Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Resizable, Scalable, Concurrent Hash Table
   3 *
   4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   7 *
   8 * Code partially derived from nft_hash
   9 * Rewritten with rehash code from br_multicast plus single list
  10 * pointer as suggested by Josh Triplett
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/sched.h>
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/mm.h>
  25#include <linux/jhash.h>
  26#include <linux/random.h>
  27#include <linux/rhashtable.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30
  31#define HASH_DEFAULT_SIZE	64UL
  32#define HASH_MIN_SIZE		4U
  33#define BUCKET_LOCKS_PER_CPU	32UL
  34
  35static u32 head_hashfn(struct rhashtable *ht,
  36		       const struct bucket_table *tbl,
  37		       const struct rhash_head *he)
  38{
  39	return rht_head_hashfn(ht, tbl, he, ht->p);
  40}
  41
  42#ifdef CONFIG_PROVE_LOCKING
  43#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  44
  45int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  46{
  47	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  48}
  49EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  50
  51int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  52{
  53	spinlock_t *lock = rht_bucket_lock(tbl, hash);
  54
  55	return (debug_locks) ? lockdep_is_held(lock) : 1;
  56}
  57EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  58#else
  59#define ASSERT_RHT_MUTEX(HT)
  60#endif
  61
  62
  63static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
  64			      gfp_t gfp)
  65{
  66	unsigned int i, size;
  67#if defined(CONFIG_PROVE_LOCKING)
  68	unsigned int nr_pcpus = 2;
  69#else
  70	unsigned int nr_pcpus = num_possible_cpus();
  71#endif
  72
  73	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
  74	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
  75
  76	/* Never allocate more than 0.5 locks per bucket */
  77	size = min_t(unsigned int, size, tbl->size >> 1);
  78
  79	if (sizeof(spinlock_t) != 0) {
  80		tbl->locks = NULL;
  81#ifdef CONFIG_NUMA
  82		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
  83		    gfp == GFP_KERNEL)
  84			tbl->locks = vmalloc(size * sizeof(spinlock_t));
 
