Loading...
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57#include <linux/oom.h>
58#include <linux/compat.h>
59#include <linux/vmalloc.h>
60
61#include <linux/uaccess.h>
62#include <asm/mmu_context.h>
63#include <asm/tlb.h>
64
65#include <trace/events/task.h>
66#include "internal.h"
67
68#include <trace/events/sched.h>
69
70int suid_dumpable = 0;
71
72static LIST_HEAD(formats);
73static DEFINE_RWLOCK(binfmt_lock);
74
75void __register_binfmt(struct linux_binfmt * fmt, int insert)
76{
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84}
85
86EXPORT_SYMBOL(__register_binfmt);
87
88void unregister_binfmt(struct linux_binfmt * fmt)
89{
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93}
94
95EXPORT_SYMBOL(unregister_binfmt);
96
97static inline void put_binfmt(struct linux_binfmt * fmt)
98{
99 module_put(fmt->module);
100}
101
102bool path_noexec(const struct path *path)
103{
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106}
107
108#ifdef CONFIG_USELIB
109/*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115SYSCALL_DEFINE1(uselib, const char __user *, library)
116{
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163exit:
164 fput(file);
165out:
166 return error;
167}
168#endif /* #ifdef CONFIG_USELIB */
169
170#ifdef CONFIG_MMU
171/*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178{
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187}
188
189static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191{
192 struct page *page;
193 int ret;
194 unsigned int gup_flags = FOLL_FORCE;
195
196#ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202#endif
203
204 if (write)
205 gup_flags |= FOLL_WRITE;
206
207 /*
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
210 */
211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 &page, NULL, NULL);
213 if (ret <= 0)
214 return NULL;
215
216 if (write) {
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 struct rlimit *rlim;
219
220 acct_arg_size(bprm, size / PAGE_SIZE);
221
222 /*
223 * We've historically supported up to 32 pages (ARG_MAX)
224 * of argument strings even with small stacks
225 */
226 if (size <= ARG_MAX)
227 return page;
228
229 /*
230 * Limit to 1/4-th the stack size for the argv+env strings.
231 * This ensures that:
232 * - the remaining binfmt code will not run out of stack space,
233 * - the program will have a reasonable amount of stack left
234 * to work from.
235 */
236 rlim = current->signal->rlim;
237 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
238 put_page(page);
239 return NULL;
240 }
241 }
242
243 return page;
244}
245
246static void put_arg_page(struct page *page)
247{
248 put_page(page);
249}
250
251static void free_arg_pages(struct linux_binprm *bprm)
252{
253}
254
255static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 struct page *page)
257{
258 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259}
260
261static int __bprm_mm_init(struct linux_binprm *bprm)
262{
263 int err;
264 struct vm_area_struct *vma = NULL;
265 struct mm_struct *mm = bprm->mm;
266
267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 if (!vma)
269 return -ENOMEM;
270
271 if (down_write_killable(&mm->mmap_sem)) {
272 err = -EINTR;
273 goto err_free;
274 }
275 vma->vm_mm = mm;
276
277 /*
278 * Place the stack at the largest stack address the architecture
279 * supports. Later, we'll move this to an appropriate place. We don't
280 * use STACK_TOP because that can depend on attributes which aren't
281 * configured yet.
282 */
283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 vma->vm_end = STACK_TOP_MAX;
285 vma->vm_start = vma->vm_end - PAGE_SIZE;
286 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 INIT_LIST_HEAD(&vma->anon_vma_chain);
289
290 err = insert_vm_struct(mm, vma);
291 if (err)
292 goto err;
293
294 mm->stack_vm = mm->total_vm = 1;
295 arch_bprm_mm_init(mm, vma);
296 up_write(&mm->mmap_sem);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299err:
300 up_write(&mm->mmap_sem);
301err_free:
302 bprm->vma = NULL;
303 kmem_cache_free(vm_area_cachep, vma);
304 return err;
305}
306
307static bool valid_arg_len(struct linux_binprm *bprm, long len)
308{
309 return len <= MAX_ARG_STRLEN;
310}
311
312#else
313
314static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315{
316}
317
318static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 int write)
320{
321 struct page *page;
322
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 if (!page)
327 return NULL;
328 bprm->page[pos / PAGE_SIZE] = page;
329 }
330
331 return page;
332}
333
334static void put_arg_page(struct page *page)
335{
336}
337
338static void free_arg_page(struct linux_binprm *bprm, int i)
339{
340 if (bprm->page[i]) {
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
343 }
344}
345
346static void free_arg_pages(struct linux_binprm *bprm)
347{
348 int i;
349
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
352}
353
354static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 struct page *page)
356{
357}
358
359static int __bprm_mm_init(struct linux_binprm *bprm)
360{
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 return 0;
363}
364
365static bool valid_arg_len(struct linux_binprm *bprm, long len)
366{
367 return len <= bprm->p;
368}
369
370#endif /* CONFIG_MMU */
371
372/*
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
377 */
378static int bprm_mm_init(struct linux_binprm *bprm)
379{
380 int err;
381 struct mm_struct *mm = NULL;
382
383 bprm->mm = mm = mm_alloc();
384 err = -ENOMEM;
385 if (!mm)
386 goto err;
387
388 err = __bprm_mm_init(bprm);
389 if (err)
390 goto err;
391
392 return 0;
393
394err:
395 if (mm) {
396 bprm->mm = NULL;
397 mmdrop(mm);
398 }
399
400 return err;
401}
402
403struct user_arg_ptr {
404#ifdef CONFIG_COMPAT
405 bool is_compat;
406#endif
407 union {
408 const char __user *const __user *native;
409#ifdef CONFIG_COMPAT
410 const compat_uptr_t __user *compat;
411#endif
412 } ptr;
413};
414
415static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
416{
417 const char __user *native;
418
419#ifdef CONFIG_COMPAT
420 if (unlikely(argv.is_compat)) {
421 compat_uptr_t compat;
422
423 if (get_user(compat, argv.ptr.compat + nr))
424 return ERR_PTR(-EFAULT);
425
426 return compat_ptr(compat);
427 }
428#endif
429
430 if (get_user(native, argv.ptr.native + nr))
431 return ERR_PTR(-EFAULT);
432
433 return native;
434}
435
436/*
437 * count() counts the number of strings in array ARGV.
438 */
439static int count(struct user_arg_ptr argv, int max)
440{
441 int i = 0;
442
443 if (argv.ptr.native != NULL) {
444 for (;;) {
445 const char __user *p = get_user_arg_ptr(argv, i);
446
447 if (!p)
448 break;
449
450 if (IS_ERR(p))
451 return -EFAULT;
452
453 if (i >= max)
454 return -E2BIG;
455 ++i;
456
457 if (fatal_signal_pending(current))
458 return -ERESTARTNOHAND;
459 cond_resched();
460 }
461 }
462 return i;
463}
464
465/*
466 * 'copy_strings()' copies argument/environment strings from the old
467 * processes's memory to the new process's stack. The call to get_user_pages()
468 * ensures the destination page is created and not swapped out.
469 */
470static int copy_strings(int argc, struct user_arg_ptr argv,
471 struct linux_binprm *bprm)
472{
473 struct page *kmapped_page = NULL;
474 char *kaddr = NULL;
475 unsigned long kpos = 0;
476 int ret;
477
478 while (argc-- > 0) {
479 const char __user *str;
480 int len;
481 unsigned long pos;
482
483 ret = -EFAULT;
484 str = get_user_arg_ptr(argv, argc);
485 if (IS_ERR(str))
486 goto out;
487
488 len = strnlen_user(str, MAX_ARG_STRLEN);
489 if (!len)
490 goto out;
491
492 ret = -E2BIG;
493 if (!valid_arg_len(bprm, len))
494 goto out;
495
496 /* We're going to work our way backwords. */
497 pos = bprm->p;
498 str += len;
499 bprm->p -= len;
500
501 while (len > 0) {
502 int offset, bytes_to_copy;
503
504 if (fatal_signal_pending(current)) {
505 ret = -ERESTARTNOHAND;
506 goto out;
507 }
508 cond_resched();
509
510 offset = pos % PAGE_SIZE;
511 if (offset == 0)
512 offset = PAGE_SIZE;
513
514 bytes_to_copy = offset;
515 if (bytes_to_copy > len)
516 bytes_to_copy = len;
517
518 offset -= bytes_to_copy;
519 pos -= bytes_to_copy;
520 str -= bytes_to_copy;
521 len -= bytes_to_copy;
522
523 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
524 struct page *page;
525
526 page = get_arg_page(bprm, pos, 1);
527 if (!page) {
528 ret = -E2BIG;
529 goto out;
530 }
531
532 if (kmapped_page) {
533 flush_kernel_dcache_page(kmapped_page);
534 kunmap(kmapped_page);
535 put_arg_page(kmapped_page);
536 }
537 kmapped_page = page;
538 kaddr = kmap(kmapped_page);
539 kpos = pos & PAGE_MASK;
540 flush_arg_page(bprm, kpos, kmapped_page);
541 }
542 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 }
547 }
548 ret = 0;
549out:
550 if (kmapped_page) {
551 flush_kernel_dcache_page(kmapped_page);
552 kunmap(kmapped_page);
553 put_arg_page(kmapped_page);
554 }
555 return ret;
556}
557
558/*
559 * Like copy_strings, but get argv and its values from kernel memory.
560 */
561int copy_strings_kernel(int argc, const char *const *__argv,
562 struct linux_binprm *bprm)
563{
564 int r;
565 mm_segment_t oldfs = get_fs();
566 struct user_arg_ptr argv = {
567 .ptr.native = (const char __user *const __user *)__argv,
568 };
569
570 set_fs(KERNEL_DS);
571 r = copy_strings(argc, argv, bprm);
572 set_fs(oldfs);
573
574 return r;
575}
576EXPORT_SYMBOL(copy_strings_kernel);
577
578#ifdef CONFIG_MMU
579
580/*
581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
582 * the binfmt code determines where the new stack should reside, we shift it to
583 * its final location. The process proceeds as follows:
584 *
585 * 1) Use shift to calculate the new vma endpoints.
586 * 2) Extend vma to cover both the old and new ranges. This ensures the
587 * arguments passed to subsequent functions are consistent.
588 * 3) Move vma's page tables to the new range.
589 * 4) Free up any cleared pgd range.
590 * 5) Shrink the vma to cover only the new range.
591 */
592static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
593{
594 struct mm_struct *mm = vma->vm_mm;
595 unsigned long old_start = vma->vm_start;
596 unsigned long old_end = vma->vm_end;
597 unsigned long length = old_end - old_start;
598 unsigned long new_start = old_start - shift;
599 unsigned long new_end = old_end - shift;
600 struct mmu_gather tlb;
601
602 BUG_ON(new_start > new_end);
603
604 /*
605 * ensure there are no vmas between where we want to go
606 * and where we are
607 */
608 if (vma != find_vma(mm, new_start))
609 return -EFAULT;
610
611 /*
612 * cover the whole range: [new_start, old_end)
613 */
614 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
615 return -ENOMEM;
616
617 /*
618 * move the page tables downwards, on failure we rely on
619 * process cleanup to remove whatever mess we made.
620 */
621 if (length != move_page_tables(vma, old_start,
622 vma, new_start, length, false))
623 return -ENOMEM;
624
625 lru_add_drain();
626 tlb_gather_mmu(&tlb, mm, old_start, old_end);
627 if (new_end > old_start) {
628 /*
629 * when the old and new regions overlap clear from new_end.
630 */
631 free_pgd_range(&tlb, new_end, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 } else {
634 /*
635 * otherwise, clean from old_start; this is done to not touch
636 * the address space in [new_end, old_start) some architectures
637 * have constraints on va-space that make this illegal (IA64) -
638 * for the others its just a little faster.
639 */
640 free_pgd_range(&tlb, old_start, old_end, new_end,
641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642 }
643 tlb_finish_mmu(&tlb, old_start, old_end);
644
645 /*
646 * Shrink the vma to just the new range. Always succeeds.
647 */
648 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
649
650 return 0;
651}
652
653/*
654 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655 * the stack is optionally relocated, and some extra space is added.
656 */
657int setup_arg_pages(struct linux_binprm *bprm,
658 unsigned long stack_top,
659 int executable_stack)
660{
661 unsigned long ret;
662 unsigned long stack_shift;
663 struct mm_struct *mm = current->mm;
664 struct vm_area_struct *vma = bprm->vma;
665 struct vm_area_struct *prev = NULL;
666 unsigned long vm_flags;
667 unsigned long stack_base;
668 unsigned long stack_size;
669 unsigned long stack_expand;
670 unsigned long rlim_stack;
671
672#ifdef CONFIG_STACK_GROWSUP
673 /* Limit stack size */
674 stack_base = rlimit_max(RLIMIT_STACK);
675 if (stack_base > STACK_SIZE_MAX)
676 stack_base = STACK_SIZE_MAX;
677
678 /* Add space for stack randomization. */
679 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
680
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma->vm_end - vma->vm_start > stack_base)
683 return -ENOMEM;
684
685 stack_base = PAGE_ALIGN(stack_top - stack_base);
686
687 stack_shift = vma->vm_start - stack_base;
688 mm->arg_start = bprm->p - stack_shift;
689 bprm->p = vma->vm_end - stack_shift;
690#else
691 stack_top = arch_align_stack(stack_top);
692 stack_top = PAGE_ALIGN(stack_top);
693
694 if (unlikely(stack_top < mmap_min_addr) ||
695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 return -ENOMEM;
697
698 stack_shift = vma->vm_end - stack_top;
699
700 bprm->p -= stack_shift;
701 mm->arg_start = bprm->p;
702#endif
703
704 if (bprm->loader)
705 bprm->loader -= stack_shift;
706 bprm->exec -= stack_shift;
707
708 if (down_write_killable(&mm->mmap_sem))
709 return -EINTR;
710
711 vm_flags = VM_STACK_FLAGS;
712
713 /*
714 * Adjust stack execute permissions; explicitly enable for
715 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
716 * (arch default) otherwise.
