Loading...
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
12#include <linux/prefetch.h>
13#include <linux/cleancache.h>
14#include "extent_io.h"
15#include "extent_map.h"
16#include "ctree.h"
17#include "btrfs_inode.h"
18#include "volumes.h"
19#include "check-integrity.h"
20#include "locking.h"
21#include "rcu-string.h"
22#include "backref.h"
23#include "transaction.h"
24
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27static struct bio_set *btrfs_bioset;
28
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
34#ifdef CONFIG_BTRFS_DEBUG
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
37
38static DEFINE_SPINLOCK(leak_lock);
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
84
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89{
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103}
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109#endif
110
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
132};
133
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
153static noinline void flush_write_bio(void *data);
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
161
162int __init extent_io_init(void)
163{
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217{
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223}
224
225static struct extent_state *alloc_extent_state(gfp_t mask)
226{
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240}
241
242void free_extent_state(struct extent_state *state)
243{
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
253
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260{
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295{
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347{
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355}
356
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413}
414
415static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417{
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424{
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427}
428
429static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448{
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464 found->start, found->end, start, end);
465 return -EEXIST;
466 }
467 merge_state(tree, state);
468 return 0;
469}
470
471static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
472 u64 split)
473{
474 if (tree->ops && tree->ops->split_extent_hook)
475 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
476}
477
478/*
479 * split a given extent state struct in two, inserting the preallocated
480 * struct 'prealloc' as the newly created second half. 'split' indicates an
481 * offset inside 'orig' where it should be split.
482 *
483 * Before calling,
484 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
485 * are two extent state structs in the tree:
486 * prealloc: [orig->start, split - 1]
487 * orig: [ split, orig->end ]
488 *
489 * The tree locks are not taken by this function. They need to be held
490 * by the caller.
491 */
492static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
493 struct extent_state *prealloc, u64 split)
494{
495 struct rb_node *node;
496
497 split_cb(tree, orig, split);
498
499 prealloc->start = orig->start;
500 prealloc->end = split - 1;
501 prealloc->state = orig->state;
502 orig->start = split;
503
504 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
505 &prealloc->rb_node, NULL, NULL);
506 if (node) {
507 free_extent_state(prealloc);
508 return -EEXIST;
509 }
510 return 0;
511}
512
513static struct extent_state *next_state(struct extent_state *state)
514{
515 struct rb_node *next = rb_next(&state->rb_node);
516 if (next)
517 return rb_entry(next, struct extent_state, rb_node);
518 else
519 return NULL;
520}
521
522/*
523 * utility function to clear some bits in an extent state struct.
524 * it will optionally wake up any one waiting on this state (wake == 1).
525 *
526 * If no bits are set on the state struct after clearing things, the
527 * struct is freed and removed from the tree
528 */
529static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
530 struct extent_state *state,
531 unsigned *bits, int wake,
532 struct extent_changeset *changeset)
533{
534 struct extent_state *next;
535 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
536
537 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
538 u64 range = state->end - state->start + 1;
539 WARN_ON(range > tree->dirty_bytes);
540 tree->dirty_bytes -= range;
541 }
542 clear_state_cb(tree, state, bits);
543 add_extent_changeset(state, bits_to_clear, changeset, 0);
544 state->state &= ~bits_to_clear;
545 if (wake)
546 wake_up(&state->wq);
547 if (state->state == 0) {
548 next = next_state(state);
549 if (extent_state_in_tree(state)) {
550 rb_erase(&state->rb_node, &tree->state);
551 RB_CLEAR_NODE(&state->rb_node);
552 free_extent_state(state);
553 } else {
554 WARN_ON(1);
555 }
556 } else {
557 merge_state(tree, state);
558 next = next_state(state);
559 }
560 return next;
561}
562
563static struct extent_state *
564alloc_extent_state_atomic(struct extent_state *prealloc)
565{
566 if (!prealloc)
567 prealloc = alloc_extent_state(GFP_ATOMIC);
568
569 return prealloc;
570}
571
572static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
573{
574 btrfs_panic(tree_fs_info(tree), err,
575 "Locking error: Extent tree was modified by another thread while locked.");
576}
577
578/*
579 * clear some bits on a range in the tree. This may require splitting
580 * or inserting elements in the tree, so the gfp mask is used to
581 * indicate which allocations or sleeping are allowed.
582 *
583 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584 * the given range from the tree regardless of state (ie for truncate).
585 *
586 * the range [start, end] is inclusive.
587 *
588 * This takes the tree lock, and returns 0 on success and < 0 on error.
589 */
590static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
591 unsigned bits, int wake, int delete,
592 struct extent_state **cached_state,
593 gfp_t mask, struct extent_changeset *changeset)
594{
595 struct extent_state *state;
596 struct extent_state *cached;
597 struct extent_state *prealloc = NULL;
598 struct rb_node *node;
599 u64 last_end;
600 int err;
601 int clear = 0;
602
603 btrfs_debug_check_extent_io_range(tree, start, end);
604
605 if (bits & EXTENT_DELALLOC)
606 bits |= EXTENT_NORESERVE;
607
608 if (delete)
609 bits |= ~EXTENT_CTLBITS;
610 bits |= EXTENT_FIRST_DELALLOC;
611
612 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
613 clear = 1;
614again:
615 if (!prealloc && gfpflags_allow_blocking(mask)) {
616 /*
617 * Don't care for allocation failure here because we might end
618 * up not needing the pre-allocated extent state at all, which
619 * is the case if we only have in the tree extent states that
620 * cover our input range and don't cover too any other range.
621 * If we end up needing a new extent state we allocate it later.
622 */
623 prealloc = alloc_extent_state(mask);
624 }
625
626 spin_lock(&tree->lock);
627 if (cached_state) {
628 cached = *cached_state;
629
630 if (clear) {
631 *cached_state = NULL;
632 cached_state = NULL;
633 }
634
635 if (cached && extent_state_in_tree(cached) &&
636 cached->start <= start && cached->end > start) {
637 if (clear)
638 atomic_dec(&cached->refs);
639 state = cached;
640 goto hit_next;
641 }
642 if (clear)
643 free_extent_state(cached);
644 }
645 /*
646 * this search will find the extents that end after
647 * our range starts
648 */
649 node = tree_search(tree, start);
650 if (!node)
651 goto out;
652 state = rb_entry(node, struct extent_state, rb_node);
653hit_next:
654 if (state->start > end)
655 goto out;
656 WARN_ON(state->end < start);
657 last_end = state->end;
658
659 /* the state doesn't have the wanted bits, go ahead */
660 if (!(state->state & bits)) {
661 state = next_state(state);
662 goto next;
663 }
664
665 /*
666 * | ---- desired range ---- |
667 * | state | or
668 * | ------------- state -------------- |
669 *
670 * We need to split the extent we found, and may flip
671 * bits on second half.
672 *
673 * If the extent we found extends past our range, we
674 * just split and search again. It'll get split again
675 * the next time though.
676 *
677 * If the extent we found is inside our range, we clear
678 * the desired bit on it.
679 */
680
681 if (state->start < start) {
682 prealloc = alloc_extent_state_atomic(prealloc);
683 BUG_ON(!prealloc);
684 err = split_state(tree, state, prealloc, start);
685 if (err)
686 extent_io_tree_panic(tree, err);
687
688 prealloc = NULL;
689 if (err)
690 goto out;
691 if (state->end <= end) {
692 state = clear_state_bit(tree, state, &bits, wake,
693 changeset);
694 goto next;
695 }
696 goto search_again;
697 }
698 /*
699 * | ---- desired range ---- |
700 * | state |
701 * We need to split the extent, and clear the bit
702 * on the first half
703 */
704 if (state->start <= end && state->end > end) {
705 prealloc = alloc_extent_state_atomic(prealloc);
706 BUG_ON(!prealloc);
707 err = split_state(tree, state, prealloc, end + 1);
708 if (err)
709 extent_io_tree_panic(tree, err);
710
711 if (wake)
712 wake_up(&state->wq);
713
714 clear_state_bit(tree, prealloc, &bits, wake, changeset);
715
716 prealloc = NULL;
717 goto out;
718 }
719
720 state = clear_state_bit(tree, state, &bits, wake, changeset);
721next:
722 if (last_end == (u64)-1)
723 goto out;
724 start = last_end + 1;
725 if (start <= end && state && !need_resched())
726 goto hit_next;
727
728search_again:
729 if (start > end)
730 goto out;
731 spin_unlock(&tree->lock);
732 if (gfpflags_allow_blocking(mask))
733 cond_resched();
734 goto again;
735
736out:
737 spin_unlock(&tree->lock);
738 if (prealloc)
739 free_extent_state(prealloc);
740
741 return 0;
742
743}
744
745static void wait_on_state(struct extent_io_tree *tree,
746 struct extent_state *state)
747 __releases(tree->lock)
748 __acquires(tree->lock)
749{
750 DEFINE_WAIT(wait);
751 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
752 spin_unlock(&tree->lock);
753 schedule();
754 spin_lock(&tree->lock);
755 finish_wait(&state->wq, &wait);
756}
757
758/*
759 * waits for one or more bits to clear on a range in the state tree.
760 * The range [start, end] is inclusive.
761 * The tree lock is taken by this function
762 */
763static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
764 unsigned long bits)
765{
766 struct extent_state *state;
767 struct rb_node *node;
768
769 btrfs_debug_check_extent_io_range(tree, start, end);
770
771 spin_lock(&tree->lock);
772again:
773 while (1) {
774 /*
775 * this search will find all the extents that end after
776 * our range starts
777 */
778 node = tree_search(tree, start);
779process_node:
780 if (!node)
781 break;
782
783 state = rb_entry(node, struct extent_state, rb_node);
784
785 if (state->start > end)
786 goto out;
787
788 if (state->state & bits) {
789 start = state->start;
790 atomic_inc(&state->refs);
791 wait_on_state(tree, state);
792 free_extent_state(state);
793 goto again;
794 }
795 start = state->end + 1;
796
797 if (start > end)
798 break;
799
800 if (!cond_resched_lock(&tree->lock)) {
801 node = rb_next(node);
802 goto process_node;
803 }
804 }
805out:
806 spin_unlock(&tree->lock);
807}
808
809static void set_state_bits(struct extent_io_tree *tree,
810 struct extent_state *state,
811 unsigned *bits, struct extent_changeset *changeset)
812{
813 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
814
815 set_state_cb(tree, state, bits);
816 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
817 u64 range = state->end - state->start + 1;
818 tree->dirty_bytes += range;
819 }
820 add_extent_changeset(state, bits_to_set, changeset, 1);
821 state->state |= bits_to_set;
822}
823
824static void cache_state_if_flags(struct extent_state *state,
825 struct extent_state **cached_ptr,
826 unsigned flags)
827{
828 if (cached_ptr && !(*cached_ptr)) {
829 if (!flags || (state->state & flags)) {
830 *cached_ptr = state;
831 atomic_inc(&state->refs);
832 }
833 }
834}
835
836static void cache_state(struct extent_state *state,
837 struct extent_state **cached_ptr)
838{
839 return cache_state_if_flags(state, cached_ptr,
840 EXTENT_IOBITS | EXTENT_BOUNDARY);
841}
842
843/*
844 * set some bits on a range in the tree. This may require allocations or
845 * sleeping, so the gfp mask is used to indicate what is allowed.
846 *
847 * If any of the exclusive bits are set, this will fail with -EEXIST if some
848 * part of the range already has the desired bits set. The start of the
849 * existing range is returned in failed_start in this case.
850 *
851 * [start, end] is inclusive This takes the tree lock.
852 */
853
854static int __must_check
855__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
856 unsigned bits, unsigned exclusive_bits,
857 u64 *failed_start, struct extent_state **cached_state,
858 gfp_t mask, struct extent_changeset *changeset)
859{
860 struct extent_state *state;
861 struct extent_state *prealloc = NULL;
862 struct rb_node *node;
863 struct rb_node **p;
864 struct rb_node *parent;
865 int err = 0;
866 u64 last_start;
867 u64 last_end;
868
869 btrfs_debug_check_extent_io_range(tree, start, end);
870
871 bits |= EXTENT_FIRST_DELALLOC;
872again:
873 if (!prealloc && gfpflags_allow_blocking(mask)) {
874 /*
875 * Don't care for allocation failure here because we might end
876 * up not needing the pre-allocated extent state at all, which
877 * is the case if we only have in the tree extent states that
878 * cover our input range and don't cover too any other range.
879 * If we end up needing a new extent state we allocate it later.
880 */
881 prealloc = alloc_extent_state(mask);
882 }
883
884 spin_lock(&tree->lock);
885 if (cached_state && *cached_state) {
886 state = *cached_state;
887 if (state->start <= start && state->end > start &&
888 extent_state_in_tree(state)) {
889 node = &state->rb_node;
890 goto hit_next;
891 }
892 }
893 /*
894 * this search will find all the extents that end after
895 * our range starts.
896 */
897 node = tree_search_for_insert(tree, start, &p, &parent);
898 if (!node) {
899 prealloc = alloc_extent_state_atomic(prealloc);
900 BUG_ON(!prealloc);
901 err = insert_state(tree, prealloc, start, end,
902 &p, &parent, &bits, changeset);
903 if (err)
904 extent_io_tree_panic(tree, err);
905
906 cache_state(prealloc, cached_state);
907 prealloc = NULL;
908 goto out;
909 }
910 state = rb_entry(node, struct extent_state, rb_node);
911hit_next:
912 last_start = state->start;
913 last_end = state->end;
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 *
919 * Just lock what we found and keep going
920 */
921 if (state->start == start && state->end <= end) {
922 if (state->state & exclusive_bits) {
923 *failed_start = state->start;
924 err = -EEXIST;
925 goto out;
926 }
927
928 set_state_bits(tree, state, &bits, changeset);
929 cache_state(state, cached_state);
930 merge_state(tree, state);
931 if (last_end == (u64)-1)
932 goto out;
933 start = last_end + 1;
934 state = next_state(state);
935 if (start < end && state && state->start == start &&
936 !need_resched())
937 goto hit_next;
938 goto search_again;
939 }
940
941 /*
942 * | ---- desired range ---- |
943 * | state |
944 * or
945 * | ------------- state -------------- |
946 *
947 * We need to split the extent we found, and may flip bits on
948 * second half.
949 *
950 * If the extent we found extends past our
951 * range, we just split and search again. It'll get split
952 * again the next time though.
