Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Resizable, Scalable, Concurrent Hash Table
   3 *
   4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   7 *
   8 * Code partially derived from nft_hash
   9 * Rewritten with rehash code from br_multicast plus single list
  10 * pointer as suggested by Josh Triplett
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/sched.h>
 
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/mm.h>
  25#include <linux/jhash.h>
  26#include <linux/random.h>
  27#include <linux/rhashtable.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30
  31#define HASH_DEFAULT_SIZE	64UL
  32#define HASH_MIN_SIZE		4U
  33#define BUCKET_LOCKS_PER_CPU	32UL
  34
 
 
 
 
 
  35static u32 head_hashfn(struct rhashtable *ht,
  36		       const struct bucket_table *tbl,
  37		       const struct rhash_head *he)
  38{
  39	return rht_head_hashfn(ht, tbl, he, ht->p);
  40}
  41
  42#ifdef CONFIG_PROVE_LOCKING
  43#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  44
  45int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  46{
  47	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  48}
  49EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  50
  51int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  52{
  53	spinlock_t *lock = rht_bucket_lock(tbl, hash);
  54
  55	return (debug_locks) ? lockdep_is_held(lock) : 1;
  56}
  57EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  58#else
  59#define ASSERT_RHT_MUTEX(HT)
  60#endif
  61
  62
  63static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
  64			      gfp_t gfp)
  65{
  66	unsigned int i, size;
  67#if defined(CONFIG_PROVE_LOCKING)
  68	unsigned int nr_pcpus = 2;
  69#else
  70	unsigned int nr_pcpus = num_possible_cpus();
  71#endif
  72
  73	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
  74	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
 
  75
  76	/* Never allocate more than 0.5 locks per bucket */
  77	size = min_t(unsigned int, size, tbl->size >> 1);
 
 
 
  78
  79	if (sizeof(spinlock_t) != 0) {
  80		tbl->locks = NULL;
  81#ifdef CONFIG_NUMA
  82		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
  83		    gfp == GFP_KERNEL)
  84			tbl->locks = vmalloc(size * sizeof(spinlock_t));
  85#endif
  86		if (gfp != GFP_KERNEL)
  87			gfp |= __GFP_NOWARN | __GFP_NORETRY;
  88
  89		if (!tbl->locks)
  90			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
  91						   gfp);
  92		if (!tbl->locks)
  93			return -ENOMEM;
  94		for (i = 0; i < size; i++)
  95			spin_lock_init(&tbl->locks[i]);
  96	}
  97	tbl->locks_mask = size - 1;
  98
  99	return 0;
 
 
 
 
 
 100}
 101
 102static void bucket_table_free(const struct bucket_table *tbl)
 103{
 104	if (tbl)
 105		kvfree(tbl->locks);
 106
 
 107	kvfree(tbl);
 108}
 109
 110static void bucket_table_free_rcu(struct rcu_head *head)
 111{
 112	bucket_table_free(container_of(head, struct bucket_table, rcu));
 113}
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 116					       size_t nbuckets,
 117					       gfp_t gfp)
 118{
 119	struct bucket_table *tbl = NULL;
 120	size_t size;
 121	int i;
 122
 123	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
 124	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
 125	    gfp != GFP_KERNEL)
 126		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
 127	if (tbl == NULL && gfp == GFP_KERNEL)
 128		tbl = vzalloc(size);
 
 
 
 
 
 
 
 129	if (tbl == NULL)
 130		return NULL;
 131
 132	tbl->size = nbuckets;
 133
 134	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
 
 
 
 
 
 135		bucket_table_free(tbl);
 136		return NULL;
 137	}
 138
 139	INIT_LIST_HEAD(&tbl->walkers);
 140
 141	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
 142
 143	for (i = 0; i < nbuckets; i++)
 144		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
 145
 146	return tbl;
 147}
 148
 149static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 150						  struct bucket_table *tbl)
 151{
 152	struct bucket_table *new_tbl;
 153
 154	do {
 155		new_tbl = tbl;
 156		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 157	} while (tbl);
 158
 159	return new_tbl;
 160}
 161
 162static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
 163{
 164	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 165	struct bucket_table *new_tbl = rhashtable_last_table(ht,
 166		rht_dereference_rcu(old_tbl->future_tbl, ht));
 167	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
 168	int err = -ENOENT;
 169	struct rhash_head *head, *next, *entry;
 170	spinlock_t *new_bucket_lock;
 171	unsigned int new_hash;
 172
 
 
 
 
 
 173	rht_for_each(entry, old_tbl, old_hash) {
 174		err = 0;
 175		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 176
 177		if (rht_is_a_nulls(next))
 178			break;
 179
 180		pprev = &entry->next;
 181	}
 182
 183	if (err)
 184		goto out;
 185
 186	new_hash = head_hashfn(ht, new_tbl, entry);
 187
 188	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
 189
 190	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
 191	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
 192				      new_tbl, new_hash);
 193
 194	RCU_INIT_POINTER(entry->next, head);
 195
 196	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
 197	spin_unlock(new_bucket_lock);
 198
 199	rcu_assign_pointer(*pprev, next);
 200
 201out:
 202	return err;
 203}
 204
 205static void rhashtable_rehash_chain(struct rhashtable *ht,
 206				    unsigned int old_hash)
 207{
 208	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 209	spinlock_t *old_bucket_lock;
 
 210
 211	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
 212
 213	spin_lock_bh(old_bucket_lock);
 214	while (!rhashtable_rehash_one(ht, old_hash))
 215		;
 216	old_tbl->rehash++;
 
 
 
 
 217	spin_unlock_bh(old_bucket_lock);
 
 
 218}
 219
 220static int rhashtable_rehash_attach(struct rhashtable *ht,
 221				    struct bucket_table *old_tbl,
 222				    struct bucket_table *new_tbl)
 223{
 224	/* Protect future_tbl using the first bucket lock. */
 225	spin_lock_bh(old_tbl->locks);
 226
 227	/* Did somebody beat us to it? */
 228	if (rcu_access_pointer(old_tbl->future_tbl)) {
 229		spin_unlock_bh(old_tbl->locks);
 230		return -EEXIST;
 231	}
 232
 233	/* Make insertions go into the new, empty table right away. Deletions
 234	 * and lookups will be attempted in both tables until we synchronize.
 235	 */
 236	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
 237
 238	spin_unlock_bh(old_tbl->locks);
 239
 240	return 0;
 241}
 242
 243static int rhashtable_rehash_table(struct rhashtable *ht)
 244{
 245	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 246	struct bucket_table *new_tbl;
 247	struct rhashtable_walker *walker;
 248	unsigned int old_hash;
 
 249
 250	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 251	if (!new_tbl)
 252		return 0;
 253
 254	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
 255		rhashtable_rehash_chain(ht, old_hash);
 
 
 