717 */
718 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
719 vm_flags |= VM_EXEC;
720 else if (executable_stack == EXSTACK_DISABLE_X)
721 vm_flags &= ~VM_EXEC;
722 vm_flags |= mm->def_flags;
723 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
724
725 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
726 vm_flags);
727 if (ret)
728 goto out_unlock;
729 BUG_ON(prev != vma);
730
731 /* Move stack pages down in memory. */
732 if (stack_shift) {
733 ret = shift_arg_pages(vma, stack_shift);
734 if (ret)
735 goto out_unlock;
736 }
737
738 /* mprotect_fixup is overkill to remove the temporary stack flags */
739 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
740
741 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
742 stack_size = vma->vm_end - vma->vm_start;
743 /*
744 * Align this down to a page boundary as expand_stack
745 * will align it up.
746 */
747 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
748#ifdef CONFIG_STACK_GROWSUP
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_start + rlim_stack;
751 else
752 stack_base = vma->vm_end + stack_expand;
753#else
754 if (stack_size + stack_expand > rlim_stack)
755 stack_base = vma->vm_end - rlim_stack;
756 else
757 stack_base = vma->vm_start - stack_expand;
758#endif
759 current->mm->start_stack = bprm->p;
760 ret = expand_stack(vma, stack_base);
761 if (ret)
762 ret = -EFAULT;
763
764out_unlock:
765 up_write(&mm->mmap_sem);
766 return ret;
767}
768EXPORT_SYMBOL(setup_arg_pages);
769
770#else
771
772/*
773 * Transfer the program arguments and environment from the holding pages
774 * onto the stack. The provided stack pointer is adjusted accordingly.
775 */
776int transfer_args_to_stack(struct linux_binprm *bprm,
777 unsigned long *sp_location)
778{
779 unsigned long index, stop, sp;
780 int ret = 0;
781
782 stop = bprm->p >> PAGE_SHIFT;
783 sp = *sp_location;
784
785 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
786 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
787 char *src = kmap(bprm->page[index]) + offset;
788 sp -= PAGE_SIZE - offset;
789 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
790 ret = -EFAULT;
791 kunmap(bprm->page[index]);
792 if (ret)
793 goto out;
794 }
795
796 *sp_location = sp;
797
798out:
799 return ret;
800}
801EXPORT_SYMBOL(transfer_args_to_stack);
802
803#endif /* CONFIG_MMU */
804
805static struct file *do_open_execat(int fd, struct filename *name, int flags)
806{
807 struct file *file;
808 int err;
809 struct open_flags open_exec_flags = {
810 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
811 .acc_mode = MAY_EXEC,
812 .intent = LOOKUP_OPEN,
813 .lookup_flags = LOOKUP_FOLLOW,
814 };
815
816 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
817 return ERR_PTR(-EINVAL);
818 if (flags & AT_SYMLINK_NOFOLLOW)
819 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
820 if (flags & AT_EMPTY_PATH)
821 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
822
823 file = do_filp_open(fd, name, &open_exec_flags);
824 if (IS_ERR(file))
825 goto out;
826
827 err = -EACCES;
828 if (!S_ISREG(file_inode(file)->i_mode))
829 goto exit;
830
831 if (path_noexec(&file->f_path))
832 goto exit;
833
834 err = deny_write_access(file);
835 if (err)
836 goto exit;
837
838 if (name->name[0] != '\0')
839 fsnotify_open(file);
840
841out:
842 return file;
843
844exit:
845 fput(file);
846 return ERR_PTR(err);
847}
848
849struct file *open_exec(const char *name)
850{
851 struct filename *filename = getname_kernel(name);
852 struct file *f = ERR_CAST(filename);
853
854 if (!IS_ERR(filename)) {
855 f = do_open_execat(AT_FDCWD, filename, 0);
856 putname(filename);
857 }
858 return f;
859}
860EXPORT_SYMBOL(open_exec);
861
862int kernel_read(struct file *file, loff_t offset,
863 char *addr, unsigned long count)
864{
865 mm_segment_t old_fs;
866 loff_t pos = offset;
867 int result;
868
869 old_fs = get_fs();
870 set_fs(get_ds());
871 /* The cast to a user pointer is valid due to the set_fs() */
872 result = vfs_read(file, (void __user *)addr, count, &pos);
873 set_fs(old_fs);
874 return result;
875}
876
877EXPORT_SYMBOL(kernel_read);
878
879int kernel_read_file(struct file *file, void **buf, loff_t *size,
880 loff_t max_size, enum kernel_read_file_id id)
881{
882 loff_t i_size, pos;
883 ssize_t bytes = 0;
884 int ret;
885
886 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
887 return -EINVAL;
888
889 ret = security_kernel_read_file(file, id);
890 if (ret)
891 return ret;
892
893 ret = deny_write_access(file);
894 if (ret)
895 return ret;
896
897 i_size = i_size_read(file_inode(file));
898 if (max_size > 0 && i_size > max_size) {
899 ret = -EFBIG;
900 goto out;
901 }
902 if (i_size <= 0) {
903 ret = -EINVAL;
904 goto out;
905 }
906
907 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
908 *buf = vmalloc(i_size);
909 if (!*buf) {
910 ret = -ENOMEM;
911 goto out;
912 }
913
914 pos = 0;
915 while (pos < i_size) {
916 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
917 i_size - pos);
918 if (bytes < 0) {
919 ret = bytes;
920 goto out;
921 }
922
923 if (bytes == 0)
924 break;
925 pos += bytes;
926 }
927
928 if (pos != i_size) {
929 ret = -EIO;
930 goto out_free;
931 }
932
933 ret = security_kernel_post_read_file(file, *buf, i_size, id);
934 if (!ret)
935 *size = pos;
936
937out_free:
938 if (ret < 0) {
939 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
940 vfree(*buf);
941 *buf = NULL;
942 }
943 }
944
945out:
946 allow_write_access(file);
947 return ret;
948}
949EXPORT_SYMBOL_GPL(kernel_read_file);
950
951int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
952 loff_t max_size, enum kernel_read_file_id id)
953{
954 struct file *file;
955 int ret;
956
957 if (!path || !*path)
958 return -EINVAL;
959
960 file = filp_open(path, O_RDONLY, 0);
961 if (IS_ERR(file))
962 return PTR_ERR(file);
963
964 ret = kernel_read_file(file, buf, size, max_size, id);
965 fput(file);
966 return ret;
967}
968EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
969
970int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
971 enum kernel_read_file_id id)
972{
973 struct fd f = fdget(fd);
974 int ret = -EBADF;
975
976 if (!f.file)
977 goto out;
978
979 ret = kernel_read_file(f.file, buf, size, max_size, id);
980out:
981 fdput(f);
982 return ret;
983}
984EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
985
986ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
987{
988 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
989 if (res > 0)
990 flush_icache_range(addr, addr + len);
991 return res;
992}
993EXPORT_SYMBOL(read_code);
994
995static int exec_mmap(struct mm_struct *mm)
996{
997 struct task_struct *tsk;
998 struct mm_struct *old_mm, *active_mm;
999
1000 /* Notify parent that we're no longer interested in the old VM */
1001 tsk = current;
1002 old_mm = current->mm;
1003 mm_release(tsk, old_mm);
1004
1005 if (old_mm) {
1006 sync_mm_rss(old_mm);
1007 /*
1008 * Make sure that if there is a core dump in progress
1009 * for the old mm, we get out and die instead of going
1010 * through with the exec. We must hold mmap_sem around
1011 * checking core_state and changing tsk->mm.
1012 */
1013 down_read(&old_mm->mmap_sem);
1014 if (unlikely(old_mm->core_state)) {
1015 up_read(&old_mm->mmap_sem);
1016 return -EINTR;
1017 }
1018 }
1019 task_lock(tsk);
1020 active_mm = tsk->active_mm;
1021 tsk->mm = mm;
1022 tsk->active_mm = mm;
1023 activate_mm(active_mm, mm);
1024 tsk->mm->vmacache_seqnum = 0;
1025 vmacache_flush(tsk);
1026 task_unlock(tsk);
1027 if (old_mm) {
1028 up_read(&old_mm->mmap_sem);
1029 BUG_ON(active_mm != old_mm);
1030 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031 mm_update_next_owner(old_mm);
1032 mmput(old_mm);
1033 return 0;
1034 }
1035 mmdrop(active_mm);
1036 return 0;
1037}
1038
1039/*
1040 * This function makes sure the current process has its own signal table,
1041 * so that flush_signal_handlers can later reset the handlers without
1042 * disturbing other processes. (Other processes might share the signal
1043 * table via the CLONE_SIGHAND option to clone().)
1044 */
1045static int de_thread(struct task_struct *tsk)
1046{
1047 struct signal_struct *sig = tsk->signal;
1048 struct sighand_struct *oldsighand = tsk->sighand;
1049 spinlock_t *lock = &oldsighand->siglock;
1050
1051 if (thread_group_empty(tsk))
1052 goto no_thread_group;
1053
1054 /*
1055 * Kill all other threads in the thread group.
1056 */
1057 spin_lock_irq(lock);
1058 if (signal_group_exit(sig)) {
1059 /*
1060 * Another group action in progress, just
1061 * return so that the signal is processed.
1062 */
1063 spin_unlock_irq(lock);
1064 return -EAGAIN;
1065 }
1066
1067 sig->group_exit_task = tsk;
1068 sig->notify_count = zap_other_threads(tsk);
1069 if (!thread_group_leader(tsk))
1070 sig->notify_count--;
1071
1072 while (sig->notify_count) {
1073 __set_current_state(TASK_KILLABLE);
1074 spin_unlock_irq(lock);
1075 schedule();
1076 if (unlikely(__fatal_signal_pending(tsk)))
1077 goto killed;
1078 spin_lock_irq(lock);
1079 }
1080 spin_unlock_irq(lock);
1081
1082 /*
1083 * At this point all other threads have exited, all we have to
1084 * do is to wait for the thread group leader to become inactive,
1085 * and to assume its PID:
1086 */
1087 if (!thread_group_leader(tsk)) {
1088 struct task_struct *leader = tsk->group_leader;
1089
1090 for (;;) {
1091 threadgroup_change_begin(tsk);
1092 write_lock_irq(&tasklist_lock);
1093 /*
1094 * Do this under tasklist_lock to ensure that
1095 * exit_notify() can't miss ->group_exit_task
1096 */
1097 sig->notify_count = -1;
1098 if (likely(leader->exit_state))
1099 break;
1100 __set_current_state(TASK_KILLABLE);
1101 write_unlock_irq(&tasklist_lock);
1102 threadgroup_change_end(tsk);
1103 schedule();
1104 if (unlikely(__fatal_signal_pending(tsk)))
1105 goto killed;
1106 }
1107
1108 /*
1109 * The only record we have of the real-time age of a
1110 * process, regardless of execs it's done, is start_time.
1111 * All the past CPU time is accumulated in signal_struct
1112 * from sister threads now dead. But in this non-leader
1113 * exec, nothing survives from the original leader thread,
1114 * whose birth marks the true age of this process now.
1115 * When we take on its identity by switching to its PID, we
1116 * also take its birthdate (always earlier than our own).
1117 */
1118 tsk->start_time = leader->start_time;
1119 tsk->real_start_time = leader->real_start_time;
1120
1121 BUG_ON(!same_thread_group(leader, tsk));
1122 BUG_ON(has_group_leader_pid(tsk));
1123 /*
1124 * An exec() starts a new thread group with the
1125 * TGID of the previous thread group. Rehash the
1126 * two threads with a switched PID, and release
1127 * the former thread group leader:
1128 */
1129
1130 /* Become a process group leader with the old leader's pid.
1131 * The old leader becomes a thread of the this thread group.
1132 * Note: The old leader also uses this pid until release_task
1133 * is called. Odd but simple and correct.
1134 */
1135 tsk->pid = leader->pid;
1136 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1145
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1148
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1151
1152 /*
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer wont't block again waiting for this thread.
1156 */
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 threadgroup_change_end(tsk);
1161
1162 release_task(leader);
1163 }
1164
1165 sig->group_exit_task = NULL;
1166 sig->notify_count = 0;
1167
1168no_thread_group:
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1171
1172#ifdef CONFIG_POSIX_TIMERS
1173 exit_itimers(sig);
1174 flush_itimer_signals();
1175#endif
1176
1177 if (atomic_read(&oldsighand->count) != 1) {
1178 struct sighand_struct *newsighand;
1179 /*
1180 * This ->sighand is shared with the CLONE_SIGHAND
1181 * but not CLONE_THREAD task, switch to the new one.
1182 */
1183 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1184 if (!newsighand)
1185 return -ENOMEM;
1186
1187 atomic_set(&newsighand->count, 1);
1188 memcpy(newsighand->action, oldsighand->action,
1189 sizeof(newsighand->action));
1190
1191 write_lock_irq(&tasklist_lock);
1192 spin_lock(&oldsighand->siglock);
1193 rcu_assign_pointer(tsk->sighand, newsighand);
1194 spin_unlock(&oldsighand->siglock);
1195 write_unlock_irq(&tasklist_lock);
1196
1197 __cleanup_sighand(oldsighand);
1198 }
1199
1200 BUG_ON(!thread_group_leader(tsk));
1201 return 0;
1202
1203killed:
1204 /* protects against exit_notify() and __exit_signal() */
1205 read_lock(&tasklist_lock);
1206 sig->group_exit_task = NULL;
1207 sig->notify_count = 0;
1208 read_unlock(&tasklist_lock);
1209 return -EAGAIN;
1210}
1211
1212char *get_task_comm(char *buf, struct task_struct *tsk)
1213{
1214 /* buf must be at least sizeof(tsk->comm) in size */
1215 task_lock(tsk);
1216 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1217 task_unlock(tsk);
1218 return buf;
1219}
1220EXPORT_SYMBOL_GPL(get_task_comm);
1221
1222/*
1223 * These functions flushes out all traces of the currently running executable
1224 * so that a new one can be started
1225 */
1226
1227void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228{
1229 task_lock(tsk);
1230 trace_task_rename(tsk, buf);
1231 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1232 task_unlock(tsk);
1233 perf_event_comm(tsk, exec);
1234}
1235
1236int flush_old_exec(struct linux_binprm * bprm)
1237{
1238 int retval;
1239
1240 /*
1241 * Make sure we have a private signal table and that
1242 * we are unassociated from the previous thread group.