953 *
954 * If the extent we found is inside our range, we set the
955 * desired bit on it.
956 */
957 if (state->start < start) {
958 if (state->state & exclusive_bits) {
959 *failed_start = start;
960 err = -EEXIST;
961 goto out;
962 }
963
964 prealloc = alloc_extent_state_atomic(prealloc);
965 BUG_ON(!prealloc);
966 err = split_state(tree, state, prealloc, start);
967 if (err)
968 extent_io_tree_panic(tree, err);
969
970 prealloc = NULL;
971 if (err)
972 goto out;
973 if (state->end <= end) {
974 set_state_bits(tree, state, &bits, changeset);
975 cache_state(state, cached_state);
976 merge_state(tree, state);
977 if (last_end == (u64)-1)
978 goto out;
979 start = last_end + 1;
980 state = next_state(state);
981 if (start < end && state && state->start == start &&
982 !need_resched())
983 goto hit_next;
984 }
985 goto search_again;
986 }
987 /*
988 * | ---- desired range ---- |
989 * | state | or | state |
990 *
991 * There's a hole, we need to insert something in it and
992 * ignore the extent we found.
993 */
994 if (state->start > start) {
995 u64 this_end;
996 if (end < last_start)
997 this_end = end;
998 else
999 this_end = last_start - 1;
1000
1001 prealloc = alloc_extent_state_atomic(prealloc);
1002 BUG_ON(!prealloc);
1003
1004 /*
1005 * Avoid to free 'prealloc' if it can be merged with
1006 * the later extent.
1007 */
1008 err = insert_state(tree, prealloc, start, this_end,
1009 NULL, NULL, &bits, changeset);
1010 if (err)
1011 extent_io_tree_panic(tree, err);
1012
1013 cache_state(prealloc, cached_state);
1014 prealloc = NULL;
1015 start = this_end + 1;
1016 goto search_again;
1017 }
1018 /*
1019 * | ---- desired range ---- |
1020 * | state |
1021 * We need to split the extent, and set the bit
1022 * on the first half
1023 */
1024 if (state->start <= end && state->end > end) {
1025 if (state->state & exclusive_bits) {
1026 *failed_start = start;
1027 err = -EEXIST;
1028 goto out;
1029 }
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 BUG_ON(!prealloc);
1033 err = split_state(tree, state, prealloc, end + 1);
1034 if (err)
1035 extent_io_tree_panic(tree, err);
1036
1037 set_state_bits(tree, prealloc, &bits, changeset);
1038 cache_state(prealloc, cached_state);
1039 merge_state(tree, prealloc);
1040 prealloc = NULL;
1041 goto out;
1042 }
1043
1044search_again:
1045 if (start > end)
1046 goto out;
1047 spin_unlock(&tree->lock);
1048 if (gfpflags_allow_blocking(mask))
1049 cond_resched();
1050 goto again;
1051
1052out:
1053 spin_unlock(&tree->lock);
1054 if (prealloc)
1055 free_extent_state(prealloc);
1056
1057 return err;
1058
1059}
1060
1061int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062 unsigned bits, u64 * failed_start,
1063 struct extent_state **cached_state, gfp_t mask)
1064{
1065 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066 cached_state, mask, NULL);
1067}
1068
1069
1070/**
1071 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * another
1073 * @tree: the io tree to search
1074 * @start: the start offset in bytes
1075 * @end: the end offset in bytes (inclusive)
1076 * @bits: the bits to set in this range
1077 * @clear_bits: the bits to clear in this range
1078 * @cached_state: state that we're going to cache
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 *
1086 * All allocations are done with GFP_NOFS.
1087 */
1088int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089 unsigned bits, unsigned clear_bits,
1090 struct extent_state **cached_state)
1091{
1092 struct extent_state *state;
1093 struct extent_state *prealloc = NULL;
1094 struct rb_node *node;
1095 struct rb_node **p;
1096 struct rb_node *parent;
1097 int err = 0;
1098 u64 last_start;
1099 u64 last_end;
1100 bool first_iteration = true;
1101
1102 btrfs_debug_check_extent_io_range(tree, start, end);
1103
1104again:
1105 if (!prealloc) {
1106 /*
1107 * Best effort, don't worry if extent state allocation fails
1108 * here for the first iteration. We might have a cached state
1109 * that matches exactly the target range, in which case no
1110 * extent state allocations are needed. We'll only know this
1111 * after locking the tree.
1112 */
1113 prealloc = alloc_extent_state(GFP_NOFS);
1114 if (!prealloc && !first_iteration)
1115 return -ENOMEM;
1116 }
1117
1118 spin_lock(&tree->lock);
1119 if (cached_state && *cached_state) {
1120 state = *cached_state;
1121 if (state->start <= start && state->end > start &&
1122 extent_state_in_tree(state)) {
1123 node = &state->rb_node;
1124 goto hit_next;
1125 }
1126 }
1127
1128 /*
1129 * this search will find all the extents that end after
1130 * our range starts.
1131 */
1132 node = tree_search_for_insert(tree, start, &p, &parent);
1133 if (!node) {
1134 prealloc = alloc_extent_state_atomic(prealloc);
1135 if (!prealloc) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
1139 err = insert_state(tree, prealloc, start, end,
1140 &p, &parent, &bits, NULL);
1141 if (err)
1142 extent_io_tree_panic(tree, err);
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
1145 goto out;
1146 }
1147 state = rb_entry(node, struct extent_state, rb_node);
1148hit_next:
1149 last_start = state->start;
1150 last_end = state->end;
1151
1152 /*
1153 * | ---- desired range ---- |
1154 * | state |
1155 *
1156 * Just lock what we found and keep going
1157 */
1158 if (state->start == start && state->end <= end) {
1159 set_state_bits(tree, state, &bits, NULL);
1160 cache_state(state, cached_state);
1161 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162 if (last_end == (u64)-1)
1163 goto out;
1164 start = last_end + 1;
1165 if (start < end && state && state->start == start &&
1166 !need_resched())
1167 goto hit_next;
1168 goto search_again;
1169 }
1170
1171 /*
1172 * | ---- desired range ---- |
1173 * | state |
1174 * or
1175 * | ------------- state -------------- |
1176 *
1177 * We need to split the extent we found, and may flip bits on
1178 * second half.
1179 *
1180 * If the extent we found extends past our
1181 * range, we just split and search again. It'll get split
1182 * again the next time though.
1183 *
1184 * If the extent we found is inside our range, we set the
1185 * desired bit on it.
1186 */
1187 if (state->start < start) {
1188 prealloc = alloc_extent_state_atomic(prealloc);
1189 if (!prealloc) {
1190 err = -ENOMEM;
1191 goto out;
1192 }
1193 err = split_state(tree, state, prealloc, start);
1194 if (err)
1195 extent_io_tree_panic(tree, err);
1196 prealloc = NULL;
1197 if (err)
1198 goto out;
1199 if (state->end <= end) {
1200 set_state_bits(tree, state, &bits, NULL);
1201 cache_state(state, cached_state);
1202 state = clear_state_bit(tree, state, &clear_bits, 0,
1203 NULL);
1204 if (last_end == (u64)-1)
1205 goto out;
1206 start = last_end + 1;
1207 if (start < end && state && state->start == start &&
1208 !need_resched())
1209 goto hit_next;
1210 }
1211 goto search_again;
1212 }
1213 /*
1214 * | ---- desired range ---- |
1215 * | state | or | state |
1216 *
1217 * There's a hole, we need to insert something in it and
1218 * ignore the extent we found.
1219 */
1220 if (state->start > start) {
1221 u64 this_end;
1222 if (end < last_start)
1223 this_end = end;
1224 else
1225 this_end = last_start - 1;
1226
1227 prealloc = alloc_extent_state_atomic(prealloc);
1228 if (!prealloc) {
1229 err = -ENOMEM;
1230 goto out;
1231 }
1232
1233 /*
1234 * Avoid to free 'prealloc' if it can be merged with
1235 * the later extent.
1236 */
1237 err = insert_state(tree, prealloc, start, this_end,
1238 NULL, NULL, &bits, NULL);
1239 if (err)
1240 extent_io_tree_panic(tree, err);
1241 cache_state(prealloc, cached_state);
1242 prealloc = NULL;
1243 start = this_end + 1;
1244 goto search_again;
1245 }
1246 /*
1247 * | ---- desired range ---- |
1248 * | state |
1249 * We need to split the extent, and set the bit
1250 * on the first half
1251 */
1252 if (state->start <= end && state->end > end) {
1253 prealloc = alloc_extent_state_atomic(prealloc);
1254 if (!prealloc) {
1255 err = -ENOMEM;
1256 goto out;
1257 }
1258
1259 err = split_state(tree, state, prealloc, end + 1);
1260 if (err)
1261 extent_io_tree_panic(tree, err);
1262
1263 set_state_bits(tree, prealloc, &bits, NULL);
1264 cache_state(prealloc, cached_state);
1265 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266 prealloc = NULL;
1267 goto out;
1268 }
1269
1270search_again:
1271 if (start > end)
1272 goto out;
1273 spin_unlock(&tree->lock);
1274 cond_resched();
1275 first_iteration = false;
1276 goto again;
1277
1278out:
1279 spin_unlock(&tree->lock);
1280 if (prealloc)
1281 free_extent_state(prealloc);
1282
1283 return err;
1284}
1285
1286/* wrappers around set/clear extent bit */
1287int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288 unsigned bits, struct extent_changeset *changeset)
1289{
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299 changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305{
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, struct extent_changeset *changeset)
1312{
1313 /*
1314 * Don't support EXTENT_LOCKED case, same reason as
1315 * set_record_extent_bits().
1316 */
1317 BUG_ON(bits & EXTENT_LOCKED);
1318
1319 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320 changeset);
1321}
1322
1323/*
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1326 */
1327int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328 struct extent_state **cached_state)
1329{
1330 int err;
1331 u64 failed_start;
1332
1333 while (1) {
1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335 EXTENT_LOCKED, &failed_start,
1336 cached_state, GFP_NOFS, NULL);
1337 if (err == -EEXIST) {
1338 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339 start = failed_start;
1340 } else
1341 break;
1342 WARN_ON(start > end);
1343 }
1344 return err;
1345}
1346
1347int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348{
1349 int err;
1350 u64 failed_start;
1351
1352 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353 &failed_start, NULL, GFP_NOFS, NULL);
1354 if (err == -EEXIST) {
1355 if (failed_start > start)
1356 clear_extent_bit(tree, start, failed_start - 1,
1357 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358 return 0;
1359 }
1360 return 1;
1361}
1362
1363void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_SHIFT;
1366 unsigned long end_index = end >> PAGE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 put_page(page);
1374 index++;
1375 }
1376}
1377
1378void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379{
1380 unsigned long index = start >> PAGE_SHIFT;
1381 unsigned long end_index = end >> PAGE_SHIFT;
1382 struct page *page;
1383
1384 while (index <= end_index) {
1385 page = find_get_page(inode->i_mapping, index);
1386 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387 __set_page_dirty_nobuffers(page);
1388 account_page_redirty(page);
1389 put_page(page);
1390 index++;
1391 }
1392}
1393
1394/*
1395 * helper function to set both pages and extents in the tree writeback
1396 */
1397static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398{
1399 unsigned long index = start >> PAGE_SHIFT;
1400 unsigned long end_index = end >> PAGE_SHIFT;
1401 struct page *page;
1402
1403 while (index <= end_index) {
1404 page = find_get_page(tree->mapping, index);
1405 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406 set_page_writeback(page);
1407 put_page(page);
1408 index++;
1409 }
1410}
1411
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned bits)
1419{
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1430
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1435
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440out:
1441 return NULL;
1442}
1443
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned bits,
1453 struct extent_state **cached_state)
1454{
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && extent_state_in_tree(state)) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
1479 state = find_first_extent_bit_state(tree, start, bits);
1480got_it:
1481 if (state) {
1482 cache_state_if_flags(state, cached_state, 0);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
1487out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1490}
1491
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1501{
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
1508 spin_lock(&tree->lock);
1509
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1519 }
1520
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1546 }
1547out:
1548 spin_unlock(&tree->lock);
1549 return found;
1550}
1551
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1555{
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_SHIFT;
1559 unsigned long end_index = end >> PAGE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
1564 return;
1565
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 put_page(pages[i]);
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585{
1586 unsigned long index = delalloc_start >> PAGE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 put_page(pages[i]);
1622 goto done;
1623 }
1624 }
1625 put_page(pages[i]);
1626 pages_locked++;
1627 }
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_SHIFT);
1639 }
1640 return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1653{
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1660
1661again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1672 }
1673
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1681
1682 /*
1683 * make sure to limit the number of pages we try to lock down
1684 */
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
1695 free_extent_state(cached_state);
1696 cached_state = NULL;
1697 if (!loops) {
1698 max_bytes = PAGE_SIZE;
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1704 }
1705 }
1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 EXTENT_DELALLOC, 1, cached_state);
1714 if (!ret) {
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1721 }
1722 free_extent_state(cached_state);
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725out_failed:
1726 return found;
1727}
1728
1729void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 u64 delalloc_end, struct page *locked_page,
1731 unsigned clear_bits,
1732 unsigned long page_ops)
1733{
1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 int ret;
1736 struct page *pages[16];
1737 unsigned long index = start >> PAGE_SHIFT;
1738 unsigned long end_index = end >> PAGE_SHIFT;
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
1741
1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 if (page_ops == 0)
1744 return;
1745
1746 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747 mapping_set_error(inode->i_mapping, -EIO);
1748
1749 while (nr_pages > 0) {
1750 ret = find_get_pages_contig(inode->i_mapping, index,
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
1753 for (i = 0; i < ret; i++) {
1754
1755 if (page_ops & PAGE_SET_PRIVATE2)
1756 SetPagePrivate2(pages[i]);
1757
1758 if (pages[i] == locked_page) {
1759 put_page(pages[i]);
1760 continue;
1761 }
1762 if (page_ops & PAGE_CLEAR_DIRTY)
1763 clear_page_dirty_for_io(pages[i]);
1764 if (page_ops & PAGE_SET_WRITEBACK)
1765 set_page_writeback(pages[i]);
1766 if (page_ops & PAGE_SET_ERROR)
1767 SetPageError(pages[i]);
1768 if (page_ops & PAGE_END_WRITEBACK)
1769 end_page_writeback(pages[i]);
1770 if (page_ops & PAGE_UNLOCK)
1771 unlock_page(pages[i]);
1772 put_page(pages[i]);
1773 }
1774 nr_pages -= ret;
1775 index += ret;
1776 cond_resched();
1777 }
1778}
1779
1780/*
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached. The total number found is returned.
