Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.10.11
 
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/pmem.h>
  29#include <linux/sched.h>
 
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/iomap.h>
  36#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/* We choose 4096 entries - same as per-zone page wait tables */
  39#define DAX_WAIT_TABLE_BITS 12
  40#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  41
 
 
 
 
 
 
 
  42static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  43
  44static int __init init_dax_wait_table(void)
  45{
  46	int i;
  47
  48	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  49		init_waitqueue_head(wait_table + i);
  50	return 0;
  51}
  52fs_initcall(init_dax_wait_table);
  53
  54static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55{
  56	struct request_queue *q = bdev->bd_queue;
  57	long rc = -EIO;
  58
  59	dax->addr = ERR_PTR(-EIO);
  60	if (blk_queue_enter(q, true) != 0)
  61		return rc;
 
  62
  63	rc = bdev_direct_access(bdev, dax);
  64	if (rc < 0) {
  65		dax->addr = ERR_PTR(rc);
  66		blk_queue_exit(q);
  67		return rc;
  68	}
  69	return rc;
  70}
  71
  72static void dax_unmap_atomic(struct block_device *bdev,
  73		const struct blk_dax_ctl *dax)
  74{
  75	if (IS_ERR(dax->addr))
  76		return;
  77	blk_queue_exit(bdev->bd_queue);
  78}
  79
  80static int dax_is_pmd_entry(void *entry)
  81{
  82	return (unsigned long)entry & RADIX_DAX_PMD;
  83}
  84
  85static int dax_is_pte_entry(void *entry)
  86{
  87	return !((unsigned long)entry & RADIX_DAX_PMD);
  88}
  89
  90static int dax_is_zero_entry(void *entry)
  91{
  92	return (unsigned long)entry & RADIX_DAX_HZP;
  93}
  94
  95static int dax_is_empty_entry(void *entry)
  96{
  97	return (unsigned long)entry & RADIX_DAX_EMPTY;
  98}
  99
 100struct page *read_dax_sector(struct block_device *bdev, sector_t n)
 
 
 
 
 101{
 102	struct page *page = alloc_pages(GFP_KERNEL, 0);
 103	struct blk_dax_ctl dax = {
 104		.size = PAGE_SIZE,
 105		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
 106	};
 107	long rc;
 108
 109	if (!page)
 110		return ERR_PTR(-ENOMEM);
 111
 112	rc = dax_map_atomic(bdev, &dax);
 113	if (rc < 0)
 114		return ERR_PTR(rc);
 115	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
 116	dax_unmap_atomic(bdev, &dax);
 117	return page;
 118}
 119
 120/*
 121 * DAX radix tree locking
 122 */
 123struct exceptional_entry_key {
 124	struct address_space *mapping;
 125	pgoff_t entry_start;
 126};
 127
 128struct wait_exceptional_entry_queue {
 129	wait_queue_t wait;
 130	struct exceptional_entry_key key;
 131};
 132
 133static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
 134		pgoff_t index, void *entry, struct exceptional_entry_key *key)
 
 
 
 
 
 
 
 
 
 
 135{
 136	unsigned long hash;
 
 137
 138	/*
 139	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 140	 * queue to the start of that PMD.  This ensures that all offsets in
 141	 * the range covered by the PMD map to the same bit lock.
 142	 */
 143	if (dax_is_pmd_entry(entry))
 144		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
 145
 146	key->mapping = mapping;
 147	key->entry_start = index;
 148
 149	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
 150	return wait_table + hash;
 151}
 152
 153static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
 154				       int sync, void *keyp)
 155{
 156	struct exceptional_entry_key *key = keyp;
 157	struct wait_exceptional_entry_queue *ewait =
 158		container_of(wait, struct wait_exceptional_entry_queue, wait);
 159
 160	if (key->mapping != ewait->key.mapping ||
 161	    key->entry_start != ewait->key.entry_start)
 162		return 0;
 163	return autoremove_wake_function(wait, mode, sync, NULL);
 164}
 165
 166/*
 167 * Check whether the given slot is locked. The function must be called with
 168 * mapping->tree_lock held
 169 */
 170static inline int slot_locked(struct address_space *mapping, void **slot)
 171{
 172	unsigned long entry = (unsigned long)
 173		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 174	return entry & RADIX_DAX_ENTRY_LOCK;
 175}
 176
 177/*
 178 * Mark the given slot is locked. The function must be called with
 179 * mapping->tree_lock held
 180 */
 181static inline void *lock_slot(struct address_space *mapping, void **slot)
 
 182{
 183	unsigned long entry = (unsigned long)
 184		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 185
 186	entry |= RADIX_DAX_ENTRY_LOCK;
 187	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 188	return (void *)entry;
 189}
 190
 191/*
 192 * Mark the given slot is unlocked. The function must be called with
 193 * mapping->tree_lock held
 194 */
 195static inline void *unlock_slot(struct address_space *mapping, void **slot)
 196{
 197	unsigned long entry = (unsigned long)
 198		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 199
 200	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
 201	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 202	return (void *)entry;
 
 
 
 
 
 203}
 204
 205/*
 206 * Lookup entry in radix tree, wait for it to become unlocked if it is
 207 * exceptional entry and return it. The caller must call
 208 * put_unlocked_mapping_entry() when he decided not to lock the entry or
 209 * put_locked_mapping_entry() when he locked the entry and now wants to
 210 * unlock it.
 
 211 *
 212 * The function must be called with mapping->tree_lock held.
 213 */
 214static void *get_unlocked_mapping_entry(struct address_space *mapping,
 215					pgoff_t index, void ***slotp)
 216{
 217	void *entry, **slot;
 218	struct wait_exceptional_entry_queue ewait;
 219	wait_queue_head_t *wq;
 220
 221	init_wait(&ewait.wait);
 222	ewait.wait.func = wake_exceptional_entry_func;
 223
 224	for (;;) {
 225		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
 226					  &slot);
 227		if (!entry || !radix_tree_exceptional_entry(entry) ||
 228		    !slot_locked(mapping, slot)) {
 229			if (slotp)
 230				*slotp = slot;
 231			return entry;
 232		}
 233
 234		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
 235		prepare_to_wait_exclusive(wq, &ewait.wait,
 236					  TASK_UNINTERRUPTIBLE);
 237		spin_unlock_irq(&mapping->tree_lock);
 
 238		schedule();
 239		finish_wait(wq, &ewait.wait);
 240		spin_lock_irq(&mapping->tree_lock);
 241	}
 242}
 243
 244static void dax_unlock_mapping_entry(struct address_space *mapping,
 245				     pgoff_t index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246{
 247	void *entry, **slot;
 
 
 
 
 
 
 
 
 
 
 
 248
 249	spin_lock_irq(&mapping->tree_lock);
 250	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
 251	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
 252			 !slot_locked(mapping, slot))) {
 253		spin_unlock_irq(&mapping->tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254		return;
 
 
 
 
 
 
 
 
 
 
 
 
 255	}
 256	unlock_slot(mapping, slot);
 257	spin_unlock_irq(&mapping->tree_lock);
 258	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 259}
 260
 261static void put_locked_mapping_entry(struct address_space *mapping,
 262				     pgoff_t index, void *entry)
 263{
 264	if (!radix_tree_exceptional_entry(entry)) {
 265		unlock_page(entry);
 266		put_page(entry);
 267	} else {
 268		dax_unlock_mapping_entry(mapping, index);
 
 
 
 
 
 
 
 
 
 
 
 
 269	}
 270}
 271
 
 
 
 
 
 
 
 
 
 
 
 
 
 272/*
 273 * Called when we are done with radix tree entry we looked up via
 274 * get_unlocked_mapping_entry() and which we didn't lock in the end.
 
 
 
 
 275 */
 276static void put_unlocked_mapping_entry(struct address_space *mapping,
 277				       pgoff_t index, void *entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278{
 279	if (!radix_tree_exceptional_entry(entry))
 
 
 280		return;
 281
 282	/* We have to wake up next waiter for the radix tree entry lock */
 283	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 284}
 285
 286/*
 287 * Find radix tree entry at given index. If it points to a page, return with
 288 * the page locked. If it points to the exceptional entry, return with the
 289 * radix tree entry locked. If the radix tree doesn't contain given index,
 290 * create empty exceptional entry for the index and return with it locked.
 291 *
 292 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
 293 * either return that locked entry or will return an error.  This error will
 294 * happen if there are any 4k entries (either zero pages or DAX entries)
 295 * within the 2MiB range that we are requesting.
 296 *
 297 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
 298 * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
 299 * insertion will fail if it finds any 4k entries already in the tree, and a
 300 * 4k insertion will cause an existing 2MiB entry to be unmapped and
 301 * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
 302 * well as 2MiB empty entries.
 303 *
 304 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
 305 * real storage backing them.  We will leave these real 2MiB DAX entries in
 306 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
 307 *
 308 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 309 * persistent memory the benefit is doubtful. We can add that later if we can
 310 * show it helps.
 
 
 
 
 311 */
 312static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
 313		unsigned long size_flag)
 314{
 315	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
 316	void *entry, **slot;
 
 317
 318restart:
 319	spin_lock_irq(&mapping->tree_lock);
 320	entry = get_unlocked_mapping_entry(mapping, index, &slot);
 
 321
 322	if (entry) {
 323		if (size_flag & RADIX_DAX_PMD) {
 324			if (!radix_tree_exceptional_entry(entry) ||
 325			    dax_is_pte_entry(entry)) {
 326				put_unlocked_mapping_entry(mapping, index,
 327						entry);
 328				entry = ERR_PTR(-EEXIST);
 329				goto out_unlock;
 330			}
 331		} else { /* trying to grab a PTE entry */
 332			if (radix_tree_exceptional_entry(entry) &&
 333			    dax_is_pmd_entry(entry) &&
 334			    (dax_is_zero_entry(entry) ||
 335			     dax_is_empty_entry(entry))) {
 336				pmd_downgrade = true;
 337			}
 338		}
 339	}
 340
 341	/* No entry for given index? Make sure radix tree is big enough. */
 342	if (!entry || pmd_downgrade) {
 343		int err;
 344
 345		if (pmd_downgrade) {
 346			/*
 347			 * Make sure 'entry' remains valid while we drop
 348			 * mapping->tree_lock.
 349			 */
 350			entry = lock_slot(mapping, slot);
 351		}
 352
 353		spin_unlock_irq(&mapping->tree_lock);
 354		/*
 355		 * Besides huge zero pages the only other thing that gets
 356		 * downgraded are empty entries which don't need to be
 357		 * unmapped.
 358		 */
 359		if (pmd_downgrade && dax_is_zero_entry(entry))
 360			unmap_mapping_range(mapping,
 361				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 362
 363		err = radix_tree_preload(
 364				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
 365		if (err) {
 366			if (pmd_downgrade)
 367				put_locked_mapping_entry(mapping, index, entry);
 368			return ERR_PTR(err);
 369		}
 370		spin_lock_irq(&mapping->tree_lock);
 371
 372		if (!entry) {
 373			/*
 374			 * We needed to drop the page_tree lock while calling
 375			 * radix_tree_preload() and we didn't have an entry to
 376			 * lock.  See if another thread inserted an entry at
 377			 * our index during this time.
 378			 */
 379			entry = __radix_tree_lookup(&mapping->page_tree, index,
 380					NULL, &slot);
 381			if (entry) {
 382				radix_tree_preload_end();
 383				spin_unlock_irq(&mapping->tree_lock);
 384				goto restart;
 385			}
 386		}
 387
 388		if (pmd_downgrade) {
 389			radix_tree_delete(&mapping->page_tree, index);
 390			mapping->nrexceptional--;
 391			dax_wake_mapping_entry_waiter(mapping, index, entry,
 392					true);
 393		}
 
 394
 395		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
 
 
 
 396
 397		err = __radix_tree_insert(&mapping->page_tree, index,
 398				dax_radix_order(entry), entry);
 399		radix_tree_preload_end();
 400		if (err) {
 401			spin_unlock_irq(&mapping->tree_lock);
 402			/*
 403			 * Our insertion of a DAX entry failed, most likely
 404			 * because we were inserting a PMD entry and it
 405			 * collided with a PTE sized entry at a different
 406			 * index in the PMD range.  We haven't inserted
 407			 * anything into the radix tree and have no waiters to
 408			 * wake.
 409			 */
 410			return ERR_PTR(err);
 411		}
 412		/* Good, we have inserted empty locked entry into the tree. */
 413		mapping->nrexceptional++;
 414		spin_unlock_irq(&mapping->tree_lock);
 415		return entry;
 416	}
 417	/* Normal page in radix tree? */
 418	if (!radix_tree_exceptional_entry(entry)) {
 419		struct page *page = entry;
 420
 421		get_page(page);
 422		spin_unlock_irq(&mapping->tree_lock);
 423		lock_page(page);
 424		/* Page got truncated? Retry... */
 425		if (unlikely(page->mapping != mapping)) {
 426			unlock_page(page);
 427			put_page(page);
 428			goto restart;
 429		}
 430		return page;
 431	}
 432	entry = lock_slot(mapping, slot);
 433 out_unlock:
 434	spin_unlock_irq(&mapping->tree_lock);
 435	return entry;
 
 
 
 436}
 437
 438/*
 439 * We do not necessarily hold the mapping->tree_lock when we call this
 440 * function so it is possible that 'entry' is no longer a valid item in the
 441 * radix tree.  This is okay because all we really need to do is to find the
 442 * correct waitqueue where tasks might be waiting for that old 'entry' and
 443 * wake them.
 
