Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Resizable, Scalable, Concurrent Hash Table
   3 *
   4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   7 *
   8 * Code partially derived from nft_hash
   9 * Rewritten with rehash code from br_multicast plus single list
  10 * pointer as suggested by Josh Triplett
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/sched.h>
 
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/mm.h>
  25#include <linux/jhash.h>
  26#include <linux/random.h>
  27#include <linux/rhashtable.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30
  31#define HASH_DEFAULT_SIZE	64UL
  32#define HASH_MIN_SIZE		4U
  33#define BUCKET_LOCKS_PER_CPU	32UL
 
 
 
 
  34
  35static u32 head_hashfn(struct rhashtable *ht,
  36		       const struct bucket_table *tbl,
  37		       const struct rhash_head *he)
  38{
  39	return rht_head_hashfn(ht, tbl, he, ht->p);
  40}
  41
  42#ifdef CONFIG_PROVE_LOCKING
  43#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  44
  45int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  46{
  47	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  48}
  49EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  50
  51int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  52{
  53	spinlock_t *lock = rht_bucket_lock(tbl, hash);
  54
  55	return (debug_locks) ? lockdep_is_held(lock) : 1;
 
 
  56}
  57EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  58#else
  59#define ASSERT_RHT_MUTEX(HT)
  60#endif
  61
 
 
 
 
 
 
 
 
  62
  63static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
  64			      gfp_t gfp)
  65{
  66	unsigned int i, size;
  67#if defined(CONFIG_PROVE_LOCKING)
  68	unsigned int nr_pcpus = 2;
  69#else
  70	unsigned int nr_pcpus = num_possible_cpus();
  71#endif
  72
  73	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
  74	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
 
  75
  76	/* Never allocate more than 0.5 locks per bucket */
  77	size = min_t(unsigned int, size, tbl->size >> 1);
 
 
 
  78
  79	if (sizeof(spinlock_t) != 0) {
  80		tbl->locks = NULL;
  81#ifdef CONFIG_NUMA
  82		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
  83		    gfp == GFP_KERNEL)
  84			tbl->locks = vmalloc(size * sizeof(spinlock_t));
  85#endif
  86		if (gfp != GFP_KERNEL)
  87			gfp |= __GFP_NOWARN | __GFP_NORETRY;
  88
  89		if (!tbl->locks)
  90			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
  91						   gfp);
  92		if (!tbl->locks)
  93			return -ENOMEM;
  94		for (i = 0; i < size; i++)
  95			spin_lock_init(&tbl->locks[i]);
  96	}
  97	tbl->locks_mask = size - 1;
  98
  99	return 0;
 
 
 
 
 
 100}
 101
 102static void bucket_table_free(const struct bucket_table *tbl)
 103{
 104	if (tbl)
 105		kvfree(tbl->locks);
 106
 107	kvfree(tbl);
 108}
 109
 110static void bucket_table_free_rcu(struct rcu_head *head)
 111{
 112	bucket_table_free(container_of(head, struct bucket_table, rcu));
 113}
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 116					       size_t nbuckets,
 117					       gfp_t gfp)
 118{
 119	struct bucket_table *tbl = NULL;
 120	size_t size;
 121	int i;
 
 
 
 
 
 
 
 
 
 
 122
 123	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
 124	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
 125	    gfp != GFP_KERNEL)
 126		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
 127	if (tbl == NULL && gfp == GFP_KERNEL)
 128		tbl = vzalloc(size);
 129	if (tbl == NULL)
 130		return NULL;
 131
 132	tbl->size = nbuckets;
 133
 134	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
 135		bucket_table_free(tbl);
 136		return NULL;
 137	}
 138
 
 139	INIT_LIST_HEAD(&tbl->walkers);
 140
 141	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
 142
 143	for (i = 0; i < nbuckets; i++)
 144		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
 145
 146	return tbl;
 147}
 148
 149static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 150						  struct bucket_table *tbl)
 151{
 152	struct bucket_table *new_tbl;
 153
 154	do {
 155		new_tbl = tbl;
 156		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 157	} while (tbl);
 158
 159	return new_tbl;
 160}
 161
 162static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
 
 
 163{
 164	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 165	struct bucket_table *new_tbl = rhashtable_last_table(ht,
 166		rht_dereference_rcu(old_tbl->future_tbl, ht));
 167	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
 168	int err = -ENOENT;
 169	struct rhash_head *head, *next, *entry;
 170	spinlock_t *new_bucket_lock;
 171	unsigned int new_hash;
 
 
 
 
 
 
 172
 173	rht_for_each(entry, old_tbl, old_hash) {
 
 174		err = 0;
 175		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 176
 177		if (rht_is_a_nulls(next))
 178			break;
 179
 180		pprev = &entry->next;
 181	}
 182
 183	if (err)
 184		goto out;
 185
 186	new_hash = head_hashfn(ht, new_tbl, entry);
 187
 188	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
 
 189
 190	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
 191	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
 192				      new_tbl, new_hash);
 193
 194	RCU_INIT_POINTER(entry->next, head);
 195
 196	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
 197	spin_unlock(new_bucket_lock);
 198
 199	rcu_assign_pointer(*pprev, next);
 
 
 
 
 200
 201out:
 202	return err;
 203}
 204
 205static void rhashtable_rehash_chain(struct rhashtable *ht,
 206				    unsigned int old_hash)
 207{
 208	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 209	spinlock_t *old_bucket_lock;
 
 
 210
 211	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
 
 
 212
 213	spin_lock_bh(old_bucket_lock);
 214	while (!rhashtable_rehash_one(ht, old_hash))
 215		;
 216	old_tbl->rehash++;
 217	spin_unlock_bh(old_bucket_lock);
 
 
 
 
 218}
 219
 220static int rhashtable_rehash_attach(struct rhashtable *ht,
 221				    struct bucket_table *old_tbl,
 222				    struct bucket_table *new_tbl)
 223{
 224	/* Protect future_tbl using the first bucket lock. */
 225	spin_lock_bh(old_tbl->locks);
 226
 227	/* Did somebody beat us to it? */
 228	if (rcu_access_pointer(old_tbl->future_tbl)) {
 229		spin_unlock_bh(old_tbl->locks);
 230		return -EEXIST;
 231	}
 232
 233	/* Make insertions go into the new, empty table right away. Deletions
 234	 * and lookups will be attempted in both tables until we synchronize.
 
 
 235	 */
 236	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
 237
 238	spin_unlock_bh(old_tbl->locks);
 
 
 239
 240	return 0;
 241}
 242
 243static int rhashtable_rehash_table(struct rhashtable *ht)
 244{
 245	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 246	struct bucket_table *new_tbl;
 247	struct rhashtable_walker *walker;
 248	unsigned int old_hash;
 
 249
 250	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 251	if (!new_tbl)
 252		return 0;
 253
 254	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
 255		rhashtable_rehash_chain(ht, old_hash);
 
 
 
 
 256
 257	/* Publish the new table pointer. */
 258	rcu_assign_pointer(ht->tbl, new_tbl);
 259
 260	spin_lock(&ht->lock);
 261	list_for_each_entry(walker, &old_tbl->walkers, list)
 262		walker->tbl = NULL;
 263	spin_unlock(&ht->lock);
 264
 265	/* Wait for readers. All new readers will see the new
 266	 * table, and thus no references to the old table will
 267	 * remain.
 