  85#endif
  86		if (gfp != GFP_KERNEL)
  87			gfp |= __GFP_NOWARN | __GFP_NORETRY;
  88
  89		if (!tbl->locks)
  90			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
  91						   gfp);
  92		if (!tbl->locks)
  93			return -ENOMEM;
  94		for (i = 0; i < size; i++)
  95			spin_lock_init(&tbl->locks[i]);
  96	}
  97	tbl->locks_mask = size - 1;
  98
  99	return 0;
 100}
 101
 102static void bucket_table_free(const struct bucket_table *tbl)
 103{
 104	if (tbl)
 105		kvfree(tbl->locks);
 106
 107	kvfree(tbl);
 108}
 109
 110static void bucket_table_free_rcu(struct rcu_head *head)
 111{
 112	bucket_table_free(container_of(head, struct bucket_table, rcu));
 113}
 114
 115static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 116					       size_t nbuckets,
 117					       gfp_t gfp)
 118{
 119	struct bucket_table *tbl = NULL;
 120	size_t size;
 121	int i;
 122
 123	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
 124	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
 125	    gfp != GFP_KERNEL)
 126		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
 127	if (tbl == NULL && gfp == GFP_KERNEL)
 128		tbl = vzalloc(size);
 129	if (tbl == NULL)
 130		return NULL;
 131
 132	tbl->size = nbuckets;
 133
 134	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
 135		bucket_table_free(tbl);
 136		return NULL;
 137	}
 138
 139	INIT_LIST_HEAD(&tbl->walkers);
 140
 141	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
 142
 143	for (i = 0; i < nbuckets; i++)
 144		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
 145
 146	return tbl;
 147}
 148
 149static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 150						  struct bucket_table *tbl)
 151{
 152	struct bucket_table *new_tbl;
 153
 154	do {
 155		new_tbl = tbl;
 156		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 157	} while (tbl);
 158
 159	return new_tbl;
 160}
 161
 162static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
 163{
 164	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 165	struct bucket_table *new_tbl = rhashtable_last_table(ht,
 166		rht_dereference_rcu(old_tbl->future_tbl, ht));
 167	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
 168	int err = -ENOENT;
 169	struct rhash_head *head, *next, *entry;
 170	spinlock_t *new_bucket_lock;
 171	unsigned int new_hash;
 172
 173	rht_for_each(entry, old_tbl, old_hash) {
 174		err = 0;
 175		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 176
 177		if (rht_is_a_nulls(next))
 178			break;
 179
 180		pprev = &entry->next;
 181	}
 182
 183	if (err)
 184		goto out;
 185
 186	new_hash = head_hashfn(ht, new_tbl, entry);
 187
 188	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
 189
 190	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
 191	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
 192				      new_tbl, new_hash);
 193
 194	RCU_INIT_POINTER(entry->next, head);
 195
 196	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
 197	spin_unlock(new_bucket_lock);
 198
 199	rcu_assign_pointer(*pprev, next);
 200
 201out:
 202	return err;
 203}
 204
 205static void rhashtable_rehash_chain(struct rhashtable *ht,
 206				    unsigned int old_hash)
 207{
 208	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 209	spinlock_t *old_bucket_lock;
 210
 211	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
 212
 213	spin_lock_bh(old_bucket_lock);
 214	while (!rhashtable_rehash_one(ht, old_hash))
 215		;
 216	old_tbl->rehash++;
 217	spin_unlock_bh(old_bucket_lock);
 218}
 219
 220static int rhashtable_rehash_attach(struct rhashtable *ht,
 221				    struct bucket_table *old_tbl,
 222				    struct bucket_table *new_tbl)
 223{
 224	/* Protect future_tbl using the first bucket lock. */
 225	spin_lock_bh(old_tbl->locks);
 226
 227	/* Did somebody beat us to it? */
 228	if (rcu_access_pointer(old_tbl->future_tbl)) {
 229		spin_unlock_bh(old_tbl->locks);
 230		return -EEXIST;
 231	}
 232
 233	/* Make insertions go into the new, empty table right away. Deletions
 234	 * and lookups will be attempted in both tables until we synchronize.
 235	 */
 236	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
 237
 238	spin_unlock_bh(old_tbl->locks);
 239
 240	return 0;
 241}
 242
 243static int rhashtable_rehash_table(struct rhashtable *ht)
 244{
 245	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 246	struct bucket_table *new_tbl;
 247	struct rhashtable_walker *walker;
 248	unsigned int old_hash;
 249
 250	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 251	if (!new_tbl)
 252		return 0;
 253
 254	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
 255		rhashtable_rehash_chain(ht, old_hash);
 256
 257	/* Publish the new table pointer. */
 258	rcu_assign_pointer(ht->tbl, new_tbl);
 259
 260	spin_lock(&ht->lock);
 261	list_for_each_entry(walker, &old_tbl->walkers, list)
 262		walker->tbl = NULL;
 263	spin_unlock(&ht->lock);
 264
 265	/* Wait for readers. All new readers will see the new
 266	 * table, and thus no references to the old table will
 267	 * remain.
 268	 */
 269	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 270
 271	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 272}
 273
 274/**
 275 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 276 * @ht:		the hash table to expand
 277 *
 278 * A secondary bucket array is allocated and the hash entries are migrated.
 279 *
 280 * This function may only be called in a context where it is safe to call
 281 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 282 *
 283 * The caller must ensure that no concurrent resizing occurs by holding
 284 * ht->mutex.
 285 *
 286 * It is valid to have concurrent insertions and deletions protected by per
 287 * bucket locks or concurrent RCU protected lookups and traversals.
 288 */
 289static int rhashtable_expand(struct rhashtable *ht)
 290{
 291	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
 292	int err;
 293
 294	ASSERT_RHT_MUTEX(ht);
 295
 296	old_tbl = rhashtable_last_table(ht, old_tbl);
 297
 298	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
 299	if (new_tbl == NULL)
 300		return -ENOMEM;
 301
 302	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 303	if (err)
 304		bucket_table_free(new_tbl);
 305
 306	return err;
 307}
 308
 309/**
 310 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 311 * @ht:		the hash table to shrink
 312 *
 313 * This function shrinks the hash table to fit, i.e., the smallest
 314 * size would not cause it to expand right away automatically.
 315 *
 316 * The caller must ensure that no concurrent resizing occurs by holding
 317 * ht->mutex.
 318 *
 319 * The caller must ensure that no concurrent table mutations take place.
 320 * It is however valid to have concurrent lookups if they are RCU protected.
 321 *
 322 * It is valid to have concurrent insertions and deletions protected by per
 323 * bucket locks or concurrent RCU protected lookups and traversals.
 324 */
 325static int rhashtable_shrink(struct rhashtable *ht)
 326{
 327	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
 328	unsigned int nelems = atomic_read(&ht->nelems);
 329	unsigned int size = 0;
 330	int err;
 331
 332	ASSERT_RHT_MUTEX(ht);
 333
 334	if (nelems)
 335		size = roundup_pow_of_two(nelems * 3 / 2);
 336	if (size < ht->p.min_size)
 337		size = ht->p.min_size;
 338
 339	if (old_tbl->size <= size)
 340		return 0;
 341
 342	if (rht_dereference(old_tbl->future_tbl, ht))
 343		return -EEXIST;
 344
 345	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 346	if (new_tbl == NULL)
 347		return -ENOMEM;
 348
 349	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 350	if (err)
 351		bucket_table_free(new_tbl);
 352
 353	return err;
 354}
 355
 356static void rht_deferred_worker(struct work_struct *work)
 357{
 358	struct rhashtable *ht;
 359	struct bucket_table *tbl;
 360	int err = 0;
 361
 362	ht = container_of(work, struct rhashtable, run_work);
 363	mutex_lock(&ht->mutex);
 364
 365	tbl = rht_dereference(ht->tbl, ht);
 366	tbl = rhashtable_last_table(ht, tbl);
 367
 368	if (rht_grow_above_75(ht, tbl))
 369		rhashtable_expand(ht);
 370	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 371		rhashtable_shrink(ht);
 372
 373	err = rhashtable_rehash_table(ht);
 374
 375	mutex_unlock(&ht->mutex);
 376
 377	if (err)
 378		schedule_work(&ht->run_work);
 379}
 380
 381static int rhashtable_insert_rehash(struct rhashtable *ht,
 382				    struct bucket_table *tbl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383{
 384	struct bucket_table *old_tbl;
 385	struct bucket_table *new_tbl;
 386	unsigned int size;
 387	int err;
 388
 389	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 390
 391	size = tbl->size;
 392
 393	err = -EBUSY;
 394
 395	if (rht_grow_above_75(ht, tbl))
 396		size *= 2;
 397	/* Do not schedule more than one rehash */
 398	else if (old_tbl != tbl)
 399		goto fail;
 400
 401	err = -ENOMEM;
 402
 403	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
 404	if (new_tbl == NULL)
 405		goto fail;
 406
 407	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 408	if (err) {
 409		bucket_table_free(new_tbl);
 410		if (err == -EEXIST)
 411			err = 0;
 412	} else
 413		schedule_work(&ht->run_work);
 414
 415	return err;
 416
 417fail:
 418	/* Do not fail the insert if someone else did a rehash. */
 419	if (likely(rcu_dereference_raw(tbl->future_tbl)))
 420		return 0;
 421
 422	/* Schedule async rehash to retry allocation in process context. */
 423	if (err == -ENOMEM)
 424		schedule_work(&ht->run_work);
 425
 426	return err;
 427}
 
 428
 429static void *rhashtable_lookup_one(struct rhashtable *ht,
 430				   struct bucket_table *tbl, unsigned int hash,
 431				   const void *key, struct rhash_head *obj)
 432{
 433	struct rhashtable_compare_arg arg = {
 434		.ht = ht,
 435		.key = key,
 436	};
 437	struct rhash_head __rcu **pprev;
 438	struct rhash_head *head;
 439	int elasticity;
 440
 441	elasticity = ht->elasticity;
 442	pprev = &tbl->buckets[hash];
 443	rht_for_each(head, tbl, hash) {
 444		struct rhlist_head *list;
 445		struct rhlist_head *plist;
 446
 447		elasticity--;
 448		if (!key ||
 449		    (ht->p.obj_cmpfn ?
 450		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 451		     rhashtable_compare(&arg, rht_obj(ht, head))))
 452			continue;
 453
 454		if (!ht->rhlist)
 455			return rht_obj(ht, head);
 456
 457		list = container_of(obj, struct rhlist_head, rhead);
 458		plist = container_of(head, struct rhlist_head, rhead);
 459
 460		RCU_INIT_POINTER(list->next, plist);
 461		head = rht_dereference_bucket(head->next, tbl, hash);
 462		RCU_INIT_POINTER(list->rhead.next, head);
 463		rcu_assign_pointer(*pprev, obj);
 464
 465		return NULL;
 466	}
 467
 468	if (elasticity <= 0)
 469		return ERR_PTR(-EAGAIN);
 470
 471	return ERR_PTR(-ENOENT);
 472}
 473
 474static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
 475						  struct bucket_table *tbl,
 476						  unsigned int hash,
 477						  struct rhash_head *obj,
 478						  void *data)
 479{
 480	struct bucket_table *new_tbl;
 481	struct rhash_head *head;
 
