ct = nf_ct_get(skb, &ctinfo);
 794			nf_ct_put(ct);
 795			nf_conntrack_get(&tmpl->ct_general);
 796			nf_ct_set(skb, tmpl, IP_CT_NEW);
 
 797		}
 798
 799		err = nf_conntrack_in(skb, &state);
 
 800		if (err != NF_ACCEPT)
 801			return -ENOENT;
 802
 803		/* Clear CT state NAT flags to mark that we have not yet done
 804		 * NAT after the nf_conntrack_in() call.  We can actually clear
 805		 * the whole state, as it will be re-initialized below.
 806		 */
 807		key->ct_state = 0;
 808
 809		/* Update the key, but keep the NAT flags. */
 810		ovs_ct_update_key(skb, info, key, true, true);
 811	}
 812
 813	ct = nf_ct_get(skb, &ctinfo);
 814	if (ct) {
 815		bool add_helper = false;
 816
 817		/* Packets starting a new connection must be NATted before the
 818		 * helper, so that the helper knows about the NAT.  We enforce
 819		 * this by delaying both NAT and helper calls for unconfirmed
 820		 * connections until the committing CT action.  For later
 821		 * packets NAT and Helper may be called in either order.
 822		 *
 823		 * NAT will be done only if the CT action has NAT, and only
 824		 * once per packet (per zone), as guarded by the NAT bits in
 825		 * the key->ct_state.
 826		 */
 827		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
 828		    (nf_ct_is_confirmed(ct) || info->commit) &&
 829		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
 830			return -EINVAL;
 831		}
 832
 833		/* Userspace may decide to perform a ct lookup without a helper
 834		 * specified followed by a (recirculate and) commit with one,
 835		 * or attach a helper in a later commit.  Therefore, for
 836		 * connections which we will commit, we may need to attach
 837		 * the helper here.
 838		 */
 839		if (!nf_ct_is_confirmed(ct) && info->commit &&
 840		    info->helper && !nfct_help(ct)) {
 841			int err = __nf_ct_try_assign_helper(ct, info->ct,
 842							    GFP_ATOMIC);
 843			if (err)
 844				return err;
 845			add_helper = true;
 846
 847			/* helper installed, add seqadj if NAT is required */
 848			if (info->nat && !nfct_seqadj(ct)) {
 849				if (!nfct_seqadj_ext_add(ct))
 850					return -EINVAL;
 851			}
 852		}
 853
 854		/* Call the helper only if:
 855		 * - nf_conntrack_in() was executed above ("!cached") or a
 856		 *   helper was just attached ("add_helper") for a confirmed
 857		 *   connection, or
 858		 * - When committing an unconfirmed connection.
 859		 */
 860		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
 861					      info->commit) &&
 862		    nf_ct_helper(skb, ct, ctinfo, info->family) != NF_ACCEPT) {
 863			return -EINVAL;
 864		}
 865
 866		if (nf_ct_protonum(ct) == IPPROTO_TCP &&
 867		    nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
 868			/* Be liberal for tcp packets so that out-of-window
 869			 * packets are not marked invalid.
 870			 */
 871			nf_ct_set_tcp_be_liberal(ct);
 872		}
 873
 874		nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
 875	}
 876
 877	return 0;
 878}
 879
 880/* Lookup connection and read fields into key. */
 881static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
 882			 const struct ovs_conntrack_info *info,
 883			 struct sk_buff *skb)
 884{
 885	struct nf_conntrack_expect *exp;
 886
 887	/* If we pass an expected packet through nf_conntrack_in() the
 888	 * expectation is typically removed, but the packet could still be
 889	 * lost in upcall processing.  To prevent this from happening we
 890	 * perform an explicit expectation lookup.  Expected connections are
 891	 * always new, and will be passed through conntrack only when they are
 892	 * committed, as it is OK to remove the expectation at that time.
 893	 */
 894	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
 895	if (exp) {
 896		u8 state;
 897
 898		/* NOTE: New connections are NATted and Helped only when
 899		 * committed, so we are not calling into NAT here.
