Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/pmem.h>
  29#include <linux/sched.h>
 
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/iomap.h>
  36#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/* We choose 4096 entries - same as per-zone page wait tables */
  39#define DAX_WAIT_TABLE_BITS 12
  40#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  41
 
 
 
 
 
 
 
  42static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  43
  44static int __init init_dax_wait_table(void)
  45{
  46	int i;
  47
  48	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  49		init_waitqueue_head(wait_table + i);
  50	return 0;
  51}
  52fs_initcall(init_dax_wait_table);
  53
  54static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55{
  56	struct request_queue *q = bdev->bd_queue;
  57	long rc = -EIO;
  58
  59	dax->addr = ERR_PTR(-EIO);
  60	if (blk_queue_enter(q, true) != 0)
  61		return rc;
 
  62
  63	rc = bdev_direct_access(bdev, dax);
  64	if (rc < 0) {
  65		dax->addr = ERR_PTR(rc);
  66		blk_queue_exit(q);
  67		return rc;
  68	}
  69	return rc;
  70}
  71
  72static void dax_unmap_atomic(struct block_device *bdev,
  73		const struct blk_dax_ctl *dax)
  74{
  75	if (IS_ERR(dax->addr))
  76		return;
  77	blk_queue_exit(bdev->bd_queue);
  78}
  79
  80static int dax_is_pmd_entry(void *entry)
  81{
  82	return (unsigned long)entry & RADIX_DAX_PMD;
  83}
  84
  85static int dax_is_pte_entry(void *entry)
  86{
  87	return !((unsigned long)entry & RADIX_DAX_PMD);
  88}
  89
  90static int dax_is_zero_entry(void *entry)
  91{
  92	return (unsigned long)entry & RADIX_DAX_HZP;
  93}
  94
  95static int dax_is_empty_entry(void *entry)
  96{
  97	return (unsigned long)entry & RADIX_DAX_EMPTY;
  98}
  99
 100struct page *read_dax_sector(struct block_device *bdev, sector_t n)
 
 
 
 
 101{
 102	struct page *page = alloc_pages(GFP_KERNEL, 0);
 103	struct blk_dax_ctl dax = {
 104		.size = PAGE_SIZE,
 105		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
 106	};
 107	long rc;
 108
 109	if (!page)
 110		return ERR_PTR(-ENOMEM);
 111
 112	rc = dax_map_atomic(bdev, &dax);
 113	if (rc < 0)
 114		return ERR_PTR(rc);
 115	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
 116	dax_unmap_atomic(bdev, &dax);
 117	return page;
 118}
 119
 120/*
 121 * DAX radix tree locking
 122 */
 123struct exceptional_entry_key {
 124	struct address_space *mapping;
 125	pgoff_t entry_start;
 126};
 127
 128struct wait_exceptional_entry_queue {
 129	wait_queue_t wait;
 130	struct exceptional_entry_key key;
 131};
 132
 133static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
 134		pgoff_t index, void *entry, struct exceptional_entry_key *key)
 
 
 
 
 
 
 
 
 
 
 135{
 136	unsigned long hash;
 
 137
 138	/*
 139	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 140	 * queue to the start of that PMD.  This ensures that all offsets in
 141	 * the range covered by the PMD map to the same bit lock.
 142	 */
 143	if (dax_is_pmd_entry(entry))
 144		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
 145
 146	key->mapping = mapping;
 147	key->entry_start = index;
 148
 149	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
 150	return wait_table + hash;
 151}
 152
 153static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
 154				       int sync, void *keyp)
 155{
 156	struct exceptional_entry_key *key = keyp;
 157	struct wait_exceptional_entry_queue *ewait =
 158		container_of(wait, struct wait_exceptional_entry_queue, wait);
 159
 160	if (key->mapping != ewait->key.mapping ||
 161	    key->entry_start != ewait->key.entry_start)
 162		return 0;
 163	return autoremove_wake_function(wait, mode, sync, NULL);
 164}
 165
 166/*
 167 * Check whether the given slot is locked. The function must be called with
 168 * mapping->tree_lock held
 169 */
 170static inline int slot_locked(struct address_space *mapping, void **slot)
 171{
 172	unsigned long entry = (unsigned long)
 173		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 174	return entry & RADIX_DAX_ENTRY_LOCK;
 175}
 176
 177/*
 178 * Mark the given slot is locked. The function must be called with
 179 * mapping->tree_lock held
 180 */
 181static inline void *lock_slot(struct address_space *mapping, void **slot)
 
 182{
 183	unsigned long entry = (unsigned long)
 184		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 185
 186	entry |= RADIX_DAX_ENTRY_LOCK;
 187	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 188	return (void *)entry;
 189}
 190
 191/*
 192 * Mark the given slot is unlocked. The function must be called with
 193 * mapping->tree_lock held
 194 */
 195static inline void *unlock_slot(struct address_space *mapping, void **slot)
 196{
 197	unsigned long entry = (unsigned long)
 198		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 199
 200	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
 201	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
 202	return (void *)entry;
 
 
 
 
 
 203}
 204
 205/*
 206 * Lookup entry in radix tree, wait for it to become unlocked if it is
 207 * exceptional entry and return it. The caller must call
 208 * put_unlocked_mapping_entry() when he decided not to lock the entry or
 209 * put_locked_mapping_entry() when he locked the entry and now wants to
 210 * unlock it.
 
 211 *
 212 * The function must be called with mapping->tree_lock held.
 213 */
 214static void *get_unlocked_mapping_entry(struct address_space *mapping,
 215					pgoff_t index, void ***slotp)
 216{
 217	void *entry, **slot;
 218	struct wait_exceptional_entry_queue ewait;
 219	wait_queue_head_t *wq;
 220
 221	init_wait(&ewait.wait);
 222	ewait.wait.func = wake_exceptional_entry_func;
 223
 224	for (;;) {
 225		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
 226					  &slot);
 227		if (!entry || !radix_tree_exceptional_entry(entry) ||
 228		    !slot_locked(mapping, slot)) {
 229			if (slotp)
 230				*slotp = slot;
 231			return entry;
 232		}
 233
 234		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
 235		prepare_to_wait_exclusive(wq, &ewait.wait,
 236					  TASK_UNINTERRUPTIBLE);
 237		spin_unlock_irq(&mapping->tree_lock);
 
 238		schedule();
 239		finish_wait(wq, &ewait.wait);
 240		spin_lock_irq(&mapping->tree_lock);
 241	}
 242}
 243
 244static void dax_unlock_mapping_entry(struct address_space *mapping,
 245				     pgoff_t index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246{
 247	void *entry, **slot;
 
 248
 249	spin_lock_irq(&mapping->tree_lock);
 250	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
 251	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
 252			 !slot_locked(mapping, slot))) {
 253		spin_unlock_irq(&mapping->tree_lock);
 254		return;
 
 
 
 
 
 
 
 
 255	}
 256	unlock_slot(mapping, slot);
 257	spin_unlock_irq(&mapping->tree_lock);
 258	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 259}
 260
 261static void put_locked_mapping_entry(struct address_space *mapping,
 262				     pgoff_t index, void *entry)
 263{
 264	if (!radix_tree_exceptional_entry(entry)) {
 265		unlock_page(entry);
 266		put_page(entry);
 267	} else {
 268		dax_unlock_mapping_entry(mapping, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269	}
 
 270}
 271
 272/*
 273 * Called when we are done with radix tree entry we looked up via
 274 * get_unlocked_mapping_entry() and which we didn't lock in the end.
 
 
 
 
 275 */
 276static void put_unlocked_mapping_entry(struct address_space *mapping,
 277				       pgoff_t index, void *entry)
 278{
 279	if (!radix_tree_exceptional_entry(entry))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280		return;
 281
 282	/* We have to wake up next waiter for the radix tree entry lock */
 283	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
 284}
 285
 286/*
 287 * Find radix tree entry at given index. If it points to a page, return with
 288 * the page locked. If it points to the exceptional entry, return with the
 289 * radix tree entry locked. If the radix tree doesn't contain given index,
 290 * create empty exceptional entry for the index and return with it locked.
 291 *
 292 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
 293 * either return that locked entry or will return an error.  This error will
 294 * happen if there are any 4k entries (either zero pages or DAX entries)
 295 * within the 2MiB range that we are requesting.
 296 *
 297 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
 298 * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
 299 * insertion will fail if it finds any 4k entries already in the tree, and a
 300 * 4k insertion will cause an existing 2MiB entry to be unmapped and
 301 * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
 302 * well as 2MiB empty entries.
 303 *
 304 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
 305 * real storage backing them.  We will leave these real 2MiB DAX entries in
 306 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
 307 *
 308 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 309 * persistent memory the benefit is doubtful. We can add that later if we can
 310 * show it helps.
 
 
 
 
 311 */
 312static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
 313		unsigned long size_flag)
 314{
 315	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
 316	void *entry, **slot;
 
 317
 318restart:
 319	spin_lock_irq(&mapping->tree_lock);
 320	entry = get_unlocked_mapping_entry(mapping, index, &slot);
 
 321
 322	if (entry) {
 323		if (size_flag & RADIX_DAX_PMD) {
 324			if (!radix_tree_exceptional_entry(entry) ||
 325			    dax_is_pte_entry(entry)) {
 326				put_unlocked_mapping_entry(mapping, index,
 327						entry);
 328				entry = ERR_PTR(-EEXIST);
 329				goto out_unlock;
 330			}
 331		} else { /* trying to grab a PTE entry */
 332			if (radix_tree_exceptional_entry(entry) &&
 333			    dax_is_pmd_entry(entry) &&
 334			    (dax_is_zero_entry(entry) ||
 335			     dax_is_empty_entry(entry))) {
 336				pmd_downgrade = true;
 337			}
 338		}
 339	}
 340
 341	/* No entry for given index? Make sure radix tree is big enough. */
 342	if (!entry || pmd_downgrade) {
 343		int err;
 344
 345		if (pmd_downgrade) {
 346			/*
 347			 * Make sure 'entry' remains valid while we drop
 348			 * mapping->tree_lock.
 349			 */
 350			entry = lock_slot(mapping, slot);
 351		}
 352
 353		spin_unlock_irq(&mapping->tree_lock);
 354		/*
 355		 * Besides huge zero pages the only other thing that gets
 356		 * downgraded are empty entries which don't need to be
 357		 * unmapped.
 358		 */
 359		if (pmd_downgrade && dax_is_zero_entry(entry))
 360			unmap_mapping_range(mapping,
 361				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 362
 363		err = radix_tree_preload(
 364				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
 365		if (err) {
 366			if (pmd_downgrade)
 367				put_locked_mapping_entry(mapping, index, entry);
 368			return ERR_PTR(err);
 369		}
 370		spin_lock_irq(&mapping->tree_lock);
 371
 372		if (!entry) {
 373			/*
 374			 * We needed to drop the page_tree lock while calling
 375			 * radix_tree_preload() and we didn't have an entry to
 376			 * lock.  See if another thread inserted an entry at
 377			 * our index during this time.
 378			 */
 379			entry = __radix_tree_lookup(&mapping->page_tree, index,
 380					NULL, &slot);
 381			if (entry) {
 382				radix_tree_preload_end();
 383				spin_unlock_irq(&mapping->tree_lock);
 384				goto restart;
 385			}
 386		}
 387
 388		if (pmd_downgrade) {
 389			radix_tree_delete(&mapping->page_tree, index);
 390			mapping->nrexceptional--;
 391			dax_wake_mapping_entry_waiter(mapping, index, entry,
 392					true);
 393		}
 
 394
 395		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
 
 
 
 396
 397		err = __radix_tree_insert(&mapping->page_tree, index,
 398				dax_radix_order(entry), entry);
 399		radix_tree_preload_end();
 400		if (err) {
 401			spin_unlock_irq(&mapping->tree_lock);
 402			/*
 403			 * Our insertion of a DAX entry failed, most likely
 404			 * because we were inserting a PMD entry and it
 405			 * collided with a PTE sized entry at a different
 406			 * index in the PMD range.  We haven't inserted
 407			 * anything into the radix tree and have no waiters to
 408			 * wake.
 409			 */
 410			return ERR_PTR(err);
 411		}
 412		/* Good, we have inserted empty locked entry into the tree. */
 413		mapping->nrexceptional++;
 414		spin_unlock_irq(&mapping->tree_lock);
 415		return entry;
 416	}
 417	/* Normal page in radix tree? */
 418	if (!radix_tree_exceptional_entry(entry)) {
 419		struct page *page = entry;
 420
 421		get_page(page);
 422		spin_unlock_irq(&mapping->tree_lock);
 423		lock_page(page);
 424		/* Page got truncated? Retry... */
 425		if (unlikely(page->mapping != mapping)) {
 426			unlock_page(page);
 427			put_page(page);
 428			goto restart;
 429		}
 430		return page;
 431	}
 432	entry = lock_slot(mapping, slot);
 433 out_unlock:
 434	spin_unlock_irq(&mapping->tree_lock);
 435	return entry;
 
 
 
 436}
 437
 438/*
 439 * We do not necessarily hold the mapping->tree_lock when we call this
 440 * function so it is possible that 'entry' is no longer a valid item in the
 441 * radix tree.  This is okay because all we really need to do is to find the
 442 * correct waitqueue where tasks might be waiting for that old 'entry' and
 443 * wake them.
 