 
 482
 483	if (!IS_ERR_OR_NULL(data))
 484		return ERR_PTR(-EEXIST);
 485
 486	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 487		return ERR_CAST(data);
 488
 489	new_tbl = rcu_dereference(tbl->future_tbl);
 490	if (new_tbl)
 491		return new_tbl;
 492
 493	if (PTR_ERR(data) != -ENOENT)
 494		return ERR_CAST(data);
 
 495
 
 496	if (unlikely(rht_grow_above_max(ht, tbl)))
 497		return ERR_PTR(-E2BIG);
 498
 499	if (unlikely(rht_grow_above_100(ht, tbl)))
 500		return ERR_PTR(-EAGAIN);
 
 
 
 
 501
 502	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
 503
 504	RCU_INIT_POINTER(obj->next, head);
 505	if (ht->rhlist) {
 506		struct rhlist_head *list;
 507
 508		list = container_of(obj, struct rhlist_head, rhead);
 509		RCU_INIT_POINTER(list->next, NULL);
 510	}
 511
 512	rcu_assign_pointer(tbl->buckets[hash], obj);
 513
 514	atomic_inc(&ht->nelems);
 515	if (rht_grow_above_75(ht, tbl))
 516		schedule_work(&ht->run_work);
 517
 518	return NULL;
 519}
 520
 521static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 522				   struct rhash_head *obj)
 523{
 524	struct bucket_table *new_tbl;
 525	struct bucket_table *tbl;
 526	unsigned int hash;
 527	spinlock_t *lock;
 528	void *data;
 529
 530	tbl = rcu_dereference(ht->tbl);
 531
 532	/* All insertions must grab the oldest table containing
 533	 * the hashed bucket that is yet to be rehashed.
 534	 */
 535	for (;;) {
 536		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 537		lock = rht_bucket_lock(tbl, hash);
 538		spin_lock_bh(lock);
 539
 540		if (tbl->rehash <= hash)
 541			break;
 542
 543		spin_unlock_bh(lock);
 544		tbl = rcu_dereference(tbl->future_tbl);
 545	}
 546
 547	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 548	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 549	if (PTR_ERR(new_tbl) != -EEXIST)
 550		data = ERR_CAST(new_tbl);
 551
 552	while (!IS_ERR_OR_NULL(new_tbl)) {
 553		tbl = new_tbl;
 554		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 555		spin_lock_nested(rht_bucket_lock(tbl, hash),
 556				 SINGLE_DEPTH_NESTING);
 557
 558		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 559		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 560		if (PTR_ERR(new_tbl) != -EEXIST)
 561			data = ERR_CAST(new_tbl);
 562
 563		spin_unlock(rht_bucket_lock(tbl, hash));
 564	}
 565
 566	spin_unlock_bh(lock);
 567
 568	if (PTR_ERR(data) == -EAGAIN)
 569		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 570			       -EAGAIN);
 571
 572	return data;
 573}
 574
 575void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 576			     struct rhash_head *obj)
 577{
 578	void *data;
 579
 580	do {
 581		rcu_read_lock();
 582		data = rhashtable_try_insert(ht, key, obj);
 583		rcu_read_unlock();
 584	} while (PTR_ERR(data) == -EAGAIN);
 585
 586	return data;
 587}
 588EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 589
 590/**
 591 * rhashtable_walk_enter - Initialise an iterator
 592 * @ht:		Table to walk over
 593 * @iter:	Hash table Iterator
 594 *
 595 * This function prepares a hash table walk.
 596 *
 597 * Note that if you restart a walk after rhashtable_walk_stop you
 598 * may see the same object twice.  Also, you may miss objects if
 599 * there are removals in between rhashtable_walk_stop and the next
 600 * call to rhashtable_walk_start.
 601 *
 602 * For a completely stable walk you should construct your own data
 603 * structure outside the hash table.
 604 *
 605 * This function may sleep so you must not call it from interrupt
 606 * context or with spin locks held.
 607 *
 608 * You must call rhashtable_walk_exit after this function returns.
 
 609 */
 610void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 611{
 612	iter->ht = ht;
 613	iter->p = NULL;
 614	iter->slot = 0;
 615	iter->skip = 0;
 616
 
 
 
 
 617	spin_lock(&ht->lock);
 618	iter->walker.tbl =
 619		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 620	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 621	spin_unlock(&ht->lock);
 
 
 622}
 623EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 624
 625/**
 626 * rhashtable_walk_exit - Free an iterator
 627 * @iter:	Hash table Iterator
 628 *
 629 * This function frees resources allocated by rhashtable_walk_init.
 630 */
 631void rhashtable_walk_exit(struct rhashtable_iter *iter)
 632{
 633	spin_lock(&iter->ht->lock);
 634	if (iter->walker.tbl)
 635		list_del(&iter->walker.list);
 636	spin_unlock(&iter->ht->lock);
 
