Loading...
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57#include <linux/oom.h>
58#include <linux/compat.h>
59#include <linux/vmalloc.h>
60
61#include <linux/uaccess.h>
62#include <asm/mmu_context.h>
63#include <asm/tlb.h>
64
65#include <trace/events/task.h>
66#include "internal.h"
67
68#include <trace/events/sched.h>
69
70int suid_dumpable = 0;
71
72static LIST_HEAD(formats);
73static DEFINE_RWLOCK(binfmt_lock);
74
75void __register_binfmt(struct linux_binfmt * fmt, int insert)
76{
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84}
85
86EXPORT_SYMBOL(__register_binfmt);
87
88void unregister_binfmt(struct linux_binfmt * fmt)
89{
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93}
94
95EXPORT_SYMBOL(unregister_binfmt);
96
97static inline void put_binfmt(struct linux_binfmt * fmt)
98{
99 module_put(fmt->module);
100}
101
102bool path_noexec(const struct path *path)
103{
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106}
107
108#ifdef CONFIG_USELIB
109/*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115SYSCALL_DEFINE1(uselib, const char __user *, library)
116{
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163exit:
164 fput(file);
165out:
166 return error;
167}
168#endif /* #ifdef CONFIG_USELIB */
169
170#ifdef CONFIG_MMU
171/*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178{
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187}
188
189static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191{
192 struct page *page;
193 int ret;
194 unsigned int gup_flags = FOLL_FORCE;
195
196#ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202#endif
203
204 if (write)
205 gup_flags |= FOLL_WRITE;
206
207 /*
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
210 */
211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 &page, NULL, NULL);
213 if (ret <= 0)
214 return NULL;
215
216 if (write) {
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 struct rlimit *rlim;
219
220 acct_arg_size(bprm, size / PAGE_SIZE);
221
222 /*
223 * We've historically supported up to 32 pages (ARG_MAX)
224 * of argument strings even with small stacks
225 */
226 if (size <= ARG_MAX)
227 return page;
228
229 /*
230 * Limit to 1/4-th the stack size for the argv+env strings.
231 * This ensures that:
232 * - the remaining binfmt code will not run out of stack space,
233 * - the program will have a reasonable amount of stack left
234 * to work from.
235 */
236 rlim = current->signal->rlim;
237 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
238 put_page(page);
239 return NULL;
240 }
241 }
242
243 return page;
244}
245
246static void put_arg_page(struct page *page)
247{
248 put_page(page);
249}
250
251static void free_arg_pages(struct linux_binprm *bprm)
252{
253}
254
255static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 struct page *page)
257{
258 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259}
260
261static int __bprm_mm_init(struct linux_binprm *bprm)
262{
263 int err;
264 struct vm_area_struct *vma = NULL;
265 struct mm_struct *mm = bprm->mm;
266
267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 if (!vma)
269 return -ENOMEM;
270
271 if (down_write_killable(&mm->mmap_sem)) {
272 err = -EINTR;
273 goto err_free;
274 }
275 vma->vm_mm = mm;
276
277 /*
278 * Place the stack at the largest stack address the architecture
279 * supports. Later, we'll move this to an appropriate place. We don't
280 * use STACK_TOP because that can depend on attributes which aren't
281 * configured yet.
282 */
283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 vma->vm_end = STACK_TOP_MAX;
285 vma->vm_start = vma->vm_end - PAGE_SIZE;
286 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 INIT_LIST_HEAD(&vma->anon_vma_chain);
289
290 err = insert_vm_struct(mm, vma);
291 if (err)
292 goto err;
293
294 mm->stack_vm = mm->total_vm = 1;
295 arch_bprm_mm_init(mm, vma);
296 up_write(&mm->mmap_sem);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299err:
300 up_write(&mm->mmap_sem);
301err_free:
302 bprm->vma = NULL;
303 kmem_cache_free(vm_area_cachep, vma);
304 return err;
305}
306
307static bool valid_arg_len(struct linux_binprm *bprm, long len)
308{
309 return len <= MAX_ARG_STRLEN;
310}
311
312#else
313
314static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315{
316}
317
318static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 int write)
320{
321 struct page *page;
322
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 if (!page)
327 return NULL;
328 bprm->page[pos / PAGE_SIZE] = page;
329 }
330
331 return page;
332}
333
334static void put_arg_page(struct page *page)
335{
336}
337
338static void free_arg_page(struct linux_binprm *bprm, int i)
339{
340 if (bprm->page[i]) {
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
343 }
344}
345
346static void free_arg_pages(struct linux_binprm *bprm)
347{
348 int i;
349
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
352}
353
354static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 struct page *page)
356{
357}
358
359static int __bprm_mm_init(struct linux_binprm *bprm)
360{
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 return 0;
363}
364
365static bool valid_arg_len(struct linux_binprm *bprm, long len)
366{
367 return len <= bprm->p;
368}
369
370#endif /* CONFIG_MMU */
371
372/*
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
377 */
378static int bprm_mm_init(struct linux_binprm *bprm)
379{
380 int err;
381 struct mm_struct *mm = NULL;
382
383 bprm->mm = mm = mm_alloc();
384 err = -ENOMEM;
385 if (!mm)
386 goto err;
387
388 err = __bprm_mm_init(bprm);
389 if (err)
390 goto err;
391
392 return 0;
393
394err:
395 if (mm) {
396 bprm->mm = NULL;
397 mmdrop(mm);
398 }
399
400 return err;
401}
402
403struct user_arg_ptr {
404#ifdef CONFIG_COMPAT
405 bool is_compat;
406#endif
407 union {
408 const char __user *const __user *native;
409#ifdef CONFIG_COMPAT
410 const compat_uptr_t __user *compat;
411#endif
412 } ptr;
413};
414
415static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
416{
417 const char __user *native;
418
419#ifdef CONFIG_COMPAT
420 if (unlikely(argv.is_compat)) {
421 compat_uptr_t compat;
422
423 if (get_user(compat, argv.ptr.compat + nr))
424 return ERR_PTR(-EFAULT);
425
426 return compat_ptr(compat);
427 }
428#endif
429
430 if (get_user(native, argv.ptr.native + nr))
431 return ERR_PTR(-EFAULT);
432
433 return native;
434}
435
436/*
437 * count() counts the number of strings in array ARGV.
438 */
439static int count(struct user_arg_ptr argv, int max)
440{
441 int i = 0;
442
443 if (argv.ptr.native != NULL) {
444 for (;;) {
445 const char __user *p = get_user_arg_ptr(argv, i);
446
447 if (!p)
448 break;
449
450 if (IS_ERR(p))
451 return -EFAULT;
452
453 if (i >= max)
454 return -E2BIG;
455 ++i;
456
457 if (fatal_signal_pending(current))
458 return -ERESTARTNOHAND;
459 cond_resched();
460 }
461 }
462 return i;
463}
464
465/*
466 * 'copy_strings()' copies argument/environment strings from the old
467 * processes's memory to the new process's stack. The call to get_user_pages()
468 * ensures the destination page is created and not swapped out.
469 */
470static int copy_strings(int argc, struct user_arg_ptr argv,
471 struct linux_binprm *bprm)
472{
473 struct page *kmapped_page = NULL;
474 char *kaddr = NULL;
475 unsigned long kpos = 0;
476 int ret;
477
478 while (argc-- > 0) {
479 const char __user *str;
480 int len;
481 unsigned long pos;
482
483 ret = -EFAULT;
484 str = get_user_arg_ptr(argv, argc);
485 if (IS_ERR(str))
486 goto out;
487
488 len = strnlen_user(str, MAX_ARG_STRLEN);
489 if (!len)
490 goto out;
491
492 ret = -E2BIG;
493 if (!valid_arg_len(bprm, len))
494 goto out;
495
496 /* We're going to work our way backwords. */
497 pos = bprm->p;
498 str += len;
499 bprm->p -= len;
500
501 while (len > 0) {
502 int offset, bytes_to_copy;
503
504 if (fatal_signal_pending(current)) {
505 ret = -ERESTARTNOHAND;
506 goto out;
507 }
508 cond_resched();
509
510 offset = pos % PAGE_SIZE;
511 if (offset == 0)
512 offset = PAGE_SIZE;
513
514 bytes_to_copy = offset;
515 if (bytes_to_copy > len)
516 bytes_to_copy = len;
517
518 offset -= bytes_to_copy;
519 pos -= bytes_to_copy;
520 str -= bytes_to_copy;
521 len -= bytes_to_copy;
522
523 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
524 struct page *page;
525
526 page = get_arg_page(bprm, pos, 1);
527 if (!page) {
528 ret = -E2BIG;
529 goto out;
530 }
531
532 if (kmapped_page) {
533 flush_kernel_dcache_page(kmapped_page);
534 kunmap(kmapped_page);
535 put_arg_page(kmapped_page);
536 }
537 kmapped_page = page;
538 kaddr = kmap(kmapped_page);
539 kpos = pos & PAGE_MASK;
540 flush_arg_page(bprm, kpos, kmapped_page);
541 }
542 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 }
547 }
548 ret = 0;
549out:
550 if (kmapped_page) {
551 flush_kernel_dcache_page(kmapped_page);
552 kunmap(kmapped_page);
553 put_arg_page(kmapped_page);
554 }
555 return ret;
556}
557
558/*
559 * Like copy_strings, but get argv and its values from kernel memory.
560 */
561int copy_strings_kernel(int argc, const char *const *__argv,
562 struct linux_binprm *bprm)
563{
564 int r;
565 mm_segment_t oldfs = get_fs();
566 struct user_arg_ptr argv = {
567 .ptr.native = (const char __user *const __user *)__argv,
568 };
569
570 set_fs(KERNEL_DS);
571 r = copy_strings(argc, argv, bprm);
572 set_fs(oldfs);
573
574 return r;
575}
576EXPORT_SYMBOL(copy_strings_kernel);
577
578#ifdef CONFIG_MMU
579
580/*
581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
582 * the binfmt code determines where the new stack should reside, we shift it to
583 * its final location. The process proceeds as follows:
584 *
585 * 1) Use shift to calculate the new vma endpoints.
586 * 2) Extend vma to cover both the old and new ranges. This ensures the
587 * arguments passed to subsequent functions are consistent.
588 * 3) Move vma's page tables to the new range.
589 * 4) Free up any cleared pgd range.
590 * 5) Shrink the vma to cover only the new range.
591 */
592static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
593{
594 struct mm_struct *mm = vma->vm_mm;
595 unsigned long old_start = vma->vm_start;
596 unsigned long old_end = vma->vm_end;
597 unsigned long length = old_end - old_start;
598 unsigned long new_start = old_start - shift;
599 unsigned long new_end = old_end - shift;
600 struct mmu_gather tlb;
601
602 BUG_ON(new_start > new_end);
603
604 /*
605 * ensure there are no vmas between where we want to go
606 * and where we are
607 */
608 if (vma != find_vma(mm, new_start))
609 return -EFAULT;
610
611 /*
612 * cover the whole range: [new_start, old_end)
613 */
614 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
615 return -ENOMEM;
616
617 /*
618 * move the page tables downwards, on failure we rely on
619 * process cleanup to remove whatever mess we made.
620 */
621 if (length != move_page_tables(vma, old_start,
622 vma, new_start, length, false))
623 return -ENOMEM;
624
625 lru_add_drain();
626 tlb_gather_mmu(&tlb, mm, old_start, old_end);
627 if (new_end > old_start) {
628 /*
629 * when the old and new regions overlap clear from new_end.
630 */
631 free_pgd_range(&tlb, new_end, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 } else {
634 /*
635 * otherwise, clean from old_start; this is done to not touch
636 * the address space in [new_end, old_start) some architectures
637 * have constraints on va-space that make this illegal (IA64) -
638 * for the others its just a little faster.
639 */
640 free_pgd_range(&tlb, old_start, old_end, new_end,
641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642 }
643 tlb_finish_mmu(&tlb, old_start, old_end);
644
645 /*
646 * Shrink the vma to just the new range. Always succeeds.
647 */
648 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
649
650 return 0;
651}
652
653/*
654 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655 * the stack is optionally relocated, and some extra space is added.
656 */
657int setup_arg_pages(struct linux_binprm *bprm,
658 unsigned long stack_top,
659 int executable_stack)
660{
661 unsigned long ret;
662 unsigned long stack_shift;
663 struct mm_struct *mm = current->mm;
664 struct vm_area_struct *vma = bprm->vma;
665 struct vm_area_struct *prev = NULL;
666 unsigned long vm_flags;
667 unsigned long stack_base;
668 unsigned long stack_size;
669 unsigned long stack_expand;
670 unsigned long rlim_stack;
671
672#ifdef CONFIG_STACK_GROWSUP
673 /* Limit stack size */
674 stack_base = rlimit_max(RLIMIT_STACK);
675 if (stack_base > STACK_SIZE_MAX)
676 stack_base = STACK_SIZE_MAX;
677
678 /* Add space for stack randomization. */
679 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
680
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma->vm_end - vma->vm_start > stack_base)
683 return -ENOMEM;
684
685 stack_base = PAGE_ALIGN(stack_top - stack_base);
686
687 stack_shift = vma->vm_start - stack_base;
688 mm->arg_start = bprm->p - stack_shift;
689 bprm->p = vma->vm_end - stack_shift;
690#else
691 stack_top = arch_align_stack(stack_top);
692 stack_top = PAGE_ALIGN(stack_top);
693
694 if (unlikely(stack_top < mmap_min_addr) ||
695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 return -ENOMEM;
697
698 stack_shift = vma->vm_end - stack_top;
699
700 bprm->p -= stack_shift;
701 mm->arg_start = bprm->p;
702#endif
703
704 if (bprm->loader)
705 bprm->loader -= stack_shift;
706 bprm->exec -= stack_shift;
707
708 if (down_write_killable(&mm->mmap_sem))
709 return -EINTR;
710
711 vm_flags = VM_STACK_FLAGS;
712
713 /*
714 * Adjust stack execute permissions; explicitly enable for
715 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
716 * (arch default) otherwise.