 
 
 
 
 
 
 
 
 
 
 444 */
 445void dax_wake_mapping_entry_waiter(struct address_space *mapping,
 446		pgoff_t index, void *entry, bool wake_all)
 447{
 448	struct exceptional_entry_key key;
 449	wait_queue_head_t *wq;
 
 
 
 
 450
 451	wq = dax_entry_waitqueue(mapping, index, entry, &key);
 
 
 
 
 
 
 
 452
 
 
 
 
 
 453	/*
 454	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 455	 * under mapping->tree_lock, ditto for entry handling in our callers.
 456	 * So at this point all tasks that could have seen our entry locked
 457	 * must be in the waitqueue and the following check will see them.
 
 
 
 
 
 
 458	 */
 459	if (waitqueue_active(wq))
 460		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461}
 
 462
 463static int __dax_invalidate_mapping_entry(struct address_space *mapping,
 
 
 
 
 
 
 464					  pgoff_t index, bool trunc)
 465{
 
 466	int ret = 0;
 467	void *entry;
 468	struct radix_tree_root *page_tree = &mapping->page_tree;
 469
 470	spin_lock_irq(&mapping->tree_lock);
 471	entry = get_unlocked_mapping_entry(mapping, index, NULL);
 472	if (!entry || !radix_tree_exceptional_entry(entry))
 473		goto out;
 474	if (!trunc &&
 475	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 476	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
 477		goto out;
 478	radix_tree_delete(page_tree, index);
 479	mapping->nrexceptional--;
 
 480	ret = 1;
 481out:
 482	put_unlocked_mapping_entry(mapping, index, entry);
 483	spin_unlock_irq(&mapping->tree_lock);
 484	return ret;
 485}
 
 486/*
 487 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
 488 * entry to get unlocked before deleting it.
 489 */
 490int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 491{
 492	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
 493
 494	/*
 495	 * This gets called from truncate / punch_hole path. As such, the caller
 496	 * must hold locks protecting against concurrent modifications of the
 497	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
 498	 * caller has seen exceptional entry for this index, we better find it
 499	 * at that index as well...
 500	 */
 501	WARN_ON_ONCE(!ret);
 502	return ret;
 503}
 504
 505/*
 506 * Invalidate exceptional DAX entry if easily possible. This handles DAX
 507 * entries for invalidate_inode_pages() so we evict the entry only if we can
 508 * do so without blocking.
 509 */
 510int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
 511{
 512	int ret = 0;
 513	void *entry, **slot;
 514	struct radix_tree_root *page_tree = &mapping->page_tree;
 515
 516	spin_lock_irq(&mapping->tree_lock);
 517	entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
 518	if (!entry || !radix_tree_exceptional_entry(entry) ||
 519	    slot_locked(mapping, slot))
 520		goto out;
 521	if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 522	    radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 523		goto out;
 524	radix_tree_delete(page_tree, index);
 525	mapping->nrexceptional--;
 526	ret = 1;
 527out:
 528	spin_unlock_irq(&mapping->tree_lock);
 529	if (ret)
 530		dax_wake_mapping_entry_waiter(mapping, index, entry, true);
 531	return ret;
 532}
 533
 534/*
 535 * Invalidate exceptional DAX entry if it is clean.
 536 */
 537int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 538				      pgoff_t index)
 539{
 540	return __dax_invalidate_mapping_entry(mapping, index, false);
 541}
 542
 543/*
 544 * The user has performed a load from a hole in the file.  Allocating
 545 * a new page in the file would cause excessive storage usage for
 546 * workloads with sparse files.  We allocate a page cache page instead.
 547 * We'll kick it out of the page cache if it's ever written to,
 548 * otherwise it will simply fall out of the page cache under memory
 549 * pressure without ever having been dirtied.
 550 */
 551static int dax_load_hole(struct address_space *mapping, void **entry,
 552			 struct vm_fault *vmf)
 553{
 554	struct page *page;
 555	int ret;
 556
 557	/* Hole page already exists? Return it...  */
 558	if (!radix_tree_exceptional_entry(*entry)) {
 559		page = *entry;
 560		goto out;
 561	}
 562
 563	/* This will replace locked radix tree entry with a hole page */
 564	page = find_or_create_page(mapping, vmf->pgoff,
 565				   vmf->gfp_mask | __GFP_ZERO);
 566	if (!page)
 567		return VM_FAULT_OOM;
 568 out:
 569	vmf->page = page;
 570	ret = finish_fault(vmf);
 571	vmf->page = NULL;
 572	*entry = page;
 573	if (!ret) {
 574		/* Grab reference for PTE that is now referencing the page */
 575		get_page(page);
 576		return VM_FAULT_NOPAGE;
 577	}
 578	return ret;
 579}
 580
 581static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
 582		struct page *to, unsigned long vaddr)
 583{
 584	struct blk_dax_ctl dax = {
 585		.sector = sector,
 586		.size = size,
 587	};
 588	void *vto;
 589
 590	if (dax_map_atomic(bdev, &dax) < 0)
 591		return PTR_ERR(dax.addr);
 592	vto = kmap_atomic(to);
 593	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
 
 
 
 
 
 594	kunmap_atomic(vto);
 595	dax_unmap_atomic(bdev, &dax);
 596	return 0;
 597}
 598
 599/*
 
 
 
 
 
 
 
 
 
 
 
 600 * By this point grab_mapping_entry() has ensured that we have a locked entry
 601 * of the appropriate size so we don't have to worry about downgrading PMDs to
 602 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 603 * already in the tree, we will skip the insertion and just dirty the PMD as
 604 * appropriate.
 605 */
 606static void *dax_insert_mapping_entry(struct address_space *mapping,
 607				      struct vm_fault *vmf,
 608				      void *entry, sector_t sector,
 609				      unsigned long flags)
 610{
 611	struct radix_tree_root *page_tree = &mapping->page_tree;
 612	int error = 0;
 613	bool hole_fill = false;
 614	void *new_entry;
 615	pgoff_t index = vmf->pgoff;
 616
 617	if (vmf->flags & FAULT_FLAG_WRITE)
 618		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 619
 620	/* Replacing hole page with block mapping? */
 621	if (!radix_tree_exceptional_entry(entry)) {
 622		hole_fill = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623		/*
 624		 * Unmap the page now before we remove it from page cache below.
 625		 * The page is locked so it cannot be faulted in again.
 626		 */
 627		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 628				    PAGE_SIZE, 0);
 629		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
 630		if (error)
 631			return ERR_PTR(error);
 632	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
 633		/* replacing huge zero page with PMD block mapping */
 634		unmap_mapping_range(mapping,
 635			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 636	}
 637
 638	spin_lock_irq(&mapping->tree_lock);
 639	new_entry = dax_radix_locked_entry(sector, flags);
 640
 641	if (hole_fill) {
 642		__delete_from_page_cache(entry, NULL);
 643		/* Drop pagecache reference */
 644		put_page(entry);
 645		error = __radix_tree_insert(page_tree, index,
 646				dax_radix_order(new_entry), new_entry);
 647		if (error) {
 648			new_entry = ERR_PTR(error);
 649			goto unlock;
 650		}
 651		mapping->nrexceptional++;
 652	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 653		/*
 654		 * Only swap our new entry into the radix tree if the current
 655		 * entry is a zero page or an empty entry.  If a normal PTE or
 656		 * PMD entry is already in the tree, we leave it alone.  This
 657		 * means that if we are trying to insert a PTE and the
 658		 * existing entry is a PMD, we will just leave the PMD in the
 659		 * tree and dirty it if necessary.
 660		 */
 661		struct radix_tree_node *node;
 662		void **slot;
 663		void *ret;
 664
 665		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
 666		WARN_ON_ONCE(ret != entry);
 667		__radix_tree_replace(page_tree, node, slot,
 668				     new_entry, NULL, NULL);
 669	}
 670	if (vmf->flags & FAULT_FLAG_WRITE)
 671		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 672 unlock:
 673	spin_unlock_irq(&mapping->tree_lock);
 674	if (hole_fill) {
 675		radix_tree_preload_end();
 676		/*
 677		 * We don't need hole page anymore, it has been replaced with
 678		 * locked radix tree entry now.
 679		 */
 680		if (mapping->a_ops->freepage)
 681			mapping->a_ops->freepage(entry);
 682		unlock_page(entry);
 683		put_page(entry);
 684	}
 685	return new_entry;
 686}
 687
 688static inline unsigned long
 689pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 690{
 691	unsigned long address;
 692
 693	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 694	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 695	return address;
 696}
 697
 698/* Walk all mappings of a given index of a file and writeprotect them */
 699static void dax_mapping_entry_mkclean(struct address_space *mapping,
 700				      pgoff_t index, unsigned long pfn)
 701{
 702	struct vm_area_struct *vma;
 703	pte_t pte, *ptep = NULL;
 704	pmd_t *pmdp = NULL;
 705	spinlock_t *ptl;
 706	bool changed;
 707
 708	i_mmap_lock_read(mapping);
 709	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 710		unsigned long address;
 711
 712		cond_resched();
 713
 714		if (!(vma->vm_flags & VM_SHARED))
 715			continue;
 716
 717		address = pgoff_address(index, vma);
 718		changed = false;
 719		if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
 720			continue;
 721
 722		if (pmdp) {
 723#ifdef CONFIG_FS_DAX_PMD
 724			pmd_t pmd;
 725
 726			if (pfn != pmd_pfn(*pmdp))
 727				goto unlock_pmd;
 728			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 729				goto unlock_pmd;
 730
 731			flush_cache_page(vma, address, pfn);
 732			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
 733			pmd = pmd_wrprotect(pmd);
 734			pmd = pmd_mkclean(pmd);
 735			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 736			changed = true;
 737unlock_pmd:
 738			spin_unlock(ptl);
 739#endif
 740		} else {
 741			if (pfn != pte_pfn(*ptep))
 742				goto unlock_pte;
 743			if (!pte_dirty(*ptep) && !pte_write(*ptep))
 744				goto unlock_pte;
 745
 746			flush_cache_page(vma, address, pfn);
 747			pte = ptep_clear_flush(vma, address, ptep);
 748			pte = pte_wrprotect(pte);
 749			pte = pte_mkclean(pte);
 750			set_pte_at(vma->vm_mm, address, ptep, pte);
 751			changed = true;
 752unlock_pte:
 753			pte_unmap_unlock(ptep, ptl);
 754		}
 755
 756		if (changed)
 757			mmu_notifier_invalidate_page(vma->vm_mm, address);
 758	}
 759	i_mmap_unlock_read(mapping);
 760}
 761
 762static int dax_writeback_one(struct block_device *bdev,
 763		struct address_space *mapping, pgoff_t index, void *entry)
 764{
 765	struct radix_tree_root *page_tree = &mapping->page_tree;
 766	struct blk_dax_ctl dax;
 767	void *entry2, **slot;
 768	int ret = 0;
 769
 770	/*
 771	 * A page got tagged dirty in DAX mapping? Something is seriously
 772	 * wrong.
 773	 */
 774	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
 775		return -EIO;
 776
 777	spin_lock_irq(&mapping->tree_lock);
 778	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
 779	/* Entry got punched out / reallocated? */
 780	if (!entry2 || !radix_tree_exceptional_entry(entry2))
 781		goto put_unlocked;
 782	/*
 783	 * Entry got reallocated elsewhere? No need to writeback. We have to
 784	 * compare sectors as we must not bail out due to difference in lockbit
 785	 * or entry type.
 786	 */
 787	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
 788		goto put_unlocked;
 789	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 790				dax_is_zero_entry(entry))) {
 791		ret = -EIO;
 792		goto put_unlocked;
 
 
 
 
 
 
 
 
 793	}
 794
 795	/* Another fsync thread may have already written back this entry */
 796	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 797		goto put_unlocked;
 798	/* Lock the entry to serialize with page faults */
 799	entry = lock_slot(mapping, slot);
 
 800	/*
 801	 * We can clear the tag now but we have to be careful so that concurrent
 802	 * dax_writeback_one() calls for the same index cannot finish before we
 803	 * actually flush the caches. This is achieved as the calls will look
 804	 * at the entry only under tree_lock and once they do that they will
 805	 * see the entry locked and wait for it to unlock.
 806	 */
 807	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
 808	spin_unlock_irq(&mapping->tree_lock);
 809
 810	/*
 811	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
 812	 * in the middle of a PMD, the 'index' we are given will be aligned to
 813	 * the start index of the PMD, as will the sector we pull from
 814	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
 815	 * worry about partial PMD writebacks.
 816	 */
 817	dax.sector = dax_radix_sector(entry);
 818	dax.size = PAGE_SIZE << dax_radix_order(entry);
 819
 820	/*
 821	 * We cannot hold tree_lock while calling dax_map_atomic() because it
 822	 * eventually calls cond_resched().
 823	 */
 824	ret = dax_map_atomic(bdev, &dax);
 825	if (ret < 0) {
 826		put_locked_mapping_entry(mapping, index, entry);
 827		return ret;
 828	}
 829
 830	if (WARN_ON_ONCE(ret < dax.size)) {
 831		ret = -EIO;
 832		goto unmap;
 
 
 833	}
 
 834
 835	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
 836	wb_cache_pmem(dax.addr, dax.size);
 837	/*
 838	 * After we have flushed the cache, we can clear the dirty tag. There
 839	 * cannot be new dirty data in the pfn after the flush has completed as
 840	 * the pfn mappings are writeprotected and fault waits for mapping
 841	 * entry lock.
 842	 */
 843	spin_lock_irq(&mapping->tree_lock);
 844	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
 845	spin_unlock_irq(&mapping->tree_lock);
 846 unmap:
 847	dax_unmap_atomic(bdev, &dax);
 848	put_locked_mapping_entry(mapping, index, entry);
 