 637}
 638EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 639
 640/**
 641 * rhashtable_walk_start - Start a hash table walk
 642 * @iter:	Hash table iterator
 643 *
 644 * Start a hash table walk.  Note that we take the RCU lock in all
 645 * cases including when we return an error.  So you must always call
 646 * rhashtable_walk_stop to clean up.
 647 *
 648 * Returns zero if successful.
 649 *
 650 * Returns -EAGAIN if resize event occured.  Note that the iterator
 651 * will rewind back to the beginning and you may use it immediately
 652 * by calling rhashtable_walk_next.
 653 */
 654int rhashtable_walk_start(struct rhashtable_iter *iter)
 655	__acquires(RCU)
 656{
 657	struct rhashtable *ht = iter->ht;
 658
 659	rcu_read_lock();
 660
 661	spin_lock(&ht->lock);
 662	if (iter->walker.tbl)
 663		list_del(&iter->walker.list);
 664	spin_unlock(&ht->lock);
 665
 666	if (!iter->walker.tbl) {
 667		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 668		return -EAGAIN;
 669	}
 670
 671	return 0;
 672}
 673EXPORT_SYMBOL_GPL(rhashtable_walk_start);
 674
 675/**
 676 * rhashtable_walk_next - Return the next object and advance the iterator
 677 * @iter:	Hash table iterator
 678 *
 679 * Note that you must call rhashtable_walk_stop when you are finished
 680 * with the walk.
 681 *
 682 * Returns the next object or NULL when the end of the table is reached.
 683 *
 684 * Returns -EAGAIN if resize event occured.  Note that the iterator
 685 * will rewind back to the beginning and you may continue to use it.
 686 */
 687void *rhashtable_walk_next(struct rhashtable_iter *iter)
 688{
 689	struct bucket_table *tbl = iter->walker.tbl;
 690	struct rhlist_head *list = iter->list;
 691	struct rhashtable *ht = iter->ht;
 692	struct rhash_head *p = iter->p;
 693	bool rhlist = ht->rhlist;
 694
 695	if (p) {
 696		if (!rhlist || !(list = rcu_dereference(list->next))) {
 697			p = rcu_dereference(p->next);
 698			list = container_of(p, struct rhlist_head, rhead);
 699		}
 700		goto next;
 701	}
 702
 703	for (; iter->slot < tbl->size; iter->slot++) {
 704		int skip = iter->skip;
 705
 706		rht_for_each_rcu(p, tbl, iter->slot) {
 707			if (rhlist) {
 708				list = container_of(p, struct rhlist_head,
 709						    rhead);
 710				do {
 711					if (!skip)
 712						goto next;
 713					skip--;
 714					list = rcu_dereference(list->next);
 715				} while (list);
 716
 717				continue;
 718			}
 719			if (!skip)
 720				break;
 721			skip--;
 722		}
 723
 724next:
 725		if (!rht_is_a_nulls(p)) {
 726			iter->skip++;
 727			iter->p = p;
 728			iter->list = list;
 729			return rht_obj(ht, rhlist ? &list->rhead : p);
 730		}
 731
 732		iter->skip = 0;
 733	}
 734
 735	iter->p = NULL;
 736
 737	/* Ensure we see any new tables. */
 738	smp_rmb();
 739
 740	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 741	if (iter->walker.tbl) {
 742		iter->slot = 0;
 743		iter->skip = 0;
 744		return ERR_PTR(-EAGAIN);
 745	}
 746
 747	return NULL;
 748}
 749EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 750
 751/**
 752 * rhashtable_walk_stop - Finish a hash table walk
 753 * @iter:	Hash table iterator
 754 *
 755 * Finish a hash table walk.
 756 */
 757void rhashtable_walk_stop(struct rhashtable_iter *iter)
 758	__releases(RCU)
 759{
 760	struct rhashtable *ht;
 761	struct bucket_table *tbl = iter->walker.tbl;
 762
 763	if (!tbl)
 764		goto out;
 765
 766	ht = iter->ht;
 767
 768	spin_lock(&ht->lock);
 769	if (tbl->rehash < tbl->size)
 770		list_add(&iter->walker.list, &tbl->walkers);
 771	else
 772		iter->walker.tbl = NULL;
 773	spin_unlock(&ht->lock);
 774
 775	iter->p = NULL;
 776
 777out:
 778	rcu_read_unlock();
 779}
 780EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 781
 782static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 783{
 784	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 785		   (unsigned long)params->min_size);
 786}
 787
 788static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 789{
 790	return jhash2(key, length, seed);
 791}
 792
 793/**
 794 * rhashtable_init - initialize a new hash table
 795 * @ht:		hash table to be initialized
 796 * @params:	configuration parameters
 797 *
 798 * Initializes a new hash table based on the provided configuration
 799 * parameters. A table can be configured either with a variable or
 800 * fixed length key:
 801 *
 802 * Configuration Example 1: Fixed length keys
 803 * struct test_obj {
 804 *	int			key;
 805 *	void *			my_member;
 806 *	struct rhash_head	node;
 807 * };
 808 *
 809 * struct rhashtable_params params = {
 810 *	.head_offset = offsetof(struct test_obj, node),
 811 *	.key_offset = offsetof(struct test_obj, key),
 812 *	.key_len = sizeof(int),
 813 *	.hashfn = jhash,
 814 *	.nulls_base = (1U << RHT_BASE_SHIFT),
 815 * };
 816 *
 817 * Configuration Example 2: Variable length keys
 818 * struct test_obj {
 819 *	[...]
 820 *	struct rhash_head	node;
 821 * };
 822 *
 823 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
 824 * {
 825 *	struct test_obj *obj = data;
 826 *
 827 *	return [... hash ...];
 828 * }
 829 *
 830 * struct rhashtable_params params = {
 831 *	.head_offset = offsetof(struct test_obj, node),
 832 *	.hashfn = jhash,
 833 *	.obj_hashfn = my_hash_fn,
 834 * };
 835 */
 836int rhashtable_init(struct rhashtable *ht,
 837		    const struct rhashtable_params *params)
 838{
 839	struct bucket_table *tbl;
 840	size_t size;
 841
 842	size = HASH_DEFAULT_SIZE;
 843
 844	if ((!params->key_len && !params->obj_hashfn) ||
 845	    (params->obj_hashfn && !params->obj_cmpfn))
 846		return -EINVAL;
 847
 848	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
 849		return -EINVAL;
 850
 851	memset(ht, 0, sizeof(*ht));
 852	mutex_init(&ht->mutex);
 853	spin_lock_init(&ht->lock);
 854	memcpy(&ht->p, params, sizeof(*params));
 855
 856	if (params->min_size)
 857		ht->p.min_size = roundup_pow_of_two(params->min_size);
 858
 859	if (params->max_size)
 860		ht->p.max_size = rounddown_pow_of_two(params->max_size);
 861
 862	if (params->insecure_max_entries)
 863		ht->p.insecure_max_entries =
 864			rounddown_pow_of_two(params->insecure_max_entries);
 865	else
 866		ht->p.insecure_max_entries = ht->p.max_size * 2;
 867
 868	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
 869
 870	if (params->nelem_hint)
 871		size = rounded_hashtable_size(&ht->p);
 872
 873	/* The maximum (not average) chain length grows with the