 
 256
 257	/* Publish the new table pointer. */
 258	rcu_assign_pointer(ht->tbl, new_tbl);
 259
 260	spin_lock(&ht->lock);
 261	list_for_each_entry(walker, &old_tbl->walkers, list)
 262		walker->tbl = NULL;
 263	spin_unlock(&ht->lock);
 264
 265	/* Wait for readers. All new readers will see the new
 266	 * table, and thus no references to the old table will
 267	 * remain.
 268	 */
 269	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 270
 271	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 272}
 273
 274/**
 275 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 276 * @ht:		the hash table to expand
 277 *
 278 * A secondary bucket array is allocated and the hash entries are migrated.
 279 *
 280 * This function may only be called in a context where it is safe to call
 281 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 282 *
 283 * The caller must ensure that no concurrent resizing occurs by holding
 284 * ht->mutex.
 285 *
 286 * It is valid to have concurrent insertions and deletions protected by per
 287 * bucket locks or concurrent RCU protected lookups and traversals.
 288 */
 289static int rhashtable_expand(struct rhashtable *ht)
 290{
 291	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
 292	int err;
 293
 294	ASSERT_RHT_MUTEX(ht);
 295
 296	old_tbl = rhashtable_last_table(ht, old_tbl);
 297
 298	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
 299	if (new_tbl == NULL)
 300		return -ENOMEM;
 301
 302	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 303	if (err)
 304		bucket_table_free(new_tbl);
 305
 306	return err;
 307}
 308
 309/**
 310 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 311 * @ht:		the hash table to shrink
 312 *
 313 * This function shrinks the hash table to fit, i.e., the smallest
 314 * size would not cause it to expand right away automatically.
 315 *
 316 * The caller must ensure that no concurrent resizing occurs by holding
 317 * ht->mutex.
 318 *
 319 * The caller must ensure that no concurrent table mutations take place.
 320 * It is however valid to have concurrent lookups if they are RCU protected.
 321 *
 322 * It is valid to have concurrent insertions and deletions protected by per
 323 * bucket locks or concurrent RCU protected lookups and traversals.
 324 */
 325static int rhashtable_shrink(struct rhashtable *ht)
 326{
 327	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
 328	unsigned int nelems = atomic_read(&ht->nelems);
 329	unsigned int size = 0;
 330	int err;
 331
 332	ASSERT_RHT_MUTEX(ht);
 333
 334	if (nelems)
 335		size = roundup_pow_of_two(nelems * 3 / 2);
 336	if (size < ht->p.min_size)
 337		size = ht->p.min_size;
 338
 339	if (old_tbl->size <= size)
 340		return 0;
 341
 342	if (rht_dereference(old_tbl->future_tbl, ht))
 343		return -EEXIST;
 344
 345	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 346	if (new_tbl == NULL)
 347		return -ENOMEM;
 348
 349	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 350	if (err)
 351		bucket_table_free(new_tbl);
 352
 353	return err;
 354}
 355
 356static void rht_deferred_worker(struct work_struct *work)
 357{
 358	struct rhashtable *ht;
 359	struct bucket_table *tbl;
 360	int err = 0;
 361
 362	ht = container_of(work, struct rhashtable, run_work);
 363	mutex_lock(&ht->mutex);
 364
 365	tbl = rht_dereference(ht->tbl, ht);
 366	tbl = rhashtable_last_table(ht, tbl);
 367
 368	if (rht_grow_above_75(ht, tbl))
 369		rhashtable_expand(ht);
 370	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 371		rhashtable_shrink(ht);
 
 
 372
 373	err = rhashtable_rehash_table(ht);
 
 374
 375	mutex_unlock(&ht->mutex);
 376
 377	if (err)
 378		schedule_work(&ht->run_work);
 379}
 380
 381static int rhashtable_insert_rehash(struct rhashtable *ht,
 382				    struct bucket_table *tbl)
 383{
 384	struct bucket_table *old_tbl;
 385	struct bucket_table *new_tbl;
 386	unsigned int size;
 387	int err;
 388
 389	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 390
 391	size = tbl->size;
 392
 393	err = -EBUSY;
 394
 395	if (rht_grow_above_75(ht, tbl))
 396		size *= 2;
 397	/* Do not schedule more than one rehash */
 398	else if (old_tbl != tbl)
 399		goto fail;
 400
 401	err = -ENOMEM;
 402
 403	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
 404	if (new_tbl == NULL)
 405		goto fail;
 406
 407	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 408	if (err) {
 409		bucket_table_free(new_tbl);
 410		if (err == -EEXIST)
 411			err = 0;
 412	} else
 413		schedule_work(&ht->run_work);
 414
 415	return err;
 416
 417fail:
 418	/* Do not fail the insert if someone else did a rehash. */
 419	if (likely(rcu_dereference_raw(tbl->future_tbl)))
 420		return 0;
 421
 422	/* Schedule async rehash to retry allocation in process context. */
 423	if (err == -ENOMEM)
 424		schedule_work(&ht->run_work);
 425
 426	return err;
 427}
 428
 429static void *rhashtable_lookup_one(struct rhashtable *ht,
 430				   struct bucket_table *tbl, unsigned int hash,
 431				   const void *key, struct rhash_head *obj)
 432{
 433	struct rhashtable_compare_arg arg = {
 434		.ht = ht,
 435		.key = key,
 436	};
 437	struct rhash_head __rcu **pprev;
 438	struct rhash_head *head;
 439	int elasticity;
 440
 441	elasticity = ht->elasticity;
 442	pprev = &tbl->buckets[hash];
 443	rht_for_each(head, tbl, hash) {
 444		struct rhlist_head *list;
 445		struct rhlist_head *plist;
 446
 447		elasticity--;
 448		if (!key ||
 449		    (ht->p.obj_cmpfn ?
 450		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 451		     rhashtable_compare(&arg, rht_obj(ht, head))))
 
 452			continue;
 
 453
 454		if (!ht->rhlist)
 455			return rht_obj(ht, head);
 456
 457		list = container_of(obj, struct rhlist_head, rhead);
 458		plist = container_of(head, struct rhlist_head, rhead);
 459
 460		RCU_INIT_POINTER(list->next, plist);
 461		head = rht_dereference_bucket(head->next, tbl, hash);
 462		RCU_INIT_POINTER(list->rhead.next, head);
 463		rcu_assign_pointer(*pprev, obj);
 464
 465		return NULL;
 466	}
 467
 468	if (elasticity <= 0)
 469		return ERR_PTR(-EAGAIN);
 470
 471	return ERR_PTR(-ENOENT);
 472}
 473
 474static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
 475						  struct bucket_table *tbl,
 476						  unsigned int hash,
 477						  struct rhash_head *obj,
 478						  void *data)
 479{
 
 480	struct bucket_table *new_tbl;
 481	struct rhash_head *head;
 482
 483	if (!IS_ERR_OR_NULL(data))
 484		return ERR_PTR(-EEXIST);
 485
 486	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 487		return ERR_CAST(data);
 488
 489	new_tbl = rcu_dereference(tbl->future_tbl);
 490	if (new_tbl)
 491		return new_tbl;
 492
 493	if (PTR_ERR(data) != -ENOENT)
 494		return ERR_CAST(data);
 495
 496	if (unlikely(rht_grow_above_max(ht, tbl)))
 497		return ERR_PTR(-E2BIG);
 498
 499	if (unlikely(rht_grow_above_100(ht, tbl)))
 500		return ERR_PTR(-EAGAIN);
 501
 502	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
 
 
 
 
 503
 504	RCU_INIT_POINTER(obj->next, head);
 505	if (ht->rhlist) {
 506		struct rhlist_head *list;
 507
 508		list = container_of(obj, struct rhlist_head, rhead);
 509		RCU_INIT_POINTER(list->next, NULL);
 510	}
 511
 512	rcu_assign_pointer(tbl->buckets[hash], obj);
 513
 514	atomic_inc(&ht->nelems);
 515	if (rht_grow_above_75(ht, tbl))
 516		schedule_work(&ht->run_work);
 517
 518	return NULL;
 519}
 520
 521static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 522				   struct rhash_head *obj)
 523{
 524	struct bucket_table *new_tbl;
 525	struct bucket_table *tbl;
 526	unsigned int hash;
 527	spinlock_t *lock;
 528	void *data;
 529
 530	tbl = rcu_dereference(ht->tbl);
 531
 532	/* All insertions must grab the oldest table containing
 533	 * the hashed bucket that is yet to be rehashed.
 534	 */
 535	for (;;) {
 536		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 537		lock = rht_bucket_lock(tbl, hash);
 538		spin_lock_bh(lock);
 539
 540		if (tbl->rehash <= hash)
 541			break;
 542
 543		spin_unlock_bh(lock);
 544		tbl = rcu_dereference(tbl->future_tbl);
 545	}
 546
 547	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 548	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 549	if (PTR_ERR(new_tbl) != -EEXIST)
 550		data = ERR_CAST(new_tbl);
 551
 552	while (!IS_ERR_OR_NULL(new_tbl)) {
 553		tbl = new_tbl;
 554		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 555		spin_lock_nested(rht_bucket_lock(tbl, hash),
 556				 SINGLE_DEPTH_NESTING);
 557
 558		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 559		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 560		if (PTR_ERR(new_tbl) != -EEXIST)
 561			data = ERR_CAST(new_tbl);
 562
 563		spin_unlock(rht_bucket_lock(tbl, hash));
 564	}
 565
 566	spin_unlock_bh(lock);
 567
 568	if (PTR_ERR(data) == -EAGAIN)
 569		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 570			       -EAGAIN);
 571
 572	return data;
 573}
 574
 575void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 576			     struct rhash_head *obj)
 577{
 578	void *data;
 579
 580	do {
 581		rcu_read_lock();
 582		data = rhashtable_try_insert(ht, key, obj);
 583		rcu_read_unlock();
 584	} while (PTR_ERR(data) == -EAGAIN);
 585
 586	return data;
 587}
 588EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 589
 590/**
 591 * rhashtable_walk_enter - Initialise an iterator
 592 * @ht:		Table to walk over
 593 * @iter:	Hash table Iterator
 594 *
 595 * This function prepares a hash table walk.
 596 *
 597 * Note that if you restart a walk after rhashtable_walk_stop you
 598 * may see the same object twice.  Also, you may miss objects if
 599 * there are removals in between rhashtable_walk_stop and the next
 600 * call to rhashtable_walk_start.
 601 *
 602 * For a completely stable walk you should construct your own data
 603 * structure outside the hash table.
 604 *
 605 * This function may sleep so you must not call it from interrupt
 606 * context or with spin locks held.
 607 *
 608 * You must call rhashtable_walk_exit after this function returns.
 609 */
 610void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 611{
 612	iter->ht = ht;
 613	iter->p = NULL;
 614	iter->slot = 0;
 615	iter->skip = 0;
 