 900		 */
 901		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
 902		__ovs_ct_update_key(key, state, &info->zone, exp->master);
 903	} else {
 904		struct nf_conn *ct;
 905		int err;
 906
 907		err = __ovs_ct_lookup(net, key, info, skb);
 908		if (err)
 909			return err;
 910
 911		ct = (struct nf_conn *)skb_nfct(skb);
 912		if (ct)
 913			nf_ct_deliver_cached_events(ct);
 914	}
 915
 916	return 0;
 917}
 918
 919static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
 920{
 921	size_t i;
 922
 923	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
 924		if (labels->ct_labels_32[i])
 925			return true;
 926
 927	return false;
 928}
 929
 930#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
 931static struct hlist_head *ct_limit_hash_bucket(
 932	const struct ovs_ct_limit_info *info, u16 zone)
 933{
 934	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
 935}
 936
 937/* Call with ovs_mutex */
 938static void ct_limit_set(const struct ovs_ct_limit_info *info,
 939			 struct ovs_ct_limit *new_ct_limit)
 940{
 941	struct ovs_ct_limit *ct_limit;
 942	struct hlist_head *head;
 943
 944	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
 945	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
 946		if (ct_limit->zone == new_ct_limit->zone) {
 947			hlist_replace_rcu(&ct_limit->hlist_node,
 948					  &new_ct_limit->hlist_node);
 949			kfree_rcu(ct_limit, rcu);
 950			return;
 951		}
 952	}
 953
 954	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
 955}
 956
 957/* Call with ovs_mutex */
 958static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
 959{
 960	struct ovs_ct_limit *ct_limit;
 961	struct hlist_head *head;
 962	struct hlist_node *n;
 963
 964	head = ct_limit_hash_bucket(info, zone);
 965	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
 966		if (ct_limit->zone == zone) {
 967			hlist_del_rcu(&ct_limit->hlist_node);
 968			kfree_rcu(ct_limit, rcu);
 969			return;
 970		}
 971	}
 972}
 973
 974/* Call with RCU read lock */
 975static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
 976{
 977	struct ovs_ct_limit *ct_limit;
 978	struct hlist_head *head;
 979
 980	head = ct_limit_hash_bucket(info, zone);
 981	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
 982		if (ct_limit->zone == zone)
 983			return ct_limit->limit;
 984	}
 985
 986	return info->default_limit;
 987}
 988
 989static int ovs_ct_check_limit(struct net *net,
 990			      const struct ovs_conntrack_info *info,
 991			      const struct nf_conntrack_tuple *tuple)
 992{
 993	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
 994	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
 995	u32 per_zone_limit, connections;
 996	u32 conncount_key;
 997
 998	conncount_key = info->zone.id;
 999
1000	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1001	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1002		return 0;
1003
1004	connections = nf_conncount_count(net, ct_limit_info->data,
1005					 &conncount_key, tuple, &info->zone);
1006	if (connections > per_zone_limit)
1007		return -ENOMEM;
1008
1009	return 0;
1010}
1011#endif
1012
1013/* Lookup connection and confirm if unconfirmed. */
1014static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1015			 const struct ovs_conntrack_info *info,
1016			 struct sk_buff *skb)
1017{
1018	enum ip_conntrack_info ctinfo;
1019	struct nf_conn *ct;
1020	int err;
1021
1022	err = __ovs_ct_lookup(net, key, info, skb);
1023	if (err)
1024		return err;
1025
1026	/* The connection could be invalid, in which case this is a no-op.*/
1027	ct = nf_ct_get(skb, &ctinfo);
1028	if (!ct)
1029		return 0;
1030
1031#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1032	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1033		if (!nf_ct_is_confirmed(ct)) {
1034			err = ovs_ct_check_limit(net, info,
1035				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1036			if (err) {
1037				net_warn_ratelimited("openvswitch: zone: %u "
1038					"exceeds conntrack limit\n",
1039					info->zone.id);
1040				return err;
1041			}
1042		}
1043	}
1044#endif
1045
1046	/* Set the conntrack event mask if given.  NEW and DELETE events have
1047	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1048	 * typically would receive many kinds of updates.  Setting the event
1049	 * mask allows those events to be filtered.  The set event mask will
1050	 * remain in effect for the lifetime of the connection unless changed
1051	 * by a further CT action with both the commit flag and the eventmask
1052	 * option. */
1053	if (info->have_eventmask) {
1054		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1055
1056		if (cache)
1057			cache->ctmask = info->eventmask;
1058	}
1059
1060	/* Apply changes before confirming the connection so that the initial
1061	 * conntrack NEW netlink event carries the values given in the CT
1062	 * action.
1063	 */
1064	if (info->mark.mask) {
1065		err = ovs_ct_set_mark(ct, key, info->mark.value,
1066				      info->mark.mask);
1067		if (err)
1068			return err;
1069	}
1070	if (!nf_ct_is_confirmed(ct)) {
1071		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1072					 &info->labels.mask);
1073		if (err)
1074			return err;
1075
1076		nf_conn_act_ct_ext_add(ct);
1077	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1078		   labels_nonzero(&info->labels.mask)) {
1079		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1080					&info->labels.mask);
1081		if (err)
1082			return err;
1083	}
1084	/* This will take care of sending queued events even if the connection
1085	 * is already confirmed.