 874	 * size of the hash table, at a rate of (log N)/(log log N).
 875	 * The value of 16 is selected so that even if the hash
 876	 * table grew to 2^32 you would not expect the maximum
 877	 * chain length to exceed it unless we are under attack
 878	 * (or extremely unlucky).
 879	 *
 880	 * As this limit is only to detect attacks, we don't need
 881	 * to set it to a lower value as you'd need the chain
 882	 * length to vastly exceed 16 to have any real effect
 883	 * on the system.
 884	 */
 885	if (!params->insecure_elasticity)
 886		ht->elasticity = 16;
 887
 888	if (params->locks_mul)
 889		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
 890	else
 891		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
 892
 893	ht->key_len = ht->p.key_len;
 894	if (!params->hashfn) {
 895		ht->p.hashfn = jhash;
 896
 897		if (!(ht->key_len & (sizeof(u32) - 1))) {
 898			ht->key_len /= sizeof(u32);
 899			ht->p.hashfn = rhashtable_jhash2;
 900		}
 901	}
 902
 903	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 904	if (tbl == NULL)
 905		return -ENOMEM;
 906
 907	atomic_set(&ht->nelems, 0);
 908
 909	RCU_INIT_POINTER(ht->tbl, tbl);
 910
 911	INIT_WORK(&ht->run_work, rht_deferred_worker);
 912
 913	return 0;
 914}
 915EXPORT_SYMBOL_GPL(rhashtable_init);
 916
 917/**
 918 * rhltable_init - initialize a new hash list table
 919 * @hlt:	hash list table to be initialized
 920 * @params:	configuration parameters
 921 *
 922 * Initializes a new hash list table.
 923 *
 924 * See documentation for rhashtable_init.
 925 */
 926int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
 927{
 928	int err;
 929
 930	/* No rhlist NULLs marking for now. */
 931	if (params->nulls_base)
 932		return -EINVAL;
 933
 934	err = rhashtable_init(&hlt->ht, params);
 935	hlt->ht.rhlist = true;
 936	return err;
 937}
 938EXPORT_SYMBOL_GPL(rhltable_init);
 939
 940static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
 941				void (*free_fn)(void *ptr, void *arg),
 942				void *arg)
 943{
 944	struct rhlist_head *list;
 945
 946	if (!ht->rhlist) {
 947		free_fn(rht_obj(ht, obj), arg);
 948		return;
 949	}
 950
 951	list = container_of(obj, struct rhlist_head, rhead);
 952	do {
 953		obj = &list->rhead;
 954		list = rht_dereference(list->next, ht);
 955		free_fn(rht_obj(ht, obj), arg);
 956	} while (list);
 957}
 958
 959/**
 960 * rhashtable_free_and_destroy - free elements and destroy hash table
 961 * @ht:		the hash table to destroy
 962 * @free_fn:	callback to release resources of element
 963 * @arg:	pointer passed to free_fn
 964 *
 965 * Stops an eventual async resize. If defined, invokes free_fn for each
 966 * element to releasal resources. Please note that RCU protected
 967 * readers may still be accessing the elements. Releasing of resources
 968 * must occur in a compatible manner. Then frees the bucket array.
 969 *
 970 * This function will eventually sleep to wait for an async resize
 971 * to complete. The caller is responsible that no further write operations
 972 * occurs in parallel.
 973 */
 974void rhashtable_free_and_destroy(struct rhashtable *ht,
 975				 void (*free_fn)(void *ptr, void *arg),
 976				 void *arg)
 977{
 978	const struct bucket_table *tbl;
 979	unsigned int i;
 980
 981	cancel_work_sync(&ht->run_work);
 982
 983	mutex_lock(&ht->mutex);
 984	tbl = rht_dereference(ht->tbl, ht);
 985	if (free_fn) {
 986		for (i = 0; i < tbl->size; i++) {
 987			struct rhash_head *pos, *next;
 988
 989			for (pos = rht_dereference(tbl->buckets[i], ht),
 990			     next = !rht_is_a_nulls(pos) ?
 991					rht_dereference(pos->next, ht) : NULL;
 992			     !rht_is_a_nulls(pos);
 993			     pos = next,
 994			     next = !rht_is_a_nulls(pos) ?
 995					rht_dereference(pos->next, ht) : NULL)
 996				rhashtable_free_one(ht, pos, free_fn, arg);
 997		}
 998	}
 999
1000	bucket_table_free(tbl);
1001	mutex_unlock(&ht->mutex);
1002}
1003EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1004
1005void rhashtable_destroy(struct rhashtable *ht)
1006{
1007	return rhashtable_free_and_destroy(ht, NULL, NULL);
1008}
1009EXPORT_SYMBOL_GPL(rhashtable_destroy);
v4.6
  1/*
  2 * Resizable, Scalable, Concurrent Hash Table
  3 *
  4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
  5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
  6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
  7 *
  8 * Code partially derived from nft_hash
  9 * Rewritten with rehash code from br_multicast plus single list
 10 * pointer as suggested by Josh Triplett
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License version 2 as
 14 * published by the Free Software Foundation.
 15 */
 16
 17#include <linux/atomic.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/log2.h>
 21#include <linux/sched.h>
 22#include <linux/slab.h>
 23#include <linux/vmalloc.h>
 24#include <linux/mm.h>
 25#include <linux/jhash.h>
 26#include <linux/random.h>
 27#include <linux/rhashtable.h>
 28#include <linux/err.h>
 29#include <linux/export.h>
 30
 31#define HASH_DEFAULT_SIZE	64UL
 32#define HASH_MIN_SIZE		4U
 33#define BUCKET_LOCKS_PER_CPU   128UL
 34
 35static u32 head_hashfn(struct rhashtable *ht,
 36		       const struct bucket_table *tbl,
 37		       const struct rhash_head *he)
 38{
 39	return rht_head_hashfn(ht, tbl, he, ht->p);
 40}
 41
 42#ifdef CONFIG_PROVE_LOCKING
 43#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
 44
 45int lockdep_rht_mutex_is_held(struct rhashtable *ht)
 46{
 47	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
 48}
 49EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
 50
 51int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
 52{
 53	spinlock_t *lock = rht_bucket_lock(tbl, hash);
 54
 55	return (debug_locks) ? lockdep_is_held(lock) : 1;
 56}
 57EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
 58#else
 59#define ASSERT_RHT_MUTEX(HT)
 60#endif
 61
 62
 63static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
 64			      gfp_t gfp)
 65{
 66	unsigned int i, size;
 67#if defined(CONFIG_PROVE_LOCKING)
 68	unsigned int nr_pcpus = 2;
 69#else
 70	unsigned int nr_pcpus = num_possible_cpus();
 71#endif
 72
 73	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
 74	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
 75
 76	/* Never allocate more than 0.5 locks per bucket */
 77	size = min_t(unsigned int, size, tbl->size >> 1);
 78
 79	if (sizeof(spinlock_t) != 0) {
 