 
 
 
 
 
 
 
 
 
 
 444 */
 445void dax_wake_mapping_entry_waiter(struct address_space *mapping,
 446		pgoff_t index, void *entry, bool wake_all)
 447{
 448	struct exceptional_entry_key key;
 449	wait_queue_head_t *wq;
 
 
 
 
 450
 451	wq = dax_entry_waitqueue(mapping, index, entry, &key);
 
 
 
 
 452
 
 
 
 
 
 
 
 
 453	/*
 454	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 455	 * under mapping->tree_lock, ditto for entry handling in our callers.
 456	 * So at this point all tasks that could have seen our entry locked
 457	 * must be in the waitqueue and the following check will see them.
 
 
 
 
 
 
 458	 */
 459	if (waitqueue_active(wq))
 460		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461}
 
 462
 463static int __dax_invalidate_mapping_entry(struct address_space *mapping,
 
 
 
 
 
 
 464					  pgoff_t index, bool trunc)
 465{
 
 466	int ret = 0;
 467	void *entry;
 468	struct radix_tree_root *page_tree = &mapping->page_tree;
 469
 470	spin_lock_irq(&mapping->tree_lock);
 471	entry = get_unlocked_mapping_entry(mapping, index, NULL);
 472	if (!entry || !radix_tree_exceptional_entry(entry))
 473		goto out;
 474	if (!trunc &&
 475	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 476	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
 477		goto out;
 478	radix_tree_delete(page_tree, index);
 479	mapping->nrexceptional--;
 
 480	ret = 1;
 481out:
 482	put_unlocked_mapping_entry(mapping, index, entry);
 483	spin_unlock_irq(&mapping->tree_lock);
 484	return ret;
 485}
 
 486/*
 487 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
 488 * entry to get unlocked before deleting it.
 489 */
 490int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 491{
 492	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
 493
 494	/*
 495	 * This gets called from truncate / punch_hole path. As such, the caller
 496	 * must hold locks protecting against concurrent modifications of the
 497	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
 498	 * caller has seen exceptional entry for this index, we better find it
 499	 * at that index as well...
 500	 */
 501	WARN_ON_ONCE(!ret);
 502	return ret;
 503}
 504
 505/*
 506 * Invalidate exceptional DAX entry if easily possible. This handles DAX
 507 * entries for invalidate_inode_pages() so we evict the entry only if we can
 508 * do so without blocking.
 509 */
 510int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
 511{
 512	int ret = 0;
 513	void *entry, **slot;
 514	struct radix_tree_root *page_tree = &mapping->page_tree;
 515
 516	spin_lock_irq(&mapping->tree_lock);
 517	entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
 518	if (!entry || !radix_tree_exceptional_entry(entry) ||
 519	    slot_locked(mapping, slot))
 520		goto out;
 521	if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
 522	    radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 523		goto out;
 524	radix_tree_delete(page_tree, index);
 525	mapping->nrexceptional--;
 526	ret = 1;
 527out:
 528	spin_unlock_irq(&mapping->tree_lock);
 529	if (ret)
 530		dax_wake_mapping_entry_waiter(mapping, index, entry, true);
 531	return ret;
 532}
 533
 534/*
 535 * Invalidate exceptional DAX entry if it is clean.
 536 */
 537int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 538				      pgoff_t index)
 539{
 540	return __dax_invalidate_mapping_entry(mapping, index, false);
 541}
 542
 543/*
 544 * The user has performed a load from a hole in the file.  Allocating
 545 * a new page in the file would cause excessive storage usage for
 546 * workloads with sparse files.  We allocate a page cache page instead.
 547 * We'll kick it out of the page cache if it's ever written to,
 548 * otherwise it will simply fall out of the page cache under memory
 549 * pressure without ever having been dirtied.
 550 */
 551static int dax_load_hole(struct address_space *mapping, void **entry,
 552			 struct vm_fault *vmf)
 553{
 554	struct page *page;
 555	int ret;
 556
 557	/* Hole page already exists? Return it...  */
 558	if (!radix_tree_exceptional_entry(*entry)) {
 559		page = *entry;
 560		goto out;
 561	}
 562
 563	/* This will replace locked radix tree entry with a hole page */
 564	page = find_or_create_page(mapping, vmf->pgoff,
 565				   vmf->gfp_mask | __GFP_ZERO);
 566	if (!page)
 567		return VM_FAULT_OOM;
 568 out:
 569	vmf->page = page;
 570	ret = finish_fault(vmf);
 571	vmf->page = NULL;
 572	*entry = page;
 573	if (!ret) {
 574		/* Grab reference for PTE that is now referencing the page */
 575		get_page(page);
 576		return VM_FAULT_NOPAGE;
 577	}
 578	return ret;
 579}
 580
 581static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
 582		struct page *to, unsigned long vaddr)
 583{
 584	struct blk_dax_ctl dax = {
 585		.sector = sector,
 586		.size = size,
 587	};
 588	void *vto;
 
 
 
 589
 590	if (dax_map_atomic(bdev, &dax) < 0)
 591		return PTR_ERR(dax.addr);
 
 
 
 
 592	vto = kmap_atomic(to);
 593	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
 594	kunmap_atomic(vto);
 595	dax_unmap_atomic(bdev, &dax);
 596	return 0;
 597}
 598
 599/*
 600 * By this point grab_mapping_entry() has ensured that we have a locked entry
 601 * of the appropriate size so we don't have to worry about downgrading PMDs to
 602 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 603 * already in the tree, we will skip the insertion and just dirty the PMD as
 604 * appropriate.
 605 */
 606static void *dax_insert_mapping_entry(struct address_space *mapping,
 607				      struct vm_fault *vmf,
 608				      void *entry, sector_t sector,
 609				      unsigned long flags)
 610{
 611	struct radix_tree_root *page_tree = &mapping->page_tree;
 612	int error = 0;
 613	bool hole_fill = false;
 614	void *new_entry;
 615	pgoff_t index = vmf->pgoff;
 616
 617	if (vmf->flags & FAULT_FLAG_WRITE)
 618		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 619
 620	/* Replacing hole page with block mapping? */
 621	if (!radix_tree_exceptional_entry(entry)) {
 622		hole_fill = true;
 623		/*
 624		 * Unmap the page now before we remove it from page cache below.
 625		 * The page is locked so it cannot be faulted in again.
 626		 */
 627		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 628				    PAGE_SIZE, 0);
 629		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
 630		if (error)
 631			return ERR_PTR(error);
 632	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
 633		/* replacing huge zero page with PMD block mapping */
 634		unmap_mapping_range(mapping,
 635			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
 636	}
 637
 638	spin_lock_irq(&mapping->tree_lock);
 639	new_entry = dax_radix_locked_entry(sector, flags);
 640
 641	if (hole_fill) {
 642		__delete_from_page_cache(entry, NULL);
 643		/* Drop pagecache reference */
 644		put_page(entry);
 645		error = __radix_tree_insert(page_tree, index,
 646				dax_radix_order(new_entry), new_entry);
 647		if (error) {
 648			new_entry = ERR_PTR(error);
 649			goto unlock;
 650		}
 651		mapping->nrexceptional++;
 652	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 653		/*
 654		 * Only swap our new entry into the radix tree if the current
 655		 * entry is a zero page or an empty entry.  If a normal PTE or
 656		 * PMD entry is already in the tree, we leave it alone.  This
 657		 * means that if we are trying to insert a PTE and the
 658		 * existing entry is a PMD, we will just leave the PMD in the
 659		 * tree and dirty it if necessary.
 660		 */
 661		struct radix_tree_node *node;
 662		void **slot;
 663		void *ret;
 664
 665		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
 666		WARN_ON_ONCE(ret != entry);
 667		__radix_tree_replace(page_tree, node, slot,
 668				     new_entry, NULL, NULL);
 669	}
 670	if (vmf->flags & FAULT_FLAG_WRITE)
 671		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 672 unlock:
 673	spin_unlock_irq(&mapping->tree_lock);
 674	if (hole_fill) {
 675		radix_tree_preload_end();
 676		/*
 677		 * We don't need hole page anymore, it has been replaced with
 678		 * locked radix tree entry now.
 679		 */
 680		if (mapping->a_ops->freepage)
 681			mapping->a_ops->freepage(entry);
 682		unlock_page(entry);
 683		put_page(entry);
 684	}
 685	return new_entry;
 
 
 
 
 
 686}
 687
 688static inline unsigned long
 689pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 690{
 691	unsigned long address;
 692
 693	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 694	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 695	return address;
 696}
 697
 698/* Walk all mappings of a given index of a file and writeprotect them */
 699static void dax_mapping_entry_mkclean(struct address_space *mapping,
 700				      pgoff_t index, unsigned long pfn)
 701{
 702	struct vm_area_struct *vma;
 703	pte_t pte, *ptep = NULL;
 704	pmd_t *pmdp = NULL;
 705	spinlock_t *ptl;
 706	bool changed;
 707
 708	i_mmap_lock_read(mapping);
 709	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 
 710		unsigned long address;
 711
 712		cond_resched();
 713
 714		if (!(vma->vm_flags & VM_SHARED))
 715			continue;
 716
 717		address = pgoff_address(index, vma);
 718		changed = false;
 719		if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
 
 
 
 
 
 
 720			continue;
 721
 
 
 
 
 
 
 
 722		if (pmdp) {
 723#ifdef CONFIG_FS_DAX_PMD
 724			pmd_t pmd;
 725
 726			if (pfn != pmd_pfn(*pmdp))
 727				goto unlock_pmd;
 728			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 729				goto unlock_pmd;
 730
 731			flush_cache_page(vma, address, pfn);
 732			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
 733			pmd = pmd_wrprotect(pmd);
 734			pmd = pmd_mkclean(pmd);
 735			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 736			changed = true;
 737unlock_pmd:
 738			spin_unlock(ptl);
 739#endif
 
 740		} else {
 741			if (pfn != pte_pfn(*ptep))
 742				goto unlock_pte;
 743			if (!pte_dirty(*ptep) && !pte_write(*ptep))
 744				goto unlock_pte;
 745
 746			flush_cache_page(vma, address, pfn);
 747			pte = ptep_clear_flush(vma, address, ptep);
 748			pte = pte_wrprotect(pte);
 749			pte = pte_mkclean(pte);
 750			set_pte_at(vma->vm_mm, address, ptep, pte);
 751			changed = true;
 752unlock_pte:
 753			pte_unmap_unlock(ptep, ptl);
 754		}
 755
 756		if (changed)
 757			mmu_notifier_invalidate_page(vma->vm_mm, address);
 758	}
 759	i_mmap_unlock_read(mapping);
 760}
 761
 762static int dax_writeback_one(struct block_device *bdev,
 763		struct address_space *mapping, pgoff_t index, void *entry)
 764{
 765	struct radix_tree_root *page_tree = &mapping->page_tree;
 766	struct blk_dax_ctl dax;
 767	void *entry2, **slot;
 768	int ret = 0;
 769
 770	/*
 771	 * A page got tagged dirty in DAX mapping? Something is seriously
 772	 * wrong.
 773	 */
 774	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
 775		return -EIO;
 776
 777	spin_lock_irq(&mapping->tree_lock);
 778	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
 779	/* Entry got punched out / reallocated? */
 780	if (!entry2 || !radix_tree_exceptional_entry(entry2))
 781		goto put_unlocked;
 782	/*
 783	 * Entry got reallocated elsewhere? No need to writeback. We have to
 784	 * compare sectors as we must not bail out due to difference in lockbit
 785	 * or entry type.
 786	 */
 787	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
 788		goto put_unlocked;
 789	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 790				dax_is_zero_entry(entry))) {
 791		ret = -EIO;
 792		goto put_unlocked;
 
 
 
 
 
 
 