 
 
 268	 */
 269	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 
 270
 271	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 272}
 273
 274/**
 275 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 276 * @ht:		the hash table to expand
 277 *
 278 * A secondary bucket array is allocated and the hash entries are migrated.
 279 *
 280 * This function may only be called in a context where it is safe to call
 281 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 282 *
 283 * The caller must ensure that no concurrent resizing occurs by holding
 284 * ht->mutex.
 285 *
 286 * It is valid to have concurrent insertions and deletions protected by per
 287 * bucket locks or concurrent RCU protected lookups and traversals.
 288 */
 289static int rhashtable_expand(struct rhashtable *ht)
 290{
 291	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
 292	int err;
 293
 294	ASSERT_RHT_MUTEX(ht);
 295
 296	old_tbl = rhashtable_last_table(ht, old_tbl);
 297
 298	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
 299	if (new_tbl == NULL)
 300		return -ENOMEM;
 301
 302	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 303	if (err)
 304		bucket_table_free(new_tbl);
 305
 306	return err;
 307}
 308
 309/**
 310 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 311 * @ht:		the hash table to shrink
 312 *
 313 * This function shrinks the hash table to fit, i.e., the smallest
 314 * size would not cause it to expand right away automatically.
 315 *
 316 * The caller must ensure that no concurrent resizing occurs by holding
 317 * ht->mutex.
 318 *
 319 * The caller must ensure that no concurrent table mutations take place.
 320 * It is however valid to have concurrent lookups if they are RCU protected.
 321 *
 322 * It is valid to have concurrent insertions and deletions protected by per
 323 * bucket locks or concurrent RCU protected lookups and traversals.
 324 */
 325static int rhashtable_shrink(struct rhashtable *ht)
 326{
 327	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
 328	unsigned int nelems = atomic_read(&ht->nelems);
 329	unsigned int size = 0;
 330	int err;
 331
 332	ASSERT_RHT_MUTEX(ht);
 333
 334	if (nelems)
 335		size = roundup_pow_of_two(nelems * 3 / 2);
 336	if (size < ht->p.min_size)
 337		size = ht->p.min_size;
 338
 339	if (old_tbl->size <= size)
 340		return 0;
 341
 342	if (rht_dereference(old_tbl->future_tbl, ht))
 343		return -EEXIST;
 344
 345	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 346	if (new_tbl == NULL)
 347		return -ENOMEM;
 348
 349	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 350	if (err)
 351		bucket_table_free(new_tbl);
 352
 353	return err;
 354}
 355
 356static void rht_deferred_worker(struct work_struct *work)
 357{
 358	struct rhashtable *ht;
 359	struct bucket_table *tbl;
 360	int err = 0;
 361
 362	ht = container_of(work, struct rhashtable, run_work);
 363	mutex_lock(&ht->mutex);
 364
 365	tbl = rht_dereference(ht->tbl, ht);
 366	tbl = rhashtable_last_table(ht, tbl);
 367
 368	if (rht_grow_above_75(ht, tbl))
 369		rhashtable_expand(ht);
 370	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 371		rhashtable_shrink(ht);
 
 
 
 
 
 372
 373	err = rhashtable_rehash_table(ht);
 
 
 374
 375	mutex_unlock(&ht->mutex);
 376
 377	if (err)
 378		schedule_work(&ht->run_work);
 379}
 380
 381static int rhashtable_insert_rehash(struct rhashtable *ht,
 382				    struct bucket_table *tbl)
 383{
 384	struct bucket_table *old_tbl;
 385	struct bucket_table *new_tbl;
 386	unsigned int size;
 387	int err;
 388
 389	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 390
 391	size = tbl->size;
 392
 393	err = -EBUSY;
 394
 395	if (rht_grow_above_75(ht, tbl))
 396		size *= 2;
 397	/* Do not schedule more than one rehash */
 398	else if (old_tbl != tbl)
 399		goto fail;
 400
 401	err = -ENOMEM;
 402
 403	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
 404	if (new_tbl == NULL)
 405		goto fail;
 406
 407	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 408	if (err) {
 409		bucket_table_free(new_tbl);
 410		if (err == -EEXIST)
 411			err = 0;
 412	} else
 413		schedule_work(&ht->run_work);
 414
 415	return err;
 416
 417fail:
 418	/* Do not fail the insert if someone else did a rehash. */
 419	if (likely(rcu_dereference_raw(tbl->future_tbl)))
 420		return 0;
 421
 422	/* Schedule async rehash to retry allocation in process context. */
 423	if (err == -ENOMEM)
 424		schedule_work(&ht->run_work);
 425
 426	return err;
 427}
 428
 429static void *rhashtable_lookup_one(struct rhashtable *ht,
 
 430				   struct bucket_table *tbl, unsigned int hash,
 431				   const void *key, struct rhash_head *obj)
 432{
 433	struct rhashtable_compare_arg arg = {
 434		.ht = ht,
 435		.key = key,
 436	};
 437	struct rhash_head __rcu **pprev;
 438	struct rhash_head *head;
 439	int elasticity;
 440
 441	elasticity = ht->elasticity;
 442	pprev = &tbl->buckets[hash];
 443	rht_for_each(head, tbl, hash) {
 444		struct rhlist_head *list;
 445		struct rhlist_head *plist;
 446
 447		elasticity--;
 448		if (!key ||
 449		    (ht->p.obj_cmpfn ?
 450		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 451		     rhashtable_compare(&arg, rht_obj(ht, head))))
 
 452			continue;
 
 453
 454		if (!ht->rhlist)
 455			return rht_obj(ht, head);
 456
 457		list = container_of(obj, struct rhlist_head, rhead);
 458		plist = container_of(head, struct rhlist_head, rhead);
 459
 460		RCU_INIT_POINTER(list->next, plist);
 461		head = rht_dereference_bucket(head->next, tbl, hash);
 462		RCU_INIT_POINTER(list->rhead.next, head);
 463		rcu_assign_pointer(*pprev, obj);
 
 
 
 
 464
 465		return NULL;
 466	}
 467
 468	if (elasticity <= 0)
 469		return ERR_PTR(-EAGAIN);
 470
 471	return ERR_PTR(-ENOENT);
 472}
 473
 474static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
 475						  struct bucket_table *tbl,
 476						  unsigned int hash,
 477						  struct rhash_head *obj,
 478						  void *data)
 479{
 480	struct bucket_table *new_tbl;
 481	struct rhash_head *head;
 482
 483	if (!IS_ERR_OR_NULL(data))
 484		return ERR_PTR(-EEXIST);
 485
 486	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 487		return ERR_CAST(data);
 488
 489	new_tbl = rcu_dereference(tbl->future_tbl);
 490	if (new_tbl)
 491		return new_tbl;
 492
 493	if (PTR_ERR(data) != -ENOENT)
 494		return ERR_CAST(data);
 495
 496	if (unlikely(rht_grow_above_max(ht, tbl)))
 497		return ERR_PTR(-E2BIG);
 498
 499	if (unlikely(rht_grow_above_100(ht, tbl)))
 500		return ERR_PTR(-EAGAIN);
 501
 502	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
 503
 504	RCU_INIT_POINTER(obj->next, head);
 505	if (ht->rhlist) {
 506		struct rhlist_head *list;
 507
 508		list = container_of(obj, struct rhlist_head, rhead);
 509		RCU_INIT_POINTER(list->next, NULL);
 510	}
 511
 512	rcu_assign_pointer(tbl->buckets[hash], obj);
 
 
 
 513
 514	atomic_inc(&ht->nelems);
 515	if (rht_grow_above_75(ht, tbl))
 516		schedule_work(&ht->run_work);
 517
 518	return NULL;
 519}
 520
 521static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 522				   struct rhash_head *obj)
 523{
 524	struct bucket_table *new_tbl;
 525	struct bucket_table *tbl;
 
 
 526	unsigned int hash;
 527	spinlock_t *lock;
 528	void *data;
 529
 530	tbl = rcu_dereference(ht->tbl);
 531
 532	/* All insertions must grab the oldest table containing
 533	 * the hashed bucket that is yet to be rehashed.
 534	 */
 535	for (;;) {
 536		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 537		lock = rht_bucket_lock(tbl, hash);
 538		spin_lock_bh(lock);
 539
 540		if (tbl->rehash <= hash)
 541			break;
 542
 543		spin_unlock_bh(lock);
 544		tbl = rcu_dereference(tbl->future_tbl);
 545	}
 546
 547	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 548	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 549	if (PTR_ERR(new_tbl) != -EEXIST)
 550		data = ERR_CAST(new_tbl);
 551
 552	while (!IS_ERR_OR_NULL(new_tbl)) {
 553		tbl = new_tbl;
 554		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 555		spin_lock_nested(rht_bucket_lock(tbl, hash),
 556				 SINGLE_DEPTH_NESTING);
 557
 558		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 559		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 560		if (PTR_ERR(new_tbl) != -EEXIST)
 561			data = ERR_CAST(new_tbl);
 562
 563		spin_unlock(rht_bucket_lock(tbl, hash));
 564	}
 
 
 
 
 
 
 565
 566	spin_unlock_bh(lock);
 
 
 567
 568	if (PTR_ERR(data) == -EAGAIN)
 569		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 570			       -EAGAIN);
 571
 572	return data;
 573}
 574
 575void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 576			     struct rhash_head *obj)
 577{
 578	void *data;
 579
 580	do {
 581		rcu_read_lock();
 582		data = rhashtable_try_insert(ht, key, obj);
 583		rcu_read_unlock();
 584	} while (PTR_ERR(data) == -EAGAIN);
 585
 586	return data;
 587}
 588EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 589
 590/**
 591 * rhashtable_walk_enter - Initialise an iterator
 592 * @ht:		Table to walk over
 593 * @iter:	Hash table Iterator
 594 *
 595 * This function prepares a hash table walk.
 596 *
 597 * Note that if you restart a walk after rhashtable_walk_stop you
 598 * may see the same object twice.  Also, you may miss objects if
 599 * there are removals in between rhashtable_walk_stop and the next
 600 * call to rhashtable_walk_start.
 601 *
 602 * For a completely stable walk you should construct your own data
 603 * structure outside the hash table.
 604 *
 605 * This function may sleep so you must not call it from interrupt
 606 * context or with spin locks held.
 