 80#ifdef CONFIG_NUMA
 81		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
 82		    gfp == GFP_KERNEL)
 83			tbl->locks = vmalloc(size * sizeof(spinlock_t));
 84		else
 85#endif
 86		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
 87					   gfp);
 
 
 
 
 88		if (!tbl->locks)
 89			return -ENOMEM;
 90		for (i = 0; i < size; i++)
 91			spin_lock_init(&tbl->locks[i]);
 92	}
 93	tbl->locks_mask = size - 1;
 94
 95	return 0;
 96}
 97
 98static void bucket_table_free(const struct bucket_table *tbl)
 99{
100	if (tbl)
101		kvfree(tbl->locks);
102
103	kvfree(tbl);
104}
105
106static void bucket_table_free_rcu(struct rcu_head *head)
107{
108	bucket_table_free(container_of(head, struct bucket_table, rcu));
109}
110
111static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112					       size_t nbuckets,
113					       gfp_t gfp)
114{
115	struct bucket_table *tbl = NULL;
116	size_t size;
117	int i;
118
119	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121	    gfp != GFP_KERNEL)
122		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123	if (tbl == NULL && gfp == GFP_KERNEL)
124		tbl = vzalloc(size);
125	if (tbl == NULL)
126		return NULL;
127
128	tbl->size = nbuckets;
129
130	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131		bucket_table_free(tbl);
132		return NULL;
133	}
134
135	INIT_LIST_HEAD(&tbl->walkers);
136
137	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138
139	for (i = 0; i < nbuckets; i++)
140		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141
142	return tbl;
143}
144
145static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146						  struct bucket_table *tbl)
147{
148	struct bucket_table *new_tbl;
149
150	do {
151		new_tbl = tbl;
152		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153	} while (tbl);
154
155	return new_tbl;
156}
157
158static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159{
160	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161	struct bucket_table *new_tbl = rhashtable_last_table(ht,
162		rht_dereference_rcu(old_tbl->future_tbl, ht));
163	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164	int err = -ENOENT;
165	struct rhash_head *head, *next, *entry;
166	spinlock_t *new_bucket_lock;
167	unsigned int new_hash;
168
169	rht_for_each(entry, old_tbl, old_hash) {
170		err = 0;
171		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172
173		if (rht_is_a_nulls(next))
174			break;
175
176		pprev = &entry->next;
177	}
178
179	if (err)
180		goto out;
181
182	new_hash = head_hashfn(ht, new_tbl, entry);
183
184	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185
186	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188				      new_tbl, new_hash);
189
190	RCU_INIT_POINTER(entry->next, head);
191
192	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193	spin_unlock(new_bucket_lock);
194
195	rcu_assign_pointer(*pprev, next);
196
197out:
198	return err;
199}
200
201static void rhashtable_rehash_chain(struct rhashtable *ht,
202				    unsigned int old_hash)
203{
204	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205	spinlock_t *old_bucket_lock;
206
207	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209	spin_lock_bh(old_bucket_lock);
210	while (!rhashtable_rehash_one(ht, old_hash))
211		;
212	old_tbl->rehash++;
213	spin_unlock_bh(old_bucket_lock);
214}
215
216static int rhashtable_rehash_attach(struct rhashtable *ht,
217				    struct bucket_table *old_tbl,
218				    struct bucket_table *new_tbl)
219{
220	/* Protect future_tbl using the first bucket lock. */
221	spin_lock_bh(old_tbl->locks);
222
223	/* Did somebody beat us to it? */
224	if (rcu_access_pointer(old_tbl->future_tbl)) {
225		spin_unlock_bh(old_tbl->locks);
226		return -EEXIST;
227	}
228
229	/* Make insertions go into the new, empty table right away. Deletions
230	 * and lookups will be attempted in both tables until we synchronize.
231	 */
232	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234	spin_unlock_bh(old_tbl->locks);
235
236	return 0;
237}
238
239static int rhashtable_rehash_table(struct rhashtable *ht)
240{
241	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
242	struct bucket_table *new_tbl;
243	struct rhashtable_walker *walker;
244	unsigned int old_hash;
245
246	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
247	if (!new_tbl)
248		return 0;
249
250	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
251		rhashtable_rehash_chain(ht, old_hash);
252
253	/* Publish the new table pointer. */
254	rcu_assign_pointer(ht->tbl, new_tbl);
255
256	spin_lock(&ht->lock);
257	list_for_each_entry(walker, &old_tbl->walkers, list)
258		walker->tbl = NULL;
259	spin_unlock(&ht->lock);
260
261	/* Wait for readers. All new readers will see the new
262	 * table, and thus no references to the old table will
263	 * remain.
264	 */
265	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
266
267	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
268}
269
270/**
271 * rhashtable_expand - Expand hash table while allowing concurrent lookups
272 * @ht:		the hash table to expand
273 *
274 * A secondary bucket array is allocated and the hash entries are migrated.
275 *
276 * This function may only be called in a context where it is safe to call
277 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
278 *
279 * The caller must ensure that no concurrent resizing occurs by holding
280 * ht->mutex.
281 *
282 * It is valid to have concurrent insertions and deletions protected by per
283 * bucket locks or concurrent RCU protected lookups and traversals.
284 */
285static int rhashtable_expand(struct rhashtable *ht)
286{
287	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
288	int err;
289
290	ASSERT_RHT_MUTEX(ht);
291
292	old_tbl = rhashtable_last_table(ht, old_tbl);
293
294	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
295	if (new_tbl == NULL)
296		return -ENOMEM;
297
298	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
299	if (err)
300		bucket_table_free(new_tbl);
301
302	return err;
303}
304
305/**
306 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
307 * @ht:		the hash table to shrink
308 *
309 * This function shrinks the hash table to fit, i.e., the smallest
310 * size would not cause it to expand right away automatically.
311 *
312 * The caller must ensure that no concurrent resizing occurs by holding
313 * ht->mutex.
314 *
315 * The caller must ensure that no concurrent table mutations take place.
316 * It is however valid to have concurrent lookups if they are RCU protected.
317 *
318 * It is valid to have concurrent insertions and deletions protected by per
319 * bucket locks or concurrent RCU protected lookups and traversals.
320 */
321static int rhashtable_shrink(struct rhashtable *ht)
322{
323	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
324	unsigned int size;
 
325	int err;
326
327	ASSERT_RHT_MUTEX(ht);
328
329	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
 
330	if (size < ht->p.min_size)
331		size = ht->p.min_size;
332
333	if (old_tbl->size <= size)
334		return 0;
335
336	if (rht_dereference(old_tbl->future_tbl, ht))
337		return -EEXIST;
338
339	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340	if (new_tbl == NULL)
341		return -ENOMEM;
342
343	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344	if (err)
345		bucket_table_free(new_tbl);
346
347	return err;
348}
349
350static void rht_deferred_worker(struct work_struct *work)
351{
352	struct rhashtable *ht;
353	struct bucket_table *tbl;
354	int err = 0;
355
356	ht = container_of(work, struct rhashtable, run_work);
357	mutex_lock(&ht->mutex);
358
359	tbl = rht_dereference(ht->tbl, ht);
360	tbl = rhashtable_last_table(ht, tbl);
361
362	if (rht_grow_above_75(ht, tbl))
363		rhashtable_expand(ht);
364	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
365		rhashtable_shrink(ht);
366
367	err = rhashtable_rehash_table(ht);
368
369	mutex_unlock(&ht->mutex);
370
371	if (err)
372		schedule_work(&ht->run_work);
373}
374
375static bool rhashtable_check_elasticity(struct rhashtable *ht,
376					struct bucket_table *tbl,
377					unsigned int hash)
378{
379	unsigned int elasticity = ht->elasticity;
380	struct rhash_head *head;
381
382	rht_for_each(head, tbl, hash)
383		if (!--elasticity)
384			return true;
385
386	return false;
387}
388
389int rhashtable_insert_rehash(struct rhashtable *ht,
390			     struct bucket_table *tbl)
391{
392	struct bucket_table *old_tbl;
393	struct bucket_table *new_tbl;
394	unsigned int size;
395	int err;
396
397	old_tbl = rht_dereference_rcu(ht->tbl, ht);
398
399	size = tbl->size;
400
401	err = -EBUSY;
402
403	if (rht_grow_above_75(ht, tbl))
404		size *= 2;
405	/* Do not schedule more than one rehash */
406	else if (old_tbl != tbl)
407		goto fail;
408
409	err = -ENOMEM;
410
411	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
412	if (new_tbl == NULL)
413		goto fail;
414
415	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
416	if (err) {
417		bucket_table_free(new_tbl);
418		if (err == -EEXIST)
419			err = 0;
420	} else
421		schedule_work(&ht->run_work);
422
423	return err;
424
425fail:
426	/* Do not fail the insert if someone else did a rehash. */
427	if (likely(rcu_dereference_raw(tbl->future_tbl)))
428		return 0;
429
430	/* Schedule async rehash to retry allocation in process context. */
431	if (err == -ENOMEM)
432		schedule_work(&ht->run_work);
433
434	return err;
435}
436EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
437
438struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
439					    const void *key,
440					    struct rhash_head *obj,
441					    struct bucket_table *tbl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442{
 
