Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats.
  23 */
  24
 
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/vmacache.h>
  30#include <linux/stat.h>
  31#include <linux/fcntl.h>
  32#include <linux/swap.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
 
 
 
 
 
  35#include <linux/pagemap.h>
  36#include <linux/perf_event.h>
  37#include <linux/highmem.h>
  38#include <linux/spinlock.h>
  39#include <linux/key.h>
  40#include <linux/personality.h>
  41#include <linux/binfmts.h>
  42#include <linux/utsname.h>
  43#include <linux/pid_namespace.h>
  44#include <linux/module.h>
  45#include <linux/namei.h>
  46#include <linux/mount.h>
  47#include <linux/security.h>
  48#include <linux/syscalls.h>
  49#include <linux/tsacct_kern.h>
  50#include <linux/cn_proc.h>
  51#include <linux/audit.h>
  52#include <linux/tracehook.h>
  53#include <linux/kmod.h>
  54#include <linux/fsnotify.h>
  55#include <linux/fs_struct.h>
  56#include <linux/pipe_fs_i.h>
  57#include <linux/oom.h>
  58#include <linux/compat.h>
  59#include <linux/vmalloc.h>
 
 
 
 
 
 
 
  60
  61#include <linux/uaccess.h>
  62#include <asm/mmu_context.h>
  63#include <asm/tlb.h>
  64
  65#include <trace/events/task.h>
  66#include "internal.h"
  67
  68#include <trace/events/sched.h>
  69
 
 
  70int suid_dumpable = 0;
  71
  72static LIST_HEAD(formats);
  73static DEFINE_RWLOCK(binfmt_lock);
  74
  75void __register_binfmt(struct linux_binfmt * fmt, int insert)
  76{
  77	BUG_ON(!fmt);
  78	if (WARN_ON(!fmt->load_binary))
  79		return;
  80	write_lock(&binfmt_lock);
  81	insert ? list_add(&fmt->lh, &formats) :
  82		 list_add_tail(&fmt->lh, &formats);
  83	write_unlock(&binfmt_lock);
  84}
  85
  86EXPORT_SYMBOL(__register_binfmt);
  87
  88void unregister_binfmt(struct linux_binfmt * fmt)
  89{
  90	write_lock(&binfmt_lock);
  91	list_del(&fmt->lh);
  92	write_unlock(&binfmt_lock);
  93}
  94
  95EXPORT_SYMBOL(unregister_binfmt);
  96
  97static inline void put_binfmt(struct linux_binfmt * fmt)
  98{
  99	module_put(fmt->module);
 100}
 101
 102bool path_noexec(const struct path *path)
 103{
 104	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 105	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 106}
 107
 108#ifdef CONFIG_USELIB
 109/*
 110 * Note that a shared library must be both readable and executable due to
 111 * security reasons.
 112 *
 113 * Also note that we take the address to load from from the file itself.
 114 */
 115SYSCALL_DEFINE1(uselib, const char __user *, library)
 116{
 117	struct linux_binfmt *fmt;
 118	struct file *file;
 119	struct filename *tmp = getname(library);
 120	int error = PTR_ERR(tmp);
 121	static const struct open_flags uselib_flags = {
 122		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 123		.acc_mode = MAY_READ | MAY_EXEC,
 124		.intent = LOOKUP_OPEN,
 125		.lookup_flags = LOOKUP_FOLLOW,
 126	};
 127
 128	if (IS_ERR(tmp))
 129		goto out;
 130
 131	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 132	putname(tmp);
 133	error = PTR_ERR(file);
 134	if (IS_ERR(file))
 135		goto out;
 136
 137	error = -EINVAL;
 138	if (!S_ISREG(file_inode(file)->i_mode))
 139		goto exit;
 140
 141	error = -EACCES;
 142	if (path_noexec(&file->f_path))
 
 143		goto exit;
 144
 145	fsnotify_open(file);
 146
 147	error = -ENOEXEC;
 148
 149	read_lock(&binfmt_lock);
 150	list_for_each_entry(fmt, &formats, lh) {
 151		if (!fmt->load_shlib)
 152			continue;
 153		if (!try_module_get(fmt->module))
 154			continue;
 155		read_unlock(&binfmt_lock);
 156		error = fmt->load_shlib(file);
 157		read_lock(&binfmt_lock);
 158		put_binfmt(fmt);
 159		if (error != -ENOEXEC)
 160			break;
 161	}
 162	read_unlock(&binfmt_lock);
 163exit:
 164	fput(file);
 165out:
 166  	return error;
 167}
 168#endif /* #ifdef CONFIG_USELIB */
 169
 170#ifdef CONFIG_MMU
 171/*
 172 * The nascent bprm->mm is not visible until exec_mmap() but it can
 173 * use a lot of memory, account these pages in current->mm temporary
 174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 175 * change the counter back via acct_arg_size(0).
 176 */
 177static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 178{
 179	struct mm_struct *mm = current->mm;
 180	long diff = (long)(pages - bprm->vma_pages);
 181
 182	if (!mm || !diff)
 183		return;
 184
 185	bprm->vma_pages = pages;
 186	add_mm_counter(mm, MM_ANONPAGES, diff);
 187}
 188
 189static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 190		int write)
 191{
 192	struct page *page;
 
 
 193	int ret;
 194	unsigned int gup_flags = FOLL_FORCE;
 195
 196#ifdef CONFIG_STACK_GROWSUP
 197	if (write) {
 198		ret = expand_downwards(bprm->vma, pos);
 199		if (ret < 0)
 
 
 
 
 
 
 200			return NULL;
 201	}
 202#endif
 203
 204	if (write)
 205		gup_flags |= FOLL_WRITE;
 206
 207	/*
 208	 * We are doing an exec().  'current' is the process
 209	 * doing the exec and bprm->mm is the new process's mm.
 210	 */
 211	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
 212			&page, NULL, NULL);
 
 
 213	if (ret <= 0)
 214		return NULL;
 215
 216	if (write) {
 217		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 218		struct rlimit *rlim;
 219
 220		acct_arg_size(bprm, size / PAGE_SIZE);
 221
 222		/*
 223		 * We've historically supported up to 32 pages (ARG_MAX)
 224		 * of argument strings even with small stacks
 225		 */
 226		if (size <= ARG_MAX)
 227			return page;
 228
 229		/*
 230		 * Limit to 1/4-th the stack size for the argv+env strings.
 231		 * This ensures that:
 232		 *  - the remaining binfmt code will not run out of stack space,
 233		 *  - the program will have a reasonable amount of stack left
 234		 *    to work from.
 235		 */
 236		rlim = current->signal->rlim;
 237		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 238			put_page(page);
 239			return NULL;
 240		}
 241	}
 242
 243	return page;
 244}
 245
 246static void put_arg_page(struct page *page)
 247{
 248	put_page(page);
 249}
 250
 251static void free_arg_pages(struct linux_binprm *bprm)
 252{
 253}
 254
 255static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 256		struct page *page)
 257{
 258	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 259}
 260
 261static int __bprm_mm_init(struct linux_binprm *bprm)
 262{
 263	int err;
 264	struct vm_area_struct *vma = NULL;
 265	struct mm_struct *mm = bprm->mm;
 266
 267	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 268	if (!vma)
 269		return -ENOMEM;
 
 270
 271	if (down_write_killable(&mm->mmap_sem)) {
 272		err = -EINTR;
 273		goto err_free;
 274	}
 275	vma->vm_mm = mm;
 
 
 
 
 
 
 
 276
 277	/*
 278	 * Place the stack at the largest stack address the architecture
 279	 * supports. Later, we'll move this to an appropriate place. We don't
 280	 * use STACK_TOP because that can depend on attributes which aren't
 281	 * configured yet.
 282	 */
 283	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 284	vma->vm_end = STACK_TOP_MAX;
 285	vma->vm_start = vma->vm_end - PAGE_SIZE;
 286	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 287	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 288	INIT_LIST_HEAD(&vma->anon_vma_chain);
 289
 290	err = insert_vm_struct(mm, vma);
 291	if (err)
 292		goto err;
 293
 294	mm->stack_vm = mm->total_vm = 1;
 295	arch_bprm_mm_init(mm, vma);
 296	up_write(&mm->mmap_sem);
 297	bprm->p = vma->vm_end - sizeof(void *);
 298	return 0;
 299err:
 300	up_write(&mm->mmap_sem);
 
 
 301err_free:
 302	bprm->vma = NULL;
 303	kmem_cache_free(vm_area_cachep, vma);
 304	return err;
 305}
 306
 307static bool valid_arg_len(struct linux_binprm *bprm, long len)
 308{
 309	return len <= MAX_ARG_STRLEN;
 310}
 311
 312#else
 313
 314static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 315{
 316}
 317
 318static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 319		int write)
 320{
 321	struct page *page;
 322
 323	page = bprm->page[pos / PAGE_SIZE];
 324	if (!page && write) {
 325		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 326		if (!page)
 327			return NULL;
 328		bprm->page[pos / PAGE_SIZE] = page;
 329	}
 330
 331	return page;
 332}
 333
 334static void put_arg_page(struct page *page)
 335{
 336}
 337
 338static void free_arg_page(struct linux_binprm *bprm, int i)
 339{
 340	if (bprm->page[i]) {
 341		__free_page(bprm->page[i]);
 342		bprm->page[i] = NULL;
 343	}
 344}
 345
 346static void free_arg_pages(struct linux_binprm *bprm)
 347{
 348	int i;
 349
 350	for (i = 0; i < MAX_ARG_PAGES; i++)
 351		free_arg_page(bprm, i);
 352}
 353
 354static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 355		struct page *page)
 356{
 357}
 358
 359static int __bprm_mm_init(struct linux_binprm *bprm)
 360{
 361	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 362	return 0;
 363}
 364
 365static bool valid_arg_len(struct linux_binprm *bprm, long len)
 366{
 367	return len <= bprm->p;
 368}
 369
 370#endif /* CONFIG_MMU */
 371
 372/*
 373 * Create a new mm_struct and populate it with a temporary stack
 374 * vm_area_struct.  We don't have enough context at this point to set the stack
 375 * flags, permissions, and offset, so we use temporary values.  We'll update
 376 * them later in setup_arg_pages().
 377 */
 378static int bprm_mm_init(struct linux_binprm *bprm)
 379{
 380	int err;
 381	struct mm_struct *mm = NULL;
 382
 383	bprm->mm = mm = mm_alloc();
 384	err = -ENOMEM;
 385	if (!mm)
 386		goto err;
 387
 
 
 
 
 
 388	err = __bprm_mm_init(bprm);
 389	if (err)
 390		goto err;
 391
 392	return 0;
 393
 394err:
 395	if (mm) {
 396		bprm->mm = NULL;
 397		mmdrop(mm);
 398	}
 399
 400	return err;
 401}
 402
 403struct user_arg_ptr {
 404#ifdef CONFIG_COMPAT
 405	bool is_compat;
 406#endif
 407	union {
 408		const char __user *const __user *native;
 409#ifdef CONFIG_COMPAT
 410		const compat_uptr_t __user *compat;
 411#endif
 412	} ptr;
 413};
 414
 415static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 416{
 417	const char __user *native;
 418
 419#ifdef CONFIG_COMPAT
 420	if (unlikely(argv.is_compat)) {
 421		compat_uptr_t compat;
 422
 423		if (get_user(compat, argv.ptr.compat + nr))
 424			return ERR_PTR(-EFAULT);
 425
 426		return compat_ptr(compat);
 427	}
 428#endif
 429
 430	if (get_user(native, argv.ptr.native + nr))
 431		return ERR_PTR(-EFAULT);
 432
 433	return native;
 434}
 435
 436/*
 437 * count() counts the number of strings in array ARGV.
 438 */
 439static int count(struct user_arg_ptr argv, int max)
 440{
 441	int i = 0;
 442
 443	if (argv.ptr.native != NULL) {
 444		for (;;) {
 445			const char __user *p = get_user_arg_ptr(argv, i);
 446
 447			if (!p)
 448				break;
 449
 450			if (IS_ERR(p))
 451				return -EFAULT;
 452
 453			if (i >= max)
 454				return -E2BIG;
 455			++i;
 456
 457			if (fatal_signal_pending(current))
 458				return -ERESTARTNOHAND;
 459			cond_resched();
 460		}
 461	}
 462	return i;
 463}
 464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465/*
 466 * 'copy_strings()' copies argument/environment strings from the old
 467 * processes's memory to the new process's stack.  The call to get_user_pages()
 468 * ensures the destination page is created and not swapped out.
 469 */
 470static int copy_strings(int argc, struct user_arg_ptr argv,
 471			struct linux_binprm *bprm)
 472{
 473	struct page *kmapped_page = NULL;
 474	char *kaddr = NULL;
 475	unsigned long kpos = 0;
 476	int ret;
 477
 478	while (argc-- > 0) {
 479		const char __user *str;
 480		int len;
 481		unsigned long pos;
 482
 483		ret = -EFAULT;
 484		str = get_user_arg_ptr(argv, argc);
 485		if (IS_ERR(str))
 486			goto out;
 487
 488		len = strnlen_user(str, MAX_ARG_STRLEN);
 489		if (!len)
 490			goto out;
 491
 492		ret = -E2BIG;
 493		if (!valid_arg_len(bprm, len))
 494			goto out;
 495
 496		/* We're going to work our way backwords. */
 497		pos = bprm->p;
 498		str += len;
 499		bprm->p -= len;
 
 
 500
 501		while (len > 0) {
 502			int offset, bytes_to_copy;
 503
 504			if (fatal_signal_pending(current)) {
 505				ret = -ERESTARTNOHAND;
 506				goto out;
 507			}
 508			cond_resched();
 509
 510			offset = pos % PAGE_SIZE;
 511			if (offset == 0)
 512				offset = PAGE_SIZE;
 513
 514			bytes_to_copy = offset;
 515			if (bytes_to_copy > len)
 516				bytes_to_copy = len;
 517
 518			offset -= bytes_to_copy;
 519			pos -= bytes_to_copy;
 520			str -= bytes_to_copy;
 521			len -= bytes_to_copy;
 522
 523			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 524				struct page *page;
 525
 526				page = get_arg_page(bprm, pos, 1);
 527				if (!page) {
 528					ret = -E2BIG;
 529					goto out;
 530				}
 531
 532				if (kmapped_page) {
 533					flush_kernel_dcache_page(kmapped_page);
 534					kunmap(kmapped_page);
 535					put_arg_page(kmapped_page);
 536				}
 537				kmapped_page = page;
 538				kaddr = kmap(kmapped_page);
 539				kpos = pos & PAGE_MASK;
 540				flush_arg_page(bprm, kpos, kmapped_page);
 541			}
 542			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 543				ret = -EFAULT;
 544				goto out;
 545			}
 546		}
 547	}
 548	ret = 0;
 549out:
 550	if (kmapped_page) {
 551		flush_kernel_dcache_page(kmapped_page);
 552		kunmap(kmapped_page);
 553		put_arg_page(kmapped_page);
 554	}
 555	return ret;
 556}
 557
 558/*
 559 * Like copy_strings, but get argv and its values from kernel memory.
 560 */
 561int copy_strings_kernel(int argc, const char *const *__argv,
 562			struct linux_binprm *bprm)
 563{
 564	int r;
 565	mm_segment_t oldfs = get_fs();
 566	struct user_arg_ptr argv = {
 567		.ptr.native = (const char __user *const  __user *)__argv,
 568	};
 569
 570	set_fs(KERNEL_DS);
 571	r = copy_strings(argc, argv, bprm);
 572	set_fs(oldfs);
 573
 574	return r;
 575}
 576EXPORT_SYMBOL(copy_strings_kernel);
 577
 578#ifdef CONFIG_MMU
 579
 580/*
 581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 582 * the binfmt code determines where the new stack should reside, we shift it to
 583 * its final location.  The process proceeds as follows:
 584 *
 585 * 1) Use shift to calculate the new vma endpoints.
 586 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 587 *    arguments passed to subsequent functions are consistent.
 588 * 3) Move vma's page tables to the new range.
 589 * 4) Free up any cleared pgd range.
 590 * 5) Shrink the vma to cover only the new range.
 591 */
 592static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 593{
 594	struct mm_struct *mm = vma->vm_mm;
 595	unsigned long old_start = vma->vm_start;
 596	unsigned long old_end = vma->vm_end;
 597	unsigned long length = old_end - old_start;
 598	unsigned long new_start = old_start - shift;
 599	unsigned long new_end = old_end - shift;
 600	struct mmu_gather tlb;
 601
 602	BUG_ON(new_start > new_end);
 603
 604	/*
 605	 * ensure there are no vmas between where we want to go
 606	 * and where we are
 607	 */
 608	if (vma != find_vma(mm, new_start))
 609		return -EFAULT;
 