 
 793	}
 794
 795	/* Another fsync thread may have already written back this entry */
 796	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 797		goto put_unlocked;
 798	/* Lock the entry to serialize with page faults */
 799	entry = lock_slot(mapping, slot);
 
 800	/*
 801	 * We can clear the tag now but we have to be careful so that concurrent
 802	 * dax_writeback_one() calls for the same index cannot finish before we
 803	 * actually flush the caches. This is achieved as the calls will look
 804	 * at the entry only under tree_lock and once they do that they will
 805	 * see the entry locked and wait for it to unlock.
 806	 */
 807	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
 808	spin_unlock_irq(&mapping->tree_lock);
 809
 810	/*
 811	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
 812	 * in the middle of a PMD, the 'index' we are given will be aligned to
 813	 * the start index of the PMD, as will the sector we pull from
 814	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
 815	 * worry about partial PMD writebacks.
 816	 */
 817	dax.sector = dax_radix_sector(entry);
 818	dax.size = PAGE_SIZE << dax_radix_order(entry);
 
 819
 820	/*
 821	 * We cannot hold tree_lock while calling dax_map_atomic() because it
 822	 * eventually calls cond_resched().
 823	 */
 824	ret = dax_map_atomic(bdev, &dax);
 825	if (ret < 0) {
 826		put_locked_mapping_entry(mapping, index, entry);
 827		return ret;
 828	}
 829
 830	if (WARN_ON_ONCE(ret < dax.size)) {
 831		ret = -EIO;
 832		goto unmap;
 833	}
 834
 835	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
 836	wb_cache_pmem(dax.addr, dax.size);
 837	/*
 838	 * After we have flushed the cache, we can clear the dirty tag. There
 839	 * cannot be new dirty data in the pfn after the flush has completed as
 840	 * the pfn mappings are writeprotected and fault waits for mapping
 841	 * entry lock.
 842	 */
 843	spin_lock_irq(&mapping->tree_lock);
 844	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
 845	spin_unlock_irq(&mapping->tree_lock);
 846 unmap:
 847	dax_unmap_atomic(bdev, &dax);
 848	put_locked_mapping_entry(mapping, index, entry);
 
 849	return ret;
 850
 851 put_unlocked:
 852	put_unlocked_mapping_entry(mapping, index, entry2);
 853	spin_unlock_irq(&mapping->tree_lock);
 854	return ret;
 855}
 856
 857/*
 858 * Flush the mapping to the persistent domain within the byte range of [start,
 859 * end]. This is required by data integrity operations to ensure file data is
 860 * on persistent storage prior to completion of the operation.
 861 */
 862int dax_writeback_mapping_range(struct address_space *mapping,
 863		struct block_device *bdev, struct writeback_control *wbc)
 864{
 
 865	struct inode *inode = mapping->host;
 866	pgoff_t start_index, end_index;
 867	pgoff_t indices[PAGEVEC_SIZE];
 868	struct pagevec pvec;
 869	bool done = false;
 870	int i, ret = 0;
 871
 872	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 873		return -EIO;
 874
 875	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 876		return 0;
 877
 878	start_index = wbc->range_start >> PAGE_SHIFT;
 879	end_index = wbc->range_end >> PAGE_SHIFT;
 880
 881	tag_pages_for_writeback(mapping, start_index, end_index);
 882
 883	pagevec_init(&pvec, 0);
 884	while (!done) {
 885		pvec.nr = find_get_entries_tag(mapping, start_index,
 886				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 887				pvec.pages, indices);
 888
 889		if (pvec.nr == 0)
 
 
 
 
 890			break;
 891
 892		for (i = 0; i < pvec.nr; i++) {
 893			if (indices[i] > end_index) {
 894				done = true;
 895				break;
 896			}
 897
 898			ret = dax_writeback_one(bdev, mapping, indices[i],
 899					pvec.pages[i]);
 900			if (ret < 0)
 901				return ret;
 902		}
 
 
 
 
 
 
 
 903	}
 904	return 0;
 
 
 905}
 906EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 907
 908static int dax_insert_mapping(struct address_space *mapping,
 909		struct block_device *bdev, sector_t sector, size_t size,
 910		void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
 911{
 912	unsigned long vaddr = vmf->address;
 913	struct blk_dax_ctl dax = {
 914		.sector = sector,
 915		.size = size,
 916	};
 917	void *ret;
 918	void *entry = *entryp;
 919
 920	if (dax_map_atomic(bdev, &dax) < 0)
 921		return PTR_ERR(dax.addr);
 922	dax_unmap_atomic(bdev, &dax);
 923
 924	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
 925	if (IS_ERR(ret))
 926		return PTR_ERR(ret);
 927	*entryp = ret;
 928
 929	return vm_insert_mixed(vma, vaddr, dax.pfn);
 930}
 931
 932/**
 933 * dax_pfn_mkwrite - handle first write to DAX page
 934 * @vma: The virtual memory area where the fault occurred
 935 * @vmf: The description of the fault
 936 */
 937int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 938{
 939	struct file *file = vma->vm_file;
 940	struct address_space *mapping = file->f_mapping;
 941	void *entry, **slot;
 942	pgoff_t index = vmf->pgoff;
 943
 944	spin_lock_irq(&mapping->tree_lock);
 945	entry = get_unlocked_mapping_entry(mapping, index, &slot);
 946	if (!entry || !radix_tree_exceptional_entry(entry)) {
 947		if (entry)
 948			put_unlocked_mapping_entry(mapping, index, entry);
 949		spin_unlock_irq(&mapping->tree_lock);
 950		return VM_FAULT_NOPAGE;
 
 
 951	}
 952	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
 953	entry = lock_slot(mapping, slot);
 954	spin_unlock_irq(&mapping->tree_lock);
 955	/*
 956	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
 957	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
 958	 * the fault in either case.
 959	 */
 960	finish_mkwrite_fault(vmf);
 961	put_locked_mapping_entry(mapping, index, entry);
 962	return VM_FAULT_NOPAGE;
 
 963}
 964EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
 965
 966static bool dax_range_is_aligned(struct block_device *bdev,
 967				 unsigned int offset, unsigned int length)
 
 
 
 
 
 
 
 
 968{
 969	unsigned short sector_size = bdev_logical_block_size(bdev);
 
 
 
 970
 971	if (!IS_ALIGNED(offset, sector_size))
 972		return false;
 973	if (!IS_ALIGNED(length, sector_size))
 974		return false;
 975
 976	return true;
 
 
 977}
 978
 979int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
 980		unsigned int offset, unsigned int length)
 981{
 982	struct blk_dax_ctl dax = {
 983		.sector		= sector,
 984		.size		= PAGE_SIZE,
 985	};
 
 
 
 
 
 
 
 
 
 
 
 986
 987	if (dax_range_is_aligned(bdev, offset, length)) {
 988		sector_t start_sector = dax.sector + (offset >> 9);
 989
 990		return blkdev_issue_zeroout(bdev, start_sector,
 991				length >> 9, GFP_NOFS, true);
 992	} else {
 993		if (dax_map_atomic(bdev, &dax) < 0)
 994			return PTR_ERR(dax.addr);
 995		clear_pmem(dax.addr + offset, length);
 996		dax_unmap_atomic(bdev, &dax);
 997	}
 998	return 0;
 999}
1000EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1001
1002static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1003{
1004	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
 
 
 
1005}
1006
1007static loff_t
1008dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1009		struct iomap *iomap)
1010{
 
 
1011	struct iov_iter *iter = data;
1012	loff_t end = pos + length, done = 0;
1013	ssize_t ret = 0;
 
 
1014
1015	if (iov_iter_rw(iter) == READ) {
1016		end = min(end, i_size_read(inode));
1017		if (pos >= end)
1018			return 0;
1019
1020		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1021			return iov_iter_zero(min(length, end - pos), iter);
1022	}
1023
1024	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1025		return -EIO;
1026
1027	/*
1028	 * Write can allocate block for an area which has a hole page mapped
1029	 * into page tables. We have to tear down these mappings so that data
1030	 * written by write(2) is visible in mmap.
1031	 */
1032	if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1033		invalidate_inode_pages2_range(inode->i_mapping,
1034					      pos >> PAGE_SHIFT,
1035					      (end - 1) >> PAGE_SHIFT);
1036	}
1037
 
1038	while (pos < end) {
1039		unsigned offset = pos & (PAGE_SIZE - 1);
1040		struct blk_dax_ctl dax = { 0 };
 
1041		ssize_t map_len;
 
 
1042
1043		if (fatal_signal_pending(current)) {
1044			ret = -EINTR;
1045			break;
1046		}
1047
1048		dax.sector = dax_iomap_sector(iomap, pos);
1049		dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1050		map_len = dax_map_atomic(iomap->bdev, &dax);
 
 
 
1051		if (map_len < 0) {
1052			ret = map_len;
1053			break;
1054		}
1055
1056		dax.addr += offset;
 
1057		map_len -= offset;
1058		if (map_len > end - pos)
1059			map_len = end - pos;
1060
 
 
 
 
 
1061		if (iov_iter_rw(iter) == WRITE)
1062			map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
 
1063		else
1064			map_len = copy_to_iter(dax.addr, map_len, iter);
1065		dax_unmap_atomic(iomap->bdev, &dax);
1066		if (map_len <= 0) {
1067			ret = map_len ? map_len : -EFAULT;
1068			break;
1069		}
1070
1071		pos += map_len;
1072		length -= map_len;
1073		done += map_len;
 
 
 
 
 
1074	}
 
1075
1076	return done ? done : ret;
1077}
1078
1079/**
1080 * dax_iomap_rw - Perform I/O to a DAX file
1081 * @iocb:	The control block for this I/O
1082 * @iter:	The addresses to do I/O from or to
1083 * @ops:	iomap ops passed from the file system
1084 *
1085 * This function performs read and write operations to directly mapped
1086 * persistent memory.  The callers needs to take care of read/write exclusion
1087 * and evicting any page cache pages in the region under I/O.
1088 */
1089ssize_t
1090dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1091		struct iomap_ops *ops)
1092{
1093	struct address_space *mapping = iocb->ki_filp->f_mapping;
1094	struct inode *inode = mapping->host;
1095	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1096	unsigned flags = 0;
1097
1098	if (iov_iter_rw(iter) == WRITE)
 
1099		flags |= IOMAP_WRITE;
 
 
 
 
 
 
1100
1101	while (iov_iter_count(iter)) {
1102		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1103				iter, dax_iomap_actor);
1104		if (ret <= 0)
1105			break;
1106		pos += ret;
1107		done += ret;
1108	}
1109
1110	iocb->ki_pos += done;
1111	return done ? done : ret;
1112}
1113EXPORT_SYMBOL_GPL(dax_iomap_rw);
1114
1115static int dax_fault_return(int error)
1116{
1117	if (error == 0)
1118		return VM_FAULT_NOPAGE;
1119	if (error == -ENOMEM)
1120		return VM_FAULT_OOM;
1121	return VM_FAULT_SIGBUS;
1122}
1123
1124/**
1125 * dax_iomap_fault - handle a page fault on a DAX file
1126 * @vma: The virtual memory area where the fault occurred
1127 * @vmf: The description of the fault
1128 * @ops: iomap ops passed from the file system
1129 *
1130 * When a page fault occurs, filesystems may call this helper in their fault
1131 * or mkwrite handler for DAX files. Assumes the caller has done all the
1132 * necessary locking for the page fault to proceed successfully.
1133 */
1134int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1135			struct iomap_ops *ops)
 
 
 
 
 
 
 
1136{
 
1137	struct address_space *mapping = vma->vm_file->f_mapping;
 
1138	struct inode *inode = mapping->host;
1139	unsigned long vaddr = vmf->address;
1140	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1141	sector_t sector;
1142	struct iomap iomap = { 0 };
1143	unsigned flags = IOMAP_FAULT;
1144	int error, major = 0;
1145	int vmf_ret = 0;
 
 
1146	void *entry;
 
1147
 
1148	/*
1149	 * Check whether offset isn't beyond end of file now. Caller is supposed
1150	 * to hold locks serializing us with truncate / punch hole so this is
1151	 * a reliable test.
1152	 */
1153	if (pos >= i_size_read(inode))
1154		return VM_FAULT_SIGBUS;
 