 849	return ret;
 850
 851 put_unlocked:
 852	put_unlocked_mapping_entry(mapping, index, entry2);
 853	spin_unlock_irq(&mapping->tree_lock);
 854	return ret;
 855}
 856
 857/*
 858 * Flush the mapping to the persistent domain within the byte range of [start,
 859 * end]. This is required by data integrity operations to ensure file data is
 860 * on persistent storage prior to completion of the operation.
 861 */
 862int dax_writeback_mapping_range(struct address_space *mapping,
 863		struct block_device *bdev, struct writeback_control *wbc)
 864{
 
 865	struct inode *inode = mapping->host;
 866	pgoff_t start_index, end_index;
 867	pgoff_t indices[PAGEVEC_SIZE];
 868	struct pagevec pvec;
 869	bool done = false;
 870	int i, ret = 0;
 871
 872	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 873		return -EIO;
 874
 875	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 876		return 0;
 877
 878	start_index = wbc->range_start >> PAGE_SHIFT;
 879	end_index = wbc->range_end >> PAGE_SHIFT;
 880
 881	tag_pages_for_writeback(mapping, start_index, end_index);
 882
 883	pagevec_init(&pvec, 0);
 884	while (!done) {
 885		pvec.nr = find_get_entries_tag(mapping, start_index,
 886				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 887				pvec.pages, indices);
 888
 889		if (pvec.nr == 0)
 890			break;
 
 
 
 891
 892		for (i = 0; i < pvec.nr; i++) {
 893			if (indices[i] > end_index) {
 894				done = true;
 895				break;
 896			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897
 898			ret = dax_writeback_one(bdev, mapping, indices[i],
 899					pvec.pages[i]);
 900			if (ret < 0)
 901				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902		}
 903	}
 904	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905}
 906EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 907
 908static int dax_insert_mapping(struct address_space *mapping,
 909		struct block_device *bdev, sector_t sector, size_t size,
 910		void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
 
 
 
 
 
 
 911{
 
 912	unsigned long vaddr = vmf->address;
 913	struct blk_dax_ctl dax = {
 914		.sector = sector,
 915		.size = size,
 916	};
 917	void *ret;
 918	void *entry = *entryp;
 919
 920	if (dax_map_atomic(bdev, &dax) < 0)
 921		return PTR_ERR(dax.addr);
 922	dax_unmap_atomic(bdev, &dax);
 923
 924	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
 925	if (IS_ERR(ret))
 926		return PTR_ERR(ret);
 927	*entryp = ret;
 928
 929	return vm_insert_mixed(vma, vaddr, dax.pfn);
 
 
 930}
 931
 932/**
 933 * dax_pfn_mkwrite - handle first write to DAX page
 934 * @vma: The virtual memory area where the fault occurred
 935 * @vmf: The description of the fault
 936 */
 937int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 938{
 939	struct file *file = vma->vm_file;
 940	struct address_space *mapping = file->f_mapping;
 941	void *entry, **slot;
 942	pgoff_t index = vmf->pgoff;
 943
 944	spin_lock_irq(&mapping->tree_lock);
 945	entry = get_unlocked_mapping_entry(mapping, index, &slot);
 946	if (!entry || !radix_tree_exceptional_entry(entry)) {
 947		if (entry)
 948			put_unlocked_mapping_entry(mapping, index, entry);
 949		spin_unlock_irq(&mapping->tree_lock);
 950		return VM_FAULT_NOPAGE;
 
 
 
 
 
 
 
 
 
 
 
 951	}
 952	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
 953	entry = lock_slot(mapping, slot);
 954	spin_unlock_irq(&mapping->tree_lock);
 955	/*
 956	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
 957	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
 958	 * the fault in either case.
 959	 */
 960	finish_mkwrite_fault(vmf);
 961	put_locked_mapping_entry(mapping, index, entry);
 
 
 
 
 
 
 962	return VM_FAULT_NOPAGE;
 963}
 964EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
 965
 966static bool dax_range_is_aligned(struct block_device *bdev,
 967				 unsigned int offset, unsigned int length)
 
 
 
 
 
 
 
 968{
 969	unsigned short sector_size = bdev_logical_block_size(bdev);
 
 
 970
 971	if (!IS_ALIGNED(offset, sector_size))
 972		return false;
 973	if (!IS_ALIGNED(length, sector_size))
 974		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975
 976	return true;
 
 
 977}
 978
 979int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
 980		unsigned int offset, unsigned int length)
 981{
 982	struct blk_dax_ctl dax = {
 983		.sector		= sector,
 984		.size		= PAGE_SIZE,
 
 
 985	};
 
 986
 987	if (dax_range_is_aligned(bdev, offset, length)) {
 988		sector_t start_sector = dax.sector + (offset >> 9);
 
 
 
 989
 990		return blkdev_issue_zeroout(bdev, start_sector,
 991				length >> 9, GFP_NOFS, true);
 992	} else {
 993		if (dax_map_atomic(bdev, &dax) < 0)
 994			return PTR_ERR(dax.addr);
 995		clear_pmem(dax.addr + offset, length);
 996		dax_unmap_atomic(bdev, &dax);
 997	}
 998	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999}
1000EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1001
1002static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 
1003{
1004	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
 
 
 
 
 
 
1005}
 
1006
1007static loff_t
1008dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1009		struct iomap *iomap)
1010{
1011	struct iov_iter *iter = data;
 
 
 
 
1012	loff_t end = pos + length, done = 0;
 
 
1013	ssize_t ret = 0;
 
 
1014
1015	if (iov_iter_rw(iter) == READ) {
1016		end = min(end, i_size_read(inode));
1017		if (pos >= end)
1018			return 0;
1019
1020		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1021			return iov_iter_zero(min(length, end - pos), iter);
1022	}
1023
1024	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
 
 
 
 
 
1025		return -EIO;
1026
1027	/*
1028	 * Write can allocate block for an area which has a hole page mapped
1029	 * into page tables. We have to tear down these mappings so that data
1030	 * written by write(2) is visible in mmap.
1031	 */
1032	if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1033		invalidate_inode_pages2_range(inode->i_mapping,
1034					      pos >> PAGE_SHIFT,
1035					      (end - 1) >> PAGE_SHIFT);
1036	}
1037
 
1038	while (pos < end) {
1039		unsigned offset = pos & (PAGE_SIZE - 1);
1040		struct blk_dax_ctl dax = { 0 };
 
1041		ssize_t map_len;
 
 
1042
1043		if (fatal_signal_pending(current)) {
1044			ret = -EINTR;
1045			break;
1046		}
1047
1048		dax.sector = dax_iomap_sector(iomap, pos);
1049		dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1050		map_len = dax_map_atomic(iomap->bdev, &dax);
 
 
 
 
 
 
1051		if (map_len < 0) {
1052			ret = map_len;
1053			break;
1054		}
1055
1056		dax.addr += offset;
 
 
 
 
 
 
 
 
1057		map_len -= offset;
1058		if (map_len > end - pos)
1059			map_len = end - pos;
1060
1061		if (iov_iter_rw(iter) == WRITE)
1062			map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
 
 
 
 
1063		else
1064			map_len = copy_to_iter(dax.addr, map_len, iter);
1065		dax_unmap_atomic(iomap->bdev, &dax);
1066		if (map_len <= 0) {
1067			ret = map_len ? map_len : -EFAULT;
1068			break;
1069		}
1070
1071		pos += map_len;
1072		length -= map_len;
1073		done += map_len;
 
 
 
 
 
1074	}
 
1075
1076	return done ? done : ret;
1077}
1078
1079/**
1080 * dax_iomap_rw - Perform I/O to a DAX file
1081 * @iocb:	The control block for this I/O
1082 * @iter:	The addresses to do I/O from or to
1083 * @ops:	iomap ops passed from the file system
1084 *
1085 * This function performs read and write operations to directly mapped
1086 * persistent memory.  The callers needs to take care of read/write exclusion
1087 * and evicting any page cache pages in the region under I/O.
1088 */
1089ssize_t
1090dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1091		struct iomap_ops *ops)
1092{
1093	struct address_space *mapping = iocb->ki_filp->f_mapping;
1094	struct inode *inode = mapping->host;
1095	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1096	unsigned flags = 0;
 
 
 
 
1097
1098	if (iov_iter_rw(iter) == WRITE)
1099		flags |= IOMAP_WRITE;
1100
1101	while (iov_iter_count(iter)) {
1102		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1103				iter, dax_iomap_actor);
1104		if (ret <= 0)
1105			break;
1106		pos += ret;
1107		done += ret;
1108	}
1109
1110	iocb->ki_pos += done;
 
 
 
 
 
 
 
1111	return done ? done : ret;
1112}
1113EXPORT_SYMBOL_GPL(dax_iomap_rw);
1114
1115static int dax_fault_return(int error)
1116{
1117	if (error == 0)
1118		return VM_FAULT_NOPAGE;
1119	if (error == -ENOMEM)
1120		return VM_FAULT_OOM;
1121	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124/**
1125 * dax_iomap_fault - handle a page fault on a DAX file
1126 * @vma: The virtual memory area where the fault occurred
1127 * @vmf: The description of the fault
1128 * @ops: iomap ops passed from the file system
1129 *
1130 * When a page fault occurs, filesystems may call this helper in their fault
1131 * or mkwrite handler for DAX files. Assumes the caller has done all the
1132 * necessary locking for the page fault to proceed successfully.
1133 */
1134int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1135			struct iomap_ops *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136{
1137	struct address_space *mapping = vma->vm_file->f_mapping;
1138	struct inode *inode = mapping->host;
1139	unsigned long vaddr = vmf->address;
1140	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1141	sector_t sector;
1142	struct iomap iomap = { 0 };
1143	unsigned flags = IOMAP_FAULT;
1144	int error, major = 0;
1145	int vmf_ret = 0;
1146	void *entry;
 
1147
 
1148	/*
1149	 * Check whether offset isn't beyond end of file now. Caller is supposed
1150	 * to hold locks serializing us with truncate / punch hole so this is
1151	 * a reliable test.
1152	 */
1153	if (pos >= i_size_read(inode))
1154		return VM_FAULT_SIGBUS;
 
 
1155
1156	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1157		flags |= IOMAP_WRITE;
1158
1159	/*
1160	 * Note that we don't bother to use iomap_apply here: DAX required
1161	 * the file system block size to be equal the page size, which means
1162	 * that we never have to deal with more than a single extent here.
1163	 */
1164	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1165	if (error)
1166		return dax_fault_return(error);
1167	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1168		vmf_ret = dax_fault_return(-EIO);	/* fs corruption? */
1169		goto finish_iomap;
1170	}
1171
1172	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1173	if (IS_ERR(entry)) {
1174		vmf_ret = dax_fault_return(PTR_ERR(entry));
1175		goto finish_iomap;
 
 
 
 
 
1176	}
1177
1178	sector = dax_iomap_sector(&iomap, pos);
1179
1180	if (vmf->cow_page) {
1181		switch (iomap.type) {
1182		case IOMAP_HOLE:
1183		case IOMAP_UNWRITTEN:
1184			clear_user_highpage(vmf->cow_page, vaddr);
1185			break;
1186		case IOMAP_MAPPED:
1187			error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1188					vmf->cow_page, vaddr);
1189			break;
1190		default:
1191			WARN_ON_ONCE(1);
1192			error = -EIO;
1193			break;
1194		}
1195
1196		if (error)
1197			goto error_unlock_entry;
1198
1199		__SetPageUptodate(vmf->cow_page);
1200		vmf_ret = finish_fault(vmf);
1201		if (!vmf_ret)
1202			vmf_ret = VM_FAULT_DONE_COW;
1203		goto unlock_entry;
1204	}
1205
1206	switch (iomap.type) {
1207	case IOMAP_MAPPED:
1208		if (iomap.flags & IOMAP_F_NEW) {
1209			count_vm_event(PGMAJFAULT);
1210			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1211			major = VM_FAULT_MAJOR;
1212		}
1213		error = dax_insert_mapping(mapping, iomap.bdev, sector,
1214				PAGE_SIZE, &entry, vma, vmf);
1215		/* -EBUSY is fine, somebody else faulted on the same PTE */
1216		if (error == -EBUSY)
1217			error = 0;
1218		break;
1219	case IOMAP_UNWRITTEN:
1220	case IOMAP_HOLE:
1221		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1222			vmf_ret = dax_load_hole(mapping, &entry, vmf);
1223			goto unlock_entry;
1224		}
1225		/*FALLTHRU*/
1226	default:
1227		WARN_ON_ONCE(1);
1228		error = -EIO;
1229		break;
1230	}
1231
1232 error_unlock_entry:
1233	vmf_ret = dax_fault_return(error) | major;
1234 unlock_entry:
1235	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1236 finish_iomap:
1237	if (ops->iomap_end) {
1238		int copied = PAGE_SIZE;
1239
1240		if (vmf_ret & VM_FAULT_ERROR)
1241			copied = 0;
1242		/*
1243		 * The fault is done by now and there's no way back (other
1244		 * thread may be already happily using PTE we have installed).
1245		 * Just ignore error from ->iomap_end since we cannot do much
1246		 * with it.
1247		 */
1248		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1249	}
1250	return vmf_ret;
1251}
1252EXPORT_SYMBOL_GPL(dax_iomap_fault);
1253
1254#ifdef CONFIG_FS_DAX_PMD
1255/*
1256 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1257 * more often than one might expect in the below functions.
1258 */
1259#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1260
1261static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1262		struct vm_fault *vmf, unsigned long address,
1263		struct iomap *iomap, loff_t pos, bool write, void **entryp)
1264{
1265	struct address_space *mapping = vma->vm_file->f_mapping;
1266	struct block_device *bdev = iomap->bdev;
1267	struct blk_dax_ctl dax = {
1268		.sector = dax_iomap_sector(iomap, pos),
1269		.size = PMD_SIZE,
1270	};
1271	long length = dax_map_atomic(bdev, &dax);
1272	void *ret;
1273
1274	if (length < 0) /* dax_map_atomic() failed */
1275		return VM_FAULT_FALLBACK;
1276	if (length < PMD_SIZE)
1277		goto unmap_fallback;
1278	if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1279		goto unmap_fallback;
1280	if (!pfn_t_devmap(dax.pfn))
1281		goto unmap_fallback;
1282
1283	dax_unmap_atomic(bdev, &dax);
1284
1285	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1286			RADIX_DAX_PMD);
1287	if (IS_ERR(ret))
1288		return VM_FAULT_FALLBACK;
1289	*entryp = ret;
1290
1291	return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
 