 
 610
 611	/*
 612	 * cover the whole range: [new_start, old_end)
 613	 */
 614	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 615		return -ENOMEM;
 616
 617	/*
 618	 * move the page tables downwards, on failure we rely on
 619	 * process cleanup to remove whatever mess we made.
 620	 */
 621	if (length != move_page_tables(vma, old_start,
 622				       vma, new_start, length, false))
 623		return -ENOMEM;
 
 624
 625	lru_add_drain();
 626	tlb_gather_mmu(&tlb, mm, old_start, old_end);
 627	if (new_end > old_start) {
 628		/*
 629		 * when the old and new regions overlap clear from new_end.
 630		 */
 631		free_pgd_range(&tlb, new_end, old_end, new_end,
 632			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 633	} else {
 634		/*
 635		 * otherwise, clean from old_start; this is done to not touch
 636		 * the address space in [new_end, old_start) some architectures
 637		 * have constraints on va-space that make this illegal (IA64) -
 638		 * for the others its just a little faster.
 639		 */
 640		free_pgd_range(&tlb, old_start, old_end, new_end,
 641			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 642	}
 643	tlb_finish_mmu(&tlb, old_start, old_end);
 644
 645	/*
 646	 * Shrink the vma to just the new range.  Always succeeds.
 647	 */
 648	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 649
 
 
 
 
 
 
 
 
 
 
 
 650	return 0;
 651}
 652
 
 
 653/*
 654 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 655 * the stack is optionally relocated, and some extra space is added.
 656 */
 657int setup_arg_pages(struct linux_binprm *bprm,
 658		    unsigned long stack_top,
 659		    int executable_stack)
 660{
 661	unsigned long ret;
 662	unsigned long stack_shift;
 663	struct mm_struct *mm = current->mm;
 664	struct vm_area_struct *vma = bprm->vma;
 665	struct vm_area_struct *prev = NULL;
 666	unsigned long vm_flags;
 667	unsigned long stack_base;
 668	unsigned long stack_size;
 669	unsigned long stack_expand;
 670	unsigned long rlim_stack;
 
 
 671
 672#ifdef CONFIG_STACK_GROWSUP
 673	/* Limit stack size */
 674	stack_base = rlimit_max(RLIMIT_STACK);
 675	if (stack_base > STACK_SIZE_MAX)
 676		stack_base = STACK_SIZE_MAX;
 677
 678	/* Add space for stack randomization. */
 679	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 
 680
 681	/* Make sure we didn't let the argument array grow too large. */
 682	if (vma->vm_end - vma->vm_start > stack_base)
 683		return -ENOMEM;
 684
 685	stack_base = PAGE_ALIGN(stack_top - stack_base);
 686
 687	stack_shift = vma->vm_start - stack_base;
 688	mm->arg_start = bprm->p - stack_shift;
 689	bprm->p = vma->vm_end - stack_shift;
 690#else
 691	stack_top = arch_align_stack(stack_top);
 692	stack_top = PAGE_ALIGN(stack_top);
 693
 694	if (unlikely(stack_top < mmap_min_addr) ||
 695	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 696		return -ENOMEM;
 697
 698	stack_shift = vma->vm_end - stack_top;
 699
 700	bprm->p -= stack_shift;
 701	mm->arg_start = bprm->p;
 702#endif
 703
 704	if (bprm->loader)
 705		bprm->loader -= stack_shift;
 706	bprm->exec -= stack_shift;
 707
 708	if (down_write_killable(&mm->mmap_sem))
 709		return -EINTR;
 710
 711	vm_flags = VM_STACK_FLAGS;
 712
 713	/*
 714	 * Adjust stack execute permissions; explicitly enable for
 715	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 716	 * (arch default) otherwise.
 717	 */
 718	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 719		vm_flags |= VM_EXEC;
 720	else if (executable_stack == EXSTACK_DISABLE_X)
 721		vm_flags &= ~VM_EXEC;
 722	vm_flags |= mm->def_flags;
 723	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 724
 725	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 
 
 
 726			vm_flags);
 
 
 727	if (ret)
 728		goto out_unlock;
 729	BUG_ON(prev != vma);
 730
 
 
 
 
 
 731	/* Move stack pages down in memory. */
 732	if (stack_shift) {
 733		ret = shift_arg_pages(vma, stack_shift);
 
 
 
 
 
 734		if (ret)
 735			goto out_unlock;
 736	}
 737
 738	/* mprotect_fixup is overkill to remove the temporary stack flags */
 739	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 740
 741	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 742	stack_size = vma->vm_end - vma->vm_start;
 743	/*
 744	 * Align this down to a page boundary as expand_stack
 745	 * will align it up.
 746	 */
 747	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 
 
 
 748#ifdef CONFIG_STACK_GROWSUP
 749	if (stack_size + stack_expand > rlim_stack)
 750		stack_base = vma->vm_start + rlim_stack;
 751	else
 752		stack_base = vma->vm_end + stack_expand;
 753#else
 754	if (stack_size + stack_expand > rlim_stack)
 755		stack_base = vma->vm_end - rlim_stack;
 756	else
 757		stack_base = vma->vm_start - stack_expand;
 758#endif
 759	current->mm->start_stack = bprm->p;
 760	ret = expand_stack(vma, stack_base);
 761	if (ret)
 762		ret = -EFAULT;
 763
 764out_unlock:
 765	up_write(&mm->mmap_sem);
 766	return ret;
 767}
 768EXPORT_SYMBOL(setup_arg_pages);
 769
 770#else
 771
 772/*
 773 * Transfer the program arguments and environment from the holding pages
 774 * onto the stack. The provided stack pointer is adjusted accordingly.
 775 */
 776int transfer_args_to_stack(struct linux_binprm *bprm,
 777			   unsigned long *sp_location)
 778{
 779	unsigned long index, stop, sp;
 780	int ret = 0;
 781
 782	stop = bprm->p >> PAGE_SHIFT;
 783	sp = *sp_location;
 784
 785	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 786		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 787		char *src = kmap(bprm->page[index]) + offset;
 788		sp -= PAGE_SIZE - offset;
 789		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 790			ret = -EFAULT;
 791		kunmap(bprm->page[index]);
 792		if (ret)
 793			goto out;
 794	}
 795
 
 796	*sp_location = sp;
 797
 798out:
 799	return ret;
 800}
 801EXPORT_SYMBOL(transfer_args_to_stack);
 802
 803#endif /* CONFIG_MMU */
 804
 
 
 
 
 805static struct file *do_open_execat(int fd, struct filename *name, int flags)
 806{
 807	struct file *file;
 808	int err;
 
 809	struct open_flags open_exec_flags = {
 810		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 811		.acc_mode = MAY_EXEC,
 812		.intent = LOOKUP_OPEN,
 813		.lookup_flags = LOOKUP_FOLLOW,
 814	};
 815
 816	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 817		return ERR_PTR(-EINVAL);
 818	if (flags & AT_SYMLINK_NOFOLLOW)
 819		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 820	if (flags & AT_EMPTY_PATH)
 821		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 822
 823	file = do_filp_open(fd, name, &open_exec_flags);
 824	if (IS_ERR(file))
 825		goto out;
 826
 827	err = -EACCES;
 828	if (!S_ISREG(file_inode(file)->i_mode))
 829		goto exit;
 830
 831	if (path_noexec(&file->f_path))
 832		goto exit;
 
 
 833
 834	err = deny_write_access(file);
 835	if (err)
 836		goto exit;
 837
 838	if (name->name[0] != '\0')
 839		fsnotify_open(file);
 840
 841out:
 842	return file;
 843
 844exit:
 845	fput(file);
 846	return ERR_PTR(err);
 847}
 848
 
 
 
 
 
 
 
 
 
 
 
 849struct file *open_exec(const char *name)
 850{
 851	struct filename *filename = getname_kernel(name);
 852	struct file *f = ERR_CAST(filename);
 853
 854	if (!IS_ERR(filename)) {
 855		f = do_open_execat(AT_FDCWD, filename, 0);
 856		putname(filename);
 857	}
 858	return f;
 859}
 860EXPORT_SYMBOL(open_exec);
 861
 862int kernel_read(struct file *file, loff_t offset,
 863		char *addr, unsigned long count)
 864{
 865	mm_segment_t old_fs;
 866	loff_t pos = offset;
 867	int result;
 868
 869	old_fs = get_fs();
 870	set_fs(get_ds());
 871	/* The cast to a user pointer is valid due to the set_fs() */
 872	result = vfs_read(file, (void __user *)addr, count, &pos);
 873	set_fs(old_fs);
 874	return result;
 875}
 876
 877EXPORT_SYMBOL(kernel_read);
 878
 879int kernel_read_file(struct file *file, void **buf, loff_t *size,
 880		     loff_t max_size, enum kernel_read_file_id id)
 881{
 882	loff_t i_size, pos;
 883	ssize_t bytes = 0;
 884	int ret;
 885
 886	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 887		return -EINVAL;
 888
 889	ret = security_kernel_read_file(file, id);
 890	if (ret)
 891		return ret;
 892
 893	ret = deny_write_access(file);
 894	if (ret)
 895		return ret;
 896
 897	i_size = i_size_read(file_inode(file));
 898	if (max_size > 0 && i_size > max_size) {
 899		ret = -EFBIG;
 900		goto out;
 901	}
 902	if (i_size <= 0) {
 903		ret = -EINVAL;
 904		goto out;
 905	}
 906
 907	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 908		*buf = vmalloc(i_size);
 909	if (!*buf) {
 910		ret = -ENOMEM;
 911		goto out;
 912	}
 913
 914	pos = 0;
 915	while (pos < i_size) {
 916		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
 917				    i_size - pos);
 918		if (bytes < 0) {
 919			ret = bytes;
 920			goto out;
 921		}
 922
 923		if (bytes == 0)
 924			break;
 925		pos += bytes;
 926	}
 927
 928	if (pos != i_size) {
 929		ret = -EIO;
 930		goto out_free;
 931	}
 932
 933	ret = security_kernel_post_read_file(file, *buf, i_size, id);
 934	if (!ret)
 935		*size = pos;
 936
 937out_free:
 938	if (ret < 0) {
 939		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 940			vfree(*buf);
 941			*buf = NULL;
 942		}
 943	}
 944
 945out:
 946	allow_write_access(file);
 947	return ret;
 948}
 949EXPORT_SYMBOL_GPL(kernel_read_file);
 950
 951int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
 952			       loff_t max_size, enum kernel_read_file_id id)
 953{
 954	struct file *file;
 955	int ret;
 956
 957	if (!path || !*path)
 958		return -EINVAL;
 959
 960	file = filp_open(path, O_RDONLY, 0);
 961	if (IS_ERR(file))
 962		return PTR_ERR(file);
 963
 964	ret = kernel_read_file(file, buf, size, max_size, id);
 965	fput(file);
 966	return ret;
 967}
 968EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 969
 970int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 971			     enum kernel_read_file_id id)
 972{
 973	struct fd f = fdget(fd);
 974	int ret = -EBADF;
 975
 976	if (!f.file)
 977		goto out;
 978
 979	ret = kernel_read_file(f.file, buf, size, max_size, id);
 980out:
 981	fdput(f);
 982	return ret;
 983}
 984EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
 985
 986ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 987{
 988	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
 989	if (res > 0)
 990		flush_icache_range(addr, addr + len);
 991	return res;
 992}
 993EXPORT_SYMBOL(read_code);
 
 994
 
 
 
 
 
 995static int exec_mmap(struct mm_struct *mm)
 996{
 997	struct task_struct *tsk;
 998	struct mm_struct *old_mm, *active_mm;
 
 999
1000	/* Notify parent that we're no longer interested in the old VM */
1001	tsk = current;
1002	old_mm = current->mm;
1003	mm_release(tsk, old_mm);
 
 
 
 
1004
1005	if (old_mm) {
1006		sync_mm_rss(old_mm);
1007		/*
1008		 * Make sure that if there is a core dump in progress
1009		 * for the old mm, we get out and die instead of going
1010		 * through with the exec.  We must hold mmap_sem around
1011		 * checking core_state and changing tsk->mm.
1012		 */
1013		down_read(&old_mm->mmap_sem);
1014		if (unlikely(old_mm->core_state)) {
1015			up_read(&old_mm->mmap_sem);
1016			return -EINTR;
1017		}
1018	}
 
1019	task_lock(tsk);
 
 
 
1020	active_mm = tsk->active_mm;
1021	tsk->mm = mm;
1022	tsk->active_mm = mm;
 
 
 
 
 
 
 
 
 
 
 
1023	activate_mm(active_mm, mm);
1024	tsk->mm->vmacache_seqnum = 0;
1025	vmacache_flush(tsk);
 
1026	task_unlock(tsk);
 