717 */
718 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
719 vm_flags |= VM_EXEC;
720 else if (executable_stack == EXSTACK_DISABLE_X)
721 vm_flags &= ~VM_EXEC;
722 vm_flags |= mm->def_flags;
723 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
724
725 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
726 vm_flags);
727 if (ret)
728 goto out_unlock;
729 BUG_ON(prev != vma);
730
731 /* Move stack pages down in memory. */
732 if (stack_shift) {
733 ret = shift_arg_pages(vma, stack_shift);
734 if (ret)
735 goto out_unlock;
736 }
737
738 /* mprotect_fixup is overkill to remove the temporary stack flags */
739 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
740
741 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
742 stack_size = vma->vm_end - vma->vm_start;
743 /*
744 * Align this down to a page boundary as expand_stack
745 * will align it up.
746 */
747 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
748#ifdef CONFIG_STACK_GROWSUP
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_start + rlim_stack;
751 else
752 stack_base = vma->vm_end + stack_expand;
753#else
754 if (stack_size + stack_expand > rlim_stack)
755 stack_base = vma->vm_end - rlim_stack;
756 else
757 stack_base = vma->vm_start - stack_expand;
758#endif
759 current->mm->start_stack = bprm->p;
760 ret = expand_stack(vma, stack_base);
761 if (ret)
762 ret = -EFAULT;
763
764out_unlock:
765 up_write(&mm->mmap_sem);
766 return ret;
767}
768EXPORT_SYMBOL(setup_arg_pages);
769
770#else
771
772/*
773 * Transfer the program arguments and environment from the holding pages
774 * onto the stack. The provided stack pointer is adjusted accordingly.
775 */
776int transfer_args_to_stack(struct linux_binprm *bprm,
777 unsigned long *sp_location)
778{
779 unsigned long index, stop, sp;
780 int ret = 0;
781
782 stop = bprm->p >> PAGE_SHIFT;
783 sp = *sp_location;
784
785 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
786 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
787 char *src = kmap(bprm->page[index]) + offset;
788 sp -= PAGE_SIZE - offset;
789 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
790 ret = -EFAULT;
791 kunmap(bprm->page[index]);
792 if (ret)
793 goto out;
794 }
795
796 *sp_location = sp;
797
798out:
799 return ret;
800}
801EXPORT_SYMBOL(transfer_args_to_stack);
802
803#endif /* CONFIG_MMU */
804
805static struct file *do_open_execat(int fd, struct filename *name, int flags)
806{
807 struct file *file;
808 int err;
809 struct open_flags open_exec_flags = {
810 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
811 .acc_mode = MAY_EXEC,
812 .intent = LOOKUP_OPEN,
813 .lookup_flags = LOOKUP_FOLLOW,
814 };
815
816 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
817 return ERR_PTR(-EINVAL);
818 if (flags & AT_SYMLINK_NOFOLLOW)
819 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
820 if (flags & AT_EMPTY_PATH)
821 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
822
823 file = do_filp_open(fd, name, &open_exec_flags);
824 if (IS_ERR(file))
825 goto out;
826
827 err = -EACCES;
828 if (!S_ISREG(file_inode(file)->i_mode))
829 goto exit;
830
831 if (path_noexec(&file->f_path))
832 goto exit;
833
834 err = deny_write_access(file);
835 if (err)
836 goto exit;
837
838 if (name->name[0] != '\0')
839 fsnotify_open(file);
840
841out:
842 return file;
843
844exit:
845 fput(file);
846 return ERR_PTR(err);
847}
848
849struct file *open_exec(const char *name)
850{
851 struct filename *filename = getname_kernel(name);
852 struct file *f = ERR_CAST(filename);
853
854 if (!IS_ERR(filename)) {
855 f = do_open_execat(AT_FDCWD, filename, 0);
856 putname(filename);
857 }
858 return f;
859}
860EXPORT_SYMBOL(open_exec);
861
862int kernel_read(struct file *file, loff_t offset,
863 char *addr, unsigned long count)
864{
865 mm_segment_t old_fs;
866 loff_t pos = offset;
867 int result;
868
869 old_fs = get_fs();
870 set_fs(get_ds());
871 /* The cast to a user pointer is valid due to the set_fs() */
872 result = vfs_read(file, (void __user *)addr, count, &pos);
873 set_fs(old_fs);
874 return result;
875}
876
877EXPORT_SYMBOL(kernel_read);
878
879int kernel_read_file(struct file *file, void **buf, loff_t *size,
880 loff_t max_size, enum kernel_read_file_id id)
881{
882 loff_t i_size, pos;
883 ssize_t bytes = 0;
884 int ret;
885
886 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
887 return -EINVAL;
888
889 ret = security_kernel_read_file(file, id);
890 if (ret)
891 return ret;
892
893 ret = deny_write_access(file);
894 if (ret)
895 return ret;
896
897 i_size = i_size_read(file_inode(file));
898 if (max_size > 0 && i_size > max_size) {
899 ret = -EFBIG;
900 goto out;
901 }
902 if (i_size <= 0) {
903 ret = -EINVAL;
904 goto out;
905 }
906
907 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
908 *buf = vmalloc(i_size);
909 if (!*buf) {
910 ret = -ENOMEM;
911 goto out;
912 }
913
914 pos = 0;
915 while (pos < i_size) {
916 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
917 i_size - pos);
918 if (bytes < 0) {
919 ret = bytes;
920 goto out;
921 }
922
923 if (bytes == 0)
924 break;
925 pos += bytes;
926 }
927
928 if (pos != i_size) {
929 ret = -EIO;
930 goto out_free;
931 }
932
933 ret = security_kernel_post_read_file(file, *buf, i_size, id);
934 if (!ret)
935 *size = pos;
936
937out_free:
938 if (ret < 0) {
939 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
940 vfree(*buf);
941 *buf = NULL;
942 }
943 }
944
945out:
946 allow_write_access(file);
947 return ret;
948}
949EXPORT_SYMBOL_GPL(kernel_read_file);
950
951int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
952 loff_t max_size, enum kernel_read_file_id id)
953{
954 struct file *file;
955 int ret;
956
957 if (!path || !*path)
958 return -EINVAL;
959
960 file = filp_open(path, O_RDONLY, 0);
961 if (IS_ERR(file))
962 return PTR_ERR(file);
963
964 ret = kernel_read_file(file, buf, size, max_size, id);
965 fput(file);
966 return ret;
967}
968EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
969
970int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
971 enum kernel_read_file_id id)
972{
973 struct fd f = fdget(fd);
974 int ret = -EBADF;
975
976 if (!f.file)
977 goto out;
978
979 ret = kernel_read_file(f.file, buf, size, max_size, id);
980out:
981 fdput(f);
982 return ret;
983}
984EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
985
986ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
987{
988 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
989 if (res > 0)
990 flush_icache_range(addr, addr + len);
991 return res;
992}
993EXPORT_SYMBOL(read_code);
994
995static int exec_mmap(struct mm_struct *mm)
996{
997 struct task_struct *tsk;
998 struct mm_struct *old_mm, *active_mm;
999
1000 /* Notify parent that we're no longer interested in the old VM */
1001 tsk = current;
1002 old_mm = current->mm;
1003 mm_release(tsk, old_mm);
1004
1005 if (old_mm) {
1006 sync_mm_rss(old_mm);
1007 /*
1008 * Make sure that if there is a core dump in progress
1009 * for the old mm, we get out and die instead of going
1010 * through with the exec. We must hold mmap_sem around
1011 * checking core_state and changing tsk->mm.
1012 */
1013 down_read(&old_mm->mmap_sem);
1014 if (unlikely(old_mm->core_state)) {
1015 up_read(&old_mm->mmap_sem);
1016 return -EINTR;
1017 }
1018 }
1019 task_lock(tsk);
1020 active_mm = tsk->active_mm;
1021 tsk->mm = mm;
1022 tsk->active_mm = mm;
1023 activate_mm(active_mm, mm);
1024 tsk->mm->vmacache_seqnum = 0;
1025 vmacache_flush(tsk);
1026 task_unlock(tsk);
1027 if (old_mm) {
1028 up_read(&old_mm->mmap_sem);
1029 BUG_ON(active_mm != old_mm);
1030 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031 mm_update_next_owner(old_mm);
1032 mmput(old_mm);
1033 return 0;
1034 }
1035 mmdrop(active_mm);
1036 return 0;
1037}
1038
1039/*
1040 * This function makes sure the current process has its own signal table,
1041 * so that flush_signal_handlers can later reset the handlers without
1042 * disturbing other processes. (Other processes might share the signal
1043 * table via the CLONE_SIGHAND option to clone().)
1044 */
1045static int de_thread(struct task_struct *tsk)
1046{
1047 struct signal_struct *sig = tsk->signal;
1048 struct sighand_struct *oldsighand = tsk->sighand;
1049 spinlock_t *lock = &oldsighand->siglock;
1050
1051 if (thread_group_empty(tsk))
1052 goto no_thread_group;
1053
1054 /*
1055 * Kill all other threads in the thread group.
1056 */
1057 spin_lock_irq(lock);
1058 if (signal_group_exit(sig)) {
1059 /*
1060 * Another group action in progress, just
1061 * return so that the signal is processed.
1062 */
1063 spin_unlock_irq(lock);
1064 return -EAGAIN;
1065 }
1066
1067 sig->group_exit_task = tsk;
1068 sig->notify_count = zap_other_threads(tsk);
1069 if (!thread_group_leader(tsk))
1070 sig->notify_count--;
1071
1072 while (sig->notify_count) {
1073 __set_current_state(TASK_KILLABLE);
1074 spin_unlock_irq(lock);
1075 schedule();
1076 if (unlikely(__fatal_signal_pending(tsk)))
1077 goto killed;
1078 spin_lock_irq(lock);
1079 }
1080 spin_unlock_irq(lock);
1081
1082 /*
1083 * At this point all other threads have exited, all we have to
1084 * do is to wait for the thread group leader to become inactive,
1085 * and to assume its PID:
1086 */
1087 if (!thread_group_leader(tsk)) {
1088 struct task_struct *leader = tsk->group_leader;
1089
1090 for (;;) {
1091 threadgroup_change_begin(tsk);
1092 write_lock_irq(&tasklist_lock);
1093 /*
1094 * Do this under tasklist_lock to ensure that
1095 * exit_notify() can't miss ->group_exit_task
1096 */
1097 sig->notify_count = -1;
1098 if (likely(leader->exit_state))
1099 break;
1100 __set_current_state(TASK_KILLABLE);
1101 write_unlock_irq(&tasklist_lock);
1102 threadgroup_change_end(tsk);
1103 schedule();
1104 if (unlikely(__fatal_signal_pending(tsk)))
1105 goto killed;
1106 }
1107
1108 /*
1109 * The only record we have of the real-time age of a
1110 * process, regardless of execs it's done, is start_time.
1111 * All the past CPU time is accumulated in signal_struct
1112 * from sister threads now dead. But in this non-leader
1113 * exec, nothing survives from the original leader thread,
1114 * whose birth marks the true age of this process now.
1115 * When we take on its identity by switching to its PID, we
1116 * also take its birthdate (always earlier than our own).
1117 */
1118 tsk->start_time = leader->start_time;
1119 tsk->real_start_time = leader->real_start_time;
1120
1121 BUG_ON(!same_thread_group(leader, tsk));
1122 BUG_ON(has_group_leader_pid(tsk));
1123 /*
1124 * An exec() starts a new thread group with the
1125 * TGID of the previous thread group. Rehash the
1126 * two threads with a switched PID, and release
1127 * the former thread group leader:
1128 */
1129
1130 /* Become a process group leader with the old leader's pid.
1131 * The old leader becomes a thread of the this thread group.
1132 * Note: The old leader also uses this pid until release_task
1133 * is called. Odd but simple and correct.
1134 */
1135 tsk->pid = leader->pid;
1136 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1145
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1148
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1151
1152 /*
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer wont't block again waiting for this thread.
1156 */
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 threadgroup_change_end(tsk);
1161
1162 release_task(leader);
1163 }
1164
1165 sig->group_exit_task = NULL;
1166 sig->notify_count = 0;
1167
1168no_thread_group:
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1171
1172#ifdef CONFIG_POSIX_TIMERS
1173 exit_itimers(sig);
1174 flush_itimer_signals();
1175#endif
1176
1177 if (atomic_read(&oldsighand->count) != 1) {
1178 struct sighand_struct *newsighand;
1179 /*
1180 * This ->sighand is shared with the CLONE_SIGHAND
1181 * but not CLONE_THREAD task, switch to the new one.