 607 *
 608 * You must call rhashtable_walk_exit after this function returns.
 609 */
 610void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 611{
 612	iter->ht = ht;
 613	iter->p = NULL;
 614	iter->slot = 0;
 615	iter->skip = 0;
 
 616
 617	spin_lock(&ht->lock);
 618	iter->walker.tbl =
 619		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 620	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 621	spin_unlock(&ht->lock);
 622}
 623EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 624
 625/**
 626 * rhashtable_walk_exit - Free an iterator
 627 * @iter:	Hash table Iterator
 628 *
 629 * This function frees resources allocated by rhashtable_walk_init.
 630 */
 631void rhashtable_walk_exit(struct rhashtable_iter *iter)
 632{
 633	spin_lock(&iter->ht->lock);
 634	if (iter->walker.tbl)
 635		list_del(&iter->walker.list);
 636	spin_unlock(&iter->ht->lock);
 637}
 638EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 639
 640/**
 641 * rhashtable_walk_start - Start a hash table walk
 642 * @iter:	Hash table iterator
 643 *
 644 * Start a hash table walk.  Note that we take the RCU lock in all
 645 * cases including when we return an error.  So you must always call
 646 * rhashtable_walk_stop to clean up.
 647 *
 648 * Returns zero if successful.
 649 *
 650 * Returns -EAGAIN if resize event occured.  Note that the iterator
 651 * will rewind back to the beginning and you may use it immediately
 652 * by calling rhashtable_walk_next.
 
 
 
 
 653 */
 654int rhashtable_walk_start(struct rhashtable_iter *iter)
 655	__acquires(RCU)
 656{
 657	struct rhashtable *ht = iter->ht;
 
 658
 659	rcu_read_lock();
 660
 661	spin_lock(&ht->lock);
 662	if (iter->walker.tbl)
 663		list_del(&iter->walker.list);
 664	spin_unlock(&ht->lock);
 665
 
 
 666	if (!iter->walker.tbl) {
 667		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 
 
 668		return -EAGAIN;
 669	}
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	return 0;
 672}
 673EXPORT_SYMBOL_GPL(rhashtable_walk_start);
 674
 675/**
 676 * rhashtable_walk_next - Return the next object and advance the iterator
 677 * @iter:	Hash table iterator
 678 *
 679 * Note that you must call rhashtable_walk_stop when you are finished
 680 * with the walk.
 681 *
 682 * Returns the next object or NULL when the end of the table is reached.
 683 *
 684 * Returns -EAGAIN if resize event occured.  Note that the iterator
 685 * will rewind back to the beginning and you may continue to use it.
 686 */
 687void *rhashtable_walk_next(struct rhashtable_iter *iter)
 688{
 689	struct bucket_table *tbl = iter->walker.tbl;
 690	struct rhlist_head *list = iter->list;
 691	struct rhashtable *ht = iter->ht;
 692	struct rhash_head *p = iter->p;
 693	bool rhlist = ht->rhlist;
 694
 695	if (p) {
 696		if (!rhlist || !(list = rcu_dereference(list->next))) {
 697			p = rcu_dereference(p->next);
 698			list = container_of(p, struct rhlist_head, rhead);
 699		}
 700		goto next;
 701	}
 702
 703	for (; iter->slot < tbl->size; iter->slot++) {
 704		int skip = iter->skip;
 705
 706		rht_for_each_rcu(p, tbl, iter->slot) {
 707			if (rhlist) {
 708				list = container_of(p, struct rhlist_head,
 709						    rhead);
 710				do {
 711					if (!skip)
 712						goto next;
 713					skip--;
 714					list = rcu_dereference(list->next);
 715				} while (list);
 716
 717				continue;
 718			}
 719			if (!skip)
 720				break;
 721			skip--;
 722		}
 723
 724next:
 725		if (!rht_is_a_nulls(p)) {
 726			iter->skip++;
 727			iter->p = p;
 728			iter->list = list;
 729			return rht_obj(ht, rhlist ? &list->rhead : p);
 730		}
 731
 732		iter->skip = 0;
 733	}
 734
 735	iter->p = NULL;
 736
 737	/* Ensure we see any new tables. */
 738	smp_rmb();
 739
 740	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 741	if (iter->walker.tbl) {
 742		iter->slot = 0;
 743		iter->skip = 0;
 744		return ERR_PTR(-EAGAIN);
 
 
 745	}
 746
 747	return NULL;
 748}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 750
 751/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752 * rhashtable_walk_stop - Finish a hash table walk
 753 * @iter:	Hash table iterator
 754 *
 755 * Finish a hash table walk.
 
 756 */
 757void rhashtable_walk_stop(struct rhashtable_iter *iter)
 758	__releases(RCU)
 759{
 760	struct rhashtable *ht;
 761	struct bucket_table *tbl = iter->walker.tbl;
 762
 763	if (!tbl)
 764		goto out;
 765
 766	ht = iter->ht;
 767
 768	spin_lock(&ht->lock);
 769	if (tbl->rehash < tbl->size)
 770		list_add(&iter->walker.list, &tbl->walkers);
 771	else
 772		iter->walker.tbl = NULL;
 
 
 773	spin_unlock(&ht->lock);
 774
 775	iter->p = NULL;
 776
 777out:
 778	rcu_read_unlock();
 779}
 780EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 781
 782static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 783{
 784	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 785		   (unsigned long)params->min_size);
 
 
 
 
 
 
 
 
 786}
 787
 788static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 789{
 790	return jhash2(key, length, seed);
 791}
 792
 793/**
 794 * rhashtable_init - initialize a new hash table
 795 * @ht:		hash table to be initialized
 796 * @params:	configuration parameters
 797 *
 798 * Initializes a new hash table based on the provided configuration
 799 * parameters. A table can be configured either with a variable or
 800 * fixed length key:
 801 *
 802 * Configuration Example 1: Fixed length keys
 803 * struct test_obj {
 804 *	int			key;
 805 *	void *			my_member;
 806 *	struct rhash_head	node;
 807 * };
 808 *
 809 * struct rhashtable_params params = {
 810 *	.head_offset = offsetof(struct test_obj, node),
 811 *	.key_offset = offsetof(struct test_obj, key),
 812 *	.key_len = sizeof(int),
 813 *	.hashfn = jhash,
 814 *	.nulls_base = (1U << RHT_BASE_SHIFT),
 815 * };
 816 *
 817 * Configuration Example 2: Variable length keys
 818 * struct test_obj {
 819 *	[...]
 820 *	struct rhash_head	node;
 821 * };
 822 *
 823 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
 824 * {
 825 *	struct test_obj *obj = data;
 826 *
 827 *	return [... hash ...];
 828 * }
 829 *
 830 * struct rhashtable_params params = {
 831 *	.head_offset = offsetof(struct test_obj, node),
 832 *	.hashfn = jhash,
 833 *	.obj_hashfn = my_hash_fn,
 834 * };
 835 */
 836int rhashtable_init(struct rhashtable *ht,
 837		    const struct rhashtable_params *params)
 838{
 839	struct bucket_table *tbl;
 840	size_t size;
 841
 842	size = HASH_DEFAULT_SIZE;
 843
 844	if ((!params->key_len && !params->obj_hashfn) ||
 845	    (params->obj_hashfn && !params->obj_cmpfn))
 846		return -EINVAL;
 847
 848	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
 849		return -EINVAL;
 850
 851	memset(ht, 0, sizeof(*ht));
 852	mutex_init(&ht->mutex);
 853	spin_lock_init(&ht->lock);
 854	memcpy(&ht->p, params, sizeof(*params));
 855
 856	if (params->min_size)
 857		ht->p.min_size = roundup_pow_of_two(params->min_size);
 858
 859	if (params->max_size)
 860		ht->p.max_size = rounddown_pow_of_two(params->max_size);
 861
 862	if (params->insecure_max_entries)
 863		ht->p.insecure_max_entries =
 864			rounddown_pow_of_two(params->insecure_max_entries);
 865	else
 866		ht->p.insecure_max_entries = ht->p.max_size * 2;
 867
 868	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
 869
 870	if (params->nelem_hint)
 871		size = rounded_hashtable_size(&ht->p);
 872
 873	/* The maximum (not average) chain length grows with the
 874	 * size of the hash table, at a rate of (log N)/(log log N).
 875	 * The value of 16 is selected so that even if the hash
 876	 * table grew to 2^32 you would not expect the maximum
 877	 * chain length to exceed it unless we are under attack
 878	 * (or extremely unlucky).
 879	 *
 880	 * As this limit is only to detect attacks, we don't need
 881	 * to set it to a lower value as you'd need the chain
 882	 * length to vastly exceed 16 to have any real effect
 883	 * on the system.
 884	 */
 885	if (!params->insecure_elasticity)
 886		ht->elasticity = 16;
 887
 888	if (params->locks_mul)
 889		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
 890	else
 891		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
 892
 893	ht->key_len = ht->p.key_len;
 894	if (!params->hashfn) {
 895		ht->p.hashfn = jhash;
 896
 897		if (!(ht->key_len & (sizeof(u32) - 1))) {
 898			ht->key_len /= sizeof(u32);
 899			ht->p.hashfn = rhashtable_jhash2;
 900		}
 901	}
 902
 
