Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.10.11
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/pmem.h>
  29#include <linux/sched.h>
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/iomap.h>
  36#include "internal.h"
  37
  38/* We choose 4096 entries - same as per-zone page wait tables */
  39#define DAX_WAIT_TABLE_BITS 12
  40#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  41
  42static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  43
  44static int __init init_dax_wait_table(void)
  45{
  46	int i;
  47
  48	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  49		init_waitqueue_head(wait_table + i);
  50	return 0;
  51}
  52fs_initcall(init_dax_wait_table);
  53
  54static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
  55{
  56	struct request_queue *q = bdev->bd_queue;
  57	long rc = -EIO;
  58
  59	dax->addr = ERR_PTR(-EIO);
  60	if (blk_queue_enter(q, true) != 0)
  61		return rc;
  62
  63	rc = bdev_direct_access(bdev, dax);
  64	if (rc < 0) {
  65		dax->addr = ERR_PTR(rc);
  66		blk_queue_exit(q);
  67		return rc;
  68	}
  69	return rc;
  70}
  71
  72static void dax_unmap_atomic(struct block_device *bdev,
  73		const struct blk_dax_ctl *dax)
  74{
  75	if (IS_ERR(dax->addr))
  76		return;
  77	blk_queue_exit(bdev->bd_queue);
  78}
  79
  80static int dax_is_pmd_entry(void *entry)
  81{
  82	return (unsigned long)entry & RADIX_DAX_PMD;
  83}
  84
  85static int dax_is_pte_entry(void *entry)
  86{
  87	return !((unsigned long)entry & RADIX_DAX_PMD);
  88}
  89
  90static int dax_is_zero_entry(void *entry)
  91{
  92	return (unsigned long)entry & RADIX_DAX_HZP;
  93}
  94
  95static int dax_is_empty_entry(void *entry)
  96{
  97	return (unsigned long)entry & RADIX_DAX_EMPTY;
  98}
  99
 100struct page *read_dax_sector(struct block_device *bdev, sector_t n)
 101{
 102	struct page *page = alloc_pages(GFP_KERNEL, 0);
 103	struct blk_dax_ctl dax = {
 104		.size = PAGE_SIZE,
 105		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
 106	};
 107	long rc;
 108
 109	if (!page)
 110		return ERR_PTR(-ENOMEM);
 111
 112	rc = dax_map_atomic(bdev, &dax);
 113	if (rc < 0)
 114		return ERR_PTR(rc);
 115	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
 116	dax_unmap_atomic(bdev, &dax);
 117	return page;
 118}
 119
 120/*
 121 * DAX radix tree locking
 
 
 122 */
 123struct exceptional_entry_key {
 124	struct address_space *mapping;
 125	pgoff_t entry_start;
 126};
 127
 128struct wait_exceptional_entry_queue {
 129	wait_queue_t wait;
 130	struct exceptional_entry_key key;
 131};
 132
 133static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
 134		pgoff_t index, void *entry, struct exceptional_entry_key *key)
 135{
 136	unsigned long hash;
 137
 138	/*
 139	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 140	 * queue to the start of that PMD.  This ensures that all offsets in
 141	 * the range covered by the PMD map to the same bit lock.
 142	 */
 143	if (dax_is_pmd_entry(entry))
 144		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
 145
 146	key->mapping = mapping;
 147	key->entry_start = index;
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
 150	return wait_table + hash;
 151}
 
 152
 153static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
 154				       int sync, void *keyp)
 
 155{
 156	struct exceptional_entry_key *key = keyp;
 157	struct wait_exceptional_entry_queue *ewait =
 158		container_of(wait, struct wait_exceptional_entry_queue, wait);
 159
 160	if (key->mapping != ewait->key.mapping ||
 161	    key->entry_start != ewait->key.entry_start)
 162		return 0;
 163	return autoremove_wake_function(wait, mode, sync, NULL);
 164}
 165
 166/*
 167 * Check whether the given slot is locked. The function must be called with
 168 * mapping->tree_lock held
 169 */
 170static inline int slot_locked(struct address_space *mapping, void **slot)
 171{
 172	unsigned long entry = (unsigned long)
 173		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 174	return entry & RADIX_DAX_ENTRY_LOCK;
 175}
 176
 177/*
 178 * Mark the given slot is locked. The function must be called with
 179 * mapping->tree_lock held
 180 */
 181static inline void *lock_slot(struct address_space *mapping, void **slot)
 182{
 183	unsigned long entry = (unsigned long)
 184		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 185
 186	entry |= RADIX_DAX_ENTRY_LOCK;
 187	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 188	return (void *)entry;
 189}
 190
 191/*
 192 * Mark the given slot is unlocked. The function must be called with
 193 * mapping->tree_lock held
 
 
 
 194 */
 195static inline void *unlock_slot(struct address_space *mapping, void **slot)
 196{
 197	unsigned long entry = (unsigned long)
 198		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 199
 200	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
 201	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 202	return (void *)entry;
 203}
 204
 205/*
 206 * Lookup entry in radix tree, wait for it to become unlocked if it is
 207 * exceptional entry and return it. The caller must call
 208 * put_unlocked_mapping_entry() when he decided not to lock the entry or
 209 * put_locked_mapping_entry() when he locked the entry and now wants to
 210 * unlock it.
 211 *
 212 * The function must be called with mapping->tree_lock held.
 213 */
 214static void *get_unlocked_mapping_entry(struct address_space *mapping,
 215					pgoff_t index, void ***slotp)
 216{
 217	void *entry, **slot;
 218	struct wait_exceptional_entry_queue ewait;
 219	wait_queue_head_t *wq;
 220
 221	init_wait(&ewait.wait);
 222	ewait.wait.func = wake_exceptional_entry_func;
 223
 224	for (;;) {
 225		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
 226					  &slot);
 227		if (!entry || !radix_tree_exceptional_entry(entry) ||
 228		    !slot_locked(mapping, slot)) {
 229			if (slotp)
 230				*slotp = slot;
 231			return entry;
 232		}
 233
 234		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
 235		prepare_to_wait_exclusive(wq, &ewait.wait,
 236					  TASK_UNINTERRUPTIBLE);
 237		spin_unlock_irq(&mapping->tree_lock);
 238		schedule();
 239		finish_wait(wq, &ewait.wait);
 240		spin_lock_irq(&mapping->tree_lock);
 241	}
 242}
 243
 244static void dax_unlock_mapping_entry(struct address_space *mapping,
 245				     pgoff_t index)
 246{
 247	void *entry, **slot;
 248
 249	spin_lock_irq(&mapping->tree_lock);
 250	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
 251	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
 252			 !slot_locked(mapping, slot))) {
 253		spin_unlock_irq(&mapping->tree_lock);
 254		return;
 255	}
 256	unlock_slot(mapping, slot);
 257	spin_unlock_irq(&mapping->tree_lock);
 258	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 259}
 260
 261static void put_locked_mapping_entry(struct address_space *mapping,
 262				     pgoff_t index, void *entry)
 263{
 264	if (!radix_tree_exceptional_entry(entry)) {
 265		unlock_page(entry);
 266		put_page(entry);
 267	} else {
 268		dax_unlock_mapping_entry(mapping, index);
 269	}
 270}
 271
 272/*
 273 * Called when we are done with radix tree entry we looked up via
 274 * get_unlocked_mapping_entry() and which we didn't lock in the end.
 275 */
 276static void put_unlocked_mapping_entry(struct address_space *mapping,
 277				       pgoff_t index, void *entry)
 278{
 279	if (!radix_tree_exceptional_entry(entry))
 280		return;
 281
 282	/* We have to wake up next waiter for the radix tree entry lock */
 283	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 284}
 285
 286/*
 287 * Find radix tree entry at given index. If it points to a page, return with
 288 * the page locked. If it points to the exceptional entry, return with the
 289 * radix tree entry locked. If the radix tree doesn't contain given index,
 290 * create empty exceptional entry for the index and return with it locked.
 291 *
 292 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
 293 * either return that locked entry or will return an error.  This error will
 294 * happen if there are any 4k entries (either zero pages or DAX entries)
 295 * within the 2MiB range that we are requesting.
 296 *
 297 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
 298 * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
 299 * insertion will fail if it finds any 4k entries already in the tree, and a
 300 * 4k insertion will cause an existing 2MiB entry to be unmapped and
 301 * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
 302 * well as 2MiB empty entries.
 303 *
 304 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
 305 * real storage backing them.  We will leave these real 2MiB DAX entries in
 306 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
 307 *
 308 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 309 * persistent memory the benefit is doubtful. We can add that later if we can
 310 * show it helps.
 311 */
 312static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
 313		unsigned long size_flag)
 314{
 315	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
 316	void *entry, **slot;
 317
 318restart:
 319	spin_lock_irq(&mapping->tree_lock);
 320	entry = get_unlocked_mapping_entry(mapping, index, &slot);
 321
 322	if (entry) {
 323		if (size_flag & RADIX_DAX_PMD) {
 324			if (!radix_tree_exceptional_entry(entry) ||
 325			    dax_is_pte_entry(entry)) {
 326				put_unlocked_mapping_entry(mapping, index,
 327						entry);
 328				entry = ERR_PTR(-EEXIST);
 329				goto out_unlock;
 330			}
 331		} else { /* trying to grab a PTE entry */
 332			if (radix_tree_exceptional_entry(entry) &&
 333			    dax_is_pmd_entry(entry) &&
 334			    (dax_is_zero_entry(entry) ||
 335			     dax_is_empty_entry(entry))) {
 336				pmd_downgrade = true;
 
 
 
 
 
 
 
 
 
 337			}
 338		}
 339	}
 340
 341	/* No entry for given index? Make sure radix tree is big enough. */
 342	if (!entry || pmd_downgrade) {
 343		int err;
 344
 345		if (pmd_downgrade) {
 346			/*
 347			 * Make sure 'entry' remains valid while we drop
 348			 * mapping->tree_lock.
 349			 */
 350			entry = lock_slot(mapping, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351		}
 352
 353		spin_unlock_irq(&mapping->tree_lock);
 354		/*
 355		 * Besides huge zero pages the only other thing that gets
 356		 * downgraded are empty entries which don't need to be
 357		 * unmapped.
 358		 */
 359		if (pmd_downgrade && dax_is_zero_entry(entry))
 360			unmap_mapping_range(mapping,
 361				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 362
 363		err = radix_tree_preload(
 364				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
 365		if (err) {
 366			if (pmd_downgrade)
 367				put_locked_mapping_entry(mapping, index, entry);
 368			return ERR_PTR(err);
 369		}
 370		spin_lock_irq(&mapping->tree_lock);
 371
 372		if (!entry) {
 373			/*
 374			 * We needed to drop the page_tree lock while calling
 375			 * radix_tree_preload() and we didn't have an entry to
 376			 * lock.  See if another thread inserted an entry at
 377			 * our index during this time.
 378			 */
 379			entry = __radix_tree_lookup(&mapping->page_tree, index,
 380					NULL, &slot);
 381			if (entry) {
 382				radix_tree_preload_end();
 383				spin_unlock_irq(&mapping->tree_lock);
 384				goto restart;
 385			}
 386		}
 387
 388		if (pmd_downgrade) {
 389			radix_tree_delete(&mapping->page_tree, index);
 390			mapping->nrexceptional--;
 391			dax_wake_mapping_entry_waiter(mapping, index, entry,
 392					true);
 393		}
 394
 395		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
 