 
1155
1156	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1157		flags |= IOMAP_WRITE;
1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159	/*
1160	 * Note that we don't bother to use iomap_apply here: DAX required
1161	 * the file system block size to be equal the page size, which means
1162	 * that we never have to deal with more than a single extent here.
1163	 */
1164	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1165	if (error)
1166		return dax_fault_return(error);
1167	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1168		vmf_ret = dax_fault_return(-EIO);	/* fs corruption? */
1169		goto finish_iomap;
1170	}
1171
1172	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1173	if (IS_ERR(entry)) {
1174		vmf_ret = dax_fault_return(PTR_ERR(entry));
1175		goto finish_iomap;
1176	}
1177
1178	sector = dax_iomap_sector(&iomap, pos);
1179
1180	if (vmf->cow_page) {
 
 
1181		switch (iomap.type) {
1182		case IOMAP_HOLE:
1183		case IOMAP_UNWRITTEN:
1184			clear_user_highpage(vmf->cow_page, vaddr);
1185			break;
1186		case IOMAP_MAPPED:
1187			error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1188					vmf->cow_page, vaddr);
1189			break;
1190		default:
1191			WARN_ON_ONCE(1);
1192			error = -EIO;
1193			break;
1194		}
1195
1196		if (error)
1197			goto error_unlock_entry;
1198
1199		__SetPageUptodate(vmf->cow_page);
1200		vmf_ret = finish_fault(vmf);
1201		if (!vmf_ret)
1202			vmf_ret = VM_FAULT_DONE_COW;
1203		goto unlock_entry;
1204	}
1205
 
 
1206	switch (iomap.type) {
1207	case IOMAP_MAPPED:
1208		if (iomap.flags & IOMAP_F_NEW) {
1209			count_vm_event(PGMAJFAULT);
1210			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1211			major = VM_FAULT_MAJOR;
1212		}
1213		error = dax_insert_mapping(mapping, iomap.bdev, sector,
1214				PAGE_SIZE, &entry, vma, vmf);
1215		/* -EBUSY is fine, somebody else faulted on the same PTE */
1216		if (error == -EBUSY)
1217			error = 0;
1218		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219	case IOMAP_UNWRITTEN:
1220	case IOMAP_HOLE:
1221		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1222			vmf_ret = dax_load_hole(mapping, &entry, vmf);
1223			goto unlock_entry;
1224		}
1225		/*FALLTHRU*/
1226	default:
1227		WARN_ON_ONCE(1);
1228		error = -EIO;
1229		break;
1230	}
1231
1232 error_unlock_entry:
1233	vmf_ret = dax_fault_return(error) | major;
1234 unlock_entry:
1235	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1236 finish_iomap:
1237	if (ops->iomap_end) {
1238		int copied = PAGE_SIZE;
1239
1240		if (vmf_ret & VM_FAULT_ERROR)
1241			copied = 0;
1242		/*
1243		 * The fault is done by now and there's no way back (other
1244		 * thread may be already happily using PTE we have installed).
1245		 * Just ignore error from ->iomap_end since we cannot do much
1246		 * with it.
1247		 */
1248		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1249	}
1250	return vmf_ret;
 
 
 
 
1251}
1252EXPORT_SYMBOL_GPL(dax_iomap_fault);
1253
1254#ifdef CONFIG_FS_DAX_PMD
1255/*
1256 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1257 * more often than one might expect in the below functions.
1258 */
1259#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1260
1261static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1262		struct vm_fault *vmf, unsigned long address,
1263		struct iomap *iomap, loff_t pos, bool write, void **entryp)
1264{
1265	struct address_space *mapping = vma->vm_file->f_mapping;
1266	struct block_device *bdev = iomap->bdev;
1267	struct blk_dax_ctl dax = {
1268		.sector = dax_iomap_sector(iomap, pos),
1269		.size = PMD_SIZE,
1270	};
1271	long length = dax_map_atomic(bdev, &dax);
1272	void *ret;
1273
1274	if (length < 0) /* dax_map_atomic() failed */
1275		return VM_FAULT_FALLBACK;
1276	if (length < PMD_SIZE)
1277		goto unmap_fallback;
1278	if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1279		goto unmap_fallback;
1280	if (!pfn_t_devmap(dax.pfn))
1281		goto unmap_fallback;
1282
1283	dax_unmap_atomic(bdev, &dax);
1284
1285	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1286			RADIX_DAX_PMD);
1287	if (IS_ERR(ret))
1288		return VM_FAULT_FALLBACK;
1289	*entryp = ret;
1290
1291	return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1292
1293 unmap_fallback:
1294	dax_unmap_atomic(bdev, &dax);
1295	return VM_FAULT_FALLBACK;
1296}
1297
1298static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1299		struct vm_fault *vmf, unsigned long address,
1300		struct iomap *iomap, void **entryp)
1301{
1302	struct address_space *mapping = vma->vm_file->f_mapping;
1303	unsigned long pmd_addr = address & PMD_MASK;
 
 
 
1304	struct page *zero_page;
1305	spinlock_t *ptl;
1306	pmd_t pmd_entry;
1307	void *ret;
1308
1309	zero_page = mm_get_huge_zero_page(vma->vm_mm);
1310
1311	if (unlikely(!zero_page))
1312		return VM_FAULT_FALLBACK;
1313
1314	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1315			RADIX_DAX_PMD | RADIX_DAX_HZP);
1316	if (IS_ERR(ret))
1317		return VM_FAULT_FALLBACK;
1318	*entryp = ret;
 
 
 
 
1319
1320	ptl = pmd_lock(vma->vm_mm, pmd);
1321	if (!pmd_none(*pmd)) {
1322		spin_unlock(ptl);
1323		return VM_FAULT_FALLBACK;
1324	}
1325
1326	pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
 
 
 
 
1327	pmd_entry = pmd_mkhuge(pmd_entry);
1328	set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1329	spin_unlock(ptl);
 
1330	return VM_FAULT_NOPAGE;
 
 
 
 
 
 
1331}
1332
1333int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1334		pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1335{
 
1336	struct address_space *mapping = vma->vm_file->f_mapping;
1337	unsigned long pmd_addr = address & PMD_MASK;
1338	bool write = flags & FAULT_FLAG_WRITE;
 
 
1339	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1340	struct inode *inode = mapping->host;
1341	int result = VM_FAULT_FALLBACK;
1342	struct iomap iomap = { 0 };
1343	pgoff_t max_pgoff, pgoff;
1344	struct vm_fault vmf;
1345	void *entry;
1346	loff_t pos;
1347	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348
1349	/* Fall back to PTEs if we're going to COW */
1350	if (write && !(vma->vm_flags & VM_SHARED))
1351		goto fallback;
1352
1353	/* If the PMD would extend outside the VMA */
1354	if (pmd_addr < vma->vm_start)
1355		goto fallback;
1356	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1357		goto fallback;
1358
1359	/*
1360	 * Check whether offset isn't beyond end of file now. Caller is
1361	 * supposed to hold locks serializing us with truncate / punch hole so
1362	 * this is a reliable test.
1363	 */
1364	pgoff = linear_page_index(vma, pmd_addr);
1365	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1366
1367	if (pgoff > max_pgoff)
1368		return VM_FAULT_SIGBUS;
1369
1370	/* If the PMD would extend beyond the file size */
1371	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
 
 
 
 
 
 
 
 
 
 
 
1372		goto fallback;
 
 
 
 
 
 
 
 
 
 
 
 
 
1373
1374	/*
1375	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1376	 * setting up a mapping, so really we're using iomap_begin() as a way
1377	 * to look up our filesystem block.
1378	 */
1379	pos = (loff_t)pgoff << PAGE_SHIFT;
1380	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
 
1381	if (error)
1382		goto fallback;
1383
1384	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1385		goto finish_iomap;
1386
1387	/*
1388	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1389	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1390	 * the tree, for instance), it will return -EEXIST and we just fall
1391	 * back to 4k entries.
1392	 */
1393	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1394	if (IS_ERR(entry))
1395		goto finish_iomap;
1396
1397	vmf.pgoff = pgoff;
1398	vmf.flags = flags;
1399	vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1400
1401	switch (iomap.type) {
1402	case IOMAP_MAPPED:
1403		result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1404				&iomap, pos, write, &entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405		break;
1406	case IOMAP_UNWRITTEN:
1407	case IOMAP_HOLE:
1408		if (WARN_ON_ONCE(write))
1409			goto unlock_entry;
1410		result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1411				&entry);
1412		break;
1413	default:
1414		WARN_ON_ONCE(1);
1415		break;
1416	}
1417
1418 unlock_entry:
1419	put_locked_mapping_entry(mapping, pgoff, entry);
1420 finish_iomap:
1421	if (ops->iomap_end) {
1422		int copied = PMD_SIZE;
1423
1424		if (result == VM_FAULT_FALLBACK)
1425			copied = 0;
1426		/*
1427		 * The fault is done by now and there's no way back (other
1428		 * thread may be already happily using PMD we have installed).
1429		 * Just ignore error from ->iomap_end since we cannot do much
1430		 * with it.
1431		 */
1432		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1433				&iomap);
1434	}
 
 
1435 fallback:
1436	if (result == VM_FAULT_FALLBACK) {
1437		split_huge_pmd(vma, pmd, address);
1438		count_vm_event(THP_FAULT_FALLBACK);
1439	}
 
 
1440	return result;
1441}
1442EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
 
 
 
 
 
1443#endif /* CONFIG_FS_DAX_PMD */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
  14#include <linux/genhd.h>
  15#include <linux/highmem.h>
  16#include <linux/memcontrol.h>
  17#include <linux/mm.h>
  18#include <linux/mutex.h>
  19#include <linux/pagevec.h>
 
  20#include <linux/sched.h>
  21#include <linux/sched/signal.h>
  22#include <linux/uio.h>
  23#include <linux/vmstat.h>
  24#include <linux/pfn_t.h>
  25#include <linux/sizes.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/iomap.h>
  28#include <asm/pgalloc.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/fs_dax.h>
  32
  33static inline unsigned int pe_order(enum page_entry_size pe_size)
  34{
  35	if (pe_size == PE_SIZE_PTE)
  36		return PAGE_SHIFT - PAGE_SHIFT;
  37	if (pe_size == PE_SIZE_PMD)
  38		return PMD_SHIFT - PAGE_SHIFT;
  39	if (pe_size == PE_SIZE_PUD)
  40		return PUD_SHIFT - PAGE_SHIFT;
  41	return ~0;
  42}
  43
  44/* We choose 4096 entries - same as per-zone page wait tables */
  45#define DAX_WAIT_TABLE_BITS 12
  46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  47
  48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  49#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
  50#define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
  51
  52/* The order of a PMD entry */
  53#define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  54
  55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  56
  57static int __init init_dax_wait_table(void)
  58{
  59	int i;
  60
  61	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  62		init_waitqueue_head(wait_table + i);
  63	return 0;
  64}
  65fs_initcall(init_dax_wait_table);
  66
  67/*
  68 * DAX pagecache entries use XArray value entries so they can't be mistaken
  69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  70 * and two more to tell us if the entry is a zero page or an empty entry that
  71 * is just used for locking.  In total four special bits.
  72 *
  73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  75 * block allocation.
  76 */
  77#define DAX_SHIFT	(4)
  78#define DAX_LOCKED	(1UL << 0)
  79#define DAX_PMD		(1UL << 1)
  80#define DAX_ZERO_PAGE	(1UL << 2)
  81#define DAX_EMPTY	(1UL << 3)
  82
  83static unsigned long dax_to_pfn(void *entry)
  84{
  85	return xa_to_value(entry) >> DAX_SHIFT;
  86}
  87
  88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  89{
  90	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  91}
  92
  93static bool dax_is_locked(void *entry)
  94{
  95	return xa_to_value(entry) & DAX_LOCKED;
 
 
 
 
  96}
  97
  98static unsigned int dax_entry_order(void *entry)
 
  99{
 100	if (xa_to_value(entry) & DAX_PMD)
 101		return PMD_ORDER;
 102	return 0;
 103}
 104
 105static unsigned long dax_is_pmd_entry(void *entry)
 106{
 107	return xa_to_value(entry) & DAX_PMD;
 108}
 109
 110static bool dax_is_pte_entry(void *entry)
 111{
 112	return !(xa_to_value(entry) & DAX_PMD);
 113}
 114
 115static int dax_is_zero_entry(void *entry)
 116{
 117	return xa_to_value(entry) & DAX_ZERO_PAGE;
 118}
 119
 120static int dax_is_empty_entry(void *entry)
 121{
 122	return xa_to_value(entry) & DAX_EMPTY;
 123}
 124
 125/*
 126 * true if the entry that was found is of a smaller order than the entry
 127 * we were looking for
 128 */
 129static bool dax_is_conflict(void *entry)
 130{
 131	return entry == XA_RETRY_ENTRY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134/*
 135 * DAX page cache entry locking
 136 */
 137struct exceptional_entry_key {
 138	struct xarray *xa;
 139	pgoff_t entry_start;
 140};
 141
 142struct wait_exceptional_entry_queue {
 143	wait_queue_entry_t wait;
 144	struct exceptional_entry_key key;
 145};
 146
 147/**
 148 * enum dax_wake_mode: waitqueue wakeup behaviour
 149 * @WAKE_ALL: wake all waiters in the waitqueue
 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
 151 */
 152enum dax_wake_mode {
 153	WAKE_ALL,
 154	WAKE_NEXT,
 155};
 156
 157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 158		void *entry, struct exceptional_entry_key *key)
 159{
 160	unsigned long hash;
 161	unsigned long index = xas->xa_index;
 162
 163	/*
 164	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 165	 * queue to the start of that PMD.  This ensures that all offsets in
 166	 * the range covered by the PMD map to the same bit lock.
 167	 */
 168	if (dax_is_pmd_entry(entry))
 169		index &= ~PG_PMD_COLOUR;
 170	key->xa = xas->xa;
 
 171	key->entry_start = index;
 172
 173	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 174	return wait_table + hash;
 175}
 176
 177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 178		unsigned int mode, int sync, void *keyp)
 179{
 180	struct exceptional_entry_key *key = keyp;
 181	struct wait_exceptional_entry_queue *ewait =
 182		container_of(wait, struct wait_exceptional_entry_queue, wait);
 183
 184	if (key->xa != ewait->key.xa ||
 185	    key->entry_start != ewait->key.entry_start)
 186		return 0;
 187	return autoremove_wake_function(wait, mode, sync, NULL);
 188}
 189
 190/*
 191 * @entry may no longer be the entry at the index in the mapping.
 192 * The important information it's conveying is whether the entry at
 193 * this index used to be a PMD entry.
 