 
 
 
 
 903	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 904	if (tbl == NULL)
 905		return -ENOMEM;
 
 
 906
 907	atomic_set(&ht->nelems, 0);
 908
 909	RCU_INIT_POINTER(ht->tbl, tbl);
 910
 911	INIT_WORK(&ht->run_work, rht_deferred_worker);
 912
 913	return 0;
 914}
 915EXPORT_SYMBOL_GPL(rhashtable_init);
 916
 917/**
 918 * rhltable_init - initialize a new hash list table
 919 * @hlt:	hash list table to be initialized
 920 * @params:	configuration parameters
 921 *
 922 * Initializes a new hash list table.
 923 *
 924 * See documentation for rhashtable_init.
 925 */
 926int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
 927{
 928	int err;
 929
 930	/* No rhlist NULLs marking for now. */
 931	if (params->nulls_base)
 932		return -EINVAL;
 933
 934	err = rhashtable_init(&hlt->ht, params);
 935	hlt->ht.rhlist = true;
 936	return err;
 937}
 938EXPORT_SYMBOL_GPL(rhltable_init);
 939
 940static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
 941				void (*free_fn)(void *ptr, void *arg),
 942				void *arg)
 943{
 944	struct rhlist_head *list;
 945
 946	if (!ht->rhlist) {
 947		free_fn(rht_obj(ht, obj), arg);
 948		return;
 949	}
 950
 951	list = container_of(obj, struct rhlist_head, rhead);
 952	do {
 953		obj = &list->rhead;
 954		list = rht_dereference(list->next, ht);
 955		free_fn(rht_obj(ht, obj), arg);
 956	} while (list);
 957}
 958
 959/**
 960 * rhashtable_free_and_destroy - free elements and destroy hash table
 961 * @ht:		the hash table to destroy
 962 * @free_fn:	callback to release resources of element
 963 * @arg:	pointer passed to free_fn
 964 *
 965 * Stops an eventual async resize. If defined, invokes free_fn for each
 966 * element to releasal resources. Please note that RCU protected
 967 * readers may still be accessing the elements. Releasing of resources
 968 * must occur in a compatible manner. Then frees the bucket array.
 969 *
 970 * This function will eventually sleep to wait for an async resize
 971 * to complete. The caller is responsible that no further write operations
 972 * occurs in parallel.
 973 */
 974void rhashtable_free_and_destroy(struct rhashtable *ht,
 975				 void (*free_fn)(void *ptr, void *arg),
 976				 void *arg)
 977{
 978	const struct bucket_table *tbl;
 979	unsigned int i;
 980
 981	cancel_work_sync(&ht->run_work);
 982
 983	mutex_lock(&ht->mutex);
 984	tbl = rht_dereference(ht->tbl, ht);
 
 985	if (free_fn) {
 986		for (i = 0; i < tbl->size; i++) {
 987			struct rhash_head *pos, *next;
 988
 989			for (pos = rht_dereference(tbl->buckets[i], ht),
 
 990			     next = !rht_is_a_nulls(pos) ?
 991					rht_dereference(pos->next, ht) : NULL;
 992			     !rht_is_a_nulls(pos);
 993			     pos = next,
 994			     next = !rht_is_a_nulls(pos) ?
 995					rht_dereference(pos->next, ht) : NULL)
 996				rhashtable_free_one(ht, pos, free_fn, arg);
 997		}
 998	}
 999
 
1000	bucket_table_free(tbl);
 
 
 
 
1001	mutex_unlock(&ht->mutex);
1002}
1003EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1004
1005void rhashtable_destroy(struct rhashtable *ht)
1006{
1007	return rhashtable_free_and_destroy(ht, NULL, NULL);
1008}
1009EXPORT_SYMBOL_GPL(rhashtable_destroy);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Resizable, Scalable, Concurrent Hash Table
   4 *
   5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   8 *
   9 * Code partially derived from nft_hash
  10 * Rewritten with rehash code from br_multicast plus single list
  11 * pointer as suggested by Josh Triplett
 
 
 
 
  12 */
  13
  14#include <linux/atomic.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/log2.h>
  18#include <linux/sched.h>
  19#include <linux/rculist.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/jhash.h>
  24#include <linux/random.h>
  25#include <linux/rhashtable.h>
  26#include <linux/err.h>
  27#include <linux/export.h>
  28
  29#define HASH_DEFAULT_SIZE	64UL
  30#define HASH_MIN_SIZE		4U
  31
  32union nested_table {
  33	union nested_table __rcu *table;
  34	struct rhash_lock_head __rcu *bucket;
  35};
  36
  37static u32 head_hashfn(struct rhashtable *ht,
  38		       const struct bucket_table *tbl,
  39		       const struct rhash_head *he)
  40{
  41	return rht_head_hashfn(ht, tbl, he, ht->p);
  42}
  43
  44#ifdef CONFIG_PROVE_LOCKING
  45#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  46
  47int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  48{
  49	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  50}
  51EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  52
  53int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  54{
  55	if (!debug_locks)
  56		return 1;
  57	if (unlikely(tbl->nest))
  58		return 1;
  59	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
  60}
  61EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  62#else
  63#define ASSERT_RHT_MUTEX(HT)
  64#endif
  65
  66static inline union nested_table *nested_table_top(
  67	const struct bucket_table *tbl)
  68{
  69	/* The top-level bucket entry does not need RCU protection
  70	 * because it's set at the same time as tbl->nest.
  71	 */
  72	return (void *)rcu_dereference_protected(tbl->buckets[0], 1);
  73}
  74
  75static void nested_table_free(union nested_table *ntbl, unsigned int size)
 
  76{
  77	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
  78	const unsigned int len = 1 << shift;
  79	unsigned int i;
 
 
 
  80
  81	ntbl = rcu_dereference_protected(ntbl->table, 1);
  82	if (!ntbl)
  83		return;
  84
  85	if (size > len) {
  86		size >>= shift;
  87		for (i = 0; i < len; i++)
  88			nested_table_free(ntbl + i, size);
  89	}
  90
  91	kfree(ntbl);
  92}
 
 
 
 
 
 
 
  93
  94static void nested_bucket_table_free(const struct bucket_table *tbl)
  95{
  96	unsigned int size = tbl->size >> tbl->nest;
  97	unsigned int len = 1 << tbl->nest;
  98	union nested_table *ntbl;
  99	unsigned int i;
 
 
 