 616
 617	spin_lock(&ht->lock);
 618	iter->walker.tbl =
 619		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 620	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 621	spin_unlock(&ht->lock);
 622}
 623EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 624
 625/**
 626 * rhashtable_walk_exit - Free an iterator
 627 * @iter:	Hash table Iterator
 628 *
 629 * This function frees resources allocated by rhashtable_walk_init.
 630 */
 631void rhashtable_walk_exit(struct rhashtable_iter *iter)
 632{
 633	spin_lock(&iter->ht->lock);
 634	if (iter->walker.tbl)
 635		list_del(&iter->walker.list);
 636	spin_unlock(&iter->ht->lock);
 637}
 638EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 639
 640/**
 641 * rhashtable_walk_start - Start a hash table walk
 642 * @iter:	Hash table iterator
 643 *
 644 * Start a hash table walk.  Note that we take the RCU lock in all
 645 * cases including when we return an error.  So you must always call
 646 * rhashtable_walk_stop to clean up.
 647 *
 648 * Returns zero if successful.
 649 *
 650 * Returns -EAGAIN if resize event occured.  Note that the iterator
 651 * will rewind back to the beginning and you may use it immediately
 652 * by calling rhashtable_walk_next.
 
 
 
 
 653 */
 654int rhashtable_walk_start(struct rhashtable_iter *iter)
 655	__acquires(RCU)
 656{
 657	struct rhashtable *ht = iter->ht;
 658
 659	rcu_read_lock();
 660
 661	spin_lock(&ht->lock);
 662	if (iter->walker.tbl)
 663		list_del(&iter->walker.list);
 664	spin_unlock(&ht->lock);
 665
 666	if (!iter->walker.tbl) {
 667		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 668		return -EAGAIN;
 669	}
 670
 671	return 0;
 672}
 673EXPORT_SYMBOL_GPL(rhashtable_walk_start);
 674
 675/**
 676 * rhashtable_walk_next - Return the next object and advance the iterator
 677 * @iter:	Hash table iterator
 678 *
 679 * Note that you must call rhashtable_walk_stop when you are finished
 680 * with the walk.
 681 *
 682 * Returns the next object or NULL when the end of the table is reached.
 683 *
 684 * Returns -EAGAIN if resize event occured.  Note that the iterator
 685 * will rewind back to the beginning and you may continue to use it.
 686 */
 687void *rhashtable_walk_next(struct rhashtable_iter *iter)
 688{
 689	struct bucket_table *tbl = iter->walker.tbl;
 690	struct rhlist_head *list = iter->list;
 691	struct rhashtable *ht = iter->ht;
 692	struct rhash_head *p = iter->p;
 693	bool rhlist = ht->rhlist;
 694
 695	if (p) {
 696		if (!rhlist || !(list = rcu_dereference(list->next))) {
 697			p = rcu_dereference(p->next);
 698			list = container_of(p, struct rhlist_head, rhead);
 699		}
 700		goto next;
 701	}
 702
 703	for (; iter->slot < tbl->size; iter->slot++) {
 704		int skip = iter->skip;
 705
 706		rht_for_each_rcu(p, tbl, iter->slot) {
 707			if (rhlist) {
 708				list = container_of(p, struct rhlist_head,
 709						    rhead);
 710				do {
 711					if (!skip)
 712						goto next;
 713					skip--;
 714					list = rcu_dereference(list->next);
 715				} while (list);
 716
 717				continue;
 718			}
 719			if (!skip)
 720				break;
 721			skip--;
 722		}
 723
 724next:
 725		if (!rht_is_a_nulls(p)) {
 726			iter->skip++;
 727			iter->p = p;
 728			iter->list = list;
 729			return rht_obj(ht, rhlist ? &list->rhead : p);
 730		}
 731
 732		iter->skip = 0;
 733	}
 734
 735	iter->p = NULL;
 736
 737	/* Ensure we see any new tables. */
 738	smp_rmb();
 739
 740	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 741	if (iter->walker.tbl) {
 742		iter->slot = 0;
 743		iter->skip = 0;
 744		return ERR_PTR(-EAGAIN);
 
 
 745	}
 746
 747	return NULL;
 748}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 750
 751/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752 * rhashtable_walk_stop - Finish a hash table walk
 753 * @iter:	Hash table iterator
 754 *
 755 * Finish a hash table walk.
 