1243 */
1244 retval = de_thread(current);
1245 if (retval)
1246 goto out;
1247
1248 /*
1249 * Must be called _before_ exec_mmap() as bprm->mm is
1250 * not visibile until then. This also enables the update
1251 * to be lockless.
1252 */
1253 set_mm_exe_file(bprm->mm, bprm->file);
1254
1255 /*
1256 * Release all of the old mmap stuff
1257 */
1258 acct_arg_size(bprm, 0);
1259 retval = exec_mmap(bprm->mm);
1260 if (retval)
1261 goto out;
1262
1263 bprm->mm = NULL; /* We're using it now */
1264
1265 set_fs(USER_DS);
1266 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1267 PF_NOFREEZE | PF_NO_SETAFFINITY);
1268 flush_thread();
1269 current->personality &= ~bprm->per_clear;
1270
1271 /*
1272 * We have to apply CLOEXEC before we change whether the process is
1273 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1274 * trying to access the should-be-closed file descriptors of a process
1275 * undergoing exec(2).
1276 */
1277 do_close_on_exec(current->files);
1278 return 0;
1279
1280out:
1281 return retval;
1282}
1283EXPORT_SYMBOL(flush_old_exec);
1284
1285void would_dump(struct linux_binprm *bprm, struct file *file)
1286{
1287 struct inode *inode = file_inode(file);
1288 if (inode_permission(inode, MAY_READ) < 0) {
1289 struct user_namespace *old, *user_ns;
1290 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1291
1292 /* Ensure mm->user_ns contains the executable */
1293 user_ns = old = bprm->mm->user_ns;
1294 while ((user_ns != &init_user_ns) &&
1295 !privileged_wrt_inode_uidgid(user_ns, inode))
1296 user_ns = user_ns->parent;
1297
1298 if (old != user_ns) {
1299 bprm->mm->user_ns = get_user_ns(user_ns);
1300 put_user_ns(old);
1301 }
1302 }
1303}
1304EXPORT_SYMBOL(would_dump);
1305
1306void setup_new_exec(struct linux_binprm * bprm)
1307{
1308 arch_pick_mmap_layout(current->mm);
1309
1310 /* This is the point of no return */
1311 current->sas_ss_sp = current->sas_ss_size = 0;
1312
1313 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1314 set_dumpable(current->mm, SUID_DUMP_USER);
1315 else
1316 set_dumpable(current->mm, suid_dumpable);
1317
1318 perf_event_exec();
1319 __set_task_comm(current, kbasename(bprm->filename), true);
1320
1321 /* Set the new mm task size. We have to do that late because it may
1322 * depend on TIF_32BIT which is only updated in flush_thread() on
1323 * some architectures like powerpc
1324 */
1325 current->mm->task_size = TASK_SIZE;
1326
1327 /* install the new credentials */
1328 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1329 !gid_eq(bprm->cred->gid, current_egid())) {
1330 current->pdeath_signal = 0;
1331 } else {
1332 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1333 set_dumpable(current->mm, suid_dumpable);
1334 }
1335
1336 /* An exec changes our domain. We are no longer part of the thread
1337 group */
1338 current->self_exec_id++;
1339 flush_signal_handlers(current, 0);
1340}
1341EXPORT_SYMBOL(setup_new_exec);
1342
1343/*
1344 * Prepare credentials and lock ->cred_guard_mutex.
1345 * install_exec_creds() commits the new creds and drops the lock.
1346 * Or, if exec fails before, free_bprm() should release ->cred and
1347 * and unlock.
1348 */
1349int prepare_bprm_creds(struct linux_binprm *bprm)
1350{
1351 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1352 return -ERESTARTNOINTR;
1353
1354 bprm->cred = prepare_exec_creds();
1355 if (likely(bprm->cred))
1356 return 0;
1357
1358 mutex_unlock(¤t->signal->cred_guard_mutex);
1359 return -ENOMEM;
1360}
1361
1362static void free_bprm(struct linux_binprm *bprm)
1363{
1364 free_arg_pages(bprm);
1365 if (bprm->cred) {
1366 mutex_unlock(¤t->signal->cred_guard_mutex);
1367 abort_creds(bprm->cred);
1368 }
1369 if (bprm->file) {
1370 allow_write_access(bprm->file);
1371 fput(bprm->file);
1372 }
1373 /* If a binfmt changed the interp, free it. */
1374 if (bprm->interp != bprm->filename)
1375 kfree(bprm->interp);
1376 kfree(bprm);
1377}
1378
1379int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1380{
1381 /* If a binfmt changed the interp, free it first. */
1382 if (bprm->interp != bprm->filename)
1383 kfree(bprm->interp);
1384 bprm->interp = kstrdup(interp, GFP_KERNEL);
1385 if (!bprm->interp)
1386 return -ENOMEM;
1387 return 0;
1388}
1389EXPORT_SYMBOL(bprm_change_interp);
1390
1391/*
1392 * install the new credentials for this executable
1393 */
1394void install_exec_creds(struct linux_binprm *bprm)
1395{
1396 security_bprm_committing_creds(bprm);
1397
1398 commit_creds(bprm->cred);
1399 bprm->cred = NULL;
1400
1401 /*
1402 * Disable monitoring for regular users
1403 * when executing setuid binaries. Must
1404 * wait until new credentials are committed
1405 * by commit_creds() above
1406 */
1407 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1408 perf_event_exit_task(current);
1409 /*
1410 * cred_guard_mutex must be held at least to this point to prevent
1411 * ptrace_attach() from altering our determination of the task's
1412 * credentials; any time after this it may be unlocked.
1413 */
1414 security_bprm_committed_creds(bprm);
1415 mutex_unlock(¤t->signal->cred_guard_mutex);
1416}
1417EXPORT_SYMBOL(install_exec_creds);
1418
1419/*
1420 * determine how safe it is to execute the proposed program
1421 * - the caller must hold ->cred_guard_mutex to protect against
1422 * PTRACE_ATTACH or seccomp thread-sync
1423 */
1424static void check_unsafe_exec(struct linux_binprm *bprm)
1425{
1426 struct task_struct *p = current, *t;
1427 unsigned n_fs;
1428
1429 if (p->ptrace) {
1430 if (ptracer_capable(p, current_user_ns()))
1431 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1432 else
1433 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1434 }
1435
1436 /*
1437 * This isn't strictly necessary, but it makes it harder for LSMs to
1438 * mess up.
1439 */
1440 if (task_no_new_privs(current))
1441 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1442
1443 t = p;
1444 n_fs = 1;
1445 spin_lock(&p->fs->lock);
1446 rcu_read_lock();
1447 while_each_thread(p, t) {
1448 if (t->fs == p->fs)
1449 n_fs++;
1450 }
1451 rcu_read_unlock();
1452
1453 if (p->fs->users > n_fs)
1454 bprm->unsafe |= LSM_UNSAFE_SHARE;
1455 else
1456 p->fs->in_exec = 1;
1457 spin_unlock(&p->fs->lock);
1458}
1459
1460static void bprm_fill_uid(struct linux_binprm *bprm)
1461{
1462 struct inode *inode;
1463 unsigned int mode;
1464 kuid_t uid;
1465 kgid_t gid;
1466
1467 /*
1468 * Since this can be called multiple times (via prepare_binprm),
1469 * we must clear any previous work done when setting set[ug]id
1470 * bits from any earlier bprm->file uses (for example when run
1471 * first for a setuid script then again for its interpreter).
1472 */
1473 bprm->cred->euid = current_euid();
1474 bprm->cred->egid = current_egid();
1475
1476 if (!mnt_may_suid(bprm->file->f_path.mnt))
1477 return;
1478
1479 if (task_no_new_privs(current))
1480 return;
1481
1482 inode = file_inode(bprm->file);
1483 mode = READ_ONCE(inode->i_mode);
1484 if (!(mode & (S_ISUID|S_ISGID)))
1485 return;
1486
1487 /* Be careful if suid/sgid is set */
1488 inode_lock(inode);
1489
1490 /* reload atomically mode/uid/gid now that lock held */
1491 mode = inode->i_mode;
1492 uid = inode->i_uid;
1493 gid = inode->i_gid;
1494 inode_unlock(inode);
1495
1496 /* We ignore suid/sgid if there are no mappings for them in the ns */
1497 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1498 !kgid_has_mapping(bprm->cred->user_ns, gid))
1499 return;
1500
1501 if (mode & S_ISUID) {
1502 bprm->per_clear |= PER_CLEAR_ON_SETID;
1503 bprm->cred->euid = uid;
1504 }
1505
1506 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1507 bprm->per_clear |= PER_CLEAR_ON_SETID;
1508 bprm->cred->egid = gid;
1509 }
1510}
1511
1512/*
1513 * Fill the binprm structure from the inode.
1514 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1515 *
1516 * This may be called multiple times for binary chains (scripts for example).
1517 */
1518int prepare_binprm(struct linux_binprm *bprm)
1519{
1520 int retval;
1521
1522 bprm_fill_uid(bprm);
1523
1524 /* fill in binprm security blob */
1525 retval = security_bprm_set_creds(bprm);
1526 if (retval)
1527 return retval;
1528 bprm->cred_prepared = 1;
1529
1530 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1531 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1532}
1533
1534EXPORT_SYMBOL(prepare_binprm);
1535
1536/*
1537 * Arguments are '\0' separated strings found at the location bprm->p
1538 * points to; chop off the first by relocating brpm->p to right after
1539 * the first '\0' encountered.
1540 */
1541int remove_arg_zero(struct linux_binprm *bprm)
1542{
1543 int ret = 0;
1544 unsigned long offset;
1545 char *kaddr;
1546 struct page *page;
1547
1548 if (!bprm->argc)
1549 return 0;
1550
1551 do {
1552 offset = bprm->p & ~PAGE_MASK;
1553 page = get_arg_page(bprm, bprm->p, 0);
1554 if (!page) {
1555 ret = -EFAULT;
1556 goto out;
1557 }
1558 kaddr = kmap_atomic(page);
1559
1560 for (; offset < PAGE_SIZE && kaddr[offset];
1561 offset++, bprm->p++)
1562 ;
1563
1564 kunmap_atomic(kaddr);
1565 put_arg_page(page);
1566 } while (offset == PAGE_SIZE);
1567
1568 bprm->p++;
1569 bprm->argc--;
1570 ret = 0;
1571
1572out:
1573 return ret;
1574}
1575EXPORT_SYMBOL(remove_arg_zero);
1576
1577#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1578/*
1579 * cycle the list of binary formats handler, until one recognizes the image
1580 */
1581int search_binary_handler(struct linux_binprm *bprm)
1582{
1583 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1584 struct linux_binfmt *fmt;
1585 int retval;
1586
1587 /* This allows 4 levels of binfmt rewrites before failing hard. */
1588 if (bprm->recursion_depth > 5)
1589 return -ELOOP;
1590
1591 retval = security_bprm_check(bprm);
1592 if (retval)
1593 return retval;
1594
1595 retval = -ENOENT;
1596 retry:
1597 read_lock(&binfmt_lock);
1598 list_for_each_entry(fmt, &formats, lh) {
1599 if (!try_module_get(fmt->module))
1600 continue;
1601 read_unlock(&binfmt_lock);
1602 bprm->recursion_depth++;
1603 retval = fmt->load_binary(bprm);
1604 read_lock(&binfmt_lock);
1605 put_binfmt(fmt);
1606 bprm->recursion_depth--;
1607 if (retval < 0 && !bprm->mm) {
1608 /* we got to flush_old_exec() and failed after it */
1609 read_unlock(&binfmt_lock);
1610 force_sigsegv(SIGSEGV, current);
1611 return retval;
1612 }
1613 if (retval != -ENOEXEC || !bprm->file) {
1614 read_unlock(&binfmt_lock);
1615 return retval;
1616 }
1617 }
1618 read_unlock(&binfmt_lock);
1619
1620 if (need_retry) {
1621 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1622 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1623 return retval;
1624 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1625 return retval;
1626 need_retry = false;
1627 goto retry;
1628 }
1629
1630 return retval;
1631}
1632EXPORT_SYMBOL(search_binary_handler);
1633
1634static int exec_binprm(struct linux_binprm *bprm)
1635{
1636 pid_t old_pid, old_vpid;
1637 int ret;
1638
1639 /* Need to fetch pid before load_binary changes it */
1640 old_pid = current->pid;
1641 rcu_read_lock();
1642 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1643 rcu_read_unlock();
1644
1645 ret = search_binary_handler(bprm);
1646 if (ret >= 0) {
1647 audit_bprm(bprm);
1648 trace_sched_process_exec(current, old_pid, bprm);
1649 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1650 proc_exec_connector(current);
1651 }
1652
1653 return ret;
1654}
1655
1656/*
1657 * sys_execve() executes a new program.
1658 */
1659static int do_execveat_common(int fd, struct filename *filename,
1660 struct user_arg_ptr argv,
1661 struct user_arg_ptr envp,
1662 int flags)
1663{
1664 char *pathbuf = NULL;
1665 struct linux_binprm *bprm;
1666 struct file *file;
1667 struct files_struct *displaced;
1668 int retval;
1669
1670 if (IS_ERR(filename))
1671 return PTR_ERR(filename);
1672
1673 /*
1674 * We move the actual failure in case of RLIMIT_NPROC excess from
1675 * set*uid() to execve() because too many poorly written programs
1676 * don't check setuid() return code. Here we additionally recheck
1677 * whether NPROC limit is still exceeded.