 
 
 
 
 
 
 
 
 
 194 */
 195static void dax_wake_entry(struct xa_state *xas, void *entry,
 196			   enum dax_wake_mode mode)
 197{
 198	struct exceptional_entry_key key;
 199	wait_queue_head_t *wq;
 
 
 
 
 
 200
 201	wq = dax_entry_waitqueue(xas, entry, &key);
 
 
 
 
 
 
 
 202
 203	/*
 204	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 205	 * under the i_pages lock, ditto for entry handling in our callers.
 206	 * So at this point all tasks that could have seen our entry locked
 207	 * must be in the waitqueue and the following check will see them.
 208	 */
 209	if (waitqueue_active(wq))
 210		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
 211}
 212
 213/*
 214 * Look up entry in page cache, wait for it to become unlocked if it
 215 * is a DAX entry and return it.  The caller must subsequently call
 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 217 * if it did.  The entry returned may have a larger order than @order.
 218 * If @order is larger than the order of the entry found in i_pages, this
 219 * function returns a dax_is_conflict entry.
 220 *
 221 * Must be called with the i_pages lock held.
 222 */
 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 
 224{
 225	void *entry;
 226	struct wait_exceptional_entry_queue ewait;
 227	wait_queue_head_t *wq;
 228
 229	init_wait(&ewait.wait);
 230	ewait.wait.func = wake_exceptional_entry_func;
 231
 232	for (;;) {
 233		entry = xas_find_conflict(xas);
 234		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 235			return entry;
 236		if (dax_entry_order(entry) < order)
 237			return XA_RETRY_ENTRY;
 238		if (!dax_is_locked(entry))
 239			return entry;
 
 240
 241		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 242		prepare_to_wait_exclusive(wq, &ewait.wait,
 243					  TASK_UNINTERRUPTIBLE);
 244		xas_unlock_irq(xas);
 245		xas_reset(xas);
 246		schedule();
 247		finish_wait(wq, &ewait.wait);
 248		xas_lock_irq(xas);
 249	}
 250}
 251
 252/*
 253 * The only thing keeping the address space around is the i_pages lock
 254 * (it's cycled in clear_inode() after removing the entries from i_pages)
 255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 256 */
 257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 258{
 259	struct wait_exceptional_entry_queue ewait;
 260	wait_queue_head_t *wq;
 261
 262	init_wait(&ewait.wait);
 263	ewait.wait.func = wake_exceptional_entry_func;
 264
 265	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 266	/*
 267	 * Unlike get_unlocked_entry() there is no guarantee that this
 268	 * path ever successfully retrieves an unlocked entry before an
 269	 * inode dies. Perform a non-exclusive wait in case this path
 270	 * never successfully performs its own wake up.
 271	 */
 272	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 273	xas_unlock_irq(xas);
 274	schedule();
 275	finish_wait(wq, &ewait.wait);
 276}
 277
 278static void put_unlocked_entry(struct xa_state *xas, void *entry,
 279			       enum dax_wake_mode mode)
 280{
 281	if (entry && !dax_is_conflict(entry))
 282		dax_wake_entry(xas, entry, mode);
 283}
 284
 285/*
 286 * We used the xa_state to get the entry, but then we locked the entry and
 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 288 * before use.
 289 */
 290static void dax_unlock_entry(struct xa_state *xas, void *entry)
 291{
 292	void *old;
 293
 294	BUG_ON(dax_is_locked(entry));
 295	xas_reset(xas);
 296	xas_lock_irq(xas);
 297	old = xas_store(xas, entry);
 298	xas_unlock_irq(xas);
 299	BUG_ON(!dax_is_locked(old));
 300	dax_wake_entry(xas, entry, WAKE_NEXT);
 301}
 302
 303/*
 304 * Return: The entry stored at this location before it was locked.
 305 */
 306static void *dax_lock_entry(struct xa_state *xas, void *entry)
 307{
 308	unsigned long v = xa_to_value(entry);
 309	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 310}
 311
 312static unsigned long dax_entry_size(void *entry)
 313{
 314	if (dax_is_zero_entry(entry))
 315		return 0;
 316	else if (dax_is_empty_entry(entry))
 317		return 0;
 318	else if (dax_is_pmd_entry(entry))
 319		return PMD_SIZE;
 320	else
 321		return PAGE_SIZE;
 322}
 323
 324static unsigned long dax_end_pfn(void *entry)
 325{
 326	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 327}
 328
 329/*
 330 * Iterate through all mapped pfns represented by an entry, i.e. skip
 331 * 'empty' and 'zero' entries.
 332 */
 333#define for_each_mapped_pfn(entry, pfn) \
 334	for (pfn = dax_to_pfn(entry); \
 335			pfn < dax_end_pfn(entry); pfn++)
 336
 337/*
 338 * TODO: for reflink+dax we need a way to associate a single page with
 339 * multiple address_space instances at different linear_page_index()
 340 * offsets.
 341 */
 342static void dax_associate_entry(void *entry, struct address_space *mapping,
 343		struct vm_area_struct *vma, unsigned long address)
 344{
 345	unsigned long size = dax_entry_size(entry), pfn, index;
 346	int i = 0;
 347
 348	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 
 
 
 
 349		return;
 350
 351	index = linear_page_index(vma, address & ~(size - 1));
 352	for_each_mapped_pfn(entry, pfn) {
 353		struct page *page = pfn_to_page(pfn);
 354
 355		WARN_ON_ONCE(page->mapping);
 356		page->mapping = mapping;
 357		page->index = index + i++;
 358	}
 
 
 
 359}
 360
 361static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 362		bool trunc)
 363{
 364	unsigned long pfn;
 365
 366	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 367		return;
 368
 369	for_each_mapped_pfn(entry, pfn) {
 370		struct page *page = pfn_to_page(pfn);
 371
 372		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 373		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 374		page->mapping = NULL;
 375		page->index = 0;
 376	}
 377}
 378
 379static struct page *dax_busy_page(void *entry)
 380{
 381	unsigned long pfn;
 382
 383	for_each_mapped_pfn(entry, pfn) {
 384		struct page *page = pfn_to_page(pfn);
 385
 386		if (page_ref_count(page) > 1)
 387			return page;
 388	}
 389	return NULL;
 390}
 391
 392/*
 393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
 394 * @page: The page whose entry we want to lock
 395 *
 396 * Context: Process context.
 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 398 * not be locked.
 399 */
 400dax_entry_t dax_lock_page(struct page *page)
 
 401{
 402	XA_STATE(xas, NULL, 0);
 403	void *entry;
 404
 405	/* Ensure page->mapping isn't freed while we look at it */
 406	rcu_read_lock();
 407	for (;;) {
 408		struct address_space *mapping = READ_ONCE(page->mapping);
 409
 410		entry = NULL;
 411		if (!mapping || !dax_mapping(mapping))
 412			break;
 413
 414		/*
 415		 * In the device-dax case there's no need to lock, a
 416		 * struct dev_pagemap pin is sufficient to keep the
 417		 * inode alive, and we assume we have dev_pagemap pin
 418		 * otherwise we would not have a valid pfn_to_page()
 419		 * translation.
 420		 */
 421		entry = (void *)~0UL;
 422		if (S_ISCHR(mapping->host->i_mode))
 423			break;
 424
 425		xas.xa = &mapping->i_pages;
 426		xas_lock_irq(&xas);
 427		if (mapping != page->mapping) {
 428			xas_unlock_irq(&xas);
 429			continue;
 430		}
 431		xas_set(&xas, page->index);
 432		entry = xas_load(&xas);
 433		if (dax_is_locked(entry)) {
 434			rcu_read_unlock();
 435			wait_entry_unlocked(&xas, entry);
 436			rcu_read_lock();
 437			continue;
 438		}
 439		dax_lock_entry(&xas, entry);
 440		xas_unlock_irq(&xas);
 441		break;
 442	}
 443	rcu_read_unlock();
 444	return (dax_entry_t)entry;
 445}
 446
 447void dax_unlock_page(struct page *page, dax_entry_t cookie)
 448{
 449	struct address_space *mapping = page->mapping;
 450	XA_STATE(xas, &mapping->i_pages, page->index);
 451
 452	if (S_ISCHR(mapping->host->i_mode))
 453		return;
 454
 455	dax_unlock_entry(&xas, (void *)cookie);
 
 456}
 457
 458/*
 459 * Find page cache entry at given index. If it is a DAX entry, return it
 460 * with the entry locked. If the page cache doesn't contain an entry at
 461 * that index, add a locked empty entry.
 
 462 *
 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 464 * either return that locked entry or will return VM_FAULT_FALLBACK.
 465 * This will happen if there are any PTE entries within the PMD range
 466 * that we are requesting.
 467 *
 468 * We always favor PTE entries over PMD entries. There isn't a flow where we
 469 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 470 * insertion will fail if it finds any PTE entries already in the tree, and a
 471 * PTE insertion will cause an existing PMD entry to be unmapped and
 472 * downgraded to PTE entries.  This happens for both PMD zero pages as
 473 * well as PMD empty entries.
 474 *
 475 * The exception to this downgrade path is for PMD entries that have
 476 * real storage backing them.  We will leave these real PMD entries in
 477 * the tree, and PTE writes will simply dirty the entire PMD entry.
 478 *
 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 480 * persistent memory the benefit is doubtful. We can add that later if we can
 481 * show it helps.
 482 *
 483 * On error, this function does not return an ERR_PTR.  Instead it returns
 484 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 485 * overlap with xarray value entries.
 486 */
 487static void *grab_mapping_entry(struct xa_state *xas,
 488		struct address_space *mapping, unsigned int order)
 489{
 490	unsigned long index = xas->xa_index;
 491	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
 492	void *entry;
 493
 494retry:
 495	pmd_downgrade = false;
 496	xas_lock_irq(xas);
 497	entry = get_unlocked_entry(xas, order);
 498
 499	if (entry) {
 500		if (dax_is_conflict(entry))
 501			goto fallback;
 502		if (!xa_is_value(entry)) {
 503			xas_set_err(xas, -EIO);
 504			goto out_unlock;
 505		}
 506
 507		if (order == 0) {
 508			if (dax_is_pmd_entry(entry) &&
 
 
 509			    (dax_is_zero_entry(entry) ||
 510			     dax_is_empty_entry(entry))) {
 511				pmd_downgrade = true;
 512			}
 513		}
 514	}
 515
 516	if (pmd_downgrade) {
 517		/*
 518		 * Make sure 'entry' remains valid while we drop
 519		 * the i_pages lock.
 520		 */
 521		dax_lock_entry(xas, entry);
 
 
 
 
 