 
 396
 397		err = __radix_tree_insert(&mapping->page_tree, index,
 398				dax_radix_order(entry), entry);
 399		radix_tree_preload_end();
 400		if (err) {
 401			spin_unlock_irq(&mapping->tree_lock);
 402			/*
 403			 * Our insertion of a DAX entry failed, most likely
 404			 * because we were inserting a PMD entry and it
 405			 * collided with a PTE sized entry at a different
 406			 * index in the PMD range.  We haven't inserted
 407			 * anything into the radix tree and have no waiters to
 408			 * wake.
 409			 */
 410			return ERR_PTR(err);
 411		}
 412		/* Good, we have inserted empty locked entry into the tree. */
 413		mapping->nrexceptional++;
 414		spin_unlock_irq(&mapping->tree_lock);
 415		return entry;
 416	}
 417	/* Normal page in radix tree? */
 418	if (!radix_tree_exceptional_entry(entry)) {
 419		struct page *page = entry;
 420
 421		get_page(page);
 422		spin_unlock_irq(&mapping->tree_lock);
 423		lock_page(page);
 424		/* Page got truncated? Retry... */
 425		if (unlikely(page->mapping != mapping)) {
 426			unlock_page(page);
 427			put_page(page);
 428			goto restart;
 429		}
 430		return page;
 431	}
 432	entry = lock_slot(mapping, slot);
 433 out_unlock:
 434	spin_unlock_irq(&mapping->tree_lock);
 435	return entry;
 436}
 437
 438/*
 439 * We do not necessarily hold the mapping->tree_lock when we call this
 440 * function so it is possible that 'entry' is no longer a valid item in the
 441 * radix tree.  This is okay because all we really need to do is to find the
 442 * correct waitqueue where tasks might be waiting for that old 'entry' and
 443 * wake them.
 
 
 
 
 
 
 
 
 
 
 444 */
 445void dax_wake_mapping_entry_waiter(struct address_space *mapping,
 446		pgoff_t index, void *entry, bool wake_all)
 447{
 448	struct exceptional_entry_key key;
 449	wait_queue_head_t *wq;
 450
 451	wq = dax_entry_waitqueue(mapping, index, entry, &key);
 452
 453	/*
 454	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 455	 * under mapping->tree_lock, ditto for entry handling in our callers.
 456	 * So at this point all tasks that could have seen our entry locked
 457	 * must be in the waitqueue and the following check will see them.
 458	 */
 459	if (waitqueue_active(wq))
 460		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 461}
 
 
 
 462
 463static int __dax_invalidate_mapping_entry(struct address_space *mapping,
 464					  pgoff_t index, bool trunc)
 465{
 466	int ret = 0;
 467	void *entry;
 468	struct radix_tree_root *page_tree = &mapping->page_tree;
 469
 470	spin_lock_irq(&mapping->tree_lock);
 471	entry = get_unlocked_mapping_entry(mapping, index, NULL);
 472	if (!entry || !radix_tree_exceptional_entry(entry))
 473		goto out;
 474	if (!trunc &&
 475	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 476	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
 477		goto out;
 478	radix_tree_delete(page_tree, index);
 479	mapping->nrexceptional--;
 480	ret = 1;
 481out:
 482	put_unlocked_mapping_entry(mapping, index, entry);
 483	spin_unlock_irq(&mapping->tree_lock);
 484	return ret;
 485}
 486/*
 487 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
 488 * entry to get unlocked before deleting it.
 489 */
 490int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 491{
 492	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
 493
 494	/*
 495	 * This gets called from truncate / punch_hole path. As such, the caller
 496	 * must hold locks protecting against concurrent modifications of the
 497	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
 498	 * caller has seen exceptional entry for this index, we better find it
 499	 * at that index as well...
 500	 */
 501	WARN_ON_ONCE(!ret);
 502	return ret;
 503}
 504
 505/*
 506 * Invalidate exceptional DAX entry if easily possible. This handles DAX
 507 * entries for invalidate_inode_pages() so we evict the entry only if we can
 508 * do so without blocking.
 509 */
 510int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
 511{
 512	int ret = 0;
 513	void *entry, **slot;
 514	struct radix_tree_root *page_tree = &mapping->page_tree;
 515
 516	spin_lock_irq(&mapping->tree_lock);
 517	entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
 518	if (!entry || !radix_tree_exceptional_entry(entry) ||
 519	    slot_locked(mapping, slot))
 520		goto out;
 521	if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 522	    radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 523		goto out;
 524	radix_tree_delete(page_tree, index);
 525	mapping->nrexceptional--;
 526	ret = 1;
 527out:
 528	spin_unlock_irq(&mapping->tree_lock);
 529	if (ret)
 530		dax_wake_mapping_entry_waiter(mapping, index, entry, true);
 531	return ret;
 532}
 533
 534/*
 535 * Invalidate exceptional DAX entry if it is clean.
 536 */
 537int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 538				      pgoff_t index)
 539{
 540	return __dax_invalidate_mapping_entry(mapping, index, false);
 541}
 
 542
 543/*
 544 * The user has performed a load from a hole in the file.  Allocating
 545 * a new page in the file would cause excessive storage usage for
 546 * workloads with sparse files.  We allocate a page cache page instead.
 547 * We'll kick it out of the page cache if it's ever written to,
 548 * otherwise it will simply fall out of the page cache under memory
 549 * pressure without ever having been dirtied.
 550 */
 551static int dax_load_hole(struct address_space *mapping, void **entry,
 552			 struct vm_fault *vmf)
 553{
 554	struct page *page;
 555	int ret;
 556
 557	/* Hole page already exists? Return it...  */
 558	if (!radix_tree_exceptional_entry(*entry)) {
 559		page = *entry;
 560		goto out;
 561	}
 562
 563	/* This will replace locked radix tree entry with a hole page */
 564	page = find_or_create_page(mapping, vmf->pgoff,
 565				   vmf->gfp_mask | __GFP_ZERO);
 566	if (!page)
 567		return VM_FAULT_OOM;
 568 out:
 569	vmf->page = page;
 570	ret = finish_fault(vmf);
 571	vmf->page = NULL;
 572	*entry = page;
 573	if (!ret) {
 574		/* Grab reference for PTE that is now referencing the page */
 575		get_page(page);
 576		return VM_FAULT_NOPAGE;
 577	}
 578	return ret;
 
 
 579}
 580
 581static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
 582		struct page *to, unsigned long vaddr)
 583{
 584	struct blk_dax_ctl dax = {
 585		.sector = sector,
 586		.size = size,
 587	};
 
 588	void *vto;
 589
 590	if (dax_map_atomic(bdev, &dax) < 0)
 591		return PTR_ERR(dax.addr);
 592	vto = kmap_atomic(to);
 593	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
 594	kunmap_atomic(vto);
 595	dax_unmap_atomic(bdev, &dax);
 596	return 0;
 597}
 598
 599/*
 600 * By this point grab_mapping_entry() has ensured that we have a locked entry
 601 * of the appropriate size so we don't have to worry about downgrading PMDs to
 602 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 603 * already in the tree, we will skip the insertion and just dirty the PMD as
 604 * appropriate.
 605 */
 606static void *dax_insert_mapping_entry(struct address_space *mapping,
 607				      struct vm_fault *vmf,
 608				      void *entry, sector_t sector,
 609				      unsigned long flags)
 610{
 611	struct radix_tree_root *page_tree = &mapping->page_tree;
 612	int error = 0;
 613	bool hole_fill = false;
 614	void *new_entry;
 615	pgoff_t index = vmf->pgoff;
 616
 617	if (vmf->flags & FAULT_FLAG_WRITE)
 
 618		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 619
 620	/* Replacing hole page with block mapping? */
 621	if (!radix_tree_exceptional_entry(entry)) {
 622		hole_fill = true;
 623		/*
 624		 * Unmap the page now before we remove it from page cache below.
 625		 * The page is locked so it cannot be faulted in again.
 626		 */
 627		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 628				    PAGE_SIZE, 0);
 629		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
 630		if (error)
 631			return ERR_PTR(error);
 632	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
 633		/* replacing huge zero page with PMD block mapping */
 634		unmap_mapping_range(mapping,
 635			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 636	}
 637
 638	spin_lock_irq(&mapping->tree_lock);
 639	new_entry = dax_radix_locked_entry(sector, flags);
 640
 641	if (hole_fill) {
 642		__delete_from_page_cache(entry, NULL);
 643		/* Drop pagecache reference */
 644		put_page(entry);
 645		error = __radix_tree_insert(page_tree, index,
 646				dax_radix_order(new_entry), new_entry);
 647		if (error) {
 648			new_entry = ERR_PTR(error);
 
 
 
 
 649			goto unlock;
 650		}
 651		mapping->nrexceptional++;
 652	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 
 
 653		/*
 654		 * Only swap our new entry into the radix tree if the current
 655		 * entry is a zero page or an empty entry.  If a normal PTE or
 656		 * PMD entry is already in the tree, we leave it alone.  This
 657		 * means that if we are trying to insert a PTE and the
 658		 * existing entry is a PMD, we will just leave the PMD in the
 659		 * tree and dirty it if necessary.
 660		 */
 661		struct radix_tree_node *node;
 662		void **slot;
 663		void *ret;
 664
 665		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
 666		WARN_ON_ONCE(ret != entry);
 667		__radix_tree_replace(page_tree, node, slot,
 668				     new_entry, NULL, NULL);
 669	}
 670	if (vmf->flags & FAULT_FLAG_WRITE)
 671		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 672 unlock:
 673	spin_unlock_irq(&mapping->tree_lock);
 674	if (hole_fill) {
 675		radix_tree_preload_end();
 676		/*
 677		 * We don't need hole page anymore, it has been replaced with
 678		 * locked radix tree entry now.
 