1678 */
1679 if ((current->flags & PF_NPROC_EXCEEDED) &&
1680 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1681 retval = -EAGAIN;
1682 goto out_ret;
1683 }
1684
1685 /* We're below the limit (still or again), so we don't want to make
1686 * further execve() calls fail. */
1687 current->flags &= ~PF_NPROC_EXCEEDED;
1688
1689 retval = unshare_files(&displaced);
1690 if (retval)
1691 goto out_ret;
1692
1693 retval = -ENOMEM;
1694 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1695 if (!bprm)
1696 goto out_files;
1697
1698 retval = prepare_bprm_creds(bprm);
1699 if (retval)
1700 goto out_free;
1701
1702 check_unsafe_exec(bprm);
1703 current->in_execve = 1;
1704
1705 file = do_open_execat(fd, filename, flags);
1706 retval = PTR_ERR(file);
1707 if (IS_ERR(file))
1708 goto out_unmark;
1709
1710 sched_exec();
1711
1712 bprm->file = file;
1713 if (fd == AT_FDCWD || filename->name[0] == '/') {
1714 bprm->filename = filename->name;
1715 } else {
1716 if (filename->name[0] == '\0')
1717 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1718 else
1719 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1720 fd, filename->name);
1721 if (!pathbuf) {
1722 retval = -ENOMEM;
1723 goto out_unmark;
1724 }
1725 /*
1726 * Record that a name derived from an O_CLOEXEC fd will be
1727 * inaccessible after exec. Relies on having exclusive access to
1728 * current->files (due to unshare_files above).
1729 */
1730 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1731 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1732 bprm->filename = pathbuf;
1733 }
1734 bprm->interp = bprm->filename;
1735
1736 retval = bprm_mm_init(bprm);
1737 if (retval)
1738 goto out_unmark;
1739
1740 bprm->argc = count(argv, MAX_ARG_STRINGS);
1741 if ((retval = bprm->argc) < 0)
1742 goto out;
1743
1744 bprm->envc = count(envp, MAX_ARG_STRINGS);
1745 if ((retval = bprm->envc) < 0)
1746 goto out;
1747
1748 retval = prepare_binprm(bprm);
1749 if (retval < 0)
1750 goto out;
1751
1752 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1753 if (retval < 0)
1754 goto out;
1755
1756 bprm->exec = bprm->p;
1757 retval = copy_strings(bprm->envc, envp, bprm);
1758 if (retval < 0)
1759 goto out;
1760
1761 retval = copy_strings(bprm->argc, argv, bprm);
1762 if (retval < 0)
1763 goto out;
1764
1765 would_dump(bprm, bprm->file);
1766
1767 retval = exec_binprm(bprm);
1768 if (retval < 0)
1769 goto out;
1770
1771 /* execve succeeded */
1772 current->fs->in_exec = 0;
1773 current->in_execve = 0;
1774 acct_update_integrals(current);
1775 task_numa_free(current);
1776 free_bprm(bprm);
1777 kfree(pathbuf);
1778 putname(filename);
1779 if (displaced)
1780 put_files_struct(displaced);
1781 return retval;
1782
1783out:
1784 if (bprm->mm) {
1785 acct_arg_size(bprm, 0);
1786 mmput(bprm->mm);
1787 }
1788
1789out_unmark:
1790 current->fs->in_exec = 0;
1791 current->in_execve = 0;
1792
1793out_free:
1794 free_bprm(bprm);
1795 kfree(pathbuf);
1796
1797out_files:
1798 if (displaced)
1799 reset_files_struct(displaced);
1800out_ret:
1801 putname(filename);
1802 return retval;
1803}
1804
1805int do_execve(struct filename *filename,
1806 const char __user *const __user *__argv,
1807 const char __user *const __user *__envp)
1808{
1809 struct user_arg_ptr argv = { .ptr.native = __argv };
1810 struct user_arg_ptr envp = { .ptr.native = __envp };
1811 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1812}
1813
1814int do_execveat(int fd, struct filename *filename,
1815 const char __user *const __user *__argv,
1816 const char __user *const __user *__envp,
1817 int flags)
1818{
1819 struct user_arg_ptr argv = { .ptr.native = __argv };
1820 struct user_arg_ptr envp = { .ptr.native = __envp };
1821
1822 return do_execveat_common(fd, filename, argv, envp, flags);
1823}
1824
1825#ifdef CONFIG_COMPAT
1826static int compat_do_execve(struct filename *filename,
1827 const compat_uptr_t __user *__argv,
1828 const compat_uptr_t __user *__envp)
1829{
1830 struct user_arg_ptr argv = {
1831 .is_compat = true,
1832 .ptr.compat = __argv,
1833 };
1834 struct user_arg_ptr envp = {
1835 .is_compat = true,
1836 .ptr.compat = __envp,
1837 };
1838 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839}
1840
1841static int compat_do_execveat(int fd, struct filename *filename,
1842 const compat_uptr_t __user *__argv,
1843 const compat_uptr_t __user *__envp,
1844 int flags)
1845{
1846 struct user_arg_ptr argv = {
1847 .is_compat = true,
1848 .ptr.compat = __argv,
1849 };
1850 struct user_arg_ptr envp = {
1851 .is_compat = true,
1852 .ptr.compat = __envp,
1853 };
1854 return do_execveat_common(fd, filename, argv, envp, flags);
1855}
1856#endif
1857
1858void set_binfmt(struct linux_binfmt *new)
1859{
1860 struct mm_struct *mm = current->mm;
1861
1862 if (mm->binfmt)
1863 module_put(mm->binfmt->module);
1864
1865 mm->binfmt = new;
1866 if (new)
1867 __module_get(new->module);
1868}
1869EXPORT_SYMBOL(set_binfmt);
1870
1871/*
1872 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1873 */
1874void set_dumpable(struct mm_struct *mm, int value)
1875{
1876 unsigned long old, new;
1877
1878 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1879 return;
1880
1881 do {
1882 old = ACCESS_ONCE(mm->flags);
1883 new = (old & ~MMF_DUMPABLE_MASK) | value;
1884 } while (cmpxchg(&mm->flags, old, new) != old);
1885}
1886
1887SYSCALL_DEFINE3(execve,
1888 const char __user *, filename,
1889 const char __user *const __user *, argv,
1890 const char __user *const __user *, envp)
1891{
1892 return do_execve(getname(filename), argv, envp);
1893}
1894
1895SYSCALL_DEFINE5(execveat,
1896 int, fd, const char __user *, filename,
1897 const char __user *const __user *, argv,
1898 const char __user *const __user *, envp,
1899 int, flags)
1900{
1901 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1902
1903 return do_execveat(fd,
1904 getname_flags(filename, lookup_flags, NULL),
1905 argv, envp, flags);
1906}
1907
1908#ifdef CONFIG_COMPAT
1909COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1910 const compat_uptr_t __user *, argv,
1911 const compat_uptr_t __user *, envp)
1912{
1913 return compat_do_execve(getname(filename), argv, envp);
1914}
1915
1916COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1917 const char __user *, filename,
1918 const compat_uptr_t __user *, argv,
1919 const compat_uptr_t __user *, envp,
1920 int, flags)
1921{
1922 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1923
1924 return compat_do_execveat(fd,
1925 getname_flags(filename, lookup_flags, NULL),
1926 argv, envp, flags);
1927}
1928#endif
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/stat.h>
30#include <linux/fcntl.h>
31#include <linux/swap.h>
32#include <linux/string.h>
33#include <linux/init.h>
34#include <linux/pagemap.h>
35#include <linux/perf_event.h>
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
41#include <linux/utsname.h>
42#include <linux/pid_namespace.h>
43#include <linux/module.h>
44#include <linux/namei.h>
45#include <linux/mount.h>
46#include <linux/security.h>
47#include <linux/syscalls.h>
48#include <linux/tsacct_kern.h>
49#include <linux/cn_proc.h>
50#include <linux/audit.h>
51#include <linux/tracehook.h>
52#include <linux/kmod.h>
53#include <linux/fsnotify.h>
54#include <linux/fs_struct.h>
55#include <linux/pipe_fs_i.h>
56#include <linux/oom.h>
57#include <linux/compat.h>
58
59#include <asm/uaccess.h>
60#include <asm/mmu_context.h>
61#include <asm/tlb.h>
62#include "internal.h"
63
64int core_uses_pid;
65char core_pattern[CORENAME_MAX_SIZE] = "core";
66unsigned int core_pipe_limit;
67int suid_dumpable = 0;
68
69struct core_name {
70 char *corename;
71 int used, size;
72};
73static atomic_t call_count = ATOMIC_INIT(1);
74
75/* The maximal length of core_pattern is also specified in sysctl.c */
76
77static LIST_HEAD(formats);
78static DEFINE_RWLOCK(binfmt_lock);
79
80int __register_binfmt(struct linux_binfmt * fmt, int insert)
81{
82 if (!fmt)
83 return -EINVAL;
84 write_lock(&binfmt_lock);
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
87 write_unlock(&binfmt_lock);
88 return 0;
89}
90
91EXPORT_SYMBOL(__register_binfmt);
92
93void unregister_binfmt(struct linux_binfmt * fmt)
94{
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98}
99
100EXPORT_SYMBOL(unregister_binfmt);
101
102static inline void put_binfmt(struct linux_binfmt * fmt)
103{
104 module_put(fmt->module);
105}
106
107/*
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
110 *
111 * Also note that we take the address to load from from the file itself.
112 */
113SYSCALL_DEFINE1(uselib, const char __user *, library)
114{
115 struct file *file;
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
118 static const struct open_flags uselib_flags = {
119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 .intent = LOOKUP_OPEN
122 };
123
124 if (IS_ERR(tmp))
125 goto out;
126
127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128 putname(tmp);
129 error = PTR_ERR(file);
130 if (IS_ERR(file))
131 goto out;
132
133 error = -EINVAL;
134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135 goto exit;
136
137 error = -EACCES;
138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139 goto exit;
140
141 fsnotify_open(file);
142
143 error = -ENOEXEC;
144 if(file->f_op) {
145 struct linux_binfmt * fmt;
146
147 read_lock(&binfmt_lock);
148 list_for_each_entry(fmt, &formats, lh) {
149 if (!fmt->load_shlib)
150 continue;
151 if (!try_module_get(fmt->module))
152 continue;
153 read_unlock(&binfmt_lock);
154 error = fmt->load_shlib(file);
155 read_lock(&binfmt_lock);
156 put_binfmt(fmt);
157 if (error != -ENOEXEC)
158 break;
159 }
160 read_unlock(&binfmt_lock);
161 }
162exit:
163 fput(file);
164out:
165 return error;
166}
167
168#ifdef CONFIG_MMU
169/*
170 * The nascent bprm->mm is not visible until exec_mmap() but it can
171 * use a lot of memory, account these pages in current->mm temporary
172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173 * change the counter back via acct_arg_size(0).
174 */
175static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176{
177 struct mm_struct *mm = current->mm;
178 long diff = (long)(pages - bprm->vma_pages);
179
180 if (!mm || !diff)
181 return;
182
183 bprm->vma_pages = pages;
184 add_mm_counter(mm, MM_ANONPAGES, diff);
185}
186
187static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
188 int write)
189{
190 struct page *page;
191 int ret;
192
193#ifdef CONFIG_STACK_GROWSUP
194 if (write) {
195 ret = expand_downwards(bprm->vma, pos);
196 if (ret < 0)
197 return NULL;
198 }
199#endif
200 ret = get_user_pages(current, bprm->mm, pos,
201 1, write, 1, &page, NULL);
202 if (ret <= 0)
203 return NULL;
204
205 if (write) {
206 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
207 struct rlimit *rlim;
208
209 acct_arg_size(bprm, size / PAGE_SIZE);
210
211 /*
212 * We've historically supported up to 32 pages (ARG_MAX)
213 * of argument strings even with small stacks
214 */
215 if (size <= ARG_MAX)
216 return page;
217
218 /*
219 * Limit to 1/4-th the stack size for the argv+env strings.
220 * This ensures that:
221 * - the remaining binfmt code will not run out of stack space,
222 * - the program will have a reasonable amount of stack left
223 * to work from.
224 */
225 rlim = current->signal->rlim;
226 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
227 put_page(page);
228 return NULL;
229 }
230 }
231
232 return page;
233}
234
235static void put_arg_page(struct page *page)
236{
237 put_page(page);
238}
239
240static void free_arg_page(struct linux_binprm *bprm, int i)
241{
242}
243
244static void free_arg_pages(struct linux_binprm *bprm)
245{
246}
247
248static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
249 struct page *page)
250{
251 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
252}
253
254static int __bprm_mm_init(struct linux_binprm *bprm)
255{
256 int err;
257 struct vm_area_struct *vma = NULL;
258 struct mm_struct *mm = bprm->mm;
259
260 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
261 if (!vma)
262 return -ENOMEM;
263
264 down_write(&mm->mmap_sem);
265 vma->vm_mm = mm;
266
267 /*
268 * Place the stack at the largest stack address the architecture
269 * supports. Later, we'll move this to an appropriate place. We don't
270 * use STACK_TOP because that can depend on attributes which aren't
271 * configured yet.
272 */
273 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
274 vma->vm_end = STACK_TOP_MAX;
275 vma->vm_start = vma->vm_end - PAGE_SIZE;
276 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278 INIT_LIST_HEAD(&vma->anon_vma_chain);
279
280 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
281 if (err)
282 goto err;
283
284 err = insert_vm_struct(mm, vma);
285 if (err)
286 goto err;
287
288 mm->stack_vm = mm->total_vm = 1;
289 up_write(&mm->mmap_sem);
290 bprm->p = vma->vm_end - sizeof(void *);
291 return 0;
292err:
293 up_write(&mm->mmap_sem);
294 bprm->vma = NULL;
295 kmem_cache_free(vm_area_cachep, vma);
296 return err;
297}
298
299static bool valid_arg_len(struct linux_binprm *bprm, long len)
300{
301 return len <= MAX_ARG_STRLEN;
302}
303
304#else
305
306static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
307{
308}
309
310static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
311 int write)
312{
313 struct page *page;
314
315 page = bprm->page[pos / PAGE_SIZE];
316 if (!page && write) {
317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 if (!page)
319 return NULL;
320 bprm->page[pos / PAGE_SIZE] = page;
321 }
322
323 return page;
324}
325
326static void put_arg_page(struct page *page)
327{
328}
329
330static void free_arg_page(struct linux_binprm *bprm, int i)
331{
332 if (bprm->page[i]) {
333 __free_page(bprm->page[i]);
334 bprm->page[i] = NULL;
335 }
336}
337
338static void free_arg_pages(struct linux_binprm *bprm)
339{
340 int i;
341
342 for (i = 0; i < MAX_ARG_PAGES; i++)
343 free_arg_page(bprm, i);
344}
345
346static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 struct page *page)
348{
349}
350
351static int __bprm_mm_init(struct linux_binprm *bprm)
352{
353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354 return 0;
355}
356
357static bool valid_arg_len(struct linux_binprm *bprm, long len)
358{
359 return len <= bprm->p;
360}
361
362#endif /* CONFIG_MMU */
363
364/*
365 * Create a new mm_struct and populate it with a temporary stack
366 * vm_area_struct. We don't have enough context at this point to set the stack
367 * flags, permissions, and offset, so we use temporary values. We'll update
368 * them later in setup_arg_pages().