1027	if (old_mm) {
1028		up_read(&old_mm->mmap_sem);
1029		BUG_ON(active_mm != old_mm);
1030		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031		mm_update_next_owner(old_mm);
1032		mmput(old_mm);
1033		return 0;
1034	}
1035	mmdrop(active_mm);
1036	return 0;
1037}
1038
1039/*
1040 * This function makes sure the current process has its own signal table,
1041 * so that flush_signal_handlers can later reset the handlers without
1042 * disturbing other processes.  (Other processes might share the signal
1043 * table via the CLONE_SIGHAND option to clone().)
1044 */
1045static int de_thread(struct task_struct *tsk)
1046{
1047	struct signal_struct *sig = tsk->signal;
1048	struct sighand_struct *oldsighand = tsk->sighand;
1049	spinlock_t *lock = &oldsighand->siglock;
1050
1051	if (thread_group_empty(tsk))
1052		goto no_thread_group;
1053
1054	/*
1055	 * Kill all other threads in the thread group.
1056	 */
1057	spin_lock_irq(lock);
1058	if (signal_group_exit(sig)) {
1059		/*
1060		 * Another group action in progress, just
1061		 * return so that the signal is processed.
1062		 */
1063		spin_unlock_irq(lock);
1064		return -EAGAIN;
1065	}
1066
1067	sig->group_exit_task = tsk;
1068	sig->notify_count = zap_other_threads(tsk);
1069	if (!thread_group_leader(tsk))
1070		sig->notify_count--;
1071
1072	while (sig->notify_count) {
1073		__set_current_state(TASK_KILLABLE);
1074		spin_unlock_irq(lock);
1075		schedule();
1076		if (unlikely(__fatal_signal_pending(tsk)))
1077			goto killed;
1078		spin_lock_irq(lock);
1079	}
1080	spin_unlock_irq(lock);
1081
1082	/*
1083	 * At this point all other threads have exited, all we have to
1084	 * do is to wait for the thread group leader to become inactive,
1085	 * and to assume its PID:
1086	 */
1087	if (!thread_group_leader(tsk)) {
1088		struct task_struct *leader = tsk->group_leader;
1089
1090		for (;;) {
1091			threadgroup_change_begin(tsk);
1092			write_lock_irq(&tasklist_lock);
1093			/*
1094			 * Do this under tasklist_lock to ensure that
1095			 * exit_notify() can't miss ->group_exit_task
1096			 */
1097			sig->notify_count = -1;
1098			if (likely(leader->exit_state))
1099				break;
1100			__set_current_state(TASK_KILLABLE);
1101			write_unlock_irq(&tasklist_lock);
1102			threadgroup_change_end(tsk);
1103			schedule();
1104			if (unlikely(__fatal_signal_pending(tsk)))
1105				goto killed;
1106		}
1107
1108		/*
1109		 * The only record we have of the real-time age of a
1110		 * process, regardless of execs it's done, is start_time.
1111		 * All the past CPU time is accumulated in signal_struct
1112		 * from sister threads now dead.  But in this non-leader
1113		 * exec, nothing survives from the original leader thread,
1114		 * whose birth marks the true age of this process now.
1115		 * When we take on its identity by switching to its PID, we
1116		 * also take its birthdate (always earlier than our own).
1117		 */
1118		tsk->start_time = leader->start_time;
1119		tsk->real_start_time = leader->real_start_time;
1120
1121		BUG_ON(!same_thread_group(leader, tsk));
1122		BUG_ON(has_group_leader_pid(tsk));
1123		/*
1124		 * An exec() starts a new thread group with the
1125		 * TGID of the previous thread group. Rehash the
1126		 * two threads with a switched PID, and release
1127		 * the former thread group leader:
1128		 */
1129
1130		/* Become a process group leader with the old leader's pid.
1131		 * The old leader becomes a thread of the this thread group.
1132		 * Note: The old leader also uses this pid until release_task
1133		 *       is called.  Odd but simple and correct.
1134		 */
1135		tsk->pid = leader->pid;
1136		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137		transfer_pid(leader, tsk, PIDTYPE_PGID);
1138		transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140		list_replace_rcu(&leader->tasks, &tsk->tasks);
1141		list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143		tsk->group_leader = tsk;
1144		leader->group_leader = tsk;
1145
1146		tsk->exit_signal = SIGCHLD;
1147		leader->exit_signal = -1;
1148
1149		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150		leader->exit_state = EXIT_DEAD;
1151
1152		/*
1153		 * We are going to release_task()->ptrace_unlink() silently,
1154		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155		 * the tracer wont't block again waiting for this thread.
1156		 */
1157		if (unlikely(leader->ptrace))
1158			__wake_up_parent(leader, leader->parent);
1159		write_unlock_irq(&tasklist_lock);
1160		threadgroup_change_end(tsk);
1161
1162		release_task(leader);
1163	}
1164
1165	sig->group_exit_task = NULL;
1166	sig->notify_count = 0;
1167
1168no_thread_group:
1169	/* we have changed execution domain */
1170	tsk->exit_signal = SIGCHLD;
1171
1172#ifdef CONFIG_POSIX_TIMERS
1173	exit_itimers(sig);
1174	flush_itimer_signals();
1175#endif
1176
1177	if (atomic_read(&oldsighand->count) != 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178		struct sighand_struct *newsighand;
1179		/*
1180		 * This ->sighand is shared with the CLONE_SIGHAND
1181		 * but not CLONE_THREAD task, switch to the new one.
1182		 */
1183		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1184		if (!newsighand)
1185			return -ENOMEM;
1186
1187		atomic_set(&newsighand->count, 1);
1188		memcpy(newsighand->action, oldsighand->action,
1189		       sizeof(newsighand->action));
1190
1191		write_lock_irq(&tasklist_lock);
1192		spin_lock(&oldsighand->siglock);
1193		rcu_assign_pointer(tsk->sighand, newsighand);
 
 
1194		spin_unlock(&oldsighand->siglock);
1195		write_unlock_irq(&tasklist_lock);
1196
1197		__cleanup_sighand(oldsighand);
1198	}
1199
1200	BUG_ON(!thread_group_leader(tsk));
1201	return 0;
1202
1203killed:
1204	/* protects against exit_notify() and __exit_signal() */
1205	read_lock(&tasklist_lock);
1206	sig->group_exit_task = NULL;
1207	sig->notify_count = 0;
1208	read_unlock(&tasklist_lock);
1209	return -EAGAIN;
1210}
1211
1212char *get_task_comm(char *buf, struct task_struct *tsk)
1213{
1214	/* buf must be at least sizeof(tsk->comm) in size */
1215	task_lock(tsk);
1216	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1217	task_unlock(tsk);
1218	return buf;
1219}
1220EXPORT_SYMBOL_GPL(get_task_comm);
1221
1222/*
1223 * These functions flushes out all traces of the currently running executable
1224 * so that a new one can be started
1225 */
1226
1227void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228{
1229	task_lock(tsk);
1230	trace_task_rename(tsk, buf);
1231	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1232	task_unlock(tsk);
1233	perf_event_comm(tsk, exec);
1234}
1235
1236int flush_old_exec(struct linux_binprm * bprm)
 
 
 
 
 
 
1237{
 
1238	int retval;
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240	/*
1241	 * Make sure we have a private signal table and that
1242	 * we are unassociated from the previous thread group.
1243	 */
1244	retval = de_thread(current);
 
 
 
1245	if (retval)
1246		goto out;
1247
1248	/*
1249	 * Must be called _before_ exec_mmap() as bprm->mm is
1250	 * not visibile until then. This also enables the update
1251	 * to be lockless.
1252	 */
1253	set_mm_exe_file(bprm->mm, bprm->file);
 
 
 
 
 
 
 
1254
1255	/*
1256	 * Release all of the old mmap stuff
1257	 */
1258	acct_arg_size(bprm, 0);
1259	retval = exec_mmap(bprm->mm);
1260	if (retval)
1261		goto out;
1262
1263	bprm->mm = NULL;		/* We're using it now */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264
1265	set_fs(USER_DS);
1266	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1267					PF_NOFREEZE | PF_NO_SETAFFINITY);
1268	flush_thread();
1269	current->personality &= ~bprm->per_clear;
 
 
1270
1271	/*
1272	 * We have to apply CLOEXEC before we change whether the process is
1273	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1274	 * trying to access the should-be-closed file descriptors of a process
1275	 * undergoing exec(2).
1276	 */
1277	do_close_on_exec(current->files);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278	return 0;
1279
 
 
 
 
 
1280out:
1281	return retval;
1282}
1283EXPORT_SYMBOL(flush_old_exec);
1284
1285void would_dump(struct linux_binprm *bprm, struct file *file)
1286{
1287	struct inode *inode = file_inode(file);
1288	if (inode_permission(inode, MAY_READ) < 0) {
 
1289		struct user_namespace *old, *user_ns;
1290		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1291
1292		/* Ensure mm->user_ns contains the executable */
1293		user_ns = old = bprm->mm->user_ns;
1294		while ((user_ns != &init_user_ns) &&
1295		       !privileged_wrt_inode_uidgid(user_ns, inode))
1296			user_ns = user_ns->parent;
1297
1298		if (old != user_ns) {
1299			bprm->mm->user_ns = get_user_ns(user_ns);
1300			put_user_ns(old);
1301		}
1302	}
1303}
1304EXPORT_SYMBOL(would_dump);
1305
1306void setup_new_exec(struct linux_binprm * bprm)
1307{
1308	arch_pick_mmap_layout(current->mm);
 
1309
1310	/* This is the point of no return */
1311	current->sas_ss_sp = current->sas_ss_size = 0;
1312
1313	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1314		set_dumpable(current->mm, SUID_DUMP_USER);
1315	else
1316		set_dumpable(current->mm, suid_dumpable);
1317
1318	perf_event_exec();
1319	__set_task_comm(current, kbasename(bprm->filename), true);
1320
1321	/* Set the new mm task size. We have to do that late because it may
1322	 * depend on TIF_32BIT which is only updated in flush_thread() on
1323	 * some architectures like powerpc
1324	 */
1325	current->mm->task_size = TASK_SIZE;
1326
1327	/* install the new credentials */
1328	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1329	    !gid_eq(bprm->cred->gid, current_egid())) {
1330		current->pdeath_signal = 0;
1331	} else {
1332		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1333			set_dumpable(current->mm, suid_dumpable);
1334	}
1335
1336	/* An exec changes our domain. We are no longer part of the thread
1337	   group */
1338	current->self_exec_id++;
1339	flush_signal_handlers(current, 0);
1340}
1341EXPORT_SYMBOL(setup_new_exec);
1342
 
 
 
 
 
 
 
 
 
 
1343/*
1344 * Prepare credentials and lock ->cred_guard_mutex.
1345 * install_exec_creds() commits the new creds and drops the lock.
1346 * Or, if exec fails before, free_bprm() should release ->cred and
1347 * and unlock.
1348 */
1349int prepare_bprm_creds(struct linux_binprm *bprm)
1350{
1351	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1352		return -ERESTARTNOINTR;
1353
1354	bprm->cred = prepare_exec_creds();
1355	if (likely(bprm->cred))
1356		return 0;
1357
1358	mutex_unlock(&current->signal->cred_guard_mutex);
1359	return -ENOMEM;
1360}
1361
 
 
 
 
 
 
 
 
 
1362static void free_bprm(struct linux_binprm *bprm)
1363{
 
 
 
 
1364	free_arg_pages(bprm);
1365	if (bprm->cred) {
1366		mutex_unlock(&current->signal->cred_guard_mutex);
1367		abort_creds(bprm->cred);
1368	}
1369	if (bprm->file) {
1370		allow_write_access(bprm->file);
1371		fput(bprm->file);
1372	}
1373	/* If a binfmt changed the interp, free it. */
1374	if (bprm->interp != bprm->filename)
1375		kfree(bprm->interp);
 
1376	kfree(bprm);
1377}
1378
1379int bprm_change_interp(char *interp, struct linux_binprm *bprm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380{
1381	/* If a binfmt changed the interp, free it first. */
1382	if (bprm->interp != bprm->filename)
1383		kfree(bprm->interp);
1384	bprm->interp = kstrdup(interp, GFP_KERNEL);
1385	if (!bprm->interp)
1386		return -ENOMEM;
1387	return 0;
1388}
1389EXPORT_SYMBOL(bprm_change_interp);
1390
1391/*
1392 * install the new credentials for this executable
1393 */
1394void install_exec_creds(struct linux_binprm *bprm)
1395{
1396	security_bprm_committing_creds(bprm);
1397
1398	commit_creds(bprm->cred);
1399	bprm->cred = NULL;
1400
1401	/*
1402	 * Disable monitoring for regular users
1403	 * when executing setuid binaries. Must
1404	 * wait until new credentials are committed
1405	 * by commit_creds() above
1406	 */
1407	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1408		perf_event_exit_task(current);
1409	/*
1410	 * cred_guard_mutex must be held at least to this point to prevent
1411	 * ptrace_attach() from altering our determination of the task's
1412	 * credentials; any time after this it may be unlocked.
1413	 */
1414	security_bprm_committed_creds(bprm);
1415	mutex_unlock(&current->signal->cred_guard_mutex);
1416}
1417EXPORT_SYMBOL(install_exec_creds);
1418
1419/*
1420 * determine how safe it is to execute the proposed program
1421 * - the caller must hold ->cred_guard_mutex to protect against
1422 *   PTRACE_ATTACH or seccomp thread-sync
1423 */
1424static void check_unsafe_exec(struct linux_binprm *bprm)
1425{
1426	struct task_struct *p = current, *t;
1427	unsigned n_fs;
1428
1429	if (p->ptrace) {
1430		if (ptracer_capable(p, current_user_ns()))
1431			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1432		else
1433			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1434	}
1435
1436	/*
1437	 * This isn't strictly necessary, but it makes it harder for LSMs to
1438	 * mess up.
1439	 */
1440	if (task_no_new_privs(current))
1441		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1442
1443	t = p;
 
 
 
 
 
1444	n_fs = 1;
1445	spin_lock(&p->fs->lock);
1446	rcu_read_lock();
1447	while_each_thread(p, t) {
1448		if (t->fs == p->fs)
1449			n_fs++;
1450	}
1451	rcu_read_unlock();
1452
 
1453	if (p->fs->users > n_fs)
1454		bprm->unsafe |= LSM_UNSAFE_SHARE;
1455	else
1456		p->fs->in_exec = 1;
1457	spin_unlock(&p->fs->lock);
1458}
1459
1460static void bprm_fill_uid(struct linux_binprm *bprm)
1461{
1462	struct inode *inode;
 
 
1463	unsigned int mode;
1464	kuid_t uid;
1465	kgid_t gid;
1466
1467	/*
1468	 * Since this can be called multiple times (via prepare_binprm),
1469	 * we must clear any previous work done when setting set[ug]id
1470	 * bits from any earlier bprm->file uses (for example when run
1471	 * first for a setuid script then again for its interpreter).
1472	 */
1473	bprm->cred->euid = current_euid();
1474	bprm->cred->egid = current_egid();
1475
1476	if (!mnt_may_suid(bprm->file->f_path.mnt))
1477		return;
1478
1479	if (task_no_new_privs(current))
1480		return;
1481
1482	inode = file_inode(bprm->file);
1483	mode = READ_ONCE(inode->i_mode);
1484	if (!(mode & (S_ISUID|S_ISGID)))
1485		return;
1486
 
 
1487	/* Be careful if suid/sgid is set */
1488	inode_lock(inode);
1489
1490	/* reload atomically mode/uid/gid now that lock held */
1491	mode = inode->i_mode;
1492	uid = inode->i_uid;
1493	gid = inode->i_gid;
 
1494	inode_unlock(inode);
1495
 
 
 
 
1496	/* We ignore suid/sgid if there are no mappings for them in the ns */
1497	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1498		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1499		return;
1500
1501	if (mode & S_ISUID) {
1502		bprm->per_clear |= PER_CLEAR_ON_SETID;
1503		bprm->cred->euid = uid;
1504	}
1505
1506	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1507		bprm->per_clear |= PER_CLEAR_ON_SETID;
1508		bprm->cred->egid = gid;
1509	}
1510}
1511
1512/*
 
 
 
 
 
 
 
 
 
 
 
 
1513 * Fill the binprm structure from the inode.
1514 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1515 *
1516 * This may be called multiple times for binary chains (scripts for example).
1517 */
1518int prepare_binprm(struct linux_binprm *bprm)
1519{
1520	int retval;
1521
1522	bprm_fill_uid(bprm);
1523
1524	/* fill in binprm security blob */
1525	retval = security_bprm_set_creds(bprm);
1526	if (retval)
1527		return retval;
1528	bprm->cred_prepared = 1;
1529
1530	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1531	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1532}
1533
1534EXPORT_SYMBOL(prepare_binprm);
1535
1536/*
1537 * Arguments are '\0' separated strings found at the location bprm->p
1538 * points to; chop off the first by relocating brpm->p to right after
1539 * the first '\0' encountered.
1540 */
1541int remove_arg_zero(struct linux_binprm *bprm)
1542{
1543	int ret = 0;
1544	unsigned long offset;
1545	char *kaddr;
1546	struct page *page;
1547
1548	if (!bprm->argc)
1549		return 0;
1550
1551	do {
1552		offset = bprm->p & ~PAGE_MASK;
1553		page = get_arg_page(bprm, bprm->p, 0);
1554		if (!page) {
1555			ret = -EFAULT;
1556			goto out;
1557		}
1558		kaddr = kmap_atomic(page);
1559
1560		for (; offset < PAGE_SIZE && kaddr[offset];
1561				offset++, bprm->p++)
1562			;
1563
1564		kunmap_atomic(kaddr);
1565		put_arg_page(page);
1566	} while (offset == PAGE_SIZE);
1567
1568	bprm->p++;
1569	bprm->argc--;
1570	ret = 0;
1571
1572out:
1573	return ret;
1574}
1575EXPORT_SYMBOL(remove_arg_zero);
1576
1577#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1578/*
1579 * cycle the list of binary formats handler, until one recognizes the image
1580 */
1581int search_binary_handler(struct linux_binprm *bprm)
1582{
1583	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1584	struct linux_binfmt *fmt;
1585	int retval;
1586
1587	/* This allows 4 levels of binfmt rewrites before failing hard. */
1588	if (bprm->recursion_depth > 5)
1589		return -ELOOP;
1590
1591	retval = security_bprm_check(bprm);
1592	if (retval)
1593		return retval;
1594
1595	retval = -ENOENT;
1596 retry:
1597	read_lock(&binfmt_lock);
1598	list_for_each_entry(fmt, &formats, lh) {
1599		if (!try_module_get(fmt->module))
1600			continue;
1601		read_unlock(&binfmt_lock);
1602		bprm->recursion_depth++;
1603		retval = fmt->load_binary(bprm);
 