1086	 */
1087	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1088		return -EINVAL;
1089
1090	return 0;
1091}
1092
1093/* Trim the skb to the length specified by the IP/IPv6 header,
1094 * removing any trailing lower-layer padding. This prepares the skb
1095 * for higher-layer processing that assumes skb->len excludes padding
1096 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1097 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1098 */
1099static int ovs_skb_network_trim(struct sk_buff *skb)
1100{
1101	unsigned int len;
1102	int err;
1103
1104	switch (skb->protocol) {
1105	case htons(ETH_P_IP):
1106		len = ntohs(ip_hdr(skb)->tot_len);
1107		break;
1108	case htons(ETH_P_IPV6):
1109		len = sizeof(struct ipv6hdr)
1110			+ ntohs(ipv6_hdr(skb)->payload_len);
1111		break;
1112	default:
1113		len = skb->len;
1114	}
1115
1116	err = pskb_trim_rcsum(skb, len);
1117	if (err)
1118		kfree_skb(skb);
1119
1120	return err;
1121}
1122
1123/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1124 * value if 'skb' is freed.
1125 */
1126int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1127		   struct sw_flow_key *key,
1128		   const struct ovs_conntrack_info *info)
1129{
1130	int nh_ofs;
1131	int err;
1132
1133	/* The conntrack module expects to be working at L3. */
1134	nh_ofs = skb_network_offset(skb);
1135	skb_pull_rcsum(skb, nh_ofs);
1136
1137	err = ovs_skb_network_trim(skb);
1138	if (err)
1139		return err;
1140
1141	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1142		err = handle_fragments(net, key, info->zone.id, skb);
1143		if (err)
1144			return err;
1145	}
1146
1147	if (info->commit)
1148		err = ovs_ct_commit(net, key, info, skb);
1149	else
1150		err = ovs_ct_lookup(net, key, info, skb);
1151
1152	skb_push_rcsum(skb, nh_ofs);
 
1153	if (err)
1154		kfree_skb(skb);
1155	return err;
1156}
1157
1158int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
 
1159{
1160	enum ip_conntrack_info ctinfo;
1161	struct nf_conn *ct;
1162
1163	ct = nf_ct_get(skb, &ctinfo);
 
 
 
 
 
1164
1165	nf_ct_put(ct);
1166	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1167
1168	if (key)
1169		ovs_ct_fill_key(skb, key, false);
1170
 
 
1171	return 0;
1172}
1173
1174#if IS_ENABLED(CONFIG_NF_NAT)
1175static int parse_nat(const struct nlattr *attr,
1176		     struct ovs_conntrack_info *info, bool log)
1177{
1178	struct nlattr *a;
1179	int rem;
1180	bool have_ip_max = false;
1181	bool have_proto_max = false;
1182	bool ip_vers = (info->family == NFPROTO_IPV6);
1183
1184	nla_for_each_nested(a, attr, rem) {
1185		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1186			[OVS_NAT_ATTR_SRC] = {0, 0},
1187			[OVS_NAT_ATTR_DST] = {0, 0},
1188			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1189						 sizeof(struct in6_addr)},
1190			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1191						 sizeof(struct in6_addr)},
1192			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1193			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1194			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1195			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1196			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1197		};
1198		int type = nla_type(a);
1199
1200		if (type > OVS_NAT_ATTR_MAX) {
1201			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
 
1202				  type, OVS_NAT_ATTR_MAX);
1203			return -EINVAL;
1204		}
1205
1206		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1207			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
 
1208				  type, nla_len(a),
1209				  ovs_nat_attr_lens[type][ip_vers]);
1210			return -EINVAL;
1211		}
1212
1213		switch (type) {
1214		case OVS_NAT_ATTR_SRC:
1215		case OVS_NAT_ATTR_DST:
1216			if (info->nat) {
1217				OVS_NLERR(log, "Only one type of NAT may be specified");
 
 
1218				return -ERANGE;
1219			}
1220			info->nat |= OVS_CT_NAT;
1221			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1222					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1223			break;
1224
1225		case OVS_NAT_ATTR_IP_MIN:
1226			nla_memcpy(&info->range.min_addr, a,
1227				   sizeof(info->range.min_addr));
1228			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1229			break;
1230
1231		case OVS_NAT_ATTR_IP_MAX:
1232			have_ip_max = true;
1233			nla_memcpy(&info->range.max_addr, a,
1234				   sizeof(info->range.max_addr));
1235			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1236			break;
1237
1238		case OVS_NAT_ATTR_PROTO_MIN:
1239			info->range.min_proto.all = htons(nla_get_u16(a));
1240			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1241			break;
1242
1243		case OVS_NAT_ATTR_PROTO_MAX:
1244			have_proto_max = true;
1245			info->range.max_proto.all = htons(nla_get_u16(a));
1246			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1247			break;
1248
1249		case OVS_NAT_ATTR_PERSISTENT:
1250			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1251			break;
1252
1253		case OVS_NAT_ATTR_PROTO_HASH:
1254			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1255			break;
1256
1257		case OVS_NAT_ATTR_PROTO_RANDOM:
1258			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1259			break;
1260
1261		default:
1262			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1263			return -EINVAL;
1264		}
1265	}
1266
1267	if (rem > 0) {
1268		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1269		return -EINVAL;
1270	}
1271	if (!info->nat) {
1272		/* Do not allow flags if no type is given. */
1273		if (info->range.flags) {
1274			OVS_NLERR(log,
1275				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1276				  );
1277			return -EINVAL;
1278		}
1279		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1280	} else if (!info->commit) {
1281		OVS_NLERR(log,
1282			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1283			  );
1284		return -EINVAL;
1285	}
1286	/* Allow missing IP_MAX. */
1287	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1288		memcpy(&info->range.max_addr, &info->range.min_addr,
1289		       sizeof(info->range.max_addr));
1290	}
1291	/* Allow missing PROTO_MAX. */
1292	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1293	    !have_proto_max) {
1294		info->range.max_proto.all = info->range.min_proto.all;
1295	}
1296	return 0;
1297}
1298#endif
1299
1300static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1301	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1302	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1303	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1304				    .maxlen = sizeof(u16) },
1305	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1306				    .maxlen = sizeof(struct md_mark) },
1307	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1308				    .maxlen = sizeof(struct md_labels) },
1309	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1310				    .maxlen = NF_CT_HELPER_NAME_LEN },
1311#if IS_ENABLED(CONFIG_NF_NAT)
1312	/* NAT length is checked when parsing the nested attributes. */
1313	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1314#endif
1315	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1316				    .maxlen = sizeof(u32) },
1317	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1318				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1319};
1320
1321static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1322		    const char **helper, bool log)
1323{
1324	struct nlattr *a;
1325	int rem;
1326
1327	nla_for_each_nested(a, attr, rem) {
1328		int type = nla_type(a);
1329		int maxlen;
1330		int minlen;
1331
1332		if (type > OVS_CT_ATTR_MAX) {
1333			OVS_NLERR(log,
1334				  "Unknown conntrack attr (type=%d, max=%d)",
1335				  type, OVS_CT_ATTR_MAX);
1336			return -EINVAL;
1337		}
1338
1339		maxlen = ovs_ct_attr_lens[type].maxlen;
1340		minlen = ovs_ct_attr_lens[type].minlen;
1341		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1342			OVS_NLERR(log,
1343				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1344				  type, nla_len(a), maxlen);
1345			return -EINVAL;
1346		}
1347
1348		switch (type) {
1349		case OVS_CT_ATTR_FORCE_COMMIT:
1350			info->force = true;
1351			fallthrough;
1352		case OVS_CT_ATTR_COMMIT:
1353			info->commit = true;
1354			break;
1355#ifdef CONFIG_NF_CONNTRACK_ZONES
1356		case OVS_CT_ATTR_ZONE:
1357			info->zone.id = nla_get_u16(a);
1358			break;
1359#endif
1360#ifdef CONFIG_NF_CONNTRACK_MARK
1361		case OVS_CT_ATTR_MARK: {
1362			struct md_mark *mark = nla_data(a);
1363
1364			if (!mark->mask) {
1365				OVS_NLERR(log, "ct_mark mask cannot be 0");
1366				return -EINVAL;
1367			}
1368			info->mark = *mark;
1369			break;
1370		}
1371#endif
1372#ifdef CONFIG_NF_CONNTRACK_LABELS
1373		case OVS_CT_ATTR_LABELS: {
1374			struct md_labels *labels = nla_data(a);
1375
1376			if (!labels_nonzero(&labels->mask)) {
1377				OVS_NLERR(log, "ct_labels mask cannot be 0");
1378				return -EINVAL;
1379			}
1380			info->labels = *labels;
1381			break;
1382		}
1383#endif
1384		case OVS_CT_ATTR_HELPER:
1385			*helper = nla_data(a);
1386			if (!memchr(*helper, '\0', nla_len(a))) {
1387				OVS_NLERR(log, "Invalid conntrack helper");
1388				return -EINVAL;
1389			}
1390			break;
1391#if IS_ENABLED(CONFIG_NF_NAT)
1392		case OVS_CT_ATTR_NAT: {
1393			int err = parse_nat(a, info, log);
1394
1395			if (err)
1396				return err;
1397			break;
1398		}
1399#endif
1400		case OVS_CT_ATTR_EVENTMASK:
1401			info->have_eventmask = true;
1402			info->eventmask = nla_get_u32(a);
1403			break;
1404#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1405		case OVS_CT_ATTR_TIMEOUT:
1406			memcpy(info->timeout, nla_data(a), nla_len(a));
1407			if (!memchr(info->timeout, '\0', nla_len(a))) {
1408				OVS_NLERR(log, "Invalid conntrack timeout");
1409				return -EINVAL;
1410			}
1411			break;
1412#endif
1413
1414		default:
1415			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1416				  type);
1417			return -EINVAL;
1418		}
1419	}
1420
1421#ifdef CONFIG_NF_CONNTRACK_MARK
1422	if (!info->commit && info->mark.mask) {
1423		OVS_NLERR(log,
1424			  "Setting conntrack mark requires 'commit' flag.");
1425		return -EINVAL;
1426	}
1427#endif
1428#ifdef CONFIG_NF_CONNTRACK_LABELS