1784 */
1785u64 count_range_bits(struct extent_io_tree *tree,
1786 u64 *start, u64 search_end, u64 max_bytes,
1787 unsigned bits, int contig)
1788{
1789 struct rb_node *node;
1790 struct extent_state *state;
1791 u64 cur_start = *start;
1792 u64 total_bytes = 0;
1793 u64 last = 0;
1794 int found = 0;
1795
1796 if (WARN_ON(search_end <= cur_start))
1797 return 0;
1798
1799 spin_lock(&tree->lock);
1800 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801 total_bytes = tree->dirty_bytes;
1802 goto out;
1803 }
1804 /*
1805 * this search will find all the extents that end after
1806 * our range starts.
1807 */
1808 node = tree_search(tree, cur_start);
1809 if (!node)
1810 goto out;
1811
1812 while (1) {
1813 state = rb_entry(node, struct extent_state, rb_node);
1814 if (state->start > search_end)
1815 break;
1816 if (contig && found && state->start > last + 1)
1817 break;
1818 if (state->end >= cur_start && (state->state & bits) == bits) {
1819 total_bytes += min(search_end, state->end) + 1 -
1820 max(cur_start, state->start);
1821 if (total_bytes >= max_bytes)
1822 break;
1823 if (!found) {
1824 *start = max(cur_start, state->start);
1825 found = 1;
1826 }
1827 last = state->end;
1828 } else if (contig && found) {
1829 break;
1830 }
1831 node = rb_next(node);
1832 if (!node)
1833 break;
1834 }
1835out:
1836 spin_unlock(&tree->lock);
1837 return total_bytes;
1838}
1839
1840/*
1841 * set the private field for a given byte offset in the tree. If there isn't
1842 * an extent_state there already, this does nothing.
1843 */
1844static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845 struct io_failure_record *failrec)
1846{
1847 struct rb_node *node;
1848 struct extent_state *state;
1849 int ret = 0;
1850
1851 spin_lock(&tree->lock);
1852 /*
1853 * this search will find all the extents that end after
1854 * our range starts.
1855 */
1856 node = tree_search(tree, start);
1857 if (!node) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state = rb_entry(node, struct extent_state, rb_node);
1862 if (state->start != start) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
1866 state->failrec = failrec;
1867out:
1868 spin_unlock(&tree->lock);
1869 return ret;
1870}
1871
1872static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873 struct io_failure_record **failrec)
1874{
1875 struct rb_node *node;
1876 struct extent_state *state;
1877 int ret = 0;
1878
1879 spin_lock(&tree->lock);
1880 /*
1881 * this search will find all the extents that end after
1882 * our range starts.
1883 */
1884 node = tree_search(tree, start);
1885 if (!node) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 state = rb_entry(node, struct extent_state, rb_node);
1890 if (state->start != start) {
1891 ret = -ENOENT;
1892 goto out;
1893 }
1894 *failrec = state->failrec;
1895out:
1896 spin_unlock(&tree->lock);
1897 return ret;
1898}
1899
1900/*
1901 * searches a range in the state tree for a given mask.
1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
1903 * has the bits set. Otherwise, 1 is returned if any bit in the
1904 * range is found set.
1905 */
1906int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907 unsigned bits, int filled, struct extent_state *cached)
1908{
1909 struct extent_state *state = NULL;
1910 struct rb_node *node;
1911 int bitset = 0;
1912
1913 spin_lock(&tree->lock);
1914 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915 cached->end > start)
1916 node = &cached->rb_node;
1917 else
1918 node = tree_search(tree, start);
1919 while (node && start <= end) {
1920 state = rb_entry(node, struct extent_state, rb_node);
1921
1922 if (filled && state->start > start) {
1923 bitset = 0;
1924 break;
1925 }
1926
1927 if (state->start > end)
1928 break;
1929
1930 if (state->state & bits) {
1931 bitset = 1;
1932 if (!filled)
1933 break;
1934 } else if (filled) {
1935 bitset = 0;
1936 break;
1937 }
1938
1939 if (state->end == (u64)-1)
1940 break;
1941
1942 start = state->end + 1;
1943 if (start > end)
1944 break;
1945 node = rb_next(node);
1946 if (!node) {
1947 if (filled)
1948 bitset = 0;
1949 break;
1950 }
1951 }
1952 spin_unlock(&tree->lock);
1953 return bitset;
1954}
1955
1956/*
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
1959 */
1960static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961{
1962 u64 start = page_offset(page);
1963 u64 end = start + PAGE_SIZE - 1;
1964 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965 SetPageUptodate(page);
1966}
1967
1968int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969{
1970 int ret;
1971 int err = 0;
1972 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
1974 set_state_failrec(failure_tree, rec->start, NULL);
1975 ret = clear_extent_bits(failure_tree, rec->start,
1976 rec->start + rec->len - 1,
1977 EXTENT_LOCKED | EXTENT_DIRTY);
1978 if (ret)
1979 err = ret;
1980
1981 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982 rec->start + rec->len - 1,
1983 EXTENT_DAMAGED);
1984 if (ret && !err)
1985 err = ret;
1986
1987 kfree(rec);
1988 return err;
1989}
1990
1991/*
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
1996 * to avoid any synchronization issues, wait for the data after writing, which
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
2000 */
2001int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002 struct page *page, unsigned int pg_offset, int mirror_num)
2003{
2004 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005 struct bio *bio;
2006 struct btrfs_device *dev;
2007 u64 map_length = 0;
2008 u64 sector;
2009 struct btrfs_bio *bbio = NULL;
2010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011 int ret;
2012
2013 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014 BUG_ON(!mirror_num);
2015
2016 /* we can't repair anything in raid56 yet */
2017 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018 return 0;
2019
2020 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021 if (!bio)
2022 return -EIO;
2023 bio->bi_iter.bi_size = 0;
2024 map_length = length;
2025
2026 /*
2027 * Avoid races with device replace and make sure our bbio has devices
2028 * associated to its stripes that don't go away while we are doing the
2029 * read repair operation.
2030 */
2031 btrfs_bio_counter_inc_blocked(fs_info);
2032 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2033 &map_length, &bbio, mirror_num);
2034 if (ret) {
2035 btrfs_bio_counter_dec(fs_info);
2036 bio_put(bio);
2037 return -EIO;
2038 }
2039 BUG_ON(mirror_num != bbio->mirror_num);
2040 sector = bbio->stripes[mirror_num-1].physical >> 9;
2041 bio->bi_iter.bi_sector = sector;
2042 dev = bbio->stripes[mirror_num-1].dev;
2043 btrfs_put_bbio(bbio);
2044 if (!dev || !dev->bdev || !dev->writeable) {
2045 btrfs_bio_counter_dec(fs_info);
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 bio->bi_bdev = dev->bdev;
2050 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2051 bio_add_page(bio, page, length, pg_offset);
2052
2053 if (btrfsic_submit_bio_wait(bio)) {
2054 /* try to remap that extent elsewhere? */
2055 btrfs_bio_counter_dec(fs_info);
2056 bio_put(bio);
2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058 return -EIO;
2059 }
2060
2061 btrfs_info_rl_in_rcu(fs_info,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
2065 btrfs_bio_counter_dec(fs_info);
2066 bio_put(bio);
2067 return 0;
2068}
2069
2070int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2071 struct extent_buffer *eb, int mirror_num)
2072{
2073 u64 start = eb->start;
2074 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075 int ret = 0;
2076
2077 if (fs_info->sb->s_flags & MS_RDONLY)
2078 return -EROFS;
2079
2080 for (i = 0; i < num_pages; i++) {
2081 struct page *p = eb->pages[i];
2082
2083 ret = repair_io_failure(fs_info->btree_inode, start,
2084 PAGE_SIZE, start, p,
2085 start - page_offset(p), mirror_num);
2086 if (ret)
2087 break;
2088 start += PAGE_SIZE;
2089 }
2090
2091 return ret;
2092}
2093
2094/*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2097 */
2098int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099 unsigned int pg_offset)
2100{
2101 u64 private;
2102 struct io_failure_record *failrec;
2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104 struct extent_state *state;
2105 int num_copies;
2106 int ret;
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115 &failrec);
2116 if (ret)
2117 return 0;
2118
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
2123 btrfs_debug(fs_info,
2124 "clean_io_failure: freeing dummy error at %llu",
2125 failrec->start);
2126 goto out;
2127 }
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
2141 if (num_copies > 1) {
2142 repair_io_failure(inode, start, failrec->len,
2143 failrec->logical, page,
2144 pg_offset, failrec->failed_mirror);
2145 }
2146 }
2147
2148out:
2149 free_io_failure(inode, failrec);
2150
2151 return 0;
2152}
2153
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161{
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
2179 failrec = state->failrec;
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186}
2187
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
2190{
2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 btrfs_debug(fs_info,
2240 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 logical, start, failrec->len);
2242
2243 failrec->logical = logical;
2244 free_extent_map(em);
2245
2246 /* set the bits in the private failure tree */
2247 ret = set_extent_bits(failure_tree, start, end,
2248 EXTENT_LOCKED | EXTENT_DIRTY);
2249 if (ret >= 0)
2250 ret = set_state_failrec(failure_tree, start, failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
2259 btrfs_debug(fs_info,
2260 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 failrec->logical, failrec->start, failrec->len,
2262 failrec->in_validation);
2263 /*
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2267 */
2268 }
2269
2270 *failrec_ret = failrec;
2271
2272 return 0;
2273}
2274
2275int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276 struct io_failure_record *failrec, int failed_mirror)
2277{
2278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279 int num_copies;
2280
2281 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282 if (num_copies == 1) {
2283 /*
2284 * we only have a single copy of the data, so don't bother with
2285 * all the retry and error correction code that follows. no
2286 * matter what the error is, it is very likely to persist.
2287 */
2288 btrfs_debug(fs_info,
2289 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 num_copies, failrec->this_mirror, failed_mirror);
2291 return 0;
2292 }
2293
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
2326 }
2327
2328 if (failrec->this_mirror > num_copies) {
2329 btrfs_debug(fs_info,
2330 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 num_copies, failrec->this_mirror, failed_mirror);
2332 return 0;
2333 }
2334
2335 return 1;
2336}
2337
2338
2339struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340 struct io_failure_record *failrec,
2341 struct page *page, int pg_offset, int icsum,
2342 bio_end_io_t *endio_func, void *data)
2343{
2344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2345 struct bio *bio;
2346 struct btrfs_io_bio *btrfs_failed_bio;
2347 struct btrfs_io_bio *btrfs_bio;
2348
2349 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2350 if (!bio)
2351 return NULL;
2352
2353 bio->bi_end_io = endio_func;
2354 bio->bi_iter.bi_sector = failrec->logical >> 9;
2355 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2356 bio->bi_iter.bi_size = 0;
2357 bio->bi_private = data;
2358
2359 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2360 if (btrfs_failed_bio->csum) {
2361 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362
2363 btrfs_bio = btrfs_io_bio(bio);
2364 btrfs_bio->csum = btrfs_bio->csum_inline;
2365 icsum *= csum_size;
2366 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367 csum_size);
2368 }
2369
2370 bio_add_page(bio, page, failrec->len, pg_offset);
2371
2372 return bio;
2373}
2374
2375/*
2376 * this is a generic handler for readpage errors (default
2377 * readpage_io_failed_hook). if other copies exist, read those and write back
2378 * good data to the failed position. does not investigate in remapping the
2379 * failed extent elsewhere, hoping the device will be smart enough to do this as
2380 * needed
2381 */
2382
2383static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384 struct page *page, u64 start, u64 end,
2385 int failed_mirror)
2386{
2387 struct io_failure_record *failrec;
2388 struct inode *inode = page->mapping->host;
2389 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 struct bio *bio;
2391 int read_mode = 0;
2392 int ret;
2393
2394 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395
2396 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397 if (ret)
2398 return ret;
2399
2400 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401 if (!ret) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 if (failed_bio->bi_vcnt > 1)
2407 read_mode |= REQ_FAILFAST_DEV;
2408
2409 phy_offset >>= inode->i_sb->s_blocksize_bits;
2410 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2411 start - page_offset(page),
2412 (int)phy_offset, failed_bio->bi_end_io,
2413 NULL);
2414 if (!bio) {
2415 free_io_failure(inode, failrec);
2416 return -EIO;
2417 }
2418 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2419
2420 btrfs_debug(btrfs_sb(inode->i_sb),
2421 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422 read_mode, failrec->this_mirror, failrec->in_validation);
2423
2424 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2425 failrec->bio_flags, 0);
2426 if (ret) {
2427 free_io_failure(inode, failrec);
2428 bio_put(bio);
2429 }
2430
2431 return ret;
2432}
2433
2434/* lots and lots of room for performance fixes in the end_bio funcs */
2435
2436void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437{
2438 int uptodate = (err == 0);
2439 struct extent_io_tree *tree;
2440 int ret = 0;
2441
2442 tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444 if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 ret = tree->ops->writepage_end_io_hook(page, start,
2446 end, NULL, uptodate);
2447 if (ret)
2448 uptodate = 0;
2449 }
2450
2451 if (!uptodate) {
2452 ClearPageUptodate(page);
2453 SetPageError(page);
2454 ret = ret < 0 ? ret : -EIO;
2455 mapping_set_error(page->mapping, ret);
2456 }
2457}
2458
2459/*
2460 * after a writepage IO is done, we need to:
2461 * clear the uptodate bits on error
2462 * clear the writeback bits in the extent tree for this IO
2463 * end_page_writeback if the page has no more pending IO
2464 *
2465 * Scheduling is not allowed, so the extent state tree is expected
2466 * to have one and only one object corresponding to this IO.
2467 */
2468static void end_bio_extent_writepage(struct bio *bio)
2469{
2470 struct bio_vec *bvec;
2471 u64 start;
2472 u64 end;
2473 int i;
2474
2475 bio_for_each_segment_all(bvec, bio, i) {
2476 struct page *page = bvec->bv_page;
2477 struct inode *inode = page->mapping->host;
2478 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2479
2480 /* We always issue full-page reads, but if some block
2481 * in a page fails to read, blk_update_request() will
2482 * advance bv_offset and adjust bv_len to compensate.