1604		read_lock(&binfmt_lock);
1605		put_binfmt(fmt);
1606		bprm->recursion_depth--;
1607		if (retval < 0 && !bprm->mm) {
1608			/* we got to flush_old_exec() and failed after it */
1609			read_unlock(&binfmt_lock);
1610			force_sigsegv(SIGSEGV, current);
1611			return retval;
1612		}
1613		if (retval != -ENOEXEC || !bprm->file) {
1614			read_unlock(&binfmt_lock);
1615			return retval;
1616		}
1617	}
1618	read_unlock(&binfmt_lock);
1619
1620	if (need_retry) {
1621		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1622		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1623			return retval;
1624		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1625			return retval;
1626		need_retry = false;
1627		goto retry;
1628	}
1629
1630	return retval;
1631}
1632EXPORT_SYMBOL(search_binary_handler);
1633
 
1634static int exec_binprm(struct linux_binprm *bprm)
1635{
1636	pid_t old_pid, old_vpid;
1637	int ret;
1638
1639	/* Need to fetch pid before load_binary changes it */
1640	old_pid = current->pid;
1641	rcu_read_lock();
1642	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1643	rcu_read_unlock();
1644
1645	ret = search_binary_handler(bprm);
1646	if (ret >= 0) {
1647		audit_bprm(bprm);
1648		trace_sched_process_exec(current, old_pid, bprm);
1649		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1650		proc_exec_connector(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651	}
1652
1653	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654}
1655
1656/*
1657 * sys_execve() executes a new program.
1658 */
1659static int do_execveat_common(int fd, struct filename *filename,
1660			      struct user_arg_ptr argv,
1661			      struct user_arg_ptr envp,
1662			      int flags)
1663{
1664	char *pathbuf = NULL;
1665	struct linux_binprm *bprm;
1666	struct file *file;
1667	struct files_struct *displaced;
1668	int retval;
1669
1670	if (IS_ERR(filename))
1671		return PTR_ERR(filename);
1672
1673	/*
1674	 * We move the actual failure in case of RLIMIT_NPROC excess from
1675	 * set*uid() to execve() because too many poorly written programs
1676	 * don't check setuid() return code.  Here we additionally recheck
1677	 * whether NPROC limit is still exceeded.
1678	 */
1679	if ((current->flags & PF_NPROC_EXCEEDED) &&
1680	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1681		retval = -EAGAIN;
1682		goto out_ret;
1683	}
1684
1685	/* We're below the limit (still or again), so we don't want to make
1686	 * further execve() calls fail. */
1687	current->flags &= ~PF_NPROC_EXCEEDED;
1688
1689	retval = unshare_files(&displaced);
1690	if (retval)
 
1691		goto out_ret;
 
1692
1693	retval = -ENOMEM;
1694	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1695	if (!bprm)
1696		goto out_files;
 
 
 
1697
1698	retval = prepare_bprm_creds(bprm);
1699	if (retval)
1700		goto out_free;
 
1701
1702	check_unsafe_exec(bprm);
1703	current->in_execve = 1;
 
1704
1705	file = do_open_execat(fd, filename, flags);
1706	retval = PTR_ERR(file);
1707	if (IS_ERR(file))
1708		goto out_unmark;
1709
1710	sched_exec();
 
 
1711
1712	bprm->file = file;
1713	if (fd == AT_FDCWD || filename->name[0] == '/') {
1714		bprm->filename = filename->name;
1715	} else {
1716		if (filename->name[0] == '\0')
1717			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1718		else
1719			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1720					    fd, filename->name);
1721		if (!pathbuf) {
1722			retval = -ENOMEM;
1723			goto out_unmark;
1724		}
1725		/*
1726		 * Record that a name derived from an O_CLOEXEC fd will be
1727		 * inaccessible after exec. Relies on having exclusive access to
1728		 * current->files (due to unshare_files above).
1729		 */
1730		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1731			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1732		bprm->filename = pathbuf;
1733	}
1734	bprm->interp = bprm->filename;
1735
1736	retval = bprm_mm_init(bprm);
1737	if (retval)
1738		goto out_unmark;
1739
1740	bprm->argc = count(argv, MAX_ARG_STRINGS);
1741	if ((retval = bprm->argc) < 0)
1742		goto out;
 
1743
1744	bprm->envc = count(envp, MAX_ARG_STRINGS);
1745	if ((retval = bprm->envc) < 0)
1746		goto out;
 
 
 
 
1747
1748	retval = prepare_binprm(bprm);
1749	if (retval < 0)
1750		goto out;
1751
1752	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1753	if (retval < 0)
1754		goto out;
1755
1756	bprm->exec = bprm->p;
1757	retval = copy_strings(bprm->envc, envp, bprm);
1758	if (retval < 0)
1759		goto out;
 
1760
1761	retval = copy_strings(bprm->argc, argv, bprm);
 
 
1762	if (retval < 0)
1763		goto out;
 
1764
1765	would_dump(bprm, bprm->file);
 
 
 
1766
1767	retval = exec_binprm(bprm);
1768	if (retval < 0)
1769		goto out;
1770
1771	/* execve succeeded */
1772	current->fs->in_exec = 0;
1773	current->in_execve = 0;
1774	acct_update_integrals(current);
1775	task_numa_free(current);
1776	free_bprm(bprm);
1777	kfree(pathbuf);
1778	putname(filename);
1779	if (displaced)
1780		put_files_struct(displaced);
1781	return retval;
1782
1783out:
1784	if (bprm->mm) {
1785		acct_arg_size(bprm, 0);
1786		mmput(bprm->mm);
1787	}
1788
1789out_unmark:
1790	current->fs->in_exec = 0;
1791	current->in_execve = 0;
1792
 
1793out_free:
1794	free_bprm(bprm);
1795	kfree(pathbuf);
1796
1797out_files:
1798	if (displaced)
1799		reset_files_struct(displaced);
1800out_ret:
1801	putname(filename);
1802	return retval;
1803}
1804
1805int do_execve(struct filename *filename,
1806	const char __user *const __user *__argv,
1807	const char __user *const __user *__envp)
1808{
1809	struct user_arg_ptr argv = { .ptr.native = __argv };
1810	struct user_arg_ptr envp = { .ptr.native = __envp };
1811	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1812}
1813
1814int do_execveat(int fd, struct filename *filename,
1815		const char __user *const __user *__argv,
1816		const char __user *const __user *__envp,
1817		int flags)
1818{
1819	struct user_arg_ptr argv = { .ptr.native = __argv };
1820	struct user_arg_ptr envp = { .ptr.native = __envp };
1821
1822	return do_execveat_common(fd, filename, argv, envp, flags);
1823}
1824
1825#ifdef CONFIG_COMPAT
1826static int compat_do_execve(struct filename *filename,
1827	const compat_uptr_t __user *__argv,
1828	const compat_uptr_t __user *__envp)
1829{
1830	struct user_arg_ptr argv = {
1831		.is_compat = true,
1832		.ptr.compat = __argv,
1833	};
1834	struct user_arg_ptr envp = {
1835		.is_compat = true,
1836		.ptr.compat = __envp,
1837	};
1838	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839}
1840
1841static int compat_do_execveat(int fd, struct filename *filename,
1842			      const compat_uptr_t __user *__argv,
1843			      const compat_uptr_t __user *__envp,
1844			      int flags)
1845{
1846	struct user_arg_ptr argv = {
1847		.is_compat = true,
1848		.ptr.compat = __argv,
1849	};
1850	struct user_arg_ptr envp = {
1851		.is_compat = true,
1852		.ptr.compat = __envp,
1853	};
1854	return do_execveat_common(fd, filename, argv, envp, flags);
1855}
1856#endif
1857
1858void set_binfmt(struct linux_binfmt *new)
1859{
1860	struct mm_struct *mm = current->mm;
1861
1862	if (mm->binfmt)
1863		module_put(mm->binfmt->module);
1864
1865	mm->binfmt = new;
1866	if (new)
1867		__module_get(new->module);
1868}
1869EXPORT_SYMBOL(set_binfmt);
1870
1871/*
1872 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1873 */
1874void set_dumpable(struct mm_struct *mm, int value)
1875{
1876	unsigned long old, new;
1877
1878	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1879		return;
1880
1881	do {
1882		old = ACCESS_ONCE(mm->flags);
1883		new = (old & ~MMF_DUMPABLE_MASK) | value;
1884	} while (cmpxchg(&mm->flags, old, new) != old);
1885}
1886
1887SYSCALL_DEFINE3(execve,
1888		const char __user *, filename,
1889		const char __user *const __user *, argv,
1890		const char __user *const __user *, envp)
1891{
1892	return do_execve(getname(filename), argv, envp);
1893}
1894
1895SYSCALL_DEFINE5(execveat,
1896		int, fd, const char __user *, filename,
1897		const char __user *const __user *, argv,
1898		const char __user *const __user *, envp,
1899		int, flags)
1900{
1901	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1902
1903	return do_execveat(fd,
1904			   getname_flags(filename, lookup_flags, NULL),
1905			   argv, envp, flags);
1906}
1907
1908#ifdef CONFIG_COMPAT
1909COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1910	const compat_uptr_t __user *, argv,
1911	const compat_uptr_t __user *, envp)
1912{
1913	return compat_do_execve(getname(filename), argv, envp);
1914}
1915
1916COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1917		       const char __user *, filename,
1918		       const compat_uptr_t __user *, argv,
1919		       const compat_uptr_t __user *, envp,
1920		       int,  flags)
1921{
1922	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1923
1924	return compat_do_execveat(fd,
1925				  getname_flags(filename, lookup_flags, NULL),
1926				  argv, envp, flags);
1927}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/exec.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * #!-checking implemented by tytso.
  10 */
  11/*
  12 * Demand-loading implemented 01.12.91 - no need to read anything but
  13 * the header into memory. The inode of the executable is put into
  14 * "current->executable", and page faults do the actual loading. Clean.
  15 *
  16 * Once more I can proudly say that linux stood up to being changed: it
  17 * was less than 2 hours work to get demand-loading completely implemented.
  18 *
  19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  20 * current->executable is only used by the procfs.  This allows a dispatch
  21 * table to check for several different types  of binary formats.  We keep
  22 * trying until we recognize the file or we run out of supported binary
  23 * formats.
  24 */
  25
  26#include <linux/kernel_read_file.h>
  27#include <linux/slab.h>
  28#include <linux/file.h>
  29#include <linux/fdtable.h>
  30#include <linux/mm.h>
 
  31#include <linux/stat.h>
  32#include <linux/fcntl.h>
  33#include <linux/swap.h>
  34#include <linux/string.h>
  35#include <linux/init.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/coredump.h>
  38#include <linux/sched/signal.h>
  39#include <linux/sched/numa_balancing.h>
  40#include <linux/sched/task.h>
  41#include <linux/pagemap.h>
  42#include <linux/perf_event.h>
  43#include <linux/highmem.h>
  44#include <linux/spinlock.h>
  45#include <linux/key.h>
  46#include <linux/personality.h>
  47#include <linux/binfmts.h>
  48#include <linux/utsname.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/module.h>
  51#include <linux/namei.h>
  52#include <linux/mount.h>
  53#include <linux/security.h>
  54#include <linux/syscalls.h>
  55#include <linux/tsacct_kern.h>
  56#include <linux/cn_proc.h>
  57#include <linux/audit.h>
 
  58#include <linux/kmod.h>
  59#include <linux/fsnotify.h>
  60#include <linux/fs_struct.h>
 
  61#include <linux/oom.h>
  62#include <linux/compat.h>
  63#include <linux/vmalloc.h>
  64#include <linux/io_uring.h>
  65#include <linux/syscall_user_dispatch.h>
  66#include <linux/coredump.h>
  67#include <linux/time_namespace.h>
  68#include <linux/user_events.h>
  69#include <linux/rseq.h>
  70#include <linux/ksm.h>
  71
  72#include <linux/uaccess.h>
  73#include <asm/mmu_context.h>
  74#include <asm/tlb.h>
  75
  76#include <trace/events/task.h>
  77#include "internal.h"
  78
  79#include <trace/events/sched.h>
  80
  81static int bprm_creds_from_file(struct linux_binprm *bprm);
  82
  83int suid_dumpable = 0;
  84
  85static LIST_HEAD(formats);
  86static DEFINE_RWLOCK(binfmt_lock);
  87
  88void __register_binfmt(struct linux_binfmt * fmt, int insert)
  89{
 
 
 
  90	write_lock(&binfmt_lock);
  91	insert ? list_add(&fmt->lh, &formats) :
  92		 list_add_tail(&fmt->lh, &formats);
  93	write_unlock(&binfmt_lock);
  94}
  95
  96EXPORT_SYMBOL(__register_binfmt);
  97
  98void unregister_binfmt(struct linux_binfmt * fmt)
  99{
 100	write_lock(&binfmt_lock);
 101	list_del(&fmt->lh);
 102	write_unlock(&binfmt_lock);
 103}
 104
 105EXPORT_SYMBOL(unregister_binfmt);
 106
 107static inline void put_binfmt(struct linux_binfmt * fmt)
 108{
 109	module_put(fmt->module);
 110}
 111
 112bool path_noexec(const struct path *path)
 113{
 114	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 115	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 116}
 117
 118#ifdef CONFIG_USELIB
 119/*
 120 * Note that a shared library must be both readable and executable due to
 121 * security reasons.
 122 *
 123 * Also note that we take the address to load from the file itself.
 124 */
 125SYSCALL_DEFINE1(uselib, const char __user *, library)
 126{
 127	struct linux_binfmt *fmt;
 128	struct file *file;
 129	struct filename *tmp = getname(library);
 130	int error = PTR_ERR(tmp);
 131	static const struct open_flags uselib_flags = {
 132		.open_flag = O_LARGEFILE | O_RDONLY,
 133		.acc_mode = MAY_READ | MAY_EXEC,
 134		.intent = LOOKUP_OPEN,
 135		.lookup_flags = LOOKUP_FOLLOW,
 136	};
 137
 138	if (IS_ERR(tmp))
 139		goto out;
 140
 141	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 142	putname(tmp);
 143	error = PTR_ERR(file);
 144	if (IS_ERR(file))
 145		goto out;
 146
 147	/*
 148	 * Check do_open_execat() for an explanation.
 149	 */
 
 150	error = -EACCES;
 151	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
 152	    path_noexec(&file->f_path))
 153		goto exit;
 154
 