1429	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1430		OVS_NLERR(log,
1431			  "Setting conntrack labels requires 'commit' flag.");
1432		return -EINVAL;
1433	}
1434#endif
1435	if (rem > 0) {
1436		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1437		return -EINVAL;
1438	}
1439
1440	return 0;
1441}
1442
1443bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1444{
1445	if (attr == OVS_KEY_ATTR_CT_STATE)
1446		return true;
1447	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1448	    attr == OVS_KEY_ATTR_CT_ZONE)
1449		return true;
1450	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1451	    attr == OVS_KEY_ATTR_CT_MARK)
1452		return true;
1453	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1454	    attr == OVS_KEY_ATTR_CT_LABELS) {
1455		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1456
1457		return ovs_net->xt_label;
1458	}
1459
1460	return false;
1461}
1462
1463int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1464		       const struct sw_flow_key *key,
1465		       struct sw_flow_actions **sfa,  bool log)
1466{
1467	struct ovs_conntrack_info ct_info;
1468	const char *helper = NULL;
1469	u16 family;
1470	int err;
1471
1472	family = key_to_nfproto(key);
1473	if (family == NFPROTO_UNSPEC) {
1474		OVS_NLERR(log, "ct family unspecified");
1475		return -EINVAL;
1476	}
1477
1478	memset(&ct_info, 0, sizeof(ct_info));
1479	ct_info.family = family;
1480
1481	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1482			NF_CT_DEFAULT_ZONE_DIR, 0);
1483
1484	err = parse_ct(attr, &ct_info, &helper, log);
1485	if (err)
1486		return err;
1487
1488	/* Set up template for tracking connections in specific zones. */
1489	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1490	if (!ct_info.ct) {
1491		OVS_NLERR(log, "Failed to allocate conntrack template");
1492		return -ENOMEM;
1493	}
1494
1495	if (ct_info.timeout[0]) {
1496		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1497				      ct_info.timeout))
1498			pr_info_ratelimited("Failed to associated timeout "
1499					    "policy `%s'\n", ct_info.timeout);
1500		else
1501			ct_info.nf_ct_timeout = rcu_dereference(
1502				nf_ct_timeout_find(ct_info.ct)->timeout);
1503
1504	}
1505
1506	if (helper) {
1507		err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family,
1508				       key->ip.proto, ct_info.nat, &ct_info.helper);
1509		if (err) {
1510			OVS_NLERR(log, "Failed to add %s helper %d", helper, err);
1511			goto err_free_ct;
1512		}
1513	}
1514
1515	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1516				 sizeof(ct_info), log);
1517	if (err)
1518		goto err_free_ct;
1519
1520	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1521	return 0;
1522err_free_ct:
1523	__ovs_ct_free_action(&ct_info);
1524	return err;
1525}
1526
1527#if IS_ENABLED(CONFIG_NF_NAT)
1528static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1529			       struct sk_buff *skb)
1530{
1531	struct nlattr *start;
1532
1533	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1534	if (!start)
1535		return false;
1536
1537	if (info->nat & OVS_CT_SRC_NAT) {
1538		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1539			return false;
1540	} else if (info->nat & OVS_CT_DST_NAT) {
1541		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1542			return false;
1543	} else {
1544		goto out;
1545	}
1546
1547	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1548		if (IS_ENABLED(CONFIG_NF_NAT) &&
1549		    info->family == NFPROTO_IPV4) {
1550			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1551					    info->range.min_addr.ip) ||
1552			    (info->range.max_addr.ip
1553			     != info->range.min_addr.ip &&
1554			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1555					      info->range.max_addr.ip))))
1556				return false;
1557		} else if (IS_ENABLED(CONFIG_IPV6) &&
1558			   info->family == NFPROTO_IPV6) {
1559			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1560					     &info->range.min_addr.in6) ||
1561			    (memcmp(&info->range.max_addr.in6,
1562				    &info->range.min_addr.in6,
1563				    sizeof(info->range.max_addr.in6)) &&
1564			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1565					       &info->range.max_addr.in6))))
1566				return false;
1567		} else {
1568			return false;
1569		}
1570	}
1571	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1572	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1573			 ntohs(info->range.min_proto.all)) ||
1574	     (info->range.max_proto.all != info->range.min_proto.all &&
1575	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1576			  ntohs(info->range.max_proto.all)))))
1577		return false;
1578
1579	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1580	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1581		return false;
1582	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1583	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1584		return false;
1585	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1586	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1587		return false;
1588out:
1589	nla_nest_end(skb, start);