2483 * Print a warning for nonzero offsets, and an error
2484 * if they don't add up to a full page. */
2485 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2486 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2487 btrfs_err(fs_info,
2488 "partial page write in btrfs with offset %u and length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 else
2491 btrfs_info(fs_info,
2492 "incomplete page write in btrfs with offset %u and length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
2495
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
2498
2499 end_extent_writepage(page, bio->bi_error, start, end);
2500 end_page_writeback(page);
2501 }
2502
2503 bio_put(bio);
2504}
2505
2506static void
2507endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2508 int uptodate)
2509{
2510 struct extent_state *cached = NULL;
2511 u64 end = start + len - 1;
2512
2513 if (uptodate && tree->track_uptodate)
2514 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2515 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2516}
2517
2518/*
2519 * after a readpage IO is done, we need to:
2520 * clear the uptodate bits on error
2521 * set the uptodate bits if things worked
2522 * set the page up to date if all extents in the tree are uptodate
2523 * clear the lock bit in the extent tree
2524 * unlock the page if there are no other extents locked for it
2525 *
2526 * Scheduling is not allowed, so the extent state tree is expected
2527 * to have one and only one object corresponding to this IO.
2528 */
2529static void end_bio_extent_readpage(struct bio *bio)
2530{
2531 struct bio_vec *bvec;
2532 int uptodate = !bio->bi_error;
2533 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2534 struct extent_io_tree *tree;
2535 u64 offset = 0;
2536 u64 start;
2537 u64 end;
2538 u64 len;
2539 u64 extent_start = 0;
2540 u64 extent_len = 0;
2541 int mirror;
2542 int ret;
2543 int i;
2544
2545 bio_for_each_segment_all(bvec, bio, i) {
2546 struct page *page = bvec->bv_page;
2547 struct inode *inode = page->mapping->host;
2548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2549
2550 btrfs_debug(fs_info,
2551 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2553 io_bio->mirror_num);
2554 tree = &BTRFS_I(inode)->io_tree;
2555
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
2561 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2562 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2563 btrfs_err(fs_info,
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 else
2567 btrfs_info(fs_info,
2568 "incomplete page read in btrfs with offset %u and length %u",
2569 bvec->bv_offset, bvec->bv_len);
2570 }
2571
2572 start = page_offset(page);
2573 end = start + bvec->bv_offset + bvec->bv_len - 1;
2574 len = bvec->bv_len;
2575
2576 mirror = io_bio->mirror_num;
2577 if (likely(uptodate && tree->ops &&
2578 tree->ops->readpage_end_io_hook)) {
2579 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580 page, start, end,
2581 mirror);
2582 if (ret)
2583 uptodate = 0;
2584 else
2585 clean_io_failure(inode, start, page, 0);
2586 }
2587
2588 if (likely(uptodate))
2589 goto readpage_ok;
2590
2591 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2592 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2593 if (!ret && !bio->bi_error)
2594 uptodate = 1;
2595 } else {
2596 /*
2597 * The generic bio_readpage_error handles errors the
2598 * following way: If possible, new read requests are
2599 * created and submitted and will end up in
2600 * end_bio_extent_readpage as well (if we're lucky, not
2601 * in the !uptodate case). In that case it returns 0 and
2602 * we just go on with the next page in our bio. If it
2603 * can't handle the error it will return -EIO and we
2604 * remain responsible for that page.
2605 */
2606 ret = bio_readpage_error(bio, offset, page, start, end,
2607 mirror);
2608 if (ret == 0) {
2609 uptodate = !bio->bi_error;
2610 offset += len;
2611 continue;
2612 }
2613 }
2614readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, bio->bi_error);
2660 bio_put(bio);
2661}
2662
2663/*
2664 * this allocates from the btrfs_bioset. We're returning a bio right now
2665 * but you can call btrfs_io_bio for the appropriate container_of magic
2666 */
2667struct bio *
2668btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2669 gfp_t gfp_flags)
2670{
2671 struct btrfs_io_bio *btrfs_bio;
2672 struct bio *bio;
2673
2674 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2675
2676 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2677 while (!bio && (nr_vecs /= 2)) {
2678 bio = bio_alloc_bioset(gfp_flags,
2679 nr_vecs, btrfs_bioset);
2680 }
2681 }
2682
2683 if (bio) {
2684 bio->bi_bdev = bdev;
2685 bio->bi_iter.bi_sector = first_sector;
2686 btrfs_bio = btrfs_io_bio(bio);
2687 btrfs_bio->csum = NULL;
2688 btrfs_bio->csum_allocated = NULL;
2689 btrfs_bio->end_io = NULL;
2690 }
2691 return bio;
2692}
2693
2694struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2695{
2696 struct btrfs_io_bio *btrfs_bio;
2697 struct bio *new;
2698
2699 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2700 if (new) {
2701 btrfs_bio = btrfs_io_bio(new);
2702 btrfs_bio->csum = NULL;
2703 btrfs_bio->csum_allocated = NULL;
2704 btrfs_bio->end_io = NULL;
2705 }
2706 return new;
2707}
2708
2709/* this also allocates from the btrfs_bioset */
2710struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711{
2712 struct btrfs_io_bio *btrfs_bio;
2713 struct bio *bio;
2714
2715 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716 if (bio) {
2717 btrfs_bio = btrfs_io_bio(bio);
2718 btrfs_bio->csum = NULL;
2719 btrfs_bio->csum_allocated = NULL;
2720 btrfs_bio->end_io = NULL;
2721 }
2722 return bio;
2723}
2724
2725
2726static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 unsigned long bio_flags)
2728{
2729 int ret = 0;
2730 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 struct page *page = bvec->bv_page;
2732 struct extent_io_tree *tree = bio->bi_private;
2733 u64 start;
2734
2735 start = page_offset(page) + bvec->bv_offset;
2736
2737 bio->bi_private = NULL;
2738 bio_get(bio);
2739
2740 if (tree->ops && tree->ops->submit_bio_hook)
2741 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2742 mirror_num, bio_flags, start);
2743 else
2744 btrfsic_submit_bio(bio);
2745
2746 bio_put(bio);
2747 return ret;
2748}
2749
2750static int merge_bio(struct extent_io_tree *tree, struct page *page,
2751 unsigned long offset, size_t size, struct bio *bio,
2752 unsigned long bio_flags)
2753{
2754 int ret = 0;
2755 if (tree->ops && tree->ops->merge_bio_hook)
2756 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2757 bio_flags);
2758 return ret;
2759
2760}
2761
2762static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 unsigned long max_pages,
2769 bio_end_io_t end_io_func,
2770 int mirror_num,
2771 unsigned long prev_bio_flags,
2772 unsigned long bio_flags,
2773 bool force_bio_submit)
2774{
2775 int ret = 0;
2776 struct bio *bio;
2777 int contig = 0;
2778 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
2783 if (old_compressed)
2784 contig = bio->bi_iter.bi_sector == sector;
2785 else
2786 contig = bio_end_sector(bio) == sector;
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
2789 force_bio_submit ||
2790 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2796 }
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2802 }
2803 }
2804
2805 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2806 GFP_NOFS | __GFP_HIGH);
2807 if (!bio)
2808 return -ENOMEM;
2809
2810 bio_add_page(bio, page, page_size, offset);
2811 bio->bi_end_io = end_io_func;
2812 bio->bi_private = tree;
2813 bio_set_op_attrs(bio, op, op_flags);
2814 if (wbc) {
2815 wbc_init_bio(wbc, bio);
2816 wbc_account_io(wbc, page, page_size);
2817 }
2818
2819 if (bio_ret)
2820 *bio_ret = bio;
2821 else
2822 ret = submit_one_bio(bio, mirror_num, bio_flags);
2823
2824 return ret;
2825}
2826
2827static void attach_extent_buffer_page(struct extent_buffer *eb,
2828 struct page *page)
2829{
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
2832 get_page(page);
2833 set_page_private(page, (unsigned long)eb);
2834 } else {
2835 WARN_ON(page->private != (unsigned long)eb);
2836 }
2837}
2838
2839void set_page_extent_mapped(struct page *page)
2840{
2841 if (!PagePrivate(page)) {
2842 SetPagePrivate(page);
2843 get_page(page);
2844 set_page_private(page, EXTENT_PAGE_PRIVATE);
2845 }
2846}
2847
2848static struct extent_map *
2849__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2850 u64 start, u64 len, get_extent_t *get_extent,
2851 struct extent_map **em_cached)
2852{
2853 struct extent_map *em;
2854
2855 if (em_cached && *em_cached) {
2856 em = *em_cached;
2857 if (extent_map_in_tree(em) && start >= em->start &&
2858 start < extent_map_end(em)) {
2859 atomic_inc(&em->refs);
2860 return em;
2861 }
2862
2863 free_extent_map(em);
2864 *em_cached = NULL;
2865 }
2866
2867 em = get_extent(inode, page, pg_offset, start, len, 0);
2868 if (em_cached && !IS_ERR_OR_NULL(em)) {
2869 BUG_ON(*em_cached);
2870 atomic_inc(&em->refs);
2871 *em_cached = em;
2872 }
2873 return em;
2874}
2875/*
2876 * basic readpage implementation. Locked extent state structs are inserted
2877 * into the tree that are removed when the IO is done (by the end_io
2878 * handlers)
2879 * XXX JDM: This needs looking at to ensure proper page locking
2880 * return 0 on success, otherwise return error
2881 */
2882static int __do_readpage(struct extent_io_tree *tree,
2883 struct page *page,
2884 get_extent_t *get_extent,
2885 struct extent_map **em_cached,
2886 struct bio **bio, int mirror_num,
2887 unsigned long *bio_flags, int read_flags,
2888 u64 *prev_em_start)
2889{
2890 struct inode *inode = page->mapping->host;
2891 u64 start = page_offset(page);
2892 u64 page_end = start + PAGE_SIZE - 1;
2893 u64 end;
2894 u64 cur = start;
2895 u64 extent_offset;
2896 u64 last_byte = i_size_read(inode);
2897 u64 block_start;
2898 u64 cur_end;
2899 sector_t sector;
2900 struct extent_map *em;
2901 struct block_device *bdev;
2902 int ret = 0;
2903 int nr = 0;
2904 size_t pg_offset = 0;
2905 size_t iosize;
2906 size_t disk_io_size;
2907 size_t blocksize = inode->i_sb->s_blocksize;
2908 unsigned long this_bio_flag = 0;
2909
2910 set_page_extent_mapped(page);
2911
2912 end = page_end;
2913 if (!PageUptodate(page)) {
2914 if (cleancache_get_page(page) == 0) {
2915 BUG_ON(blocksize != PAGE_SIZE);
2916 unlock_extent(tree, start, end);
2917 goto out;
2918 }
2919 }
2920
2921 if (page->index == last_byte >> PAGE_SHIFT) {
2922 char *userpage;
2923 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2924
2925 if (zero_offset) {
2926 iosize = PAGE_SIZE - zero_offset;
2927 userpage = kmap_atomic(page);
2928 memset(userpage + zero_offset, 0, iosize);
2929 flush_dcache_page(page);
2930 kunmap_atomic(userpage);
2931 }
2932 }
2933 while (cur <= end) {
2934 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2935 bool force_bio_submit = false;
2936
2937 if (cur >= last_byte) {
2938 char *userpage;
2939 struct extent_state *cached = NULL;
2940
2941 iosize = PAGE_SIZE - pg_offset;
2942 userpage = kmap_atomic(page);
2943 memset(userpage + pg_offset, 0, iosize);
2944 flush_dcache_page(page);
2945 kunmap_atomic(userpage);
2946 set_extent_uptodate(tree, cur, cur + iosize - 1,
2947 &cached, GFP_NOFS);
2948 unlock_extent_cached(tree, cur,
2949 cur + iosize - 1,
2950 &cached, GFP_NOFS);
2951 break;
2952 }
2953 em = __get_extent_map(inode, page, pg_offset, cur,
2954 end - cur + 1, get_extent, em_cached);
2955 if (IS_ERR_OR_NULL(em)) {
2956 SetPageError(page);
2957 unlock_extent(tree, cur, end);
2958 break;
2959 }
2960 extent_offset = cur - em->start;
2961 BUG_ON(extent_map_end(em) <= cur);
2962 BUG_ON(end < cur);
2963
2964 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2965 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2966 extent_set_compress_type(&this_bio_flag,
2967 em->compress_type);
2968 }
2969
2970 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2971 cur_end = min(extent_map_end(em) - 1, end);
2972 iosize = ALIGN(iosize, blocksize);
2973 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2974 disk_io_size = em->block_len;
2975 sector = em->block_start >> 9;
2976 } else {
2977 sector = (em->block_start + extent_offset) >> 9;
2978 disk_io_size = iosize;
2979 }
2980 bdev = em->bdev;
2981 block_start = em->block_start;
2982 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2983 block_start = EXTENT_MAP_HOLE;
2984
2985 /*
2986 * If we have a file range that points to a compressed extent
2987 * and it's followed by a consecutive file range that points to
2988 * to the same compressed extent (possibly with a different
2989 * offset and/or length, so it either points to the whole extent
2990 * or only part of it), we must make sure we do not submit a
2991 * single bio to populate the pages for the 2 ranges because
2992 * this makes the compressed extent read zero out the pages
2993 * belonging to the 2nd range. Imagine the following scenario:
2994 *
2995 * File layout
2996 * [0 - 8K] [8K - 24K]
2997 * | |
2998 * | |
2999 * points to extent X, points to extent X,
3000 * offset 4K, length of 8K offset 0, length 16K
3001 *
3002 * [extent X, compressed length = 4K uncompressed length = 16K]
3003 *
3004 * If the bio to read the compressed extent covers both ranges,
3005 * it will decompress extent X into the pages belonging to the
3006 * first range and then it will stop, zeroing out the remaining
3007 * pages that belong to the other range that points to extent X.
3008 * So here we make sure we submit 2 bios, one for the first
3009 * range and another one for the third range. Both will target
3010 * the same physical extent from disk, but we can't currently
3011 * make the compressed bio endio callback populate the pages
3012 * for both ranges because each compressed bio is tightly
3013 * coupled with a single extent map, and each range can have
3014 * an extent map with a different offset value relative to the
3015 * uncompressed data of our extent and different lengths. This
3016 * is a corner case so we prioritize correctness over
3017 * non-optimal behavior (submitting 2 bios for the same extent).