1182 */
1183 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1184 if (!newsighand)
1185 return -ENOMEM;
1186
1187 atomic_set(&newsighand->count, 1);
1188 memcpy(newsighand->action, oldsighand->action,
1189 sizeof(newsighand->action));
1190
1191 write_lock_irq(&tasklist_lock);
1192 spin_lock(&oldsighand->siglock);
1193 rcu_assign_pointer(tsk->sighand, newsighand);
1194 spin_unlock(&oldsighand->siglock);
1195 write_unlock_irq(&tasklist_lock);
1196
1197 __cleanup_sighand(oldsighand);
1198 }
1199
1200 BUG_ON(!thread_group_leader(tsk));
1201 return 0;
1202
1203killed:
1204 /* protects against exit_notify() and __exit_signal() */
1205 read_lock(&tasklist_lock);
1206 sig->group_exit_task = NULL;
1207 sig->notify_count = 0;
1208 read_unlock(&tasklist_lock);
1209 return -EAGAIN;
1210}
1211
1212char *get_task_comm(char *buf, struct task_struct *tsk)
1213{
1214 /* buf must be at least sizeof(tsk->comm) in size */
1215 task_lock(tsk);
1216 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1217 task_unlock(tsk);
1218 return buf;
1219}
1220EXPORT_SYMBOL_GPL(get_task_comm);
1221
1222/*
1223 * These functions flushes out all traces of the currently running executable
1224 * so that a new one can be started
1225 */
1226
1227void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228{
1229 task_lock(tsk);
1230 trace_task_rename(tsk, buf);
1231 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1232 task_unlock(tsk);
1233 perf_event_comm(tsk, exec);
1234}
1235
1236int flush_old_exec(struct linux_binprm * bprm)
1237{
1238 int retval;
1239
1240 /*
1241 * Make sure we have a private signal table and that
1242 * we are unassociated from the previous thread group.
1243 */
1244 retval = de_thread(current);
1245 if (retval)
1246 goto out;
1247
1248 /*
1249 * Must be called _before_ exec_mmap() as bprm->mm is
1250 * not visibile until then. This also enables the update
1251 * to be lockless.
1252 */
1253 set_mm_exe_file(bprm->mm, bprm->file);
1254
1255 /*
1256 * Release all of the old mmap stuff
1257 */
1258 acct_arg_size(bprm, 0);
1259 retval = exec_mmap(bprm->mm);
1260 if (retval)
1261 goto out;
1262
1263 bprm->mm = NULL; /* We're using it now */
1264
1265 set_fs(USER_DS);
1266 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1267 PF_NOFREEZE | PF_NO_SETAFFINITY);
1268 flush_thread();
1269 current->personality &= ~bprm->per_clear;
1270
1271 /*
1272 * We have to apply CLOEXEC before we change whether the process is
1273 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1274 * trying to access the should-be-closed file descriptors of a process
1275 * undergoing exec(2).
1276 */
1277 do_close_on_exec(current->files);
1278 return 0;
1279
1280out:
1281 return retval;
1282}
1283EXPORT_SYMBOL(flush_old_exec);
1284
1285void would_dump(struct linux_binprm *bprm, struct file *file)
1286{
1287 struct inode *inode = file_inode(file);
1288 if (inode_permission(inode, MAY_READ) < 0) {
1289 struct user_namespace *old, *user_ns;
1290 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1291
1292 /* Ensure mm->user_ns contains the executable */
1293 user_ns = old = bprm->mm->user_ns;
1294 while ((user_ns != &init_user_ns) &&
1295 !privileged_wrt_inode_uidgid(user_ns, inode))
1296 user_ns = user_ns->parent;
1297
1298 if (old != user_ns) {
1299 bprm->mm->user_ns = get_user_ns(user_ns);
1300 put_user_ns(old);
1301 }
1302 }
1303}
1304EXPORT_SYMBOL(would_dump);
1305
1306void setup_new_exec(struct linux_binprm * bprm)
1307{
1308 arch_pick_mmap_layout(current->mm);
1309
1310 /* This is the point of no return */
1311 current->sas_ss_sp = current->sas_ss_size = 0;
1312
1313 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1314 set_dumpable(current->mm, SUID_DUMP_USER);
1315 else
1316 set_dumpable(current->mm, suid_dumpable);
1317
1318 perf_event_exec();
1319 __set_task_comm(current, kbasename(bprm->filename), true);
1320
1321 /* Set the new mm task size. We have to do that late because it may
1322 * depend on TIF_32BIT which is only updated in flush_thread() on
1323 * some architectures like powerpc
1324 */
1325 current->mm->task_size = TASK_SIZE;
1326
1327 /* install the new credentials */
1328 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1329 !gid_eq(bprm->cred->gid, current_egid())) {
1330 current->pdeath_signal = 0;
1331 } else {
1332 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1333 set_dumpable(current->mm, suid_dumpable);
1334 }
1335
1336 /* An exec changes our domain. We are no longer part of the thread
1337 group */
1338 current->self_exec_id++;
1339 flush_signal_handlers(current, 0);
1340}
1341EXPORT_SYMBOL(setup_new_exec);
1342
1343/*
1344 * Prepare credentials and lock ->cred_guard_mutex.
1345 * install_exec_creds() commits the new creds and drops the lock.
1346 * Or, if exec fails before, free_bprm() should release ->cred and
1347 * and unlock.
1348 */
1349int prepare_bprm_creds(struct linux_binprm *bprm)
1350{
1351 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1352 return -ERESTARTNOINTR;
1353
1354 bprm->cred = prepare_exec_creds();
1355 if (likely(bprm->cred))
1356 return 0;
1357
1358 mutex_unlock(¤t->signal->cred_guard_mutex);
1359 return -ENOMEM;
1360}
1361
1362static void free_bprm(struct linux_binprm *bprm)
1363{
1364 free_arg_pages(bprm);
1365 if (bprm->cred) {
1366 mutex_unlock(¤t->signal->cred_guard_mutex);
1367 abort_creds(bprm->cred);
1368 }
1369 if (bprm->file) {
1370 allow_write_access(bprm->file);
1371 fput(bprm->file);
1372 }
1373 /* If a binfmt changed the interp, free it. */
1374 if (bprm->interp != bprm->filename)
1375 kfree(bprm->interp);
1376 kfree(bprm);
1377}
1378
1379int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1380{
1381 /* If a binfmt changed the interp, free it first. */
1382 if (bprm->interp != bprm->filename)
1383 kfree(bprm->interp);
1384 bprm->interp = kstrdup(interp, GFP_KERNEL);
1385 if (!bprm->interp)
1386 return -ENOMEM;
1387 return 0;
1388}
1389EXPORT_SYMBOL(bprm_change_interp);
1390
1391/*
1392 * install the new credentials for this executable
1393 */
1394void install_exec_creds(struct linux_binprm *bprm)
1395{
1396 security_bprm_committing_creds(bprm);
1397
1398 commit_creds(bprm->cred);
1399 bprm->cred = NULL;
1400
1401 /*
1402 * Disable monitoring for regular users
1403 * when executing setuid binaries. Must
1404 * wait until new credentials are committed
1405 * by commit_creds() above
1406 */
1407 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1408 perf_event_exit_task(current);
1409 /*
1410 * cred_guard_mutex must be held at least to this point to prevent
1411 * ptrace_attach() from altering our determination of the task's
1412 * credentials; any time after this it may be unlocked.
1413 */
1414 security_bprm_committed_creds(bprm);
1415 mutex_unlock(¤t->signal->cred_guard_mutex);
1416}
1417EXPORT_SYMBOL(install_exec_creds);
1418
1419/*
1420 * determine how safe it is to execute the proposed program
1421 * - the caller must hold ->cred_guard_mutex to protect against
1422 * PTRACE_ATTACH or seccomp thread-sync
1423 */
1424static void check_unsafe_exec(struct linux_binprm *bprm)
1425{
1426 struct task_struct *p = current, *t;
1427 unsigned n_fs;
1428
1429 if (p->ptrace) {
1430 if (ptracer_capable(p, current_user_ns()))
1431 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1432 else
1433 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1434 }
1435
1436 /*
1437 * This isn't strictly necessary, but it makes it harder for LSMs to
1438 * mess up.
1439 */
1440 if (task_no_new_privs(current))
1441 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1442
1443 t = p;
1444 n_fs = 1;
1445 spin_lock(&p->fs->lock);
1446 rcu_read_lock();
1447 while_each_thread(p, t) {
1448 if (t->fs == p->fs)
1449 n_fs++;
1450 }
1451 rcu_read_unlock();
1452
1453 if (p->fs->users > n_fs)
1454 bprm->unsafe |= LSM_UNSAFE_SHARE;
1455 else
1456 p->fs->in_exec = 1;
1457 spin_unlock(&p->fs->lock);
1458}
1459
1460static void bprm_fill_uid(struct linux_binprm *bprm)
1461{
1462 struct inode *inode;
1463 unsigned int mode;
1464 kuid_t uid;
1465 kgid_t gid;
1466
1467 /*
1468 * Since this can be called multiple times (via prepare_binprm),
1469 * we must clear any previous work done when setting set[ug]id
1470 * bits from any earlier bprm->file uses (for example when run
1471 * first for a setuid script then again for its interpreter).
1472 */
1473 bprm->cred->euid = current_euid();
1474 bprm->cred->egid = current_egid();
1475
1476 if (!mnt_may_suid(bprm->file->f_path.mnt))
1477 return;
1478
1479 if (task_no_new_privs(current))
1480 return;
1481
1482 inode = file_inode(bprm->file);
1483 mode = READ_ONCE(inode->i_mode);
1484 if (!(mode & (S_ISUID|S_ISGID)))
1485 return;
1486
1487 /* Be careful if suid/sgid is set */
1488 inode_lock(inode);
1489
1490 /* reload atomically mode/uid/gid now that lock held */
1491 mode = inode->i_mode;
1492 uid = inode->i_uid;
1493 gid = inode->i_gid;
1494 inode_unlock(inode);
1495
1496 /* We ignore suid/sgid if there are no mappings for them in the ns */
1497 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1498 !kgid_has_mapping(bprm->cred->user_ns, gid))
1499 return;
1500
1501 if (mode & S_ISUID) {
1502 bprm->per_clear |= PER_CLEAR_ON_SETID;
1503 bprm->cred->euid = uid;
1504 }
1505
1506 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1507 bprm->per_clear |= PER_CLEAR_ON_SETID;
1508 bprm->cred->egid = gid;
1509 }
1510}
1511
1512/*
1513 * Fill the binprm structure from the inode.
1514 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1515 *
1516 * This may be called multiple times for binary chains (scripts for example).
1517 */
1518int prepare_binprm(struct linux_binprm *bprm)
1519{
1520 int retval;
1521
1522 bprm_fill_uid(bprm);
1523
1524 /* fill in binprm security blob */
1525 retval = security_bprm_set_creds(bprm);
1526 if (retval)
1527 return retval;
1528 bprm->cred_prepared = 1;
1529
1530 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1531 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1532}
1533
1534EXPORT_SYMBOL(prepare_binprm);
1535
1536/*
1537 * Arguments are '\0' separated strings found at the location bprm->p
1538 * points to; chop off the first by relocating brpm->p to right after
1539 * the first '\0' encountered.
1540 */
1541int remove_arg_zero(struct linux_binprm *bprm)
1542{
1543 int ret = 0;
1544 unsigned long offset;
1545 char *kaddr;
1546 struct page *page;
1547
1548 if (!bprm->argc)
1549 return 0;
1550
1551 do {
1552 offset = bprm->p & ~PAGE_MASK;
1553 page = get_arg_page(bprm, bprm->p, 0);
1554 if (!page) {
1555 ret = -EFAULT;
1556 goto out;
1557 }
1558 kaddr = kmap_atomic(page);
1559
1560 for (; offset < PAGE_SIZE && kaddr[offset];
1561 offset++, bprm->p++)
1562 ;
1563
1564 kunmap_atomic(kaddr);
1565 put_arg_page(page);
1566 } while (offset == PAGE_SIZE);
1567
1568 bprm->p++;
1569 bprm->argc--;
1570 ret = 0;
1571
1572out:
1573 return ret;
1574}
1575EXPORT_SYMBOL(remove_arg_zero);
1576
1577#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1578/*
1579 * cycle the list of binary formats handler, until one recognizes the image
1580 */
1581int search_binary_handler(struct linux_binprm *bprm)
1582{
1583 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1584 struct linux_binfmt *fmt;
1585 int retval;
1586
1587 /* This allows 4 levels of binfmt rewrites before failing hard. */
1588 if (bprm->recursion_depth > 5)
1589 return -ELOOP;
1590
1591 retval = security_bprm_check(bprm);
1592 if (retval)
1593 return retval;
1594
1595 retval = -ENOENT;
1596 retry:
1597 read_lock(&binfmt_lock);
1598 list_for_each_entry(fmt, &formats, lh) {
1599 if (!try_module_get(fmt->module))
1600 continue;
1601 read_unlock(&binfmt_lock);
1602 bprm->recursion_depth++;
1603 retval = fmt->load_binary(bprm);
1604 read_lock(&binfmt_lock);
1605 put_binfmt(fmt);
1606 bprm->recursion_depth--;
1607 if (retval < 0 && !bprm->mm) {
1608 /* we got to flush_old_exec() and failed after it */
1609 read_unlock(&binfmt_lock);
1610 force_sigsegv(SIGSEGV, current);
1611 return retval;
1612 }
1613 if (retval != -ENOEXEC || !bprm->file) {
1614 read_unlock(&binfmt_lock);
1615 return retval;
1616 }
1617 }
1618 read_unlock(&binfmt_lock);
1619
1620 if (need_retry) {
1621 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1622 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1623 return retval;
1624 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1625 return retval;
1626 need_retry = false;
1627 goto retry;
1628 }
1629
1630 return retval;
1631}
1632EXPORT_SYMBOL(search_binary_handler);
1633
1634static int exec_binprm(struct linux_binprm *bprm)
1635{
1636 pid_t old_pid, old_vpid;
1637 int ret;
1638
1639 /* Need to fetch pid before load_binary changes it */
1640 old_pid = current->pid;
1641 rcu_read_lock();
1642 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1643 rcu_read_unlock();
1644
1645 ret = search_binary_handler(bprm);
1646 if (ret >= 0) {
1647 audit_bprm(bprm);
1648 trace_sched_process_exec(current, old_pid, bprm);
1649 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1650 proc_exec_connector(current);
1651 }
1652
1653 return ret;
1654}
1655
1656/*
1657 * sys_execve() executes a new program.