 522
 
 523		/*
 524		 * Besides huge zero pages the only other thing that gets
 525		 * downgraded are empty entries which don't need to be
 526		 * unmapped.
 527		 */
 528		if (dax_is_zero_entry(entry)) {
 529			xas_unlock_irq(xas);
 530			unmap_mapping_pages(mapping,
 531					xas->xa_index & ~PG_PMD_COLOUR,
 532					PG_PMD_NR, false);
 533			xas_reset(xas);
 534			xas_lock_irq(xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535		}
 536
 537		dax_disassociate_entry(entry, mapping, false);
 538		xas_store(xas, NULL);	/* undo the PMD join */
 539		dax_wake_entry(xas, entry, WAKE_ALL);
 540		mapping->nrpages -= PG_PMD_NR;
 541		entry = NULL;
 542		xas_set(xas, index);
 543	}
 544
 545	if (entry) {
 546		dax_lock_entry(xas, entry);
 547	} else {
 548		unsigned long flags = DAX_EMPTY;
 549
 550		if (order > 0)
 551			flags |= DAX_PMD;
 552		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 553		dax_lock_entry(xas, entry);
 554		if (xas_error(xas))
 555			goto out_unlock;
 556		mapping->nrpages += 1UL << order;
 557	}
 558
 559out_unlock:
 560	xas_unlock_irq(xas);
 561	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 562		goto retry;
 563	if (xas->xa_node == XA_ERROR(-ENOMEM))
 564		return xa_mk_internal(VM_FAULT_OOM);
 565	if (xas_error(xas))
 566		return xa_mk_internal(VM_FAULT_SIGBUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567	return entry;
 568fallback:
 569	xas_unlock_irq(xas);
 570	return xa_mk_internal(VM_FAULT_FALLBACK);
 571}
 572
 573/**
 574 * dax_layout_busy_page_range - find first pinned page in @mapping
 575 * @mapping: address space to scan for a page with ref count > 1
 576 * @start: Starting offset. Page containing 'start' is included.
 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 578 *       pages from 'start' till the end of file are included.
 579 *
 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 581 * 'onlined' to the page allocator so they are considered idle when
 582 * page->count == 1. A filesystem uses this interface to determine if
 583 * any page in the mapping is busy, i.e. for DMA, or other
 584 * get_user_pages() usages.
 585 *
 586 * It is expected that the filesystem is holding locks to block the
 587 * establishment of new mappings in this address_space. I.e. it expects
 588 * to be able to run unmap_mapping_range() and subsequently not race
 589 * mapping_mapped() becoming true.
 590 */
 591struct page *dax_layout_busy_page_range(struct address_space *mapping,
 592					loff_t start, loff_t end)
 593{
 594	void *entry;
 595	unsigned int scanned = 0;
 596	struct page *page = NULL;
 597	pgoff_t start_idx = start >> PAGE_SHIFT;
 598	pgoff_t end_idx;
 599	XA_STATE(xas, &mapping->i_pages, start_idx);
 600
 601	/*
 602	 * In the 'limited' case get_user_pages() for dax is disabled.
 603	 */
 604	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 605		return NULL;
 606
 607	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 608		return NULL;
 609
 610	/* If end == LLONG_MAX, all pages from start to till end of file */
 611	if (end == LLONG_MAX)
 612		end_idx = ULONG_MAX;
 613	else
 614		end_idx = end >> PAGE_SHIFT;
 615	/*
 616	 * If we race get_user_pages_fast() here either we'll see the
 617	 * elevated page count in the iteration and wait, or
 618	 * get_user_pages_fast() will see that the page it took a reference
 619	 * against is no longer mapped in the page tables and bail to the
 620	 * get_user_pages() slow path.  The slow path is protected by
 621	 * pte_lock() and pmd_lock(). New references are not taken without
 622	 * holding those locks, and unmap_mapping_pages() will not zero the
 623	 * pte or pmd without holding the respective lock, so we are
 624	 * guaranteed to either see new references or prevent new
 625	 * references from being established.
 626	 */
 627	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
 628
 629	xas_lock_irq(&xas);
 630	xas_for_each(&xas, entry, end_idx) {
 631		if (WARN_ON_ONCE(!xa_is_value(entry)))
 632			continue;
 633		if (unlikely(dax_is_locked(entry)))
 634			entry = get_unlocked_entry(&xas, 0);
 635		if (entry)
 636			page = dax_busy_page(entry);
 637		put_unlocked_entry(&xas, entry, WAKE_NEXT);
 638		if (page)
 639			break;
 640		if (++scanned % XA_CHECK_SCHED)
 641			continue;
 642
 643		xas_pause(&xas);
 644		xas_unlock_irq(&xas);
 645		cond_resched();
 646		xas_lock_irq(&xas);
 647	}
 648	xas_unlock_irq(&xas);
 649	return page;
 650}
 651EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
 652
 653struct page *dax_layout_busy_page(struct address_space *mapping)
 654{
 655	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
 656}
 657EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 658
 659static int __dax_invalidate_entry(struct address_space *mapping,
 660					  pgoff_t index, bool trunc)
 661{
 662	XA_STATE(xas, &mapping->i_pages, index);
 663	int ret = 0;
 664	void *entry;
 
 665
 666	xas_lock_irq(&xas);
 667	entry = get_unlocked_entry(&xas, 0);
 668	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 669		goto out;
 670	if (!trunc &&
 671	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 672	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 673		goto out;
 674	dax_disassociate_entry(entry, mapping, trunc);
 675	xas_store(&xas, NULL);
 676	mapping->nrpages -= 1UL << dax_entry_order(entry);
 677	ret = 1;
 678out:
 679	put_unlocked_entry(&xas, entry, WAKE_ALL);
 680	xas_unlock_irq(&xas);
 681	return ret;
 682}
 683
 684/*
 685 * Delete DAX entry at @index from @mapping.  Wait for it
 686 * to be unlocked before deleting it.
 687 */
 688int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 689{
 690	int ret = __dax_invalidate_entry(mapping, index, true);
 691
 692	/*
 693	 * This gets called from truncate / punch_hole path. As such, the caller
 694	 * must hold locks protecting against concurrent modifications of the
 695	 * page cache (usually fs-private i_mmap_sem for writing). Since the
 696	 * caller has seen a DAX entry for this index, we better find it
 697	 * at that index as well...
 698	 */
 699	WARN_ON_ONCE(!ret);
 700	return ret;
 701}
 702
 703/*
 704 * Invalidate DAX entry if it is clean.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705 */
 706int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 707				      pgoff_t index)
 708{
 709	return __dax_invalidate_entry(mapping, index, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710}
 711
 712static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
 713			     sector_t sector, struct page *to, unsigned long vaddr)
 714{
 715	void *vto, *kaddr;
 716	pgoff_t pgoff;
 717	long rc;
 718	int id;
 719
 720	rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
 721	if (rc)
 722		return rc;
 723
 724	id = dax_read_lock();
 725	rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
 726	if (rc < 0) {
 727		dax_read_unlock(id);
 728		return rc;
 729	}
 730	vto = kmap_atomic(to);
 731	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 732	kunmap_atomic(vto);
 733	dax_read_unlock(id);
 734	return 0;
 735}
 736
 737/*
 738 * By this point grab_mapping_entry() has ensured that we have a locked entry
 739 * of the appropriate size so we don't have to worry about downgrading PMDs to
 740 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 741 * already in the tree, we will skip the insertion and just dirty the PMD as
 742 * appropriate.
 743 */
 744static void *dax_insert_entry(struct xa_state *xas,
 745		struct address_space *mapping, struct vm_fault *vmf,
 746		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 747{
 748	void *new_entry = dax_make_entry(pfn, flags);
 
 
 
 
 
 749
 750	if (dirty)
 751		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 752
 753	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 754		unsigned long index = xas->xa_index;
 755		/* we are replacing a zero page with block mapping */
 756		if (dax_is_pmd_entry(entry))
 757			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 758					PG_PMD_NR, false);
 759		else /* pte entry */
 760			unmap_mapping_pages(mapping, index, 1, false);
 761	}
 762
 763	xas_reset(xas);
 764	xas_lock_irq(xas);
 765	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 766		void *old;
 767
 768		dax_disassociate_entry(entry, mapping, false);
 769		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770		/*
 771		 * Only swap our new entry into the page cache if the current
 772		 * entry is a zero page or an empty entry.  If a normal PTE or
 773		 * PMD entry is already in the cache, we leave it alone.  This
 774		 * means that if we are trying to insert a PTE and the
 775		 * existing entry is a PMD, we will just leave the PMD in the
 776		 * tree and dirty it if necessary.
 777		 */
 778		old = dax_lock_entry(xas, new_entry);
 779		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 780					DAX_LOCKED));
 781		entry = new_entry;
 782	} else {
 783		xas_load(xas);	/* Walk the xa_state */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	if (dirty)
 787		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 788
 789	xas_unlock_irq(xas);
 790	return entry;
 791}
 792
 793static inline
 794unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 795{
 796	unsigned long address;
 797
 798	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 799	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 800	return address;
 801}
 802
 803/* Walk all mappings of a given index of a file and writeprotect them */
 804static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 805		unsigned long pfn)
 806{
 807	struct vm_area_struct *vma;
 808	pte_t pte, *ptep = NULL;
 809	pmd_t *pmdp = NULL;
 810	spinlock_t *ptl;
 
 811
 812	i_mmap_lock_read(mapping);
 813	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 814		struct mmu_notifier_range range;
 815		unsigned long address;
 816
 817		cond_resched();
 818
 819		if (!(vma->vm_flags & VM_SHARED))
 820			continue;
 821
 822		address = pgoff_address(index, vma);
 823
 824		/*
 825		 * follow_invalidate_pte() will use the range to call
 826		 * mmu_notifier_invalidate_range_start() on our behalf before
 827		 * taking any lock.
 828		 */
 829		if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
 830					  &pmdp, &ptl))
 831			continue;
 832
 833		/*
 834		 * No need to call mmu_notifier_invalidate_range() as we are
 835		 * downgrading page table protection not changing it to point
 836		 * to a new page.
 837		 *
 838		 * See Documentation/vm/mmu_notifier.rst
 839		 */
 840		if (pmdp) {
 841#ifdef CONFIG_FS_DAX_PMD
 842			pmd_t pmd;
 843
 844			if (pfn != pmd_pfn(*pmdp))
 845				goto unlock_pmd;
 846			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 847				goto unlock_pmd;
 848
 849			flush_cache_page(vma, address, pfn);
 850			pmd = pmdp_invalidate(vma, address, pmdp);
 851			pmd = pmd_wrprotect(pmd);
 852			pmd = pmd_mkclean(pmd);
 853			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 
 854unlock_pmd:
 
 855#endif
 856			spin_unlock(ptl);
 857		} else {
 858			if (pfn != pte_pfn(*ptep))
 859				goto unlock_pte;
 860			if (!pte_dirty(*ptep) && !pte_write(*ptep))
 861				goto unlock_pte;
 862
 863			flush_cache_page(vma, address, pfn);
 864			pte = ptep_clear_flush(vma, address, ptep);
 865			pte = pte_wrprotect(pte);
 866			pte = pte_mkclean(pte);
 867			set_pte_at(vma->vm_mm, address, ptep, pte);
 
 868unlock_pte:
 869			pte_unmap_unlock(ptep, ptl);
 870		}
 871
 872		mmu_notifier_invalidate_range_end(&range);
 
 873	}
 874	i_mmap_unlock_read(mapping);
 875}
 876
 877static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 878		struct address_space *mapping, void *entry)
 879{
 880	unsigned long pfn, index, count;
 881	long ret = 0;
 
 
 882
 883	/*
 884	 * A page got tagged dirty in DAX mapping? Something is seriously
 885	 * wrong.
 886	 */
 887	if (WARN_ON(!xa_is_value(entry)))
 888		return -EIO;
 889
 890	if (unlikely(dax_is_locked(entry))) {
 891		void *old_entry = entry;
 892
 893		entry = get_unlocked_entry(xas, 0);
 894
 895		/* Entry got punched out / reallocated? */
 896		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 897			goto put_unlocked;
 898		/*
 899		 * Entry got reallocated elsewhere? No need to writeback.
 900		 * We have to compare pfns as we must not bail out due to
 901		 * difference in lockbit or entry type.
 902		 */
 903		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 904			goto put_unlocked;
 905		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 906					dax_is_zero_entry(entry))) {
 907			ret = -EIO;
 908			goto put_unlocked;
 909		}
 910
 911		/* Another fsync thread may have already done this entry */
 912		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 913			goto put_unlocked;
 914	}
 915
 
 
 