 
 
 
 
 
 679		 */
 680		if (mapping->a_ops->freepage)
 681			mapping->a_ops->freepage(entry);
 682		unlock_page(entry);
 683		put_page(entry);
 684	}
 685	return new_entry;
 686}
 687
 688static inline unsigned long
 689pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 690{
 691	unsigned long address;
 692
 693	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 694	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 695	return address;
 696}
 697
 698/* Walk all mappings of a given index of a file and writeprotect them */
 699static void dax_mapping_entry_mkclean(struct address_space *mapping,
 700				      pgoff_t index, unsigned long pfn)
 701{
 702	struct vm_area_struct *vma;
 703	pte_t pte, *ptep = NULL;
 704	pmd_t *pmdp = NULL;
 705	spinlock_t *ptl;
 706	bool changed;
 707
 708	i_mmap_lock_read(mapping);
 709	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 710		unsigned long address;
 711
 712		cond_resched();
 713
 714		if (!(vma->vm_flags & VM_SHARED))
 715			continue;
 716
 717		address = pgoff_address(index, vma);
 718		changed = false;
 719		if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
 720			continue;
 721
 722		if (pmdp) {
 723#ifdef CONFIG_FS_DAX_PMD
 724			pmd_t pmd;
 725
 726			if (pfn != pmd_pfn(*pmdp))
 727				goto unlock_pmd;
 728			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 729				goto unlock_pmd;
 730
 731			flush_cache_page(vma, address, pfn);
 732			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
 733			pmd = pmd_wrprotect(pmd);
 734			pmd = pmd_mkclean(pmd);
 735			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 736			changed = true;
 737unlock_pmd:
 738			spin_unlock(ptl);
 739#endif
 740		} else {
 741			if (pfn != pte_pfn(*ptep))
 742				goto unlock_pte;
 743			if (!pte_dirty(*ptep) && !pte_write(*ptep))
 744				goto unlock_pte;
 745
 746			flush_cache_page(vma, address, pfn);
 747			pte = ptep_clear_flush(vma, address, ptep);
 748			pte = pte_wrprotect(pte);
 749			pte = pte_mkclean(pte);
 750			set_pte_at(vma->vm_mm, address, ptep, pte);
 751			changed = true;
 752unlock_pte:
 753			pte_unmap_unlock(ptep, ptl);
 754		}
 755
 756		if (changed)
 757			mmu_notifier_invalidate_page(vma->vm_mm, address);
 758	}
 759	i_mmap_unlock_read(mapping);
 
 
 
 760}
 761
 762static int dax_writeback_one(struct block_device *bdev,
 763		struct address_space *mapping, pgoff_t index, void *entry)
 764{
 765	struct radix_tree_root *page_tree = &mapping->page_tree;
 
 
 766	struct blk_dax_ctl dax;
 767	void *entry2, **slot;
 768	int ret = 0;
 769
 770	/*
 771	 * A page got tagged dirty in DAX mapping? Something is seriously
 772	 * wrong.
 773	 */
 774	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
 775		return -EIO;
 776
 777	spin_lock_irq(&mapping->tree_lock);
 778	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
 779	/* Entry got punched out / reallocated? */
 780	if (!entry2 || !radix_tree_exceptional_entry(entry2))
 781		goto put_unlocked;
 782	/*
 783	 * Entry got reallocated elsewhere? No need to writeback. We have to
 784	 * compare sectors as we must not bail out due to difference in lockbit
 785	 * or entry type.
 786	 */
 787	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
 788		goto put_unlocked;
 789	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 790				dax_is_zero_entry(entry))) {
 
 
 
 
 
 
 791		ret = -EIO;
 792		goto put_unlocked;
 793	}
 794
 795	/* Another fsync thread may have already written back this entry */
 796	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 797		goto put_unlocked;
 798	/* Lock the entry to serialize with page faults */
 799	entry = lock_slot(mapping, slot);
 800	/*
 801	 * We can clear the tag now but we have to be careful so that concurrent
 802	 * dax_writeback_one() calls for the same index cannot finish before we
 803	 * actually flush the caches. This is achieved as the calls will look
 804	 * at the entry only under tree_lock and once they do that they will
 805	 * see the entry locked and wait for it to unlock.
 806	 */
 807	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
 808	spin_unlock_irq(&mapping->tree_lock);
 809
 810	/*
 811	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
 812	 * in the middle of a PMD, the 'index' we are given will be aligned to
 813	 * the start index of the PMD, as will the sector we pull from
 814	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
 815	 * worry about partial PMD writebacks.
 816	 */
 817	dax.sector = dax_radix_sector(entry);
 818	dax.size = PAGE_SIZE << dax_radix_order(entry);
 819
 820	/*
 821	 * We cannot hold tree_lock while calling dax_map_atomic() because it
 822	 * eventually calls cond_resched().
 823	 */
 824	ret = dax_map_atomic(bdev, &dax);
 825	if (ret < 0) {
 826		put_locked_mapping_entry(mapping, index, entry);
 827		return ret;
 828	}
 829
 830	if (WARN_ON_ONCE(ret < dax.size)) {
 831		ret = -EIO;
 832		goto unmap;
 833	}
 834
 835	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
 836	wb_cache_pmem(dax.addr, dax.size);
 837	/*
 838	 * After we have flushed the cache, we can clear the dirty tag. There
 839	 * cannot be new dirty data in the pfn after the flush has completed as
 840	 * the pfn mappings are writeprotected and fault waits for mapping
 841	 * entry lock.
 842	 */
 843	spin_lock_irq(&mapping->tree_lock);
 844	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
 845	spin_unlock_irq(&mapping->tree_lock);
 846 unmap:
 847	dax_unmap_atomic(bdev, &dax);
 848	put_locked_mapping_entry(mapping, index, entry);
 849	return ret;
 850
 851 put_unlocked:
 852	put_unlocked_mapping_entry(mapping, index, entry2);
 853	spin_unlock_irq(&mapping->tree_lock);
 854	return ret;
 855}
 856
 857/*
 858 * Flush the mapping to the persistent domain within the byte range of [start,
 859 * end]. This is required by data integrity operations to ensure file data is
 860 * on persistent storage prior to completion of the operation.
 861 */
 862int dax_writeback_mapping_range(struct address_space *mapping,
 863		struct block_device *bdev, struct writeback_control *wbc)
 864{
 865	struct inode *inode = mapping->host;
 866	pgoff_t start_index, end_index;
 867	pgoff_t indices[PAGEVEC_SIZE];
 868	struct pagevec pvec;
 869	bool done = false;
 870	int i, ret = 0;
 
 871
 872	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 873		return -EIO;
 874
 875	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 876		return 0;
 877
 878	start_index = wbc->range_start >> PAGE_SHIFT;
 879	end_index = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 880
 881	tag_pages_for_writeback(mapping, start_index, end_index);
 882
 883	pagevec_init(&pvec, 0);
 884	while (!done) {
 885		pvec.nr = find_get_entries_tag(mapping, start_index,
 886				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 887				pvec.pages, indices);
 888
 889		if (pvec.nr == 0)
 890			break;
 891
 892		for (i = 0; i < pvec.nr; i++) {
 893			if (indices[i] > end_index) {
 894				done = true;
 895				break;
 896			}
 897
 898			ret = dax_writeback_one(bdev, mapping, indices[i],
 899					pvec.pages[i]);
 900			if (ret < 0)
 901				return ret;
 902		}
 903	}
 
 904	return 0;
 905}
 906EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 907
 908static int dax_insert_mapping(struct address_space *mapping,
 909		struct block_device *bdev, sector_t sector, size_t size,
 910		void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
 911{
 912	unsigned long vaddr = vmf->address;
 
 
 913	struct blk_dax_ctl dax = {
 914		.sector = sector,
 915		.size = size,
 916	};
 917	void *ret;
 918	void *entry = *entryp;
 919
 920	if (dax_map_atomic(bdev, &dax) < 0)
 921		return PTR_ERR(dax.addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922	dax_unmap_atomic(bdev, &dax);
 923
 924	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
 925	if (IS_ERR(ret))
 926		return PTR_ERR(ret);
 927	*entryp = ret;
 
 
 928
 929	return vm_insert_mixed(vma, vaddr, dax.pfn);
 
 
 
 930}
 931
 932/**
 933 * dax_pfn_mkwrite - handle first write to DAX page
 934 * @vma: The virtual memory area where the fault occurred
 935 * @vmf: The description of the fault
 
 
 
 
 
 
 
 
 
 
 
 936 */
 937int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 
 938{
 939	struct file *file = vma->vm_file;
 940	struct address_space *mapping = file->f_mapping;
 941	void *entry, **slot;
 942	pgoff_t index = vmf->pgoff;
 943
 944	spin_lock_irq(&mapping->tree_lock);
 945	entry = get_unlocked_mapping_entry(mapping, index, &slot);
 946	if (!entry || !radix_tree_exceptional_entry(entry)) {
 947		if (entry)
 948			put_unlocked_mapping_entry(mapping, index, entry);
 949		spin_unlock_irq(&mapping->tree_lock);
 950		return VM_FAULT_NOPAGE;
 951	}
 952	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
 953	entry = lock_slot(mapping, slot);
 954	spin_unlock_irq(&mapping->tree_lock);
 955	/*
 956	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
 957	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
 958	 * the fault in either case.
 959	 */
 960	finish_mkwrite_fault(vmf);
 961	put_locked_mapping_entry(mapping, index, entry);
 962	return VM_FAULT_NOPAGE;
 963}
 964EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
 965
 966static bool dax_range_is_aligned(struct block_device *bdev,
 967				 unsigned int offset, unsigned int length)
 968{
 969	unsigned short sector_size = bdev_logical_block_size(bdev);
 970
 971	if (!IS_ALIGNED(offset, sector_size))
 972		return false;
 973	if (!IS_ALIGNED(length, sector_size))
 974		return false;
 975
 976	return true;
 977}
 
 978
 979int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
 980		unsigned int offset, unsigned int length)
 981{
 982	struct blk_dax_ctl dax = {
 983		.sector		= sector,
 984		.size		= PAGE_SIZE,
 985	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987	if (dax_range_is_aligned(bdev, offset, length)) {
 988		sector_t start_sector = dax.sector + (offset >> 9);
 
 
 
 989
 990		return blkdev_issue_zeroout(bdev, start_sector,
 991				length >> 9, GFP_NOFS, true);
 992	} else {
 993		if (dax_map_atomic(bdev, &dax) < 0)
 994			return PTR_ERR(dax.addr);
 995		clear_pmem(dax.addr + offset, length);
 996		dax_unmap_atomic(bdev, &dax);
 
 
 
 
 
 
 997	}
 998	return 0;
 999}
1000EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1001
1002static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1003{
1004	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1005}
1006
1007static loff_t
1008dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1009		struct iomap *iomap)
1010{
1011	struct iov_iter *iter = data;
1012	loff_t end = pos + length, done = 0;
1013	ssize_t ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014
1015	if (iov_iter_rw(iter) == READ) {
1016		end = min(end, i_size_read(inode));
1017		if (pos >= end)
1018			return 0;
1019
1020		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1021			return iov_iter_zero(min(length, end - pos), iter);
 
 
 
 
 
1022	}
1023
1024	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1025		return -EIO;
1026
1027	/*
1028	 * Write can allocate block for an area which has a hole page mapped
1029	 * into page tables. We have to tear down these mappings so that data
1030	 * written by write(2) is visible in mmap.
 