3018 */
3019 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3020 prev_em_start && *prev_em_start != (u64)-1 &&
3021 *prev_em_start != em->orig_start)
3022 force_bio_submit = true;
3023
3024 if (prev_em_start)
3025 *prev_em_start = em->orig_start;
3026
3027 free_extent_map(em);
3028 em = NULL;
3029
3030 /* we've found a hole, just zero and go on */
3031 if (block_start == EXTENT_MAP_HOLE) {
3032 char *userpage;
3033 struct extent_state *cached = NULL;
3034
3035 userpage = kmap_atomic(page);
3036 memset(userpage + pg_offset, 0, iosize);
3037 flush_dcache_page(page);
3038 kunmap_atomic(userpage);
3039
3040 set_extent_uptodate(tree, cur, cur + iosize - 1,
3041 &cached, GFP_NOFS);
3042 unlock_extent_cached(tree, cur,
3043 cur + iosize - 1,
3044 &cached, GFP_NOFS);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 pnr -= page->index;
3070 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3071 page, sector, disk_io_size, pg_offset,
3072 bdev, bio, pnr,
3073 end_bio_extent_readpage, mirror_num,
3074 *bio_flags,
3075 this_bio_flag,
3076 force_bio_submit);
3077 if (!ret) {
3078 nr++;
3079 *bio_flags = this_bio_flag;
3080 } else {
3081 SetPageError(page);
3082 unlock_extent(tree, cur, cur + iosize - 1);
3083 goto out;
3084 }
3085 cur = cur + iosize;
3086 pg_offset += iosize;
3087 }
3088out:
3089 if (!nr) {
3090 if (!PageError(page))
3091 SetPageUptodate(page);
3092 unlock_page(page);
3093 }
3094 return ret;
3095}
3096
3097static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 struct page *pages[], int nr_pages,
3099 u64 start, u64 end,
3100 get_extent_t *get_extent,
3101 struct extent_map **em_cached,
3102 struct bio **bio, int mirror_num,
3103 unsigned long *bio_flags,
3104 u64 *prev_em_start)
3105{
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(inode, start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 mirror_num, bio_flags, 0, prev_em_start);
3125 put_page(pages[index]);
3126 }
3127}
3128
3129static void __extent_readpages(struct extent_io_tree *tree,
3130 struct page *pages[],
3131 int nr_pages, get_extent_t *get_extent,
3132 struct extent_map **em_cached,
3133 struct bio **bio, int mirror_num,
3134 unsigned long *bio_flags,
3135 u64 *prev_em_start)
3136{
3137 u64 start = 0;
3138 u64 end = 0;
3139 u64 page_start;
3140 int index;
3141 int first_index = 0;
3142
3143 for (index = 0; index < nr_pages; index++) {
3144 page_start = page_offset(pages[index]);
3145 if (!end) {
3146 start = page_start;
3147 end = start + PAGE_SIZE - 1;
3148 first_index = index;
3149 } else if (end + 1 == page_start) {
3150 end += PAGE_SIZE;
3151 } else {
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
3154 end, get_extent, em_cached,
3155 bio, mirror_num, bio_flags,
3156 prev_em_start);
3157 start = page_start;
3158 end = start + PAGE_SIZE - 1;
3159 first_index = index;
3160 }
3161 }
3162
3163 if (end)
3164 __do_contiguous_readpages(tree, &pages[first_index],
3165 index - first_index, start,
3166 end, get_extent, em_cached, bio,
3167 mirror_num, bio_flags,
3168 prev_em_start);
3169}
3170
3171static int __extent_read_full_page(struct extent_io_tree *tree,
3172 struct page *page,
3173 get_extent_t *get_extent,
3174 struct bio **bio, int mirror_num,
3175 unsigned long *bio_flags, int read_flags)
3176{
3177 struct inode *inode = page->mapping->host;
3178 struct btrfs_ordered_extent *ordered;
3179 u64 start = page_offset(page);
3180 u64 end = start + PAGE_SIZE - 1;
3181 int ret;
3182
3183 while (1) {
3184 lock_extent(tree, start, end);
3185 ordered = btrfs_lookup_ordered_range(inode, start,
3186 PAGE_SIZE);
3187 if (!ordered)
3188 break;
3189 unlock_extent(tree, start, end);
3190 btrfs_start_ordered_extent(inode, ordered, 1);
3191 btrfs_put_ordered_extent(ordered);
3192 }
3193
3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 bio_flags, read_flags, NULL);
3196 return ret;
3197}
3198
3199int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 get_extent_t *get_extent, int mirror_num)
3201{
3202 struct bio *bio = NULL;
3203 unsigned long bio_flags = 0;
3204 int ret;
3205
3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 &bio_flags, 0);
3208 if (bio)
3209 ret = submit_one_bio(bio, mirror_num, bio_flags);
3210 return ret;
3211}
3212
3213static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 unsigned long nr_written)
3215{
3216 wbc->nr_to_write -= nr_written;
3217}
3218
3219/*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
3229static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 struct page *page, struct writeback_control *wbc,
3231 struct extent_page_data *epd,
3232 u64 delalloc_start,
3233 unsigned long *nr_written)
3234{
3235 struct extent_io_tree *tree = epd->tree;
3236 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 u64 nr_delalloc;
3238 u64 delalloc_to_write = 0;
3239 u64 delalloc_end = 0;
3240 int ret;
3241 int page_started = 0;
3242
3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 return 0;
3245
3246 while (delalloc_end < page_end) {
3247 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 page,
3249 &delalloc_start,
3250 &delalloc_end,
3251 BTRFS_MAX_EXTENT_SIZE);
3252 if (nr_delalloc == 0) {
3253 delalloc_start = delalloc_end + 1;
3254 continue;
3255 }
3256 ret = tree->ops->fill_delalloc(inode, page,
3257 delalloc_start,
3258 delalloc_end,
3259 &page_started,
3260 nr_written);
3261 /* File system has been set read-only */
3262 if (ret) {
3263 SetPageError(page);
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3268 */
3269 ret = ret < 0 ? ret : -EIO;
3270 goto done;
3271 }
3272 /*
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
3275 */
3276 delalloc_to_write += (delalloc_end - delalloc_start +
3277 PAGE_SIZE) >> PAGE_SHIFT;
3278 delalloc_start = delalloc_end + 1;
3279 }
3280 if (wbc->nr_to_write < delalloc_to_write) {
3281 int thresh = 8192;
3282
3283 if (delalloc_to_write < thresh * 2)
3284 thresh = delalloc_to_write;
3285 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 thresh);
3287 }
3288
3289 /* did the fill delalloc function already unlock and start
3290 * the IO?
3291 */
3292 if (page_started) {
3293 /*
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3296 * nr_to_write.
3297 */
3298 wbc->nr_to_write -= *nr_written;
3299 return 1;
3300 }
3301
3302 ret = 0;
3303
3304done:
3305 return ret;
3306}
3307
3308/*
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 struct page *page,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd,
3320 loff_t i_size,
3321 unsigned long nr_written,
3322 int write_flags, int *nr_ret)
3323{
3324 struct extent_io_tree *tree = epd->tree;
3325 u64 start = page_offset(page);
3326 u64 page_end = start + PAGE_SIZE - 1;
3327 u64 end;
3328 u64 cur = start;
3329 u64 extent_offset;
3330 u64 block_start;
3331 u64 iosize;
3332 sector_t sector;
3333 struct extent_state *cached_state = NULL;
3334 struct extent_map *em;
3335 struct block_device *bdev;
3336 size_t pg_offset = 0;
3337 size_t blocksize;
3338 int ret = 0;
3339 int nr = 0;
3340 bool compressed;
3341
3342 if (tree->ops && tree->ops->writepage_start_hook) {
3343 ret = tree->ops->writepage_start_hook(page, start,
3344 page_end);
3345 if (ret) {
3346 /* Fixup worker will requeue */
3347 if (ret == -EBUSY)
3348 wbc->pages_skipped++;
3349 else
3350 redirty_page_for_writepage(wbc, page);
3351
3352 update_nr_written(page, wbc, nr_written);
3353 unlock_page(page);
3354 ret = 1;
3355 goto done_unlocked;
3356 }
3357 }
3358
3359 /*
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3362 */
3363 update_nr_written(page, wbc, nr_written + 1);
3364
3365 end = page_end;
3366 if (i_size <= start) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, start,
3369 page_end, NULL, 1);
3370 goto done;
3371 }
3372
3373 blocksize = inode->i_sb->s_blocksize;
3374
3375 while (cur <= end) {
3376 u64 em_end;
3377 unsigned long max_nr;
3378
3379 if (cur >= i_size) {
3380 if (tree->ops && tree->ops->writepage_end_io_hook)
3381 tree->ops->writepage_end_io_hook(page, cur,
3382 page_end, NULL, 1);
3383 break;
3384 }
3385 em = epd->get_extent(inode, page, pg_offset, cur,
3386 end - cur + 1, 1);
3387 if (IS_ERR_OR_NULL(em)) {
3388 SetPageError(page);
3389 ret = PTR_ERR_OR_ZERO(em);
3390 break;
3391 }
3392
3393 extent_offset = cur - em->start;
3394 em_end = extent_map_end(em);
3395 BUG_ON(em_end <= cur);
3396 BUG_ON(end < cur);
3397 iosize = min(em_end - cur, end - cur + 1);
3398 iosize = ALIGN(iosize, blocksize);
3399 sector = (em->block_start + extent_offset) >> 9;
3400 bdev = em->bdev;
3401 block_start = em->block_start;
3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 free_extent_map(em);
3404 em = NULL;
3405
3406 /*
3407 * compressed and inline extents are written through other
3408 * paths in the FS
3409 */
3410 if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 block_start == EXTENT_MAP_INLINE) {
3412 /*
3413 * end_io notification does not happen here for
3414 * compressed extents
3415 */
3416 if (!compressed && tree->ops &&
3417 tree->ops->writepage_end_io_hook)
3418 tree->ops->writepage_end_io_hook(page, cur,
3419 cur + iosize - 1,
3420 NULL, 1);
3421 else if (compressed) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3424 * elsewhere
3425 */
3426 nr++;
3427 }
3428
3429 cur += iosize;
3430 pg_offset += iosize;
3431 continue;
3432 }
3433
3434 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page->index, cur, end);
3441 }
3442
3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 page, sector, iosize, pg_offset,
3445 bdev, &epd->bio, max_nr,
3446 end_bio_extent_writepage,
3447 0, 0, 0, false);
3448 if (ret)
3449 SetPageError(page);
3450
3451 cur = cur + iosize;
3452 pg_offset += iosize;
3453 nr++;
3454 }
3455done:
3456 *nr_ret = nr;
3457
3458done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473{
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
3477 u64 page_end = start + PAGE_SIZE - 1;
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
3482 unsigned long end_index = i_size >> PAGE_SHIFT;
3483 int write_flags = 0;
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = REQ_SYNC;
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
3495 pg_offset = i_size & (PAGE_SIZE - 1);
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
3508 PAGE_SIZE - pg_offset);
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
3528done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
3538 unlock_page(page);
3539 return ret;
3540
3541done_unlocked:
3542 return 0;
3543}
3544
3545void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546{
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
3549}
3550
3551static noinline_for_stack int
3552lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
3555{
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
3579 btrfs_tree_unlock(eb);
3580 }
3581 }
3582
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591 spin_unlock(&eb->refs_lock);
3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
3596 ret = 1;
3597 } else {
3598 spin_unlock(&eb->refs_lock);
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
3608 struct page *p = eb->pages[i];
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620}
3621
3622static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623{
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625 smp_mb__after_atomic();
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627}
3628
3629static void set_btree_ioerr(struct page *page)
3630{
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632
3633 SetPageError(page);
3634 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635 return;
3636
3637 /*
3638 * If writeback for a btree extent that doesn't belong to a log tree
3639 * failed, increment the counter transaction->eb_write_errors.
3640 * We do this because while the transaction is running and before it's
3641 * committing (when we call filemap_fdata[write|wait]_range against
3642 * the btree inode), we might have
3643 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 * returns an error or an error happens during writeback, when we're
3645 * committing the transaction we wouldn't know about it, since the pages
3646 * can be no longer dirty nor marked anymore for writeback (if a
3647 * subsequent modification to the extent buffer didn't happen before the
3648 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 * able to find the pages tagged with SetPageError at transaction
3650 * commit time. So if this happens we must abort the transaction,
3651 * otherwise we commit a super block with btree roots that point to
3652 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 * or the content of some node/leaf from a past generation that got
3654 * cowed or deleted and is no longer valid.
3655 *
3656 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 * not be enough - we need to distinguish between log tree extents vs
3658 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 * will catch and clear such errors in the mapping - and that call might
3660 * be from a log sync and not from a transaction commit. Also, checking
3661 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 * not done and would not be reliable - the eb might have been released
3663 * from memory and reading it back again means that flag would not be
3664 * set (since it's a runtime flag, not persisted on disk).
3665 *
3666 * Using the flags below in the btree inode also makes us achieve the
3667 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 * is called, the writeback for all dirty pages had already finished
3670 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 * filemap_fdatawait_range() would return success, as it could not know
3672 * that writeback errors happened (the pages were no longer tagged for
3673 * writeback).