 
 155	error = -ENOEXEC;
 156
 157	read_lock(&binfmt_lock);
 158	list_for_each_entry(fmt, &formats, lh) {
 159		if (!fmt->load_shlib)
 160			continue;
 161		if (!try_module_get(fmt->module))
 162			continue;
 163		read_unlock(&binfmt_lock);
 164		error = fmt->load_shlib(file);
 165		read_lock(&binfmt_lock);
 166		put_binfmt(fmt);
 167		if (error != -ENOEXEC)
 168			break;
 169	}
 170	read_unlock(&binfmt_lock);
 171exit:
 172	fput(file);
 173out:
 174	return error;
 175}
 176#endif /* #ifdef CONFIG_USELIB */
 177
 178#ifdef CONFIG_MMU
 179/*
 180 * The nascent bprm->mm is not visible until exec_mmap() but it can
 181 * use a lot of memory, account these pages in current->mm temporary
 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 183 * change the counter back via acct_arg_size(0).
 184 */
 185static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 186{
 187	struct mm_struct *mm = current->mm;
 188	long diff = (long)(pages - bprm->vma_pages);
 189
 190	if (!mm || !diff)
 191		return;
 192
 193	bprm->vma_pages = pages;
 194	add_mm_counter(mm, MM_ANONPAGES, diff);
 195}
 196
 197static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 198		int write)
 199{
 200	struct page *page;
 201	struct vm_area_struct *vma = bprm->vma;
 202	struct mm_struct *mm = bprm->mm;
 203	int ret;
 
 204
 205	/*
 206	 * Avoid relying on expanding the stack down in GUP (which
 207	 * does not work for STACK_GROWSUP anyway), and just do it
 208	 * by hand ahead of time.
 209	 */
 210	if (write && pos < vma->vm_start) {
 211		mmap_write_lock(mm);
 212		ret = expand_downwards(vma, pos);
 213		if (unlikely(ret < 0)) {
 214			mmap_write_unlock(mm);
 215			return NULL;
 216		}
 217		mmap_write_downgrade(mm);
 218	} else
 219		mmap_read_lock(mm);
 
 220
 221	/*
 222	 * We are doing an exec().  'current' is the process
 223	 * doing the exec and 'mm' is the new process's mm.
 224	 */
 225	ret = get_user_pages_remote(mm, pos, 1,
 226			write ? FOLL_WRITE : 0,
 227			&page, NULL);
 228	mmap_read_unlock(mm);
 229	if (ret <= 0)
 230		return NULL;
 231
 232	if (write)
 233		acct_arg_size(bprm, vma_pages(vma));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234
 235	return page;
 236}
 237
 238static void put_arg_page(struct page *page)
 239{
 240	put_page(page);
 241}
 242
 243static void free_arg_pages(struct linux_binprm *bprm)
 244{
 245}
 246
 247static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 248		struct page *page)
 249{
 250	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 251}
 252
 253static int __bprm_mm_init(struct linux_binprm *bprm)
 254{
 255	int err;
 256	struct vm_area_struct *vma = NULL;
 257	struct mm_struct *mm = bprm->mm;
 258
 259	bprm->vma = vma = vm_area_alloc(mm);
 260	if (!vma)
 261		return -ENOMEM;
 262	vma_set_anonymous(vma);
 263
 264	if (mmap_write_lock_killable(mm)) {
 265		err = -EINTR;
 266		goto err_free;
 267	}
 268
 269	/*
 270	 * Need to be called with mmap write lock
 271	 * held, to avoid race with ksmd.
 272	 */
 273	err = ksm_execve(mm);
 274	if (err)
 275		goto err_ksm;
 276
 277	/*
 278	 * Place the stack at the largest stack address the architecture
 279	 * supports. Later, we'll move this to an appropriate place. We don't
 280	 * use STACK_TOP because that can depend on attributes which aren't
 281	 * configured yet.
 282	 */
 283	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 284	vma->vm_end = STACK_TOP_MAX;
 285	vma->vm_start = vma->vm_end - PAGE_SIZE;
 286	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
 287	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 
 288
 289	err = insert_vm_struct(mm, vma);
 290	if (err)
 291		goto err;
 292
 293	mm->stack_vm = mm->total_vm = 1;
 294	mmap_write_unlock(mm);
 
 295	bprm->p = vma->vm_end - sizeof(void *);
 296	return 0;
 297err:
 298	ksm_exit(mm);
 299err_ksm:
 300	mmap_write_unlock(mm);
 301err_free:
 302	bprm->vma = NULL;
 303	vm_area_free(vma);
 304	return err;
 305}
 306
 307static bool valid_arg_len(struct linux_binprm *bprm, long len)
 308{
 309	return len <= MAX_ARG_STRLEN;
 310}
 311
 312#else
 313
 314static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 315{
 316}
 317
 318static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 319		int write)
 320{
 321	struct page *page;
 322
 323	page = bprm->page[pos / PAGE_SIZE];
 324	if (!page && write) {
 325		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 326		if (!page)
 327			return NULL;
 328		bprm->page[pos / PAGE_SIZE] = page;
 329	}
 330
 331	return page;
 332}
 333
 334static void put_arg_page(struct page *page)
 335{
 336}
 337
 338static void free_arg_page(struct linux_binprm *bprm, int i)
 339{
 340	if (bprm->page[i]) {
 341		__free_page(bprm->page[i]);
 342		bprm->page[i] = NULL;
 343	}
 344}
 345
 346static void free_arg_pages(struct linux_binprm *bprm)
 347{
 348	int i;
 349
 350	for (i = 0; i < MAX_ARG_PAGES; i++)
 351		free_arg_page(bprm, i);
 352}
 353
 354static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 355		struct page *page)
 356{
 357}
 358
 359static int __bprm_mm_init(struct linux_binprm *bprm)
 360{
 361	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 362	return 0;
 363}
 364
 365static bool valid_arg_len(struct linux_binprm *bprm, long len)
 366{
 367	return len <= bprm->p;
 368}
 369
 370#endif /* CONFIG_MMU */
 371
 372/*
 373 * Create a new mm_struct and populate it with a temporary stack
 374 * vm_area_struct.  We don't have enough context at this point to set the stack
 375 * flags, permissions, and offset, so we use temporary values.  We'll update
 376 * them later in setup_arg_pages().
 377 */
 378static int bprm_mm_init(struct linux_binprm *bprm)
 379{
 380	int err;
 381	struct mm_struct *mm = NULL;
 382
 383	bprm->mm = mm = mm_alloc();
 384	err = -ENOMEM;
 385	if (!mm)
 386		goto err;
 387
 388	/* Save current stack limit for all calculations made during exec. */
 389	task_lock(current->group_leader);
 390	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 391	task_unlock(current->group_leader);
 392
 393	err = __bprm_mm_init(bprm);
 394	if (err)
 395		goto err;
 396
 397	return 0;
 398
 399err:
 400	if (mm) {
 401		bprm->mm = NULL;
 402		mmdrop(mm);
 403	}
 404
 405	return err;
 406}
 407
 408struct user_arg_ptr {
 409#ifdef CONFIG_COMPAT
 410	bool is_compat;
 411#endif
 412	union {
 413		const char __user *const __user *native;
 414#ifdef CONFIG_COMPAT
 415		const compat_uptr_t __user *compat;
 416#endif
 417	} ptr;
 418};
 419
 420static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 421{
 422	const char __user *native;
 423
 424#ifdef CONFIG_COMPAT
 425	if (unlikely(argv.is_compat)) {
 426		compat_uptr_t compat;
 427
 428		if (get_user(compat, argv.ptr.compat + nr))
 429			return ERR_PTR(-EFAULT);
 430
 431		return compat_ptr(compat);
 432	}
 433#endif
 434
 435	if (get_user(native, argv.ptr.native + nr))
 436		return ERR_PTR(-EFAULT);
 437
 438	return native;
 439}
 440
 441/*
 442 * count() counts the number of strings in array ARGV.
 443 */
 444static int count(struct user_arg_ptr argv, int max)
 445{
 446	int i = 0;
 447
 448	if (argv.ptr.native != NULL) {
 449		for (;;) {
 450			const char __user *p = get_user_arg_ptr(argv, i);
 451
 452			if (!p)
 453				break;
 454
 455			if (IS_ERR(p))
 456				return -EFAULT;
 457
 458			if (i >= max)
 459				return -E2BIG;
 460			++i;
 461
 462			if (fatal_signal_pending(current))
 463				return -ERESTARTNOHAND;
 464			cond_resched();
 465		}
 466	}
 467	return i;
 468}
 469
 470static int count_strings_kernel(const char *const *argv)
 471{
 472	int i;
 473
 474	if (!argv)
 475		return 0;
 476
 477	for (i = 0; argv[i]; ++i) {
 478		if (i >= MAX_ARG_STRINGS)
 479			return -E2BIG;
 480		if (fatal_signal_pending(current))
 481			return -ERESTARTNOHAND;
 482		cond_resched();
 483	}
 484	return i;
 485}
 486
 487static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
 488				       unsigned long limit)
 489{
 490#ifdef CONFIG_MMU
 491	/* Avoid a pathological bprm->p. */
 492	if (bprm->p < limit)
 493		return -E2BIG;
 494	bprm->argmin = bprm->p - limit;
 495#endif
 496	return 0;
 497}
 498static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
 499{
 500#ifdef CONFIG_MMU
 501	return bprm->p < bprm->argmin;
 502#else
 503	return false;
 504#endif
 505}
 506
 507/*
 508 * Calculate bprm->argmin from:
 509 * - _STK_LIM
 510 * - ARG_MAX
 511 * - bprm->rlim_stack.rlim_cur
 512 * - bprm->argc
 513 * - bprm->envc
 514 * - bprm->p
 515 */
 516static int bprm_stack_limits(struct linux_binprm *bprm)
 517{
 518	unsigned long limit, ptr_size;
 519
 520	/*
 521	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 522	 * (whichever is smaller) for the argv+env strings.
 523	 * This ensures that:
 524	 *  - the remaining binfmt code will not run out of stack space,
 525	 *  - the program will have a reasonable amount of stack left
 526	 *    to work from.
 527	 */
 528	limit = _STK_LIM / 4 * 3;
 529	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 530	/*
 531	 * We've historically supported up to 32 pages (ARG_MAX)
 532	 * of argument strings even with small stacks
 533	 */
 534	limit = max_t(unsigned long, limit, ARG_MAX);
 535	/* Reject totally pathological counts. */
 536	if (bprm->argc < 0 || bprm->envc < 0)
 537		return -E2BIG;
 538	/*
 539	 * We must account for the size of all the argv and envp pointers to
 540	 * the argv and envp strings, since they will also take up space in
 541	 * the stack. They aren't stored until much later when we can't
 542	 * signal to the parent that the child has run out of stack space.
 543	 * Instead, calculate it here so it's possible to fail gracefully.
 544	 *
 545	 * In the case of argc = 0, make sure there is space for adding a
 546	 * empty string (which will bump argc to 1), to ensure confused
 547	 * userspace programs don't start processing from argv[1], thinking
 548	 * argc can never be 0, to keep them from walking envp by accident.
 549	 * See do_execveat_common().
 550	 */
 551	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
 552	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
 553		return -E2BIG;
 554	if (limit <= ptr_size)
 555		return -E2BIG;
 556	limit -= ptr_size;
 557
 558	return bprm_set_stack_limit(bprm, limit);
 559}
 560
 561/*
 562 * 'copy_strings()' copies argument/environment strings from the old
 563 * processes's memory to the new process's stack.  The call to get_user_pages()
 564 * ensures the destination page is created and not swapped out.
 565 */
 566static int copy_strings(int argc, struct user_arg_ptr argv,
 567			struct linux_binprm *bprm)
 568{
 569	struct page *kmapped_page = NULL;
 570	char *kaddr = NULL;
 571	unsigned long kpos = 0;
 572	int ret;
 573
 574	while (argc-- > 0) {
 575		const char __user *str;
 576		int len;
 577		unsigned long pos;
 578
 579		ret = -EFAULT;
 580		str = get_user_arg_ptr(argv, argc);
 581		if (IS_ERR(str))
 582			goto out;
 583
 584		len = strnlen_user(str, MAX_ARG_STRLEN);
 585		if (!len)
 586			goto out;
 587
 588		ret = -E2BIG;
 589		if (!valid_arg_len(bprm, len))
 590			goto out;
 591
 592		/* We're going to work our way backwards. */
 593		pos = bprm->p;
 594		str += len;
 595		bprm->p -= len;
 596		if (bprm_hit_stack_limit(bprm))
 597			goto out;
 598
 599		while (len > 0) {
 600			int offset, bytes_to_copy;
 601
 602			if (fatal_signal_pending(current)) {
 603				ret = -ERESTARTNOHAND;
 604				goto out;
 605			}
 606			cond_resched();
 607
 608			offset = pos % PAGE_SIZE;
 609			if (offset == 0)
 610				offset = PAGE_SIZE;
 611
 612			bytes_to_copy = offset;
 613			if (bytes_to_copy > len)
 614				bytes_to_copy = len;
 615
 616			offset -= bytes_to_copy;
 617			pos -= bytes_to_copy;
 618			str -= bytes_to_copy;
 619			len -= bytes_to_copy;
 620
 621			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 622				struct page *page;
 623
 624				page = get_arg_page(bprm, pos, 1);
 625				if (!page) {
 626					ret = -E2BIG;
 627					goto out;
 628				}
 629
 630				if (kmapped_page) {
 631					flush_dcache_page(kmapped_page);
 632					kunmap_local(kaddr);
 633					put_arg_page(kmapped_page);
 634				}
 635				kmapped_page = page;
 636				kaddr = kmap_local_page(kmapped_page);
 637				kpos = pos & PAGE_MASK;
 638				flush_arg_page(bprm, kpos, kmapped_page);
 639			}
 640			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 641				ret = -EFAULT;
 642				goto out;
 643			}
 644		}
 645	}
 646	ret = 0;
 647out:
 648	if (kmapped_page) {
 649		flush_dcache_page(kmapped_page);
 650		kunmap_local(kaddr);
 651		put_arg_page(kmapped_page);
 652	}
 653	return ret;
 654}
 655
 656/*
 657 * Copy and argument/environment string from the kernel to the processes stack.
 658 */
 659int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
 
 660{
 661	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
 662	unsigned long pos = bprm->p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663
 664	if (len == 0)
 
 
 
 
 665		return -EFAULT;
 666	if (!valid_arg_len(bprm, len))
 667		return -E2BIG;
 668
 669	/* We're going to work our way backwards. */
 670	arg += len;
 671	bprm->p -= len;
 672	if (bprm_hit_stack_limit(bprm))
 673		return -E2BIG;
 674
 675	while (len > 0) {
 676		unsigned int bytes_to_copy = min_t(unsigned int, len,
 677				min_not_zero(offset_in_page(pos), PAGE_SIZE));
 678		struct page *page;
 679
 680		pos -= bytes_to_copy;
 681		arg -= bytes_to_copy;
 682		len -= bytes_to_copy;
 683
 684		page = get_arg_page(bprm, pos, 1);
 685		if (!page)
 686			return -E2BIG;
 687		flush_arg_page(bprm, pos & PAGE_MASK, page);
 688		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
 689		put_arg_page(page);
 
 
 
 
 
 
 
 
 
 
 
 690	}
 
 691
 692	return 0;
 693}
 694EXPORT_SYMBOL(copy_string_kernel);
 