 
 
 
 
1031	 */
1032	if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1033		invalidate_inode_pages2_range(inode->i_mapping,
1034					      pos >> PAGE_SHIFT,
1035					      (end - 1) >> PAGE_SHIFT);
1036	}
1037
1038	while (pos < end) {
1039		unsigned offset = pos & (PAGE_SIZE - 1);
1040		struct blk_dax_ctl dax = { 0 };
1041		ssize_t map_len;
1042
1043		if (fatal_signal_pending(current)) {
1044			ret = -EINTR;
1045			break;
1046		}
1047
1048		dax.sector = dax_iomap_sector(iomap, pos);
1049		dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1050		map_len = dax_map_atomic(iomap->bdev, &dax);
1051		if (map_len < 0) {
1052			ret = map_len;
1053			break;
1054		}
1055
1056		dax.addr += offset;
1057		map_len -= offset;
1058		if (map_len > end - pos)
1059			map_len = end - pos;
1060
1061		if (iov_iter_rw(iter) == WRITE)
1062			map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1063		else
1064			map_len = copy_to_iter(dax.addr, map_len, iter);
1065		dax_unmap_atomic(iomap->bdev, &dax);
1066		if (map_len <= 0) {
1067			ret = map_len ? map_len : -EFAULT;
1068			break;
1069		}
1070
1071		pos += map_len;
1072		length -= map_len;
1073		done += map_len;
1074	}
1075
1076	return done ? done : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1077}
 
1078
1079/**
1080 * dax_iomap_rw - Perform I/O to a DAX file
1081 * @iocb:	The control block for this I/O
1082 * @iter:	The addresses to do I/O from or to
1083 * @ops:	iomap ops passed from the file system
1084 *
1085 * This function performs read and write operations to directly mapped
1086 * persistent memory.  The callers needs to take care of read/write exclusion
1087 * and evicting any page cache pages in the region under I/O.
1088 */
1089ssize_t
1090dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1091		struct iomap_ops *ops)
1092{
1093	struct address_space *mapping = iocb->ki_filp->f_mapping;
1094	struct inode *inode = mapping->host;
1095	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1096	unsigned flags = 0;
1097
1098	if (iov_iter_rw(iter) == WRITE)
1099		flags |= IOMAP_WRITE;
1100
1101	while (iov_iter_count(iter)) {
1102		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1103				iter, dax_iomap_actor);
1104		if (ret <= 0)
1105			break;
1106		pos += ret;
1107		done += ret;
1108	}
 
 
 
1109
1110	iocb->ki_pos += done;
1111	return done ? done : ret;
1112}
1113EXPORT_SYMBOL_GPL(dax_iomap_rw);
 
 
 
 
 
 
 
1114
1115static int dax_fault_return(int error)
 
1116{
1117	if (error == 0)
1118		return VM_FAULT_NOPAGE;
1119	if (error == -ENOMEM)
1120		return VM_FAULT_OOM;
1121	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
1122}
1123
1124/**
1125 * dax_iomap_fault - handle a page fault on a DAX file
1126 * @vma: The virtual memory area where the fault occurred
1127 * @vmf: The description of the fault
1128 * @ops: iomap ops passed from the file system
1129 *
1130 * When a page fault occurs, filesystems may call this helper in their fault
1131 * or mkwrite handler for DAX files. Assumes the caller has done all the
1132 * necessary locking for the page fault to proceed successfully.
1133 */
1134int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1135			struct iomap_ops *ops)
1136{
1137	struct address_space *mapping = vma->vm_file->f_mapping;
 
1138	struct inode *inode = mapping->host;
1139	unsigned long vaddr = vmf->address;
1140	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1141	sector_t sector;
1142	struct iomap iomap = { 0 };
1143	unsigned flags = IOMAP_FAULT;
1144	int error, major = 0;
1145	int vmf_ret = 0;
1146	void *entry;
 
1147
1148	/*
1149	 * Check whether offset isn't beyond end of file now. Caller is supposed
1150	 * to hold locks serializing us with truncate / punch hole so this is
1151	 * a reliable test.
1152	 */
1153	if (pos >= i_size_read(inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154		return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155
1156	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1157		flags |= IOMAP_WRITE;
1158
1159	/*
1160	 * Note that we don't bother to use iomap_apply here: DAX required
1161	 * the file system block size to be equal the page size, which means
1162	 * that we never have to deal with more than a single extent here.
1163	 */
1164	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1165	if (error)
1166		return dax_fault_return(error);
1167	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1168		vmf_ret = dax_fault_return(-EIO);	/* fs corruption? */
1169		goto finish_iomap;
1170	}
1171
1172	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1173	if (IS_ERR(entry)) {
1174		vmf_ret = dax_fault_return(PTR_ERR(entry));
1175		goto finish_iomap;
 
 
 
 
 
1176	}
1177
1178	sector = dax_iomap_sector(&iomap, pos);
1179
1180	if (vmf->cow_page) {
1181		switch (iomap.type) {
1182		case IOMAP_HOLE:
1183		case IOMAP_UNWRITTEN:
1184			clear_user_highpage(vmf->cow_page, vaddr);
1185			break;
1186		case IOMAP_MAPPED:
1187			error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1188					vmf->cow_page, vaddr);
1189			break;
1190		default:
1191			WARN_ON_ONCE(1);
1192			error = -EIO;
1193			break;
 
 
 
 
 
 
 
 
 
 
 
1194		}
1195
1196		if (error)
1197			goto error_unlock_entry;
 
 
 
 
1198
1199		__SetPageUptodate(vmf->cow_page);
1200		vmf_ret = finish_fault(vmf);
1201		if (!vmf_ret)
1202			vmf_ret = VM_FAULT_DONE_COW;
1203		goto unlock_entry;
1204	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205
1206	switch (iomap.type) {
1207	case IOMAP_MAPPED:
1208		if (iomap.flags & IOMAP_F_NEW) {
 
 
 
 
 
 
1209			count_vm_event(PGMAJFAULT);
1210			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1211			major = VM_FAULT_MAJOR;
1212		}
1213		error = dax_insert_mapping(mapping, iomap.bdev, sector,
1214				PAGE_SIZE, &entry, vma, vmf);
1215		/* -EBUSY is fine, somebody else faulted on the same PTE */
1216		if (error == -EBUSY)
1217			error = 0;
1218		break;
1219	case IOMAP_UNWRITTEN:
1220	case IOMAP_HOLE:
1221		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1222			vmf_ret = dax_load_hole(mapping, &entry, vmf);
1223			goto unlock_entry;
1224		}
1225		/*FALLTHRU*/
1226	default:
1227		WARN_ON_ONCE(1);
1228		error = -EIO;
1229		break;
1230	}
1231
1232 error_unlock_entry:
1233	vmf_ret = dax_fault_return(error) | major;
1234 unlock_entry:
1235	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1236 finish_iomap:
1237	if (ops->iomap_end) {
1238		int copied = PAGE_SIZE;
1239
1240		if (vmf_ret & VM_FAULT_ERROR)
1241			copied = 0;
1242		/*
1243		 * The fault is done by now and there's no way back (other
1244		 * thread may be already happily using PTE we have installed).
1245		 * Just ignore error from ->iomap_end since we cannot do much
1246		 * with it.
 
 
 
 
 
 
 
 
 
1247		 */
1248		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1249	}
1250	return vmf_ret;
1251}
1252EXPORT_SYMBOL_GPL(dax_iomap_fault);
1253
1254#ifdef CONFIG_FS_DAX_PMD
1255/*
1256 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1257 * more often than one might expect in the below functions.
1258 */
1259#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1260
1261static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1262		struct vm_fault *vmf, unsigned long address,
1263		struct iomap *iomap, loff_t pos, bool write, void **entryp)
1264{
1265	struct address_space *mapping = vma->vm_file->f_mapping;
1266	struct block_device *bdev = iomap->bdev;
1267	struct blk_dax_ctl dax = {
1268		.sector = dax_iomap_sector(iomap, pos),
1269		.size = PMD_SIZE,
1270	};
1271	long length = dax_map_atomic(bdev, &dax);
1272	void *ret;
1273
1274	if (length < 0) /* dax_map_atomic() failed */
1275		return VM_FAULT_FALLBACK;
1276	if (length < PMD_SIZE)
1277		goto unmap_fallback;
1278	if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1279		goto unmap_fallback;
1280	if (!pfn_t_devmap(dax.pfn))
1281		goto unmap_fallback;
1282
1283	dax_unmap_atomic(bdev, &dax);
 
1284
1285	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1286			RADIX_DAX_PMD);
1287	if (IS_ERR(ret))
1288		return VM_FAULT_FALLBACK;
1289	*entryp = ret;
1290
1291	return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1292
1293 unmap_fallback:
1294	dax_unmap_atomic(bdev, &dax);
1295	return VM_FAULT_FALLBACK;
 
1296}
 
1297
1298static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1299		struct vm_fault *vmf, unsigned long address,
1300		struct iomap *iomap, void **entryp)
1301{
1302	struct address_space *mapping = vma->vm_file->f_mapping;
1303	unsigned long pmd_addr = address & PMD_MASK;
1304	struct page *zero_page;
1305	spinlock_t *ptl;
1306	pmd_t pmd_entry;
1307	void *ret;
1308
1309	zero_page = mm_get_huge_zero_page(vma->vm_mm);
1310
1311	if (unlikely(!zero_page))
1312		return VM_FAULT_FALLBACK;
1313
1314	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1315			RADIX_DAX_PMD | RADIX_DAX_HZP);
1316	if (IS_ERR(ret))
1317		return VM_FAULT_FALLBACK;
1318	*entryp = ret;
1319
1320	ptl = pmd_lock(vma->vm_mm, pmd);
1321	if (!pmd_none(*pmd)) {
1322		spin_unlock(ptl);
1323		return VM_FAULT_FALLBACK;
1324	}
1325
1326	pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1327	pmd_entry = pmd_mkhuge(pmd_entry);
1328	set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1329	spin_unlock(ptl);
1330	return VM_FAULT_NOPAGE;
1331}
 
 
1332
1333int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1334		pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
 
 
 
 
1335{
1336	struct address_space *mapping = vma->vm_file->f_mapping;
1337	unsigned long pmd_addr = address & PMD_MASK;
1338	bool write = flags & FAULT_FLAG_WRITE;
1339	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1340	struct inode *inode = mapping->host;
1341	int result = VM_FAULT_FALLBACK;
1342	struct iomap iomap = { 0 };
1343	pgoff_t max_pgoff, pgoff;
1344	struct vm_fault vmf;
1345	void *entry;
1346	loff_t pos;
1347	int error;
1348
1349	/* Fall back to PTEs if we're going to COW */
1350	if (write && !(vma->vm_flags & VM_SHARED))
1351		goto fallback;
1352
1353	/* If the PMD would extend outside the VMA */
1354	if (pmd_addr < vma->vm_start)
1355		goto fallback;
1356	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1357		goto fallback;
1358
1359	/*
1360	 * Check whether offset isn't beyond end of file now. Caller is
1361	 * supposed to hold locks serializing us with truncate / punch hole so
1362	 * this is a reliable test.
 