3674 */
3675 switch (eb->log_index) {
3676 case -1:
3677 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3678 break;
3679 case 0:
3680 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3681 break;
3682 case 1:
3683 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3684 break;
3685 default:
3686 BUG(); /* unexpected, logic error */
3687 }
3688}
3689
3690static void end_bio_extent_buffer_writepage(struct bio *bio)
3691{
3692 struct bio_vec *bvec;
3693 struct extent_buffer *eb;
3694 int i, done;
3695
3696 bio_for_each_segment_all(bvec, bio, i) {
3697 struct page *page = bvec->bv_page;
3698
3699 eb = (struct extent_buffer *)page->private;
3700 BUG_ON(!eb);
3701 done = atomic_dec_and_test(&eb->io_pages);
3702
3703 if (bio->bi_error ||
3704 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3705 ClearPageUptodate(page);
3706 set_btree_ioerr(page);
3707 }
3708
3709 end_page_writeback(page);
3710
3711 if (!done)
3712 continue;
3713
3714 end_extent_buffer_writeback(eb);
3715 }
3716
3717 bio_put(bio);
3718}
3719
3720static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3721 struct btrfs_fs_info *fs_info,
3722 struct writeback_control *wbc,
3723 struct extent_page_data *epd)
3724{
3725 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3726 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3727 u64 offset = eb->start;
3728 u32 nritems;
3729 unsigned long i, num_pages;
3730 unsigned long bio_flags = 0;
3731 unsigned long start, end;
3732 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3733 int ret = 0;
3734
3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3742 nritems = btrfs_header_nritems(eb);
3743 if (btrfs_header_level(eb) > 0) {
3744 end = btrfs_node_key_ptr_offset(nritems);
3745
3746 memzero_extent_buffer(eb, end, eb->len - end);
3747 } else {
3748 /*
3749 * leaf:
3750 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3751 */
3752 start = btrfs_item_nr_offset(nritems);
3753 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3754 memzero_extent_buffer(eb, start, end - start);
3755 }
3756
3757 for (i = 0; i < num_pages; i++) {
3758 struct page *p = eb->pages[i];
3759
3760 clear_page_dirty_for_io(p);
3761 set_page_writeback(p);
3762 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3763 p, offset >> 9, PAGE_SIZE, 0, bdev,
3764 &epd->bio, -1,
3765 end_bio_extent_buffer_writepage,
3766 0, epd->bio_flags, bio_flags, false);
3767 epd->bio_flags = bio_flags;
3768 if (ret) {
3769 set_btree_ioerr(p);
3770 end_page_writeback(p);
3771 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3772 end_extent_buffer_writeback(eb);
3773 ret = -EIO;
3774 break;
3775 }
3776 offset += PAGE_SIZE;
3777 update_nr_written(p, wbc, 1);
3778 unlock_page(p);
3779 }
3780
3781 if (unlikely(ret)) {
3782 for (; i < num_pages; i++) {
3783 struct page *p = eb->pages[i];
3784 clear_page_dirty_for_io(p);
3785 unlock_page(p);
3786 }
3787 }
3788
3789 return ret;
3790}
3791
3792int btree_write_cache_pages(struct address_space *mapping,
3793 struct writeback_control *wbc)
3794{
3795 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3796 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3797 struct extent_buffer *eb, *prev_eb = NULL;
3798 struct extent_page_data epd = {
3799 .bio = NULL,
3800 .tree = tree,
3801 .extent_locked = 0,
3802 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3803 .bio_flags = 0,
3804 };
3805 int ret = 0;
3806 int done = 0;
3807 int nr_to_write_done = 0;
3808 struct pagevec pvec;
3809 int nr_pages;
3810 pgoff_t index;
3811 pgoff_t end; /* Inclusive */
3812 int scanned = 0;
3813 int tag;
3814
3815 pagevec_init(&pvec, 0);
3816 if (wbc->range_cyclic) {
3817 index = mapping->writeback_index; /* Start from prev offset */
3818 end = -1;
3819 } else {
3820 index = wbc->range_start >> PAGE_SHIFT;
3821 end = wbc->range_end >> PAGE_SHIFT;
3822 scanned = 1;
3823 }
3824 if (wbc->sync_mode == WB_SYNC_ALL)
3825 tag = PAGECACHE_TAG_TOWRITE;
3826 else
3827 tag = PAGECACHE_TAG_DIRTY;
3828retry:
3829 if (wbc->sync_mode == WB_SYNC_ALL)
3830 tag_pages_for_writeback(mapping, index, end);
3831 while (!done && !nr_to_write_done && (index <= end) &&
3832 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3833 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3834 unsigned i;
3835
3836 scanned = 1;
3837 for (i = 0; i < nr_pages; i++) {
3838 struct page *page = pvec.pages[i];
3839
3840 if (!PagePrivate(page))
3841 continue;
3842
3843 if (!wbc->range_cyclic && page->index > end) {
3844 done = 1;
3845 break;
3846 }
3847
3848 spin_lock(&mapping->private_lock);
3849 if (!PagePrivate(page)) {
3850 spin_unlock(&mapping->private_lock);
3851 continue;
3852 }
3853
3854 eb = (struct extent_buffer *)page->private;
3855
3856 /*
3857 * Shouldn't happen and normally this would be a BUG_ON
3858 * but no sense in crashing the users box for something
3859 * we can survive anyway.
3860 */
3861 if (WARN_ON(!eb)) {
3862 spin_unlock(&mapping->private_lock);
3863 continue;
3864 }
3865
3866 if (eb == prev_eb) {
3867 spin_unlock(&mapping->private_lock);
3868 continue;
3869 }
3870
3871 ret = atomic_inc_not_zero(&eb->refs);
3872 spin_unlock(&mapping->private_lock);
3873 if (!ret)
3874 continue;
3875
3876 prev_eb = eb;
3877 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3878 if (!ret) {
3879 free_extent_buffer(eb);
3880 continue;
3881 }
3882
3883 ret = write_one_eb(eb, fs_info, wbc, &epd);
3884 if (ret) {
3885 done = 1;
3886 free_extent_buffer(eb);
3887 break;
3888 }
3889 free_extent_buffer(eb);
3890
3891 /*
3892 * the filesystem may choose to bump up nr_to_write.
3893 * We have to make sure to honor the new nr_to_write
3894 * at any time
3895 */
3896 nr_to_write_done = wbc->nr_to_write <= 0;
3897 }
3898 pagevec_release(&pvec);
3899 cond_resched();
3900 }
3901 if (!scanned && !done) {
3902 /*
3903 * We hit the last page and there is more work to be done: wrap
3904 * back to the start of the file
3905 */
3906 scanned = 1;
3907 index = 0;
3908 goto retry;
3909 }
3910 flush_write_bio(&epd);
3911 return ret;
3912}
3913
3914/**
3915 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3916 * @mapping: address space structure to write
3917 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3918 * @writepage: function called for each page
3919 * @data: data passed to writepage function
3920 *
3921 * If a page is already under I/O, write_cache_pages() skips it, even
3922 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3923 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3924 * and msync() need to guarantee that all the data which was dirty at the time
3925 * the call was made get new I/O started against them. If wbc->sync_mode is
3926 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3927 * existing IO to complete.
3928 */
3929static int extent_write_cache_pages(struct extent_io_tree *tree,
3930 struct address_space *mapping,
3931 struct writeback_control *wbc,
3932 writepage_t writepage, void *data,
3933 void (*flush_fn)(void *))
3934{
3935 struct inode *inode = mapping->host;
3936 int ret = 0;
3937 int done = 0;
3938 int nr_to_write_done = 0;
3939 struct pagevec pvec;
3940 int nr_pages;
3941 pgoff_t index;
3942 pgoff_t end; /* Inclusive */
3943 pgoff_t done_index;
3944 int range_whole = 0;
3945 int scanned = 0;
3946 int tag;
3947
3948 /*
3949 * We have to hold onto the inode so that ordered extents can do their
3950 * work when the IO finishes. The alternative to this is failing to add
3951 * an ordered extent if the igrab() fails there and that is a huge pain
3952 * to deal with, so instead just hold onto the inode throughout the
3953 * writepages operation. If it fails here we are freeing up the inode
3954 * anyway and we'd rather not waste our time writing out stuff that is
3955 * going to be truncated anyway.
3956 */
3957 if (!igrab(inode))
3958 return 0;
3959
3960 pagevec_init(&pvec, 0);
3961 if (wbc->range_cyclic) {
3962 index = mapping->writeback_index; /* Start from prev offset */
3963 end = -1;
3964 } else {
3965 index = wbc->range_start >> PAGE_SHIFT;
3966 end = wbc->range_end >> PAGE_SHIFT;
3967 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3968 range_whole = 1;
3969 scanned = 1;
3970 }
3971 if (wbc->sync_mode == WB_SYNC_ALL)
3972 tag = PAGECACHE_TAG_TOWRITE;
3973 else
3974 tag = PAGECACHE_TAG_DIRTY;
3975retry:
3976 if (wbc->sync_mode == WB_SYNC_ALL)
3977 tag_pages_for_writeback(mapping, index, end);
3978 done_index = index;
3979 while (!done && !nr_to_write_done && (index <= end) &&
3980 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3981 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3982 unsigned i;
3983
3984 scanned = 1;
3985 for (i = 0; i < nr_pages; i++) {
3986 struct page *page = pvec.pages[i];
3987
3988 done_index = page->index;
3989 /*
3990 * At this point we hold neither mapping->tree_lock nor
3991 * lock on the page itself: the page may be truncated or
3992 * invalidated (changing page->mapping to NULL), or even
3993 * swizzled back from swapper_space to tmpfs file
3994 * mapping
3995 */
3996 if (!trylock_page(page)) {
3997 flush_fn(data);
3998 lock_page(page);
3999 }
4000
4001 if (unlikely(page->mapping != mapping)) {
4002 unlock_page(page);
4003 continue;
4004 }
4005
4006 if (!wbc->range_cyclic && page->index > end) {
4007 done = 1;
4008 unlock_page(page);
4009 continue;
4010 }
4011
4012 if (wbc->sync_mode != WB_SYNC_NONE) {
4013 if (PageWriteback(page))
4014 flush_fn(data);
4015 wait_on_page_writeback(page);
4016 }
4017
4018 if (PageWriteback(page) ||
4019 !clear_page_dirty_for_io(page)) {
4020 unlock_page(page);
4021 continue;
4022 }
4023
4024 ret = (*writepage)(page, wbc, data);
4025
4026 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4027 unlock_page(page);
4028 ret = 0;
4029 }
4030 if (ret < 0) {
4031 /*
4032 * done_index is set past this page,
4033 * so media errors will not choke
4034 * background writeout for the entire
4035 * file. This has consequences for
4036 * range_cyclic semantics (ie. it may
4037 * not be suitable for data integrity
4038 * writeout).
4039 */
4040 done_index = page->index + 1;
4041 done = 1;
4042 break;
4043 }
4044
4045 /*
4046 * the filesystem may choose to bump up nr_to_write.
4047 * We have to make sure to honor the new nr_to_write
4048 * at any time
4049 */
4050 nr_to_write_done = wbc->nr_to_write <= 0;
4051 }
4052 pagevec_release(&pvec);
4053 cond_resched();
4054 }
4055 if (!scanned && !done) {
4056 /*
4057 * We hit the last page and there is more work to be done: wrap
4058 * back to the start of the file
4059 */
4060 scanned = 1;
4061 index = 0;
4062 goto retry;
4063 }
4064
4065 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4066 mapping->writeback_index = done_index;
4067
4068 btrfs_add_delayed_iput(inode);
4069 return ret;
4070}
4071
4072static void flush_epd_write_bio(struct extent_page_data *epd)
4073{
4074 if (epd->bio) {
4075 int ret;
4076
4077 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4078 epd->sync_io ? REQ_SYNC : 0);
4079
4080 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4081 BUG_ON(ret < 0); /* -ENOMEM */
4082 epd->bio = NULL;
4083 }
4084}
4085
4086static noinline void flush_write_bio(void *data)
4087{
4088 struct extent_page_data *epd = data;
4089 flush_epd_write_bio(epd);
4090}
4091
4092int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4093 get_extent_t *get_extent,
4094 struct writeback_control *wbc)
4095{
4096 int ret;
4097 struct extent_page_data epd = {
4098 .bio = NULL,
4099 .tree = tree,
4100 .get_extent = get_extent,
4101 .extent_locked = 0,
4102 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4103 .bio_flags = 0,
4104 };
4105
4106 ret = __extent_writepage(page, wbc, &epd);
4107
4108 flush_epd_write_bio(&epd);
4109 return ret;
4110}
4111
4112int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4113 u64 start, u64 end, get_extent_t *get_extent,
4114 int mode)
4115{
4116 int ret = 0;
4117 struct address_space *mapping = inode->i_mapping;
4118 struct page *page;
4119 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4120 PAGE_SHIFT;
4121
4122 struct extent_page_data epd = {
4123 .bio = NULL,
4124 .tree = tree,
4125 .get_extent = get_extent,
4126 .extent_locked = 1,
4127 .sync_io = mode == WB_SYNC_ALL,
4128 .bio_flags = 0,
4129 };
4130 struct writeback_control wbc_writepages = {
4131 .sync_mode = mode,
4132 .nr_to_write = nr_pages * 2,
4133 .range_start = start,
4134 .range_end = end + 1,
4135 };
4136
4137 while (start <= end) {
4138 page = find_get_page(mapping, start >> PAGE_SHIFT);
4139 if (clear_page_dirty_for_io(page))
4140 ret = __extent_writepage(page, &wbc_writepages, &epd);
4141 else {
4142 if (tree->ops && tree->ops->writepage_end_io_hook)
4143 tree->ops->writepage_end_io_hook(page, start,
4144 start + PAGE_SIZE - 1,
4145 NULL, 1);
4146 unlock_page(page);
4147 }
4148 put_page(page);
4149 start += PAGE_SIZE;
4150 }
4151
4152 flush_epd_write_bio(&epd);
4153 return ret;
4154}
4155
4156int extent_writepages(struct extent_io_tree *tree,
4157 struct address_space *mapping,
4158 get_extent_t *get_extent,
4159 struct writeback_control *wbc)
4160{
4161 int ret = 0;
4162 struct extent_page_data epd = {
4163 .bio = NULL,
4164 .tree = tree,
4165 .get_extent = get_extent,
4166 .extent_locked = 0,
4167 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4168 .bio_flags = 0,
4169 };
4170
4171 ret = extent_write_cache_pages(tree, mapping, wbc,
4172 __extent_writepage, &epd,
4173 flush_write_bio);
4174 flush_epd_write_bio(&epd);
4175 return ret;
4176}
4177
4178int extent_readpages(struct extent_io_tree *tree,
4179 struct address_space *mapping,
4180 struct list_head *pages, unsigned nr_pages,
4181 get_extent_t get_extent)
4182{
4183 struct bio *bio = NULL;
4184 unsigned page_idx;
4185 unsigned long bio_flags = 0;
4186 struct page *pagepool[16];
4187 struct page *page;
4188 struct extent_map *em_cached = NULL;
4189 int nr = 0;
4190 u64 prev_em_start = (u64)-1;
4191
4192 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4193 page = list_entry(pages->prev, struct page, lru);
4194
4195 prefetchw(&page->flags);
4196 list_del(&page->lru);
4197 if (add_to_page_cache_lru(page, mapping,
4198 page->index,
4199 readahead_gfp_mask(mapping))) {
4200 put_page(page);
4201 continue;
4202 }
4203
4204 pagepool[nr++] = page;
4205 if (nr < ARRAY_SIZE(pagepool))
4206 continue;
4207 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4208 &bio, 0, &bio_flags, &prev_em_start);
4209 nr = 0;
4210 }
4211 if (nr)
4212 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4213 &bio, 0, &bio_flags, &prev_em_start);
4214
4215 if (em_cached)
4216 free_extent_map(em_cached);
4217
4218 BUG_ON(!list_empty(pages));
4219 if (bio)
4220 return submit_one_bio(bio, 0, bio_flags);
4221 return 0;
4222}
4223
4224/*
4225 * basic invalidatepage code, this waits on any locked or writeback
4226 * ranges corresponding to the page, and then deletes any extent state
4227 * records from the tree
4228 */
4229int extent_invalidatepage(struct extent_io_tree *tree,
4230 struct page *page, unsigned long offset)
4231{
4232 struct extent_state *cached_state = NULL;
4233 u64 start = page_offset(page);
4234 u64 end = start + PAGE_SIZE - 1;
4235 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4236
4237 start += ALIGN(offset, blocksize);
4238 if (start > end)
4239 return 0;
4240
4241 lock_extent_bits(tree, start, end, &cached_state);
4242 wait_on_page_writeback(page);
4243 clear_extent_bit(tree, start, end,
4244 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4245 EXTENT_DO_ACCOUNTING,
4246 1, 1, &cached_state, GFP_NOFS);
4247 return 0;
4248}
4249
4250/*
4251 * a helper for releasepage, this tests for areas of the page that
4252 * are locked or under IO and drops the related state bits if it is safe
4253 * to drop the page.