 
 
1292
1293 unmap_fallback:
1294	dax_unmap_atomic(bdev, &dax);
1295	return VM_FAULT_FALLBACK;
 
 
1296}
1297
1298static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1299		struct vm_fault *vmf, unsigned long address,
1300		struct iomap *iomap, void **entryp)
1301{
1302	struct address_space *mapping = vma->vm_file->f_mapping;
1303	unsigned long pmd_addr = address & PMD_MASK;
1304	struct page *zero_page;
1305	spinlock_t *ptl;
1306	pmd_t pmd_entry;
1307	void *ret;
1308
1309	zero_page = mm_get_huge_zero_page(vma->vm_mm);
 
 
 
 
 
 
 
 
1310
1311	if (unlikely(!zero_page))
1312		return VM_FAULT_FALLBACK;
 
1313
1314	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1315			RADIX_DAX_PMD | RADIX_DAX_HZP);
1316	if (IS_ERR(ret))
1317		return VM_FAULT_FALLBACK;
1318	*entryp = ret;
1319
1320	ptl = pmd_lock(vma->vm_mm, pmd);
1321	if (!pmd_none(*pmd)) {
1322		spin_unlock(ptl);
1323		return VM_FAULT_FALLBACK;
1324	}
1325
1326	pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1327	pmd_entry = pmd_mkhuge(pmd_entry);
1328	set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1329	spin_unlock(ptl);
1330	return VM_FAULT_NOPAGE;
1331}
1332
1333int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1334		pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1335{
1336	struct address_space *mapping = vma->vm_file->f_mapping;
1337	unsigned long pmd_addr = address & PMD_MASK;
1338	bool write = flags & FAULT_FLAG_WRITE;
1339	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1340	struct inode *inode = mapping->host;
1341	int result = VM_FAULT_FALLBACK;
1342	struct iomap iomap = { 0 };
1343	pgoff_t max_pgoff, pgoff;
1344	struct vm_fault vmf;
1345	void *entry;
1346	loff_t pos;
1347	int error;
1348
1349	/* Fall back to PTEs if we're going to COW */
1350	if (write && !(vma->vm_flags & VM_SHARED))
1351		goto fallback;
1352
1353	/* If the PMD would extend outside the VMA */
1354	if (pmd_addr < vma->vm_start)
1355		goto fallback;
1356	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1357		goto fallback;
1358
1359	/*
1360	 * Check whether offset isn't beyond end of file now. Caller is
1361	 * supposed to hold locks serializing us with truncate / punch hole so
1362	 * this is a reliable test.
1363	 */
1364	pgoff = linear_page_index(vma, pmd_addr);
1365	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1366
1367	if (pgoff > max_pgoff)
1368		return VM_FAULT_SIGBUS;
1369
1370	/* If the PMD would extend beyond the file size */
1371	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
 
 
 
 
1372		goto fallback;
1373
1374	/*
1375	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1376	 * setting up a mapping, so really we're using iomap_begin() as a way
1377	 * to look up our filesystem block.
 
1378	 */
1379	pos = (loff_t)pgoff << PAGE_SHIFT;
1380	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1381	if (error)
1382		goto fallback;
1383
1384	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1385		goto finish_iomap;
1386
1387	/*
1388	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1389	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1390	 * the tree, for instance), it will return -EEXIST and we just fall
1391	 * back to 4k entries.
1392	 */
1393	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1394	if (IS_ERR(entry))
1395		goto finish_iomap;
1396
1397	vmf.pgoff = pgoff;
1398	vmf.flags = flags;
1399	vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1400
1401	switch (iomap.type) {
1402	case IOMAP_MAPPED:
1403		result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1404				&iomap, pos, write, &entry);
1405		break;
1406	case IOMAP_UNWRITTEN:
1407	case IOMAP_HOLE:
1408		if (WARN_ON_ONCE(write))
1409			goto unlock_entry;
1410		result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1411				&entry);
1412		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413	default:
1414		WARN_ON_ONCE(1);
1415		break;
1416	}
 
 
1417
1418 unlock_entry:
1419	put_locked_mapping_entry(mapping, pgoff, entry);
1420 finish_iomap:
1421	if (ops->iomap_end) {
1422		int copied = PMD_SIZE;
 
 
 
 
 
 
 
 
 
 
 
1423
1424		if (result == VM_FAULT_FALLBACK)
1425			copied = 0;
1426		/*
1427		 * The fault is done by now and there's no way back (other
1428		 * thread may be already happily using PMD we have installed).
1429		 * Just ignore error from ->iomap_end since we cannot do much
1430		 * with it.
1431		 */
1432		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1433				&iomap);
1434	}
1435 fallback:
1436	if (result == VM_FAULT_FALLBACK) {
1437		split_huge_pmd(vma, pmd, address);
1438		count_vm_event(THP_FAULT_FALLBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439	}
1440	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441}
1442EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1443#endif /* CONFIG_FS_DAX_PMD */
 
 
 
 
 
 
 
 
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
 
  14#include <linux/highmem.h>
  15#include <linux/memcontrol.h>
  16#include <linux/mm.h>
  17#include <linux/mutex.h>
  18#include <linux/pagevec.h>
 
  19#include <linux/sched.h>
  20#include <linux/sched/signal.h>
  21#include <linux/uio.h>
  22#include <linux/vmstat.h>
  23#include <linux/pfn_t.h>
  24#include <linux/sizes.h>
  25#include <linux/mmu_notifier.h>
  26#include <linux/iomap.h>
  27#include <linux/rmap.h>
  28#include <asm/pgalloc.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/fs_dax.h>
  32
  33static inline unsigned int pe_order(enum page_entry_size pe_size)
  34{
  35	if (pe_size == PE_SIZE_PTE)
  36		return PAGE_SHIFT - PAGE_SHIFT;
  37	if (pe_size == PE_SIZE_PMD)
  38		return PMD_SHIFT - PAGE_SHIFT;
  39	if (pe_size == PE_SIZE_PUD)
  40		return PUD_SHIFT - PAGE_SHIFT;
  41	return ~0;
  42}
  43
  44/* We choose 4096 entries - same as per-zone page wait tables */
  45#define DAX_WAIT_TABLE_BITS 12
  46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  47
  48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  49#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
  50#define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
  51
  52/* The order of a PMD entry */
  53#define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  54
  55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  56
  57static int __init init_dax_wait_table(void)
  58{
  59	int i;
  60
  61	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  62		init_waitqueue_head(wait_table + i);
  63	return 0;
  64}
  65fs_initcall(init_dax_wait_table);
  66
  67/*
  68 * DAX pagecache entries use XArray value entries so they can't be mistaken
  69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  70 * and two more to tell us if the entry is a zero page or an empty entry that
  71 * is just used for locking.  In total four special bits.
  72 *
  73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  75 * block allocation.
  76 */
  77#define DAX_SHIFT	(4)
  78#define DAX_LOCKED	(1UL << 0)
  79#define DAX_PMD		(1UL << 1)
  80#define DAX_ZERO_PAGE	(1UL << 2)
  81#define DAX_EMPTY	(1UL << 3)
  82
  83static unsigned long dax_to_pfn(void *entry)
  84{
  85	return xa_to_value(entry) >> DAX_SHIFT;
  86}
  87
  88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  89{
  90	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  91}
  92
  93static bool dax_is_locked(void *entry)
  94{
  95	return xa_to_value(entry) & DAX_LOCKED;
 
 
 
 
  96}
  97
  98static unsigned int dax_entry_order(void *entry)
 
  99{
 100	if (xa_to_value(entry) & DAX_PMD)
 101		return PMD_ORDER;
 102	return 0;
 103}
 104
 105static unsigned long dax_is_pmd_entry(void *entry)
 106{
 107	return xa_to_value(entry) & DAX_PMD;
 108}
 109
 110static bool dax_is_pte_entry(void *entry)
 111{
 112	return !(xa_to_value(entry) & DAX_PMD);
 113}
 114
 115static int dax_is_zero_entry(void *entry)
 116{
 117	return xa_to_value(entry) & DAX_ZERO_PAGE;
 118}
 119
 120static int dax_is_empty_entry(void *entry)
 121{
 122	return xa_to_value(entry) & DAX_EMPTY;
 123}
 124
 125/*
 126 * true if the entry that was found is of a smaller order than the entry
 127 * we were looking for
 128 */
 129static bool dax_is_conflict(void *entry)
 130{
 131	return entry == XA_RETRY_ENTRY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134/*
 135 * DAX page cache entry locking
 136 */
 137struct exceptional_entry_key {
 138	struct xarray *xa;
 139	pgoff_t entry_start;
 140};
 141
 142struct wait_exceptional_entry_queue {
 143	wait_queue_entry_t wait;
 144	struct exceptional_entry_key key;
 145};
 146
 147/**
 148 * enum dax_wake_mode: waitqueue wakeup behaviour
 149 * @WAKE_ALL: wake all waiters in the waitqueue
 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
 151 */
 152enum dax_wake_mode {
 153	WAKE_ALL,
 154	WAKE_NEXT,
 155};
 156
 157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 158		void *entry, struct exceptional_entry_key *key)
 159{
 160	unsigned long hash;
 161	unsigned long index = xas->xa_index;
 162
 163	/*
 164	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 165	 * queue to the start of that PMD.  This ensures that all offsets in
 166	 * the range covered by the PMD map to the same bit lock.
 167	 */
 168	if (dax_is_pmd_entry(entry))
 169		index &= ~PG_PMD_COLOUR;
 170	key->xa = xas->xa;
 
 171	key->entry_start = index;
 172
 173	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 174	return wait_table + hash;
 175}
 176
 177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 178		unsigned int mode, int sync, void *keyp)
 179{
 180	struct exceptional_entry_key *key = keyp;
 181	struct wait_exceptional_entry_queue *ewait =
 182		container_of(wait, struct wait_exceptional_entry_queue, wait);
 183
 184	if (key->xa != ewait->key.xa ||
 185	    key->entry_start != ewait->key.entry_start)
 186		return 0;
 187	return autoremove_wake_function(wait, mode, sync, NULL);
 188}
 189
 190/*
 191 * @entry may no longer be the entry at the index in the mapping.
 192 * The important information it's conveying is whether the entry at
 193 * this index used to be a PMD entry.
 
 
 
 
 
 
 
 
 
 
 194 */
 195static void dax_wake_entry(struct xa_state *xas, void *entry,
 196			   enum dax_wake_mode mode)
 197{
 198	struct exceptional_entry_key key;
 199	wait_queue_head_t *wq;
 
 
 
 
 
 200
 201	wq = dax_entry_waitqueue(xas, entry, &key);
 
 
 
 
 
 
 
 202
 203	/*
 204	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 205	 * under the i_pages lock, ditto for entry handling in our callers.
 206	 * So at this point all tasks that could have seen our entry locked
 207	 * must be in the waitqueue and the following check will see them.
 208	 */
 209	if (waitqueue_active(wq))
 210		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
 211}
 212
 213/*
 214 * Look up entry in page cache, wait for it to become unlocked if it
 215 * is a DAX entry and return it.  The caller must subsequently call
 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 217 * if it did.  The entry returned may have a larger order than @order.
 218 * If @order is larger than the order of the entry found in i_pages, this
 219 * function returns a dax_is_conflict entry.
 220 *
 221 * Must be called with the i_pages lock held.
 222 */
 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 
 224{
 225	void *entry;
 226	struct wait_exceptional_entry_queue ewait;
 227	wait_queue_head_t *wq;
 228
 229	init_wait(&ewait.wait);
 230	ewait.wait.func = wake_exceptional_entry_func;
 231
 232	for (;;) {
 233		entry = xas_find_conflict(xas);
 234		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 235			return entry;
 236		if (dax_entry_order(entry) < order)
 237			return XA_RETRY_ENTRY;
 238		if (!dax_is_locked(entry))
 239			return entry;
 