443	struct rhash_head *head;
444	unsigned int hash;
445	int err;
446
447	tbl = rhashtable_last_table(ht, tbl);
448	hash = head_hashfn(ht, tbl, obj);
449	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
450
451	err = -EEXIST;
452	if (key && rhashtable_lookup_fast(ht, key, ht->p))
453		goto exit;
454
455	err = -E2BIG;
456	if (unlikely(rht_grow_above_max(ht, tbl)))
457		goto exit;
458
459	err = -EAGAIN;
460	if (rhashtable_check_elasticity(ht, tbl, hash) ||
461	    rht_grow_above_100(ht, tbl))
462		goto exit;
463
464	err = 0;
465
466	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
467
468	RCU_INIT_POINTER(obj->next, head);
 
 
 
 
 
 
469
470	rcu_assign_pointer(tbl->buckets[hash], obj);
471
472	atomic_inc(&ht->nelems);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473
474exit:
475	spin_unlock(rht_bucket_lock(tbl, hash));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476
477	if (err == 0)
478		return NULL;
479	else if (err == -EAGAIN)
480		return tbl;
481	else
482		return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483}
484EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
485
486/**
487 * rhashtable_walk_init - Initialise an iterator
488 * @ht:		Table to walk over
489 * @iter:	Hash table Iterator
490 *
491 * This function prepares a hash table walk.
492 *
493 * Note that if you restart a walk after rhashtable_walk_stop you
494 * may see the same object twice.  Also, you may miss objects if
495 * there are removals in between rhashtable_walk_stop and the next
496 * call to rhashtable_walk_start.
497 *
498 * For a completely stable walk you should construct your own data
499 * structure outside the hash table.
500 *
501 * This function may sleep so you must not call it from interrupt
502 * context or with spin locks held.
503 *
504 * You must call rhashtable_walk_exit if this function returns
505 * successfully.
506 */
507int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
508{
509	iter->ht = ht;
510	iter->p = NULL;
511	iter->slot = 0;
512	iter->skip = 0;
513
514	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
515	if (!iter->walker)
516		return -ENOMEM;
517
518	spin_lock(&ht->lock);
519	iter->walker->tbl =
520		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
521	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
522	spin_unlock(&ht->lock);
523
524	return 0;
525}
526EXPORT_SYMBOL_GPL(rhashtable_walk_init);
527
528/**
529 * rhashtable_walk_exit - Free an iterator
530 * @iter:	Hash table Iterator
531 *
532 * This function frees resources allocated by rhashtable_walk_init.
533 */
534void rhashtable_walk_exit(struct rhashtable_iter *iter)
535{
536	spin_lock(&iter->ht->lock);
537	if (iter->walker->tbl)
538		list_del(&iter->walker->list);
539	spin_unlock(&iter->ht->lock);
540	kfree(iter->walker);
541}
542EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
543
544/**
545 * rhashtable_walk_start - Start a hash table walk
546 * @iter:	Hash table iterator
547 *
548 * Start a hash table walk.  Note that we take the RCU lock in all
549 * cases including when we return an error.  So you must always call
550 * rhashtable_walk_stop to clean up.
551 *
552 * Returns zero if successful.
553 *
554 * Returns -EAGAIN if resize event occured.  Note that the iterator
555 * will rewind back to the beginning and you may use it immediately
556 * by calling rhashtable_walk_next.
557 */
558int rhashtable_walk_start(struct rhashtable_iter *iter)
559	__acquires(RCU)
560{
561	struct rhashtable *ht = iter->ht;
562
563	rcu_read_lock();
564
565	spin_lock(&ht->lock);
566	if (iter->walker->tbl)
567		list_del(&iter->walker->list);
568	spin_unlock(&ht->lock);
569
570	if (!iter->walker->tbl) {
571		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
572		return -EAGAIN;
573	}
574
575	return 0;
576}
577EXPORT_SYMBOL_GPL(rhashtable_walk_start);
578
579/**
580 * rhashtable_walk_next - Return the next object and advance the iterator
581 * @iter:	Hash table iterator
582 *
583 * Note that you must call rhashtable_walk_stop when you are finished
584 * with the walk.
585 *
586 * Returns the next object or NULL when the end of the table is reached.
587 *
588 * Returns -EAGAIN if resize event occured.  Note that the iterator
589 * will rewind back to the beginning and you may continue to use it.
590 */
591void *rhashtable_walk_next(struct rhashtable_iter *iter)
592{
593	struct bucket_table *tbl = iter->walker->tbl;
 
594	struct rhashtable *ht = iter->ht;
595	struct rhash_head *p = iter->p;
 
596
597	if (p) {
598		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
 
 
 
599		goto next;
600	}
601
602	for (; iter->slot < tbl->size; iter->slot++) {
603		int skip = iter->skip;
604
605		rht_for_each_rcu(p, tbl, iter->slot) {
 
 
 
 
 
 
 
 
 
 
 
 
606			if (!skip)
607				break;
608			skip--;
609		}
610
611next:
612		if (!rht_is_a_nulls(p)) {
613			iter->skip++;
614			iter->p = p;
615			return rht_obj(ht, p);
 