 695
 696static int copy_strings_kernel(int argc, const char *const *argv,
 697			       struct linux_binprm *bprm)
 698{
 699	while (argc-- > 0) {
 700		int ret = copy_string_kernel(argv[argc], bprm);
 701		if (ret < 0)
 702			return ret;
 703		if (fatal_signal_pending(current))
 704			return -ERESTARTNOHAND;
 705		cond_resched();
 706	}
 707	return 0;
 708}
 709
 710#ifdef CONFIG_MMU
 711
 712/*
 713 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 714 * the stack is optionally relocated, and some extra space is added.
 715 */
 716int setup_arg_pages(struct linux_binprm *bprm,
 717		    unsigned long stack_top,
 718		    int executable_stack)
 719{
 720	unsigned long ret;
 721	unsigned long stack_shift;
 722	struct mm_struct *mm = current->mm;
 723	struct vm_area_struct *vma = bprm->vma;
 724	struct vm_area_struct *prev = NULL;
 725	unsigned long vm_flags;
 726	unsigned long stack_base;
 727	unsigned long stack_size;
 728	unsigned long stack_expand;
 729	unsigned long rlim_stack;
 730	struct mmu_gather tlb;
 731	struct vma_iterator vmi;
 732
 733#ifdef CONFIG_STACK_GROWSUP
 734	/* Limit stack size */
 735	stack_base = bprm->rlim_stack.rlim_max;
 736
 737	stack_base = calc_max_stack_size(stack_base);
 738
 739	/* Add space for stack randomization. */
 740	if (current->flags & PF_RANDOMIZE)
 741		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 742
 743	/* Make sure we didn't let the argument array grow too large. */
 744	if (vma->vm_end - vma->vm_start > stack_base)
 745		return -ENOMEM;
 746
 747	stack_base = PAGE_ALIGN(stack_top - stack_base);
 748
 749	stack_shift = vma->vm_start - stack_base;
 750	mm->arg_start = bprm->p - stack_shift;
 751	bprm->p = vma->vm_end - stack_shift;
 752#else
 753	stack_top = arch_align_stack(stack_top);
 754	stack_top = PAGE_ALIGN(stack_top);
 755
 756	if (unlikely(stack_top < mmap_min_addr) ||
 757	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 758		return -ENOMEM;
 759
 760	stack_shift = vma->vm_end - stack_top;
 761
 762	bprm->p -= stack_shift;
 763	mm->arg_start = bprm->p;
 764#endif
 765
 766	if (bprm->loader)
 767		bprm->loader -= stack_shift;
 768	bprm->exec -= stack_shift;
 769
 770	if (mmap_write_lock_killable(mm))
 771		return -EINTR;
 772
 773	vm_flags = VM_STACK_FLAGS;
 774
 775	/*
 776	 * Adjust stack execute permissions; explicitly enable for
 777	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 778	 * (arch default) otherwise.
 779	 */
 780	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 781		vm_flags |= VM_EXEC;
 782	else if (executable_stack == EXSTACK_DISABLE_X)
 783		vm_flags &= ~VM_EXEC;
 784	vm_flags |= mm->def_flags;
 785	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 786
 787	vma_iter_init(&vmi, mm, vma->vm_start);
 788
 789	tlb_gather_mmu(&tlb, mm);
 790	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
 791			vm_flags);
 792	tlb_finish_mmu(&tlb);
 793
 794	if (ret)
 795		goto out_unlock;
 796	BUG_ON(prev != vma);
 797
 798	if (unlikely(vm_flags & VM_EXEC)) {
 799		pr_warn_once("process '%pD4' started with executable stack\n",
 800			     bprm->file);
 801	}
 802
 803	/* Move stack pages down in memory. */
 804	if (stack_shift) {
 805		/*
 806		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 807		 * the binfmt code determines where the new stack should reside, we shift it to
 808		 * its final location.
 809		 */
 810		ret = relocate_vma_down(vma, stack_shift);
 811		if (ret)
 812			goto out_unlock;
 813	}
 814
 815	/* mprotect_fixup is overkill to remove the temporary stack flags */
 816	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
 817
 818	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 819	stack_size = vma->vm_end - vma->vm_start;
 820	/*
 821	 * Align this down to a page boundary as expand_stack
 822	 * will align it up.
 823	 */
 824	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 825
 826	stack_expand = min(rlim_stack, stack_size + stack_expand);
 827
 828#ifdef CONFIG_STACK_GROWSUP
 829	stack_base = vma->vm_start + stack_expand;
 
 
 
 830#else
 831	stack_base = vma->vm_end - stack_expand;
 
 
 
 832#endif
 833	current->mm->start_stack = bprm->p;
 834	ret = expand_stack_locked(vma, stack_base);
 835	if (ret)
 836		ret = -EFAULT;
 837
 838out_unlock:
 839	mmap_write_unlock(mm);
 840	return ret;
 841}
 842EXPORT_SYMBOL(setup_arg_pages);
 843
 844#else
 845
 846/*
 847 * Transfer the program arguments and environment from the holding pages
 848 * onto the stack. The provided stack pointer is adjusted accordingly.
 849 */
 850int transfer_args_to_stack(struct linux_binprm *bprm,
 851			   unsigned long *sp_location)
 852{
 853	unsigned long index, stop, sp;
 854	int ret = 0;
 855
 856	stop = bprm->p >> PAGE_SHIFT;
 857	sp = *sp_location;
 858
 859	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 860		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 861		char *src = kmap_local_page(bprm->page[index]) + offset;
 862		sp -= PAGE_SIZE - offset;
 863		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 864			ret = -EFAULT;
 865		kunmap_local(src);
 866		if (ret)
 867			goto out;
 868	}
 869
 870	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
 871	*sp_location = sp;
 872
 873out:
 874	return ret;
 875}
 876EXPORT_SYMBOL(transfer_args_to_stack);
 877
 878#endif /* CONFIG_MMU */
 879
 880/*
 881 * On success, caller must call do_close_execat() on the returned
 882 * struct file to close it.
 883 */
 884static struct file *do_open_execat(int fd, struct filename *name, int flags)
 885{
 
 886	int err;
 887	struct file *file __free(fput) = NULL;
 888	struct open_flags open_exec_flags = {
 889		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 890		.acc_mode = MAY_EXEC,
 891		.intent = LOOKUP_OPEN,
 892		.lookup_flags = LOOKUP_FOLLOW,
 893	};
 894
 895	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 896		return ERR_PTR(-EINVAL);
 897	if (flags & AT_SYMLINK_NOFOLLOW)
 898		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 899	if (flags & AT_EMPTY_PATH)
 900		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 901
 902	file = do_filp_open(fd, name, &open_exec_flags);
 903	if (IS_ERR(file))
 904		return file;
 905
 906	/*
 907	 * In the past the regular type check was here. It moved to may_open() in
 908	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
 909	 * an invariant that all non-regular files error out before we get here.
 910	 */
 911	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
 912	    path_noexec(&file->f_path))
 913		return ERR_PTR(-EACCES);
 914
 915	err = deny_write_access(file);
 916	if (err)
 917		return ERR_PTR(err);
 
 
 
 918
 919	return no_free_ptr(file);
 
 
 
 
 
 920}
 921
 922/**
 923 * open_exec - Open a path name for execution
 924 *
 925 * @name: path name to open with the intent of executing it.
 926 *
 927 * Returns ERR_PTR on failure or allocated struct file on success.
 928 *
 929 * As this is a wrapper for the internal do_open_execat(), callers
 930 * must call allow_write_access() before fput() on release. Also see
 931 * do_close_execat().
 932 */
 933struct file *open_exec(const char *name)
 934{
 935	struct filename *filename = getname_kernel(name);
 936	struct file *f = ERR_CAST(filename);
 937
 938	if (!IS_ERR(filename)) {
 939		f = do_open_execat(AT_FDCWD, filename, 0);
 940		putname(filename);
 941	}
 942	return f;
 943}
 944EXPORT_SYMBOL(open_exec);
 945
 946#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 948{
 949	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
 950	if (res > 0)
 951		flush_icache_user_range(addr, addr + len);
 952	return res;
 953}
 954EXPORT_SYMBOL(read_code);
 955#endif
 956
 957/*
 958 * Maps the mm_struct mm into the current task struct.
 959 * On success, this function returns with exec_update_lock
 960 * held for writing.
 961 */
 962static int exec_mmap(struct mm_struct *mm)
 963{
 964	struct task_struct *tsk;
 965	struct mm_struct *old_mm, *active_mm;
 966	int ret;
 967
 968	/* Notify parent that we're no longer interested in the old VM */
 969	tsk = current;
 970	old_mm = current->mm;
 971	exec_mm_release(tsk, old_mm);
 972
 973	ret = down_write_killable(&tsk->signal->exec_update_lock);
 974	if (ret)
 975		return ret;
 976
 977	if (old_mm) {
 
 978		/*
 979		 * If there is a pending fatal signal perhaps a signal
 980		 * whose default action is to create a coredump get
 981		 * out and die instead of going through with the exec.
 
 982		 */
 983		ret = mmap_read_lock_killable(old_mm);
 984		if (ret) {
 985			up_write(&tsk->signal->exec_update_lock);
 986			return ret;
 987		}
 988	}
 989
 990	task_lock(tsk);
 991	membarrier_exec_mmap(mm);
 992
 993	local_irq_disable();
 994	active_mm = tsk->active_mm;
 
 995	tsk->active_mm = mm;
 996	tsk->mm = mm;
 997	mm_init_cid(mm, tsk);
 998	/*
 999	 * This prevents preemption while active_mm is being loaded and
1000	 * it and mm are being updated, which could cause problems for
1001	 * lazy tlb mm refcounting when these are updated by context
1002	 * switches. Not all architectures can handle irqs off over
1003	 * activate_mm yet.
1004	 */
1005	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1006		local_irq_enable();
1007	activate_mm(active_mm, mm);
1008	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1009		local_irq_enable();
1010	lru_gen_add_mm(mm);
1011	task_unlock(tsk);
1012	lru_gen_use_mm(mm);
1013	if (old_mm) {
1014		mmap_read_unlock(old_mm);
1015		BUG_ON(active_mm != old_mm);
1016		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1017		mm_update_next_owner(old_mm);
1018		mmput(old_mm);
1019		return 0;
1020	}
1021	mmdrop_lazy_tlb(active_mm);
1022	return 0;
1023}
1024
 
 
 
 
 
 
1025static int de_thread(struct task_struct *tsk)
1026{
1027	struct signal_struct *sig = tsk->signal;
1028	struct sighand_struct *oldsighand = tsk->sighand;
1029	spinlock_t *lock = &oldsighand->siglock;
1030
1031	if (thread_group_empty(tsk))
1032		goto no_thread_group;
1033
1034	/*
1035	 * Kill all other threads in the thread group.
1036	 */
1037	spin_lock_irq(lock);
1038	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1039		/*
1040		 * Another group action in progress, just
1041		 * return so that the signal is processed.
1042		 */
1043		spin_unlock_irq(lock);
1044		return -EAGAIN;
1045	}
1046
1047	sig->group_exec_task = tsk;
1048	sig->notify_count = zap_other_threads(tsk);
1049	if (!thread_group_leader(tsk))
1050		sig->notify_count--;
1051
1052	while (sig->notify_count) {
1053		__set_current_state(TASK_KILLABLE);
1054		spin_unlock_irq(lock);
1055		schedule();
1056		if (__fatal_signal_pending(tsk))
1057			goto killed;
1058		spin_lock_irq(lock);
1059	}
1060	spin_unlock_irq(lock);
1061
1062	/*
1063	 * At this point all other threads have exited, all we have to
1064	 * do is to wait for the thread group leader to become inactive,
1065	 * and to assume its PID:
1066	 */
1067	if (!thread_group_leader(tsk)) {
1068		struct task_struct *leader = tsk->group_leader;
1069
1070		for (;;) {
1071			cgroup_threadgroup_change_begin(tsk);
1072			write_lock_irq(&tasklist_lock);
1073			/*
1074			 * Do this under tasklist_lock to ensure that
1075			 * exit_notify() can't miss ->group_exec_task
1076			 */
1077			sig->notify_count = -1;
1078			if (likely(leader->exit_state))
1079				break;
1080			__set_current_state(TASK_KILLABLE);
1081			write_unlock_irq(&tasklist_lock);
1082			cgroup_threadgroup_change_end(tsk);
1083			schedule();
1084			if (__fatal_signal_pending(tsk))
1085				goto killed;
1086		}
1087
1088		/*
1089		 * The only record we have of the real-time age of a
1090		 * process, regardless of execs it's done, is start_time.
1091		 * All the past CPU time is accumulated in signal_struct
1092		 * from sister threads now dead.  But in this non-leader
1093		 * exec, nothing survives from the original leader thread,
1094		 * whose birth marks the true age of this process now.
1095		 * When we take on its identity by switching to its PID, we
1096		 * also take its birthdate (always earlier than our own).
1097		 */
1098		tsk->start_time = leader->start_time;
1099		tsk->start_boottime = leader->start_boottime;
1100
1101		BUG_ON(!same_thread_group(leader, tsk));
 
1102		/*
1103		 * An exec() starts a new thread group with the
1104		 * TGID of the previous thread group. Rehash the
1105		 * two threads with a switched PID, and release
1106		 * the former thread group leader:
1107		 */
1108
1109		/* Become a process group leader with the old leader's pid.
1110		 * The old leader becomes a thread of the this thread group.
 
 
1111		 */
1112		exchange_tids(tsk, leader);
1113		transfer_pid(leader, tsk, PIDTYPE_TGID);
1114		transfer_pid(leader, tsk, PIDTYPE_PGID);
1115		transfer_pid(leader, tsk, PIDTYPE_SID);
1116
1117		list_replace_rcu(&leader->tasks, &tsk->tasks);
1118		list_replace_init(&leader->sibling, &tsk->sibling);
1119
1120		tsk->group_leader = tsk;
1121		leader->group_leader = tsk;
1122
1123		tsk->exit_signal = SIGCHLD;
1124		leader->exit_signal = -1;
1125
1126		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1127		leader->exit_state = EXIT_DEAD;
 
1128		/*
1129		 * We are going to release_task()->ptrace_unlink() silently,
1130		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1131		 * the tracer won't block again waiting for this thread.
1132		 */
1133		if (unlikely(leader->ptrace))
1134			__wake_up_parent(leader, leader->parent);
1135		write_unlock_irq(&tasklist_lock);
1136		cgroup_threadgroup_change_end(tsk);
1137
1138		release_task(leader);
1139	}
1140
1141	sig->group_exec_task = NULL;
1142	sig->notify_count = 0;
1143
1144no_thread_group:
1145	/* we have changed execution domain */
1146	tsk->exit_signal = SIGCHLD;
1147
1148	BUG_ON(!thread_group_leader(tsk));
1149	return 0;
 
 
1150
1151killed:
1152	/* protects against exit_notify() and __exit_signal() */
1153	read_lock(&tasklist_lock);
1154	sig->group_exec_task = NULL;
1155	sig->notify_count = 0;
1156	read_unlock(&tasklist_lock);
1157	return -EAGAIN;
1158}
1159
1160
1161/*
1162 * This function makes sure the current process has its own signal table,
1163 * so that flush_signal_handlers can later reset the handlers without
1164 * disturbing other processes.  (Other processes might share the signal
1165 * table via the CLONE_SIGHAND option to clone().)
1166 */
1167static int unshare_sighand(struct task_struct *me)
1168{
1169	struct sighand_struct *oldsighand = me->sighand;
1170
1171	if (refcount_read(&oldsighand->count) != 1) {
1172		struct sighand_struct *newsighand;
1173		/*
1174		 * This ->sighand is shared with the CLONE_SIGHAND
1175		 * but not CLONE_THREAD task, switch to the new one.
1176		 */
1177		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1178		if (!newsighand)
1179			return -ENOMEM;
1180
1181		refcount_set(&newsighand->count, 1);
 