 240
 241		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 242		prepare_to_wait_exclusive(wq, &ewait.wait,
 243					  TASK_UNINTERRUPTIBLE);
 244		xas_unlock_irq(xas);
 245		xas_reset(xas);
 246		schedule();
 247		finish_wait(wq, &ewait.wait);
 248		xas_lock_irq(xas);
 249	}
 250}
 251
 252/*
 253 * The only thing keeping the address space around is the i_pages lock
 254 * (it's cycled in clear_inode() after removing the entries from i_pages)
 255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 256 */
 257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 258{
 259	struct wait_exceptional_entry_queue ewait;
 260	wait_queue_head_t *wq;
 261
 262	init_wait(&ewait.wait);
 263	ewait.wait.func = wake_exceptional_entry_func;
 264
 265	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 266	/*
 267	 * Unlike get_unlocked_entry() there is no guarantee that this
 268	 * path ever successfully retrieves an unlocked entry before an
 269	 * inode dies. Perform a non-exclusive wait in case this path
 270	 * never successfully performs its own wake up.
 271	 */
 272	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 273	xas_unlock_irq(xas);
 274	schedule();
 275	finish_wait(wq, &ewait.wait);
 276}
 277
 278static void put_unlocked_entry(struct xa_state *xas, void *entry,
 279			       enum dax_wake_mode mode)
 280{
 281	if (entry && !dax_is_conflict(entry))
 282		dax_wake_entry(xas, entry, mode);
 283}
 284
 285/*
 286 * We used the xa_state to get the entry, but then we locked the entry and
 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 288 * before use.
 289 */
 290static void dax_unlock_entry(struct xa_state *xas, void *entry)
 291{
 292	void *old;
 293
 294	BUG_ON(dax_is_locked(entry));
 295	xas_reset(xas);
 296	xas_lock_irq(xas);
 297	old = xas_store(xas, entry);
 298	xas_unlock_irq(xas);
 299	BUG_ON(!dax_is_locked(old));
 300	dax_wake_entry(xas, entry, WAKE_NEXT);
 301}
 302
 303/*
 304 * Return: The entry stored at this location before it was locked.
 305 */
 306static void *dax_lock_entry(struct xa_state *xas, void *entry)
 307{
 308	unsigned long v = xa_to_value(entry);
 309	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 310}
 311
 312static unsigned long dax_entry_size(void *entry)
 313{
 314	if (dax_is_zero_entry(entry))
 315		return 0;
 316	else if (dax_is_empty_entry(entry))
 317		return 0;
 318	else if (dax_is_pmd_entry(entry))
 319		return PMD_SIZE;
 320	else
 321		return PAGE_SIZE;
 322}
 323
 324static unsigned long dax_end_pfn(void *entry)
 325{
 326	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 327}
 328
 329/*
 330 * Iterate through all mapped pfns represented by an entry, i.e. skip
 331 * 'empty' and 'zero' entries.
 332 */
 333#define for_each_mapped_pfn(entry, pfn) \
 334	for (pfn = dax_to_pfn(entry); \
 335			pfn < dax_end_pfn(entry); pfn++)
 336
 337static inline bool dax_page_is_shared(struct page *page)
 338{
 339	return page->mapping == PAGE_MAPPING_DAX_SHARED;
 340}
 341
 342/*
 343 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
 344 * refcount.
 345 */
 346static inline void dax_page_share_get(struct page *page)
 347{
 348	if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
 349		/*
 350		 * Reset the index if the page was already mapped
 351		 * regularly before.
 352		 */
 353		if (page->mapping)
 354			page->share = 1;
 355		page->mapping = PAGE_MAPPING_DAX_SHARED;
 356	}
 357	page->share++;
 358}
 359
 360static inline unsigned long dax_page_share_put(struct page *page)
 361{
 362	return --page->share;
 363}
 364
 365/*
 366 * When it is called in dax_insert_entry(), the shared flag will indicate that
 367 * whether this entry is shared by multiple files.  If so, set the page->mapping
 368 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
 369 */
 370static void dax_associate_entry(void *entry, struct address_space *mapping,
 371		struct vm_area_struct *vma, unsigned long address, bool shared)
 372{
 373	unsigned long size = dax_entry_size(entry), pfn, index;
 374	int i = 0;
 375
 376	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 377		return;
 378
 379	index = linear_page_index(vma, address & ~(size - 1));
 380	for_each_mapped_pfn(entry, pfn) {
 381		struct page *page = pfn_to_page(pfn);
 382
 383		if (shared) {
 384			dax_page_share_get(page);
 385		} else {
 386			WARN_ON_ONCE(page->mapping);
 387			page->mapping = mapping;
 388			page->index = index + i++;
 389		}
 390	}
 
 
 
 391}
 392
 393static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 394		bool trunc)
 395{
 396	unsigned long pfn;
 397
 398	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 399		return;
 400
 401	for_each_mapped_pfn(entry, pfn) {
 402		struct page *page = pfn_to_page(pfn);
 403
 404		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 405		if (dax_page_is_shared(page)) {
 406			/* keep the shared flag if this page is still shared */
 407			if (dax_page_share_put(page) > 0)
 408				continue;
 409		} else
 410			WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 411		page->mapping = NULL;
 412		page->index = 0;
 413	}
 414}
 415
 416static struct page *dax_busy_page(void *entry)
 417{
 418	unsigned long pfn;
 419
 420	for_each_mapped_pfn(entry, pfn) {
 421		struct page *page = pfn_to_page(pfn);
 422
 423		if (page_ref_count(page) > 1)
 424			return page;
 425	}
 426	return NULL;
 427}
 428
 429/*
 430 * dax_lock_page - Lock the DAX entry corresponding to a page
 431 * @page: The page whose entry we want to lock
 432 *
 433 * Context: Process context.
 434 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 435 * not be locked.
 436 */
 437dax_entry_t dax_lock_page(struct page *page)
 438{
 439	XA_STATE(xas, NULL, 0);
 440	void *entry;
 441
 442	/* Ensure page->mapping isn't freed while we look at it */
 443	rcu_read_lock();
 444	for (;;) {
 445		struct address_space *mapping = READ_ONCE(page->mapping);
 446
 447		entry = NULL;
 448		if (!mapping || !dax_mapping(mapping))
 449			break;
 450
 451		/*
 452		 * In the device-dax case there's no need to lock, a
 453		 * struct dev_pagemap pin is sufficient to keep the
 454		 * inode alive, and we assume we have dev_pagemap pin
 455		 * otherwise we would not have a valid pfn_to_page()
 456		 * translation.
 457		 */
 458		entry = (void *)~0UL;
 459		if (S_ISCHR(mapping->host->i_mode))
 460			break;
 461
 462		xas.xa = &mapping->i_pages;
 463		xas_lock_irq(&xas);
 464		if (mapping != page->mapping) {
 465			xas_unlock_irq(&xas);
 466			continue;
 467		}
 468		xas_set(&xas, page->index);
 469		entry = xas_load(&xas);
 470		if (dax_is_locked(entry)) {
 471			rcu_read_unlock();
 472			wait_entry_unlocked(&xas, entry);
 473			rcu_read_lock();
 474			continue;
 475		}
 476		dax_lock_entry(&xas, entry);
 477		xas_unlock_irq(&xas);
 478		break;
 479	}
 480	rcu_read_unlock();
 481	return (dax_entry_t)entry;
 482}
 483
 484void dax_unlock_page(struct page *page, dax_entry_t cookie)
 485{
 486	struct address_space *mapping = page->mapping;
 487	XA_STATE(xas, &mapping->i_pages, page->index);
 488
 489	if (S_ISCHR(mapping->host->i_mode))
 490		return;
 491
 492	dax_unlock_entry(&xas, (void *)cookie);
 493}
 494
 495/*
 496 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
 497 * @mapping: the file's mapping whose entry we want to lock
 498 * @index: the offset within this file
 499 * @page: output the dax page corresponding to this dax entry
 500 *
 501 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
 502 * could not be locked.
 503 */
 504dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
 505		struct page **page)
 506{
 507	XA_STATE(xas, NULL, 0);
 508	void *entry;
 509
 510	rcu_read_lock();
 511	for (;;) {
 512		entry = NULL;
 513		if (!dax_mapping(mapping))
 514			break;
 515
 516		xas.xa = &mapping->i_pages;
 517		xas_lock_irq(&xas);
 518		xas_set(&xas, index);
 519		entry = xas_load(&xas);
 520		if (dax_is_locked(entry)) {
 521			rcu_read_unlock();
 522			wait_entry_unlocked(&xas, entry);
 523			rcu_read_lock();
 524			continue;
 525		}
 526		if (!entry ||
 527		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 528			/*
 529			 * Because we are looking for entry from file's mapping
 530			 * and index, so the entry may not be inserted for now,
 531			 * or even a zero/empty entry.  We don't think this is
 532			 * an error case.  So, return a special value and do
 533			 * not output @page.
 534			 */
 535			entry = (void *)~0UL;
 536		} else {
 537			*page = pfn_to_page(dax_to_pfn(entry));
 538			dax_lock_entry(&xas, entry);
 539		}
 540		xas_unlock_irq(&xas);
 541		break;
 542	}
 543	rcu_read_unlock();
 544	return (dax_entry_t)entry;
 545}
 546
 547void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
 548		dax_entry_t cookie)
 549{
 550	XA_STATE(xas, &mapping->i_pages, index);
 551
 552	if (cookie == ~0UL)
 553		return;
 554
 555	dax_unlock_entry(&xas, (void *)cookie);
 
 556}
 557
 558/*
 559 * Find page cache entry at given index. If it is a DAX entry, return it
 560 * with the entry locked. If the page cache doesn't contain an entry at
 561 * that index, add a locked empty entry.
 
 562 *
 563 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 564 * either return that locked entry or will return VM_FAULT_FALLBACK.
 565 * This will happen if there are any PTE entries within the PMD range
 566 * that we are requesting.
 567 *
 568 * We always favor PTE entries over PMD entries. There isn't a flow where we
 569 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 570 * insertion will fail if it finds any PTE entries already in the tree, and a
 571 * PTE insertion will cause an existing PMD entry to be unmapped and
 572 * downgraded to PTE entries.  This happens for both PMD zero pages as
 573 * well as PMD empty entries.
 574 *
 575 * The exception to this downgrade path is for PMD entries that have
 576 * real storage backing them.  We will leave these real PMD entries in
 577 * the tree, and PTE writes will simply dirty the entire PMD entry.
 578 *
 579 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 580 * persistent memory the benefit is doubtful. We can add that later if we can
 581 * show it helps.
 582 *
 583 * On error, this function does not return an ERR_PTR.  Instead it returns
 584 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 585 * overlap with xarray value entries.
 586 */
 587static void *grab_mapping_entry(struct xa_state *xas,
 588		struct address_space *mapping, unsigned int order)
 589{
 590	unsigned long index = xas->xa_index;
 591	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
 592	void *entry;
 593
 594retry:
 595	pmd_downgrade = false;
 596	xas_lock_irq(xas);
 597	entry = get_unlocked_entry(xas, order);
 598
 599	if (entry) {
 600		if (dax_is_conflict(entry))
 601			goto fallback;
 602		if (!xa_is_value(entry)) {
 603			xas_set_err(xas, -EIO);
 604			goto out_unlock;
 605		}
 606
 607		if (order == 0) {
 608			if (dax_is_pmd_entry(entry) &&
 
 
 609			    (dax_is_zero_entry(entry) ||
 610			     dax_is_empty_entry(entry))) {
 611				pmd_downgrade = true;
 612			}
 613		}
 614	}
 615
 616	if (pmd_downgrade) {
 617		/*
 618		 * Make sure 'entry' remains valid while we drop
 619		 * the i_pages lock.
 620		 */
 621		dax_lock_entry(xas, entry);
 
 
 
 
 