369 */
370int bprm_mm_init(struct linux_binprm *bprm)
371{
372 int err;
373 struct mm_struct *mm = NULL;
374
375 bprm->mm = mm = mm_alloc();
376 err = -ENOMEM;
377 if (!mm)
378 goto err;
379
380 err = init_new_context(current, mm);
381 if (err)
382 goto err;
383
384 err = __bprm_mm_init(bprm);
385 if (err)
386 goto err;
387
388 return 0;
389
390err:
391 if (mm) {
392 bprm->mm = NULL;
393 mmdrop(mm);
394 }
395
396 return err;
397}
398
399struct user_arg_ptr {
400#ifdef CONFIG_COMPAT
401 bool is_compat;
402#endif
403 union {
404 const char __user *const __user *native;
405#ifdef CONFIG_COMPAT
406 compat_uptr_t __user *compat;
407#endif
408 } ptr;
409};
410
411static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412{
413 const char __user *native;
414
415#ifdef CONFIG_COMPAT
416 if (unlikely(argv.is_compat)) {
417 compat_uptr_t compat;
418
419 if (get_user(compat, argv.ptr.compat + nr))
420 return ERR_PTR(-EFAULT);
421
422 return compat_ptr(compat);
423 }
424#endif
425
426 if (get_user(native, argv.ptr.native + nr))
427 return ERR_PTR(-EFAULT);
428
429 return native;
430}
431
432/*
433 * count() counts the number of strings in array ARGV.
434 */
435static int count(struct user_arg_ptr argv, int max)
436{
437 int i = 0;
438
439 if (argv.ptr.native != NULL) {
440 for (;;) {
441 const char __user *p = get_user_arg_ptr(argv, i);
442
443 if (!p)
444 break;
445
446 if (IS_ERR(p))
447 return -EFAULT;
448
449 if (i++ >= max)
450 return -E2BIG;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458}
459
460/*
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
464 */
465static int copy_strings(int argc, struct user_arg_ptr argv,
466 struct linux_binprm *bprm)
467{
468 struct page *kmapped_page = NULL;
469 char *kaddr = NULL;
470 unsigned long kpos = 0;
471 int ret;
472
473 while (argc-- > 0) {
474 const char __user *str;
475 int len;
476 unsigned long pos;
477
478 ret = -EFAULT;
479 str = get_user_arg_ptr(argv, argc);
480 if (IS_ERR(str))
481 goto out;
482
483 len = strnlen_user(str, MAX_ARG_STRLEN);
484 if (!len)
485 goto out;
486
487 ret = -E2BIG;
488 if (!valid_arg_len(bprm, len))
489 goto out;
490
491 /* We're going to work our way backwords. */
492 pos = bprm->p;
493 str += len;
494 bprm->p -= len;
495
496 while (len > 0) {
497 int offset, bytes_to_copy;
498
499 if (fatal_signal_pending(current)) {
500 ret = -ERESTARTNOHAND;
501 goto out;
502 }
503 cond_resched();
504
505 offset = pos % PAGE_SIZE;
506 if (offset == 0)
507 offset = PAGE_SIZE;
508
509 bytes_to_copy = offset;
510 if (bytes_to_copy > len)
511 bytes_to_copy = len;
512
513 offset -= bytes_to_copy;
514 pos -= bytes_to_copy;
515 str -= bytes_to_copy;
516 len -= bytes_to_copy;
517
518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 struct page *page;
520
521 page = get_arg_page(bprm, pos, 1);
522 if (!page) {
523 ret = -E2BIG;
524 goto out;
525 }
526
527 if (kmapped_page) {
528 flush_kernel_dcache_page(kmapped_page);
529 kunmap(kmapped_page);
530 put_arg_page(kmapped_page);
531 }
532 kmapped_page = page;
533 kaddr = kmap(kmapped_page);
534 kpos = pos & PAGE_MASK;
535 flush_arg_page(bprm, kpos, kmapped_page);
536 }
537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 ret = -EFAULT;
539 goto out;
540 }
541 }
542 }
543 ret = 0;
544out:
545 if (kmapped_page) {
546 flush_kernel_dcache_page(kmapped_page);
547 kunmap(kmapped_page);
548 put_arg_page(kmapped_page);
549 }
550 return ret;
551}
552
553/*
554 * Like copy_strings, but get argv and its values from kernel memory.
555 */
556int copy_strings_kernel(int argc, const char *const *__argv,
557 struct linux_binprm *bprm)
558{
559 int r;
560 mm_segment_t oldfs = get_fs();
561 struct user_arg_ptr argv = {
562 .ptr.native = (const char __user *const __user *)__argv,
563 };
564
565 set_fs(KERNEL_DS);
566 r = copy_strings(argc, argv, bprm);
567 set_fs(oldfs);
568
569 return r;
570}
571EXPORT_SYMBOL(copy_strings_kernel);
572
573#ifdef CONFIG_MMU
574
575/*
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
579 *
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
586 */
587static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588{
589 struct mm_struct *mm = vma->vm_mm;
590 unsigned long old_start = vma->vm_start;
591 unsigned long old_end = vma->vm_end;
592 unsigned long length = old_end - old_start;
593 unsigned long new_start = old_start - shift;
594 unsigned long new_end = old_end - shift;
595 struct mmu_gather tlb;
596
597 BUG_ON(new_start > new_end);
598
599 /*
600 * ensure there are no vmas between where we want to go
601 * and where we are
602 */
603 if (vma != find_vma(mm, new_start))
604 return -EFAULT;
605
606 /*
607 * cover the whole range: [new_start, old_end)
608 */
609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 return -ENOMEM;
611
612 /*
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
615 */
616 if (length != move_page_tables(vma, old_start,
617 vma, new_start, length))
618 return -ENOMEM;
619
620 lru_add_drain();
621 tlb_gather_mmu(&tlb, mm, 0);
622 if (new_end > old_start) {
623 /*
624 * when the old and new regions overlap clear from new_end.
625 */
626 free_pgd_range(&tlb, new_end, old_end, new_end,
627 vma->vm_next ? vma->vm_next->vm_start : 0);
628 } else {
629 /*
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
634 */
635 free_pgd_range(&tlb, old_start, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : 0);
637 }
638 tlb_finish_mmu(&tlb, new_end, old_end);
639
640 /*
641 * Shrink the vma to just the new range. Always succeeds.
642 */
643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645 return 0;
646}
647
648/*
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
651 */
652int setup_arg_pages(struct linux_binprm *bprm,
653 unsigned long stack_top,
654 int executable_stack)
655{
656 unsigned long ret;
657 unsigned long stack_shift;
658 struct mm_struct *mm = current->mm;
659 struct vm_area_struct *vma = bprm->vma;
660 struct vm_area_struct *prev = NULL;
661 unsigned long vm_flags;
662 unsigned long stack_base;
663 unsigned long stack_size;
664 unsigned long stack_expand;
665 unsigned long rlim_stack;
666
667#ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size to 1GB */
669 stack_base = rlimit_max(RLIMIT_STACK);
670 if (stack_base > (1 << 30))
671 stack_base = 1 << 30;
672
673 /* Make sure we didn't let the argument array grow too large. */
674 if (vma->vm_end - vma->vm_start > stack_base)
675 return -ENOMEM;
676
677 stack_base = PAGE_ALIGN(stack_top - stack_base);
678
679 stack_shift = vma->vm_start - stack_base;
680 mm->arg_start = bprm->p - stack_shift;
681 bprm->p = vma->vm_end - stack_shift;
682#else
683 stack_top = arch_align_stack(stack_top);
684 stack_top = PAGE_ALIGN(stack_top);
685
686 if (unlikely(stack_top < mmap_min_addr) ||
687 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
688 return -ENOMEM;
689
690 stack_shift = vma->vm_end - stack_top;
691
692 bprm->p -= stack_shift;
693 mm->arg_start = bprm->p;
694#endif
695
696 if (bprm->loader)
697 bprm->loader -= stack_shift;
698 bprm->exec -= stack_shift;
699
700 down_write(&mm->mmap_sem);
701 vm_flags = VM_STACK_FLAGS;
702
703 /*
704 * Adjust stack execute permissions; explicitly enable for
705 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
706 * (arch default) otherwise.
707 */
708 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
709 vm_flags |= VM_EXEC;
710 else if (executable_stack == EXSTACK_DISABLE_X)
711 vm_flags &= ~VM_EXEC;
712 vm_flags |= mm->def_flags;
713 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
714
715 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
716 vm_flags);
717 if (ret)
718 goto out_unlock;
719 BUG_ON(prev != vma);
720
721 /* Move stack pages down in memory. */
722 if (stack_shift) {
723 ret = shift_arg_pages(vma, stack_shift);
724 if (ret)
725 goto out_unlock;
726 }
727
728 /* mprotect_fixup is overkill to remove the temporary stack flags */
729 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
730
731 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
732 stack_size = vma->vm_end - vma->vm_start;
733 /*
734 * Align this down to a page boundary as expand_stack
735 * will align it up.
736 */
737 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
738#ifdef CONFIG_STACK_GROWSUP
739 if (stack_size + stack_expand > rlim_stack)
740 stack_base = vma->vm_start + rlim_stack;
741 else
742 stack_base = vma->vm_end + stack_expand;
743#else
744 if (stack_size + stack_expand > rlim_stack)
745 stack_base = vma->vm_end - rlim_stack;
746 else
747 stack_base = vma->vm_start - stack_expand;
748#endif
749 current->mm->start_stack = bprm->p;
750 ret = expand_stack(vma, stack_base);
751 if (ret)
752 ret = -EFAULT;
753
754out_unlock:
755 up_write(&mm->mmap_sem);
756 return ret;
757}
758EXPORT_SYMBOL(setup_arg_pages);
759
760#endif /* CONFIG_MMU */
761
762struct file *open_exec(const char *name)
763{
764 struct file *file;
765 int err;
766 static const struct open_flags open_exec_flags = {
767 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
768 .acc_mode = MAY_EXEC | MAY_OPEN,
769 .intent = LOOKUP_OPEN
770 };
771
772 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
773 if (IS_ERR(file))
774 goto out;
775
776 err = -EACCES;
777 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
778 goto exit;
779
780 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781 goto exit;
782
783 fsnotify_open(file);
784
785 err = deny_write_access(file);
786 if (err)
787 goto exit;
788
789out:
790 return file;
791
792exit:
793 fput(file);
794 return ERR_PTR(err);
795}
796EXPORT_SYMBOL(open_exec);
797
798int kernel_read(struct file *file, loff_t offset,
799 char *addr, unsigned long count)
800{
801 mm_segment_t old_fs;
802 loff_t pos = offset;
803 int result;
804
805 old_fs = get_fs();
806 set_fs(get_ds());
807 /* The cast to a user pointer is valid due to the set_fs() */
808 result = vfs_read(file, (void __user *)addr, count, &pos);
809 set_fs(old_fs);
810 return result;
811}
812
813EXPORT_SYMBOL(kernel_read);
814
815static int exec_mmap(struct mm_struct *mm)
816{
817 struct task_struct *tsk;
818 struct mm_struct * old_mm, *active_mm;
819
820 /* Notify parent that we're no longer interested in the old VM */
821 tsk = current;
822 old_mm = current->mm;
823 sync_mm_rss(tsk, old_mm);
824 mm_release(tsk, old_mm);
825
826 if (old_mm) {
827 /*
828 * Make sure that if there is a core dump in progress
829 * for the old mm, we get out and die instead of going
830 * through with the exec. We must hold mmap_sem around
831 * checking core_state and changing tsk->mm.
832 */
833 down_read(&old_mm->mmap_sem);
834 if (unlikely(old_mm->core_state)) {
835 up_read(&old_mm->mmap_sem);
836 return -EINTR;
837 }
838 }
839 task_lock(tsk);
840 active_mm = tsk->active_mm;
841 tsk->mm = mm;
842 tsk->active_mm = mm;
843 activate_mm(active_mm, mm);
844 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
845 atomic_dec(&old_mm->oom_disable_count);
846 atomic_inc(&tsk->mm->oom_disable_count);
847 }
848 task_unlock(tsk);
849 arch_pick_mmap_layout(mm);
850 if (old_mm) {
851 up_read(&old_mm->mmap_sem);
852 BUG_ON(active_mm != old_mm);
853 mm_update_next_owner(old_mm);
854 mmput(old_mm);
855 return 0;
856 }
857 mmdrop(active_mm);
858 return 0;
859}
860
861/*
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
866 */
867static int de_thread(struct task_struct *tsk)
868{
869 struct signal_struct *sig = tsk->signal;
870 struct sighand_struct *oldsighand = tsk->sighand;
871 spinlock_t *lock = &oldsighand->siglock;
872
873 if (thread_group_empty(tsk))
874 goto no_thread_group;
875
876 /*
877 * Kill all other threads in the thread group.
878 */
879 spin_lock_irq(lock);
880 if (signal_group_exit(sig)) {
881 /*
882 * Another group action in progress, just
883 * return so that the signal is processed.