 
1182
1183		write_lock_irq(&tasklist_lock);
1184		spin_lock(&oldsighand->siglock);
1185		memcpy(newsighand->action, oldsighand->action,
1186		       sizeof(newsighand->action));
1187		rcu_assign_pointer(me->sighand, newsighand);
1188		spin_unlock(&oldsighand->siglock);
1189		write_unlock_irq(&tasklist_lock);
1190
1191		__cleanup_sighand(oldsighand);
1192	}
 
 
1193	return 0;
 
 
 
 
 
 
 
 
1194}
1195
 
 
 
 
 
 
 
 
 
 
1196/*
1197 * These functions flushes out all traces of the currently running executable
1198 * so that a new one can be started
1199 */
1200
1201void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1202{
1203	task_lock(tsk);
1204	trace_task_rename(tsk, buf);
1205	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1206	task_unlock(tsk);
1207	perf_event_comm(tsk, exec);
1208}
1209
1210/*
1211 * Calling this is the point of no return. None of the failures will be
1212 * seen by userspace since either the process is already taking a fatal
1213 * signal (via de_thread() or coredump), or will have SEGV raised
1214 * (after exec_mmap()) by search_binary_handler (see below).
1215 */
1216int begin_new_exec(struct linux_binprm * bprm)
1217{
1218	struct task_struct *me = current;
1219	int retval;
1220
1221	/* Once we are committed compute the creds */
1222	retval = bprm_creds_from_file(bprm);
1223	if (retval)
1224		return retval;
1225
1226	/*
1227	 * This tracepoint marks the point before flushing the old exec where
1228	 * the current task is still unchanged, but errors are fatal (point of
1229	 * no return). The later "sched_process_exec" tracepoint is called after
1230	 * the current task has successfully switched to the new exec.
1231	 */
1232	trace_sched_prepare_exec(current, bprm);
1233
1234	/*
1235	 * Ensure all future errors are fatal.
1236	 */
1237	bprm->point_of_no_return = true;
1238
1239	/*
1240	 * Make this the only thread in the thread group.
1241	 */
1242	retval = de_thread(me);
1243	if (retval)
1244		goto out;
1245
1246	/*
1247	 * Cancel any io_uring activity across execve
 
1248	 */
1249	io_uring_task_cancel();
1250
1251	/* Ensure the files table is not shared. */
1252	retval = unshare_files();
1253	if (retval)
1254		goto out;
1255
1256	/*
1257	 * Must be called _before_ exec_mmap() as bprm->mm is
1258	 * not visible until then. Doing it here also ensures
1259	 * we don't race against replace_mm_exe_file().
1260	 */
1261	retval = set_mm_exe_file(bprm->mm, bprm->file);
1262	if (retval)
1263		goto out;
1264
1265	/* If the binary is not readable then enforce mm->dumpable=0 */
1266	would_dump(bprm, bprm->file);
1267	if (bprm->have_execfd)
1268		would_dump(bprm, bprm->executable);
1269
1270	/*
1271	 * Release all of the old mmap stuff
1272	 */
1273	acct_arg_size(bprm, 0);
1274	retval = exec_mmap(bprm->mm);
1275	if (retval)
1276		goto out;
1277
1278	bprm->mm = NULL;
1279
1280	retval = exec_task_namespaces();
1281	if (retval)
1282		goto out_unlock;
1283
1284#ifdef CONFIG_POSIX_TIMERS
1285	spin_lock_irq(&me->sighand->siglock);
1286	posix_cpu_timers_exit(me);
1287	spin_unlock_irq(&me->sighand->siglock);
1288	exit_itimers(me);
1289	flush_itimer_signals();
1290#endif
1291
1292	/*
1293	 * Make the signal table private.
1294	 */
1295	retval = unshare_sighand(me);
1296	if (retval)
1297		goto out_unlock;
1298
1299	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
 
1300					PF_NOFREEZE | PF_NO_SETAFFINITY);
1301	flush_thread();
1302	me->personality &= ~bprm->per_clear;
1303
1304	clear_syscall_work_syscall_user_dispatch(me);
1305
1306	/*
1307	 * We have to apply CLOEXEC before we change whether the process is
1308	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1309	 * trying to access the should-be-closed file descriptors of a process
1310	 * undergoing exec(2).
1311	 */
1312	do_close_on_exec(me->files);
1313
1314	if (bprm->secureexec) {
1315		/* Make sure parent cannot signal privileged process. */
1316		me->pdeath_signal = 0;
1317
1318		/*
1319		 * For secureexec, reset the stack limit to sane default to
1320		 * avoid bad behavior from the prior rlimits. This has to
1321		 * happen before arch_pick_mmap_layout(), which examines
1322		 * RLIMIT_STACK, but after the point of no return to avoid
1323		 * needing to clean up the change on failure.
1324		 */
1325		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1326			bprm->rlim_stack.rlim_cur = _STK_LIM;
1327	}
1328
1329	me->sas_ss_sp = me->sas_ss_size = 0;
1330
1331	/*
1332	 * Figure out dumpability. Note that this checking only of current
1333	 * is wrong, but userspace depends on it. This should be testing
1334	 * bprm->secureexec instead.
1335	 */
1336	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1337	    !(uid_eq(current_euid(), current_uid()) &&
1338	      gid_eq(current_egid(), current_gid())))
1339		set_dumpable(current->mm, suid_dumpable);
1340	else
1341		set_dumpable(current->mm, SUID_DUMP_USER);
1342
1343	perf_event_exec();
1344
1345	/*
1346	 * If the original filename was empty, alloc_bprm() made up a path
1347	 * that will probably not be useful to admins running ps or similar.
1348	 * Let's fix it up to be something reasonable.
1349	 */
1350	if (bprm->comm_from_dentry) {
1351		/*
1352		 * Hold RCU lock to keep the name from being freed behind our back.
1353		 * Use acquire semantics to make sure the terminating NUL from
1354		 * __d_alloc() is seen.
1355		 *
1356		 * Note, we're deliberately sloppy here. We don't need to care about
1357		 * detecting a concurrent rename and just want a terminated name.
1358		 */
1359		rcu_read_lock();
1360		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1361				true);
1362		rcu_read_unlock();
1363	} else {
1364		__set_task_comm(me, kbasename(bprm->filename), true);
1365	}
1366
1367	/* An exec changes our domain. We are no longer part of the thread
1368	   group */
1369	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1370	flush_signal_handlers(me, 0);
1371
1372	retval = set_cred_ucounts(bprm->cred);
1373	if (retval < 0)
1374		goto out_unlock;
1375
1376	/*
1377	 * install the new credentials for this executable
1378	 */
1379	security_bprm_committing_creds(bprm);
1380
1381	commit_creds(bprm->cred);
1382	bprm->cred = NULL;
1383
1384	/*
1385	 * Disable monitoring for regular users
1386	 * when executing setuid binaries. Must
1387	 * wait until new credentials are committed
1388	 * by commit_creds() above
1389	 */
1390	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1391		perf_event_exit_task(me);
1392	/*
1393	 * cred_guard_mutex must be held at least to this point to prevent
1394	 * ptrace_attach() from altering our determination of the task's
1395	 * credentials; any time after this it may be unlocked.
1396	 */
1397	security_bprm_committed_creds(bprm);
1398
1399	/* Pass the opened binary to the interpreter. */
1400	if (bprm->have_execfd) {
1401		retval = get_unused_fd_flags(0);
1402		if (retval < 0)
1403			goto out_unlock;
1404		fd_install(retval, bprm->executable);
1405		bprm->executable = NULL;
1406		bprm->execfd = retval;
1407	}
1408	return 0;
1409
1410out_unlock:
1411	up_write(&me->signal->exec_update_lock);
1412	if (!bprm->cred)
1413		mutex_unlock(&me->signal->cred_guard_mutex);
1414
1415out:
1416	return retval;
1417}
1418EXPORT_SYMBOL(begin_new_exec);
1419
1420void would_dump(struct linux_binprm *bprm, struct file *file)
1421{
1422	struct inode *inode = file_inode(file);
1423	struct mnt_idmap *idmap = file_mnt_idmap(file);
1424	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1425		struct user_namespace *old, *user_ns;
1426		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1427
1428		/* Ensure mm->user_ns contains the executable */
1429		user_ns = old = bprm->mm->user_ns;
1430		while ((user_ns != &init_user_ns) &&
1431		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1432			user_ns = user_ns->parent;
1433
1434		if (old != user_ns) {
1435			bprm->mm->user_ns = get_user_ns(user_ns);
1436			put_user_ns(old);
1437		}
1438	}
1439}
1440EXPORT_SYMBOL(would_dump);
1441
1442void setup_new_exec(struct linux_binprm * bprm)
1443{
1444	/* Setup things that can depend upon the personality */
1445	struct task_struct *me = current;
1446
1447	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
 
 
 
 
 
 
1448
1449	arch_setup_new_exec();
 
1450
1451	/* Set the new mm task size. We have to do that late because it may
1452	 * depend on TIF_32BIT which is only updated in flush_thread() on
1453	 * some architectures like powerpc
1454	 */
1455	me->mm->task_size = TASK_SIZE;
1456	up_write(&me->signal->exec_update_lock);
1457	mutex_unlock(&me->signal->cred_guard_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
1458}
1459EXPORT_SYMBOL(setup_new_exec);
1460
1461/* Runs immediately before start_thread() takes over. */
1462void finalize_exec(struct linux_binprm *bprm)
1463{
1464	/* Store any stack rlimit changes before starting thread. */
1465	task_lock(current->group_leader);
1466	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1467	task_unlock(current->group_leader);
1468}
1469EXPORT_SYMBOL(finalize_exec);
1470
1471/*
1472 * Prepare credentials and lock ->cred_guard_mutex.
1473 * setup_new_exec() commits the new creds and drops the lock.
1474 * Or, if exec fails before, free_bprm() should release ->cred
1475 * and unlock.
1476 */
1477static int prepare_bprm_creds(struct linux_binprm *bprm)
1478{
1479	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1480		return -ERESTARTNOINTR;
1481
1482	bprm->cred = prepare_exec_creds();
1483	if (likely(bprm->cred))
1484		return 0;
1485
1486	mutex_unlock(&current->signal->cred_guard_mutex);
1487	return -ENOMEM;
1488}
1489
1490/* Matches do_open_execat() */
1491static void do_close_execat(struct file *file)
1492{
1493	if (!file)
1494		return;
1495	allow_write_access(file);
1496	fput(file);
1497}
1498
1499static void free_bprm(struct linux_binprm *bprm)
1500{
1501	if (bprm->mm) {
1502		acct_arg_size(bprm, 0);
1503		mmput(bprm->mm);
1504	}
1505	free_arg_pages(bprm);
1506	if (bprm->cred) {
1507		mutex_unlock(&current->signal->cred_guard_mutex);
1508		abort_creds(bprm->cred);
1509	}
1510	do_close_execat(bprm->file);
1511	if (bprm->executable)
1512		fput(bprm->executable);
 
1513	/* If a binfmt changed the interp, free it. */
1514	if (bprm->interp != bprm->filename)
1515		kfree(bprm->interp);
1516	kfree(bprm->fdpath);
1517	kfree(bprm);
1518}
1519
1520static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1521{
1522	struct linux_binprm *bprm;
1523	struct file *file;
1524	int retval = -ENOMEM;
1525
1526	file = do_open_execat(fd, filename, flags);
1527	if (IS_ERR(file))
1528		return ERR_CAST(file);
1529
1530	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1531	if (!bprm) {
1532		do_close_execat(file);
1533		return ERR_PTR(-ENOMEM);
1534	}
1535
1536	bprm->file = file;
1537
1538	if (fd == AT_FDCWD || filename->name[0] == '/') {
1539		bprm->filename = filename->name;
1540	} else {
1541		if (filename->name[0] == '\0') {
1542			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1543			bprm->comm_from_dentry = 1;
1544		} else {
1545			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1546						  fd, filename->name);
1547		}
1548		if (!bprm->fdpath)
1549			goto out_free;
1550
1551		/*
1552		 * Record that a name derived from an O_CLOEXEC fd will be
1553		 * inaccessible after exec.  This allows the code in exec to
1554		 * choose to fail when the executable is not mmaped into the
1555		 * interpreter and an open file descriptor is not passed to
1556		 * the interpreter.  This makes for a better user experience
1557		 * than having the interpreter start and then immediately fail
1558		 * when it finds the executable is inaccessible.
1559		 */
1560		if (get_close_on_exec(fd))
1561			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1562
1563		bprm->filename = bprm->fdpath;
1564	}
1565	bprm->interp = bprm->filename;
1566
1567	retval = bprm_mm_init(bprm);
1568	if (!retval)
1569		return bprm;
1570
1571out_free:
1572	free_bprm(bprm);
1573	return ERR_PTR(retval);
1574}
1575
1576int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1577{
1578	/* If a binfmt changed the interp, free it first. */
1579	if (bprm->interp != bprm->filename)
1580		kfree(bprm->interp);
1581	bprm->interp = kstrdup(interp, GFP_KERNEL);
1582	if (!bprm->interp)
1583		return -ENOMEM;
1584	return 0;
1585}
1586EXPORT_SYMBOL(bprm_change_interp);
1587
1588/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589 * determine how safe it is to execute the proposed program
1590 * - the caller must hold ->cred_guard_mutex to protect against
1591 *   PTRACE_ATTACH or seccomp thread-sync
1592 */
1593static void check_unsafe_exec(struct linux_binprm *bprm)
1594{
1595	struct task_struct *p = current, *t;
1596	unsigned n_fs;
1597
1598	if (p->ptrace)
1599		bprm->unsafe |= LSM_UNSAFE_PTRACE;
 
 
 
 
1600
1601	/*
1602	 * This isn't strictly necessary, but it makes it harder for LSMs to
1603	 * mess up.
1604	 */
1605	if (task_no_new_privs(current))
1606		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1607
1608	/*
1609	 * If another task is sharing our fs, we cannot safely
1610	 * suid exec because the differently privileged task
1611	 * will be able to manipulate the current directory, etc.
1612	 * It would be nice to force an unshare instead...
1613	 */
1614	n_fs = 1;
1615	spin_lock(&p->fs->lock);
1616	rcu_read_lock();
1617	for_other_threads(p, t) {
1618		if (t->fs == p->fs)
1619			n_fs++;
1620	}
1621	rcu_read_unlock();
1622
1623	/* "users" and "in_exec" locked for copy_fs() */
1624	if (p->fs->users > n_fs)
1625		bprm->unsafe |= LSM_UNSAFE_SHARE;
1626	else
1627		p->fs->in_exec = 1;
1628	spin_unlock(&p->fs->lock);
1629}
1630
1631static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1632{
1633	/* Handle suid and sgid on files */
1634	struct mnt_idmap *idmap;
1635	struct inode *inode = file_inode(file);
1636	unsigned int mode;
1637	vfsuid_t vfsuid;
1638	vfsgid_t vfsgid;
1639	int err;
 
 
 
 
 
 
 
 
1640
1641	if (!mnt_may_suid(file->f_path.mnt))
1642		return;
1643
1644	if (task_no_new_privs(current))
1645		return;
1646
 