 
 
1363	 */
1364	pgoff = linear_page_index(vma, pmd_addr);
1365	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1366
1367	if (pgoff > max_pgoff)
 
 
1368		return VM_FAULT_SIGBUS;
 
 
 
1369
1370	/* If the PMD would extend beyond the file size */
1371	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1372		goto fallback;
1373
1374	/*
1375	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1376	 * setting up a mapping, so really we're using iomap_begin() as a way
1377	 * to look up our filesystem block.
1378	 */
1379	pos = (loff_t)pgoff << PAGE_SHIFT;
1380	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1381	if (error)
1382		goto fallback;
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1385		goto finish_iomap;
 
 
1386
1387	/*
1388	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1389	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1390	 * the tree, for instance), it will return -EEXIST and we just fall
1391	 * back to 4k entries.
1392	 */
1393	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1394	if (IS_ERR(entry))
1395		goto finish_iomap;
1396
1397	vmf.pgoff = pgoff;
1398	vmf.flags = flags;
1399	vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1400
1401	switch (iomap.type) {
1402	case IOMAP_MAPPED:
1403		result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1404				&iomap, pos, write, &entry);
1405		break;
1406	case IOMAP_UNWRITTEN:
1407	case IOMAP_HOLE:
1408		if (WARN_ON_ONCE(write))
1409			goto unlock_entry;
1410		result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1411				&entry);
1412		break;
1413	default:
1414		WARN_ON_ONCE(1);
1415		break;
1416	}
1417
1418 unlock_entry:
1419	put_locked_mapping_entry(mapping, pgoff, entry);
1420 finish_iomap:
1421	if (ops->iomap_end) {
1422		int copied = PMD_SIZE;
1423
1424		if (result == VM_FAULT_FALLBACK)
1425			copied = 0;
1426		/*
1427		 * The fault is done by now and there's no way back (other
1428		 * thread may be already happily using PMD we have installed).
1429		 * Just ignore error from ->iomap_end since we cannot do much
1430		 * with it.
1431		 */
1432		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1433				&iomap);
1434	}
1435 fallback:
1436	if (result == VM_FAULT_FALLBACK) {
1437		split_huge_pmd(vma, pmd, address);
1438		count_vm_event(THP_FAULT_FALLBACK);
1439	}
1440	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441}
1442EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1443#endif /* CONFIG_FS_DAX_PMD */
v4.6
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/pmem.h>
  29#include <linux/sched.h>
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
  36{
  37	struct request_queue *q = bdev->bd_queue;
  38	long rc = -EIO;
  39
  40	dax->addr = (void __pmem *) ERR_PTR(-EIO);
  41	if (blk_queue_enter(q, true) != 0)
  42		return rc;
  43
  44	rc = bdev_direct_access(bdev, dax);
  45	if (rc < 0) {
  46		dax->addr = (void __pmem *) ERR_PTR(rc);
  47		blk_queue_exit(q);
  48		return rc;
  49	}
  50	return rc;
  51}
  52
  53static void dax_unmap_atomic(struct block_device *bdev,
  54		const struct blk_dax_ctl *dax)
  55{
  56	if (IS_ERR(dax->addr))
  57		return;
  58	blk_queue_exit(bdev->bd_queue);
  59}
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61struct page *read_dax_sector(struct block_device *bdev, sector_t n)
  62{
  63	struct page *page = alloc_pages(GFP_KERNEL, 0);
  64	struct blk_dax_ctl dax = {
  65		.size = PAGE_SIZE,
  66		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
  67	};
  68	long rc;
  69
  70	if (!page)
  71		return ERR_PTR(-ENOMEM);
  72
  73	rc = dax_map_atomic(bdev, &dax);
  74	if (rc < 0)
  75		return ERR_PTR(rc);
  76	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
  77	dax_unmap_atomic(bdev, &dax);
  78	return page;
  79}
  80
  81/*
  82 * dax_clear_sectors() is called from within transaction context from XFS,
  83 * and hence this means the stack from this point must follow GFP_NOFS
  84 * semantics for all operations.
  85 */
  86int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
 
 
 
 
 
 
 
 
 
 
 
  87{
  88	struct blk_dax_ctl dax = {
  89		.sector = _sector,
  90		.size = _size,
  91	};
 
 
 
 
 
  92
  93	might_sleep();
  94	do {
  95		long count, sz;
  96
  97		count = dax_map_atomic(bdev, &dax);
  98		if (count < 0)
  99			return count;
 100		sz = min_t(long, count, SZ_128K);
 101		clear_pmem(dax.addr, sz);
 102		dax.size -= sz;
 103		dax.sector += sz / 512;
 104		dax_unmap_atomic(bdev, &dax);
 105		cond_resched();
 106	} while (dax.size);
 107
 108	wmb_pmem();
 109	return 0;
 110}
 111EXPORT_SYMBOL_GPL(dax_clear_sectors);
 112
 113/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
 114static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
 115		loff_t pos, loff_t end)
 116{
 117	loff_t final = end - pos + first; /* The final byte of the buffer */
 
 
 118
 119	if (first > 0)
 120		clear_pmem(addr, first);
 121	if (final < size)
 122		clear_pmem(addr + final, size - final);
 
 
 
 
 
 
 
 
 
 
 
 123}
 124
 125static bool buffer_written(struct buffer_head *bh)
 
 
 
 
 126{
 127	return buffer_mapped(bh) && !buffer_unwritten(bh);
 
 
 
 
 
 128}
 129
 130/*
 131 * When ext4 encounters a hole, it returns without modifying the buffer_head
 132 * which means that we can't trust b_size.  To cope with this, we set b_state
 133 * to 0 before calling get_block and, if any bit is set, we know we can trust
 134 * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
 135 * and would save us time calling get_block repeatedly.
 136 */
 137static bool buffer_size_valid(struct buffer_head *bh)
 138{
 139	return bh->b_state != 0;
 
 
 
 
 
 140}
 141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143static sector_t to_sector(const struct buffer_head *bh,
 144		const struct inode *inode)
 145{
 146	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	return sector;
 
 
 
 
 
 
 
 
 149}
 150
 151static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
 152		      loff_t start, loff_t end, get_block_t get_block,
 153		      struct buffer_head *bh)
 
 
 
 154{
 155	loff_t pos = start, max = start, bh_max = start;
 156	bool hole = false, need_wmb = false;
 157	struct block_device *bdev = NULL;
 158	int rw = iov_iter_rw(iter), rc;
 159	long map_len = 0;
 160	struct blk_dax_ctl dax = {
 161		.addr = (void __pmem *) ERR_PTR(-EIO),
 162	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163
 164	if (rw == READ)
 165		end = min(end, i_size_read(inode));
 
 166
 167	while (pos < end) {
 168		size_t len;
 169		if (pos == max) {
 170			unsigned blkbits = inode->i_blkbits;
 171			long page = pos >> PAGE_SHIFT;
 172			sector_t block = page << (PAGE_SHIFT - blkbits);
 173			unsigned first = pos - (block << blkbits);
 174			long size;
 175
 176			if (pos == bh_max) {
 177				bh->b_size = PAGE_ALIGN(end - pos);
 178				bh->b_state = 0;
 179				rc = get_block(inode, block, bh, rw == WRITE);
 180				if (rc)
 181					break;
 182				if (!buffer_size_valid(bh))
 183					bh->b_size = 1 << blkbits;
 184				bh_max = pos - first + bh->b_size;
 185				bdev = bh->b_bdev;
 186			} else {
 187				unsigned done = bh->b_size -
 188						(bh_max - (pos - first));
 189				bh->b_blocknr += done >> blkbits;
 190				bh->b_size -= done;
 191			}
 
 
 
 
 
 
 192
 193			hole = rw == READ && !buffer_written(bh);
 194			if (hole) {
 195				size = bh->b_size - first;
 196			} else {
 197				dax_unmap_atomic(bdev, &dax);
 198				dax.sector = to_sector(bh, inode);
 199				dax.size = bh->b_size;
 200				map_len = dax_map_atomic(bdev, &dax);
 201				if (map_len < 0) {
 202					rc = map_len;
 203					break;
 204				}
 205				if (buffer_unwritten(bh) || buffer_new(bh)) {
 206					dax_new_buf(dax.addr, map_len, first,
 207							pos, end);
 208					need_wmb = true;
 209				}
 210				dax.addr += first;
 211				size = map_len - first;
 212			}
 213			max = min(pos + size, end);
 214		}
 215
 216		if (iov_iter_rw(iter) == WRITE) {
 217			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
 218			need_wmb = true;
 219		} else if (!hole)
 220			len = copy_to_iter((void __force *) dax.addr, max - pos,
 221					iter);
 222		else
 223			len = iov_iter_zero(max - pos, iter);
 
 
 
 
 
 
 
 
 
 
 224
 225		if (!len) {
 226			rc = -EFAULT;
 227			break;
 
 
 
 
 
 
 
 
 
 
 
 228		}
 229
 230		pos += len;
 231		if (!IS_ERR(dax.addr))
 232			dax.addr += len;
 233	}
 