1658 */
1659static int do_execveat_common(int fd, struct filename *filename,
1660 struct user_arg_ptr argv,
1661 struct user_arg_ptr envp,
1662 int flags)
1663{
1664 char *pathbuf = NULL;
1665 struct linux_binprm *bprm;
1666 struct file *file;
1667 struct files_struct *displaced;
1668 int retval;
1669
1670 if (IS_ERR(filename))
1671 return PTR_ERR(filename);
1672
1673 /*
1674 * We move the actual failure in case of RLIMIT_NPROC excess from
1675 * set*uid() to execve() because too many poorly written programs
1676 * don't check setuid() return code. Here we additionally recheck
1677 * whether NPROC limit is still exceeded.
1678 */
1679 if ((current->flags & PF_NPROC_EXCEEDED) &&
1680 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1681 retval = -EAGAIN;
1682 goto out_ret;
1683 }
1684
1685 /* We're below the limit (still or again), so we don't want to make
1686 * further execve() calls fail. */
1687 current->flags &= ~PF_NPROC_EXCEEDED;
1688
1689 retval = unshare_files(&displaced);
1690 if (retval)
1691 goto out_ret;
1692
1693 retval = -ENOMEM;
1694 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1695 if (!bprm)
1696 goto out_files;
1697
1698 retval = prepare_bprm_creds(bprm);
1699 if (retval)
1700 goto out_free;
1701
1702 check_unsafe_exec(bprm);
1703 current->in_execve = 1;
1704
1705 file = do_open_execat(fd, filename, flags);
1706 retval = PTR_ERR(file);
1707 if (IS_ERR(file))
1708 goto out_unmark;
1709
1710 sched_exec();
1711
1712 bprm->file = file;
1713 if (fd == AT_FDCWD || filename->name[0] == '/') {
1714 bprm->filename = filename->name;
1715 } else {
1716 if (filename->name[0] == '\0')
1717 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1718 else
1719 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1720 fd, filename->name);
1721 if (!pathbuf) {
1722 retval = -ENOMEM;
1723 goto out_unmark;
1724 }
1725 /*
1726 * Record that a name derived from an O_CLOEXEC fd will be
1727 * inaccessible after exec. Relies on having exclusive access to
1728 * current->files (due to unshare_files above).
1729 */
1730 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1731 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1732 bprm->filename = pathbuf;
1733 }
1734 bprm->interp = bprm->filename;
1735
1736 retval = bprm_mm_init(bprm);
1737 if (retval)
1738 goto out_unmark;
1739
1740 bprm->argc = count(argv, MAX_ARG_STRINGS);
1741 if ((retval = bprm->argc) < 0)
1742 goto out;
1743
1744 bprm->envc = count(envp, MAX_ARG_STRINGS);
1745 if ((retval = bprm->envc) < 0)
1746 goto out;
1747
1748 retval = prepare_binprm(bprm);
1749 if (retval < 0)
1750 goto out;
1751
1752 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1753 if (retval < 0)
1754 goto out;
1755
1756 bprm->exec = bprm->p;
1757 retval = copy_strings(bprm->envc, envp, bprm);
1758 if (retval < 0)
1759 goto out;
1760
1761 retval = copy_strings(bprm->argc, argv, bprm);
1762 if (retval < 0)
1763 goto out;
1764
1765 would_dump(bprm, bprm->file);
1766
1767 retval = exec_binprm(bprm);
1768 if (retval < 0)
1769 goto out;
1770
1771 /* execve succeeded */
1772 current->fs->in_exec = 0;
1773 current->in_execve = 0;
1774 acct_update_integrals(current);
1775 task_numa_free(current);
1776 free_bprm(bprm);
1777 kfree(pathbuf);
1778 putname(filename);
1779 if (displaced)
1780 put_files_struct(displaced);
1781 return retval;
1782
1783out:
1784 if (bprm->mm) {
1785 acct_arg_size(bprm, 0);
1786 mmput(bprm->mm);
1787 }
1788
1789out_unmark:
1790 current->fs->in_exec = 0;
1791 current->in_execve = 0;
1792
1793out_free:
1794 free_bprm(bprm);
1795 kfree(pathbuf);
1796
1797out_files:
1798 if (displaced)
1799 reset_files_struct(displaced);
1800out_ret:
1801 putname(filename);
1802 return retval;
1803}
1804
1805int do_execve(struct filename *filename,
1806 const char __user *const __user *__argv,
1807 const char __user *const __user *__envp)
1808{
1809 struct user_arg_ptr argv = { .ptr.native = __argv };
1810 struct user_arg_ptr envp = { .ptr.native = __envp };
1811 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1812}
1813
1814int do_execveat(int fd, struct filename *filename,
1815 const char __user *const __user *__argv,
1816 const char __user *const __user *__envp,
1817 int flags)
1818{
1819 struct user_arg_ptr argv = { .ptr.native = __argv };
1820 struct user_arg_ptr envp = { .ptr.native = __envp };
1821
1822 return do_execveat_common(fd, filename, argv, envp, flags);
1823}
1824
1825#ifdef CONFIG_COMPAT
1826static int compat_do_execve(struct filename *filename,
1827 const compat_uptr_t __user *__argv,
1828 const compat_uptr_t __user *__envp)
1829{
1830 struct user_arg_ptr argv = {
1831 .is_compat = true,
1832 .ptr.compat = __argv,
1833 };
1834 struct user_arg_ptr envp = {
1835 .is_compat = true,
1836 .ptr.compat = __envp,
1837 };
1838 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839}
1840
1841static int compat_do_execveat(int fd, struct filename *filename,
1842 const compat_uptr_t __user *__argv,
1843 const compat_uptr_t __user *__envp,
1844 int flags)
1845{
1846 struct user_arg_ptr argv = {
1847 .is_compat = true,
1848 .ptr.compat = __argv,
1849 };
1850 struct user_arg_ptr envp = {
1851 .is_compat = true,
1852 .ptr.compat = __envp,
1853 };
1854 return do_execveat_common(fd, filename, argv, envp, flags);
1855}
1856#endif
1857
1858void set_binfmt(struct linux_binfmt *new)
1859{
1860 struct mm_struct *mm = current->mm;
1861
1862 if (mm->binfmt)
1863 module_put(mm->binfmt->module);
1864
1865 mm->binfmt = new;
1866 if (new)
1867 __module_get(new->module);
1868}
1869EXPORT_SYMBOL(set_binfmt);
1870
1871/*
1872 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1873 */
1874void set_dumpable(struct mm_struct *mm, int value)
1875{
1876 unsigned long old, new;
1877
1878 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1879 return;
1880
1881 do {
1882 old = ACCESS_ONCE(mm->flags);
1883 new = (old & ~MMF_DUMPABLE_MASK) | value;
1884 } while (cmpxchg(&mm->flags, old, new) != old);
1885}
1886
1887SYSCALL_DEFINE3(execve,
1888 const char __user *, filename,
1889 const char __user *const __user *, argv,
1890 const char __user *const __user *, envp)
1891{
1892 return do_execve(getname(filename), argv, envp);
1893}
1894
1895SYSCALL_DEFINE5(execveat,
1896 int, fd, const char __user *, filename,
1897 const char __user *const __user *, argv,
1898 const char __user *const __user *, envp,
1899 int, flags)
1900{
1901 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1902
1903 return do_execveat(fd,
1904 getname_flags(filename, lookup_flags, NULL),
1905 argv, envp, flags);
1906}
1907
1908#ifdef CONFIG_COMPAT
1909COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1910 const compat_uptr_t __user *, argv,
1911 const compat_uptr_t __user *, envp)
1912{
1913 return compat_do_execve(getname(filename), argv, envp);
1914}
1915
1916COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1917 const char __user *, filename,
1918 const compat_uptr_t __user *, argv,
1919 const compat_uptr_t __user *, envp,
1920 int, flags)
1921{
1922 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1923
1924 return compat_do_execveat(fd,
1925 getname_flags(filename, lookup_flags, NULL),
1926 argv, envp, flags);
1927}
1928#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/kernel_read_file.h>
27#include <linux/slab.h>
28#include <linux/file.h>
29#include <linux/fdtable.h>
30#include <linux/mm.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/oom.h>
62#include <linux/compat.h>
63#include <linux/vmalloc.h>
64#include <linux/io_uring.h>
65#include <linux/syscall_user_dispatch.h>
66#include <linux/coredump.h>
67#include <linux/time_namespace.h>
68#include <linux/user_events.h>
69#include <linux/rseq.h>
70#include <linux/ksm.h>
71
72#include <linux/uaccess.h>
73#include <asm/mmu_context.h>
74#include <asm/tlb.h>
75
76#include <trace/events/task.h>
77#include "internal.h"
78
79#include <trace/events/sched.h>
80
81static int bprm_creds_from_file(struct linux_binprm *bprm);
82
83int suid_dumpable = 0;
84
85static LIST_HEAD(formats);
86static DEFINE_RWLOCK(binfmt_lock);
87
88void __register_binfmt(struct linux_binfmt * fmt, int insert)
89{
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
94}
95
96EXPORT_SYMBOL(__register_binfmt);
97
98void unregister_binfmt(struct linux_binfmt * fmt)
99{
100 write_lock(&binfmt_lock);
101 list_del(&fmt->lh);
102 write_unlock(&binfmt_lock);
103}
104
105EXPORT_SYMBOL(unregister_binfmt);
106
107static inline void put_binfmt(struct linux_binfmt * fmt)
108{
109 module_put(fmt->module);
110}
111
112bool path_noexec(const struct path *path)
113{
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116}
117
118#ifdef CONFIG_USELIB
119/*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from the file itself.
124 */
125SYSCALL_DEFINE1(uselib, const char __user *, library)
126{
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 /*
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
151 */
152 error = -EACCES;
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 path_noexec(&file->f_path)))
155 goto exit;
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173exit:
174 fput(file);
175out:
176 return error;
177}
178#endif /* #ifdef CONFIG_USELIB */
179
180#ifdef CONFIG_MMU
181/*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188{
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197}
198
199static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201{
202 struct page *page;
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
205 int ret;
206
207 /*
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
211 */
212 if (write && pos < vma->vm_start) {
213 mmap_write_lock(mm);
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
217 return NULL;
218 }
219 mmap_write_downgrade(mm);
220 } else
221 mmap_read_lock(mm);
222
223 /*
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
226 */
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
229 &page, NULL);
230 mmap_read_unlock(mm);
231 if (ret <= 0)
232 return NULL;
233
234 if (write)
235 acct_arg_size(bprm, vma_pages(vma));
236
237 return page;
238}
239
240static void put_arg_page(struct page *page)
241{
242 put_page(page);
243}
244
245static void free_arg_pages(struct linux_binprm *bprm)
246{
247}
248
249static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 struct page *page)
251{
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253}
254
255static int __bprm_mm_init(struct linux_binprm *bprm)
256{
257 int err;
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
260
261 bprm->vma = vma = vm_area_alloc(mm);
262 if (!vma)
263 return -ENOMEM;
264 vma_set_anonymous(vma);
265
266 if (mmap_write_lock_killable(mm)) {
267 err = -EINTR;
268 goto err_free;
269 }
270
271 /*
272 * Need to be called with mmap write lock
273 * held, to avoid race with ksmd.
274 */
275 err = ksm_execve(mm);
276 if (err)
277 goto err_ksm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290
291 err = insert_vm_struct(mm, vma);
292 if (err)
293 goto err;
294
295 mm->stack_vm = mm->total_vm = 1;
296 mmap_write_unlock(mm);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299err:
300 ksm_exit(mm);
301err_ksm:
302 mmap_write_unlock(mm);
303err_free:
304 bprm->vma = NULL;
305 vm_area_free(vma);
306 return err;
307}
308
309static bool valid_arg_len(struct linux_binprm *bprm, long len)
310{
311 return len <= MAX_ARG_STRLEN;
312}
313
314#else
315
316static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317{
318}
319
320static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 int write)
322{
323 struct page *page;
324
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 if (!page)
329 return NULL;
330 bprm->page[pos / PAGE_SIZE] = page;
331 }
332
333 return page;
334}
335
336static void put_arg_page(struct page *page)
337{
338}
339
340static void free_arg_page(struct linux_binprm *bprm, int i)
341{
342 if (bprm->page[i]) {
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
345 }
346}
347
348static void free_arg_pages(struct linux_binprm *bprm)
349{
350 int i;
351
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
354}
355
356static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 struct page *page)
358{
359}
360
361static int __bprm_mm_init(struct linux_binprm *bprm)
362{
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 return 0;
365}
366
367static bool valid_arg_len(struct linux_binprm *bprm, long len)
368{
369 return len <= bprm->p;
370}
371
372#endif /* CONFIG_MMU */
373
374/*
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
379 */
380static int bprm_mm_init(struct linux_binprm *bprm)
381{
382 int err;
383 struct mm_struct *mm = NULL;
384
385 bprm->mm = mm = mm_alloc();
386 err = -ENOMEM;
387 if (!mm)
388 goto err;
389
390 /* Save current stack limit for all calculations made during exec. */
391 task_lock(current->group_leader);
392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 task_unlock(current->group_leader);
394
395 err = __bprm_mm_init(bprm);
396 if (err)
397 goto err;
398
399 return 0;
400
401err:
402 if (mm) {
403 bprm->mm = NULL;
404 mmdrop(mm);
405 }
406
407 return err;
408}
409
410struct user_arg_ptr {
411#ifdef CONFIG_COMPAT
412 bool is_compat;
413#endif
414 union {
415 const char __user *const __user *native;
416#ifdef CONFIG_COMPAT
417 const compat_uptr_t __user *compat;
418#endif
419 } ptr;
420};
421
422static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423{
424 const char __user *native;
425
426#ifdef CONFIG_COMPAT
427 if (unlikely(argv.is_compat)) {
428 compat_uptr_t compat;
429
430 if (get_user(compat, argv.ptr.compat + nr))
431 return ERR_PTR(-EFAULT);
432
433 return compat_ptr(compat);
434 }
435#endif
436
437 if (get_user(native, argv.ptr.native + nr))
438 return ERR_PTR(-EFAULT);
439
440 return native;
441}
442
443/*
444 * count() counts the number of strings in array ARGV.