 756 */
 757void rhashtable_walk_stop(struct rhashtable_iter *iter)
 758	__releases(RCU)
 759{
 760	struct rhashtable *ht;
 761	struct bucket_table *tbl = iter->walker.tbl;
 762
 763	if (!tbl)
 764		goto out;
 765
 766	ht = iter->ht;
 767
 768	spin_lock(&ht->lock);
 769	if (tbl->rehash < tbl->size)
 770		list_add(&iter->walker.list, &tbl->walkers);
 771	else
 772		iter->walker.tbl = NULL;
 773	spin_unlock(&ht->lock);
 774
 775	iter->p = NULL;
 776
 777out:
 778	rcu_read_unlock();
 779}
 780EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 781
 782static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 783{
 784	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 785		   (unsigned long)params->min_size);
 786}
 787
 788static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 789{
 790	return jhash2(key, length, seed);
 791}
 792
 793/**
 794 * rhashtable_init - initialize a new hash table
 795 * @ht:		hash table to be initialized
 796 * @params:	configuration parameters
 797 *
 798 * Initializes a new hash table based on the provided configuration
 799 * parameters. A table can be configured either with a variable or
 800 * fixed length key:
 801 *
 802 * Configuration Example 1: Fixed length keys
 803 * struct test_obj {
 804 *	int			key;
 805 *	void *			my_member;
 806 *	struct rhash_head	node;
 807 * };
 808 *
 809 * struct rhashtable_params params = {
 810 *	.head_offset = offsetof(struct test_obj, node),
 811 *	.key_offset = offsetof(struct test_obj, key),
 812 *	.key_len = sizeof(int),
 813 *	.hashfn = jhash,
 814 *	.nulls_base = (1U << RHT_BASE_SHIFT),
 815 * };
 816 *
 817 * Configuration Example 2: Variable length keys
 818 * struct test_obj {
 819 *	[...]
 820 *	struct rhash_head	node;
 821 * };
 822 *
 823 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
 824 * {
 825 *	struct test_obj *obj = data;
 826 *
 827 *	return [... hash ...];
 828 * }
 829 *
 830 * struct rhashtable_params params = {
 831 *	.head_offset = offsetof(struct test_obj, node),
 832 *	.hashfn = jhash,
 833 *	.obj_hashfn = my_hash_fn,
 834 * };
 835 */
 836int rhashtable_init(struct rhashtable *ht,
 837		    const struct rhashtable_params *params)
 838{
 839	struct bucket_table *tbl;
 840	size_t size;
 841
 842	size = HASH_DEFAULT_SIZE;
 843
 844	if ((!params->key_len && !params->obj_hashfn) ||
 845	    (params->obj_hashfn && !params->obj_cmpfn))
 846		return -EINVAL;
 847
 848	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
 849		return -EINVAL;
 850
 851	memset(ht, 0, sizeof(*ht));
 852	mutex_init(&ht->mutex);
 853	spin_lock_init(&ht->lock);
 854	memcpy(&ht->p, params, sizeof(*params));
 855
 856	if (params->min_size)
 857		ht->p.min_size = roundup_pow_of_two(params->min_size);
 858
 859	if (params->max_size)
 860		ht->p.max_size = rounddown_pow_of_two(params->max_size);
 861
 862	if (params->insecure_max_entries)
 863		ht->p.insecure_max_entries =
 864			rounddown_pow_of_two(params->insecure_max_entries);
 865	else
 866		ht->p.insecure_max_entries = ht->p.max_size * 2;
 867
 868	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
 869
 870	if (params->nelem_hint)
 871		size = rounded_hashtable_size(&ht->p);
 872
 873	/* The maximum (not average) chain length grows with the
 874	 * size of the hash table, at a rate of (log N)/(log log N).
 875	 * The value of 16 is selected so that even if the hash
 876	 * table grew to 2^32 you would not expect the maximum
 877	 * chain length to exceed it unless we are under attack
 878	 * (or extremely unlucky).
 879	 *
 880	 * As this limit is only to detect attacks, we don't need
 881	 * to set it to a lower value as you'd need the chain
 882	 * length to vastly exceed 16 to have any real effect
 883	 * on the system.
 884	 */
 885	if (!params->insecure_elasticity)
 886		ht->elasticity = 16;
 887
 888	if (params->locks_mul)
 889		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
 890	else
 891		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
 892
 893	ht->key_len = ht->p.key_len;
 894	if (!params->hashfn) {
 895		ht->p.hashfn = jhash;
 896
 897		if (!(ht->key_len & (sizeof(u32) - 1))) {
 898			ht->key_len /= sizeof(u32);
 899			ht->p.hashfn = rhashtable_jhash2;
 900		}
 901	}
 902
 903	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 904	if (tbl == NULL)
 905		return -ENOMEM;
 906
 907	atomic_set(&ht->nelems, 0);
 908
 909	RCU_INIT_POINTER(ht->tbl, tbl);
 910
 911	INIT_WORK(&ht->run_work, rht_deferred_worker);
 912
 913	return 0;
 914}
 915EXPORT_SYMBOL_GPL(rhashtable_init);
 916
 917/**
 918 * rhltable_init - initialize a new hash list table
 919 * @hlt:	hash list table to be initialized
 920 * @params:	configuration parameters
 921 *
 922 * Initializes a new hash list table.
 923 *
 924 * See documentation for rhashtable_init.
 925 */
 926int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
 927{
 928	int err;
 929
 930	/* No rhlist NULLs marking for now. */
 931	if (params->nulls_base)
 932		return -EINVAL;
 933
 934	err = rhashtable_init(&hlt->ht, params);
 935	hlt->ht.rhlist = true;
 936	return err;
 937}
 938EXPORT_SYMBOL_GPL(rhltable_init);
 939
 940static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
 941				void (*free_fn)(void *ptr, void *arg),
 942				void *arg)
 943{
 944	struct rhlist_head *list;
 945
 946	if (!ht->rhlist) {
 947		free_fn(rht_obj(ht, obj), arg);
 948		return;
 949	}
 950
 951	list = container_of(obj, struct rhlist_head, rhead);
 952	do {
 953		obj = &list->rhead;
 954		list = rht_dereference(list->next, ht);
 955		free_fn(rht_obj(ht, obj), arg);
 956	} while (list);
 957}
 958
 959/**
 960 * rhashtable_free_and_destroy - free elements and destroy hash table
 961 * @ht:		the hash table to destroy
 962 * @free_fn:	callback to release resources of element
 963 * @arg:	pointer passed to free_fn
 964 *
 965 * Stops an eventual async resize. If defined, invokes free_fn for each
 966 * element to releasal resources. Please note that RCU protected
 967 * readers may still be accessing the elements. Releasing of resources
 968 * must occur in a compatible manner. Then frees the bucket array.
 969 *
 970 * This function will eventually sleep to wait for an async resize
 971 * to complete. The caller is responsible that no further write operations
 972 * occurs in parallel.
 973 */
 974void rhashtable_free_and_destroy(struct rhashtable *ht,
 975				 void (*free_fn)(void *ptr, void *arg),
 976				 void *arg)
 977{
 978	const struct bucket_table *tbl;
 979	unsigned int i;
 980
 981	cancel_work_sync(&ht->run_work);
 982
 983	mutex_lock(&ht->mutex);
 984	tbl = rht_dereference(ht->tbl, ht);
 985	if (free_fn) {
 986		for (i = 0; i < tbl->size; i++) {
 987			struct rhash_head *pos, *next;
 988
 989			for (pos = rht_dereference(tbl->buckets[i], ht),
 
 990			     next = !rht_is_a_nulls(pos) ?
 991					rht_dereference(pos->next, ht) : NULL;
 992			     !rht_is_a_nulls(pos);
 993			     pos = next,
 994			     next = !rht_is_a_nulls(pos) ?
 995					rht_dereference(pos->next, ht) : NULL)
 996				rhashtable_free_one(ht, pos, free_fn, arg);
 997		}
 998	}
 999
1000	bucket_table_free(tbl);
1001	mutex_unlock(&ht->mutex);
1002}
1003EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1004
1005void rhashtable_destroy(struct rhashtable *ht)
1006{
1007	return rhashtable_free_and_destroy(ht, NULL, NULL);
1008}
1009EXPORT_SYMBOL_GPL(rhashtable_destroy);
v4.17
   1/*
   2 * Resizable, Scalable, Concurrent Hash Table
   3 *
   4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   7 *
   8 * Code partially derived from nft_hash
   9 * Rewritten with rehash code from br_multicast plus single list
  10 * pointer as suggested by Josh Triplett
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/sched.h>
  22#include <linux/rculist.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/mm.h>
  26#include <linux/jhash.h>
  27#include <linux/random.h>
  28#include <linux/rhashtable.h>
  29#include <linux/err.h>
  30#include <linux/export.h>
  31
  32#define HASH_DEFAULT_SIZE	64UL
  33#define HASH_MIN_SIZE		4U
  34#define BUCKET_LOCKS_PER_CPU	32UL
  35
  36union nested_table {
  37	union nested_table __rcu *table;
  38	struct rhash_head __rcu *bucket;
  39};
  40
  41static u32 head_hashfn(struct rhashtable *ht,
  42		       const struct bucket_table *tbl,
  43		       const struct rhash_head *he)
  44{
  45	return rht_head_hashfn(ht, tbl, he, ht->p);
  46}
  47
  48#ifdef CONFIG_PROVE_LOCKING
  49#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  50
  51int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  52{
  53	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  54}
  55EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  56
  57int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  58{
  59	spinlock_t *lock = rht_bucket_lock(tbl, hash);
  60
  61	return (debug_locks) ? lockdep_is_held(lock) : 1;
  62}
  63EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  64#else
  65#define ASSERT_RHT_MUTEX(HT)
  66#endif
  67
  68static void nested_table_free(union nested_table *ntbl, unsigned int size)
 
 
  69{
  70	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
  71	const unsigned int len = 1 << shift;
  72	unsigned int i;
 
 
 
  73
  74	ntbl = rcu_dereference_raw(ntbl->table);
  75	if (!ntbl)
  76		return;
  77
  78	if (size > len) {
  79		size >>= shift;
  80		for (i = 0; i < len; i++)
  81			nested_table_free(ntbl + i, size);
  82	}
  83
  84	kfree(ntbl);
  85}
 
 
 
 
 
 
 
  86
  87static void nested_bucket_table_free(const struct bucket_table *tbl)
  88{
  89	unsigned int size = tbl->size >> tbl->nest;
  90	unsigned int len = 1 << tbl->nest;
  91	union nested_table *ntbl;
  92	unsigned int i;
 
 
 