 
 234
 235	if (need_wmb)
 236		wmb_pmem();
 237	dax_unmap_atomic(bdev, &dax);
 238
 239	return (pos == start) ? rc : pos - start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240}
 241
 242/**
 243 * dax_do_io - Perform I/O to a DAX file
 244 * @iocb: The control block for this I/O
 245 * @inode: The file which the I/O is directed at
 246 * @iter: The addresses to do I/O from or to
 247 * @pos: The file offset where the I/O starts
 248 * @get_block: The filesystem method used to translate file offsets to blocks
 249 * @end_io: A filesystem callback for I/O completion
 250 * @flags: See below
 251 *
 252 * This function uses the same locking scheme as do_blockdev_direct_IO:
 253 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
 254 * caller for writes.  For reads, we take and release the i_mutex ourselves.
 255 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
 256 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
 257 * is in progress.
 258 */
 259ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
 260		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
 261		  dio_iodone_t end_io, int flags)
 262{
 263	struct buffer_head bh;
 264	ssize_t retval = -EINVAL;
 265	loff_t end = pos + iov_iter_count(iter);
 266
 267	memset(&bh, 0, sizeof(bh));
 268	bh.b_bdev = inode->i_sb->s_bdev;
 269
 270	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
 271		struct address_space *mapping = inode->i_mapping;
 272		inode_lock(inode);
 273		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
 274		if (retval) {
 275			inode_unlock(inode);
 276			goto out;
 277		}
 278	}
 279
 280	/* Protects against truncate */
 281	if (!(flags & DIO_SKIP_DIO_COUNT))
 282		inode_dio_begin(inode);
 
 
 
 283
 284	retval = dax_io(inode, iter, pos, end, get_block, &bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285
 286	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
 287		inode_unlock(inode);
 
 
 
 
 
 
 
 
 288
 289	if (end_io) {
 290		int err;
 
 
 
 
 
 
 
 
 291
 292		err = end_io(iocb, pos, retval, bh.b_private);
 293		if (err)
 294			retval = err;
 295	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	if (!(flags & DIO_SKIP_DIO_COUNT))
 298		inode_dio_end(inode);
 299 out:
 300	return retval;
 
 
 
 301}
 302EXPORT_SYMBOL_GPL(dax_do_io);
 303
 304/*
 305 * The user has performed a load from a hole in the file.  Allocating
 306 * a new page in the file would cause excessive storage usage for
 307 * workloads with sparse files.  We allocate a page cache page instead.
 308 * We'll kick it out of the page cache if it's ever written to,
 309 * otherwise it will simply fall out of the page cache under memory
 310 * pressure without ever having been dirtied.
 311 */
 312static int dax_load_hole(struct address_space *mapping, struct page *page,
 313							struct vm_fault *vmf)
 314{
 315	unsigned long size;
 316	struct inode *inode = mapping->host;
 317	if (!page)
 318		page = find_or_create_page(mapping, vmf->pgoff,
 319						GFP_KERNEL | __GFP_ZERO);
 
 
 
 
 
 
 
 320	if (!page)
 321		return VM_FAULT_OOM;
 322	/* Recheck i_size under page lock to avoid truncate race */
 323	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 324	if (vmf->pgoff >= size) {
 325		unlock_page(page);
 326		put_page(page);
 327		return VM_FAULT_SIGBUS;
 
 
 
 328	}
 329
 330	vmf->page = page;
 331	return VM_FAULT_LOCKED;
 332}
 333
 334static int copy_user_bh(struct page *to, struct inode *inode,
 335		struct buffer_head *bh, unsigned long vaddr)
 336{
 337	struct blk_dax_ctl dax = {
 338		.sector = to_sector(bh, inode),
 339		.size = bh->b_size,
 340	};
 341	struct block_device *bdev = bh->b_bdev;
 342	void *vto;
 343
 344	if (dax_map_atomic(bdev, &dax) < 0)
 345		return PTR_ERR(dax.addr);
 346	vto = kmap_atomic(to);
 347	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
 348	kunmap_atomic(vto);
 349	dax_unmap_atomic(bdev, &dax);
 350	return 0;
 351}
 352
 353#define NO_SECTOR -1
 354#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
 355
 356static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
 357		sector_t sector, bool pmd_entry, bool dirty)
 
 
 
 
 
 
 358{
 359	struct radix_tree_root *page_tree = &mapping->page_tree;
 360	pgoff_t pmd_index = DAX_PMD_INDEX(index);
 361	int type, error = 0;
 362	void *entry;
 
 363
 364	WARN_ON_ONCE(pmd_entry && !dirty);
 365	if (dirty)
 366		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	spin_lock_irq(&mapping->tree_lock);
 
 369
 370	entry = radix_tree_lookup(page_tree, pmd_index);
 371	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
 372		index = pmd_index;
 373		goto dirty;
 374	}
 375
 376	entry = radix_tree_lookup(page_tree, index);
 377	if (entry) {
 378		type = RADIX_DAX_TYPE(entry);
 379		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
 380					type != RADIX_DAX_PMD)) {
 381			error = -EIO;
 382			goto unlock;
 383		}
 384
 385		if (!pmd_entry || type == RADIX_DAX_PMD)
 386			goto dirty;
 387
 388		/*
 389		 * We only insert dirty PMD entries into the radix tree.  This
 390		 * means we don't need to worry about removing a dirty PTE
 391		 * entry and inserting a clean PMD entry, thus reducing the
 392		 * range we would flush with a follow-up fsync/msync call.
 
 
 393		 */
 394		radix_tree_delete(&mapping->page_tree, index);
 395		mapping->nrexceptional--;
 
 
 
 
 
 
 396	}
 397
 398	if (sector == NO_SECTOR) {
 
 
 
 
 399		/*
 400		 * This can happen during correct operation if our pfn_mkwrite
 401		 * fault raced against a hole punch operation.  If this
 402		 * happens the pte that was hole punched will have been
 403		 * unmapped and the radix tree entry will have been removed by
 404		 * the time we are called, but the call will still happen.  We
 405		 * will return all the way up to wp_pfn_shared(), where the
 406		 * pte_same() check will fail, eventually causing page fault
 407		 * to be retried by the CPU.
 408		 */
 409		goto unlock;
 
 
 
 410	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412	error = radix_tree_insert(page_tree, index,
 413			RADIX_DAX_ENTRY(sector, pmd_entry));
 414	if (error)
 415		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416
 417	mapping->nrexceptional++;
 418 dirty:
 419	if (dirty)
 420		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 421 unlock:
 422	spin_unlock_irq(&mapping->tree_lock);
 423	return error;
 424}
 425
 426static int dax_writeback_one(struct block_device *bdev,
 427		struct address_space *mapping, pgoff_t index, void *entry)
 428{
 429	struct radix_tree_root *page_tree = &mapping->page_tree;
 430	int type = RADIX_DAX_TYPE(entry);
 431	struct radix_tree_node *node;
 432	struct blk_dax_ctl dax;
 433	void **slot;
 434	int ret = 0;
 435
 
 
 
 
 
 
 
 436	spin_lock_irq(&mapping->tree_lock);
 
 
 
 
 437	/*
 438	 * Regular page slots are stabilized by the page lock even
 439	 * without the tree itself locked.  These unlocked entries
 440	 * need verification under the tree lock.
 441	 */
 442	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
 443		goto unlock;
 444	if (*slot != entry)
 445		goto unlock;
 446
 447	/* another fsync thread may have already written back this entry */
 448	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 449		goto unlock;
 450
 451	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
 452		ret = -EIO;
 453		goto unlock;
 454	}
 455
 456	dax.sector = RADIX_DAX_SECTOR(entry);
 457	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 458	spin_unlock_irq(&mapping->tree_lock);
 459
 460	/*
 
 
 
 
 
 
 
 
 
 
 461	 * We cannot hold tree_lock while calling dax_map_atomic() because it
 462	 * eventually calls cond_resched().
 463	 */
 464	ret = dax_map_atomic(bdev, &dax);
 465	if (ret < 0)
 
 466		return ret;
 
 467
 468	if (WARN_ON_ONCE(ret < dax.size)) {
 469		ret = -EIO;
 470		goto unmap;
 471	}
 472
 
 473	wb_cache_pmem(dax.addr, dax.size);
 474
 
 
 
 
 
 475	spin_lock_irq(&mapping->tree_lock);
 476	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
 477	spin_unlock_irq(&mapping->tree_lock);
 478 unmap:
 479	dax_unmap_atomic(bdev, &dax);
 
 480	return ret;
 481
 482 unlock:
 
 483	spin_unlock_irq(&mapping->tree_lock);
 484	return ret;
 485}
 486
 487/*
 488 * Flush the mapping to the persistent domain within the byte range of [start,
 489 * end]. This is required by data integrity operations to ensure file data is
 490 * on persistent storage prior to completion of the operation.
 491 */
 492int dax_writeback_mapping_range(struct address_space *mapping,
 493		struct block_device *bdev, struct writeback_control *wbc)
 494{
 495	struct inode *inode = mapping->host;
 496	pgoff_t start_index, end_index, pmd_index;
 497	pgoff_t indices[PAGEVEC_SIZE];
 498	struct pagevec pvec;
 499	bool done = false;
 500	int i, ret = 0;
 501	void *entry;
 502
 503	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 504		return -EIO;
 505
 506	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 507		return 0;
 508
 509	start_index = wbc->range_start >> PAGE_SHIFT;
 510	end_index = wbc->range_end >> PAGE_SHIFT;
 511	pmd_index = DAX_PMD_INDEX(start_index);
 512
 513	rcu_read_lock();
 514	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
 515	rcu_read_unlock();
 516
 517	/* see if the start of our range is covered by a PMD entry */
 518	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
 519		start_index = pmd_index;
 520
 521	tag_pages_for_writeback(mapping, start_index, end_index);
 522
 523	pagevec_init(&pvec, 0);
 524	while (!done) {
 525		pvec.nr = find_get_entries_tag(mapping, start_index,
 526				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 527				pvec.pages, indices);
 528
 529		if (pvec.nr == 0)
 530			break;
 531
 532		for (i = 0; i < pvec.nr; i++) {
 533			if (indices[i] > end_index) {
 534				done = true;
 535				break;
 536			}
 537
 538			ret = dax_writeback_one(bdev, mapping, indices[i],
 539					pvec.pages[i]);
 540			if (ret < 0)
 541				return ret;
 542		}
 543	}
 544	wmb_pmem();
 545	return 0;
 546}
 547EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 548
 549static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
 550			struct vm_area_struct *vma, struct vm_fault *vmf)
 