884 */
885 spin_unlock_irq(lock);
886 return -EAGAIN;
887 }
888
889 sig->group_exit_task = tsk;
890 sig->notify_count = zap_other_threads(tsk);
891 if (!thread_group_leader(tsk))
892 sig->notify_count--;
893
894 while (sig->notify_count) {
895 __set_current_state(TASK_UNINTERRUPTIBLE);
896 spin_unlock_irq(lock);
897 schedule();
898 spin_lock_irq(lock);
899 }
900 spin_unlock_irq(lock);
901
902 /*
903 * At this point all other threads have exited, all we have to
904 * do is to wait for the thread group leader to become inactive,
905 * and to assume its PID:
906 */
907 if (!thread_group_leader(tsk)) {
908 struct task_struct *leader = tsk->group_leader;
909
910 sig->notify_count = -1; /* for exit_notify() */
911 for (;;) {
912 write_lock_irq(&tasklist_lock);
913 if (likely(leader->exit_state))
914 break;
915 __set_current_state(TASK_UNINTERRUPTIBLE);
916 write_unlock_irq(&tasklist_lock);
917 schedule();
918 }
919
920 /*
921 * The only record we have of the real-time age of a
922 * process, regardless of execs it's done, is start_time.
923 * All the past CPU time is accumulated in signal_struct
924 * from sister threads now dead. But in this non-leader
925 * exec, nothing survives from the original leader thread,
926 * whose birth marks the true age of this process now.
927 * When we take on its identity by switching to its PID, we
928 * also take its birthdate (always earlier than our own).
929 */
930 tsk->start_time = leader->start_time;
931
932 BUG_ON(!same_thread_group(leader, tsk));
933 BUG_ON(has_group_leader_pid(tsk));
934 /*
935 * An exec() starts a new thread group with the
936 * TGID of the previous thread group. Rehash the
937 * two threads with a switched PID, and release
938 * the former thread group leader:
939 */
940
941 /* Become a process group leader with the old leader's pid.
942 * The old leader becomes a thread of the this thread group.
943 * Note: The old leader also uses this pid until release_task
944 * is called. Odd but simple and correct.
945 */
946 detach_pid(tsk, PIDTYPE_PID);
947 tsk->pid = leader->pid;
948 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
949 transfer_pid(leader, tsk, PIDTYPE_PGID);
950 transfer_pid(leader, tsk, PIDTYPE_SID);
951
952 list_replace_rcu(&leader->tasks, &tsk->tasks);
953 list_replace_init(&leader->sibling, &tsk->sibling);
954
955 tsk->group_leader = tsk;
956 leader->group_leader = tsk;
957
958 tsk->exit_signal = SIGCHLD;
959 leader->exit_signal = -1;
960
961 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
962 leader->exit_state = EXIT_DEAD;
963
964 /*
965 * We are going to release_task()->ptrace_unlink() silently,
966 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
967 * the tracer wont't block again waiting for this thread.
968 */
969 if (unlikely(leader->ptrace))
970 __wake_up_parent(leader, leader->parent);
971 write_unlock_irq(&tasklist_lock);
972
973 release_task(leader);
974 }
975
976 sig->group_exit_task = NULL;
977 sig->notify_count = 0;
978
979no_thread_group:
980 if (current->mm)
981 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
982
983 exit_itimers(sig);
984 flush_itimer_signals();
985
986 if (atomic_read(&oldsighand->count) != 1) {
987 struct sighand_struct *newsighand;
988 /*
989 * This ->sighand is shared with the CLONE_SIGHAND
990 * but not CLONE_THREAD task, switch to the new one.
991 */
992 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 if (!newsighand)
994 return -ENOMEM;
995
996 atomic_set(&newsighand->count, 1);
997 memcpy(newsighand->action, oldsighand->action,
998 sizeof(newsighand->action));
999
1000 write_lock_irq(&tasklist_lock);
1001 spin_lock(&oldsighand->siglock);
1002 rcu_assign_pointer(tsk->sighand, newsighand);
1003 spin_unlock(&oldsighand->siglock);
1004 write_unlock_irq(&tasklist_lock);
1005
1006 __cleanup_sighand(oldsighand);
1007 }
1008
1009 BUG_ON(!thread_group_leader(tsk));
1010 return 0;
1011}
1012
1013/*
1014 * These functions flushes out all traces of the currently running executable
1015 * so that a new one can be started
1016 */
1017static void flush_old_files(struct files_struct * files)
1018{
1019 long j = -1;
1020 struct fdtable *fdt;
1021
1022 spin_lock(&files->file_lock);
1023 for (;;) {
1024 unsigned long set, i;
1025
1026 j++;
1027 i = j * __NFDBITS;
1028 fdt = files_fdtable(files);
1029 if (i >= fdt->max_fds)
1030 break;
1031 set = fdt->close_on_exec->fds_bits[j];
1032 if (!set)
1033 continue;
1034 fdt->close_on_exec->fds_bits[j] = 0;
1035 spin_unlock(&files->file_lock);
1036 for ( ; set ; i++,set >>= 1) {
1037 if (set & 1) {
1038 sys_close(i);
1039 }
1040 }
1041 spin_lock(&files->file_lock);
1042
1043 }
1044 spin_unlock(&files->file_lock);
1045}
1046
1047char *get_task_comm(char *buf, struct task_struct *tsk)
1048{
1049 /* buf must be at least sizeof(tsk->comm) in size */
1050 task_lock(tsk);
1051 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1052 task_unlock(tsk);
1053 return buf;
1054}
1055EXPORT_SYMBOL_GPL(get_task_comm);
1056
1057void set_task_comm(struct task_struct *tsk, char *buf)
1058{
1059 task_lock(tsk);
1060
1061 /*
1062 * Threads may access current->comm without holding
1063 * the task lock, so write the string carefully.
1064 * Readers without a lock may see incomplete new
1065 * names but are safe from non-terminating string reads.
1066 */
1067 memset(tsk->comm, 0, TASK_COMM_LEN);
1068 wmb();
1069 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1070 task_unlock(tsk);
1071 perf_event_comm(tsk);
1072}
1073
1074int flush_old_exec(struct linux_binprm * bprm)
1075{
1076 int retval;
1077
1078 /*
1079 * Make sure we have a private signal table and that
1080 * we are unassociated from the previous thread group.
1081 */
1082 retval = de_thread(current);
1083 if (retval)
1084 goto out;
1085
1086 set_mm_exe_file(bprm->mm, bprm->file);
1087
1088 /*
1089 * Release all of the old mmap stuff
1090 */
1091 acct_arg_size(bprm, 0);
1092 retval = exec_mmap(bprm->mm);
1093 if (retval)
1094 goto out;
1095
1096 bprm->mm = NULL; /* We're using it now */
1097
1098 set_fs(USER_DS);
1099 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1100 flush_thread();
1101 current->personality &= ~bprm->per_clear;
1102
1103 return 0;
1104
1105out:
1106 return retval;
1107}
1108EXPORT_SYMBOL(flush_old_exec);
1109
1110void would_dump(struct linux_binprm *bprm, struct file *file)
1111{
1112 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1113 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1114}
1115EXPORT_SYMBOL(would_dump);
1116
1117void setup_new_exec(struct linux_binprm * bprm)
1118{
1119 int i, ch;
1120 const char *name;
1121 char tcomm[sizeof(current->comm)];
1122
1123 arch_pick_mmap_layout(current->mm);
1124
1125 /* This is the point of no return */
1126 current->sas_ss_sp = current->sas_ss_size = 0;
1127
1128 if (current_euid() == current_uid() && current_egid() == current_gid())
1129 set_dumpable(current->mm, 1);
1130 else
1131 set_dumpable(current->mm, suid_dumpable);
1132
1133 name = bprm->filename;
1134
1135 /* Copies the binary name from after last slash */
1136 for (i=0; (ch = *(name++)) != '\0';) {
1137 if (ch == '/')
1138 i = 0; /* overwrite what we wrote */
1139 else
1140 if (i < (sizeof(tcomm) - 1))
1141 tcomm[i++] = ch;
1142 }
1143 tcomm[i] = '\0';
1144 set_task_comm(current, tcomm);
1145
1146 /* Set the new mm task size. We have to do that late because it may
1147 * depend on TIF_32BIT which is only updated in flush_thread() on
1148 * some architectures like powerpc
1149 */
1150 current->mm->task_size = TASK_SIZE;
1151
1152 /* install the new credentials */
1153 if (bprm->cred->uid != current_euid() ||
1154 bprm->cred->gid != current_egid()) {
1155 current->pdeath_signal = 0;
1156 } else {
1157 would_dump(bprm, bprm->file);
1158 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1159 set_dumpable(current->mm, suid_dumpable);
1160 }
1161
1162 /*
1163 * Flush performance counters when crossing a
1164 * security domain:
1165 */
1166 if (!get_dumpable(current->mm))
1167 perf_event_exit_task(current);
1168
1169 /* An exec changes our domain. We are no longer part of the thread
1170 group */
1171
1172 current->self_exec_id++;
1173
1174 flush_signal_handlers(current, 0);
1175 flush_old_files(current->files);
1176}
1177EXPORT_SYMBOL(setup_new_exec);
1178
1179/*
1180 * Prepare credentials and lock ->cred_guard_mutex.
1181 * install_exec_creds() commits the new creds and drops the lock.
1182 * Or, if exec fails before, free_bprm() should release ->cred and
1183 * and unlock.
1184 */
1185int prepare_bprm_creds(struct linux_binprm *bprm)
1186{
1187 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1188 return -ERESTARTNOINTR;
1189
1190 bprm->cred = prepare_exec_creds();
1191 if (likely(bprm->cred))
1192 return 0;
1193
1194 mutex_unlock(¤t->signal->cred_guard_mutex);
1195 return -ENOMEM;
1196}
1197
1198void free_bprm(struct linux_binprm *bprm)
1199{
1200 free_arg_pages(bprm);
1201 if (bprm->cred) {
1202 mutex_unlock(¤t->signal->cred_guard_mutex);
1203 abort_creds(bprm->cred);
1204 }
1205 kfree(bprm);
1206}
1207
1208/*
1209 * install the new credentials for this executable
1210 */
1211void install_exec_creds(struct linux_binprm *bprm)
1212{
1213 security_bprm_committing_creds(bprm);
1214
1215 commit_creds(bprm->cred);
1216 bprm->cred = NULL;
1217 /*
1218 * cred_guard_mutex must be held at least to this point to prevent
1219 * ptrace_attach() from altering our determination of the task's
1220 * credentials; any time after this it may be unlocked.
1221 */
1222 security_bprm_committed_creds(bprm);
1223 mutex_unlock(¤t->signal->cred_guard_mutex);
1224}
1225EXPORT_SYMBOL(install_exec_creds);
1226
1227/*
1228 * determine how safe it is to execute the proposed program
1229 * - the caller must hold ->cred_guard_mutex to protect against
1230 * PTRACE_ATTACH
1231 */
1232int check_unsafe_exec(struct linux_binprm *bprm)
1233{
1234 struct task_struct *p = current, *t;
1235 unsigned n_fs;
1236 int res = 0;
1237
1238 if (p->ptrace) {
1239 if (p->ptrace & PT_PTRACE_CAP)
1240 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1241 else
1242 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1243 }
1244
1245 n_fs = 1;
1246 spin_lock(&p->fs->lock);
1247 rcu_read_lock();
1248 for (t = next_thread(p); t != p; t = next_thread(t)) {
1249 if (t->fs == p->fs)
1250 n_fs++;
1251 }
1252 rcu_read_unlock();
1253
1254 if (p->fs->users > n_fs) {
1255 bprm->unsafe |= LSM_UNSAFE_SHARE;
1256 } else {
1257 res = -EAGAIN;
1258 if (!p->fs->in_exec) {
1259 p->fs->in_exec = 1;
1260 res = 1;
1261 }
1262 }
1263 spin_unlock(&p->fs->lock);
1264
1265 return res;
1266}
1267
1268/*
1269 * Fill the binprm structure from the inode.
1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271 *
1272 * This may be called multiple times for binary chains (scripts for example).
1273 */
1274int prepare_binprm(struct linux_binprm *bprm)
1275{
1276 umode_t mode;
1277 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1278 int retval;
1279
1280 mode = inode->i_mode;
1281 if (bprm->file->f_op == NULL)
1282 return -EACCES;
1283
1284 /* clear any previous set[ug]id data from a previous binary */
1285 bprm->cred->euid = current_euid();
1286 bprm->cred->egid = current_egid();
1287
1288 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1289 /* Set-uid? */
1290 if (mode & S_ISUID) {
1291 bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 bprm->cred->euid = inode->i_uid;
1293 }
1294
1295 /* Set-gid? */
1296 /*
1297 * If setgid is set but no group execute bit then this
1298 * is a candidate for mandatory locking, not a setgid
1299 * executable.
1300 */
1301 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302 bprm->per_clear |= PER_CLEAR_ON_SETID;
1303 bprm->cred->egid = inode->i_gid;
1304 }
1305 }
1306
1307 /* fill in binprm security blob */
1308 retval = security_bprm_set_creds(bprm);
1309 if (retval)
1310 return retval;
1311 bprm->cred_prepared = 1;
1312
1313 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1315}
1316
1317EXPORT_SYMBOL(prepare_binprm);
1318
1319/*
1320 * Arguments are '\0' separated strings found at the location bprm->p
1321 * points to; chop off the first by relocating brpm->p to right after
1322 * the first '\0' encountered.