  93
  94	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
  95
  96	for (i = 0; i < len; i++)
  97		nested_table_free(ntbl + i, size);
  98
  99	kfree(ntbl);
 100}
 101
 102static void bucket_table_free(const struct bucket_table *tbl)
 103{
 104	if (tbl->nest)
 105		nested_bucket_table_free(tbl);
 106
 107	free_bucket_spinlocks(tbl->locks);
 108	kvfree(tbl);
 109}
 110
 111static void bucket_table_free_rcu(struct rcu_head *head)
 112{
 113	bucket_table_free(container_of(head, struct bucket_table, rcu));
 114}
 115
 116static union nested_table *nested_table_alloc(struct rhashtable *ht,
 117					      union nested_table __rcu **prev,
 118					      unsigned int shifted,
 119					      unsigned int nhash)
 120{
 121	union nested_table *ntbl;
 122	int i;
 123
 124	ntbl = rcu_dereference(*prev);
 125	if (ntbl)
 126		return ntbl;
 127
 128	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
 129
 130	if (ntbl && shifted) {
 131		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
 132			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
 133					    (i << shifted) | nhash);
 134	}
 135
 136	rcu_assign_pointer(*prev, ntbl);
 137
 138	return ntbl;
 139}
 140
 141static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
 142						      size_t nbuckets,
 143						      gfp_t gfp)
 144{
 145	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 146	struct bucket_table *tbl;
 147	size_t size;
 148
 149	if (nbuckets < (1 << (shift + 1)))
 150		return NULL;
 151
 152	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
 153
 154	tbl = kzalloc(size, gfp);
 155	if (!tbl)
 156		return NULL;
 157
 158	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
 159				0, 0)) {
 160		kfree(tbl);
 161		return NULL;
 162	}
 163
 164	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
 165
 166	return tbl;
 167}
 168
 169static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 170					       size_t nbuckets,
 171					       gfp_t gfp)
 172{
 173	struct bucket_table *tbl = NULL;
 174	size_t size, max_locks;
 175	int i;
 176
 177	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
 178	if (gfp != GFP_KERNEL)
 
 179		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
 180	else
 181		tbl = kvzalloc(size, gfp);
 182
 183	size = nbuckets;
 184
 185	if (tbl == NULL && gfp != GFP_KERNEL) {
 186		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
 187		nbuckets = 0;
 188	}
 189	if (tbl == NULL)
 190		return NULL;
 191
 192	tbl->size = size;
 193
 194	max_locks = size >> 1;
 195	if (tbl->nest)
 196		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
 197
 198	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
 199				   ht->p.locks_mul, gfp) < 0) {
 200		bucket_table_free(tbl);
 201		return NULL;
 202	}
 203
 204	INIT_LIST_HEAD(&tbl->walkers);
 205
 206	tbl->hash_rnd = get_random_u32();
 207
 208	for (i = 0; i < nbuckets; i++)
 209		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
 210
 211	return tbl;
 212}
 213
 214static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 215						  struct bucket_table *tbl)
 216{
 217	struct bucket_table *new_tbl;
 218
 219	do {
 220		new_tbl = tbl;
 221		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 222	} while (tbl);
 223
 224	return new_tbl;
 225}
 226
 227static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
 228{
 229	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 230	struct bucket_table *new_tbl = rhashtable_last_table(ht,
 231		rht_dereference_rcu(old_tbl->future_tbl, ht));
 232	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
 233	int err = -EAGAIN;
 234	struct rhash_head *head, *next, *entry;
 235	spinlock_t *new_bucket_lock;
 236	unsigned int new_hash;
 237
 238	if (new_tbl->nest)
 239		goto out;
 240
 241	err = -ENOENT;
 242
 243	rht_for_each(entry, old_tbl, old_hash) {
 244		err = 0;
 245		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 246
 247		if (rht_is_a_nulls(next))
 248			break;
 249
 250		pprev = &entry->next;
 251	}
 252
 253	if (err)
 254		goto out;
 255
 256	new_hash = head_hashfn(ht, new_tbl, entry);
 257
 258	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
 259
 260	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
 261	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
 262				      new_tbl, new_hash);
 263
 264	RCU_INIT_POINTER(entry->next, head);
 265
 266	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
 267	spin_unlock(new_bucket_lock);
 268
 269	rcu_assign_pointer(*pprev, next);
 270
 271out:
 272	return err;
 273}
 274
 275static int rhashtable_rehash_chain(struct rhashtable *ht,
 276				    unsigned int old_hash)
 277{
 278	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 279	spinlock_t *old_bucket_lock;
 280	int err;
 281
 282	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
 283
 284	spin_lock_bh(old_bucket_lock);
 285	while (!(err = rhashtable_rehash_one(ht, old_hash)))
 286		;
 287
 288	if (err == -ENOENT) {
 289		old_tbl->rehash++;
 290		err = 0;
 291	}
 292	spin_unlock_bh(old_bucket_lock);
 293
 294	return err;
 295}
 296
 297static int rhashtable_rehash_attach(struct rhashtable *ht,
 298				    struct bucket_table *old_tbl,
 299				    struct bucket_table *new_tbl)
 300{
 301	/* Protect future_tbl using the first bucket lock. */
 302	spin_lock_bh(old_tbl->locks);
 303
 304	/* Did somebody beat us to it? */
 305	if (rcu_access_pointer(old_tbl->future_tbl)) {
 306		spin_unlock_bh(old_tbl->locks);
 307		return -EEXIST;
 308	}
 309
 310	/* Make insertions go into the new, empty table right away. Deletions
 311	 * and lookups will be attempted in both tables until we synchronize.
 312	 */
 313	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
 314
 315	spin_unlock_bh(old_tbl->locks);
 316
 317	return 0;
 318}
 319
 320static int rhashtable_rehash_table(struct rhashtable *ht)
 321{
 322	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 323	struct bucket_table *new_tbl;
 324	struct rhashtable_walker *walker;
 325	unsigned int old_hash;
 326	int err;
 327
 328	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 329	if (!new_tbl)
 330		return 0;
 331
 332	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
 333		err = rhashtable_rehash_chain(ht, old_hash);
 334		if (err)
 335			return err;
 336		cond_resched();
 337	}
 338
 339	/* Publish the new table pointer. */
 340	rcu_assign_pointer(ht->tbl, new_tbl);
 341
 342	spin_lock(&ht->lock);
 343	list_for_each_entry(walker, &old_tbl->walkers, list)
 344		walker->tbl = NULL;
 345	spin_unlock(&ht->lock);
 346
 347	/* Wait for readers. All new readers will see the new
 348	 * table, and thus no references to the old table will
 349	 * remain.
 350	 */
 351	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 352
 353	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 354}
 355
 356static int rhashtable_rehash_alloc(struct rhashtable *ht,
 357				   struct bucket_table *old_tbl,
 358				   unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 359{
 360	struct bucket_table *new_tbl;
 361	int err;
 362
 363	ASSERT_RHT_MUTEX(ht);
 364
 365	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 
 
 366	if (new_tbl == NULL)
 367		return -ENOMEM;
 368
 369	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 370	if (err)
 371		bucket_table_free(new_tbl);
 372
 373	return err;
 374}
 375
 376/**
 377 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 378 * @ht:		the hash table to shrink
 379 *
 380 * This function shrinks the hash table to fit, i.e., the smallest
 381 * size would not cause it to expand right away automatically.
 382 *
 383 * The caller must ensure that no concurrent resizing occurs by holding
 384 * ht->mutex.
 385 *
 386 * The caller must ensure that no concurrent table mutations take place.
 387 * It is however valid to have concurrent lookups if they are RCU protected.
 388 *
 389 * It is valid to have concurrent insertions and deletions protected by per
 390 * bucket locks or concurrent RCU protected lookups and traversals.
 391 */
 392static int rhashtable_shrink(struct rhashtable *ht)
 393{
 394	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 395	unsigned int nelems = atomic_read(&ht->nelems);
 396	unsigned int size = 0;
 
 
 
 397
 398	if (nelems)
 399		size = roundup_pow_of_two(nelems * 3 / 2);
 400	if (size < ht->p.min_size)
 401		size = ht->p.min_size;
 402
 403	if (old_tbl->size <= size)
 404		return 0;
 405
 406	if (rht_dereference(old_tbl->future_tbl, ht))
 407		return -EEXIST;
 408
 409	return rhashtable_rehash_alloc(ht, old_tbl, size);
 