 100
 101	ntbl = nested_table_top(tbl);
 102
 103	for (i = 0; i < len; i++)
 104		nested_table_free(ntbl + i, size);
 105
 106	kfree(ntbl);
 107}
 108
 109static void bucket_table_free(const struct bucket_table *tbl)
 110{
 111	if (tbl->nest)
 112		nested_bucket_table_free(tbl);
 113
 114	kvfree(tbl);
 115}
 116
 117static void bucket_table_free_rcu(struct rcu_head *head)
 118{
 119	bucket_table_free(container_of(head, struct bucket_table, rcu));
 120}
 121
 122static union nested_table *nested_table_alloc(struct rhashtable *ht,
 123					      union nested_table __rcu **prev,
 124					      bool leaf)
 125{
 126	union nested_table *ntbl;
 127	int i;
 128
 129	ntbl = rcu_dereference(*prev);
 130	if (ntbl)
 131		return ntbl;
 132
 133	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
 134
 135	if (ntbl && leaf) {
 136		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
 137			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
 138	}
 139
 140	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
 141		return ntbl;
 142	/* Raced with another thread. */
 143	kfree(ntbl);
 144	return rcu_dereference(*prev);
 145}
 146
 147static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
 148						      size_t nbuckets,
 149						      gfp_t gfp)
 150{
 151	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 152	struct bucket_table *tbl;
 153	size_t size;
 154
 155	if (nbuckets < (1 << (shift + 1)))
 156		return NULL;
 157
 158	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
 159
 160	tbl = kzalloc(size, gfp);
 161	if (!tbl)
 162		return NULL;
 163
 164	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
 165				false)) {
 166		kfree(tbl);
 167		return NULL;
 168	}
 169
 170	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
 171
 172	return tbl;
 173}
 174
 175static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 176					       size_t nbuckets,
 177					       gfp_t gfp)
 178{
 179	struct bucket_table *tbl = NULL;
 180	size_t size;
 181	int i;
 182	static struct lock_class_key __key;
 183
 184	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
 185
 186	size = nbuckets;
 187
 188	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
 189		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
 190		nbuckets = 0;
 191	}
 192
 
 
 
 
 
 
 193	if (tbl == NULL)
 194		return NULL;
 195
 196	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
 197
 198	tbl->size = size;
 
 
 
 199
 200	rcu_head_init(&tbl->rcu);
 201	INIT_LIST_HEAD(&tbl->walkers);
 202
 203	tbl->hash_rnd = get_random_u32();
 204
 205	for (i = 0; i < nbuckets; i++)
 206		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
 207
 208	return tbl;
 209}
 210
 211static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 212						  struct bucket_table *tbl)
 213{
 214	struct bucket_table *new_tbl;
 215
 216	do {
 217		new_tbl = tbl;
 218		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 219	} while (tbl);
 220
 221	return new_tbl;
 222}
 223
 224static int rhashtable_rehash_one(struct rhashtable *ht,
 225				 struct rhash_lock_head __rcu **bkt,
 226				 unsigned int old_hash)
 227{
 228	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 229	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
 230	int err = -EAGAIN;
 
 
 231	struct rhash_head *head, *next, *entry;
 232	struct rhash_head __rcu **pprev = NULL;
 233	unsigned int new_hash;
 234	unsigned long flags;
 235
 236	if (new_tbl->nest)
 237		goto out;
 238
 239	err = -ENOENT;
 240
 241	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
 242			  old_tbl, old_hash) {
 243		err = 0;
 244		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 245
 246		if (rht_is_a_nulls(next))
 247			break;
 248
 249		pprev = &entry->next;
 250	}
 251
 252	if (err)
 253		goto out;
 254
 255	new_hash = head_hashfn(ht, new_tbl, entry);
 256
 257	flags = rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash],
 258				SINGLE_DEPTH_NESTING);
 259
 260	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
 
 
 261
 262	RCU_INIT_POINTER(entry->next, head);
 263
 264	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry, flags);
 
 265
 266	if (pprev)
 267		rcu_assign_pointer(*pprev, next);
 268	else
 269		/* Need to preserved the bit lock. */
 270		rht_assign_locked(bkt, next);
 271
 272out:
 273	return err;
 274}
 275
 276static int rhashtable_rehash_chain(struct rhashtable *ht,
 277				    unsigned int old_hash)
 278{
 279	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 280	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
 281	unsigned long flags;
 282	int err;
 283
 284	if (!bkt)
 285		return 0;
 286	flags = rht_lock(old_tbl, bkt);
 287
 288	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
 
 289		;
 290
 291	if (err == -ENOENT)
 292		err = 0;
 293	rht_unlock(old_tbl, bkt, flags);
 294
 295	return err;
 296}
 297
 298static int rhashtable_rehash_attach(struct rhashtable *ht,
 299				    struct bucket_table *old_tbl,
 300				    struct bucket_table *new_tbl)
 301{
 
 
 
 
 
 
 
 
 
 302	/* Make insertions go into the new, empty table right away. Deletions
 303	 * and lookups will be attempted in both tables until we synchronize.
 304	 * As cmpxchg() provides strong barriers, we do not need
 305	 * rcu_assign_pointer().
 306	 */
 
 307
 308	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
 309		    new_tbl) != NULL)
 310		return -EEXIST;
 311
 312	return 0;
 313}
 314
 315static int rhashtable_rehash_table(struct rhashtable *ht)
 316{
 317	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 318	struct bucket_table *new_tbl;
 319	struct rhashtable_walker *walker;
 320	unsigned int old_hash;
 321	int err;
 322
 323	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 324	if (!new_tbl)
 325		return 0;
 326
 327	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
 328		err = rhashtable_rehash_chain(ht, old_hash);
 329		if (err)
 330			return err;
 331		cond_resched();
 332	}
 333
 334	/* Publish the new table pointer. */
 335	rcu_assign_pointer(ht->tbl, new_tbl);
 336
 337	spin_lock(&ht->lock);
 338	list_for_each_entry(walker, &old_tbl->walkers, list)
 339		walker->tbl = NULL;
 
 340
 341	/* Wait for readers. All new readers will see the new
 342	 * table, and thus no references to the old table will
 343	 * remain.
 344	 * We do this inside the locked region so that
 345	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
 346	 * to check if it should not re-link the table.
 347	 */
 348	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 349	spin_unlock(&ht->lock);
 350
 351	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 352}
 353
 354static int rhashtable_rehash_alloc(struct rhashtable *ht,
 355				   struct bucket_table *old_tbl,
 356				   unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 357{
 358	struct bucket_table *new_tbl;
 359	int err;
 360
 361	ASSERT_RHT_MUTEX(ht);
 362
 363	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 
 
 364	if (new_tbl == NULL)
 365		return -ENOMEM;
 366
 367	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 368	if (err)
 369		bucket_table_free(new_tbl);
 370
 371	return err;
 372}
 373
 374/**
 375 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 376 * @ht:		the hash table to shrink
 377 *
 378 * This function shrinks the hash table to fit, i.e., the smallest
 379 * size would not cause it to expand right away automatically.
 380 *
 381 * The caller must ensure that no concurrent resizing occurs by holding
 382 * ht->mutex.
 383 *
 384 * The caller must ensure that no concurrent table mutations take place.
 385 * It is however valid to have concurrent lookups if they are RCU protected.
 386 *
 387 * It is valid to have concurrent insertions and deletions protected by per
 388 * bucket locks or concurrent RCU protected lookups and traversals.
 389 */
 390static int rhashtable_shrink(struct rhashtable *ht)
 391{
 392	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 393	unsigned int nelems = atomic_read(&ht->nelems);
 394	unsigned int size = 0;
 
 
 
 395
 396	if (nelems)
 397		size = roundup_pow_of_two(nelems * 3 / 2);
 398	if (size < ht->p.min_size)
 399		size = ht->p.min_size;
 400
 401	if (old_tbl->size <= size)
 402		return 0;
 403
 404	if (rht_dereference(old_tbl->future_tbl, ht))
 405		return -EEXIST;
 406
 407	return rhashtable_rehash_alloc(ht, old_tbl, size);
 
 
 
 
 
 
 