445 */
446static int count(struct user_arg_ptr argv, int max)
447{
448 int i = 0;
449
450 if (argv.ptr.native != NULL) {
451 for (;;) {
452 const char __user *p = get_user_arg_ptr(argv, i);
453
454 if (!p)
455 break;
456
457 if (IS_ERR(p))
458 return -EFAULT;
459
460 if (i >= max)
461 return -E2BIG;
462 ++i;
463
464 if (fatal_signal_pending(current))
465 return -ERESTARTNOHAND;
466 cond_resched();
467 }
468 }
469 return i;
470}
471
472static int count_strings_kernel(const char *const *argv)
473{
474 int i;
475
476 if (!argv)
477 return 0;
478
479 for (i = 0; argv[i]; ++i) {
480 if (i >= MAX_ARG_STRINGS)
481 return -E2BIG;
482 if (fatal_signal_pending(current))
483 return -ERESTARTNOHAND;
484 cond_resched();
485 }
486 return i;
487}
488
489static int bprm_stack_limits(struct linux_binprm *bprm)
490{
491 unsigned long limit, ptr_size;
492
493 /*
494 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
495 * (whichever is smaller) for the argv+env strings.
496 * This ensures that:
497 * - the remaining binfmt code will not run out of stack space,
498 * - the program will have a reasonable amount of stack left
499 * to work from.
500 */
501 limit = _STK_LIM / 4 * 3;
502 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
503 /*
504 * We've historically supported up to 32 pages (ARG_MAX)
505 * of argument strings even with small stacks
506 */
507 limit = max_t(unsigned long, limit, ARG_MAX);
508 /*
509 * We must account for the size of all the argv and envp pointers to
510 * the argv and envp strings, since they will also take up space in
511 * the stack. They aren't stored until much later when we can't
512 * signal to the parent that the child has run out of stack space.
513 * Instead, calculate it here so it's possible to fail gracefully.
514 *
515 * In the case of argc = 0, make sure there is space for adding a
516 * empty string (which will bump argc to 1), to ensure confused
517 * userspace programs don't start processing from argv[1], thinking
518 * argc can never be 0, to keep them from walking envp by accident.
519 * See do_execveat_common().
520 */
521 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
522 if (limit <= ptr_size)
523 return -E2BIG;
524 limit -= ptr_size;
525
526 bprm->argmin = bprm->p - limit;
527 return 0;
528}
529
530/*
531 * 'copy_strings()' copies argument/environment strings from the old
532 * processes's memory to the new process's stack. The call to get_user_pages()
533 * ensures the destination page is created and not swapped out.
534 */
535static int copy_strings(int argc, struct user_arg_ptr argv,
536 struct linux_binprm *bprm)
537{
538 struct page *kmapped_page = NULL;
539 char *kaddr = NULL;
540 unsigned long kpos = 0;
541 int ret;
542
543 while (argc-- > 0) {
544 const char __user *str;
545 int len;
546 unsigned long pos;
547
548 ret = -EFAULT;
549 str = get_user_arg_ptr(argv, argc);
550 if (IS_ERR(str))
551 goto out;
552
553 len = strnlen_user(str, MAX_ARG_STRLEN);
554 if (!len)
555 goto out;
556
557 ret = -E2BIG;
558 if (!valid_arg_len(bprm, len))
559 goto out;
560
561 /* We're going to work our way backwards. */
562 pos = bprm->p;
563 str += len;
564 bprm->p -= len;
565#ifdef CONFIG_MMU
566 if (bprm->p < bprm->argmin)
567 goto out;
568#endif
569
570 while (len > 0) {
571 int offset, bytes_to_copy;
572
573 if (fatal_signal_pending(current)) {
574 ret = -ERESTARTNOHAND;
575 goto out;
576 }
577 cond_resched();
578
579 offset = pos % PAGE_SIZE;
580 if (offset == 0)
581 offset = PAGE_SIZE;
582
583 bytes_to_copy = offset;
584 if (bytes_to_copy > len)
585 bytes_to_copy = len;
586
587 offset -= bytes_to_copy;
588 pos -= bytes_to_copy;
589 str -= bytes_to_copy;
590 len -= bytes_to_copy;
591
592 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
593 struct page *page;
594
595 page = get_arg_page(bprm, pos, 1);
596 if (!page) {
597 ret = -E2BIG;
598 goto out;
599 }
600
601 if (kmapped_page) {
602 flush_dcache_page(kmapped_page);
603 kunmap_local(kaddr);
604 put_arg_page(kmapped_page);
605 }
606 kmapped_page = page;
607 kaddr = kmap_local_page(kmapped_page);
608 kpos = pos & PAGE_MASK;
609 flush_arg_page(bprm, kpos, kmapped_page);
610 }
611 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
612 ret = -EFAULT;
613 goto out;
614 }
615 }
616 }
617 ret = 0;
618out:
619 if (kmapped_page) {
620 flush_dcache_page(kmapped_page);
621 kunmap_local(kaddr);
622 put_arg_page(kmapped_page);
623 }
624 return ret;
625}
626
627/*
628 * Copy and argument/environment string from the kernel to the processes stack.
629 */
630int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
631{
632 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
633 unsigned long pos = bprm->p;
634
635 if (len == 0)
636 return -EFAULT;
637 if (!valid_arg_len(bprm, len))
638 return -E2BIG;
639
640 /* We're going to work our way backwards. */
641 arg += len;
642 bprm->p -= len;
643 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
644 return -E2BIG;
645
646 while (len > 0) {
647 unsigned int bytes_to_copy = min_t(unsigned int, len,
648 min_not_zero(offset_in_page(pos), PAGE_SIZE));
649 struct page *page;
650
651 pos -= bytes_to_copy;
652 arg -= bytes_to_copy;
653 len -= bytes_to_copy;
654
655 page = get_arg_page(bprm, pos, 1);
656 if (!page)
657 return -E2BIG;
658 flush_arg_page(bprm, pos & PAGE_MASK, page);
659 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
660 put_arg_page(page);
661 }
662
663 return 0;
664}
665EXPORT_SYMBOL(copy_string_kernel);
666
667static int copy_strings_kernel(int argc, const char *const *argv,
668 struct linux_binprm *bprm)
669{
670 while (argc-- > 0) {
671 int ret = copy_string_kernel(argv[argc], bprm);
672 if (ret < 0)
673 return ret;
674 if (fatal_signal_pending(current))
675 return -ERESTARTNOHAND;
676 cond_resched();
677 }
678 return 0;
679}
680
681#ifdef CONFIG_MMU
682
683/*
684 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
685 * the binfmt code determines where the new stack should reside, we shift it to
686 * its final location. The process proceeds as follows:
687 *
688 * 1) Use shift to calculate the new vma endpoints.
689 * 2) Extend vma to cover both the old and new ranges. This ensures the
690 * arguments passed to subsequent functions are consistent.
691 * 3) Move vma's page tables to the new range.
692 * 4) Free up any cleared pgd range.
693 * 5) Shrink the vma to cover only the new range.
694 */
695static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
696{
697 struct mm_struct *mm = vma->vm_mm;
698 unsigned long old_start = vma->vm_start;
699 unsigned long old_end = vma->vm_end;
700 unsigned long length = old_end - old_start;
701 unsigned long new_start = old_start - shift;
702 unsigned long new_end = old_end - shift;
703 VMA_ITERATOR(vmi, mm, new_start);
704 struct vm_area_struct *next;
705 struct mmu_gather tlb;
706
707 BUG_ON(new_start > new_end);
708
709 /*
710 * ensure there are no vmas between where we want to go
711 * and where we are
712 */
713 if (vma != vma_next(&vmi))
714 return -EFAULT;
715
716 vma_iter_prev_range(&vmi);
717 /*
718 * cover the whole range: [new_start, old_end)
719 */
720 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
721 return -ENOMEM;
722
723 /*
724 * move the page tables downwards, on failure we rely on
725 * process cleanup to remove whatever mess we made.
726 */
727 if (length != move_page_tables(vma, old_start,
728 vma, new_start, length, false, true))
729 return -ENOMEM;
730
731 lru_add_drain();
732 tlb_gather_mmu(&tlb, mm);
733 next = vma_next(&vmi);
734 if (new_end > old_start) {
735 /*
736 * when the old and new regions overlap clear from new_end.
737 */
738 free_pgd_range(&tlb, new_end, old_end, new_end,
739 next ? next->vm_start : USER_PGTABLES_CEILING);
740 } else {
741 /*
742 * otherwise, clean from old_start; this is done to not touch
743 * the address space in [new_end, old_start) some architectures
744 * have constraints on va-space that make this illegal (IA64) -
745 * for the others its just a little faster.
746 */
747 free_pgd_range(&tlb, old_start, old_end, new_end,
748 next ? next->vm_start : USER_PGTABLES_CEILING);
749 }
750 tlb_finish_mmu(&tlb);
751
752 vma_prev(&vmi);
753 /* Shrink the vma to just the new range */
754 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
755}
756
757/*
758 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
759 * the stack is optionally relocated, and some extra space is added.
760 */
761int setup_arg_pages(struct linux_binprm *bprm,
762 unsigned long stack_top,
763 int executable_stack)
764{
765 unsigned long ret;
766 unsigned long stack_shift;
767 struct mm_struct *mm = current->mm;
768 struct vm_area_struct *vma = bprm->vma;
769 struct vm_area_struct *prev = NULL;
770 unsigned long vm_flags;
771 unsigned long stack_base;
772 unsigned long stack_size;
773 unsigned long stack_expand;
774 unsigned long rlim_stack;
775 struct mmu_gather tlb;
776 struct vma_iterator vmi;
777
778#ifdef CONFIG_STACK_GROWSUP
779 /* Limit stack size */
780 stack_base = bprm->rlim_stack.rlim_max;
781
782 stack_base = calc_max_stack_size(stack_base);
783
784 /* Add space for stack randomization. */
785 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
786
787 /* Make sure we didn't let the argument array grow too large. */
788 if (vma->vm_end - vma->vm_start > stack_base)
789 return -ENOMEM;
790
791 stack_base = PAGE_ALIGN(stack_top - stack_base);
792
793 stack_shift = vma->vm_start - stack_base;
794 mm->arg_start = bprm->p - stack_shift;
795 bprm->p = vma->vm_end - stack_shift;
796#else
797 stack_top = arch_align_stack(stack_top);
798 stack_top = PAGE_ALIGN(stack_top);
799
800 if (unlikely(stack_top < mmap_min_addr) ||
801 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
802 return -ENOMEM;
803
804 stack_shift = vma->vm_end - stack_top;
805
806 bprm->p -= stack_shift;
807 mm->arg_start = bprm->p;
808#endif
809
810 if (bprm->loader)
811 bprm->loader -= stack_shift;
812 bprm->exec -= stack_shift;
813
814 if (mmap_write_lock_killable(mm))
815 return -EINTR;
816
817 vm_flags = VM_STACK_FLAGS;
818
819 /*
820 * Adjust stack execute permissions; explicitly enable for
821 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
822 * (arch default) otherwise.
823 */
824 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
825 vm_flags |= VM_EXEC;
826 else if (executable_stack == EXSTACK_DISABLE_X)
827 vm_flags &= ~VM_EXEC;
828 vm_flags |= mm->def_flags;
829 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
830
831 vma_iter_init(&vmi, mm, vma->vm_start);
832
833 tlb_gather_mmu(&tlb, mm);
834 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
835 vm_flags);
836 tlb_finish_mmu(&tlb);
837
838 if (ret)
839 goto out_unlock;
840 BUG_ON(prev != vma);
841
842 if (unlikely(vm_flags & VM_EXEC)) {
843 pr_warn_once("process '%pD4' started with executable stack\n",
844 bprm->file);
845 }
846
847 /* Move stack pages down in memory. */
848 if (stack_shift) {
849 ret = shift_arg_pages(vma, stack_shift);
850 if (ret)
851 goto out_unlock;
852 }
853
854 /* mprotect_fixup is overkill to remove the temporary stack flags */
855 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
856
857 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
858 stack_size = vma->vm_end - vma->vm_start;
859 /*
860 * Align this down to a page boundary as expand_stack
861 * will align it up.