1323 */
1324int remove_arg_zero(struct linux_binprm *bprm)
1325{
1326 int ret = 0;
1327 unsigned long offset;
1328 char *kaddr;
1329 struct page *page;
1330
1331 if (!bprm->argc)
1332 return 0;
1333
1334 do {
1335 offset = bprm->p & ~PAGE_MASK;
1336 page = get_arg_page(bprm, bprm->p, 0);
1337 if (!page) {
1338 ret = -EFAULT;
1339 goto out;
1340 }
1341 kaddr = kmap_atomic(page, KM_USER0);
1342
1343 for (; offset < PAGE_SIZE && kaddr[offset];
1344 offset++, bprm->p++)
1345 ;
1346
1347 kunmap_atomic(kaddr, KM_USER0);
1348 put_arg_page(page);
1349
1350 if (offset == PAGE_SIZE)
1351 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352 } while (offset == PAGE_SIZE);
1353
1354 bprm->p++;
1355 bprm->argc--;
1356 ret = 0;
1357
1358out:
1359 return ret;
1360}
1361EXPORT_SYMBOL(remove_arg_zero);
1362
1363/*
1364 * cycle the list of binary formats handler, until one recognizes the image
1365 */
1366int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1367{
1368 unsigned int depth = bprm->recursion_depth;
1369 int try,retval;
1370 struct linux_binfmt *fmt;
1371 pid_t old_pid;
1372
1373 retval = security_bprm_check(bprm);
1374 if (retval)
1375 return retval;
1376
1377 retval = audit_bprm(bprm);
1378 if (retval)
1379 return retval;
1380
1381 /* Need to fetch pid before load_binary changes it */
1382 rcu_read_lock();
1383 old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1384 rcu_read_unlock();
1385
1386 retval = -ENOENT;
1387 for (try=0; try<2; try++) {
1388 read_lock(&binfmt_lock);
1389 list_for_each_entry(fmt, &formats, lh) {
1390 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1391 if (!fn)
1392 continue;
1393 if (!try_module_get(fmt->module))
1394 continue;
1395 read_unlock(&binfmt_lock);
1396 retval = fn(bprm, regs);
1397 /*
1398 * Restore the depth counter to its starting value
1399 * in this call, so we don't have to rely on every
1400 * load_binary function to restore it on return.
1401 */
1402 bprm->recursion_depth = depth;
1403 if (retval >= 0) {
1404 if (depth == 0)
1405 ptrace_event(PTRACE_EVENT_EXEC,
1406 old_pid);
1407 put_binfmt(fmt);
1408 allow_write_access(bprm->file);
1409 if (bprm->file)
1410 fput(bprm->file);
1411 bprm->file = NULL;
1412 current->did_exec = 1;
1413 proc_exec_connector(current);
1414 return retval;
1415 }
1416 read_lock(&binfmt_lock);
1417 put_binfmt(fmt);
1418 if (retval != -ENOEXEC || bprm->mm == NULL)
1419 break;
1420 if (!bprm->file) {
1421 read_unlock(&binfmt_lock);
1422 return retval;
1423 }
1424 }
1425 read_unlock(&binfmt_lock);
1426#ifdef CONFIG_MODULES
1427 if (retval != -ENOEXEC || bprm->mm == NULL) {
1428 break;
1429 } else {
1430#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1431 if (printable(bprm->buf[0]) &&
1432 printable(bprm->buf[1]) &&
1433 printable(bprm->buf[2]) &&
1434 printable(bprm->buf[3]))
1435 break; /* -ENOEXEC */
1436 if (try)
1437 break; /* -ENOEXEC */
1438 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1439 }
1440#else
1441 break;
1442#endif
1443 }
1444 return retval;
1445}
1446
1447EXPORT_SYMBOL(search_binary_handler);
1448
1449/*
1450 * sys_execve() executes a new program.
1451 */
1452static int do_execve_common(const char *filename,
1453 struct user_arg_ptr argv,
1454 struct user_arg_ptr envp,
1455 struct pt_regs *regs)
1456{
1457 struct linux_binprm *bprm;
1458 struct file *file;
1459 struct files_struct *displaced;
1460 bool clear_in_exec;
1461 int retval;
1462 const struct cred *cred = current_cred();
1463
1464 /*
1465 * We move the actual failure in case of RLIMIT_NPROC excess from
1466 * set*uid() to execve() because too many poorly written programs
1467 * don't check setuid() return code. Here we additionally recheck
1468 * whether NPROC limit is still exceeded.
1469 */
1470 if ((current->flags & PF_NPROC_EXCEEDED) &&
1471 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1472 retval = -EAGAIN;
1473 goto out_ret;
1474 }
1475
1476 /* We're below the limit (still or again), so we don't want to make
1477 * further execve() calls fail. */
1478 current->flags &= ~PF_NPROC_EXCEEDED;
1479
1480 retval = unshare_files(&displaced);
1481 if (retval)
1482 goto out_ret;
1483
1484 retval = -ENOMEM;
1485 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1486 if (!bprm)
1487 goto out_files;
1488
1489 retval = prepare_bprm_creds(bprm);
1490 if (retval)
1491 goto out_free;
1492
1493 retval = check_unsafe_exec(bprm);
1494 if (retval < 0)
1495 goto out_free;
1496 clear_in_exec = retval;
1497 current->in_execve = 1;
1498
1499 file = open_exec(filename);
1500 retval = PTR_ERR(file);
1501 if (IS_ERR(file))
1502 goto out_unmark;
1503
1504 sched_exec();
1505
1506 bprm->file = file;
1507 bprm->filename = filename;
1508 bprm->interp = filename;
1509
1510 retval = bprm_mm_init(bprm);
1511 if (retval)
1512 goto out_file;
1513
1514 bprm->argc = count(argv, MAX_ARG_STRINGS);
1515 if ((retval = bprm->argc) < 0)
1516 goto out;
1517
1518 bprm->envc = count(envp, MAX_ARG_STRINGS);
1519 if ((retval = bprm->envc) < 0)
1520 goto out;
1521
1522 retval = prepare_binprm(bprm);
1523 if (retval < 0)
1524 goto out;
1525
1526 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1527 if (retval < 0)
1528 goto out;
1529
1530 bprm->exec = bprm->p;
1531 retval = copy_strings(bprm->envc, envp, bprm);
1532 if (retval < 0)
1533 goto out;
1534
1535 retval = copy_strings(bprm->argc, argv, bprm);
1536 if (retval < 0)
1537 goto out;
1538
1539 retval = search_binary_handler(bprm,regs);
1540 if (retval < 0)
1541 goto out;
1542
1543 /* execve succeeded */
1544 current->fs->in_exec = 0;
1545 current->in_execve = 0;
1546 acct_update_integrals(current);
1547 free_bprm(bprm);
1548 if (displaced)
1549 put_files_struct(displaced);
1550 return retval;
1551
1552out:
1553 if (bprm->mm) {
1554 acct_arg_size(bprm, 0);
1555 mmput(bprm->mm);
1556 }
1557
1558out_file:
1559 if (bprm->file) {
1560 allow_write_access(bprm->file);
1561 fput(bprm->file);
1562 }
1563
1564out_unmark:
1565 if (clear_in_exec)
1566 current->fs->in_exec = 0;
1567 current->in_execve = 0;
1568
1569out_free:
1570 free_bprm(bprm);
1571
1572out_files:
1573 if (displaced)
1574 reset_files_struct(displaced);
1575out_ret:
1576 return retval;
1577}
1578
1579int do_execve(const char *filename,
1580 const char __user *const __user *__argv,
1581 const char __user *const __user *__envp,
1582 struct pt_regs *regs)
1583{
1584 struct user_arg_ptr argv = { .ptr.native = __argv };
1585 struct user_arg_ptr envp = { .ptr.native = __envp };
1586 return do_execve_common(filename, argv, envp, regs);
1587}
1588
1589#ifdef CONFIG_COMPAT
1590int compat_do_execve(char *filename,
1591 compat_uptr_t __user *__argv,
1592 compat_uptr_t __user *__envp,
1593 struct pt_regs *regs)
1594{
1595 struct user_arg_ptr argv = {
1596 .is_compat = true,
1597 .ptr.compat = __argv,
1598 };
1599 struct user_arg_ptr envp = {
1600 .is_compat = true,
1601 .ptr.compat = __envp,
1602 };
1603 return do_execve_common(filename, argv, envp, regs);
1604}
1605#endif
1606
1607void set_binfmt(struct linux_binfmt *new)
1608{
1609 struct mm_struct *mm = current->mm;
1610
1611 if (mm->binfmt)
1612 module_put(mm->binfmt->module);
1613
1614 mm->binfmt = new;
1615 if (new)
1616 __module_get(new->module);
1617}
1618
1619EXPORT_SYMBOL(set_binfmt);
1620
1621static int expand_corename(struct core_name *cn)
1622{
1623 char *old_corename = cn->corename;
1624
1625 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1626 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1627
1628 if (!cn->corename) {
1629 kfree(old_corename);
1630 return -ENOMEM;
1631 }
1632
1633 return 0;
1634}
1635
1636static int cn_printf(struct core_name *cn, const char *fmt, ...)
1637{
1638 char *cur;
1639 int need;
1640 int ret;
1641 va_list arg;
1642
1643 va_start(arg, fmt);
1644 need = vsnprintf(NULL, 0, fmt, arg);
1645 va_end(arg);
1646
1647 if (likely(need < cn->size - cn->used - 1))
1648 goto out_printf;
1649
1650 ret = expand_corename(cn);
1651 if (ret)
1652 goto expand_fail;
1653
1654out_printf:
1655 cur = cn->corename + cn->used;
1656 va_start(arg, fmt);
1657 vsnprintf(cur, need + 1, fmt, arg);
1658 va_end(arg);
1659 cn->used += need;
1660 return 0;
1661
1662expand_fail:
1663 return ret;
1664}
1665
1666static void cn_escape(char *str)
1667{
1668 for (; *str; str++)
1669 if (*str == '/')
1670 *str = '!';
1671}
1672
1673static int cn_print_exe_file(struct core_name *cn)
1674{
1675 struct file *exe_file;
1676 char *pathbuf, *path;
1677 int ret;
1678
1679 exe_file = get_mm_exe_file(current->mm);
1680 if (!exe_file) {
1681 char *commstart = cn->corename + cn->used;
1682 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1683 cn_escape(commstart);
1684 return ret;
1685 }
1686
1687 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1688 if (!pathbuf) {
1689 ret = -ENOMEM;
1690 goto put_exe_file;
1691 }
1692
1693 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1694 if (IS_ERR(path)) {
1695 ret = PTR_ERR(path);
1696 goto free_buf;
1697 }
1698
1699 cn_escape(path);
1700
1701 ret = cn_printf(cn, "%s", path);
1702
1703free_buf:
1704 kfree(pathbuf);
1705put_exe_file:
1706 fput(exe_file);
1707 return ret;
1708}
1709
1710/* format_corename will inspect the pattern parameter, and output a
1711 * name into corename, which must have space for at least
1712 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1713 */
1714static int format_corename(struct core_name *cn, long signr)
1715{
1716 const struct cred *cred = current_cred();
1717 const char *pat_ptr = core_pattern;
1718 int ispipe = (*pat_ptr == '|');
1719 int pid_in_pattern = 0;
1720 int err = 0;
1721
1722 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1723 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1724 cn->used = 0;
1725
1726 if (!cn->corename)
1727 return -ENOMEM;
1728
1729 /* Repeat as long as we have more pattern to process and more output
1730 space */
1731 while (*pat_ptr) {
1732 if (*pat_ptr != '%') {
1733 if (*pat_ptr == 0)
1734 goto out;
1735 err = cn_printf(cn, "%c", *pat_ptr++);
1736 } else {
1737 switch (*++pat_ptr) {
1738 /* single % at the end, drop that */
1739 case 0:
1740 goto out;
1741 /* Double percent, output one percent */
1742 case '%':
1743 err = cn_printf(cn, "%c", '%');
1744 break;
1745 /* pid */
1746 case 'p':
1747 pid_in_pattern = 1;
1748 err = cn_printf(cn, "%d",
1749 task_tgid_vnr(current));
1750 break;
1751 /* uid */
1752 case 'u':
1753 err = cn_printf(cn, "%d", cred->uid);
1754 break;
1755 /* gid */
1756 case 'g':
1757 err = cn_printf(cn, "%d", cred->gid);
1758 break;
1759 /* signal that caused the coredump */
1760 case 's':
1761 err = cn_printf(cn, "%ld", signr);
1762 break;
1763 /* UNIX time of coredump */
1764 case 't': {
1765 struct timeval tv;
1766 do_gettimeofday(&tv);
1767 err = cn_printf(cn, "%lu", tv.tv_sec);
1768 break;
1769 }
1770 /* hostname */
1771 case 'h': {
1772 char *namestart = cn->corename + cn->used;
1773 down_read(&uts_sem);
1774 err = cn_printf(cn, "%s",
1775 utsname()->nodename);
1776 up_read(&uts_sem);
1777 cn_escape(namestart);
1778 break;
1779 }
1780 /* executable */
1781 case 'e': {
1782 char *commstart = cn->corename + cn->used;
1783 err = cn_printf(cn, "%s", current->comm);
1784 cn_escape(commstart);
1785 break;
1786 }
1787 case 'E':
1788 err = cn_print_exe_file(cn);
1789 break;
1790 /* core limit size */
1791 case 'c':
1792 err = cn_printf(cn, "%lu",
1793 rlimit(RLIMIT_CORE));
1794 break;
1795 default:
1796 break;
1797 }
1798 ++pat_ptr;
1799 }
1800
1801 if (err)
1802 return err;
1803 }
1804
1805 /* Backward compatibility with core_uses_pid:
1806 *
1807 * If core_pattern does not include a %p (as is the default)
1808 * and core_uses_pid is set, then .%pid will be appended to
1809 * the filename. Do not do this for piped commands. */
1810 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1811 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1812 if (err)
1813 return err;
1814 }
1815out:
1816 return ispipe;
1817}
1818
1819static int zap_process(struct task_struct *start, int exit_code)
1820{
1821 struct task_struct *t;
1822 int nr = 0;
1823
1824 start->signal->flags = SIGNAL_GROUP_EXIT;
1825 start->signal->group_exit_code = exit_code;
1826 start->signal->group_stop_count = 0;
1827
1828 t = start;
1829 do {
1830 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1831 if (t != current && t->mm) {
1832 sigaddset(&t->pending.signal, SIGKILL);
1833 signal_wake_up(t, 1);
1834 nr++;
1835 }
1836 } while_each_thread(start, t);
1837
1838 return nr;
1839}
1840
1841static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1842 struct core_state *core_state, int exit_code)
1843{
1844 struct task_struct *g, *p;
1845 unsigned long flags;
1846 int nr = -EAGAIN;
1847
1848 spin_lock_irq(&tsk->sighand->siglock);
1849 if (!signal_group_exit(tsk->signal)) {
1850 mm->core_state = core_state;
1851 nr = zap_process(tsk, exit_code);
1852 }
1853 spin_unlock_irq(&tsk->sighand->siglock);
1854 if (unlikely(nr < 0))
1855 return nr;
1856
1857 if (atomic_read(&mm->mm_users) == nr + 1)
1858 goto done;
1859 /*
1860 * We should find and kill all tasks which use this mm, and we should
1861 * count them correctly into ->nr_threads. We don't take tasklist
1862 * lock, but this is safe wrt:
1863 *
1864 * fork:
1865 * None of sub-threads can fork after zap_process(leader). All
1866 * processes which were created before this point should be
1867 * visible to zap_threads() because copy_process() adds the new
1868 * process to the tail of init_task.tasks list, and lock/unlock
1869 * of ->siglock provides a memory barrier.