 
 408}
 409
 410static void rht_deferred_worker(struct work_struct *work)
 411{
 412	struct rhashtable *ht;
 413	struct bucket_table *tbl;
 414	int err = 0;
 415
 416	ht = container_of(work, struct rhashtable, run_work);
 417	mutex_lock(&ht->mutex);
 418
 419	tbl = rht_dereference(ht->tbl, ht);
 420	tbl = rhashtable_last_table(ht, tbl);
 421
 422	if (rht_grow_above_75(ht, tbl))
 423		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
 424	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 425		err = rhashtable_shrink(ht);
 426	else if (tbl->nest)
 427		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
 428
 429	if (!err || err == -EEXIST) {
 430		int nerr;
 431
 432		nerr = rhashtable_rehash_table(ht);
 433		err = err ?: nerr;
 434	}
 435
 436	mutex_unlock(&ht->mutex);
 437
 438	if (err)
 439		schedule_work(&ht->run_work);
 440}
 441
 442static int rhashtable_insert_rehash(struct rhashtable *ht,
 443				    struct bucket_table *tbl)
 444{
 445	struct bucket_table *old_tbl;
 446	struct bucket_table *new_tbl;
 447	unsigned int size;
 448	int err;
 449
 450	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 451
 452	size = tbl->size;
 453
 454	err = -EBUSY;
 455
 456	if (rht_grow_above_75(ht, tbl))
 457		size *= 2;
 458	/* Do not schedule more than one rehash */
 459	else if (old_tbl != tbl)
 460		goto fail;
 461
 462	err = -ENOMEM;
 463
 464	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
 465	if (new_tbl == NULL)
 466		goto fail;
 467
 468	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 469	if (err) {
 470		bucket_table_free(new_tbl);
 471		if (err == -EEXIST)
 472			err = 0;
 473	} else
 474		schedule_work(&ht->run_work);
 475
 476	return err;
 477
 478fail:
 479	/* Do not fail the insert if someone else did a rehash. */
 480	if (likely(rcu_access_pointer(tbl->future_tbl)))
 481		return 0;
 482
 483	/* Schedule async rehash to retry allocation in process context. */
 484	if (err == -ENOMEM)
 485		schedule_work(&ht->run_work);
 486
 487	return err;
 488}
 489
 490static void *rhashtable_lookup_one(struct rhashtable *ht,
 491				   struct rhash_lock_head __rcu **bkt,
 492				   struct bucket_table *tbl, unsigned int hash,
 493				   const void *key, struct rhash_head *obj)
 494{
 495	struct rhashtable_compare_arg arg = {
 496		.ht = ht,
 497		.key = key,
 498	};
 499	struct rhash_head __rcu **pprev = NULL;
 500	struct rhash_head *head;
 501	int elasticity;
 502
 503	elasticity = RHT_ELASTICITY;
 504	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
 
 505		struct rhlist_head *list;
 506		struct rhlist_head *plist;
 507
 508		elasticity--;
 509		if (!key ||
 510		    (ht->p.obj_cmpfn ?
 511		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 512		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
 513			pprev = &head->next;
 514			continue;
 515		}
 516
 517		if (!ht->rhlist)
 518			return rht_obj(ht, head);
 519
 520		list = container_of(obj, struct rhlist_head, rhead);
 521		plist = container_of(head, struct rhlist_head, rhead);
 522
 523		RCU_INIT_POINTER(list->next, plist);
 524		head = rht_dereference_bucket(head->next, tbl, hash);
 525		RCU_INIT_POINTER(list->rhead.next, head);
 526		if (pprev)
 527			rcu_assign_pointer(*pprev, obj);
 528		else
 529			/* Need to preserve the bit lock */
 530			rht_assign_locked(bkt, obj);
 531
 532		return NULL;
 533	}
 534
 535	if (elasticity <= 0)
 536		return ERR_PTR(-EAGAIN);
 537
 538	return ERR_PTR(-ENOENT);
 539}
 540
 541static struct bucket_table *rhashtable_insert_one(
 542	struct rhashtable *ht, struct rhash_lock_head __rcu **bkt,
 543	struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj,
 544	void *data)
 
 545{
 546	struct bucket_table *new_tbl;
 547	struct rhash_head *head;
 548
 549	if (!IS_ERR_OR_NULL(data))
 550		return ERR_PTR(-EEXIST);
 551
 552	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 553		return ERR_CAST(data);
 554
 555	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 556	if (new_tbl)
 557		return new_tbl;
 558
 559	if (PTR_ERR(data) != -ENOENT)
 560		return ERR_CAST(data);
 561
 562	if (unlikely(rht_grow_above_max(ht, tbl)))
 563		return ERR_PTR(-E2BIG);
 564
 565	if (unlikely(rht_grow_above_100(ht, tbl)))
 566		return ERR_PTR(-EAGAIN);
 567
 568	head = rht_ptr(bkt, tbl, hash);
 569
 570	RCU_INIT_POINTER(obj->next, head);
 571	if (ht->rhlist) {
 572		struct rhlist_head *list;
 573
 574		list = container_of(obj, struct rhlist_head, rhead);
 575		RCU_INIT_POINTER(list->next, NULL);
 576	}
 577
 578	/* bkt is always the head of the list, so it holds
 579	 * the lock, which we need to preserve
 580	 */
 581	rht_assign_locked(bkt, obj);
 582
 583	atomic_inc(&ht->nelems);
 584	if (rht_grow_above_75(ht, tbl))
 585		schedule_work(&ht->run_work);
 586
 587	return NULL;
 588}
 589
 590static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 591				   struct rhash_head *obj)
 592{
 593	struct bucket_table *new_tbl;
 594	struct bucket_table *tbl;
 595	struct rhash_lock_head __rcu **bkt;
 596	unsigned long flags;
 597	unsigned int hash;
 
 598	void *data;
 599
 600	new_tbl = rcu_dereference(ht->tbl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602	do {
 603		tbl = new_tbl;
 604		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 605		if (rcu_access_pointer(tbl->future_tbl))
 606			/* Failure is OK */
 607			bkt = rht_bucket_var(tbl, hash);
 608		else
 609			bkt = rht_bucket_insert(ht, tbl, hash);
 610		if (bkt == NULL) {
 611			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 612			data = ERR_PTR(-EAGAIN);
 613		} else {
 614			flags = rht_lock(tbl, bkt);
 615			data = rhashtable_lookup_one(ht, bkt, tbl,
 616						     hash, key, obj);
 617			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
 618							hash, obj, data);
 619			if (PTR_ERR(new_tbl) != -EEXIST)
 620				data = ERR_CAST(new_tbl);
 621
 622			rht_unlock(tbl, bkt, flags);
 623		}
 624	} while (!IS_ERR_OR_NULL(new_tbl));
 625
 626	if (PTR_ERR(data) == -EAGAIN)
 627		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 628			       -EAGAIN);
 629
 630	return data;
 631}
 632
 633void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 634			     struct rhash_head *obj)
 635{
 636	void *data;
 637
 638	do {
 639		rcu_read_lock();
 640		data = rhashtable_try_insert(ht, key, obj);
 641		rcu_read_unlock();
 642	} while (PTR_ERR(data) == -EAGAIN);
 643
 644	return data;
 645}
 646EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 647
 648/**
 649 * rhashtable_walk_enter - Initialise an iterator
 650 * @ht:		Table to walk over
 651 * @iter:	Hash table Iterator
 652 *
 653 * This function prepares a hash table walk.
 654 *
 655 * Note that if you restart a walk after rhashtable_walk_stop you
 656 * may see the same object twice.  Also, you may miss objects if
 657 * there are removals in between rhashtable_walk_stop and the next
 658 * call to rhashtable_walk_start.
 659 *
 660 * For a completely stable walk you should construct your own data
 661 * structure outside the hash table.
 662 *
 663 * This function may be called from any process context, including
 664 * non-preemptable context, but cannot be called from softirq or
 665 * hardirq context.
 666 *
 667 * You must call rhashtable_walk_exit after this function returns.
 668 */
 669void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 670{
 671	iter->ht = ht;
 672	iter->p = NULL;
 673	iter->slot = 0;
 674	iter->skip = 0;
 675	iter->end_of_table = 0;
 676
 677	spin_lock(&ht->lock);
 678	iter->walker.tbl =
 679		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 680	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 681	spin_unlock(&ht->lock);
 682}
 683EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 684
 685/**
 686 * rhashtable_walk_exit - Free an iterator
 687 * @iter:	Hash table Iterator
 688 *
 689 * This function frees resources allocated by rhashtable_walk_enter.
 690 */
 691void rhashtable_walk_exit(struct rhashtable_iter *iter)
 692{
 693	spin_lock(&iter->ht->lock);
 694	if (iter->walker.tbl)
 695		list_del(&iter->walker.list);
 696	spin_unlock(&iter->ht->lock);
 697}
 698EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 699
 700/**
 701 * rhashtable_walk_start_check - Start a hash table walk
 702 * @iter:	Hash table iterator
 703 *
 704 * Start a hash table walk at the current iterator position.  Note that we take
 705 * the RCU lock in all cases including when we return an error.  So you must
 706 * always call rhashtable_walk_stop to clean up.
 707 *
 708 * Returns zero if successful.
 709 *
 710 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 711 * will rewind back to the beginning and you may use it immediately
 712 * by calling rhashtable_walk_next.
 713 *
 714 * rhashtable_walk_start is defined as an inline variant that returns
 715 * void. This is preferred in cases where the caller would ignore
 716 * resize events and always continue.
 717 */
 718int rhashtable_walk_start_check(struct rhashtable_iter *iter)
 719	__acquires(RCU)
 720{
 721	struct rhashtable *ht = iter->ht;
 722	bool rhlist = ht->rhlist;
 723
 724	rcu_read_lock();
 725
 726	spin_lock(&ht->lock);
 727	if (iter->walker.tbl)
 728		list_del(&iter->walker.list);
 729	spin_unlock(&ht->lock);
 730
 731	if (iter->end_of_table)
 732		return 0;
 733	if (!iter->walker.tbl) {
 734		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 735		iter->slot = 0;
 736		iter->skip = 0;
 737		return -EAGAIN;
 738	}
 739
 740	if (iter->p && !rhlist) {
 741		/*
 742		 * We need to validate that 'p' is still in the table, and
 743		 * if so, update 'skip'
 744		 */
 745		struct rhash_head *p;
 746		int skip = 0;
 747		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 748			skip++;
 749			if (p == iter->p) {
 750				iter->skip = skip;
 751				goto found;
 752			}
 753		}
 754		iter->p = NULL;
 755	} else if (iter->p && rhlist) {
 756		/* Need to validate that 'list' is still in the table, and
 757		 * if so, update 'skip' and 'p'.
 758		 */
 759		struct rhash_head *p;
 760		struct rhlist_head *list;
 761		int skip = 0;
 762		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 763			for (list = container_of(p, struct rhlist_head, rhead);
 764			     list;
 765			     list = rcu_dereference(list->next)) {
 766				skip++;
 767				if (list == iter->list) {
 768					iter->p = p;
 769					iter->skip = skip;
 770					goto found;
 771				}
 772			}
 773		}
 774		iter->p = NULL;
 775	}
 776found:
 777	return 0;
 778}
 779EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
 780
 781/**
 782 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 783 * one in case of a new walk).
 784 *
 785 * @iter:	Hash table iterator
 