 551{
 552	unsigned long vaddr = (unsigned long)vmf->virtual_address;
 553	struct address_space *mapping = inode->i_mapping;
 554	struct block_device *bdev = bh->b_bdev;
 555	struct blk_dax_ctl dax = {
 556		.sector = to_sector(bh, inode),
 557		.size = bh->b_size,
 558	};
 559	pgoff_t size;
 560	int error;
 561
 562	i_mmap_lock_read(mapping);
 563
 564	/*
 565	 * Check truncate didn't happen while we were allocating a block.
 566	 * If it did, this block may or may not be still allocated to the
 567	 * file.  We can't tell the filesystem to free it because we can't
 568	 * take i_mutex here.  In the worst case, the file still has blocks
 569	 * allocated past the end of the file.
 570	 */
 571	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 572	if (unlikely(vmf->pgoff >= size)) {
 573		error = -EIO;
 574		goto out;
 575	}
 576
 577	if (dax_map_atomic(bdev, &dax) < 0) {
 578		error = PTR_ERR(dax.addr);
 579		goto out;
 580	}
 581
 582	if (buffer_unwritten(bh) || buffer_new(bh)) {
 583		clear_pmem(dax.addr, PAGE_SIZE);
 584		wmb_pmem();
 585	}
 586	dax_unmap_atomic(bdev, &dax);
 587
 588	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
 589			vmf->flags & FAULT_FLAG_WRITE);
 590	if (error)
 591		goto out;
 592
 593	error = vm_insert_mixed(vma, vaddr, dax.pfn);
 594
 595 out:
 596	i_mmap_unlock_read(mapping);
 597
 598	return error;
 599}
 600
 601/**
 602 * __dax_fault - handle a page fault on a DAX file
 603 * @vma: The virtual memory area where the fault occurred
 604 * @vmf: The description of the fault
 605 * @get_block: The filesystem method used to translate file offsets to blocks
 606 * @complete_unwritten: The filesystem method used to convert unwritten blocks
 607 *	to written so the data written to them is exposed. This is required for
 608 *	required by write faults for filesystems that will return unwritten
 609 *	extent mappings from @get_block, but it is optional for reads as
 610 *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
 611 *	not support unwritten extents, the it should pass NULL.
 612 *
 613 * When a page fault occurs, filesystems may call this helper in their
 614 * fault handler for DAX files. __dax_fault() assumes the caller has done all
 615 * the necessary locking for the page fault to proceed successfully.
 616 */
 617int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
 618			get_block_t get_block, dax_iodone_t complete_unwritten)
 619{
 620	struct file *file = vma->vm_file;
 621	struct address_space *mapping = file->f_mapping;
 622	struct inode *inode = mapping->host;
 623	struct page *page;
 624	struct buffer_head bh;
 625	unsigned long vaddr = (unsigned long)vmf->virtual_address;
 626	unsigned blkbits = inode->i_blkbits;
 627	sector_t block;
 628	pgoff_t size;
 629	int error;
 630	int major = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631
 632	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 633	if (vmf->pgoff >= size)
 634		return VM_FAULT_SIGBUS;
 635
 636	memset(&bh, 0, sizeof(bh));
 637	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
 638	bh.b_bdev = inode->i_sb->s_bdev;
 639	bh.b_size = PAGE_SIZE;
 640
 641 repeat:
 642	page = find_get_page(mapping, vmf->pgoff);
 643	if (page) {
 644		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
 645			put_page(page);
 646			return VM_FAULT_RETRY;
 647		}
 648		if (unlikely(page->mapping != mapping)) {
 649			unlock_page(page);
 650			put_page(page);
 651			goto repeat;
 652		}
 653		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 654		if (unlikely(vmf->pgoff >= size)) {
 655			/*
 656			 * We have a struct page covering a hole in the file
 657			 * from a read fault and we've raced with a truncate
 658			 */
 659			error = -EIO;
 660			goto unlock_page;
 661		}
 662	}
 663
 664	error = get_block(inode, block, &bh, 0);
 665	if (!error && (bh.b_size < PAGE_SIZE))
 666		error = -EIO;		/* fs corruption? */
 667	if (error)
 668		goto unlock_page;
 669
 670	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
 671		if (vmf->flags & FAULT_FLAG_WRITE) {
 672			error = get_block(inode, block, &bh, 1);
 673			count_vm_event(PGMAJFAULT);
 674			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 675			major = VM_FAULT_MAJOR;
 676			if (!error && (bh.b_size < PAGE_SIZE))
 677				error = -EIO;
 678			if (error)
 679				goto unlock_page;
 680		} else {
 681			return dax_load_hole(mapping, page, vmf);
 682		}
 683	}
 
 
 
 
 
 
 
 
 684
 685	if (vmf->cow_page) {
 686		struct page *new_page = vmf->cow_page;
 687		if (buffer_written(&bh))
 688			error = copy_user_bh(new_page, inode, &bh, vaddr);
 689		else
 690			clear_user_highpage(new_page, vaddr);
 691		if (error)
 692			goto unlock_page;
 693		vmf->page = page;
 694		if (!page) {
 695			i_mmap_lock_read(mapping);
 696			/* Check we didn't race with truncate */
 697			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
 698								PAGE_SHIFT;
 699			if (vmf->pgoff >= size) {
 700				i_mmap_unlock_read(mapping);
 701				error = -EIO;
 702				goto out;
 703			}
 704		}
 705		return VM_FAULT_LOCKED;
 706	}
 707
 708	/* Check we didn't race with a read fault installing a new page */
 709	if (!page && major)
 710		page = find_lock_page(mapping, vmf->pgoff);
 
 711
 712	if (page) {
 713		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 714							PAGE_SIZE, 0);
 715		delete_from_page_cache(page);
 716		unlock_page(page);
 717		put_page(page);
 718		page = NULL;
 719	}
 720
 
 
 
 721	/*
 722	 * If we successfully insert the new mapping over an unwritten extent,
 723	 * we need to ensure we convert the unwritten extent. If there is an
 724	 * error inserting the mapping, the filesystem needs to leave it as
 725	 * unwritten to prevent exposure of the stale underlying data to
 726	 * userspace, but we still need to call the completion function so
 727	 * the private resources on the mapping buffer can be released. We
 728	 * indicate what the callback should do via the uptodate variable, same
 729	 * as for normal BH based IO completions.
 730	 */
 731	error = dax_insert_mapping(inode, &bh, vma, vmf);
 732	if (buffer_unwritten(&bh)) {
 733		if (complete_unwritten)
 734			complete_unwritten(&bh, !error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735		else
 736			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
 
 
 
 
 
 
 
 
 
 737	}
 738
 739 out:
 740	if (error == -ENOMEM)
 741		return VM_FAULT_OOM | major;
 742	/* -EBUSY is fine, somebody else faulted on the same PTE */
 743	if ((error < 0) && (error != -EBUSY))
 744		return VM_FAULT_SIGBUS | major;
 745	return VM_FAULT_NOPAGE | major;
 746
 747 unlock_page:
 748	if (page) {
 749		unlock_page(page);
 750		put_page(page);
 751	}
 752	goto out;
 753}
 754EXPORT_SYMBOL(__dax_fault);
 755
 756/**
 757 * dax_fault - handle a page fault on a DAX file
 758 * @vma: The virtual memory area where the fault occurred
 759 * @vmf: The description of the fault
 760 * @get_block: The filesystem method used to translate file offsets to blocks
 761 *
 762 * When a page fault occurs, filesystems may call this helper in their
 763 * fault handler for DAX files.
 
 764 */
 765int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
 766	      get_block_t get_block, dax_iodone_t complete_unwritten)
 
 767{
 768	int result;
 769	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
 
 
 
 
 
 770
 771	if (vmf->flags & FAULT_FLAG_WRITE) {
 772		sb_start_pagefault(sb);
 773		file_update_time(vma->vm_file);
 
 
 
 
 774	}
 775	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
 776	if (vmf->flags & FAULT_FLAG_WRITE)
 777		sb_end_pagefault(sb);
 778
 779	return result;
 
 780}
 781EXPORT_SYMBOL_GPL(dax_fault);
 782
 783#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 784/*
 785 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
 786 * more often than one might expect in the below function.
 787 */
 788#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
 789
 790static void __dax_dbg(struct buffer_head *bh, unsigned long address,
 791		const char *reason, const char *fn)
 792{
 793	if (bh) {
 794		char bname[BDEVNAME_SIZE];
 795		bdevname(bh->b_bdev, bname);
 796		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
 797			"length %zd fallback: %s\n", fn, current->comm,
 798			address, bname, bh->b_state, (u64)bh->b_blocknr,
 799			bh->b_size, reason);
 800	} else {
 801		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
 802			current->comm, address, reason);
 803	}
 804}
 805
 806#define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
 807
 808int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
 809		pmd_t *pmd, unsigned int flags, get_block_t get_block,
 810		dax_iodone_t complete_unwritten)
 
 
 
 
 
 
 
 811{
 812	struct file *file = vma->vm_file;
 813	struct address_space *mapping = file->f_mapping;
 814	struct inode *inode = mapping->host;
 815	struct buffer_head bh;
 816	unsigned blkbits = inode->i_blkbits;
 817	unsigned long pmd_addr = address & PMD_MASK;
 818	bool write = flags & FAULT_FLAG_WRITE;
 819	struct block_device *bdev;
 820	pgoff_t size, pgoff;
 821	sector_t block;
 822	int error, result = 0;
 823	bool alloc = false;
 824
 825	/* dax pmd mappings require pfn_t_devmap() */
 826	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
 827		return VM_FAULT_FALLBACK;
 828
 829	/* Fall back to PTEs if we're going to COW */
 830	if (write && !(vma->vm_flags & VM_SHARED)) {
 831		split_huge_pmd(vma, pmd, address);
 832		dax_pmd_dbg(NULL, address, "cow write");
 833		return VM_FAULT_FALLBACK;
 834	}
 835	/* If the PMD would extend outside the VMA */
 836	if (pmd_addr < vma->vm_start) {
 837		dax_pmd_dbg(NULL, address, "vma start unaligned");
 838		return VM_FAULT_FALLBACK;
 839	}
 840	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
 841		dax_pmd_dbg(NULL, address, "vma end unaligned");
 842		return VM_FAULT_FALLBACK;
 843	}
 844
 845	pgoff = linear_page_index(vma, pmd_addr);
 846	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 847	if (pgoff >= size)
 848		return VM_FAULT_SIGBUS;
 849	/* If the PMD would cover blocks out of the file */
 850	if ((pgoff | PG_PMD_COLOUR) >= size) {
 851		dax_pmd_dbg(NULL, address,
 852				"offset + huge page size > file size");
 853		return VM_FAULT_FALLBACK;
 854	}
 855
 856	memset(&bh, 0, sizeof(bh));
 857	bh.b_bdev = inode->i_sb->s_bdev;
 858	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
 859
 860	bh.b_size = PMD_SIZE;
 861
 862	if (get_block(inode, block, &bh, 0) != 0)
 863		return VM_FAULT_SIGBUS;
 864
 865	if (!buffer_mapped(&bh) && write) {
 866		if (get_block(inode, block, &bh, 1) != 0)
 867			return VM_FAULT_SIGBUS;
 868		alloc = true;
 869	}
 870
 871	bdev = bh.b_bdev;
 