1590
1591	return true;
1592}
1593#endif
1594
1595int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1596			  struct sk_buff *skb)
1597{
1598	struct nlattr *start;
1599
1600	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1601	if (!start)
1602		return -EMSGSIZE;
1603
1604	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1605					    ? OVS_CT_ATTR_FORCE_COMMIT
1606					    : OVS_CT_ATTR_COMMIT))
1607		return -EMSGSIZE;
1608	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1609	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1610		return -EMSGSIZE;
1611	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1612	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1613		    &ct_info->mark))
1614		return -EMSGSIZE;
1615	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1616	    labels_nonzero(&ct_info->labels.mask) &&
1617	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1618		    &ct_info->labels))
1619		return -EMSGSIZE;
1620	if (ct_info->helper) {
1621		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1622				   ct_info->helper->name))
1623			return -EMSGSIZE;
1624	}
1625	if (ct_info->have_eventmask &&
1626	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1627		return -EMSGSIZE;
1628	if (ct_info->timeout[0]) {
1629		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1630			return -EMSGSIZE;
1631	}
1632
1633#if IS_ENABLED(CONFIG_NF_NAT)
1634	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1635		return -EMSGSIZE;
1636#endif
1637	nla_nest_end(skb, start);
1638
1639	return 0;
1640}
1641
1642void ovs_ct_free_action(const struct nlattr *a)
1643{
1644	struct ovs_conntrack_info *ct_info = nla_data(a);
1645
1646	__ovs_ct_free_action(ct_info);
1647}
1648
1649static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1650{
1651	if (ct_info->helper) {
1652#if IS_ENABLED(CONFIG_NF_NAT)
1653		if (ct_info->nat)
1654			nf_nat_helper_put(ct_info->helper);
1655#endif
1656		nf_conntrack_helper_put(ct_info->helper);
1657	}
1658	if (ct_info->ct) {
1659		if (ct_info->timeout[0])
1660			nf_ct_destroy_timeout(ct_info->ct);
1661		nf_ct_tmpl_free(ct_info->ct);
1662	}
1663}
1664
1665#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1666static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1667{
1668	int i, err;
1669
1670	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1671					 GFP_KERNEL);
1672	if (!ovs_net->ct_limit_info)
1673		return -ENOMEM;
1674
1675	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1676	ovs_net->ct_limit_info->limits =
1677		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1678			      GFP_KERNEL);
1679	if (!ovs_net->ct_limit_info->limits) {
1680		kfree(ovs_net->ct_limit_info);
1681		return -ENOMEM;
1682	}
1683
1684	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1685		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1686
1687	ovs_net->ct_limit_info->data =
1688		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1689
1690	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1691		err = PTR_ERR(ovs_net->ct_limit_info->data);
1692		kfree(ovs_net->ct_limit_info->limits);
1693		kfree(ovs_net->ct_limit_info);
1694		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1695		return err;
1696	}
1697	return 0;
1698}
1699
1700static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1701{
1702	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1703	int i;
1704
1705	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1706	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1707		struct hlist_head *head = &info->limits[i];
1708		struct ovs_ct_limit *ct_limit;
1709
1710		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1711					 lockdep_ovsl_is_held())
1712			kfree_rcu(ct_limit, rcu);
1713	}
1714	kfree(info->limits);
1715	kfree(info);
1716}
1717
1718static struct sk_buff *
1719ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1720			     struct ovs_header **ovs_reply_header)
1721{
1722	struct ovs_header *ovs_header = info->userhdr;
1723	struct sk_buff *skb;
1724
1725	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1726	if (!skb)
1727		return ERR_PTR(-ENOMEM);
1728
1729	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1730					info->snd_seq,
1731					&dp_ct_limit_genl_family, 0, cmd);
1732
1733	if (!*ovs_reply_header) {
1734		nlmsg_free(skb);
1735		return ERR_PTR(-EMSGSIZE);
1736	}
1737	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1738
1739	return skb;
1740}
1741
1742static bool check_zone_id(int zone_id, u16 *pzone)
1743{
1744	if (zone_id >= 0 && zone_id <= 65535) {
1745		*pzone = (u16)zone_id;
1746		return true;
1747	}
1748	return false;
1749}
1750
1751static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1752				       struct ovs_ct_limit_info *info)
1753{
1754	struct ovs_zone_limit *zone_limit;
1755	int rem;
1756	u16 zone;
1757
1758	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1759	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1760
1761	while (rem >= sizeof(*zone_limit)) {
1762		if (unlikely(zone_limit->zone_id ==
1763				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1764			ovs_lock();