 786 *
 787 * Returns the found object or NULL when the end of the table is reached.
 788 *
 789 * Returns -EAGAIN if resize event occurred.
 
 790 */
 791static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
 792{
 793	struct bucket_table *tbl = iter->walker.tbl;
 794	struct rhlist_head *list = iter->list;
 795	struct rhashtable *ht = iter->ht;
 796	struct rhash_head *p = iter->p;
 797	bool rhlist = ht->rhlist;
 798
 799	if (!tbl)
 800		return NULL;
 
 
 
 
 
 801
 802	for (; iter->slot < tbl->size; iter->slot++) {
 803		int skip = iter->skip;
 804
 805		rht_for_each_rcu(p, tbl, iter->slot) {
 806			if (rhlist) {
 807				list = container_of(p, struct rhlist_head,
 808						    rhead);
 809				do {
 810					if (!skip)
 811						goto next;
 812					skip--;
 813					list = rcu_dereference(list->next);
 814				} while (list);
 815
 816				continue;
 817			}
 818			if (!skip)
 819				break;
 820			skip--;
 821		}
 822
 823next:
 824		if (!rht_is_a_nulls(p)) {
 825			iter->skip++;
 826			iter->p = p;
 827			iter->list = list;
 828			return rht_obj(ht, rhlist ? &list->rhead : p);
 829		}
 830
 831		iter->skip = 0;
 832	}
 833
 834	iter->p = NULL;
 835
 836	/* Ensure we see any new tables. */
 837	smp_rmb();
 838
 839	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 840	if (iter->walker.tbl) {
 841		iter->slot = 0;
 842		iter->skip = 0;
 843		return ERR_PTR(-EAGAIN);
 844	} else {
 845		iter->end_of_table = true;
 846	}
 847
 848	return NULL;
 849}
 850
 851/**
 852 * rhashtable_walk_next - Return the next object and advance the iterator
 853 * @iter:	Hash table iterator
 854 *
 855 * Note that you must call rhashtable_walk_stop when you are finished
 856 * with the walk.
 857 *
 858 * Returns the next object or NULL when the end of the table is reached.
 859 *
 860 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 861 * will rewind back to the beginning and you may continue to use it.
 862 */
 863void *rhashtable_walk_next(struct rhashtable_iter *iter)
 864{
 865	struct rhlist_head *list = iter->list;
 866	struct rhashtable *ht = iter->ht;
 867	struct rhash_head *p = iter->p;
 868	bool rhlist = ht->rhlist;
 869
 870	if (p) {
 871		if (!rhlist || !(list = rcu_dereference(list->next))) {
 872			p = rcu_dereference(p->next);
 873			list = container_of(p, struct rhlist_head, rhead);
 874		}
 875		if (!rht_is_a_nulls(p)) {
 876			iter->skip++;
 877			iter->p = p;
 878			iter->list = list;
 879			return rht_obj(ht, rhlist ? &list->rhead : p);
 880		}
 881
 882		/* At the end of this slot, switch to next one and then find
 883		 * next entry from that point.
 884		 */
 885		iter->skip = 0;
 886		iter->slot++;
 887	}
 888
 889	return __rhashtable_walk_find_next(iter);
 890}
 891EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 892
 893/**
 894 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 895 * @iter:	Hash table iterator
 896 *
 897 * Returns the next object or NULL when the end of the table is reached.
 898 *
 899 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 900 * will rewind back to the beginning and you may continue to use it.
 901 */
 902void *rhashtable_walk_peek(struct rhashtable_iter *iter)
 903{
 904	struct rhlist_head *list = iter->list;
 905	struct rhashtable *ht = iter->ht;
 906	struct rhash_head *p = iter->p;
 907
 908	if (p)
 909		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
 910
 911	/* No object found in current iter, find next one in the table. */
 912
 913	if (iter->skip) {
 914		/* A nonzero skip value points to the next entry in the table
 915		 * beyond that last one that was found. Decrement skip so
 916		 * we find the current value. __rhashtable_walk_find_next
 917		 * will restore the original value of skip assuming that
 918		 * the table hasn't changed.
 919		 */
 920		iter->skip--;
 921	}
 922
 923	return __rhashtable_walk_find_next(iter);
 924}
 925EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
 926
 927/**
 928 * rhashtable_walk_stop - Finish a hash table walk
 929 * @iter:	Hash table iterator
 930 *
 931 * Finish a hash table walk.  Does not reset the iterator to the start of the
 932 * hash table.
 933 */
 934void rhashtable_walk_stop(struct rhashtable_iter *iter)
 935	__releases(RCU)
 936{
 937	struct rhashtable *ht;
 938	struct bucket_table *tbl = iter->walker.tbl;
 939
 940	if (!tbl)
 941		goto out;
 942
 943	ht = iter->ht;
 944
 945	spin_lock(&ht->lock);
 946	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
 947		/* This bucket table is being freed, don't re-link it. */
 
 948		iter->walker.tbl = NULL;
 949	else
 950		list_add(&iter->walker.list, &tbl->walkers);
 951	spin_unlock(&ht->lock);
 952
 
 
 953out:
 954	rcu_read_unlock();
 955}
 956EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 957
 958static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 959{
 960	size_t retsize;
 961
 962	if (params->nelem_hint)
 963		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 964			      (unsigned long)params->min_size);
 965	else
 966		retsize = max(HASH_DEFAULT_SIZE,
 967			      (unsigned long)params->min_size);
 968
 969	return retsize;
 970}
 971
 972static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 973{
 974	return jhash2(key, length, seed);
 975}
 976
 977/**
 978 * rhashtable_init - initialize a new hash table
 979 * @ht:		hash table to be initialized
 980 * @params:	configuration parameters
 981 *
 982 * Initializes a new hash table based on the provided configuration
 983 * parameters. A table can be configured either with a variable or
 984 * fixed length key:
 985 *
 986 * Configuration Example 1: Fixed length keys
 987 * struct test_obj {
 988 *	int			key;
 989 *	void *			my_member;
 990 *	struct rhash_head	node;
 991 * };
 992 *
 993 * struct rhashtable_params params = {
 994 *	.head_offset = offsetof(struct test_obj, node),
 995 *	.key_offset = offsetof(struct test_obj, key),
 996 *	.key_len = sizeof(int),
 997 *	.hashfn = jhash,
 