862 */
863 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
864
865 stack_expand = min(rlim_stack, stack_size + stack_expand);
866
867#ifdef CONFIG_STACK_GROWSUP
868 stack_base = vma->vm_start + stack_expand;
869#else
870 stack_base = vma->vm_end - stack_expand;
871#endif
872 current->mm->start_stack = bprm->p;
873 ret = expand_stack_locked(vma, stack_base);
874 if (ret)
875 ret = -EFAULT;
876
877out_unlock:
878 mmap_write_unlock(mm);
879 return ret;
880}
881EXPORT_SYMBOL(setup_arg_pages);
882
883#else
884
885/*
886 * Transfer the program arguments and environment from the holding pages
887 * onto the stack. The provided stack pointer is adjusted accordingly.
888 */
889int transfer_args_to_stack(struct linux_binprm *bprm,
890 unsigned long *sp_location)
891{
892 unsigned long index, stop, sp;
893 int ret = 0;
894
895 stop = bprm->p >> PAGE_SHIFT;
896 sp = *sp_location;
897
898 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
899 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
900 char *src = kmap_local_page(bprm->page[index]) + offset;
901 sp -= PAGE_SIZE - offset;
902 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
903 ret = -EFAULT;
904 kunmap_local(src);
905 if (ret)
906 goto out;
907 }
908
909 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
910 *sp_location = sp;
911
912out:
913 return ret;
914}
915EXPORT_SYMBOL(transfer_args_to_stack);
916
917#endif /* CONFIG_MMU */
918
919/*
920 * On success, caller must call do_close_execat() on the returned
921 * struct file to close it.
922 */
923static struct file *do_open_execat(int fd, struct filename *name, int flags)
924{
925 struct file *file;
926 int err;
927 struct open_flags open_exec_flags = {
928 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
929 .acc_mode = MAY_EXEC,
930 .intent = LOOKUP_OPEN,
931 .lookup_flags = LOOKUP_FOLLOW,
932 };
933
934 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
935 return ERR_PTR(-EINVAL);
936 if (flags & AT_SYMLINK_NOFOLLOW)
937 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
938 if (flags & AT_EMPTY_PATH)
939 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
940
941 file = do_filp_open(fd, name, &open_exec_flags);
942 if (IS_ERR(file))
943 goto out;
944
945 /*
946 * may_open() has already checked for this, so it should be
947 * impossible to trip now. But we need to be extra cautious
948 * and check again at the very end too.
949 */
950 err = -EACCES;
951 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
952 path_noexec(&file->f_path)))
953 goto exit;
954
955 err = deny_write_access(file);
956 if (err)
957 goto exit;
958
959out:
960 return file;
961
962exit:
963 fput(file);
964 return ERR_PTR(err);
965}
966
967/**
968 * open_exec - Open a path name for execution
969 *
970 * @name: path name to open with the intent of executing it.
971 *
972 * Returns ERR_PTR on failure or allocated struct file on success.
973 *
974 * As this is a wrapper for the internal do_open_execat(), callers
975 * must call allow_write_access() before fput() on release. Also see
976 * do_close_execat().
977 */
978struct file *open_exec(const char *name)
979{
980 struct filename *filename = getname_kernel(name);
981 struct file *f = ERR_CAST(filename);
982
983 if (!IS_ERR(filename)) {
984 f = do_open_execat(AT_FDCWD, filename, 0);
985 putname(filename);
986 }
987 return f;
988}
989EXPORT_SYMBOL(open_exec);
990
991#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
992ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
993{
994 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
995 if (res > 0)
996 flush_icache_user_range(addr, addr + len);
997 return res;
998}
999EXPORT_SYMBOL(read_code);
1000#endif
1001
1002/*
1003 * Maps the mm_struct mm into the current task struct.
1004 * On success, this function returns with exec_update_lock
1005 * held for writing.
1006 */
1007static int exec_mmap(struct mm_struct *mm)
1008{
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1011 int ret;
1012
1013 /* Notify parent that we're no longer interested in the old VM */
1014 tsk = current;
1015 old_mm = current->mm;
1016 exec_mm_release(tsk, old_mm);
1017
1018 ret = down_write_killable(&tsk->signal->exec_update_lock);
1019 if (ret)
1020 return ret;
1021
1022 if (old_mm) {
1023 /*
1024 * If there is a pending fatal signal perhaps a signal
1025 * whose default action is to create a coredump get
1026 * out and die instead of going through with the exec.
1027 */
1028 ret = mmap_read_lock_killable(old_mm);
1029 if (ret) {
1030 up_write(&tsk->signal->exec_update_lock);
1031 return ret;
1032 }
1033 }
1034
1035 task_lock(tsk);
1036 membarrier_exec_mmap(mm);
1037
1038 local_irq_disable();
1039 active_mm = tsk->active_mm;
1040 tsk->active_mm = mm;
1041 tsk->mm = mm;
1042 mm_init_cid(mm);
1043 /*
1044 * This prevents preemption while active_mm is being loaded and
1045 * it and mm are being updated, which could cause problems for
1046 * lazy tlb mm refcounting when these are updated by context
1047 * switches. Not all architectures can handle irqs off over
1048 * activate_mm yet.
1049 */
1050 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1051 local_irq_enable();
1052 activate_mm(active_mm, mm);
1053 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1054 local_irq_enable();
1055 lru_gen_add_mm(mm);
1056 task_unlock(tsk);
1057 lru_gen_use_mm(mm);
1058 if (old_mm) {
1059 mmap_read_unlock(old_mm);
1060 BUG_ON(active_mm != old_mm);
1061 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1062 mm_update_next_owner(old_mm);
1063 mmput(old_mm);
1064 return 0;
1065 }
1066 mmdrop_lazy_tlb(active_mm);
1067 return 0;
1068}
1069
1070static int de_thread(struct task_struct *tsk)
1071{
1072 struct signal_struct *sig = tsk->signal;
1073 struct sighand_struct *oldsighand = tsk->sighand;
1074 spinlock_t *lock = &oldsighand->siglock;
1075
1076 if (thread_group_empty(tsk))
1077 goto no_thread_group;
1078
1079 /*
1080 * Kill all other threads in the thread group.
1081 */
1082 spin_lock_irq(lock);
1083 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1084 /*
1085 * Another group action in progress, just
1086 * return so that the signal is processed.
1087 */
1088 spin_unlock_irq(lock);
1089 return -EAGAIN;
1090 }
1091
1092 sig->group_exec_task = tsk;
1093 sig->notify_count = zap_other_threads(tsk);
1094 if (!thread_group_leader(tsk))
1095 sig->notify_count--;
1096
1097 while (sig->notify_count) {
1098 __set_current_state(TASK_KILLABLE);
1099 spin_unlock_irq(lock);
1100 schedule();
1101 if (__fatal_signal_pending(tsk))
1102 goto killed;
1103 spin_lock_irq(lock);
1104 }
1105 spin_unlock_irq(lock);
1106
1107 /*
1108 * At this point all other threads have exited, all we have to
1109 * do is to wait for the thread group leader to become inactive,
1110 * and to assume its PID:
1111 */
1112 if (!thread_group_leader(tsk)) {
1113 struct task_struct *leader = tsk->group_leader;
1114
1115 for (;;) {
1116 cgroup_threadgroup_change_begin(tsk);
1117 write_lock_irq(&tasklist_lock);
1118 /*
1119 * Do this under tasklist_lock to ensure that
1120 * exit_notify() can't miss ->group_exec_task
1121 */
1122 sig->notify_count = -1;
1123 if (likely(leader->exit_state))
1124 break;
1125 __set_current_state(TASK_KILLABLE);
1126 write_unlock_irq(&tasklist_lock);
1127 cgroup_threadgroup_change_end(tsk);
1128 schedule();
1129 if (__fatal_signal_pending(tsk))
1130 goto killed;
1131 }
1132
1133 /*
1134 * The only record we have of the real-time age of a
1135 * process, regardless of execs it's done, is start_time.
1136 * All the past CPU time is accumulated in signal_struct
1137 * from sister threads now dead. But in this non-leader
1138 * exec, nothing survives from the original leader thread,
1139 * whose birth marks the true age of this process now.
1140 * When we take on its identity by switching to its PID, we
1141 * also take its birthdate (always earlier than our own).
1142 */
1143 tsk->start_time = leader->start_time;
1144 tsk->start_boottime = leader->start_boottime;
1145
1146 BUG_ON(!same_thread_group(leader, tsk));
1147 /*
1148 * An exec() starts a new thread group with the
1149 * TGID of the previous thread group. Rehash the
1150 * two threads with a switched PID, and release
1151 * the former thread group leader:
1152 */
1153
1154 /* Become a process group leader with the old leader's pid.
1155 * The old leader becomes a thread of the this thread group.
1156 */
1157 exchange_tids(tsk, leader);
1158 transfer_pid(leader, tsk, PIDTYPE_TGID);
1159 transfer_pid(leader, tsk, PIDTYPE_PGID);
1160 transfer_pid(leader, tsk, PIDTYPE_SID);
1161
1162 list_replace_rcu(&leader->tasks, &tsk->tasks);
1163 list_replace_init(&leader->sibling, &tsk->sibling);
1164
1165 tsk->group_leader = tsk;
1166 leader->group_leader = tsk;
1167
1168 tsk->exit_signal = SIGCHLD;
1169 leader->exit_signal = -1;
1170
1171 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1172 leader->exit_state = EXIT_DEAD;
1173 /*
1174 * We are going to release_task()->ptrace_unlink() silently,
1175 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176 * the tracer won't block again waiting for this thread.
1177 */
1178 if (unlikely(leader->ptrace))
1179 __wake_up_parent(leader, leader->parent);
1180 write_unlock_irq(&tasklist_lock);
1181 cgroup_threadgroup_change_end(tsk);
1182
1183 release_task(leader);
1184 }
1185
1186 sig->group_exec_task = NULL;
1187 sig->notify_count = 0;
1188
1189no_thread_group:
1190 /* we have changed execution domain */
1191 tsk->exit_signal = SIGCHLD;
1192
1193 BUG_ON(!thread_group_leader(tsk));
1194 return 0;
1195
1196killed:
1197 /* protects against exit_notify() and __exit_signal() */
1198 read_lock(&tasklist_lock);
1199 sig->group_exec_task = NULL;
1200 sig->notify_count = 0;
1201 read_unlock(&tasklist_lock);
1202 return -EAGAIN;
1203}
1204
1205
1206/*
1207 * This function makes sure the current process has its own signal table,
1208 * so that flush_signal_handlers can later reset the handlers without
1209 * disturbing other processes. (Other processes might share the signal
1210 * table via the CLONE_SIGHAND option to clone().)
1211 */
1212static int unshare_sighand(struct task_struct *me)
1213{
1214 struct sighand_struct *oldsighand = me->sighand;
1215
1216 if (refcount_read(&oldsighand->count) != 1) {
1217 struct sighand_struct *newsighand;
1218 /*
1219 * This ->sighand is shared with the CLONE_SIGHAND
1220 * but not CLONE_THREAD task, switch to the new one.
1221 */
1222 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1223 if (!newsighand)
1224 return -ENOMEM;
1225
1226 refcount_set(&newsighand->count, 1);
1227
1228 write_lock_irq(&tasklist_lock);
1229 spin_lock(&oldsighand->siglock);
1230 memcpy(newsighand->action, oldsighand->action,
1231 sizeof(newsighand->action));
1232 rcu_assign_pointer(me->sighand, newsighand);
1233 spin_unlock(&oldsighand->siglock);
1234 write_unlock_irq(&tasklist_lock);
1235
1236 __cleanup_sighand(oldsighand);
1237 }
1238 return 0;
1239}
1240
1241char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1242{
1243 task_lock(tsk);
1244 /* Always NUL terminated and zero-padded */
1245 strscpy_pad(buf, tsk->comm, buf_size);
1246 task_unlock(tsk);
1247 return buf;
1248}
1249EXPORT_SYMBOL_GPL(__get_task_comm);
1250
1251/*
1252 * These functions flushes out all traces of the currently running executable
1253 * so that a new one can be started
1254 */
1255
1256void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1257{
1258 task_lock(tsk);
1259 trace_task_rename(tsk, buf);
1260 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1261 task_unlock(tsk);
1262 perf_event_comm(tsk, exec);
1263}
1264
1265/*
1266 * Calling this is the point of no return. None of the failures will be
1267 * seen by userspace since either the process is already taking a fatal
1268 * signal (via de_thread() or coredump), or will have SEGV raised
1269 * (after exec_mmap()) by search_binary_handler (see below).
1270 */
1271int begin_new_exec(struct linux_binprm * bprm)
1272{
1273 struct task_struct *me = current;
1274 int retval;
1275
1276 /* Once we are committed compute the creds */
1277 retval = bprm_creds_from_file(bprm);
1278 if (retval)
1279 return retval;
1280
1281 /*
1282 * Ensure all future errors are fatal.
1283 */
1284 bprm->point_of_no_return = true;
1285
1286 /*
1287 * Make this the only thread in the thread group.
1288 */
1289 retval = de_thread(me);
1290 if (retval)
1291 goto out;
1292
1293 /*
1294 * Cancel any io_uring activity across execve
1295 */
1296 io_uring_task_cancel();
1297
1298 /* Ensure the files table is not shared. */
1299 retval = unshare_files();
1300 if (retval)
1301 goto out;
1302
1303 /*
1304 * Must be called _before_ exec_mmap() as bprm->mm is
1305 * not visible until then. Doing it here also ensures
1306 * we don't race against replace_mm_exe_file().