 
 
 
 
 
 
 
 410}
 411
 412static void rht_deferred_worker(struct work_struct *work)
 413{
 414	struct rhashtable *ht;
 415	struct bucket_table *tbl;
 416	int err = 0;
 417
 418	ht = container_of(work, struct rhashtable, run_work);
 419	mutex_lock(&ht->mutex);
 420
 421	tbl = rht_dereference(ht->tbl, ht);
 422	tbl = rhashtable_last_table(ht, tbl);
 423
 424	if (rht_grow_above_75(ht, tbl))
 425		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
 426	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 427		err = rhashtable_shrink(ht);
 428	else if (tbl->nest)
 429		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
 430
 431	if (!err)
 432		err = rhashtable_rehash_table(ht);
 433
 434	mutex_unlock(&ht->mutex);
 435
 436	if (err)
 437		schedule_work(&ht->run_work);
 438}
 439
 440static int rhashtable_insert_rehash(struct rhashtable *ht,
 441				    struct bucket_table *tbl)
 442{
 443	struct bucket_table *old_tbl;
 444	struct bucket_table *new_tbl;
 445	unsigned int size;
 446	int err;
 447
 448	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 449
 450	size = tbl->size;
 451
 452	err = -EBUSY;
 453
 454	if (rht_grow_above_75(ht, tbl))
 455		size *= 2;
 456	/* Do not schedule more than one rehash */
 457	else if (old_tbl != tbl)
 458		goto fail;
 459
 460	err = -ENOMEM;
 461
 462	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
 463	if (new_tbl == NULL)
 464		goto fail;
 465
 466	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 467	if (err) {
 468		bucket_table_free(new_tbl);
 469		if (err == -EEXIST)
 470			err = 0;
 471	} else
 472		schedule_work(&ht->run_work);
 473
 474	return err;
 475
 476fail:
 477	/* Do not fail the insert if someone else did a rehash. */
 478	if (likely(rcu_dereference_raw(tbl->future_tbl)))
 479		return 0;
 480
 481	/* Schedule async rehash to retry allocation in process context. */
 482	if (err == -ENOMEM)
 483		schedule_work(&ht->run_work);
 484
 485	return err;
 486}
 487
 488static void *rhashtable_lookup_one(struct rhashtable *ht,
 489				   struct bucket_table *tbl, unsigned int hash,
 490				   const void *key, struct rhash_head *obj)
 491{
 492	struct rhashtable_compare_arg arg = {
 493		.ht = ht,
 494		.key = key,
 495	};
 496	struct rhash_head __rcu **pprev;
 497	struct rhash_head *head;
 498	int elasticity;
 499
 500	elasticity = RHT_ELASTICITY;
 501	pprev = rht_bucket_var(tbl, hash);
 502	rht_for_each_continue(head, *pprev, tbl, hash) {
 503		struct rhlist_head *list;
 504		struct rhlist_head *plist;
 505
 506		elasticity--;
 507		if (!key ||
 508		    (ht->p.obj_cmpfn ?
 509		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 510		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
 511			pprev = &head->next;
 512			continue;
 513		}
 514
 515		if (!ht->rhlist)
 516			return rht_obj(ht, head);
 517
 518		list = container_of(obj, struct rhlist_head, rhead);
 519		plist = container_of(head, struct rhlist_head, rhead);
 520
 521		RCU_INIT_POINTER(list->next, plist);
 522		head = rht_dereference_bucket(head->next, tbl, hash);
 523		RCU_INIT_POINTER(list->rhead.next, head);
 524		rcu_assign_pointer(*pprev, obj);
 525
 526		return NULL;
 527	}
 528
 529	if (elasticity <= 0)
 530		return ERR_PTR(-EAGAIN);
 531
 532	return ERR_PTR(-ENOENT);
 533}
 534
 535static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
 536						  struct bucket_table *tbl,
 537						  unsigned int hash,
 538						  struct rhash_head *obj,
 539						  void *data)
 540{
 541	struct rhash_head __rcu **pprev;
 542	struct bucket_table *new_tbl;
 543	struct rhash_head *head;
 544
 545	if (!IS_ERR_OR_NULL(data))
 546		return ERR_PTR(-EEXIST);
 547
 548	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 549		return ERR_CAST(data);
 550
 551	new_tbl = rcu_dereference(tbl->future_tbl);
 552	if (new_tbl)
 553		return new_tbl;
 554
 555	if (PTR_ERR(data) != -ENOENT)
 556		return ERR_CAST(data);
 557
 558	if (unlikely(rht_grow_above_max(ht, tbl)))
 559		return ERR_PTR(-E2BIG);
 560
 561	if (unlikely(rht_grow_above_100(ht, tbl)))
 562		return ERR_PTR(-EAGAIN);
 563
 564	pprev = rht_bucket_insert(ht, tbl, hash);
 565	if (!pprev)
 566		return ERR_PTR(-ENOMEM);
 567
 568	head = rht_dereference_bucket(*pprev, tbl, hash);
 569
 570	RCU_INIT_POINTER(obj->next, head);
 571	if (ht->rhlist) {
 572		struct rhlist_head *list;
 573
 574		list = container_of(obj, struct rhlist_head, rhead);
 575		RCU_INIT_POINTER(list->next, NULL);
 576	}
 577
 578	rcu_assign_pointer(*pprev, obj);
 579
 580	atomic_inc(&ht->nelems);
 581	if (rht_grow_above_75(ht, tbl))
 582		schedule_work(&ht->run_work);
 583
 584	return NULL;
 585}
 586
 587static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 588				   struct rhash_head *obj)
 589{
 590	struct bucket_table *new_tbl;
 591	struct bucket_table *tbl;
 592	unsigned int hash;
 593	spinlock_t *lock;
 594	void *data;
 595
 596	tbl = rcu_dereference(ht->tbl);
 597
 598	/* All insertions must grab the oldest table containing
 599	 * the hashed bucket that is yet to be rehashed.
 600	 */
 601	for (;;) {
 602		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 603		lock = rht_bucket_lock(tbl, hash);
 604		spin_lock_bh(lock);
 605
 606		if (tbl->rehash <= hash)
 607			break;
 608
 609		spin_unlock_bh(lock);
 610		tbl = rcu_dereference(tbl->future_tbl);
 611	}
 612
 613	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 614	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 615	if (PTR_ERR(new_tbl) != -EEXIST)
 616		data = ERR_CAST(new_tbl);
 617
 618	while (!IS_ERR_OR_NULL(new_tbl)) {
 619		tbl = new_tbl;
 620		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 621		spin_lock_nested(rht_bucket_lock(tbl, hash),
 622				 SINGLE_DEPTH_NESTING);
 623
 624		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 625		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 626		if (PTR_ERR(new_tbl) != -EEXIST)
 627			data = ERR_CAST(new_tbl);
 628
 629		spin_unlock(rht_bucket_lock(tbl, hash));
 630	}
 631
 632	spin_unlock_bh(lock);
 633
 634	if (PTR_ERR(data) == -EAGAIN)
 635		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 636			       -EAGAIN);
 637
 638	return data;
 639}
 640
 641void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 642			     struct rhash_head *obj)
 643{
 644	void *data;
 645
 646	do {
 647		rcu_read_lock();
 648		data = rhashtable_try_insert(ht, key, obj);
 649		rcu_read_unlock();
 650	} while (PTR_ERR(data) == -EAGAIN);
 651
 652	return data;
 653}
 654EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 655
 656/**
 657 * rhashtable_walk_enter - Initialise an iterator
 658 * @ht:		Table to walk over
 659 * @iter:	Hash table Iterator
 660 *
 661 * This function prepares a hash table walk.
 662 *
 663 * Note that if you restart a walk after rhashtable_walk_stop you
 664 * may see the same object twice.  Also, you may miss objects if
 665 * there are removals in between rhashtable_walk_stop and the next
 666 * call to rhashtable_walk_start.
 667 *
 668 * For a completely stable walk you should construct your own data
 669 * structure outside the hash table.
 670 *
 671 * This function may sleep so you must not call it from interrupt
 672 * context or with spin locks held.
 673 *
 674 * You must call rhashtable_walk_exit after this function returns.
 675 */
 676void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 677{
 678	iter->ht = ht;
 679	iter->p = NULL;
 680	iter->slot = 0;
 681	iter->skip = 0;
 682	iter->end_of_table = 0;
 683
 684	spin_lock(&ht->lock);
 685	iter->walker.tbl =
 686		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 687	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 688	spin_unlock(&ht->lock);
 689}
 690EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 691
 692/**
 693 * rhashtable_walk_exit - Free an iterator
 694 * @iter:	Hash table Iterator
 695 *
 696 * This function frees resources allocated by rhashtable_walk_init.
 697 */
 698void rhashtable_walk_exit(struct rhashtable_iter *iter)
 699{
 700	spin_lock(&iter->ht->lock);
 701	if (iter->walker.tbl)
 702		list_del(&iter->walker.list);
 703	spin_unlock(&iter->ht->lock);
 704}
 705EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 706
 707/**
 708 * rhashtable_walk_start_check - Start a hash table walk
 709 * @iter:	Hash table iterator
 710 *
 711 * Start a hash table walk at the current iterator position.  Note that we take
 712 * the RCU lock in all cases including when we return an error.  So you must
 713 * always call rhashtable_walk_stop to clean up.
 714 *
 715 * Returns zero if successful.
 716 *
 717 * Returns -EAGAIN if resize event occured.  Note that the iterator
 718 * will rewind back to the beginning and you may use it immediately
 719 * by calling rhashtable_walk_next.
 720 *
 721 * rhashtable_walk_start is defined as an inline variant that returns
 722 * void. This is preferred in cases where the caller would ignore
 723 * resize events and always continue.
 724 */
 725int rhashtable_walk_start_check(struct rhashtable_iter *iter)
 726	__acquires(RCU)
 727{
 728	struct rhashtable *ht = iter->ht;
 729
 730	rcu_read_lock();
 731
 732	spin_lock(&ht->lock);
 733	if (iter->walker.tbl)
 734		list_del(&iter->walker.list);
 735	spin_unlock(&ht->lock);
 736
 737	if (!iter->walker.tbl && !iter->end_of_table) {
 738		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 739		return -EAGAIN;
 740	}
 741
 742	return 0;
 743}
 744EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
 745
 746/**
 747 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 748 * one in case of a new walk).
 749 *
 750 * @iter:	Hash table iterator
 