1647	mode = READ_ONCE(inode->i_mode);
1648	if (!(mode & (S_ISUID|S_ISGID)))
1649		return;
1650
1651	idmap = file_mnt_idmap(file);
1652
1653	/* Be careful if suid/sgid is set */
1654	inode_lock(inode);
1655
1656	/* Atomically reload and check mode/uid/gid now that lock held. */
1657	mode = inode->i_mode;
1658	vfsuid = i_uid_into_vfsuid(idmap, inode);
1659	vfsgid = i_gid_into_vfsgid(idmap, inode);
1660	err = inode_permission(idmap, inode, MAY_EXEC);
1661	inode_unlock(inode);
1662
1663	/* Did the exec bit vanish out from under us? Give up. */
1664	if (err)
1665		return;
1666
1667	/* We ignore suid/sgid if there are no mappings for them in the ns */
1668	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1669	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1670		return;
1671
1672	if (mode & S_ISUID) {
1673		bprm->per_clear |= PER_CLEAR_ON_SETID;
1674		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1675	}
1676
1677	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1678		bprm->per_clear |= PER_CLEAR_ON_SETID;
1679		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1680	}
1681}
1682
1683/*
1684 * Compute brpm->cred based upon the final binary.
1685 */
1686static int bprm_creds_from_file(struct linux_binprm *bprm)
1687{
1688	/* Compute creds based on which file? */
1689	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1690
1691	bprm_fill_uid(bprm, file);
1692	return security_bprm_creds_from_file(bprm, file);
1693}
1694
1695/*
1696 * Fill the binprm structure from the inode.
1697 * Read the first BINPRM_BUF_SIZE bytes
1698 *
1699 * This may be called multiple times for binary chains (scripts for example).
1700 */
1701static int prepare_binprm(struct linux_binprm *bprm)
1702{
1703	loff_t pos = 0;
 
 
 
 
 
 
 
 
1704
1705	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1706	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1707}
1708
 
 
1709/*
1710 * Arguments are '\0' separated strings found at the location bprm->p
1711 * points to; chop off the first by relocating brpm->p to right after
1712 * the first '\0' encountered.
1713 */
1714int remove_arg_zero(struct linux_binprm *bprm)
1715{
 
1716	unsigned long offset;
1717	char *kaddr;
1718	struct page *page;
1719
1720	if (!bprm->argc)
1721		return 0;
1722
1723	do {
1724		offset = bprm->p & ~PAGE_MASK;
1725		page = get_arg_page(bprm, bprm->p, 0);
1726		if (!page)
1727			return -EFAULT;
1728		kaddr = kmap_local_page(page);
 
 
1729
1730		for (; offset < PAGE_SIZE && kaddr[offset];
1731				offset++, bprm->p++)
1732			;
1733
1734		kunmap_local(kaddr);
1735		put_arg_page(page);
1736	} while (offset == PAGE_SIZE);
1737
1738	bprm->p++;
1739	bprm->argc--;
 
1740
1741	return 0;
 
1742}
1743EXPORT_SYMBOL(remove_arg_zero);
1744
1745#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1746/*
1747 * cycle the list of binary formats handler, until one recognizes the image
1748 */
1749static int search_binary_handler(struct linux_binprm *bprm)
1750{
1751	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1752	struct linux_binfmt *fmt;
1753	int retval;
1754
1755	retval = prepare_binprm(bprm);
1756	if (retval < 0)
1757		return retval;
1758
1759	retval = security_bprm_check(bprm);
1760	if (retval)
1761		return retval;
1762
1763	retval = -ENOENT;
1764 retry:
1765	read_lock(&binfmt_lock);
1766	list_for_each_entry(fmt, &formats, lh) {
1767		if (!try_module_get(fmt->module))
1768			continue;
1769		read_unlock(&binfmt_lock);
1770
1771		retval = fmt->load_binary(bprm);
1772
1773		read_lock(&binfmt_lock);
1774		put_binfmt(fmt);
1775		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
 
 
 
 
 
 
 
1776			read_unlock(&binfmt_lock);
1777			return retval;
1778		}
1779	}
1780	read_unlock(&binfmt_lock);
1781
1782	if (need_retry) {
1783		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1784		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1785			return retval;
1786		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1787			return retval;
1788		need_retry = false;
1789		goto retry;
1790	}
1791
1792	return retval;
1793}
 
1794
1795/* binfmt handlers will call back into begin_new_exec() on success. */
1796static int exec_binprm(struct linux_binprm *bprm)
1797{
1798	pid_t old_pid, old_vpid;
1799	int ret, depth;
1800
1801	/* Need to fetch pid before load_binary changes it */
1802	old_pid = current->pid;
1803	rcu_read_lock();
1804	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1805	rcu_read_unlock();
1806
1807	/* This allows 4 levels of binfmt rewrites before failing hard. */
1808	for (depth = 0;; depth++) {
1809		struct file *exec;
1810		if (depth > 5)
1811			return -ELOOP;
1812
1813		ret = search_binary_handler(bprm);
1814		if (ret < 0)
1815			return ret;
1816		if (!bprm->interpreter)
1817			break;
1818
1819		exec = bprm->file;
1820		bprm->file = bprm->interpreter;
1821		bprm->interpreter = NULL;
1822
1823		allow_write_access(exec);
1824		if (unlikely(bprm->have_execfd)) {
1825			if (bprm->executable) {
1826				fput(exec);
1827				return -ENOEXEC;
1828			}
1829			bprm->executable = exec;
1830		} else
1831			fput(exec);
1832	}
1833
1834	audit_bprm(bprm);
1835	trace_sched_process_exec(current, old_pid, bprm);
1836	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1837	proc_exec_connector(current);
1838	return 0;
1839}
1840
1841static int bprm_execve(struct linux_binprm *bprm)
1842{
1843	int retval;
1844
1845	retval = prepare_bprm_creds(bprm);
1846	if (retval)
1847		return retval;
1848
1849	/*
1850	 * Check for unsafe execution states before exec_binprm(), which
1851	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1852	 * where setuid-ness is evaluated.
1853	 */
1854	check_unsafe_exec(bprm);
1855	current->in_execve = 1;
1856	sched_mm_cid_before_execve(current);
1857
1858	sched_exec();
1859
1860	/* Set the unchanging part of bprm->cred */
1861	retval = security_bprm_creds_for_exec(bprm);
1862	if (retval)
1863		goto out;
1864
1865	retval = exec_binprm(bprm);
1866	if (retval < 0)
1867		goto out;
1868
1869	sched_mm_cid_after_execve(current);
1870	/* execve succeeded */
1871	current->fs->in_exec = 0;
1872	current->in_execve = 0;
1873	rseq_execve(current);
1874	user_events_execve(current);
1875	acct_update_integrals(current);
1876	task_numa_free(current, false);
1877	return retval;
1878
1879out:
1880	/*
1881	 * If past the point of no return ensure the code never
1882	 * returns to the userspace process.  Use an existing fatal
1883	 * signal if present otherwise terminate the process with
1884	 * SIGSEGV.
1885	 */
1886	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1887		force_fatal_sig(SIGSEGV);
1888
1889	sched_mm_cid_after_execve(current);
1890	current->fs->in_exec = 0;
1891	current->in_execve = 0;
1892
1893	return retval;
1894}
1895
 
 
 
1896static int do_execveat_common(int fd, struct filename *filename,
1897			      struct user_arg_ptr argv,
1898			      struct user_arg_ptr envp,
1899			      int flags)
1900{
 
1901	struct linux_binprm *bprm;
 
 
1902	int retval;
1903
1904	if (IS_ERR(filename))
1905		return PTR_ERR(filename);
1906
1907	/*
1908	 * We move the actual failure in case of RLIMIT_NPROC excess from
1909	 * set*uid() to execve() because too many poorly written programs
1910	 * don't check setuid() return code.  Here we additionally recheck
1911	 * whether NPROC limit is still exceeded.
1912	 */
1913	if ((current->flags & PF_NPROC_EXCEEDED) &&
1914	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1915		retval = -EAGAIN;
1916		goto out_ret;
1917	}
1918
1919	/* We're below the limit (still or again), so we don't want to make
1920	 * further execve() calls fail. */
1921	current->flags &= ~PF_NPROC_EXCEEDED;
1922
1923	bprm = alloc_bprm(fd, filename, flags);
1924	if (IS_ERR(bprm)) {
1925		retval = PTR_ERR(bprm);
1926		goto out_ret;
1927	}
1928
1929	retval = count(argv, MAX_ARG_STRINGS);
1930	if (retval == 0)
1931		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1932			     current->comm, bprm->filename);
1933	if (retval < 0)
1934		goto out_free;
1935	bprm->argc = retval;
1936
1937	retval = count(envp, MAX_ARG_STRINGS);
1938	if (retval < 0)
1939		goto out_free;
1940	bprm->envc = retval;
1941
1942	retval = bprm_stack_limits(bprm);
1943	if (retval < 0)
1944		goto out_free;
1945
1946	retval = copy_string_kernel(bprm->filename, bprm);
1947	if (retval < 0)
1948		goto out_free;
1949	bprm->exec = bprm->p;
1950
1951	retval = copy_strings(bprm->envc, envp, bprm);
1952	if (retval < 0)
1953		goto out_free;
1954
1955	retval = copy_strings(bprm->argc, argv, bprm);
1956	if (retval < 0)
1957		goto out_free;
1958
1959	/*
1960	 * When argv is empty, add an empty string ("") as argv[0] to
1961	 * ensure confused userspace programs that start processing
1962	 * from argv[1] won't end up walking envp. See also
1963	 * bprm_stack_limits().
1964	 */
1965	if (bprm->argc == 0) {
1966		retval = copy_string_kernel("", bprm);
1967		if (retval < 0)
1968			goto out_free;
1969		bprm->argc = 1;
 
 
 
 
 
 
1970	}
 
1971
1972	retval = bprm_execve(bprm);
1973out_free:
1974	free_bprm(bprm);
1975
1976out_ret:
1977	putname(filename);
1978	return retval;
1979}
1980
1981int kernel_execve(const char *kernel_filename,
1982		  const char *const *argv, const char *const *envp)
1983{
1984	struct filename *filename;
1985	struct linux_binprm *bprm;
1986	int fd = AT_FDCWD;
1987	int retval;
1988
1989	/* It is non-sense for kernel threads to call execve */
1990	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1991		return -EINVAL;
1992
1993	filename = getname_kernel(kernel_filename);
1994	if (IS_ERR(filename))
1995		return PTR_ERR(filename);
1996
1997	bprm = alloc_bprm(fd, filename, 0);
1998	if (IS_ERR(bprm)) {
1999		retval = PTR_ERR(bprm);
2000		goto out_ret;
2001	}
2002
2003	retval = count_strings_kernel(argv);
2004	if (WARN_ON_ONCE(retval == 0))
2005		retval = -EINVAL;
2006	if (retval < 0)
2007		goto out_free;
2008	bprm->argc = retval;
2009
2010	retval = count_strings_kernel(envp);
2011	if (retval < 0)
2012		goto out_free;
2013	bprm->envc = retval;
2014
2015	retval = bprm_stack_limits(bprm);
2016	if (retval < 0)
2017		goto out_free;
2018
2019	retval = copy_string_kernel(bprm->filename, bprm);
2020	if (retval < 0)
2021		goto out_free;
2022	bprm->exec = bprm->p;
 
 
 
 
 
 
 
2023
2024	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2025	if (retval < 0)
2026		goto out_free;
 
 
2027
2028	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2029	if (retval < 0)
2030		goto out_free;
2031
2032	retval = bprm_execve(bprm);
2033out_free:
2034	free_bprm(bprm);
 
 
 
 
 
2035out_ret:
2036	putname(filename);
2037	return retval;
2038}
2039
2040static int do_execve(struct filename *filename,
2041	const char __user *const __user *__argv,
2042	const char __user *const __user *__envp)
2043{
2044	struct user_arg_ptr argv = { .ptr.native = __argv };
2045	struct user_arg_ptr envp = { .ptr.native = __envp };
2046	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2047}
2048
2049static int do_execveat(int fd, struct filename *filename,
2050		const char __user *const __user *__argv,
2051		const char __user *const __user *__envp,
2052		int flags)
2053{
2054	struct user_arg_ptr argv = { .ptr.native = __argv };
2055	struct user_arg_ptr envp = { .ptr.native = __envp };
2056
2057	return do_execveat_common(fd, filename, argv, envp, flags);
2058}
2059
2060#ifdef CONFIG_COMPAT
2061static int compat_do_execve(struct filename *filename,
2062	const compat_uptr_t __user *__argv,
2063	const compat_uptr_t __user *__envp)
2064{
2065	struct user_arg_ptr argv = {
2066		.is_compat = true,
2067		.ptr.compat = __argv,
2068	};
2069	struct user_arg_ptr envp = {
2070		.is_compat = true,
2071		.ptr.compat = __envp,
2072	};
2073	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2074}
2075
2076static int compat_do_execveat(int fd, struct filename *filename,
2077			      const compat_uptr_t __user *__argv,
2078			      const compat_uptr_t __user *__envp,
2079			      int flags)
2080{
2081	struct user_arg_ptr argv = {
2082		.is_compat = true,
2083		.ptr.compat = __argv,
2084	};
2085	struct user_arg_ptr envp = {
2086		.is_compat = true,
2087		.ptr.compat = __envp,
2088	};
2089	return do_execveat_common(fd, filename, argv, envp, flags);
2090}
2091#endif
2092
2093void set_binfmt(struct linux_binfmt *new)
2094{
2095	struct mm_struct *mm = current->mm;
2096
2097	if (mm->binfmt)
2098		module_put(mm->binfmt->module);
2099
2100	mm->binfmt = new;
2101	if (new)
2102		__module_get(new->module);
2103}
2104EXPORT_SYMBOL(set_binfmt);
2105
2106/*
2107 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2108 */
2109void set_dumpable(struct mm_struct *mm, int value)
2110{
 
 
2111	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2112		return;
2113
2114	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
 
 
 
2115}
2116
2117SYSCALL_DEFINE3(execve,
2118		const char __user *, filename,
2119		const char __user *const __user *, argv,
2120		const char __user *const __user *, envp)
2121{
2122	return do_execve(getname(filename), argv, envp);
2123}
2124
2125SYSCALL_DEFINE5(execveat,
2126		int, fd, const char __user *, filename,
2127		const char __user *const __user *, argv,
2128		const char __user *const __user *, envp,
2129		int, flags)
2130{
 
 
2131	return do_execveat(fd,
2132			   getname_uflags(filename, flags),
2133			   argv, envp, flags);
2134}
2135
2136#ifdef CONFIG_COMPAT
2137COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2138	const compat_uptr_t __user *, argv,
2139	const compat_uptr_t __user *, envp)
2140{
2141	return compat_do_execve(getname(filename), argv, envp);
2142}
2143
2144COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2145		       const char __user *, filename,
2146		       const compat_uptr_t __user *, argv,
2147		       const compat_uptr_t __user *, envp,
2148		       int,  flags)
2149{
 
 
2150	return compat_do_execveat(fd,
2151				  getname_uflags(filename, flags),
2152				  argv, envp, flags);
2153}
2154#endif
2155
2156#ifdef CONFIG_SYSCTL
2157
2158static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2159		void *buffer, size_t *lenp, loff_t *ppos)
2160{
2161	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2162
2163	if (!error)
2164		validate_coredump_safety();
2165	return error;
2166}
2167
2168static struct ctl_table fs_exec_sysctls[] = {
2169	{
2170		.procname	= "suid_dumpable",
2171		.data		= &suid_dumpable,
2172		.maxlen		= sizeof(int),
2173		.mode		= 0644,
2174		.proc_handler	= proc_dointvec_minmax_coredump,
2175		.extra1		= SYSCTL_ZERO,
2176		.extra2		= SYSCTL_TWO,
2177	},
2178};
2179
2180static int __init init_fs_exec_sysctls(void)
2181{
2182	register_sysctl_init("fs", fs_exec_sysctls);
2183	return 0;
2184}
2185
2186fs_initcall(init_fs_exec_sysctls);
2187#endif /* CONFIG_SYSCTL */
2188
2189#ifdef CONFIG_EXEC_KUNIT_TEST
2190#include "tests/exec_kunit.c"
2191#endif