1765			info->default_limit = zone_limit->limit;
1766			ovs_unlock();
1767		} else if (unlikely(!check_zone_id(
1768				zone_limit->zone_id, &zone))) {
1769			OVS_NLERR(true, "zone id is out of range");
1770		} else {
1771			struct ovs_ct_limit *ct_limit;
1772
1773			ct_limit = kmalloc(sizeof(*ct_limit),
1774					   GFP_KERNEL_ACCOUNT);
1775			if (!ct_limit)
1776				return -ENOMEM;
1777
1778			ct_limit->zone = zone;
1779			ct_limit->limit = zone_limit->limit;
1780
1781			ovs_lock();
1782			ct_limit_set(info, ct_limit);
1783			ovs_unlock();
1784		}
1785		rem -= NLA_ALIGN(sizeof(*zone_limit));
1786		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1787				NLA_ALIGN(sizeof(*zone_limit)));
1788	}
1789
1790	if (rem)
1791		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1792
1793	return 0;
1794}
1795
1796static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1797				       struct ovs_ct_limit_info *info)
1798{
1799	struct ovs_zone_limit *zone_limit;
1800	int rem;
1801	u16 zone;
1802
1803	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1804	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1805
1806	while (rem >= sizeof(*zone_limit)) {
1807		if (unlikely(zone_limit->zone_id ==
1808				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1809			ovs_lock();
1810			info->default_limit = OVS_CT_LIMIT_DEFAULT;
1811			ovs_unlock();
1812		} else if (unlikely(!check_zone_id(
1813				zone_limit->zone_id, &zone))) {
1814			OVS_NLERR(true, "zone id is out of range");
1815		} else {
1816			ovs_lock();
1817			ct_limit_del(info, zone);
1818			ovs_unlock();
1819		}
1820		rem -= NLA_ALIGN(sizeof(*zone_limit));
1821		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1822				NLA_ALIGN(sizeof(*zone_limit)));
1823	}
1824
1825	if (rem)
1826		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1827
1828	return 0;
1829}
1830
1831static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1832					  struct sk_buff *reply)
1833{
1834	struct ovs_zone_limit zone_limit = {
1835		.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
1836		.limit   = info->default_limit,
1837	};
1838
1839	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1840}
1841
1842static int __ovs_ct_limit_get_zone_limit(struct net *net,
1843					 struct nf_conncount_data *data,
1844					 u16 zone_id, u32 limit,
1845					 struct sk_buff *reply)
1846{
1847	struct nf_conntrack_zone ct_zone;
1848	struct ovs_zone_limit zone_limit;
1849	u32 conncount_key = zone_id;
1850
1851	zone_limit.zone_id = zone_id;
1852	zone_limit.limit = limit;
1853	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1854
1855	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1856					      &ct_zone);
1857	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1858}
1859
1860static int ovs_ct_limit_get_zone_limit(struct net *net,
1861				       struct nlattr *nla_zone_limit,
1862				       struct ovs_ct_limit_info *info,
1863				       struct sk_buff *reply)
1864{
1865	struct ovs_zone_limit *zone_limit;
1866	int rem, err;
1867	u32 limit;
1868	u16 zone;
1869
1870	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1871	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1872
1873	while (rem >= sizeof(*zone_limit)) {
1874		if (unlikely(zone_limit->zone_id ==
1875				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1876			err = ovs_ct_limit_get_default_limit(info, reply);
1877			if (err)
1878				return err;
1879		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
1880							&zone))) {
1881			OVS_NLERR(true, "zone id is out of range");
1882		} else {
1883			rcu_read_lock();
1884			limit = ct_limit_get(info, zone);
1885			rcu_read_unlock();
1886
1887			err = __ovs_ct_limit_get_zone_limit(
1888				net, info->data, zone, limit, reply);
1889			if (err)
1890				return err;
1891		}
1892		rem -= NLA_ALIGN(sizeof(*zone_limit));
1893		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1894				NLA_ALIGN(sizeof(*zone_limit)));
1895	}
1896
1897	if (rem)
1898		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
1899
1900	return 0;
1901}
1902
1903static int ovs_ct_limit_get_all_zone_limit(struct net *net,
1904					   struct ovs_ct_limit_info *info,
1905					   struct sk_buff *reply)
1906{
1907	struct ovs_ct_limit *ct_limit;
1908	struct hlist_head *head;
1909	int i, err = 0;
1910
1911	err = ovs_ct_limit_get_default_limit(info, reply);
1912	if (err)
1913		return err;
1914
1915	rcu_read_lock();
1916	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1917		head = &info->limits[i];
1918		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1919			err = __ovs_ct_limit_get_zone_limit(net, info->data,
1920				ct_limit->zone, ct_limit->limit, reply);
1921			if (err)
1922				goto exit_err;
1923		}
1924	}
1925
1926exit_err:
1927	rcu_read_unlock();
1928	return err;
1929}
1930
1931static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
1932{
1933	struct nlattr **a = info->attrs;
1934	struct sk_buff *reply;
1935	struct ovs_header *ovs_reply_header;