 622
 
 623		/*
 624		 * Besides huge zero pages the only other thing that gets
 625		 * downgraded are empty entries which don't need to be
 626		 * unmapped.
 627		 */
 628		if (dax_is_zero_entry(entry)) {
 629			xas_unlock_irq(xas);
 630			unmap_mapping_pages(mapping,
 631					xas->xa_index & ~PG_PMD_COLOUR,
 632					PG_PMD_NR, false);
 633			xas_reset(xas);
 634			xas_lock_irq(xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635		}
 636
 637		dax_disassociate_entry(entry, mapping, false);
 638		xas_store(xas, NULL);	/* undo the PMD join */
 639		dax_wake_entry(xas, entry, WAKE_ALL);
 640		mapping->nrpages -= PG_PMD_NR;
 641		entry = NULL;
 642		xas_set(xas, index);
 643	}
 644
 645	if (entry) {
 646		dax_lock_entry(xas, entry);
 647	} else {
 648		unsigned long flags = DAX_EMPTY;
 649
 650		if (order > 0)
 651			flags |= DAX_PMD;
 652		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 653		dax_lock_entry(xas, entry);
 654		if (xas_error(xas))
 655			goto out_unlock;
 656		mapping->nrpages += 1UL << order;
 657	}
 658
 659out_unlock:
 660	xas_unlock_irq(xas);
 661	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 662		goto retry;
 663	if (xas->xa_node == XA_ERROR(-ENOMEM))
 664		return xa_mk_internal(VM_FAULT_OOM);
 665	if (xas_error(xas))
 666		return xa_mk_internal(VM_FAULT_SIGBUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667	return entry;
 668fallback:
 669	xas_unlock_irq(xas);
 670	return xa_mk_internal(VM_FAULT_FALLBACK);
 671}
 672
 673/**
 674 * dax_layout_busy_page_range - find first pinned page in @mapping
 675 * @mapping: address space to scan for a page with ref count > 1
 676 * @start: Starting offset. Page containing 'start' is included.
 677 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 678 *       pages from 'start' till the end of file are included.
 679 *
 680 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 681 * 'onlined' to the page allocator so they are considered idle when
 682 * page->count == 1. A filesystem uses this interface to determine if
 683 * any page in the mapping is busy, i.e. for DMA, or other
 684 * get_user_pages() usages.
 685 *
 686 * It is expected that the filesystem is holding locks to block the
 687 * establishment of new mappings in this address_space. I.e. it expects
 688 * to be able to run unmap_mapping_range() and subsequently not race
 689 * mapping_mapped() becoming true.
 690 */
 691struct page *dax_layout_busy_page_range(struct address_space *mapping,
 692					loff_t start, loff_t end)
 693{
 694	void *entry;
 695	unsigned int scanned = 0;
 696	struct page *page = NULL;
 697	pgoff_t start_idx = start >> PAGE_SHIFT;
 698	pgoff_t end_idx;
 699	XA_STATE(xas, &mapping->i_pages, start_idx);
 700
 701	/*
 702	 * In the 'limited' case get_user_pages() for dax is disabled.
 703	 */
 704	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 705		return NULL;
 706
 707	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 708		return NULL;
 709
 710	/* If end == LLONG_MAX, all pages from start to till end of file */
 711	if (end == LLONG_MAX)
 712		end_idx = ULONG_MAX;
 713	else
 714		end_idx = end >> PAGE_SHIFT;
 715	/*
 716	 * If we race get_user_pages_fast() here either we'll see the
 717	 * elevated page count in the iteration and wait, or
 718	 * get_user_pages_fast() will see that the page it took a reference
 719	 * against is no longer mapped in the page tables and bail to the
 720	 * get_user_pages() slow path.  The slow path is protected by
 721	 * pte_lock() and pmd_lock(). New references are not taken without
 722	 * holding those locks, and unmap_mapping_pages() will not zero the
 723	 * pte or pmd without holding the respective lock, so we are
 724	 * guaranteed to either see new references or prevent new
 725	 * references from being established.
 726	 */
 727	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
 728
 729	xas_lock_irq(&xas);
 730	xas_for_each(&xas, entry, end_idx) {
 731		if (WARN_ON_ONCE(!xa_is_value(entry)))
 732			continue;
 733		if (unlikely(dax_is_locked(entry)))
 734			entry = get_unlocked_entry(&xas, 0);
 735		if (entry)
 736			page = dax_busy_page(entry);
 737		put_unlocked_entry(&xas, entry, WAKE_NEXT);
 738		if (page)
 739			break;
 740		if (++scanned % XA_CHECK_SCHED)
 741			continue;
 742
 743		xas_pause(&xas);
 744		xas_unlock_irq(&xas);
 745		cond_resched();
 746		xas_lock_irq(&xas);
 747	}
 748	xas_unlock_irq(&xas);
 749	return page;
 750}
 751EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
 752
 753struct page *dax_layout_busy_page(struct address_space *mapping)
 754{
 755	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
 756}
 757EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 758
 759static int __dax_invalidate_entry(struct address_space *mapping,
 760					  pgoff_t index, bool trunc)
 761{
 762	XA_STATE(xas, &mapping->i_pages, index);
 763	int ret = 0;
 764	void *entry;
 
 765
 766	xas_lock_irq(&xas);
 767	entry = get_unlocked_entry(&xas, 0);
 768	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 769		goto out;
 770	if (!trunc &&
 771	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 772	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 773		goto out;
 774	dax_disassociate_entry(entry, mapping, trunc);
 775	xas_store(&xas, NULL);
 776	mapping->nrpages -= 1UL << dax_entry_order(entry);
 777	ret = 1;
 778out:
 779	put_unlocked_entry(&xas, entry, WAKE_ALL);
 780	xas_unlock_irq(&xas);
 781	return ret;
 782}
 783
 784/*
 785 * Delete DAX entry at @index from @mapping.  Wait for it
 786 * to be unlocked before deleting it.
 787 */
 788int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 789{
 790	int ret = __dax_invalidate_entry(mapping, index, true);
 791
 792	/*
 793	 * This gets called from truncate / punch_hole path. As such, the caller
 794	 * must hold locks protecting against concurrent modifications of the
 795	 * page cache (usually fs-private i_mmap_sem for writing). Since the
 796	 * caller has seen a DAX entry for this index, we better find it
 797	 * at that index as well...
 798	 */
 799	WARN_ON_ONCE(!ret);
 800	return ret;
 801}
 802
 803/*
 804 * Invalidate DAX entry if it is clean.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805 */
 806int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 807				      pgoff_t index)
 808{
 809	return __dax_invalidate_entry(mapping, index, false);
 810}
 811
 812static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
 
 
 
 
 
 
 
 
 
 813{
 814	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815}
 816
 817static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
 
 818{
 819	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
 820	void *vto, *kaddr;
 821	long rc;
 822	int id;
 
 823
 824	id = dax_read_lock();
 825	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
 826				&kaddr, NULL);
 827	if (rc < 0) {
 828		dax_read_unlock(id);
 829		return rc;
 830	}
 831	vto = kmap_atomic(vmf->cow_page);
 832	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
 833	kunmap_atomic(vto);
 834	dax_read_unlock(id);
 835	return 0;
 836}
 837
 838/*
 839 * MAP_SYNC on a dax mapping guarantees dirty metadata is
 840 * flushed on write-faults (non-cow), but not read-faults.
 841 */
 842static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
 843		struct vm_area_struct *vma)
 844{
 845	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
 846		(iter->iomap.flags & IOMAP_F_DIRTY);
 847}
 848
 849/*
 850 * By this point grab_mapping_entry() has ensured that we have a locked entry
 851 * of the appropriate size so we don't have to worry about downgrading PMDs to
 852 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 853 * already in the tree, we will skip the insertion and just dirty the PMD as
 854 * appropriate.
 855 */
 856static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
 857		const struct iomap_iter *iter, void *entry, pfn_t pfn,
 858		unsigned long flags)
 859{
 860	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 861	void *new_entry = dax_make_entry(pfn, flags);
 862	bool write = iter->flags & IOMAP_WRITE;
 863	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
 864	bool shared = iter->iomap.flags & IOMAP_F_SHARED;
 
 865
 866	if (dirty)
 867		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 868
 869	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
 870		unsigned long index = xas->xa_index;
 871		/* we are replacing a zero page with block mapping */
 872		if (dax_is_pmd_entry(entry))
 873			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 874					PG_PMD_NR, false);
 875		else /* pte entry */
 876			unmap_mapping_pages(mapping, index, 1, false);
 877	}
 878
 879	xas_reset(xas);
 880	xas_lock_irq(xas);
 881	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 882		void *old;
 883
 884		dax_disassociate_entry(entry, mapping, false);
 885		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
 886				shared);
 887		/*
 888		 * Only swap our new entry into the page cache if the current
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889		 * entry is a zero page or an empty entry.  If a normal PTE or
 890		 * PMD entry is already in the cache, we leave it alone.  This
 891		 * means that if we are trying to insert a PTE and the
 892		 * existing entry is a PMD, we will just leave the PMD in the
 893		 * tree and dirty it if necessary.
 894		 */
 895		old = dax_lock_entry(xas, new_entry);
 896		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 897					DAX_LOCKED));
 898		entry = new_entry;
 899	} else {
 900		xas_load(xas);	/* Walk the xa_state */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901	}
 
 
 902
 903	if (dirty)
 904		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906	if (write && shared)
 907		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
 
 
 
 908
 909	xas_unlock_irq(xas);
 910	return entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911}
 912
 913static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 914		struct address_space *mapping, void *entry)
 915{
 916	unsigned long pfn, index, count, end;
 917	long ret = 0;
 918	struct vm_area_struct *vma;
 
 919
 920	/*
 921	 * A page got tagged dirty in DAX mapping? Something is seriously
 922	 * wrong.
 923	 */
 924	if (WARN_ON(!xa_is_value(entry)))
 925		return -EIO;
 926
 927	if (unlikely(dax_is_locked(entry))) {
 928		void *old_entry = entry;
 929
 930		entry = get_unlocked_entry(xas, 0);
 931
 932		/* Entry got punched out / reallocated? */
 933		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 934			goto put_unlocked;
 935		/*
 936		 * Entry got reallocated elsewhere? No need to writeback.
 937		 * We have to compare pfns as we must not bail out due to
 938		 * difference in lockbit or entry type.
 939		 */
 940		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 941			goto put_unlocked;
 942		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 943					dax_is_zero_entry(entry))) {
 944			ret = -EIO;
 945			goto put_unlocked;
 946		}
 947
 948		/* Another fsync thread may have already done this entry */
 949		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 950			goto put_unlocked;
 951	}
 952
 
 
 
 953	/* Lock the entry to serialize with page faults */
 954	dax_lock_entry(xas, entry);
 955
 956	/*
 957	 * We can clear the tag now but we have to be careful so that concurrent
 958	 * dax_writeback_one() calls for the same index cannot finish before we
 959	 * actually flush the caches. This is achieved as the calls will look
 960	 * at the entry only under the i_pages lock and once they do that
 961	 * they will see the entry locked and wait for it to unlock.
 962	 */
 963	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 964	xas_unlock_irq(xas);
 965
 966	/*
 967	 * If dax_writeback_mapping_range() was given a wbc->range_start
 968	 * in the middle of a PMD, the 'index' we use needs to be
 969	 * aligned to the start of the PMD.
 970	 * This allows us to flush for PMD_SIZE and not have to worry about
 971	 * partial PMD writebacks.
 972	 */
 973	pfn = dax_to_pfn(entry);
 974	count = 1UL << dax_entry_order(entry);
 975	index = xas->xa_index & ~(count - 1);
 976	end = index + count - 1;
 
 
 
 
 
 
 
 
 977
 978	/* Walk all mappings of a given index of a file and writeprotect them */
 979	i_mmap_lock_read(mapping);
 980	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
 981		pfn_mkclean_range(pfn, count, index, vma);
 982		cond_resched();
 983	}
 984	i_mmap_unlock_read(mapping);
 985
 986	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 
 987	/*
 988	 * After we have flushed the cache, we can clear the dirty tag. There
 989	 * cannot be new dirty data in the pfn after the flush has completed as
 990	 * the pfn mappings are writeprotected and fault waits for mapping
 991	 * entry lock.
 992	 */
 993	xas_reset(xas);
 994	xas_lock_irq(xas);
 995	xas_store(xas, entry);
 996	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 997	dax_wake_entry(xas, entry, WAKE_NEXT);
 998
 999	trace_dax_writeback_one(mapping->host, index, count);
1000	return ret;
1001
1002 put_unlocked:
1003	put_unlocked_entry(xas, entry, WAKE_NEXT);
 
1004	return ret;
1005}
1006
1007/*
1008 * Flush the mapping to the persistent domain within the byte range of [start,
1009 * end]. This is required by data integrity operations to ensure file data is
1010 * on persistent storage prior to completion of the operation.
1011 */
1012int dax_writeback_mapping_range(struct address_space *mapping,
1013		struct dax_device *dax_dev, struct writeback_control *wbc)
1014{
1015	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1016	struct inode *inode = mapping->host;
1017	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1018	void *entry;
1019	int ret = 0;
1020	unsigned int scanned = 0;
 
1021
1022	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1023		return -EIO;
1024
1025	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1026		return 0;
1027
1028	trace_dax_writeback_range(inode, xas.xa_index, end_index);
 
1029
1030	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1031
1032	xas_lock_irq(&xas);
1033	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1034		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1035		if (ret < 0) {
1036			mapping_set_error(mapping, ret);
 
 
1037			break;
1038		}
1039		if (++scanned % XA_CHECK_SCHED)
1040			continue;
1041
1042		xas_pause(&xas);
1043		xas_unlock_irq(&xas);
1044		cond_resched();
1045		xas_lock_irq(&xas);
1046	}
1047	xas_unlock_irq(&xas);
1048	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1049	return ret;
1050}
1051EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1052
1053static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1054		size_t size, void **kaddr, pfn_t *pfnp)
1055{
1056	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1057	int id, rc = 0;
1058	long length;
1059
1060	id = dax_read_lock();
1061	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1062				   DAX_ACCESS, kaddr, pfnp);
1063	if (length < 0) {
1064		rc = length;
1065		goto out;
1066	}
1067	if (!pfnp)
1068		goto out_check_addr;
1069	rc = -EINVAL;
1070	if (PFN_PHYS(length) < size)
1071		goto out;
1072	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1073		goto out;
1074	/* For larger pages we need devmap */
1075	if (length > 1 && !pfn_t_devmap(*pfnp))
1076		goto out;
1077	rc = 0;
1078
1079out_check_addr:
1080	if (!kaddr)
1081		goto out;
1082	if (!*kaddr)
1083		rc = -EFAULT;
1084out:
1085	dax_read_unlock(id);
1086	return rc;
1087}
1088
1089/**
1090 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1091 * by copying the data before and after the range to be written.
1092 * @pos:	address to do copy from.
1093 * @length:	size of copy operation.
1094 * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1095 * @srcmap:	iomap srcmap
1096 * @daddr:	destination address to copy to.
1097 *
1098 * This can be called from two places. Either during DAX write fault (page
1099 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1100 * write operation, dax_iomap_iter() might call this to do the copy of either
1101 * start or end unaligned address. In the latter case the rest of the copy of
1102 * aligned ranges is taken care by dax_iomap_iter() itself.
1103 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1104 * area to make sure no old data remains.
1105 */
1106static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1107		const struct iomap *srcmap, void *daddr)
1108{
1109	loff_t head_off = pos & (align_size - 1);
1110	size_t size = ALIGN(head_off + length, align_size);
1111	loff_t end = pos + length;
1112	loff_t pg_end = round_up(end, align_size);
1113	/* copy_all is usually in page fault case */
1114	bool copy_all = head_off == 0 && end == pg_end;
1115	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1116	bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1117			 srcmap->type == IOMAP_UNWRITTEN;
1118	void *saddr = 0;
1119	int ret = 0;
1120
1121	if (!zero_edge) {
1122		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1123		if (ret)
1124			return ret;
1125	}
1126
1127	if (copy_all) {
1128		if (zero_edge)
1129			memset(daddr, 0, size);
1130		else
1131			ret = copy_mc_to_kernel(daddr, saddr, length);
1132		goto out;
1133	}
1134
1135	/* Copy the head part of the range */
1136	if (head_off) {
1137		if (zero_edge)
1138			memset(daddr, 0, head_off);
1139		else {
1140			ret = copy_mc_to_kernel(daddr, saddr, head_off);
1141			if (ret)
1142				return -EIO;
1143		}
1144	}
1145
1146	/* Copy the tail part of the range */
1147	if (end < pg_end) {
1148		loff_t tail_off = head_off + length;
1149		loff_t tail_len = pg_end - end;
1150
1151		if (zero_edge)
1152			memset(daddr + tail_off, 0, tail_len);
1153		else {
1154			ret = copy_mc_to_kernel(daddr + tail_off,
1155						saddr + tail_off, tail_len);
1156			if (ret)
1157				return -EIO;
1158		}
1159	}
1160out:
1161	if (zero_edge)
1162		dax_flush(srcmap->dax_dev, daddr, size);
1163	return ret ? -EIO : 0;
1164}
 