 916	/* Lock the entry to serialize with page faults */
 917	dax_lock_entry(xas, entry);
 918
 919	/*
 920	 * We can clear the tag now but we have to be careful so that concurrent
 921	 * dax_writeback_one() calls for the same index cannot finish before we
 922	 * actually flush the caches. This is achieved as the calls will look
 923	 * at the entry only under the i_pages lock and once they do that
 924	 * they will see the entry locked and wait for it to unlock.
 925	 */
 926	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 927	xas_unlock_irq(xas);
 928
 929	/*
 930	 * If dax_writeback_mapping_range() was given a wbc->range_start
 931	 * in the middle of a PMD, the 'index' we use needs to be
 932	 * aligned to the start of the PMD.
 933	 * This allows us to flush for PMD_SIZE and not have to worry about
 934	 * partial PMD writebacks.
 935	 */
 936	pfn = dax_to_pfn(entry);
 937	count = 1UL << dax_entry_order(entry);
 938	index = xas->xa_index & ~(count - 1);
 939
 940	dax_entry_mkclean(mapping, index, pfn);
 941	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942	/*
 943	 * After we have flushed the cache, we can clear the dirty tag. There
 944	 * cannot be new dirty data in the pfn after the flush has completed as
 945	 * the pfn mappings are writeprotected and fault waits for mapping
 946	 * entry lock.
 947	 */
 948	xas_reset(xas);
 949	xas_lock_irq(xas);
 950	xas_store(xas, entry);
 951	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 952	dax_wake_entry(xas, entry, WAKE_NEXT);
 953
 954	trace_dax_writeback_one(mapping->host, index, count);
 955	return ret;
 956
 957 put_unlocked:
 958	put_unlocked_entry(xas, entry, WAKE_NEXT);
 
 959	return ret;
 960}
 961
 962/*
 963 * Flush the mapping to the persistent domain within the byte range of [start,
 964 * end]. This is required by data integrity operations to ensure file data is
 965 * on persistent storage prior to completion of the operation.
 966 */
 967int dax_writeback_mapping_range(struct address_space *mapping,
 968		struct dax_device *dax_dev, struct writeback_control *wbc)
 969{
 970	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 971	struct inode *inode = mapping->host;
 972	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 973	void *entry;
 974	int ret = 0;
 975	unsigned int scanned = 0;
 
 976
 977	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 978		return -EIO;
 979
 980	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
 981		return 0;
 982
 983	trace_dax_writeback_range(inode, xas.xa_index, end_index);
 
 
 
 984
 985	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 
 
 
 
 986
 987	xas_lock_irq(&xas);
 988	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 989		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 990		if (ret < 0) {
 991			mapping_set_error(mapping, ret);
 992			break;
 
 
 
 
 
 
 
 
 
 
 
 993		}
 994		if (++scanned % XA_CHECK_SCHED)
 995			continue;
 996
 997		xas_pause(&xas);
 998		xas_unlock_irq(&xas);
 999		cond_resched();
1000		xas_lock_irq(&xas);
1001	}
1002	xas_unlock_irq(&xas);
1003	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1004	return ret;
1005}
1006EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1007
1008static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 
 
1009{
1010	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1014			 pfn_t *pfnp)
 
 
 
 
1015{
1016	const sector_t sector = dax_iomap_sector(iomap, pos);
1017	pgoff_t pgoff;
1018	int id, rc;
1019	long length;
1020
1021	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1022	if (rc)
1023		return rc;
1024	id = dax_read_lock();
1025	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1026				   NULL, pfnp);
1027	if (length < 0) {
1028		rc = length;
1029		goto out;
1030	}
1031	rc = -EINVAL;
1032	if (PFN_PHYS(length) < size)
1033		goto out;
1034	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1035		goto out;
1036	/* For larger pages we need devmap */
1037	if (length > 1 && !pfn_t_devmap(*pfnp))
1038		goto out;
1039	rc = 0;
1040out:
1041	dax_read_unlock(id);
1042	return rc;
1043}
 
1044
1045/*
1046 * The user has performed a load from a hole in the file.  Allocating a new
1047 * page in the file would cause excessive storage usage for workloads with
1048 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1049 * If this page is ever written to we will re-fault and change the mapping to
1050 * point to real DAX storage instead.
1051 */
1052static vm_fault_t dax_load_hole(struct xa_state *xas,
1053		struct address_space *mapping, void **entry,
1054		struct vm_fault *vmf)
1055{
1056	struct inode *inode = mapping->host;
1057	unsigned long vaddr = vmf->address;
1058	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1059	vm_fault_t ret;
1060
1061	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1062			DAX_ZERO_PAGE, false);
 
 
1063
1064	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1065	trace_dax_load_hole(inode, vmf, ret);
1066	return ret;
1067}
1068
1069s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
 
1070{
1071	sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1072	pgoff_t pgoff;
1073	long rc, id;
1074	void *kaddr;
1075	bool page_aligned = false;
1076	unsigned offset = offset_in_page(pos);
1077	unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1078
1079	if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1080	    (size == PAGE_SIZE))
1081		page_aligned = true;
1082
1083	rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1084	if (rc)
1085		return rc;
1086
1087	id = dax_read_lock();
 
1088
1089	if (page_aligned)
1090		rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1091	else
1092		rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1093	if (rc < 0) {
1094		dax_read_unlock(id);
1095		return rc;
1096	}
 
 
 
1097
1098	if (!page_aligned) {
1099		memset(kaddr + offset, 0, size);
1100		dax_flush(iomap->dax_dev, kaddr + offset, size);
1101	}
1102	dax_read_unlock(id);
1103	return size;
1104}
1105
1106static loff_t
1107dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1108		struct iomap *iomap, struct iomap *srcmap)
1109{
1110	struct block_device *bdev = iomap->bdev;
1111	struct dax_device *dax_dev = iomap->dax_dev;
1112	struct iov_iter *iter = data;
1113	loff_t end = pos + length, done = 0;
1114	ssize_t ret = 0;
1115	size_t xfer;
1116	int id;
1117
1118	if (iov_iter_rw(iter) == READ) {
1119		end = min(end, i_size_read(inode));
1120		if (pos >= end)
1121			return 0;
1122
1123		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1124			return iov_iter_zero(min(length, end - pos), iter);
1125	}
1126
1127	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1128		return -EIO;
1129
1130	/*
1131	 * Write can allocate block for an area which has a hole page mapped
1132	 * into page tables. We have to tear down these mappings so that data
1133	 * written by write(2) is visible in mmap.
1134	 */
1135	if (iomap->flags & IOMAP_F_NEW) {
1136		invalidate_inode_pages2_range(inode->i_mapping,
1137					      pos >> PAGE_SHIFT,
1138					      (end - 1) >> PAGE_SHIFT);
1139	}
1140
1141	id = dax_read_lock();
1142	while (pos < end) {
1143		unsigned offset = pos & (PAGE_SIZE - 1);
1144		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1145		const sector_t sector = dax_iomap_sector(iomap, pos);
1146		ssize_t map_len;
1147		pgoff_t pgoff;
1148		void *kaddr;
1149
1150		if (fatal_signal_pending(current)) {
1151			ret = -EINTR;
1152			break;
1153		}
1154
1155		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1156		if (ret)
1157			break;
1158
1159		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1160				&kaddr, NULL);
1161		if (map_len < 0) {
1162			ret = map_len;
1163			break;
1164		}
1165
1166		map_len = PFN_PHYS(map_len);
1167		kaddr += offset;
1168		map_len -= offset;
1169		if (map_len > end - pos)
1170			map_len = end - pos;
1171
1172		/*
1173		 * The userspace address for the memory copy has already been
1174		 * validated via access_ok() in either vfs_read() or
1175		 * vfs_write(), depending on which operation we are doing.
1176		 */
1177		if (iov_iter_rw(iter) == WRITE)
1178			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1179					map_len, iter);
1180		else
1181			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1182					map_len, iter);
 
 
 
 
1183
1184		pos += xfer;
1185		length -= xfer;
1186		done += xfer;
1187
1188		if (xfer == 0)
1189			ret = -EFAULT;
1190		if (xfer < map_len)
1191			break;
1192	}
1193	dax_read_unlock(id);
1194
1195	return done ? done : ret;
1196}
1197
1198/**
1199 * dax_iomap_rw - Perform I/O to a DAX file
1200 * @iocb:	The control block for this I/O
1201 * @iter:	The addresses to do I/O from or to
1202 * @ops:	iomap ops passed from the file system
1203 *
1204 * This function performs read and write operations to directly mapped
1205 * persistent memory.  The callers needs to take care of read/write exclusion
1206 * and evicting any page cache pages in the region under I/O.
1207 */
1208ssize_t
1209dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1210		const struct iomap_ops *ops)
1211{
1212	struct address_space *mapping = iocb->ki_filp->f_mapping;
1213	struct inode *inode = mapping->host;
1214	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1215	unsigned flags = 0;
1216
1217	if (iov_iter_rw(iter) == WRITE) {
1218		lockdep_assert_held_write(&inode->i_rwsem);
1219		flags |= IOMAP_WRITE;
1220	} else {
1221		lockdep_assert_held(&inode->i_rwsem);
1222	}
1223
1224	if (iocb->ki_flags & IOCB_NOWAIT)
1225		flags |= IOMAP_NOWAIT;
1226
1227	while (iov_iter_count(iter)) {
1228		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1229				iter, dax_iomap_actor);
1230		if (ret <= 0)
1231			break;
1232		pos += ret;
1233		done += ret;
1234	}
1235
1236	iocb->ki_pos += done;
1237	return done ? done : ret;
1238}
1239EXPORT_SYMBOL_GPL(dax_iomap_rw);
1240
1241static vm_fault_t dax_fault_return(int error)
1242{
1243	if (error == 0)
1244		return VM_FAULT_NOPAGE;
1245	return vmf_error(error);
 
 
1246}
1247
1248/*
1249 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1250 * flushed on write-faults (non-cow), but not read-faults.
 
 
 
 
 
 
1251 */
1252static bool dax_fault_is_synchronous(unsigned long flags,
1253		struct vm_area_struct *vma, struct iomap *iomap)
1254{
1255	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1256		&& (iomap->flags & IOMAP_F_DIRTY);
1257}
1258
1259static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1260			       int *iomap_errp, const struct iomap_ops *ops)
1261{
1262	struct vm_area_struct *vma = vmf->vma;
1263	struct address_space *mapping = vma->vm_file->f_mapping;
1264	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1265	struct inode *inode = mapping->host;
1266	unsigned long vaddr = vmf->address;
1267	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1268	struct iomap iomap = { .type = IOMAP_HOLE };
1269	struct iomap srcmap = { .type = IOMAP_HOLE };
1270	unsigned flags = IOMAP_FAULT;
1271	int error, major = 0;
1272	bool write = vmf->flags & FAULT_FLAG_WRITE;
1273	bool sync;
1274	vm_fault_t ret = 0;
1275	void *entry;
1276	pfn_t pfn;
1277
1278	trace_dax_pte_fault(inode, vmf, ret);
1279	/*
1280	 * Check whether offset isn't beyond end of file now. Caller is supposed
1281	 * to hold locks serializing us with truncate / punch hole so this is
1282	 * a reliable test.
1283	 */
1284	if (pos >= i_size_read(inode)) {
1285		ret = VM_FAULT_SIGBUS;
1286		goto out;
1287	}
1288
1289	if (write && !vmf->cow_page)
1290		flags |= IOMAP_WRITE;
1291
1292	entry = grab_mapping_entry(&xas, mapping, 0);
1293	if (xa_is_internal(entry)) {
1294		ret = xa_to_internal(entry);
1295		goto out;
1296	}
1297
1298	/*
1299	 * It is possible, particularly with mixed reads & writes to private
1300	 * mappings, that we have raced with a PMD fault that overlaps with
1301	 * the PTE we need to set up.  If so just return and the fault will be
1302	 * retried.
1303	 */
1304	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1305		ret = VM_FAULT_NOPAGE;
1306		goto unlock_entry;
1307	}
1308
1309	/*
1310	 * Note that we don't bother to use iomap_apply here: DAX required
1311	 * the file system block size to be equal the page size, which means
1312	 * that we never have to deal with more than a single extent here.
1313	 */
1314	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1315	if (iomap_errp)
1316		*iomap_errp = error;
1317	if (error) {
1318		ret = dax_fault_return(error);
1319		goto unlock_entry;
1320	}
1321	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1322		error = -EIO;	/* fs corruption? */
1323		goto error_finish_iomap;
 