 872
 873	/*
 874	 * If the filesystem isn't willing to tell us the length of a hole,
 875	 * just fall back to PTEs.  Calling get_block 512 times in a loop
 876	 * would be silly.
 877	 */
 878	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
 879		dax_pmd_dbg(&bh, address, "allocated block too small");
 880		return VM_FAULT_FALLBACK;
 
 
 
 881	}
 882
 883	/*
 884	 * If we allocated new storage, make sure no process has any
 885	 * zero pages covering this hole
 886	 */
 887	if (alloc) {
 888		loff_t lstart = pgoff << PAGE_SHIFT;
 889		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
 890
 891		truncate_pagecache_range(inode, lstart, lend);
 892	}
 893
 894	i_mmap_lock_read(mapping);
 895
 896	/*
 897	 * If a truncate happened while we were allocating blocks, we may
 898	 * leave blocks allocated to the file that are beyond EOF.  We can't
 899	 * take i_mutex here, so just leave them hanging; they'll be freed
 900	 * when the file is deleted.
 901	 */
 902	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 903	if (pgoff >= size) {
 904		result = VM_FAULT_SIGBUS;
 905		goto out;
 906	}
 907	if ((pgoff | PG_PMD_COLOUR) >= size) {
 908		dax_pmd_dbg(&bh, address,
 909				"offset + huge page size > file size");
 910		goto fallback;
 911	}
 912
 913	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
 914		spinlock_t *ptl;
 915		pmd_t entry;
 916		struct page *zero_page = get_huge_zero_page();
 917
 918		if (unlikely(!zero_page)) {
 919			dax_pmd_dbg(&bh, address, "no zero page");
 920			goto fallback;
 921		}
 922
 923		ptl = pmd_lock(vma->vm_mm, pmd);
 924		if (!pmd_none(*pmd)) {
 925			spin_unlock(ptl);
 926			dax_pmd_dbg(&bh, address, "pmd already present");
 927			goto fallback;
 928		}
 929
 930		dev_dbg(part_to_dev(bdev->bd_part),
 931				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
 932				__func__, current->comm, address,
 933				(unsigned long long) to_sector(&bh, inode));
 934
 935		entry = mk_pmd(zero_page, vma->vm_page_prot);
 936		entry = pmd_mkhuge(entry);
 937		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
 938		result = VM_FAULT_NOPAGE;
 939		spin_unlock(ptl);
 940	} else {
 941		struct blk_dax_ctl dax = {
 942			.sector = to_sector(&bh, inode),
 943			.size = PMD_SIZE,
 944		};
 945		long length = dax_map_atomic(bdev, &dax);
 946
 947		if (length < 0) {
 948			result = VM_FAULT_SIGBUS;
 949			goto out;
 950		}
 951		if (length < PMD_SIZE) {
 952			dax_pmd_dbg(&bh, address, "dax-length too small");
 953			dax_unmap_atomic(bdev, &dax);
 954			goto fallback;
 955		}
 956		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
 957			dax_pmd_dbg(&bh, address, "pfn unaligned");
 958			dax_unmap_atomic(bdev, &dax);
 959			goto fallback;
 960		}
 961
 962		if (!pfn_t_devmap(dax.pfn)) {
 963			dax_unmap_atomic(bdev, &dax);
 964			dax_pmd_dbg(&bh, address, "pfn not in memmap");
 965			goto fallback;
 966		}
 967
 968		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
 969			clear_pmem(dax.addr, PMD_SIZE);
 970			wmb_pmem();
 971			count_vm_event(PGMAJFAULT);
 972			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 973			result |= VM_FAULT_MAJOR;
 
 
 
 
 
 
 
 
 
 
 
 
 974		}
 975		dax_unmap_atomic(bdev, &dax);
 
 
 
 
 
 
 
 
 
 
 
 
 
 976
 
 
 977		/*
 978		 * For PTE faults we insert a radix tree entry for reads, and
 979		 * leave it clean.  Then on the first write we dirty the radix
 980		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
 981		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
 982		 * call into get_block() to translate the pgoff to a sector in
 983		 * order to be able to create a new radix tree entry.
 984		 *
 985		 * The PMD path doesn't have an equivalent to
 986		 * dax_pfn_mkwrite(), though, so for a read followed by a
 987		 * write we traverse all the way through __dax_pmd_fault()
 988		 * twice.  This means we can just skip inserting a radix tree
 989		 * entry completely on the initial read and just wait until
 990		 * the write to insert a dirty entry.
 991		 */
 992		if (write) {
 993			error = dax_radix_entry(mapping, pgoff, dax.sector,
 994					true, true);
 995			if (error) {
 996				dax_pmd_dbg(&bh, address,
 997						"PMD radix insertion failed");
 998				goto fallback;
 999			}
1000		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002		dev_dbg(part_to_dev(bdev->bd_part),
1003				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
1004				__func__, current->comm, address,
1005				pfn_t_to_pfn(dax.pfn),
1006				(unsigned long long) dax.sector);
1007		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1008				dax.pfn, write);
1009	}
1010
1011 out:
1012	i_mmap_unlock_read(mapping);
1013
1014	if (buffer_unwritten(&bh))
1015		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
 
 
 
1016
1017	return result;
1018
1019 fallback:
1020	count_vm_event(THP_FAULT_FALLBACK);
1021	result = VM_FAULT_FALLBACK;
1022	goto out;
1023}
1024EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1025
1026/**
1027 * dax_pmd_fault - handle a PMD fault on a DAX file
1028 * @vma: The virtual memory area where the fault occurred
1029 * @vmf: The description of the fault
1030 * @get_block: The filesystem method used to translate file offsets to blocks
1031 *
1032 * When a page fault occurs, filesystems may call this helper in their
1033 * pmd_fault handler for DAX files.
1034 */
1035int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1036			pmd_t *pmd, unsigned int flags, get_block_t get_block,
1037			dax_iodone_t complete_unwritten)
1038{
1039	int result;
1040	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1041
1042	if (flags & FAULT_FLAG_WRITE) {
1043		sb_start_pagefault(sb);
1044		file_update_time(vma->vm_file);
1045	}
1046	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1047				complete_unwritten);
1048	if (flags & FAULT_FLAG_WRITE)
1049		sb_end_pagefault(sb);
 
 
 
1050
1051	return result;
 
 
 
 
1052}
1053EXPORT_SYMBOL_GPL(dax_pmd_fault);
1054#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1055
1056/**
1057 * dax_pfn_mkwrite - handle first write to DAX page
1058 * @vma: The virtual memory area where the fault occurred
1059 * @vmf: The description of the fault
1060 */
1061int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1062{
1063	struct file *file = vma->vm_file;
 
 
 
 
 
 
 
 
 
 
1064	int error;
1065
 
 
 
 
 
 
 
 
 
 
1066	/*
1067	 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1068	 * RADIX_DAX_PTE entry already exists in the radix tree from a
1069	 * previous call to __dax_fault().  We just want to look up that PTE
1070	 * entry using vmf->pgoff and make sure the dirty tag is set.  This
1071	 * saves us from having to make a call to get_block() here to look
1072	 * up the sector.
1073	 */
1074	error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1075			true);
1076
1077	if (error == -ENOMEM)
1078		return VM_FAULT_OOM;
1079	if (error)
1080		return VM_FAULT_SIGBUS;
1081	return VM_FAULT_NOPAGE;
1082}
1083EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1084
1085/**
1086 * dax_zero_page_range - zero a range within a page of a DAX file
1087 * @inode: The file being truncated
1088 * @from: The file offset that is being truncated to
1089 * @length: The number of bytes to zero
1090 * @get_block: The filesystem method used to translate file offsets to blocks
1091 *
1092 * This function can be called by a filesystem when it is zeroing part of a
1093 * page in a DAX file.  This is intended for hole-punch operations.  If
1094 * you are truncating a file, the helper function dax_truncate_page() may be
1095 * more convenient.
1096 *
1097 * We work in terms of PAGE_SIZE here for commonality with
1098 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1099 * took care of disposing of the unnecessary blocks.  Even if the filesystem
1100 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1101 * since the file might be mmapped.
1102 */
1103int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1104							get_block_t get_block)
1105{
1106	struct buffer_head bh;
1107	pgoff_t index = from >> PAGE_SHIFT;
1108	unsigned offset = from & (PAGE_SIZE-1);
1109	int err;
1110
1111	/* Block boundary? Nothing to do */
1112	if (!length)
1113		return 0;
1114	BUG_ON((offset + length) > PAGE_SIZE);
1115
1116	memset(&bh, 0, sizeof(bh));
1117	bh.b_bdev = inode->i_sb->s_bdev;
1118	bh.b_size = PAGE_SIZE;
1119	err = get_block(inode, index, &bh, 0);
1120	if (err < 0)
1121		return err;
1122	if (buffer_written(&bh)) {
1123		struct block_device *bdev = bh.b_bdev;
1124		struct blk_dax_ctl dax = {
1125			.sector = to_sector(&bh, inode),
1126			.size = PAGE_SIZE,
1127		};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
1129		if (dax_map_atomic(bdev, &dax) < 0)
1130			return PTR_ERR(dax.addr);
1131		clear_pmem(dax.addr + offset, length);
1132		wmb_pmem();
1133		dax_unmap_atomic(bdev, &dax);
 
 
 
 
 
 
 
 
 
 
1134	}
1135
1136	return 0;
1137}
1138EXPORT_SYMBOL_GPL(dax_zero_page_range);
1139
1140/**
1141 * dax_truncate_page - handle a partial page being truncated in a DAX file
1142 * @inode: The file being truncated
1143 * @from: The file offset that is being truncated to
1144 * @get_block: The filesystem method used to translate file offsets to blocks
1145 *
1146 * Similar to block_truncate_page(), this function can be called by a
1147 * filesystem when it is truncating a DAX file to handle the partial page.
1148 *
1149 * We work in terms of PAGE_SIZE here for commonality with
1150 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1151 * took care of disposing of the unnecessary blocks.  Even if the filesystem
1152 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1153 * since the file might be mmapped.
1154 */
1155int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1156{
1157	unsigned length = PAGE_ALIGN(from) - from;
1158	return dax_zero_page_range(inode, from, length, get_block);
1159}
1160EXPORT_SYMBOL_GPL(dax_truncate_page);