1936	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1937	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1938	int err;
1939
1940	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
1941					     &ovs_reply_header);
1942	if (IS_ERR(reply))
1943		return PTR_ERR(reply);
1944
1945	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1946		err = -EINVAL;
1947		goto exit_err;
1948	}
1949
1950	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1951					  ct_limit_info);
1952	if (err)
1953		goto exit_err;
1954
1955	static_branch_enable(&ovs_ct_limit_enabled);
1956
1957	genlmsg_end(reply, ovs_reply_header);
1958	return genlmsg_reply(reply, info);
1959
1960exit_err:
1961	nlmsg_free(reply);
1962	return err;
1963}
1964
1965static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
1966{
1967	struct nlattr **a = info->attrs;
1968	struct sk_buff *reply;
1969	struct ovs_header *ovs_reply_header;
1970	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
1971	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1972	int err;
1973
1974	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
1975					     &ovs_reply_header);
1976	if (IS_ERR(reply))
1977		return PTR_ERR(reply);
1978
1979	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
1980		err = -EINVAL;
1981		goto exit_err;
1982	}
1983
1984	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
1985					  ct_limit_info);
1986	if (err)
1987		goto exit_err;
1988
1989	genlmsg_end(reply, ovs_reply_header);
1990	return genlmsg_reply(reply, info);
1991
1992exit_err:
1993	nlmsg_free(reply);
1994	return err;
1995}
1996
1997static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
1998{
1999	struct nlattr **a = info->attrs;
2000	struct nlattr *nla_reply;
2001	struct sk_buff *reply;
2002	struct ovs_header *ovs_reply_header;
2003	struct net *net = sock_net(skb->sk);
2004	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2005	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2006	int err;
2007
2008	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2009					     &ovs_reply_header);
2010	if (IS_ERR(reply))
2011		return PTR_ERR(reply);
2012
2013	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2014	if (!nla_reply) {
2015		err = -EMSGSIZE;
2016		goto exit_err;
2017	}
2018
2019	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2020		err = ovs_ct_limit_get_zone_limit(
2021			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2022			reply);
2023		if (err)
2024			goto exit_err;
2025	} else {
2026		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2027						      reply);
2028		if (err)
2029			goto exit_err;
2030	}
2031
2032	nla_nest_end(reply, nla_reply);
2033	genlmsg_end(reply, ovs_reply_header);
2034	return genlmsg_reply(reply, info);
2035
2036exit_err:
2037	nlmsg_free(reply);
2038	return err;
2039}
2040
2041static const struct genl_small_ops ct_limit_genl_ops[] = {
2042	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2043		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2044		.flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2045					       * privilege.
2046					       */
2047		.doit = ovs_ct_limit_cmd_set,
2048	},
2049	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2050		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2051		.flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2052					       * privilege.
2053					       */
2054		.doit = ovs_ct_limit_cmd_del,
2055	},
2056	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2057		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2058		.flags = 0,		  /* OK for unprivileged users. */
2059		.doit = ovs_ct_limit_cmd_get,
2060	},
2061};
2062
2063static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2064	.name = OVS_CT_LIMIT_MCGROUP,
2065};
2066
2067struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2068	.hdrsize = sizeof(struct ovs_header),
2069	.name = OVS_CT_LIMIT_FAMILY,
2070	.version = OVS_CT_LIMIT_VERSION,
2071	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2072	.policy = ct_limit_policy,
2073	.netnsok = true,
2074	.parallel_ops = true,
2075	.small_ops = ct_limit_genl_ops,
2076	.n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2077	.resv_start_op = OVS_CT_LIMIT_CMD_GET + 1,
2078	.mcgrps = &ovs_ct_limit_multicast_group,
2079	.n_mcgrps = 1,
2080	.module = THIS_MODULE,
2081};
2082#endif
2083
2084int ovs_ct_init(struct net *net)
2085{
2086	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2087	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2088
2089	if (nf_connlabels_get(net, n_bits - 1)) {
2090		ovs_net->xt_label = false;
2091		OVS_NLERR(true, "Failed to set connlabel length");
2092	} else {
2093		ovs_net->xt_label = true;
2094	}
2095
2096#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2097	return ovs_ct_limit_init(net, ovs_net);
2098#else
2099	return 0;
2100#endif
2101}
2102
2103void ovs_ct_exit(struct net *net)
2104{
2105	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2106
2107#if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2108	ovs_ct_limit_exit(net, ovs_net);
2109#endif
2110
2111	if (ovs_net->xt_label)
2112		nf_connlabels_put(net);
2113}