1870 *
1871 * do_exit:
1872 * The caller holds mm->mmap_sem. This means that the task which
1873 * uses this mm can't pass exit_mm(), so it can't exit or clear
1874 * its ->mm.
1875 *
1876 * de_thread:
1877 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1878 * we must see either old or new leader, this does not matter.
1879 * However, it can change p->sighand, so lock_task_sighand(p)
1880 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1881 * it can't fail.
1882 *
1883 * Note also that "g" can be the old leader with ->mm == NULL
1884 * and already unhashed and thus removed from ->thread_group.
1885 * This is OK, __unhash_process()->list_del_rcu() does not
1886 * clear the ->next pointer, we will find the new leader via
1887 * next_thread().
1888 */
1889 rcu_read_lock();
1890 for_each_process(g) {
1891 if (g == tsk->group_leader)
1892 continue;
1893 if (g->flags & PF_KTHREAD)
1894 continue;
1895 p = g;
1896 do {
1897 if (p->mm) {
1898 if (unlikely(p->mm == mm)) {
1899 lock_task_sighand(p, &flags);
1900 nr += zap_process(p, exit_code);
1901 unlock_task_sighand(p, &flags);
1902 }
1903 break;
1904 }
1905 } while_each_thread(g, p);
1906 }
1907 rcu_read_unlock();
1908done:
1909 atomic_set(&core_state->nr_threads, nr);
1910 return nr;
1911}
1912
1913static int coredump_wait(int exit_code, struct core_state *core_state)
1914{
1915 struct task_struct *tsk = current;
1916 struct mm_struct *mm = tsk->mm;
1917 struct completion *vfork_done;
1918 int core_waiters = -EBUSY;
1919
1920 init_completion(&core_state->startup);
1921 core_state->dumper.task = tsk;
1922 core_state->dumper.next = NULL;
1923
1924 down_write(&mm->mmap_sem);
1925 if (!mm->core_state)
1926 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1927 up_write(&mm->mmap_sem);
1928
1929 if (unlikely(core_waiters < 0))
1930 goto fail;
1931
1932 /*
1933 * Make sure nobody is waiting for us to release the VM,
1934 * otherwise we can deadlock when we wait on each other
1935 */
1936 vfork_done = tsk->vfork_done;
1937 if (vfork_done) {
1938 tsk->vfork_done = NULL;
1939 complete(vfork_done);
1940 }
1941
1942 if (core_waiters)
1943 wait_for_completion(&core_state->startup);
1944fail:
1945 return core_waiters;
1946}
1947
1948static void coredump_finish(struct mm_struct *mm)
1949{
1950 struct core_thread *curr, *next;
1951 struct task_struct *task;
1952
1953 next = mm->core_state->dumper.next;
1954 while ((curr = next) != NULL) {
1955 next = curr->next;
1956 task = curr->task;
1957 /*
1958 * see exit_mm(), curr->task must not see
1959 * ->task == NULL before we read ->next.
1960 */
1961 smp_mb();
1962 curr->task = NULL;
1963 wake_up_process(task);
1964 }
1965
1966 mm->core_state = NULL;
1967}
1968
1969/*
1970 * set_dumpable converts traditional three-value dumpable to two flags and
1971 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1972 * these bits are not changed atomically. So get_dumpable can observe the
1973 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1974 * return either old dumpable or new one by paying attention to the order of
1975 * modifying the bits.
1976 *
1977 * dumpable | mm->flags (binary)
1978 * old new | initial interim final
1979 * ---------+-----------------------
1980 * 0 1 | 00 01 01
1981 * 0 2 | 00 10(*) 11
1982 * 1 0 | 01 00 00
1983 * 1 2 | 01 11 11
1984 * 2 0 | 11 10(*) 00
1985 * 2 1 | 11 11 01
1986 *
1987 * (*) get_dumpable regards interim value of 10 as 11.
1988 */
1989void set_dumpable(struct mm_struct *mm, int value)
1990{
1991 switch (value) {
1992 case 0:
1993 clear_bit(MMF_DUMPABLE, &mm->flags);
1994 smp_wmb();
1995 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1996 break;
1997 case 1:
1998 set_bit(MMF_DUMPABLE, &mm->flags);
1999 smp_wmb();
2000 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2001 break;
2002 case 2:
2003 set_bit(MMF_DUMP_SECURELY, &mm->flags);
2004 smp_wmb();
2005 set_bit(MMF_DUMPABLE, &mm->flags);
2006 break;
2007 }
2008}
2009
2010static int __get_dumpable(unsigned long mm_flags)
2011{
2012 int ret;
2013
2014 ret = mm_flags & MMF_DUMPABLE_MASK;
2015 return (ret >= 2) ? 2 : ret;
2016}
2017
2018int get_dumpable(struct mm_struct *mm)
2019{
2020 return __get_dumpable(mm->flags);
2021}
2022
2023static void wait_for_dump_helpers(struct file *file)
2024{
2025 struct pipe_inode_info *pipe;
2026
2027 pipe = file->f_path.dentry->d_inode->i_pipe;
2028
2029 pipe_lock(pipe);
2030 pipe->readers++;
2031 pipe->writers--;
2032
2033 while ((pipe->readers > 1) && (!signal_pending(current))) {
2034 wake_up_interruptible_sync(&pipe->wait);
2035 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2036 pipe_wait(pipe);
2037 }
2038
2039 pipe->readers--;
2040 pipe->writers++;
2041 pipe_unlock(pipe);
2042
2043}
2044
2045
2046/*
2047 * umh_pipe_setup
2048 * helper function to customize the process used
2049 * to collect the core in userspace. Specifically
2050 * it sets up a pipe and installs it as fd 0 (stdin)
2051 * for the process. Returns 0 on success, or
2052 * PTR_ERR on failure.
2053 * Note that it also sets the core limit to 1. This
2054 * is a special value that we use to trap recursive
2055 * core dumps
2056 */
2057static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2058{
2059 struct file *rp, *wp;
2060 struct fdtable *fdt;
2061 struct coredump_params *cp = (struct coredump_params *)info->data;
2062 struct files_struct *cf = current->files;
2063
2064 wp = create_write_pipe(0);
2065 if (IS_ERR(wp))
2066 return PTR_ERR(wp);
2067
2068 rp = create_read_pipe(wp, 0);
2069 if (IS_ERR(rp)) {
2070 free_write_pipe(wp);
2071 return PTR_ERR(rp);
2072 }
2073
2074 cp->file = wp;
2075
2076 sys_close(0);
2077 fd_install(0, rp);
2078 spin_lock(&cf->file_lock);
2079 fdt = files_fdtable(cf);
2080 FD_SET(0, fdt->open_fds);
2081 FD_CLR(0, fdt->close_on_exec);
2082 spin_unlock(&cf->file_lock);
2083
2084 /* and disallow core files too */
2085 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2086
2087 return 0;
2088}
2089
2090void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2091{
2092 struct core_state core_state;
2093 struct core_name cn;
2094 struct mm_struct *mm = current->mm;
2095 struct linux_binfmt * binfmt;
2096 const struct cred *old_cred;
2097 struct cred *cred;
2098 int retval = 0;
2099 int flag = 0;
2100 int ispipe;
2101 static atomic_t core_dump_count = ATOMIC_INIT(0);
2102 struct coredump_params cprm = {
2103 .signr = signr,
2104 .regs = regs,
2105 .limit = rlimit(RLIMIT_CORE),
2106 /*
2107 * We must use the same mm->flags while dumping core to avoid
2108 * inconsistency of bit flags, since this flag is not protected
2109 * by any locks.
2110 */
2111 .mm_flags = mm->flags,
2112 };
2113
2114 audit_core_dumps(signr);
2115
2116 binfmt = mm->binfmt;
2117 if (!binfmt || !binfmt->core_dump)
2118 goto fail;
2119 if (!__get_dumpable(cprm.mm_flags))
2120 goto fail;
2121
2122 cred = prepare_creds();
2123 if (!cred)
2124 goto fail;
2125 /*
2126 * We cannot trust fsuid as being the "true" uid of the
2127 * process nor do we know its entire history. We only know it
2128 * was tainted so we dump it as root in mode 2.
2129 */
2130 if (__get_dumpable(cprm.mm_flags) == 2) {
2131 /* Setuid core dump mode */
2132 flag = O_EXCL; /* Stop rewrite attacks */
2133 cred->fsuid = 0; /* Dump root private */
2134 }
2135
2136 retval = coredump_wait(exit_code, &core_state);
2137 if (retval < 0)
2138 goto fail_creds;
2139
2140 old_cred = override_creds(cred);
2141
2142 /*
2143 * Clear any false indication of pending signals that might
2144 * be seen by the filesystem code called to write the core file.
2145 */
2146 clear_thread_flag(TIF_SIGPENDING);
2147
2148 ispipe = format_corename(&cn, signr);
2149
2150 if (ispipe) {
2151 int dump_count;
2152 char **helper_argv;
2153
2154 if (ispipe < 0) {
2155 printk(KERN_WARNING "format_corename failed\n");
2156 printk(KERN_WARNING "Aborting core\n");
2157 goto fail_corename;
2158 }
2159
2160 if (cprm.limit == 1) {
2161 /*
2162 * Normally core limits are irrelevant to pipes, since
2163 * we're not writing to the file system, but we use
2164 * cprm.limit of 1 here as a speacial value. Any
2165 * non-1 limit gets set to RLIM_INFINITY below, but
2166 * a limit of 0 skips the dump. This is a consistent
2167 * way to catch recursive crashes. We can still crash
2168 * if the core_pattern binary sets RLIM_CORE = !1
2169 * but it runs as root, and can do lots of stupid things
2170 * Note that we use task_tgid_vnr here to grab the pid
2171 * of the process group leader. That way we get the
2172 * right pid if a thread in a multi-threaded
2173 * core_pattern process dies.
2174 */
2175 printk(KERN_WARNING
2176 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2177 task_tgid_vnr(current), current->comm);
2178 printk(KERN_WARNING "Aborting core\n");
2179 goto fail_unlock;
2180 }
2181 cprm.limit = RLIM_INFINITY;
2182
2183 dump_count = atomic_inc_return(&core_dump_count);
2184 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2185 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2186 task_tgid_vnr(current), current->comm);
2187 printk(KERN_WARNING "Skipping core dump\n");
2188 goto fail_dropcount;
2189 }
2190
2191 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2192 if (!helper_argv) {
2193 printk(KERN_WARNING "%s failed to allocate memory\n",
2194 __func__);
2195 goto fail_dropcount;
2196 }
2197
2198 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2199 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2200 NULL, &cprm);
2201 argv_free(helper_argv);
2202 if (retval) {
2203 printk(KERN_INFO "Core dump to %s pipe failed\n",
2204 cn.corename);
2205 goto close_fail;
2206 }
2207 } else {
2208 struct inode *inode;
2209
2210 if (cprm.limit < binfmt->min_coredump)
2211 goto fail_unlock;
2212
2213 cprm.file = filp_open(cn.corename,
2214 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2215 0600);
2216 if (IS_ERR(cprm.file))
2217 goto fail_unlock;
2218
2219 inode = cprm.file->f_path.dentry->d_inode;
2220 if (inode->i_nlink > 1)
2221 goto close_fail;
2222 if (d_unhashed(cprm.file->f_path.dentry))
2223 goto close_fail;
2224 /*
2225 * AK: actually i see no reason to not allow this for named
2226 * pipes etc, but keep the previous behaviour for now.
2227 */
2228 if (!S_ISREG(inode->i_mode))
2229 goto close_fail;
2230 /*
2231 * Dont allow local users get cute and trick others to coredump
2232 * into their pre-created files.
2233 */
2234 if (inode->i_uid != current_fsuid())
2235 goto close_fail;
2236 if (!cprm.file->f_op || !cprm.file->f_op->write)
2237 goto close_fail;
2238 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2239 goto close_fail;
2240 }
2241
2242 retval = binfmt->core_dump(&cprm);
2243 if (retval)
2244 current->signal->group_exit_code |= 0x80;
2245
2246 if (ispipe && core_pipe_limit)
2247 wait_for_dump_helpers(cprm.file);
2248close_fail:
2249 if (cprm.file)
2250 filp_close(cprm.file, NULL);
2251fail_dropcount:
2252 if (ispipe)
2253 atomic_dec(&core_dump_count);
2254fail_unlock:
2255 kfree(cn.corename);
2256fail_corename:
2257 coredump_finish(mm);
2258 revert_creds(old_cred);
2259fail_creds:
2260 put_cred(cred);
2261fail:
2262 return;
2263}
2264
2265/*
2266 * Core dumping helper functions. These are the only things you should
2267 * do on a core-file: use only these functions to write out all the
2268 * necessary info.
2269 */
2270int dump_write(struct file *file, const void *addr, int nr)
2271{
2272 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2273}
2274EXPORT_SYMBOL(dump_write);
2275
2276int dump_seek(struct file *file, loff_t off)
2277{
2278 int ret = 1;
2279
2280 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2281 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2282 return 0;
2283 } else {
2284 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2285
2286 if (!buf)
2287 return 0;
2288 while (off > 0) {
2289 unsigned long n = off;
2290
2291 if (n > PAGE_SIZE)
2292 n = PAGE_SIZE;
2293 if (!dump_write(file, buf, n)) {
2294 ret = 0;
2295 break;
2296 }
2297 off -= n;
2298 }
2299 free_page((unsigned long)buf);
2300 }
2301 return ret;
2302}
2303EXPORT_SYMBOL(dump_seek);