4254 */
4255static int try_release_extent_state(struct extent_map_tree *map,
4256 struct extent_io_tree *tree,
4257 struct page *page, gfp_t mask)
4258{
4259 u64 start = page_offset(page);
4260 u64 end = start + PAGE_SIZE - 1;
4261 int ret = 1;
4262
4263 if (test_range_bit(tree, start, end,
4264 EXTENT_IOBITS, 0, NULL))
4265 ret = 0;
4266 else {
4267 if ((mask & GFP_NOFS) == GFP_NOFS)
4268 mask = GFP_NOFS;
4269 /*
4270 * at this point we can safely clear everything except the
4271 * locked bit and the nodatasum bit
4272 */
4273 ret = clear_extent_bit(tree, start, end,
4274 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4275 0, 0, NULL, mask);
4276
4277 /* if clear_extent_bit failed for enomem reasons,
4278 * we can't allow the release to continue.
4279 */
4280 if (ret < 0)
4281 ret = 0;
4282 else
4283 ret = 1;
4284 }
4285 return ret;
4286}
4287
4288/*
4289 * a helper for releasepage. As long as there are no locked extents
4290 * in the range corresponding to the page, both state records and extent
4291 * map records are removed
4292 */
4293int try_release_extent_mapping(struct extent_map_tree *map,
4294 struct extent_io_tree *tree, struct page *page,
4295 gfp_t mask)
4296{
4297 struct extent_map *em;
4298 u64 start = page_offset(page);
4299 u64 end = start + PAGE_SIZE - 1;
4300
4301 if (gfpflags_allow_blocking(mask) &&
4302 page->mapping->host->i_size > SZ_16M) {
4303 u64 len;
4304 while (start <= end) {
4305 len = end - start + 1;
4306 write_lock(&map->lock);
4307 em = lookup_extent_mapping(map, start, len);
4308 if (!em) {
4309 write_unlock(&map->lock);
4310 break;
4311 }
4312 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4313 em->start != start) {
4314 write_unlock(&map->lock);
4315 free_extent_map(em);
4316 break;
4317 }
4318 if (!test_range_bit(tree, em->start,
4319 extent_map_end(em) - 1,
4320 EXTENT_LOCKED | EXTENT_WRITEBACK,
4321 0, NULL)) {
4322 remove_extent_mapping(map, em);
4323 /* once for the rb tree */
4324 free_extent_map(em);
4325 }
4326 start = extent_map_end(em);
4327 write_unlock(&map->lock);
4328
4329 /* once for us */
4330 free_extent_map(em);
4331 }
4332 }
4333 return try_release_extent_state(map, tree, page, mask);
4334}
4335
4336/*
4337 * helper function for fiemap, which doesn't want to see any holes.
4338 * This maps until we find something past 'last'
4339 */
4340static struct extent_map *get_extent_skip_holes(struct inode *inode,
4341 u64 offset,
4342 u64 last,
4343 get_extent_t *get_extent)
4344{
4345 u64 sectorsize = btrfs_inode_sectorsize(inode);
4346 struct extent_map *em;
4347 u64 len;
4348
4349 if (offset >= last)
4350 return NULL;
4351
4352 while (1) {
4353 len = last - offset;
4354 if (len == 0)
4355 break;
4356 len = ALIGN(len, sectorsize);
4357 em = get_extent(inode, NULL, 0, offset, len, 0);
4358 if (IS_ERR_OR_NULL(em))
4359 return em;
4360
4361 /* if this isn't a hole return it */
4362 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4363 em->block_start != EXTENT_MAP_HOLE) {
4364 return em;
4365 }
4366
4367 /* this is a hole, advance to the next extent */
4368 offset = extent_map_end(em);
4369 free_extent_map(em);
4370 if (offset >= last)
4371 break;
4372 }
4373 return NULL;
4374}
4375
4376int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4377 __u64 start, __u64 len, get_extent_t *get_extent)
4378{
4379 int ret = 0;
4380 u64 off = start;
4381 u64 max = start + len;
4382 u32 flags = 0;
4383 u32 found_type;
4384 u64 last;
4385 u64 last_for_get_extent = 0;
4386 u64 disko = 0;
4387 u64 isize = i_size_read(inode);
4388 struct btrfs_key found_key;
4389 struct extent_map *em = NULL;
4390 struct extent_state *cached_state = NULL;
4391 struct btrfs_path *path;
4392 struct btrfs_root *root = BTRFS_I(inode)->root;
4393 int end = 0;
4394 u64 em_start = 0;
4395 u64 em_len = 0;
4396 u64 em_end = 0;
4397
4398 if (len == 0)
4399 return -EINVAL;
4400
4401 path = btrfs_alloc_path();
4402 if (!path)
4403 return -ENOMEM;
4404 path->leave_spinning = 1;
4405
4406 start = round_down(start, btrfs_inode_sectorsize(inode));
4407 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4408
4409 /*
4410 * lookup the last file extent. We're not using i_size here
4411 * because there might be preallocation past i_size
4412 */
4413 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4414 0);
4415 if (ret < 0) {
4416 btrfs_free_path(path);
4417 return ret;
4418 } else {
4419 WARN_ON(!ret);
4420 if (ret == 1)
4421 ret = 0;
4422 }
4423
4424 path->slots[0]--;
4425 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4426 found_type = found_key.type;
4427
4428 /* No extents, but there might be delalloc bits */
4429 if (found_key.objectid != btrfs_ino(inode) ||
4430 found_type != BTRFS_EXTENT_DATA_KEY) {
4431 /* have to trust i_size as the end */
4432 last = (u64)-1;
4433 last_for_get_extent = isize;
4434 } else {
4435 /*
4436 * remember the start of the last extent. There are a
4437 * bunch of different factors that go into the length of the
4438 * extent, so its much less complex to remember where it started
4439 */
4440 last = found_key.offset;
4441 last_for_get_extent = last + 1;
4442 }
4443 btrfs_release_path(path);
4444
4445 /*
4446 * we might have some extents allocated but more delalloc past those
4447 * extents. so, we trust isize unless the start of the last extent is
4448 * beyond isize
4449 */
4450 if (last < isize) {
4451 last = (u64)-1;
4452 last_for_get_extent = isize;
4453 }
4454
4455 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4456 &cached_state);
4457
4458 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4459 get_extent);
4460 if (!em)
4461 goto out;
4462 if (IS_ERR(em)) {
4463 ret = PTR_ERR(em);
4464 goto out;
4465 }
4466
4467 while (!end) {
4468 u64 offset_in_extent = 0;
4469
4470 /* break if the extent we found is outside the range */
4471 if (em->start >= max || extent_map_end(em) < off)
4472 break;
4473
4474 /*
4475 * get_extent may return an extent that starts before our
4476 * requested range. We have to make sure the ranges
4477 * we return to fiemap always move forward and don't
4478 * overlap, so adjust the offsets here
4479 */
4480 em_start = max(em->start, off);
4481
4482 /*
4483 * record the offset from the start of the extent
4484 * for adjusting the disk offset below. Only do this if the
4485 * extent isn't compressed since our in ram offset may be past
4486 * what we have actually allocated on disk.
4487 */
4488 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4489 offset_in_extent = em_start - em->start;
4490 em_end = extent_map_end(em);
4491 em_len = em_end - em_start;
4492 disko = 0;
4493 flags = 0;
4494
4495 /*
4496 * bump off for our next call to get_extent
4497 */
4498 off = extent_map_end(em);
4499 if (off >= max)
4500 end = 1;
4501
4502 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4503 end = 1;
4504 flags |= FIEMAP_EXTENT_LAST;
4505 } else if (em->block_start == EXTENT_MAP_INLINE) {
4506 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4507 FIEMAP_EXTENT_NOT_ALIGNED);
4508 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4509 flags |= (FIEMAP_EXTENT_DELALLOC |
4510 FIEMAP_EXTENT_UNKNOWN);
4511 } else if (fieinfo->fi_extents_max) {
4512 struct btrfs_trans_handle *trans;
4513
4514 u64 bytenr = em->block_start -
4515 (em->start - em->orig_start);
4516
4517 disko = em->block_start + offset_in_extent;
4518
4519 /*
4520 * We need a trans handle to get delayed refs
4521 */
4522 trans = btrfs_join_transaction(root);
4523 /*
4524 * It's OK if we can't start a trans we can still check
4525 * from commit_root
4526 */
4527 if (IS_ERR(trans))
4528 trans = NULL;
4529
4530 /*
4531 * As btrfs supports shared space, this information
4532 * can be exported to userspace tools via
4533 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4534 * then we're just getting a count and we can skip the
4535 * lookup stuff.
4536 */
4537 ret = btrfs_check_shared(trans, root->fs_info,
4538 root->objectid,
4539 btrfs_ino(inode), bytenr);
4540 if (trans)
4541 btrfs_end_transaction(trans);
4542 if (ret < 0)
4543 goto out_free;
4544 if (ret)
4545 flags |= FIEMAP_EXTENT_SHARED;
4546 ret = 0;
4547 }
4548 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4549 flags |= FIEMAP_EXTENT_ENCODED;
4550 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4551 flags |= FIEMAP_EXTENT_UNWRITTEN;
4552
4553 free_extent_map(em);
4554 em = NULL;
4555 if ((em_start >= last) || em_len == (u64)-1 ||
4556 (last == (u64)-1 && isize <= em_end)) {
4557 flags |= FIEMAP_EXTENT_LAST;
4558 end = 1;
4559 }
4560
4561 /* now scan forward to see if this is really the last extent. */
4562 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4563 get_extent);
4564 if (IS_ERR(em)) {
4565 ret = PTR_ERR(em);
4566 goto out;
4567 }
4568 if (!em) {
4569 flags |= FIEMAP_EXTENT_LAST;
4570 end = 1;
4571 }
4572 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4573 em_len, flags);
4574 if (ret) {
4575 if (ret == 1)
4576 ret = 0;
4577 goto out_free;
4578 }
4579 }
4580out_free:
4581 free_extent_map(em);
4582out:
4583 btrfs_free_path(path);
4584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4585 &cached_state, GFP_NOFS);
4586 return ret;
4587}
4588
4589static void __free_extent_buffer(struct extent_buffer *eb)
4590{
4591 btrfs_leak_debug_del(&eb->leak_list);
4592 kmem_cache_free(extent_buffer_cache, eb);
4593}
4594
4595int extent_buffer_under_io(struct extent_buffer *eb)
4596{
4597 return (atomic_read(&eb->io_pages) ||
4598 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4599 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4600}
4601
4602/*
4603 * Helper for releasing extent buffer page.
4604 */
4605static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4606{
4607 unsigned long index;
4608 struct page *page;
4609 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4610
4611 BUG_ON(extent_buffer_under_io(eb));
4612
4613 index = num_extent_pages(eb->start, eb->len);
4614 if (index == 0)
4615 return;
4616
4617 do {
4618 index--;
4619 page = eb->pages[index];
4620 if (!page)
4621 continue;
4622 if (mapped)
4623 spin_lock(&page->mapping->private_lock);
4624 /*
4625 * We do this since we'll remove the pages after we've
4626 * removed the eb from the radix tree, so we could race
4627 * and have this page now attached to the new eb. So
4628 * only clear page_private if it's still connected to
4629 * this eb.
4630 */
4631 if (PagePrivate(page) &&
4632 page->private == (unsigned long)eb) {
4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 BUG_ON(PageDirty(page));
4635 BUG_ON(PageWriteback(page));
4636 /*
4637 * We need to make sure we haven't be attached
4638 * to a new eb.
4639 */
4640 ClearPagePrivate(page);
4641 set_page_private(page, 0);
4642 /* One for the page private */
4643 put_page(page);
4644 }
4645
4646 if (mapped)
4647 spin_unlock(&page->mapping->private_lock);
4648
4649 /* One for when we allocated the page */
4650 put_page(page);
4651 } while (index != 0);
4652}
4653
4654/*
4655 * Helper for releasing the extent buffer.