1165
1166/*
1167 * The user has performed a load from a hole in the file.  Allocating a new
1168 * page in the file would cause excessive storage usage for workloads with
1169 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1170 * If this page is ever written to we will re-fault and change the mapping to
1171 * point to real DAX storage instead.
1172 */
1173static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1174		const struct iomap_iter *iter, void **entry)
1175{
1176	struct inode *inode = iter->inode;
1177	unsigned long vaddr = vmf->address;
1178	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1179	vm_fault_t ret;
 
 
 
 
1180
1181	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
 
 
 
 
 
 
 
1182
1183	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1184	trace_dax_load_hole(inode, vmf, ret);
1185	return ret;
1186}
1187
1188#ifdef CONFIG_FS_DAX_PMD
1189static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1190		const struct iomap_iter *iter, void **entry)
 
 
 
1191{
1192	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1193	unsigned long pmd_addr = vmf->address & PMD_MASK;
1194	struct vm_area_struct *vma = vmf->vma;
1195	struct inode *inode = mapping->host;
1196	pgtable_t pgtable = NULL;
1197	struct page *zero_page;
1198	spinlock_t *ptl;
1199	pmd_t pmd_entry;
1200	pfn_t pfn;
1201
1202	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1203
1204	if (unlikely(!zero_page))
1205		goto fallback;
1206
1207	pfn = page_to_pfn_t(zero_page);
1208	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1209				  DAX_PMD | DAX_ZERO_PAGE);
1210
1211	if (arch_needs_pgtable_deposit()) {
1212		pgtable = pte_alloc_one(vma->vm_mm);
1213		if (!pgtable)
1214			return VM_FAULT_OOM;
1215	}
1216
1217	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1218	if (!pmd_none(*(vmf->pmd))) {
1219		spin_unlock(ptl);
1220		goto fallback;
1221	}
1222
1223	if (pgtable) {
1224		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1225		mm_inc_nr_ptes(vma->vm_mm);
1226	}
1227	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1228	pmd_entry = pmd_mkhuge(pmd_entry);
1229	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1230	spin_unlock(ptl);
1231	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1232	return VM_FAULT_NOPAGE;
 
 
1233
1234fallback:
1235	if (pgtable)
1236		pte_free(vma->vm_mm, pgtable);
1237	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1238	return VM_FAULT_FALLBACK;
1239}
1240#else
1241static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1242		const struct iomap_iter *iter, void **entry)
1243{
1244	return VM_FAULT_FALLBACK;
1245}
1246#endif /* CONFIG_FS_DAX_PMD */
1247
1248static s64 dax_unshare_iter(struct iomap_iter *iter)
1249{
1250	struct iomap *iomap = &iter->iomap;
1251	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1252	loff_t pos = iter->pos;
1253	loff_t length = iomap_length(iter);
1254	int id = 0;
1255	s64 ret = 0;
1256	void *daddr = NULL, *saddr = NULL;
1257
1258	/* don't bother with blocks that are not shared to start with */
1259	if (!(iomap->flags & IOMAP_F_SHARED))
1260		return length;
1261	/* don't bother with holes or unwritten extents */
1262	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1263		return length;
1264
1265	id = dax_read_lock();
1266	ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1267	if (ret < 0)
1268		goto out_unlock;
1269
1270	ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1271	if (ret < 0)
1272		goto out_unlock;
1273
1274	if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1275		ret = length;
1276	else
1277		ret = -EIO;
1278
1279out_unlock:
1280	dax_read_unlock(id);
1281	return ret;
1282}
1283
1284int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1285		const struct iomap_ops *ops)
1286{
1287	struct iomap_iter iter = {
1288		.inode		= inode,
1289		.pos		= pos,
1290		.len		= len,
1291		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1292	};
1293	int ret;
1294
1295	while ((ret = iomap_iter(&iter, ops)) > 0)
1296		iter.processed = dax_unshare_iter(&iter);
1297	return ret;
1298}
1299EXPORT_SYMBOL_GPL(dax_file_unshare);
1300
1301static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1302{
1303	const struct iomap *iomap = &iter->iomap;
1304	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1305	unsigned offset = offset_in_page(pos);
1306	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1307	void *kaddr;
1308	long ret;
1309
1310	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1311				NULL);
1312	if (ret < 0)
1313		return ret;
1314	memset(kaddr + offset, 0, size);
1315	if (iomap->flags & IOMAP_F_SHARED)
1316		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1317					    kaddr);
1318	else
1319		dax_flush(iomap->dax_dev, kaddr + offset, size);
1320	return ret;
1321}
1322
1323static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1324{
1325	const struct iomap *iomap = &iter->iomap;
1326	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1327	loff_t pos = iter->pos;
1328	u64 length = iomap_length(iter);
1329	s64 written = 0;
1330
1331	/* already zeroed?  we're done. */
1332	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1333		return length;
1334
1335	/*
1336	 * invalidate the pages whose sharing state is to be changed
1337	 * because of CoW.
1338	 */
1339	if (iomap->flags & IOMAP_F_SHARED)
1340		invalidate_inode_pages2_range(iter->inode->i_mapping,
1341					      pos >> PAGE_SHIFT,
1342					      (pos + length - 1) >> PAGE_SHIFT);
1343
1344	do {
1345		unsigned offset = offset_in_page(pos);
1346		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1347		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1348		long rc;
1349		int id;
1350
1351		id = dax_read_lock();
1352		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1353			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1354		else
1355			rc = dax_memzero(iter, pos, size);
1356		dax_read_unlock(id);
1357
1358		if (rc < 0)
1359			return rc;
1360		pos += size;
1361		length -= size;
1362		written += size;
1363	} while (length > 0);
1364
1365	if (did_zero)
1366		*did_zero = true;
1367	return written;
1368}
1369
1370int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1371		const struct iomap_ops *ops)
1372{
1373	struct iomap_iter iter = {
1374		.inode		= inode,
1375		.pos		= pos,
1376		.len		= len,
1377		.flags		= IOMAP_DAX | IOMAP_ZERO,
1378	};
1379	int ret;
1380
1381	while ((ret = iomap_iter(&iter, ops)) > 0)
1382		iter.processed = dax_zero_iter(&iter, did_zero);
1383	return ret;
1384}
1385EXPORT_SYMBOL_GPL(dax_zero_range);
1386
1387int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1388		const struct iomap_ops *ops)
1389{
1390	unsigned int blocksize = i_blocksize(inode);
1391	unsigned int off = pos & (blocksize - 1);
1392
1393	/* Block boundary? Nothing to do */
1394	if (!off)
1395		return 0;
1396	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1397}
1398EXPORT_SYMBOL_GPL(dax_truncate_page);
1399
1400static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1401		struct iov_iter *iter)
 
1402{
1403	const struct iomap *iomap = &iomi->iomap;
1404	const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1405	loff_t length = iomap_length(iomi);
1406	loff_t pos = iomi->pos;
1407	struct dax_device *dax_dev = iomap->dax_dev;
1408	loff_t end = pos + length, done = 0;
1409	bool write = iov_iter_rw(iter) == WRITE;
1410	bool cow = write && iomap->flags & IOMAP_F_SHARED;
1411	ssize_t ret = 0;
1412	size_t xfer;
1413	int id;
1414
1415	if (!write) {
1416		end = min(end, i_size_read(iomi->inode));
1417		if (pos >= end)
1418			return 0;
1419
1420		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1421			return iov_iter_zero(min(length, end - pos), iter);
1422	}
1423
1424	/*
1425	 * In DAX mode, enforce either pure overwrites of written extents, or
1426	 * writes to unwritten extents as part of a copy-on-write operation.
1427	 */
1428	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1429			!(iomap->flags & IOMAP_F_SHARED)))
1430		return -EIO;
1431
1432	/*
1433	 * Write can allocate block for an area which has a hole page mapped
1434	 * into page tables. We have to tear down these mappings so that data
1435	 * written by write(2) is visible in mmap.
1436	 */
1437	if (iomap->flags & IOMAP_F_NEW || cow) {
1438		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1439					      pos >> PAGE_SHIFT,
1440					      (end - 1) >> PAGE_SHIFT);
1441	}
1442
1443	id = dax_read_lock();
1444	while (pos < end) {
1445		unsigned offset = pos & (PAGE_SIZE - 1);
1446		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1447		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1448		ssize_t map_len;
1449		bool recovery = false;
1450		void *kaddr;
1451
1452		if (fatal_signal_pending(current)) {
1453			ret = -EINTR;
1454			break;
1455		}
1456
1457		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1458				DAX_ACCESS, &kaddr, NULL);
1459		if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1460			map_len = dax_direct_access(dax_dev, pgoff,
1461					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1462					&kaddr, NULL);
1463			if (map_len > 0)
1464				recovery = true;
1465		}
1466		if (map_len < 0) {
1467			ret = map_len;
1468			break;
1469		}
1470
1471		if (cow) {
1472			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1473						    srcmap, kaddr);
1474			if (ret)
1475				break;
1476		}
1477
1478		map_len = PFN_PHYS(map_len);
1479		kaddr += offset;
1480		map_len -= offset;
1481		if (map_len > end - pos)
1482			map_len = end - pos;
1483
1484		if (recovery)
1485			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1486					map_len, iter);
1487		else if (write)
1488			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1489					map_len, iter);
1490		else
1491			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1492					map_len, iter);
 
 
 
 
1493
1494		pos += xfer;
1495		length -= xfer;
1496		done += xfer;
1497
1498		if (xfer == 0)
1499			ret = -EFAULT;
1500		if (xfer < map_len)
1501			break;
1502	}
1503	dax_read_unlock(id);
1504
1505	return done ? done : ret;
1506}
1507
1508/**
1509 * dax_iomap_rw - Perform I/O to a DAX file
1510 * @iocb:	The control block for this I/O
1511 * @iter:	The addresses to do I/O from or to
1512 * @ops:	iomap ops passed from the file system
1513 *
1514 * This function performs read and write operations to directly mapped
1515 * persistent memory.  The callers needs to take care of read/write exclusion
1516 * and evicting any page cache pages in the region under I/O.
1517 */
1518ssize_t
1519dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1520		const struct iomap_ops *ops)
1521{
1522	struct iomap_iter iomi = {
1523		.inode		= iocb->ki_filp->f_mapping->host,
1524		.pos		= iocb->ki_pos,
1525		.len		= iov_iter_count(iter),
1526		.flags		= IOMAP_DAX,
1527	};
1528	loff_t done = 0;
1529	int ret;
1530
1531	if (!iomi.len)
1532		return 0;
1533
1534	if (iov_iter_rw(iter) == WRITE) {
1535		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1536		iomi.flags |= IOMAP_WRITE;
1537	} else {
1538		lockdep_assert_held(&iomi.inode->i_rwsem);
 
 
1539	}
1540
1541	if (iocb->ki_flags & IOCB_NOWAIT)
1542		iomi.flags |= IOMAP_NOWAIT;
1543
1544	while ((ret = iomap_iter(&iomi, ops)) > 0)
1545		iomi.processed = dax_iomap_iter(&iomi, iter);
1546
1547	done = iomi.pos - iocb->ki_pos;
1548	iocb->ki_pos = iomi.pos;
1549	return done ? done : ret;
1550}
1551EXPORT_SYMBOL_GPL(dax_iomap_rw);
1552
1553static vm_fault_t dax_fault_return(int error)
1554{
1555	if (error == 0)
1556		return VM_FAULT_NOPAGE;
1557	return vmf_error(error);
1558}
1559
1560/*
1561 * When handling a synchronous page fault and the inode need a fsync, we can
1562 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1563 * insertion for now and return the pfn so that caller can insert it after the
1564 * fsync is done.
1565 */
1566static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1567{
1568	if (WARN_ON_ONCE(!pfnp))
1569		return VM_FAULT_SIGBUS;
1570	*pfnp = pfn;
1571	return VM_FAULT_NEEDDSYNC;
1572}
1573
1574static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1575		const struct iomap_iter *iter)
1576{
1577	vm_fault_t ret;
1578	int error = 0;
1579
1580	switch (iter->iomap.type) {
1581	case IOMAP_HOLE:
1582	case IOMAP_UNWRITTEN:
1583		clear_user_highpage(vmf->cow_page, vmf->address);
1584		break;
1585	case IOMAP_MAPPED:
1586		error = copy_cow_page_dax(vmf, iter);
1587		break;
1588	default:
1589		WARN_ON_ONCE(1);
1590		error = -EIO;
1591		break;
1592	}
1593
1594	if (error)
1595		return dax_fault_return(error);
1596
1597	__SetPageUptodate(vmf->cow_page);
1598	ret = finish_fault(vmf);
1599	if (!ret)
1600		return VM_FAULT_DONE_COW;
1601	return ret;
1602}
1603
1604/**
1605 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1606 * @vmf:	vm fault instance
1607 * @iter:	iomap iter
1608 * @pfnp:	pfn to be returned
1609 * @xas:	the dax mapping tree of a file
1610 * @entry:	an unlocked dax entry to be inserted
1611 * @pmd:	distinguish whether it is a pmd fault
 