 998 * };
 999 *
1000 * Configuration Example 2: Variable length keys
1001 * struct test_obj {
1002 *	[...]
1003 *	struct rhash_head	node;
1004 * };
1005 *
1006 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1007 * {
1008 *	struct test_obj *obj = data;
1009 *
1010 *	return [... hash ...];
1011 * }
1012 *
1013 * struct rhashtable_params params = {
1014 *	.head_offset = offsetof(struct test_obj, node),
1015 *	.hashfn = jhash,
1016 *	.obj_hashfn = my_hash_fn,
1017 * };
1018 */
1019int rhashtable_init(struct rhashtable *ht,
1020		    const struct rhashtable_params *params)
1021{
1022	struct bucket_table *tbl;
1023	size_t size;
1024
 
 
1025	if ((!params->key_len && !params->obj_hashfn) ||
1026	    (params->obj_hashfn && !params->obj_cmpfn))
1027		return -EINVAL;
1028
 
 
 
1029	memset(ht, 0, sizeof(*ht));
1030	mutex_init(&ht->mutex);
1031	spin_lock_init(&ht->lock);
1032	memcpy(&ht->p, params, sizeof(*params));
1033
1034	if (params->min_size)
1035		ht->p.min_size = roundup_pow_of_two(params->min_size);
1036
1037	/* Cap total entries at 2^31 to avoid nelems overflow. */
1038	ht->max_elems = 1u << 31;
1039
1040	if (params->max_size) {
1041		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1042		if (ht->p.max_size < ht->max_elems / 2)
1043			ht->max_elems = ht->p.max_size * 2;
1044	}
 
 
 
 
 
1045
1046	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048	size = rounded_hashtable_size(&ht->p);
 
 
 
1049
1050	ht->key_len = ht->p.key_len;
1051	if (!params->hashfn) {
1052		ht->p.hashfn = jhash;
1053
1054		if (!(ht->key_len & (sizeof(u32) - 1))) {
1055			ht->key_len /= sizeof(u32);
1056			ht->p.hashfn = rhashtable_jhash2;
1057		}
1058	}
1059
1060	/*
1061	 * This is api initialization and thus we need to guarantee the
1062	 * initial rhashtable allocation. Upon failure, retry with the
1063	 * smallest possible size with __GFP_NOFAIL semantics.
1064	 */
1065	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1066	if (unlikely(tbl == NULL)) {
1067		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1068		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1069	}
1070
1071	atomic_set(&ht->nelems, 0);
1072
1073	RCU_INIT_POINTER(ht->tbl, tbl);
1074
1075	INIT_WORK(&ht->run_work, rht_deferred_worker);
1076
1077	return 0;
1078}
1079EXPORT_SYMBOL_GPL(rhashtable_init);
1080
1081/**
1082 * rhltable_init - initialize a new hash list table
1083 * @hlt:	hash list table to be initialized
1084 * @params:	configuration parameters
1085 *
1086 * Initializes a new hash list table.
1087 *
1088 * See documentation for rhashtable_init.
1089 */
1090int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1091{
1092	int err;
1093
 
 
 
 
1094	err = rhashtable_init(&hlt->ht, params);
1095	hlt->ht.rhlist = true;
1096	return err;
1097}
1098EXPORT_SYMBOL_GPL(rhltable_init);
1099
1100static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1101				void (*free_fn)(void *ptr, void *arg),
1102				void *arg)
1103{
1104	struct rhlist_head *list;
1105
1106	if (!ht->rhlist) {
1107		free_fn(rht_obj(ht, obj), arg);
1108		return;
1109	}
1110
1111	list = container_of(obj, struct rhlist_head, rhead);
1112	do {
1113		obj = &list->rhead;
1114		list = rht_dereference(list->next, ht);
1115		free_fn(rht_obj(ht, obj), arg);
1116	} while (list);
1117}
1118
1119/**
1120 * rhashtable_free_and_destroy - free elements and destroy hash table
1121 * @ht:		the hash table to destroy
1122 * @free_fn:	callback to release resources of element
1123 * @arg:	pointer passed to free_fn
1124 *
1125 * Stops an eventual async resize. If defined, invokes free_fn for each
1126 * element to releasal resources. Please note that RCU protected
1127 * readers may still be accessing the elements. Releasing of resources
1128 * must occur in a compatible manner. Then frees the bucket array.
1129 *
1130 * This function will eventually sleep to wait for an async resize
1131 * to complete. The caller is responsible that no further write operations
1132 * occurs in parallel.
1133 */
1134void rhashtable_free_and_destroy(struct rhashtable *ht,
1135				 void (*free_fn)(void *ptr, void *arg),
1136				 void *arg)
1137{
1138	struct bucket_table *tbl, *next_tbl;
1139	unsigned int i;
1140
1141	cancel_work_sync(&ht->run_work);
1142
1143	mutex_lock(&ht->mutex);
1144	tbl = rht_dereference(ht->tbl, ht);
1145restart:
1146	if (free_fn) {
1147		for (i = 0; i < tbl->size; i++) {
1148			struct rhash_head *pos, *next;
1149
1150			cond_resched();
1151			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1152			     next = !rht_is_a_nulls(pos) ?
1153					rht_dereference(pos->next, ht) : NULL;
1154			     !rht_is_a_nulls(pos);
1155			     pos = next,
1156			     next = !rht_is_a_nulls(pos) ?
1157					rht_dereference(pos->next, ht) : NULL)
1158				rhashtable_free_one(ht, pos, free_fn, arg);
1159		}
1160	}
1161
1162	next_tbl = rht_dereference(tbl->future_tbl, ht);
1163	bucket_table_free(tbl);
1164	if (next_tbl) {
1165		tbl = next_tbl;
1166		goto restart;
1167	}
1168	mutex_unlock(&ht->mutex);
1169}
1170EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1171
1172void rhashtable_destroy(struct rhashtable *ht)
1173{
1174	return rhashtable_free_and_destroy(ht, NULL, NULL);
1175}
1176EXPORT_SYMBOL_GPL(rhashtable_destroy);
1177
1178struct rhash_lock_head __rcu **__rht_bucket_nested(
1179	const struct bucket_table *tbl, unsigned int hash)
1180{
1181	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1182	unsigned int index = hash & ((1 << tbl->nest) - 1);
1183	unsigned int size = tbl->size >> tbl->nest;
1184	unsigned int subhash = hash;
1185	union nested_table *ntbl;
1186
1187	ntbl = nested_table_top(tbl);
1188	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1189	subhash >>= tbl->nest;
1190
1191	while (ntbl && size > (1 << shift)) {
1192		index = subhash & ((1 << shift) - 1);
1193		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1194						  tbl, hash);
1195		size >>= shift;
1196		subhash >>= shift;
1197	}
1198
1199	if (!ntbl)
1200		return NULL;
1201
1202	return &ntbl[subhash].bucket;
1203
1204}
1205EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1206
1207struct rhash_lock_head __rcu **rht_bucket_nested(
1208	const struct bucket_table *tbl, unsigned int hash)
1209{
1210	static struct rhash_lock_head __rcu *rhnull;
1211
1212	if (!rhnull)
1213		INIT_RHT_NULLS_HEAD(rhnull);
1214	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1215}
1216EXPORT_SYMBOL_GPL(rht_bucket_nested);
1217
1218struct rhash_lock_head __rcu **rht_bucket_nested_insert(
1219	struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash)
1220{
1221	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1222	unsigned int index = hash & ((1 << tbl->nest) - 1);
1223	unsigned int size = tbl->size >> tbl->nest;
1224	union nested_table *ntbl;
1225
1226	ntbl = nested_table_top(tbl);
1227	hash >>= tbl->nest;
1228	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1229				  size <= (1 << shift));
1230
1231	while (ntbl && size > (1 << shift)) {
1232		index = hash & ((1 << shift) - 1);
1233		size >>= shift;
1234		hash >>= shift;
1235		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1236					  size <= (1 << shift));
1237	}
1238
1239	if (!ntbl)
1240		return NULL;
1241
1242	return &ntbl[hash].bucket;
1243
1244}
1245EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);