1307 */
1308 retval = set_mm_exe_file(bprm->mm, bprm->file);
1309 if (retval)
1310 goto out;
1311
1312 /* If the binary is not readable then enforce mm->dumpable=0 */
1313 would_dump(bprm, bprm->file);
1314 if (bprm->have_execfd)
1315 would_dump(bprm, bprm->executable);
1316
1317 /*
1318 * Release all of the old mmap stuff
1319 */
1320 acct_arg_size(bprm, 0);
1321 retval = exec_mmap(bprm->mm);
1322 if (retval)
1323 goto out;
1324
1325 bprm->mm = NULL;
1326
1327 retval = exec_task_namespaces();
1328 if (retval)
1329 goto out_unlock;
1330
1331#ifdef CONFIG_POSIX_TIMERS
1332 spin_lock_irq(&me->sighand->siglock);
1333 posix_cpu_timers_exit(me);
1334 spin_unlock_irq(&me->sighand->siglock);
1335 exit_itimers(me);
1336 flush_itimer_signals();
1337#endif
1338
1339 /*
1340 * Make the signal table private.
1341 */
1342 retval = unshare_sighand(me);
1343 if (retval)
1344 goto out_unlock;
1345
1346 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1347 PF_NOFREEZE | PF_NO_SETAFFINITY);
1348 flush_thread();
1349 me->personality &= ~bprm->per_clear;
1350
1351 clear_syscall_work_syscall_user_dispatch(me);
1352
1353 /*
1354 * We have to apply CLOEXEC before we change whether the process is
1355 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1356 * trying to access the should-be-closed file descriptors of a process
1357 * undergoing exec(2).
1358 */
1359 do_close_on_exec(me->files);
1360
1361 if (bprm->secureexec) {
1362 /* Make sure parent cannot signal privileged process. */
1363 me->pdeath_signal = 0;
1364
1365 /*
1366 * For secureexec, reset the stack limit to sane default to
1367 * avoid bad behavior from the prior rlimits. This has to
1368 * happen before arch_pick_mmap_layout(), which examines
1369 * RLIMIT_STACK, but after the point of no return to avoid
1370 * needing to clean up the change on failure.
1371 */
1372 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1373 bprm->rlim_stack.rlim_cur = _STK_LIM;
1374 }
1375
1376 me->sas_ss_sp = me->sas_ss_size = 0;
1377
1378 /*
1379 * Figure out dumpability. Note that this checking only of current
1380 * is wrong, but userspace depends on it. This should be testing
1381 * bprm->secureexec instead.
1382 */
1383 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1384 !(uid_eq(current_euid(), current_uid()) &&
1385 gid_eq(current_egid(), current_gid())))
1386 set_dumpable(current->mm, suid_dumpable);
1387 else
1388 set_dumpable(current->mm, SUID_DUMP_USER);
1389
1390 perf_event_exec();
1391 __set_task_comm(me, kbasename(bprm->filename), true);
1392
1393 /* An exec changes our domain. We are no longer part of the thread
1394 group */
1395 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1396 flush_signal_handlers(me, 0);
1397
1398 retval = set_cred_ucounts(bprm->cred);
1399 if (retval < 0)
1400 goto out_unlock;
1401
1402 /*
1403 * install the new credentials for this executable
1404 */
1405 security_bprm_committing_creds(bprm);
1406
1407 commit_creds(bprm->cred);
1408 bprm->cred = NULL;
1409
1410 /*
1411 * Disable monitoring for regular users
1412 * when executing setuid binaries. Must
1413 * wait until new credentials are committed
1414 * by commit_creds() above
1415 */
1416 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1417 perf_event_exit_task(me);
1418 /*
1419 * cred_guard_mutex must be held at least to this point to prevent
1420 * ptrace_attach() from altering our determination of the task's
1421 * credentials; any time after this it may be unlocked.
1422 */
1423 security_bprm_committed_creds(bprm);
1424
1425 /* Pass the opened binary to the interpreter. */
1426 if (bprm->have_execfd) {
1427 retval = get_unused_fd_flags(0);
1428 if (retval < 0)
1429 goto out_unlock;
1430 fd_install(retval, bprm->executable);
1431 bprm->executable = NULL;
1432 bprm->execfd = retval;
1433 }
1434 return 0;
1435
1436out_unlock:
1437 up_write(&me->signal->exec_update_lock);
1438 if (!bprm->cred)
1439 mutex_unlock(&me->signal->cred_guard_mutex);
1440
1441out:
1442 return retval;
1443}
1444EXPORT_SYMBOL(begin_new_exec);
1445
1446void would_dump(struct linux_binprm *bprm, struct file *file)
1447{
1448 struct inode *inode = file_inode(file);
1449 struct mnt_idmap *idmap = file_mnt_idmap(file);
1450 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1451 struct user_namespace *old, *user_ns;
1452 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1453
1454 /* Ensure mm->user_ns contains the executable */
1455 user_ns = old = bprm->mm->user_ns;
1456 while ((user_ns != &init_user_ns) &&
1457 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1458 user_ns = user_ns->parent;
1459
1460 if (old != user_ns) {
1461 bprm->mm->user_ns = get_user_ns(user_ns);
1462 put_user_ns(old);
1463 }
1464 }
1465}
1466EXPORT_SYMBOL(would_dump);
1467
1468void setup_new_exec(struct linux_binprm * bprm)
1469{
1470 /* Setup things that can depend upon the personality */
1471 struct task_struct *me = current;
1472
1473 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1474
1475 arch_setup_new_exec();
1476
1477 /* Set the new mm task size. We have to do that late because it may
1478 * depend on TIF_32BIT which is only updated in flush_thread() on
1479 * some architectures like powerpc
1480 */
1481 me->mm->task_size = TASK_SIZE;
1482 up_write(&me->signal->exec_update_lock);
1483 mutex_unlock(&me->signal->cred_guard_mutex);
1484}
1485EXPORT_SYMBOL(setup_new_exec);
1486
1487/* Runs immediately before start_thread() takes over. */
1488void finalize_exec(struct linux_binprm *bprm)
1489{
1490 /* Store any stack rlimit changes before starting thread. */
1491 task_lock(current->group_leader);
1492 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1493 task_unlock(current->group_leader);
1494}
1495EXPORT_SYMBOL(finalize_exec);
1496
1497/*
1498 * Prepare credentials and lock ->cred_guard_mutex.
1499 * setup_new_exec() commits the new creds and drops the lock.
1500 * Or, if exec fails before, free_bprm() should release ->cred
1501 * and unlock.
1502 */
1503static int prepare_bprm_creds(struct linux_binprm *bprm)
1504{
1505 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1506 return -ERESTARTNOINTR;
1507
1508 bprm->cred = prepare_exec_creds();
1509 if (likely(bprm->cred))
1510 return 0;
1511
1512 mutex_unlock(¤t->signal->cred_guard_mutex);
1513 return -ENOMEM;
1514}
1515
1516/* Matches do_open_execat() */
1517static void do_close_execat(struct file *file)
1518{
1519 if (!file)
1520 return;
1521 allow_write_access(file);
1522 fput(file);
1523}
1524
1525static void free_bprm(struct linux_binprm *bprm)
1526{
1527 if (bprm->mm) {
1528 acct_arg_size(bprm, 0);
1529 mmput(bprm->mm);
1530 }
1531 free_arg_pages(bprm);
1532 if (bprm->cred) {
1533 mutex_unlock(¤t->signal->cred_guard_mutex);
1534 abort_creds(bprm->cred);
1535 }
1536 do_close_execat(bprm->file);
1537 if (bprm->executable)
1538 fput(bprm->executable);
1539 /* If a binfmt changed the interp, free it. */
1540 if (bprm->interp != bprm->filename)
1541 kfree(bprm->interp);
1542 kfree(bprm->fdpath);
1543 kfree(bprm);
1544}
1545
1546static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1547{
1548 struct linux_binprm *bprm;
1549 struct file *file;
1550 int retval = -ENOMEM;
1551
1552 file = do_open_execat(fd, filename, flags);
1553 if (IS_ERR(file))
1554 return ERR_CAST(file);
1555
1556 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1557 if (!bprm) {
1558 do_close_execat(file);
1559 return ERR_PTR(-ENOMEM);
1560 }
1561
1562 bprm->file = file;
1563
1564 if (fd == AT_FDCWD || filename->name[0] == '/') {
1565 bprm->filename = filename->name;
1566 } else {
1567 if (filename->name[0] == '\0')
1568 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1569 else
1570 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1571 fd, filename->name);
1572 if (!bprm->fdpath)
1573 goto out_free;
1574
1575 /*
1576 * Record that a name derived from an O_CLOEXEC fd will be
1577 * inaccessible after exec. This allows the code in exec to
1578 * choose to fail when the executable is not mmaped into the
1579 * interpreter and an open file descriptor is not passed to
1580 * the interpreter. This makes for a better user experience
1581 * than having the interpreter start and then immediately fail
1582 * when it finds the executable is inaccessible.
1583 */
1584 if (get_close_on_exec(fd))
1585 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1586
1587 bprm->filename = bprm->fdpath;
1588 }
1589 bprm->interp = bprm->filename;
1590
1591 retval = bprm_mm_init(bprm);
1592 if (!retval)
1593 return bprm;
1594
1595out_free:
1596 free_bprm(bprm);
1597 return ERR_PTR(retval);
1598}
1599
1600int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1601{
1602 /* If a binfmt changed the interp, free it first. */
1603 if (bprm->interp != bprm->filename)
1604 kfree(bprm->interp);
1605 bprm->interp = kstrdup(interp, GFP_KERNEL);
1606 if (!bprm->interp)
1607 return -ENOMEM;
1608 return 0;
1609}
1610EXPORT_SYMBOL(bprm_change_interp);
1611
1612/*
1613 * determine how safe it is to execute the proposed program
1614 * - the caller must hold ->cred_guard_mutex to protect against
1615 * PTRACE_ATTACH or seccomp thread-sync
1616 */
1617static void check_unsafe_exec(struct linux_binprm *bprm)
1618{
1619 struct task_struct *p = current, *t;
1620 unsigned n_fs;
1621
1622 if (p->ptrace)
1623 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1624
1625 /*
1626 * This isn't strictly necessary, but it makes it harder for LSMs to
1627 * mess up.
1628 */
1629 if (task_no_new_privs(current))
1630 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1631
1632 /*
1633 * If another task is sharing our fs, we cannot safely
1634 * suid exec because the differently privileged task
1635 * will be able to manipulate the current directory, etc.
1636 * It would be nice to force an unshare instead...
1637 */
1638 n_fs = 1;
1639 spin_lock(&p->fs->lock);
1640 rcu_read_lock();
1641 for_other_threads(p, t) {
1642 if (t->fs == p->fs)
1643 n_fs++;
1644 }
1645 rcu_read_unlock();
1646
1647 /* "users" and "in_exec" locked for copy_fs() */
1648 if (p->fs->users > n_fs)
1649 bprm->unsafe |= LSM_UNSAFE_SHARE;
1650 else
1651 p->fs->in_exec = 1;
1652 spin_unlock(&p->fs->lock);
1653}
1654
1655static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1656{
1657 /* Handle suid and sgid on files */
1658 struct mnt_idmap *idmap;
1659 struct inode *inode = file_inode(file);
1660 unsigned int mode;
1661 vfsuid_t vfsuid;
1662 vfsgid_t vfsgid;
1663
1664 if (!mnt_may_suid(file->f_path.mnt))
1665 return;
1666
1667 if (task_no_new_privs(current))
1668 return;
1669
1670 mode = READ_ONCE(inode->i_mode);
1671 if (!(mode & (S_ISUID|S_ISGID)))
1672 return;
1673
1674 idmap = file_mnt_idmap(file);
1675
1676 /* Be careful if suid/sgid is set */
1677 inode_lock(inode);
1678
1679 /* reload atomically mode/uid/gid now that lock held */
1680 mode = inode->i_mode;
1681 vfsuid = i_uid_into_vfsuid(idmap, inode);
1682 vfsgid = i_gid_into_vfsgid(idmap, inode);
1683 inode_unlock(inode);
1684
1685 /* We ignore suid/sgid if there are no mappings for them in the ns */
1686 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1687 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1688 return;
1689
1690 if (mode & S_ISUID) {
1691 bprm->per_clear |= PER_CLEAR_ON_SETID;
1692 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1693 }
1694
1695 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1696 bprm->per_clear |= PER_CLEAR_ON_SETID;
1697 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1698 }
1699}
1700
1701/*
1702 * Compute brpm->cred based upon the final binary.
1703 */
1704static int bprm_creds_from_file(struct linux_binprm *bprm)
1705{
1706 /* Compute creds based on which file? */
1707 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1708
1709 bprm_fill_uid(bprm, file);
1710 return security_bprm_creds_from_file(bprm, file);
1711}
1712
1713/*
1714 * Fill the binprm structure from the inode.
1715 * Read the first BINPRM_BUF_SIZE bytes
1716 *
1717 * This may be called multiple times for binary chains (scripts for example).
1718 */
1719static int prepare_binprm(struct linux_binprm *bprm)
1720{
1721 loff_t pos = 0;
1722
1723 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1724 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1725}
1726
1727/*
1728 * Arguments are '\0' separated strings found at the location bprm->p
1729 * points to; chop off the first by relocating brpm->p to right after
1730 * the first '\0' encountered.