 
1324	}
1325
 
 
1326	if (vmf->cow_page) {
1327		sector_t sector = dax_iomap_sector(&iomap, pos);
1328
1329		switch (iomap.type) {
1330		case IOMAP_HOLE:
1331		case IOMAP_UNWRITTEN:
1332			clear_user_highpage(vmf->cow_page, vaddr);
1333			break;
1334		case IOMAP_MAPPED:
1335			error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1336						  sector, vmf->cow_page, vaddr);
1337			break;
1338		default:
1339			WARN_ON_ONCE(1);
1340			error = -EIO;
1341			break;
1342		}
1343
1344		if (error)
1345			goto error_finish_iomap;
1346
1347		__SetPageUptodate(vmf->cow_page);
1348		ret = finish_fault(vmf);
1349		if (!ret)
1350			ret = VM_FAULT_DONE_COW;
1351		goto finish_iomap;
1352	}
1353
1354	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1355
1356	switch (iomap.type) {
1357	case IOMAP_MAPPED:
1358		if (iomap.flags & IOMAP_F_NEW) {
1359			count_vm_event(PGMAJFAULT);
1360			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1361			major = VM_FAULT_MAJOR;
1362		}
1363		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1364		if (error < 0)
1365			goto error_finish_iomap;
1366
1367		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1368						 0, write && !sync);
1369
1370		/*
1371		 * If we are doing synchronous page fault and inode needs fsync,
1372		 * we can insert PTE into page tables only after that happens.
1373		 * Skip insertion for now and return the pfn so that caller can
1374		 * insert it after fsync is done.
1375		 */
1376		if (sync) {
1377			if (WARN_ON_ONCE(!pfnp)) {
1378				error = -EIO;
1379				goto error_finish_iomap;
1380			}
1381			*pfnp = pfn;
1382			ret = VM_FAULT_NEEDDSYNC | major;
1383			goto finish_iomap;
1384		}
1385		trace_dax_insert_mapping(inode, vmf, entry);
1386		if (write)
1387			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1388		else
1389			ret = vmf_insert_mixed(vma, vaddr, pfn);
1390
1391		goto finish_iomap;
1392	case IOMAP_UNWRITTEN:
1393	case IOMAP_HOLE:
1394		if (!write) {
1395			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1396			goto finish_iomap;
1397		}
1398		fallthrough;
1399	default:
1400		WARN_ON_ONCE(1);
1401		error = -EIO;
1402		break;
1403	}
1404
1405 error_finish_iomap:
1406	ret = dax_fault_return(error);
 
 
1407 finish_iomap:
1408	if (ops->iomap_end) {
1409		int copied = PAGE_SIZE;
1410
1411		if (ret & VM_FAULT_ERROR)
1412			copied = 0;
1413		/*
1414		 * The fault is done by now and there's no way back (other
1415		 * thread may be already happily using PTE we have installed).
1416		 * Just ignore error from ->iomap_end since we cannot do much
1417		 * with it.
1418		 */
1419		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1420	}
1421 unlock_entry:
1422	dax_unlock_entry(&xas, entry);
1423 out:
1424	trace_dax_pte_fault_done(inode, vmf, ret);
1425	return ret | major;
1426}
 
1427
1428#ifdef CONFIG_FS_DAX_PMD
1429static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1430		struct iomap *iomap, void **entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431{
1432	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1433	unsigned long pmd_addr = vmf->address & PMD_MASK;
1434	struct vm_area_struct *vma = vmf->vma;
1435	struct inode *inode = mapping->host;
1436	pgtable_t pgtable = NULL;
1437	struct page *zero_page;
1438	spinlock_t *ptl;
1439	pmd_t pmd_entry;
1440	pfn_t pfn;
1441
1442	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1443
1444	if (unlikely(!zero_page))
1445		goto fallback;
1446
1447	pfn = page_to_pfn_t(zero_page);
1448	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1449			DAX_PMD | DAX_ZERO_PAGE, false);
1450
1451	if (arch_needs_pgtable_deposit()) {
1452		pgtable = pte_alloc_one(vma->vm_mm);
1453		if (!pgtable)
1454			return VM_FAULT_OOM;
1455	}
1456
1457	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1458	if (!pmd_none(*(vmf->pmd))) {
1459		spin_unlock(ptl);
1460		goto fallback;
1461	}
1462
1463	if (pgtable) {
1464		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1465		mm_inc_nr_ptes(vma->vm_mm);
1466	}
1467	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1468	pmd_entry = pmd_mkhuge(pmd_entry);
1469	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1470	spin_unlock(ptl);
1471	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1472	return VM_FAULT_NOPAGE;
1473
1474fallback:
1475	if (pgtable)
1476		pte_free(vma->vm_mm, pgtable);
1477	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1478	return VM_FAULT_FALLBACK;
1479}
1480
1481static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1482			       const struct iomap_ops *ops)
1483{
1484	struct vm_area_struct *vma = vmf->vma;
1485	struct address_space *mapping = vma->vm_file->f_mapping;
1486	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1487	unsigned long pmd_addr = vmf->address & PMD_MASK;
1488	bool write = vmf->flags & FAULT_FLAG_WRITE;
1489	bool sync;
1490	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1491	struct inode *inode = mapping->host;
1492	vm_fault_t result = VM_FAULT_FALLBACK;
1493	struct iomap iomap = { .type = IOMAP_HOLE };
1494	struct iomap srcmap = { .type = IOMAP_HOLE };
1495	pgoff_t max_pgoff;
1496	void *entry;
1497	loff_t pos;
1498	int error;
1499	pfn_t pfn;
1500
1501	/*
1502	 * Check whether offset isn't beyond end of file now. Caller is
1503	 * supposed to hold locks serializing us with truncate / punch hole so
1504	 * this is a reliable test.
1505	 */
1506	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1507
1508	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1509
1510	/*
1511	 * Make sure that the faulting address's PMD offset (color) matches
1512	 * the PMD offset from the start of the file.  This is necessary so
1513	 * that a PMD range in the page table overlaps exactly with a PMD
1514	 * range in the page cache.
1515	 */
1516	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1517	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1518		goto fallback;
1519
1520	/* Fall back to PTEs if we're going to COW */
1521	if (write && !(vma->vm_flags & VM_SHARED))
1522		goto fallback;
1523
1524	/* If the PMD would extend outside the VMA */
1525	if (pmd_addr < vma->vm_start)
1526		goto fallback;
1527	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1528		goto fallback;
1529
1530	if (xas.xa_index >= max_pgoff) {
1531		result = VM_FAULT_SIGBUS;
1532		goto out;
1533	}
 
 
 
 
 
 
1534
1535	/* If the PMD would extend beyond the file size */
1536	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1537		goto fallback;
1538
1539	/*
1540	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1541	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1542	 * entry is already in the array, for instance), it will return
1543	 * VM_FAULT_FALLBACK.
1544	 */
1545	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1546	if (xa_is_internal(entry)) {
1547		result = xa_to_internal(entry);
1548		goto fallback;
1549	}
1550
1551	/*
1552	 * It is possible, particularly with mixed reads & writes to private
1553	 * mappings, that we have raced with a PTE fault that overlaps with
1554	 * the PMD we need to set up.  If so just return and the fault will be
1555	 * retried.
1556	 */
1557	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1558			!pmd_devmap(*vmf->pmd)) {
1559		result = 0;
1560		goto unlock_entry;
1561	}
1562
1563	/*
1564	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1565	 * setting up a mapping, so really we're using iomap_begin() as a way
1566	 * to look up our filesystem block.
1567	 */
1568	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1569	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1570			&srcmap);
1571	if (error)
1572		goto unlock_entry;
1573
1574	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1575		goto finish_iomap;
1576
1577	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	switch (iomap.type) {
1580	case IOMAP_MAPPED:
1581		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1582		if (error < 0)
1583			goto finish_iomap;
1584
1585		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1586						DAX_PMD, write && !sync);
1587
1588		/*
1589		 * If we are doing synchronous page fault and inode needs fsync,
1590		 * we can insert PMD into page tables only after that happens.
1591		 * Skip insertion for now and return the pfn so that caller can
1592		 * insert it after fsync is done.
1593		 */
1594		if (sync) {
1595			if (WARN_ON_ONCE(!pfnp))
1596				goto finish_iomap;
1597			*pfnp = pfn;
1598			result = VM_FAULT_NEEDDSYNC;
1599			goto finish_iomap;
1600		}
1601
1602		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1603		result = vmf_insert_pfn_pmd(vmf, pfn, write);
1604		break;
1605	case IOMAP_UNWRITTEN:
1606	case IOMAP_HOLE:
1607		if (WARN_ON_ONCE(write))
1608			break;
1609		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
 
1610		break;
1611	default:
1612		WARN_ON_ONCE(1);
1613		break;
1614	}
1615
 
 
1616 finish_iomap:
1617	if (ops->iomap_end) {
1618		int copied = PMD_SIZE;
1619
1620		if (result == VM_FAULT_FALLBACK)
1621			copied = 0;
1622		/*
1623		 * The fault is done by now and there's no way back (other
1624		 * thread may be already happily using PMD we have installed).
1625		 * Just ignore error from ->iomap_end since we cannot do much
1626		 * with it.
1627		 */
1628		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1629				&iomap);
1630	}
1631 unlock_entry:
1632	dax_unlock_entry(&xas, entry);
1633 fallback:
1634	if (result == VM_FAULT_FALLBACK) {
1635		split_huge_pmd(vma, vmf->pmd, vmf->address);
1636		count_vm_event(THP_FAULT_FALLBACK);
1637	}
1638out:
1639	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1640	return result;
1641}
1642#else
1643static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1644			       const struct iomap_ops *ops)
1645{
1646	return VM_FAULT_FALLBACK;
1647}
1648#endif /* CONFIG_FS_DAX_PMD */
1649
1650/**
1651 * dax_iomap_fault - handle a page fault on a DAX file
1652 * @vmf: The description of the fault
1653 * @pe_size: Size of the page to fault in
1654 * @pfnp: PFN to insert for synchronous faults if fsync is required
1655 * @iomap_errp: Storage for detailed error code in case of error
1656 * @ops: Iomap ops passed from the file system
1657 *
1658 * When a page fault occurs, filesystems may call this helper in
1659 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1660 * has done all the necessary locking for page fault to proceed
1661 * successfully.
1662 */
1663vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1664		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1665{
1666	switch (pe_size) {
1667	case PE_SIZE_PTE:
1668		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1669	case PE_SIZE_PMD:
1670		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1671	default:
1672		return VM_FAULT_FALLBACK;
1673	}
1674}
1675EXPORT_SYMBOL_GPL(dax_iomap_fault);
1676
1677/*
1678 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1679 * @vmf: The description of the fault
1680 * @pfn: PFN to insert
1681 * @order: Order of entry to insert.
1682 *
1683 * This function inserts a writeable PTE or PMD entry into the page tables
1684 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1685 */
1686static vm_fault_t
1687dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1688{
1689	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1690	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1691	void *entry;
1692	vm_fault_t ret;
1693
1694	xas_lock_irq(&xas);
1695	entry = get_unlocked_entry(&xas, order);
1696	/* Did we race with someone splitting entry or so? */
1697	if (!entry || dax_is_conflict(entry) ||
1698	    (order == 0 && !dax_is_pte_entry(entry))) {
1699		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1700		xas_unlock_irq(&xas);
1701		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1702						      VM_FAULT_NOPAGE);
1703		return VM_FAULT_NOPAGE;
1704	}
1705	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1706	dax_lock_entry(&xas, entry);
1707	xas_unlock_irq(&xas);
1708	if (order == 0)
1709		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1710#ifdef CONFIG_FS_DAX_PMD
1711	else if (order == PMD_ORDER)
1712		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1713#endif
1714	else
1715		ret = VM_FAULT_FALLBACK;
1716	dax_unlock_entry(&xas, entry);
1717	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1718	return ret;
1719}
1720
1721/**
1722 * dax_finish_sync_fault - finish synchronous page fault
1723 * @vmf: The description of the fault
1724 * @pe_size: Size of entry to be inserted
1725 * @pfn: PFN to insert
1726 *
1727 * This function ensures that the file range touched by the page fault is
1728 * stored persistently on the media and handles inserting of appropriate page
1729 * table entry.
1730 */
1731vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1732		enum page_entry_size pe_size, pfn_t pfn)
1733{
1734	int err;
1735	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1736	unsigned int order = pe_order(pe_size);
1737	size_t len = PAGE_SIZE << order;
1738
1739	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1740	if (err)
1741		return VM_FAULT_SIGBUS;
1742	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1743}
1744EXPORT_SYMBOL_GPL(dax_finish_sync_fault);