616		}
617
618		iter->skip = 0;
619	}
620
621	iter->p = NULL;
622
623	/* Ensure we see any new tables. */
624	smp_rmb();
625
626	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
627	if (iter->walker->tbl) {
628		iter->slot = 0;
629		iter->skip = 0;
630		return ERR_PTR(-EAGAIN);
631	}
632
633	return NULL;
634}
635EXPORT_SYMBOL_GPL(rhashtable_walk_next);
636
637/**
638 * rhashtable_walk_stop - Finish a hash table walk
639 * @iter:	Hash table iterator
640 *
641 * Finish a hash table walk.
642 */
643void rhashtable_walk_stop(struct rhashtable_iter *iter)
644	__releases(RCU)
645{
646	struct rhashtable *ht;
647	struct bucket_table *tbl = iter->walker->tbl;
648
649	if (!tbl)
650		goto out;
651
652	ht = iter->ht;
653
654	spin_lock(&ht->lock);
655	if (tbl->rehash < tbl->size)
656		list_add(&iter->walker->list, &tbl->walkers);
657	else
658		iter->walker->tbl = NULL;
659	spin_unlock(&ht->lock);
660
661	iter->p = NULL;
662
663out:
664	rcu_read_unlock();
665}
666EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
667
668static size_t rounded_hashtable_size(const struct rhashtable_params *params)
669{
670	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
671		   (unsigned long)params->min_size);
672}
673
674static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
675{
676	return jhash2(key, length, seed);
677}
678
679/**
680 * rhashtable_init - initialize a new hash table
681 * @ht:		hash table to be initialized
682 * @params:	configuration parameters
683 *
684 * Initializes a new hash table based on the provided configuration
685 * parameters. A table can be configured either with a variable or
686 * fixed length key:
687 *
688 * Configuration Example 1: Fixed length keys
689 * struct test_obj {
690 *	int			key;
691 *	void *			my_member;
692 *	struct rhash_head	node;
693 * };
694 *
695 * struct rhashtable_params params = {
696 *	.head_offset = offsetof(struct test_obj, node),
697 *	.key_offset = offsetof(struct test_obj, key),
698 *	.key_len = sizeof(int),
699 *	.hashfn = jhash,
700 *	.nulls_base = (1U << RHT_BASE_SHIFT),
701 * };
702 *
703 * Configuration Example 2: Variable length keys
704 * struct test_obj {
705 *	[...]
706 *	struct rhash_head	node;
707 * };
708 *
709 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
710 * {
711 *	struct test_obj *obj = data;
712 *
713 *	return [... hash ...];
714 * }
715 *
716 * struct rhashtable_params params = {
717 *	.head_offset = offsetof(struct test_obj, node),
718 *	.hashfn = jhash,
719 *	.obj_hashfn = my_hash_fn,
720 * };
721 */
722int rhashtable_init(struct rhashtable *ht,
723		    const struct rhashtable_params *params)
724{
725	struct bucket_table *tbl;
726	size_t size;
727
728	size = HASH_DEFAULT_SIZE;
729
730	if ((!params->key_len && !params->obj_hashfn) ||
731	    (params->obj_hashfn && !params->obj_cmpfn))
732		return -EINVAL;
733
734	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
735		return -EINVAL;
736
737	memset(ht, 0, sizeof(*ht));
738	mutex_init(&ht->mutex);
739	spin_lock_init(&ht->lock);
740	memcpy(&ht->p, params, sizeof(*params));
741
742	if (params->min_size)
743		ht->p.min_size = roundup_pow_of_two(params->min_size);
744
745	if (params->max_size)
746		ht->p.max_size = rounddown_pow_of_two(params->max_size);
747
748	if (params->insecure_max_entries)
749		ht->p.insecure_max_entries =
750			rounddown_pow_of_two(params->insecure_max_entries);
751	else
752		ht->p.insecure_max_entries = ht->p.max_size * 2;
753
754	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
755
756	if (params->nelem_hint)
757		size = rounded_hashtable_size(&ht->p);
758
759	/* The maximum (not average) chain length grows with the
760	 * size of the hash table, at a rate of (log N)/(log log N).
761	 * The value of 16 is selected so that even if the hash
762	 * table grew to 2^32 you would not expect the maximum
763	 * chain length to exceed it unless we are under attack
764	 * (or extremely unlucky).
765	 *
766	 * As this limit is only to detect attacks, we don't need
767	 * to set it to a lower value as you'd need the chain
768	 * length to vastly exceed 16 to have any real effect
769	 * on the system.
770	 */
771	if (!params->insecure_elasticity)
772		ht->elasticity = 16;
773
774	if (params->locks_mul)
775		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
776	else
777		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
778
779	ht->key_len = ht->p.key_len;
780	if (!params->hashfn) {
781		ht->p.hashfn = jhash;
782
783		if (!(ht->key_len & (sizeof(u32) - 1))) {
784			ht->key_len /= sizeof(u32);
785			ht->p.hashfn = rhashtable_jhash2;
786		}
787	}
788
789	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
790	if (tbl == NULL)
791		return -ENOMEM;
792
793	atomic_set(&ht->nelems, 0);
794
795	RCU_INIT_POINTER(ht->tbl, tbl);
796
797	INIT_WORK(&ht->run_work, rht_deferred_worker);
798
799	return 0;
800}
801EXPORT_SYMBOL_GPL(rhashtable_init);
802
803/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804 * rhashtable_free_and_destroy - free elements and destroy hash table
805 * @ht:		the hash table to destroy
806 * @free_fn:	callback to release resources of element
807 * @arg:	pointer passed to free_fn
808 *
809 * Stops an eventual async resize. If defined, invokes free_fn for each
810 * element to releasal resources. Please note that RCU protected
811 * readers may still be accessing the elements. Releasing of resources
812 * must occur in a compatible manner. Then frees the bucket array.
813 *
814 * This function will eventually sleep to wait for an async resize
815 * to complete. The caller is responsible that no further write operations
816 * occurs in parallel.
817 */
818void rhashtable_free_and_destroy(struct rhashtable *ht,
819				 void (*free_fn)(void *ptr, void *arg),
820				 void *arg)
821{
822	const struct bucket_table *tbl;
823	unsigned int i;
824
825	cancel_work_sync(&ht->run_work);
826
827	mutex_lock(&ht->mutex);
828	tbl = rht_dereference(ht->tbl, ht);
829	if (free_fn) {
830		for (i = 0; i < tbl->size; i++) {
831			struct rhash_head *pos, *next;
832
833			for (pos = rht_dereference(tbl->buckets[i], ht),
834			     next = !rht_is_a_nulls(pos) ?
835					rht_dereference(pos->next, ht) : NULL;
836			     !rht_is_a_nulls(pos);
837			     pos = next,
838			     next = !rht_is_a_nulls(pos) ?
839					rht_dereference(pos->next, ht) : NULL)
840				free_fn(rht_obj(ht, pos), arg);
841		}
842	}
843
844	bucket_table_free(tbl);
845	mutex_unlock(&ht->mutex);
846}
847EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
848
849void rhashtable_destroy(struct rhashtable *ht)
850{
851	return rhashtable_free_and_destroy(ht, NULL, NULL);
852}
853EXPORT_SYMBOL_GPL(rhashtable_destroy);