1731 */
1732int remove_arg_zero(struct linux_binprm *bprm)
1733{
1734 unsigned long offset;
1735 char *kaddr;
1736 struct page *page;
1737
1738 if (!bprm->argc)
1739 return 0;
1740
1741 do {
1742 offset = bprm->p & ~PAGE_MASK;
1743 page = get_arg_page(bprm, bprm->p, 0);
1744 if (!page)
1745 return -EFAULT;
1746 kaddr = kmap_local_page(page);
1747
1748 for (; offset < PAGE_SIZE && kaddr[offset];
1749 offset++, bprm->p++)
1750 ;
1751
1752 kunmap_local(kaddr);
1753 put_arg_page(page);
1754 } while (offset == PAGE_SIZE);
1755
1756 bprm->p++;
1757 bprm->argc--;
1758
1759 return 0;
1760}
1761EXPORT_SYMBOL(remove_arg_zero);
1762
1763#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1764/*
1765 * cycle the list of binary formats handler, until one recognizes the image
1766 */
1767static int search_binary_handler(struct linux_binprm *bprm)
1768{
1769 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1770 struct linux_binfmt *fmt;
1771 int retval;
1772
1773 retval = prepare_binprm(bprm);
1774 if (retval < 0)
1775 return retval;
1776
1777 retval = security_bprm_check(bprm);
1778 if (retval)
1779 return retval;
1780
1781 retval = -ENOENT;
1782 retry:
1783 read_lock(&binfmt_lock);
1784 list_for_each_entry(fmt, &formats, lh) {
1785 if (!try_module_get(fmt->module))
1786 continue;
1787 read_unlock(&binfmt_lock);
1788
1789 retval = fmt->load_binary(bprm);
1790
1791 read_lock(&binfmt_lock);
1792 put_binfmt(fmt);
1793 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1794 read_unlock(&binfmt_lock);
1795 return retval;
1796 }
1797 }
1798 read_unlock(&binfmt_lock);
1799
1800 if (need_retry) {
1801 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1802 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1803 return retval;
1804 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1805 return retval;
1806 need_retry = false;
1807 goto retry;
1808 }
1809
1810 return retval;
1811}
1812
1813/* binfmt handlers will call back into begin_new_exec() on success. */
1814static int exec_binprm(struct linux_binprm *bprm)
1815{
1816 pid_t old_pid, old_vpid;
1817 int ret, depth;
1818
1819 /* Need to fetch pid before load_binary changes it */
1820 old_pid = current->pid;
1821 rcu_read_lock();
1822 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1823 rcu_read_unlock();
1824
1825 /* This allows 4 levels of binfmt rewrites before failing hard. */
1826 for (depth = 0;; depth++) {
1827 struct file *exec;
1828 if (depth > 5)
1829 return -ELOOP;
1830
1831 ret = search_binary_handler(bprm);
1832 if (ret < 0)
1833 return ret;
1834 if (!bprm->interpreter)
1835 break;
1836
1837 exec = bprm->file;
1838 bprm->file = bprm->interpreter;
1839 bprm->interpreter = NULL;
1840
1841 allow_write_access(exec);
1842 if (unlikely(bprm->have_execfd)) {
1843 if (bprm->executable) {
1844 fput(exec);
1845 return -ENOEXEC;
1846 }
1847 bprm->executable = exec;
1848 } else
1849 fput(exec);
1850 }
1851
1852 audit_bprm(bprm);
1853 trace_sched_process_exec(current, old_pid, bprm);
1854 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1855 proc_exec_connector(current);
1856 return 0;
1857}
1858
1859static int bprm_execve(struct linux_binprm *bprm)
1860{
1861 int retval;
1862
1863 retval = prepare_bprm_creds(bprm);
1864 if (retval)
1865 return retval;
1866
1867 /*
1868 * Check for unsafe execution states before exec_binprm(), which
1869 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1870 * where setuid-ness is evaluated.
1871 */
1872 check_unsafe_exec(bprm);
1873 current->in_execve = 1;
1874 sched_mm_cid_before_execve(current);
1875
1876 sched_exec();
1877
1878 /* Set the unchanging part of bprm->cred */
1879 retval = security_bprm_creds_for_exec(bprm);
1880 if (retval)
1881 goto out;
1882
1883 retval = exec_binprm(bprm);
1884 if (retval < 0)
1885 goto out;
1886
1887 sched_mm_cid_after_execve(current);
1888 /* execve succeeded */
1889 current->fs->in_exec = 0;
1890 current->in_execve = 0;
1891 rseq_execve(current);
1892 user_events_execve(current);
1893 acct_update_integrals(current);
1894 task_numa_free(current, false);
1895 return retval;
1896
1897out:
1898 /*
1899 * If past the point of no return ensure the code never
1900 * returns to the userspace process. Use an existing fatal
1901 * signal if present otherwise terminate the process with
1902 * SIGSEGV.
1903 */
1904 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1905 force_fatal_sig(SIGSEGV);
1906
1907 sched_mm_cid_after_execve(current);
1908 current->fs->in_exec = 0;
1909 current->in_execve = 0;
1910
1911 return retval;
1912}
1913
1914static int do_execveat_common(int fd, struct filename *filename,
1915 struct user_arg_ptr argv,
1916 struct user_arg_ptr envp,
1917 int flags)
1918{
1919 struct linux_binprm *bprm;
1920 int retval;
1921
1922 if (IS_ERR(filename))
1923 return PTR_ERR(filename);
1924
1925 /*
1926 * We move the actual failure in case of RLIMIT_NPROC excess from
1927 * set*uid() to execve() because too many poorly written programs
1928 * don't check setuid() return code. Here we additionally recheck
1929 * whether NPROC limit is still exceeded.
1930 */
1931 if ((current->flags & PF_NPROC_EXCEEDED) &&
1932 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1933 retval = -EAGAIN;
1934 goto out_ret;
1935 }
1936
1937 /* We're below the limit (still or again), so we don't want to make
1938 * further execve() calls fail. */
1939 current->flags &= ~PF_NPROC_EXCEEDED;
1940
1941 bprm = alloc_bprm(fd, filename, flags);
1942 if (IS_ERR(bprm)) {
1943 retval = PTR_ERR(bprm);
1944 goto out_ret;
1945 }
1946
1947 retval = count(argv, MAX_ARG_STRINGS);
1948 if (retval == 0)
1949 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1950 current->comm, bprm->filename);
1951 if (retval < 0)
1952 goto out_free;
1953 bprm->argc = retval;
1954
1955 retval = count(envp, MAX_ARG_STRINGS);
1956 if (retval < 0)
1957 goto out_free;
1958 bprm->envc = retval;
1959
1960 retval = bprm_stack_limits(bprm);
1961 if (retval < 0)
1962 goto out_free;
1963
1964 retval = copy_string_kernel(bprm->filename, bprm);
1965 if (retval < 0)
1966 goto out_free;
1967 bprm->exec = bprm->p;
1968
1969 retval = copy_strings(bprm->envc, envp, bprm);
1970 if (retval < 0)
1971 goto out_free;
1972
1973 retval = copy_strings(bprm->argc, argv, bprm);
1974 if (retval < 0)
1975 goto out_free;
1976
1977 /*
1978 * When argv is empty, add an empty string ("") as argv[0] to
1979 * ensure confused userspace programs that start processing
1980 * from argv[1] won't end up walking envp. See also
1981 * bprm_stack_limits().
1982 */
1983 if (bprm->argc == 0) {
1984 retval = copy_string_kernel("", bprm);
1985 if (retval < 0)
1986 goto out_free;
1987 bprm->argc = 1;
1988 }
1989
1990 retval = bprm_execve(bprm);
1991out_free:
1992 free_bprm(bprm);
1993
1994out_ret:
1995 putname(filename);
1996 return retval;
1997}
1998
1999int kernel_execve(const char *kernel_filename,
2000 const char *const *argv, const char *const *envp)
2001{
2002 struct filename *filename;
2003 struct linux_binprm *bprm;
2004 int fd = AT_FDCWD;
2005 int retval;
2006
2007 /* It is non-sense for kernel threads to call execve */
2008 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2009 return -EINVAL;
2010
2011 filename = getname_kernel(kernel_filename);
2012 if (IS_ERR(filename))
2013 return PTR_ERR(filename);
2014
2015 bprm = alloc_bprm(fd, filename, 0);
2016 if (IS_ERR(bprm)) {
2017 retval = PTR_ERR(bprm);
2018 goto out_ret;
2019 }
2020
2021 retval = count_strings_kernel(argv);
2022 if (WARN_ON_ONCE(retval == 0))
2023 retval = -EINVAL;
2024 if (retval < 0)
2025 goto out_free;
2026 bprm->argc = retval;
2027
2028 retval = count_strings_kernel(envp);
2029 if (retval < 0)
2030 goto out_free;
2031 bprm->envc = retval;
2032
2033 retval = bprm_stack_limits(bprm);
2034 if (retval < 0)
2035 goto out_free;
2036
2037 retval = copy_string_kernel(bprm->filename, bprm);
2038 if (retval < 0)
2039 goto out_free;
2040 bprm->exec = bprm->p;
2041
2042 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2043 if (retval < 0)
2044 goto out_free;
2045
2046 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2047 if (retval < 0)
2048 goto out_free;
2049
2050 retval = bprm_execve(bprm);
2051out_free:
2052 free_bprm(bprm);
2053out_ret:
2054 putname(filename);
2055 return retval;
2056}
2057
2058static int do_execve(struct filename *filename,
2059 const char __user *const __user *__argv,
2060 const char __user *const __user *__envp)
2061{
2062 struct user_arg_ptr argv = { .ptr.native = __argv };
2063 struct user_arg_ptr envp = { .ptr.native = __envp };
2064 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2065}
2066
2067static int do_execveat(int fd, struct filename *filename,
2068 const char __user *const __user *__argv,
2069 const char __user *const __user *__envp,
2070 int flags)
2071{
2072 struct user_arg_ptr argv = { .ptr.native = __argv };
2073 struct user_arg_ptr envp = { .ptr.native = __envp };
2074
2075 return do_execveat_common(fd, filename, argv, envp, flags);
2076}
2077
2078#ifdef CONFIG_COMPAT
2079static int compat_do_execve(struct filename *filename,
2080 const compat_uptr_t __user *__argv,
2081 const compat_uptr_t __user *__envp)
2082{
2083 struct user_arg_ptr argv = {
2084 .is_compat = true,
2085 .ptr.compat = __argv,
2086 };
2087 struct user_arg_ptr envp = {
2088 .is_compat = true,
2089 .ptr.compat = __envp,
2090 };
2091 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2092}
2093
2094static int compat_do_execveat(int fd, struct filename *filename,
2095 const compat_uptr_t __user *__argv,
2096 const compat_uptr_t __user *__envp,
2097 int flags)
2098{
2099 struct user_arg_ptr argv = {
2100 .is_compat = true,
2101 .ptr.compat = __argv,
2102 };
2103 struct user_arg_ptr envp = {
2104 .is_compat = true,
2105 .ptr.compat = __envp,
2106 };
2107 return do_execveat_common(fd, filename, argv, envp, flags);
2108}
2109#endif
2110
2111void set_binfmt(struct linux_binfmt *new)
2112{
2113 struct mm_struct *mm = current->mm;
2114
2115 if (mm->binfmt)
2116 module_put(mm->binfmt->module);
2117
2118 mm->binfmt = new;
2119 if (new)
2120 __module_get(new->module);
2121}
2122EXPORT_SYMBOL(set_binfmt);
2123
2124/*
2125 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2126 */
2127void set_dumpable(struct mm_struct *mm, int value)
2128{
2129 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2130 return;
2131
2132 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2133}
2134
2135SYSCALL_DEFINE3(execve,
2136 const char __user *, filename,
2137 const char __user *const __user *, argv,
2138 const char __user *const __user *, envp)
2139{
2140 return do_execve(getname(filename), argv, envp);
2141}
2142
2143SYSCALL_DEFINE5(execveat,
2144 int, fd, const char __user *, filename,
2145 const char __user *const __user *, argv,
2146 const char __user *const __user *, envp,
2147 int, flags)
2148{
2149 return do_execveat(fd,
2150 getname_uflags(filename, flags),
2151 argv, envp, flags);
2152}
2153
2154#ifdef CONFIG_COMPAT
2155COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2156 const compat_uptr_t __user *, argv,
2157 const compat_uptr_t __user *, envp)
2158{
2159 return compat_do_execve(getname(filename), argv, envp);
2160}
2161
2162COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2163 const char __user *, filename,
2164 const compat_uptr_t __user *, argv,
2165 const compat_uptr_t __user *, envp,
2166 int, flags)
2167{
2168 return compat_do_execveat(fd,
2169 getname_uflags(filename, flags),
2170 argv, envp, flags);
2171}
2172#endif
2173
2174#ifdef CONFIG_SYSCTL
2175
2176static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2177 void *buffer, size_t *lenp, loff_t *ppos)
2178{
2179 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2180
2181 if (!error)
2182 validate_coredump_safety();
2183 return error;
2184}
2185
2186static struct ctl_table fs_exec_sysctls[] = {
2187 {
2188 .procname = "suid_dumpable",
2189 .data = &suid_dumpable,
2190 .maxlen = sizeof(int),
2191 .mode = 0644,
2192 .proc_handler = proc_dointvec_minmax_coredump,
2193 .extra1 = SYSCTL_ZERO,
2194 .extra2 = SYSCTL_TWO,
2195 },
2196};
2197
2198static int __init init_fs_exec_sysctls(void)
2199{
2200 register_sysctl_init("fs", fs_exec_sysctls);
2201 return 0;
2202}
2203
2204fs_initcall(init_fs_exec_sysctls);
2205#endif /* CONFIG_SYSCTL */