1612 */
1613static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1614		const struct iomap_iter *iter, pfn_t *pfnp,
1615		struct xa_state *xas, void **entry, bool pmd)
1616{
1617	const struct iomap *iomap = &iter->iomap;
1618	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1619	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1620	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1621	bool write = iter->flags & IOMAP_WRITE;
1622	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1623	int err = 0;
1624	pfn_t pfn;
1625	void *kaddr;
1626
1627	if (!pmd && vmf->cow_page)
1628		return dax_fault_cow_page(vmf, iter);
1629
1630	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1631	if (!write &&
1632	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1633		if (!pmd)
1634			return dax_load_hole(xas, vmf, iter, entry);
1635		return dax_pmd_load_hole(xas, vmf, iter, entry);
1636	}
1637
1638	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1639		WARN_ON_ONCE(1);
1640		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1641	}
1642
1643	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1644	if (err)
1645		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1646
1647	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1648
1649	if (write && iomap->flags & IOMAP_F_SHARED) {
1650		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1651		if (err)
1652			return dax_fault_return(err);
1653	}
1654
1655	if (dax_fault_is_synchronous(iter, vmf->vma))
1656		return dax_fault_synchronous_pfnp(pfnp, pfn);
1657
1658	/* insert PMD pfn */
1659	if (pmd)
1660		return vmf_insert_pfn_pmd(vmf, pfn, write);
1661
1662	/* insert PTE pfn */
1663	if (write)
1664		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1665	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1666}
1667
1668static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1669			       int *iomap_errp, const struct iomap_ops *ops)
1670{
1671	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1672	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1673	struct iomap_iter iter = {
1674		.inode		= mapping->host,
1675		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1676		.len		= PAGE_SIZE,
1677		.flags		= IOMAP_DAX | IOMAP_FAULT,
1678	};
1679	vm_fault_t ret = 0;
1680	void *entry;
1681	int error;
1682
1683	trace_dax_pte_fault(iter.inode, vmf, ret);
1684	/*
1685	 * Check whether offset isn't beyond end of file now. Caller is supposed
1686	 * to hold locks serializing us with truncate / punch hole so this is
1687	 * a reliable test.
1688	 */
1689	if (iter.pos >= i_size_read(iter.inode)) {
1690		ret = VM_FAULT_SIGBUS;
1691		goto out;
1692	}
1693
1694	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1695		iter.flags |= IOMAP_WRITE;
1696
1697	entry = grab_mapping_entry(&xas, mapping, 0);
1698	if (xa_is_internal(entry)) {
1699		ret = xa_to_internal(entry);
1700		goto out;
 
 
 
 
 
 
 
1701	}
1702
1703	/*
1704	 * It is possible, particularly with mixed reads & writes to private
1705	 * mappings, that we have raced with a PMD fault that overlaps with
1706	 * the PTE we need to set up.  If so just return and the fault will be
1707	 * retried.
1708	 */
1709	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1710		ret = VM_FAULT_NOPAGE;
1711		goto unlock_entry;
1712	}
1713
1714	while ((error = iomap_iter(&iter, ops)) > 0) {
1715		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1716			iter.processed = -EIO;	/* fs corruption? */
1717			continue;
 
 
 
 
 
 
 
 
 
 
 
 
1718		}
1719
1720		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1721		if (ret != VM_FAULT_SIGBUS &&
1722		    (iter.iomap.flags & IOMAP_F_NEW)) {
 
 
 
 
 
 
 
 
 
 
1723			count_vm_event(PGMAJFAULT);
1724			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1725			ret |= VM_FAULT_MAJOR;
 
 
 
 
 
 
 
 
 
 
 
 
1726		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727
1728		if (!(ret & VM_FAULT_ERROR))
1729			iter.processed = PAGE_SIZE;
 
 
 
 
 
 
 
1730	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731
1732	if (iomap_errp)
1733		*iomap_errp = error;
1734	if (!ret && error)
1735		ret = dax_fault_return(error);
1736
1737unlock_entry:
1738	dax_unlock_entry(&xas, entry);
1739out:
1740	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1741	return ret;
1742}
1743
1744#ifdef CONFIG_FS_DAX_PMD
1745static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1746		pgoff_t max_pgoff)
1747{
1748	unsigned long pmd_addr = vmf->address & PMD_MASK;
1749	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
 
 
 
1750
1751	/*
1752	 * Make sure that the faulting address's PMD offset (color) matches
1753	 * the PMD offset from the start of the file.  This is necessary so
1754	 * that a PMD range in the page table overlaps exactly with a PMD
1755	 * range in the page cache.
1756	 */
1757	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1758	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1759		return true;
1760
1761	/* Fall back to PTEs if we're going to COW */
1762	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1763		return true;
1764
1765	/* If the PMD would extend outside the VMA */
1766	if (pmd_addr < vmf->vma->vm_start)
1767		return true;
1768	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1769		return true;
1770
1771	/* If the PMD would extend beyond the file size */
1772	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1773		return true;
 
 
1774
1775	return false;
 
 
 
 
1776}
1777
1778static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1779			       const struct iomap_ops *ops)
1780{
1781	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1782	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1783	struct iomap_iter iter = {
1784		.inode		= mapping->host,
1785		.len		= PMD_SIZE,
1786		.flags		= IOMAP_DAX | IOMAP_FAULT,
1787	};
1788	vm_fault_t ret = VM_FAULT_FALLBACK;
1789	pgoff_t max_pgoff;
1790	void *entry;
 
1791	int error;
1792
1793	if (vmf->flags & FAULT_FLAG_WRITE)
1794		iter.flags |= IOMAP_WRITE;
 
 
 
 
 
 
 
1795
1796	/*
1797	 * Check whether offset isn't beyond end of file now. Caller is
1798	 * supposed to hold locks serializing us with truncate / punch hole so
1799	 * this is a reliable test.
1800	 */
1801	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
 
1802
1803	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
 
1804
1805	if (xas.xa_index >= max_pgoff) {
1806		ret = VM_FAULT_SIGBUS;
1807		goto out;
1808	}
1809
1810	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1811		goto fallback;
1812
1813	/*
1814	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1815	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1816	 * entry is already in the array, for instance), it will return
1817	 * VM_FAULT_FALLBACK.
1818	 */
1819	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1820	if (xa_is_internal(entry)) {
1821		ret = xa_to_internal(entry);
1822		goto fallback;
1823	}
 
 
1824
1825	/*
1826	 * It is possible, particularly with mixed reads & writes to private
1827	 * mappings, that we have raced with a PTE fault that overlaps with
1828	 * the PMD we need to set up.  If so just return and the fault will be
1829	 * retried.
1830	 */
1831	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1832			!pmd_devmap(*vmf->pmd)) {
1833		ret = 0;
1834		goto unlock_entry;
1835	}
 
 
1836
1837	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1838	while ((error = iomap_iter(&iter, ops)) > 0) {
1839		if (iomap_length(&iter) < PMD_SIZE)
1840			continue; /* actually breaks out of the loop */
1841
1842		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1843		if (ret != VM_FAULT_FALLBACK)
1844			iter.processed = PMD_SIZE;
1845	}
1846
1847unlock_entry:
1848	dax_unlock_entry(&xas, entry);
1849fallback:
1850	if (ret == VM_FAULT_FALLBACK) {
1851		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1852		count_vm_event(THP_FAULT_FALLBACK);
1853	}
1854out:
1855	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1856	return ret;
1857}
1858#else
1859static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1860			       const struct iomap_ops *ops)
1861{
1862	return VM_FAULT_FALLBACK;
1863}
1864#endif /* CONFIG_FS_DAX_PMD */
1865
1866/**
1867 * dax_iomap_fault - handle a page fault on a DAX file
1868 * @vmf: The description of the fault
1869 * @pe_size: Size of the page to fault in
1870 * @pfnp: PFN to insert for synchronous faults if fsync is required
1871 * @iomap_errp: Storage for detailed error code in case of error
1872 * @ops: Iomap ops passed from the file system
1873 *
1874 * When a page fault occurs, filesystems may call this helper in
1875 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1876 * has done all the necessary locking for page fault to proceed
1877 * successfully.
1878 */
1879vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1880		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1881{
1882	switch (pe_size) {
1883	case PE_SIZE_PTE:
1884		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1885	case PE_SIZE_PMD:
1886		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1887	default:
1888		return VM_FAULT_FALLBACK;
 
1889	}
1890}
1891EXPORT_SYMBOL_GPL(dax_iomap_fault);
1892
1893/*
1894 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1895 * @vmf: The description of the fault
1896 * @pfn: PFN to insert
1897 * @order: Order of entry to insert.
1898 *
1899 * This function inserts a writeable PTE or PMD entry into the page tables
1900 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1901 */
1902static vm_fault_t
1903dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1904{
1905	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1906	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1907	void *entry;
1908	vm_fault_t ret;
1909
1910	xas_lock_irq(&xas);
1911	entry = get_unlocked_entry(&xas, order);
1912	/* Did we race with someone splitting entry or so? */
1913	if (!entry || dax_is_conflict(entry) ||
1914	    (order == 0 && !dax_is_pte_entry(entry))) {
1915		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1916		xas_unlock_irq(&xas);
1917		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1918						      VM_FAULT_NOPAGE);
1919		return VM_FAULT_NOPAGE;
1920	}
1921	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1922	dax_lock_entry(&xas, entry);
1923	xas_unlock_irq(&xas);
1924	if (order == 0)
1925		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1926#ifdef CONFIG_FS_DAX_PMD
1927	else if (order == PMD_ORDER)
1928		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1929#endif
1930	else
1931		ret = VM_FAULT_FALLBACK;
1932	dax_unlock_entry(&xas, entry);
1933	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1934	return ret;
1935}
1936
1937/**
1938 * dax_finish_sync_fault - finish synchronous page fault
1939 * @vmf: The description of the fault
1940 * @pe_size: Size of entry to be inserted
1941 * @pfn: PFN to insert
1942 *
1943 * This function ensures that the file range touched by the page fault is
1944 * stored persistently on the media and handles inserting of appropriate page
1945 * table entry.
1946 */
1947vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1948		enum page_entry_size pe_size, pfn_t pfn)
1949{
1950	int err;
1951	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1952	unsigned int order = pe_order(pe_size);
1953	size_t len = PAGE_SIZE << order;
1954
1955	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1956	if (err)
1957		return VM_FAULT_SIGBUS;
1958	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1959}
1960EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1961
1962static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1963		struct iomap_iter *it_dest, u64 len, bool *same)
1964{
1965	const struct iomap *smap = &it_src->iomap;
1966	const struct iomap *dmap = &it_dest->iomap;
1967	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1968	void *saddr, *daddr;
1969	int id, ret;
1970
1971	len = min(len, min(smap->length, dmap->length));
1972
1973	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1974		*same = true;
1975		return len;
1976	}
1977
1978	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
1979		*same = false;
1980		return 0;
1981	}
1982
1983	id = dax_read_lock();
1984	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
1985				      &saddr, NULL);
1986	if (ret < 0)
1987		goto out_unlock;
1988
1989	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
1990				      &daddr, NULL);
1991	if (ret < 0)
1992		goto out_unlock;
1993
1994	*same = !memcmp(saddr, daddr, len);
1995	if (!*same)
1996		len = 0;
1997	dax_read_unlock(id);
1998	return len;
1999
2000out_unlock:
2001	dax_read_unlock(id);
2002	return -EIO;
2003}
2004
2005int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2006		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2007		const struct iomap_ops *ops)
2008{
2009	struct iomap_iter src_iter = {
2010		.inode		= src,
2011		.pos		= srcoff,
2012		.len		= len,
2013		.flags		= IOMAP_DAX,
2014	};
2015	struct iomap_iter dst_iter = {
2016		.inode		= dst,
2017		.pos		= dstoff,
2018		.len		= len,
2019		.flags		= IOMAP_DAX,
2020	};
2021	int ret, compared = 0;
2022
2023	while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2024	       (ret = iomap_iter(&dst_iter, ops)) > 0) {
2025		compared = dax_range_compare_iter(&src_iter, &dst_iter, len,
2026						  same);
2027		if (compared < 0)
2028			return ret;
2029		src_iter.processed = dst_iter.processed = compared;
2030	}
2031	return ret;
2032}
2033
2034int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2035			      struct file *file_out, loff_t pos_out,
2036			      loff_t *len, unsigned int remap_flags,
2037			      const struct iomap_ops *ops)
2038{
2039	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2040					       pos_out, len, remap_flags, ops);
2041}
2042EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);