 751 *
 752 * Returns the found object or NULL when the end of the table is reached.
 753 *
 754 * Returns -EAGAIN if resize event occurred.
 
 755 */
 756static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
 757{
 758	struct bucket_table *tbl = iter->walker.tbl;
 759	struct rhlist_head *list = iter->list;
 760	struct rhashtable *ht = iter->ht;
 761	struct rhash_head *p = iter->p;
 762	bool rhlist = ht->rhlist;
 763
 764	if (!tbl)
 765		return NULL;
 
 
 
 
 
 766
 767	for (; iter->slot < tbl->size; iter->slot++) {
 768		int skip = iter->skip;
 769
 770		rht_for_each_rcu(p, tbl, iter->slot) {
 771			if (rhlist) {
 772				list = container_of(p, struct rhlist_head,
 773						    rhead);
 774				do {
 775					if (!skip)
 776						goto next;
 777					skip--;
 778					list = rcu_dereference(list->next);
 779				} while (list);
 780
 781				continue;
 782			}
 783			if (!skip)
 784				break;
 785			skip--;
 786		}
 787
 788next:
 789		if (!rht_is_a_nulls(p)) {
 790			iter->skip++;
 791			iter->p = p;
 792			iter->list = list;
 793			return rht_obj(ht, rhlist ? &list->rhead : p);
 794		}
 795
 796		iter->skip = 0;
 797	}
 798
 799	iter->p = NULL;
 800
 801	/* Ensure we see any new tables. */
 802	smp_rmb();
 803
 804	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 805	if (iter->walker.tbl) {
 806		iter->slot = 0;
 807		iter->skip = 0;
 808		return ERR_PTR(-EAGAIN);
 809	} else {
 810		iter->end_of_table = true;
 811	}
 812
 813	return NULL;
 814}
 815
 816/**
 817 * rhashtable_walk_next - Return the next object and advance the iterator
 818 * @iter:	Hash table iterator
 819 *
 820 * Note that you must call rhashtable_walk_stop when you are finished
 821 * with the walk.
 822 *
 823 * Returns the next object or NULL when the end of the table is reached.
 824 *
 825 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 826 * will rewind back to the beginning and you may continue to use it.
 827 */
 828void *rhashtable_walk_next(struct rhashtable_iter *iter)
 829{
 830	struct rhlist_head *list = iter->list;
 831	struct rhashtable *ht = iter->ht;
 832	struct rhash_head *p = iter->p;
 833	bool rhlist = ht->rhlist;
 834
 835	if (p) {
 836		if (!rhlist || !(list = rcu_dereference(list->next))) {
 837			p = rcu_dereference(p->next);
 838			list = container_of(p, struct rhlist_head, rhead);
 839		}
 840		if (!rht_is_a_nulls(p)) {
 841			iter->skip++;
 842			iter->p = p;
 843			iter->list = list;
 844			return rht_obj(ht, rhlist ? &list->rhead : p);
 845		}
 846
 847		/* At the end of this slot, switch to next one and then find
 848		 * next entry from that point.
 849		 */
 850		iter->skip = 0;
 851		iter->slot++;
 852	}
 853
 854	return __rhashtable_walk_find_next(iter);
 855}
 856EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 857
 858/**
 859 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 860 * @iter:	Hash table iterator
 861 *
 862 * Returns the next object or NULL when the end of the table is reached.
 863 *
 864 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 865 * will rewind back to the beginning and you may continue to use it.
 866 */
 867void *rhashtable_walk_peek(struct rhashtable_iter *iter)
 868{
 869	struct rhlist_head *list = iter->list;
 870	struct rhashtable *ht = iter->ht;
 871	struct rhash_head *p = iter->p;
 872
 873	if (p)
 874		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
 875
 876	/* No object found in current iter, find next one in the table. */
 877
 878	if (iter->skip) {
 879		/* A nonzero skip value points to the next entry in the table
 880		 * beyond that last one that was found. Decrement skip so
 881		 * we find the current value. __rhashtable_walk_find_next
 882		 * will restore the original value of skip assuming that
 883		 * the table hasn't changed.
 884		 */
 885		iter->skip--;
 886	}
 887
 888	return __rhashtable_walk_find_next(iter);
 889}
 890EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
 891
 892/**
 893 * rhashtable_walk_stop - Finish a hash table walk
 894 * @iter:	Hash table iterator
 895 *
 896 * Finish a hash table walk.  Does not reset the iterator to the start of the
 897 * hash table.
 898 */
 899void rhashtable_walk_stop(struct rhashtable_iter *iter)
 900	__releases(RCU)
 901{
 902	struct rhashtable *ht;
 903	struct bucket_table *tbl = iter->walker.tbl;
 904
 905	if (!tbl)
 906		goto out;
 907
 908	ht = iter->ht;
 909
 910	spin_lock(&ht->lock);
 911	if (tbl->rehash < tbl->size)
 912		list_add(&iter->walker.list, &tbl->walkers);
 913	else
 914		iter->walker.tbl = NULL;
 915	spin_unlock(&ht->lock);
 916
 917	iter->p = NULL;
 918
 919out:
 920	rcu_read_unlock();
 921}
 922EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 923
 924static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 925{
 926	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 927		   (unsigned long)params->min_size);
 928}
 929
 930static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 931{
 932	return jhash2(key, length, seed);
 933}
 934
 935/**
 936 * rhashtable_init - initialize a new hash table
 937 * @ht:		hash table to be initialized
 938 * @params:	configuration parameters
 939 *
 940 * Initializes a new hash table based on the provided configuration
 941 * parameters. A table can be configured either with a variable or
 942 * fixed length key:
 943 *
 944 * Configuration Example 1: Fixed length keys
 945 * struct test_obj {
 946 *	int			key;
 947 *	void *			my_member;
 948 *	struct rhash_head	node;
 949 * };
 950 *
 951 * struct rhashtable_params params = {
 952 *	.head_offset = offsetof(struct test_obj, node),
 953 *	.key_offset = offsetof(struct test_obj, key),
 954 *	.key_len = sizeof(int),
 955 *	.hashfn = jhash,
 956 *	.nulls_base = (1U << RHT_BASE_SHIFT),
 957 * };
 958 *
 959 * Configuration Example 2: Variable length keys
 960 * struct test_obj {
 961 *	[...]
 962 *	struct rhash_head	node;
 963 * };
 964 *
 965 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
 966 * {
 967 *	struct test_obj *obj = data;
 968 *
 969 *	return [... hash ...];
 970 * }
 971 *
 972 * struct rhashtable_params params = {
 973 *	.head_offset = offsetof(struct test_obj, node),
 974 *	.hashfn = jhash,
 975 *	.obj_hashfn = my_hash_fn,
 976 * };
 977 */
 978int rhashtable_init(struct rhashtable *ht,
 979		    const struct rhashtable_params *params)
 980{
 981	struct bucket_table *tbl;
 982	size_t size;
 983
 984	size = HASH_DEFAULT_SIZE;
 985
 986	if ((!params->key_len && !params->obj_hashfn) ||
 987	    (params->obj_hashfn && !params->obj_cmpfn))
 988		return -EINVAL;
 989
 990	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
 991		return -EINVAL;
 992
 993	memset(ht, 0, sizeof(*ht));
 994	mutex_init(&ht->mutex);
 995	spin_lock_init(&ht->lock);
 996	memcpy(&ht->p, params, sizeof(*params));
 997
 998	if (params->min_size)
 999		ht->p.min_size = roundup_pow_of_two(params->min_size);
1000
1001	/* Cap total entries at 2^31 to avoid nelems overflow. */
1002	ht->max_elems = 1u << 31;
1003
1004	if (params->max_size) {
1005		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1006		if (ht->p.max_size < ht->max_elems / 2)
1007			ht->max_elems = ht->p.max_size * 2;
1008	}
1009
1010	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1011
1012	if (params->nelem_hint)
1013		size = rounded_hashtable_size(&ht->p);
1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015	if (params->locks_mul)
1016		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1017	else
1018		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1019
1020	ht->key_len = ht->p.key_len;
1021	if (!params->hashfn) {
1022		ht->p.hashfn = jhash;
1023
1024		if (!(ht->key_len & (sizeof(u32) - 1))) {
1025			ht->key_len /= sizeof(u32);
1026			ht->p.hashfn = rhashtable_jhash2;
1027		}
1028	}
1029
1030	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1031	if (tbl == NULL)
1032		return -ENOMEM;
1033
1034	atomic_set(&ht->nelems, 0);
1035
1036	RCU_INIT_POINTER(ht->tbl, tbl);
1037
1038	INIT_WORK(&ht->run_work, rht_deferred_worker);
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(rhashtable_init);
1043
1044/**
1045 * rhltable_init - initialize a new hash list table
1046 * @hlt:	hash list table to be initialized
1047 * @params:	configuration parameters
1048 *
1049 * Initializes a new hash list table.
1050 *
1051 * See documentation for rhashtable_init.
1052 */
1053int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1054{
1055	int err;
1056
1057	/* No rhlist NULLs marking for now. */
1058	if (params->nulls_base)
1059		return -EINVAL;
1060
1061	err = rhashtable_init(&hlt->ht, params);
1062	hlt->ht.rhlist = true;
1063	return err;
1064}
1065EXPORT_SYMBOL_GPL(rhltable_init);
1066
1067static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1068				void (*free_fn)(void *ptr, void *arg),
1069				void *arg)
1070{
1071	struct rhlist_head *list;
1072
1073	if (!ht->rhlist) {
1074		free_fn(rht_obj(ht, obj), arg);
1075		return;
1076	}
1077
1078	list = container_of(obj, struct rhlist_head, rhead);
1079	do {
1080		obj = &list->rhead;
1081		list = rht_dereference(list->next, ht);
1082		free_fn(rht_obj(ht, obj), arg);
1083	} while (list);
1084}
1085
1086/**
1087 * rhashtable_free_and_destroy - free elements and destroy hash table
1088 * @ht:		the hash table to destroy
1089 * @free_fn:	callback to release resources of element
1090 * @arg:	pointer passed to free_fn
1091 *
1092 * Stops an eventual async resize. If defined, invokes free_fn for each
1093 * element to releasal resources. Please note that RCU protected
1094 * readers may still be accessing the elements. Releasing of resources
1095 * must occur in a compatible manner. Then frees the bucket array.
1096 *
1097 * This function will eventually sleep to wait for an async resize
1098 * to complete. The caller is responsible that no further write operations
1099 * occurs in parallel.
1100 */
1101void rhashtable_free_and_destroy(struct rhashtable *ht,
1102				 void (*free_fn)(void *ptr, void *arg),
1103				 void *arg)
1104{
1105	struct bucket_table *tbl;
1106	unsigned int i;
1107
1108	cancel_work_sync(&ht->run_work);
1109
1110	mutex_lock(&ht->mutex);
1111	tbl = rht_dereference(ht->tbl, ht);
1112	if (free_fn) {
1113		for (i = 0; i < tbl->size; i++) {
1114			struct rhash_head *pos, *next;
1115
1116			cond_resched();
1117			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1118			     next = !rht_is_a_nulls(pos) ?
1119					rht_dereference(pos->next, ht) : NULL;
1120			     !rht_is_a_nulls(pos);
1121			     pos = next,
1122			     next = !rht_is_a_nulls(pos) ?
1123					rht_dereference(pos->next, ht) : NULL)
1124				rhashtable_free_one(ht, pos, free_fn, arg);
1125		}
1126	}
1127
1128	bucket_table_free(tbl);
1129	mutex_unlock(&ht->mutex);
1130}
1131EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1132
1133void rhashtable_destroy(struct rhashtable *ht)
1134{
1135	return rhashtable_free_and_destroy(ht, NULL, NULL);
1136}
1137EXPORT_SYMBOL_GPL(rhashtable_destroy);
1138
1139struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1140					    unsigned int hash)
1141{
1142	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1143	static struct rhash_head __rcu *rhnull =
1144		(struct rhash_head __rcu *)NULLS_MARKER(0);
1145	unsigned int index = hash & ((1 << tbl->nest) - 1);
1146	unsigned int size = tbl->size >> tbl->nest;
1147	unsigned int subhash = hash;
1148	union nested_table *ntbl;
1149
1150	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1151	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1152	subhash >>= tbl->nest;
1153
1154	while (ntbl && size > (1 << shift)) {
1155		index = subhash & ((1 << shift) - 1);
1156		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1157						  tbl, hash);
1158		size >>= shift;
1159		subhash >>= shift;
1160	}
1161
1162	if (!ntbl)
1163		return &rhnull;
1164
1165	return &ntbl[subhash].bucket;
1166
1167}
1168EXPORT_SYMBOL_GPL(rht_bucket_nested);
1169
1170struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1171						   struct bucket_table *tbl,
1172						   unsigned int hash)
1173{
1174	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1175	unsigned int index = hash & ((1 << tbl->nest) - 1);
1176	unsigned int size = tbl->size >> tbl->nest;
1177	union nested_table *ntbl;
1178	unsigned int shifted;
1179	unsigned int nhash;
1180
1181	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1182	hash >>= tbl->nest;
1183	nhash = index;
1184	shifted = tbl->nest;
1185	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1186				  size <= (1 << shift) ? shifted : 0, nhash);
1187
1188	while (ntbl && size > (1 << shift)) {
1189		index = hash & ((1 << shift) - 1);
1190		size >>= shift;
1191		hash >>= shift;
1192		nhash |= index << shifted;
1193		shifted += shift;
1194		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1195					  size <= (1 << shift) ? shifted : 0,
1196					  nhash);
1197	}
1198
1199	if (!ntbl)
1200		return NULL;
1201
1202	return &ntbl[hash].bucket;
1203
1204}
1205EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);