4656 */
4657static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658{
4659 btrfs_release_extent_buffer_page(eb);
4660 __free_extent_buffer(eb);
4661}
4662
4663static struct extent_buffer *
4664__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 unsigned long len)
4666{
4667 struct extent_buffer *eb = NULL;
4668
4669 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 eb->start = start;
4671 eb->len = len;
4672 eb->fs_info = fs_info;
4673 eb->bflags = 0;
4674 rwlock_init(&eb->lock);
4675 atomic_set(&eb->write_locks, 0);
4676 atomic_set(&eb->read_locks, 0);
4677 atomic_set(&eb->blocking_readers, 0);
4678 atomic_set(&eb->blocking_writers, 0);
4679 atomic_set(&eb->spinning_readers, 0);
4680 atomic_set(&eb->spinning_writers, 0);
4681 eb->lock_nested = 0;
4682 init_waitqueue_head(&eb->write_lock_wq);
4683 init_waitqueue_head(&eb->read_lock_wq);
4684
4685 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686
4687 spin_lock_init(&eb->refs_lock);
4688 atomic_set(&eb->refs, 1);
4689 atomic_set(&eb->io_pages, 0);
4690
4691 /*
4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 */
4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697
4698 return eb;
4699}
4700
4701struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702{
4703 unsigned long i;
4704 struct page *p;
4705 struct extent_buffer *new;
4706 unsigned long num_pages = num_extent_pages(src->start, src->len);
4707
4708 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 if (new == NULL)
4710 return NULL;
4711
4712 for (i = 0; i < num_pages; i++) {
4713 p = alloc_page(GFP_NOFS);
4714 if (!p) {
4715 btrfs_release_extent_buffer(new);
4716 return NULL;
4717 }
4718 attach_extent_buffer_page(new, p);
4719 WARN_ON(PageDirty(p));
4720 SetPageUptodate(p);
4721 new->pages[i] = p;
4722 copy_page(page_address(p), page_address(src->pages[i]));
4723 }
4724
4725 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4727
4728 return new;
4729}
4730
4731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start, unsigned long len)
4733{
4734 struct extent_buffer *eb;
4735 unsigned long num_pages;
4736 unsigned long i;
4737
4738 num_pages = num_extent_pages(start, len);
4739
4740 eb = __alloc_extent_buffer(fs_info, start, len);
4741 if (!eb)
4742 return NULL;
4743
4744 for (i = 0; i < num_pages; i++) {
4745 eb->pages[i] = alloc_page(GFP_NOFS);
4746 if (!eb->pages[i])
4747 goto err;
4748 }
4749 set_extent_buffer_uptodate(eb);
4750 btrfs_set_header_nritems(eb, 0);
4751 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4752
4753 return eb;
4754err:
4755 for (; i > 0; i--)
4756 __free_page(eb->pages[i - 1]);
4757 __free_extent_buffer(eb);
4758 return NULL;
4759}
4760
4761struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4762 u64 start)
4763{
4764 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4765}
4766
4767static void check_buffer_tree_ref(struct extent_buffer *eb)
4768{
4769 int refs;
4770 /* the ref bit is tricky. We have to make sure it is set
4771 * if we have the buffer dirty. Otherwise the
4772 * code to free a buffer can end up dropping a dirty
4773 * page
4774 *
4775 * Once the ref bit is set, it won't go away while the
4776 * buffer is dirty or in writeback, and it also won't
4777 * go away while we have the reference count on the
4778 * eb bumped.
4779 *
4780 * We can't just set the ref bit without bumping the
4781 * ref on the eb because free_extent_buffer might
4782 * see the ref bit and try to clear it. If this happens
4783 * free_extent_buffer might end up dropping our original
4784 * ref by mistake and freeing the page before we are able
4785 * to add one more ref.
4786 *
4787 * So bump the ref count first, then set the bit. If someone
4788 * beat us to it, drop the ref we added.
4789 */
4790 refs = atomic_read(&eb->refs);
4791 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4792 return;
4793
4794 spin_lock(&eb->refs_lock);
4795 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796 atomic_inc(&eb->refs);
4797 spin_unlock(&eb->refs_lock);
4798}
4799
4800static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4801 struct page *accessed)
4802{
4803 unsigned long num_pages, i;
4804
4805 check_buffer_tree_ref(eb);
4806
4807 num_pages = num_extent_pages(eb->start, eb->len);
4808 for (i = 0; i < num_pages; i++) {
4809 struct page *p = eb->pages[i];
4810
4811 if (p != accessed)
4812 mark_page_accessed(p);
4813 }
4814}
4815
4816struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4817 u64 start)
4818{
4819 struct extent_buffer *eb;
4820
4821 rcu_read_lock();
4822 eb = radix_tree_lookup(&fs_info->buffer_radix,
4823 start >> PAGE_SHIFT);
4824 if (eb && atomic_inc_not_zero(&eb->refs)) {
4825 rcu_read_unlock();
4826 /*
4827 * Lock our eb's refs_lock to avoid races with
4828 * free_extent_buffer. When we get our eb it might be flagged
4829 * with EXTENT_BUFFER_STALE and another task running
4830 * free_extent_buffer might have seen that flag set,
4831 * eb->refs == 2, that the buffer isn't under IO (dirty and
4832 * writeback flags not set) and it's still in the tree (flag
4833 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4834 * of decrementing the extent buffer's reference count twice.
4835 * So here we could race and increment the eb's reference count,
4836 * clear its stale flag, mark it as dirty and drop our reference
4837 * before the other task finishes executing free_extent_buffer,
4838 * which would later result in an attempt to free an extent
4839 * buffer that is dirty.
4840 */
4841 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4842 spin_lock(&eb->refs_lock);
4843 spin_unlock(&eb->refs_lock);
4844 }
4845 mark_extent_buffer_accessed(eb, NULL);
4846 return eb;
4847 }
4848 rcu_read_unlock();
4849
4850 return NULL;
4851}
4852
4853#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4854struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4855 u64 start)
4856{
4857 struct extent_buffer *eb, *exists = NULL;
4858 int ret;
4859
4860 eb = find_extent_buffer(fs_info, start);
4861 if (eb)
4862 return eb;
4863 eb = alloc_dummy_extent_buffer(fs_info, start);
4864 if (!eb)
4865 return NULL;
4866 eb->fs_info = fs_info;
4867again:
4868 ret = radix_tree_preload(GFP_NOFS);
4869 if (ret)
4870 goto free_eb;
4871 spin_lock(&fs_info->buffer_lock);
4872 ret = radix_tree_insert(&fs_info->buffer_radix,
4873 start >> PAGE_SHIFT, eb);
4874 spin_unlock(&fs_info->buffer_lock);
4875 radix_tree_preload_end();
4876 if (ret == -EEXIST) {
4877 exists = find_extent_buffer(fs_info, start);
4878 if (exists)
4879 goto free_eb;
4880 else
4881 goto again;
4882 }
4883 check_buffer_tree_ref(eb);
4884 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4885
4886 /*
4887 * We will free dummy extent buffer's if they come into
4888 * free_extent_buffer with a ref count of 2, but if we are using this we
4889 * want the buffers to stay in memory until we're done with them, so
4890 * bump the ref count again.
4891 */
4892 atomic_inc(&eb->refs);
4893 return eb;
4894free_eb:
4895 btrfs_release_extent_buffer(eb);
4896 return exists;
4897}
4898#endif
4899
4900struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4901 u64 start)
4902{
4903 unsigned long len = fs_info->nodesize;
4904 unsigned long num_pages = num_extent_pages(start, len);
4905 unsigned long i;
4906 unsigned long index = start >> PAGE_SHIFT;
4907 struct extent_buffer *eb;
4908 struct extent_buffer *exists = NULL;
4909 struct page *p;
4910 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4911 int uptodate = 1;
4912 int ret;
4913
4914 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4915 btrfs_err(fs_info, "bad tree block start %llu", start);
4916 return ERR_PTR(-EINVAL);
4917 }
4918
4919 eb = find_extent_buffer(fs_info, start);
4920 if (eb)
4921 return eb;
4922
4923 eb = __alloc_extent_buffer(fs_info, start, len);
4924 if (!eb)
4925 return ERR_PTR(-ENOMEM);
4926
4927 for (i = 0; i < num_pages; i++, index++) {
4928 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4929 if (!p) {
4930 exists = ERR_PTR(-ENOMEM);
4931 goto free_eb;
4932 }
4933
4934 spin_lock(&mapping->private_lock);
4935 if (PagePrivate(p)) {
4936 /*
4937 * We could have already allocated an eb for this page
4938 * and attached one so lets see if we can get a ref on
4939 * the existing eb, and if we can we know it's good and
4940 * we can just return that one, else we know we can just
4941 * overwrite page->private.
4942 */
4943 exists = (struct extent_buffer *)p->private;
4944 if (atomic_inc_not_zero(&exists->refs)) {
4945 spin_unlock(&mapping->private_lock);
4946 unlock_page(p);
4947 put_page(p);
4948 mark_extent_buffer_accessed(exists, p);
4949 goto free_eb;
4950 }
4951 exists = NULL;
4952
4953 /*
4954 * Do this so attach doesn't complain and we need to
4955 * drop the ref the old guy had.
4956 */
4957 ClearPagePrivate(p);
4958 WARN_ON(PageDirty(p));
4959 put_page(p);
4960 }
4961 attach_extent_buffer_page(eb, p);
4962 spin_unlock(&mapping->private_lock);
4963 WARN_ON(PageDirty(p));
4964 eb->pages[i] = p;
4965 if (!PageUptodate(p))
4966 uptodate = 0;
4967
4968 /*
4969 * see below about how we avoid a nasty race with release page
4970 * and why we unlock later
4971 */
4972 }
4973 if (uptodate)
4974 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4975again:
4976 ret = radix_tree_preload(GFP_NOFS);
4977 if (ret) {
4978 exists = ERR_PTR(ret);
4979 goto free_eb;
4980 }
4981
4982 spin_lock(&fs_info->buffer_lock);
4983 ret = radix_tree_insert(&fs_info->buffer_radix,
4984 start >> PAGE_SHIFT, eb);
4985 spin_unlock(&fs_info->buffer_lock);
4986 radix_tree_preload_end();
4987 if (ret == -EEXIST) {
4988 exists = find_extent_buffer(fs_info, start);
4989 if (exists)
4990 goto free_eb;
4991 else
4992 goto again;
4993 }
4994 /* add one reference for the tree */
4995 check_buffer_tree_ref(eb);
4996 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4997
4998 /*
4999 * there is a race where release page may have
5000 * tried to find this extent buffer in the radix
5001 * but failed. It will tell the VM it is safe to
5002 * reclaim the, and it will clear the page private bit.
5003 * We must make sure to set the page private bit properly
5004 * after the extent buffer is in the radix tree so
5005 * it doesn't get lost
5006 */
5007 SetPageChecked(eb->pages[0]);
5008 for (i = 1; i < num_pages; i++) {
5009 p = eb->pages[i];
5010 ClearPageChecked(p);
5011 unlock_page(p);
5012 }
5013 unlock_page(eb->pages[0]);
5014 return eb;
5015
5016free_eb:
5017 WARN_ON(!atomic_dec_and_test(&eb->refs));
5018 for (i = 0; i < num_pages; i++) {
5019 if (eb->pages[i])
5020 unlock_page(eb->pages[i]);
5021 }
5022
5023 btrfs_release_extent_buffer(eb);
5024 return exists;
5025}
5026
5027static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5028{
5029 struct extent_buffer *eb =
5030 container_of(head, struct extent_buffer, rcu_head);
5031
5032 __free_extent_buffer(eb);
5033}
5034
5035/* Expects to have eb->eb_lock already held */
5036static int release_extent_buffer(struct extent_buffer *eb)
5037{
5038 WARN_ON(atomic_read(&eb->refs) == 0);
5039 if (atomic_dec_and_test(&eb->refs)) {
5040 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5041 struct btrfs_fs_info *fs_info = eb->fs_info;
5042
5043 spin_unlock(&eb->refs_lock);
5044
5045 spin_lock(&fs_info->buffer_lock);
5046 radix_tree_delete(&fs_info->buffer_radix,
5047 eb->start >> PAGE_SHIFT);
5048 spin_unlock(&fs_info->buffer_lock);
5049 } else {
5050 spin_unlock(&eb->refs_lock);
5051 }
5052
5053 /* Should be safe to release our pages at this point */
5054 btrfs_release_extent_buffer_page(eb);
5055#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5057 __free_extent_buffer(eb);
5058 return 1;
5059 }
5060#endif
5061 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5062 return 1;
5063 }
5064 spin_unlock(&eb->refs_lock);
5065
5066 return 0;
5067}
5068
5069void free_extent_buffer(struct extent_buffer *eb)
5070{
5071 int refs;
5072 int old;
5073 if (!eb)
5074 return;
5075
5076 while (1) {
5077 refs = atomic_read(&eb->refs);
5078 if (refs <= 3)
5079 break;
5080 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5081 if (old == refs)
5082 return;
5083 }
5084
5085 spin_lock(&eb->refs_lock);
5086 if (atomic_read(&eb->refs) == 2 &&
5087 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5088 atomic_dec(&eb->refs);
5089
5090 if (atomic_read(&eb->refs) == 2 &&
5091 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5092 !extent_buffer_under_io(eb) &&
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
5095
5096 /*
5097 * I know this is terrible, but it's temporary until we stop tracking
5098 * the uptodate bits and such for the extent buffers.
5099 */
5100 release_extent_buffer(eb);
5101}
5102
5103void free_extent_buffer_stale(struct extent_buffer *eb)
5104{
5105 if (!eb)
5106 return;
5107
5108 spin_lock(&eb->refs_lock);
5109 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5110
5111 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5112 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5113 atomic_dec(&eb->refs);
5114 release_extent_buffer(eb);
5115}
5116
5117void clear_extent_buffer_dirty(struct extent_buffer *eb)
5118{
5119 unsigned long i;
5120 unsigned long num_pages;
5121 struct page *page;
5122
5123 num_pages = num_extent_pages(eb->start, eb->len);
5124
5125 for (i = 0; i < num_pages; i++) {
5126 page = eb->pages[i];
5127 if (!PageDirty(page))
5128 continue;
5129
5130 lock_page(page);
5131 WARN_ON(!PagePrivate(page));
5132
5133 clear_page_dirty_for_io(page);
5134 spin_lock_irq(&page->mapping->tree_lock);
5135 if (!PageDirty(page)) {
5136 radix_tree_tag_clear(&page->mapping->page_tree,
5137 page_index(page),
5138 PAGECACHE_TAG_DIRTY);
5139 }
5140 spin_unlock_irq(&page->mapping->tree_lock);
5141 ClearPageError(page);
5142 unlock_page(page);
5143 }
5144 WARN_ON(atomic_read(&eb->refs) == 0);
5145}
5146
5147int set_extent_buffer_dirty(struct extent_buffer *eb)
5148{
5149 unsigned long i;
5150 unsigned long num_pages;
5151 int was_dirty = 0;
5152
5153 check_buffer_tree_ref(eb);
5154
5155 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5156
5157 num_pages = num_extent_pages(eb->start, eb->len);
5158 WARN_ON(atomic_read(&eb->refs) == 0);
5159 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5160
5161 for (i = 0; i < num_pages; i++)
5162 set_page_dirty(eb->pages[i]);
5163 return was_dirty;
5164}
5165
5166void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5167{
5168 unsigned long i;
5169 struct page *page;
5170 unsigned long num_pages;
5171
5172 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173 num_pages = num_extent_pages(eb->start, eb->len);
5174 for (i = 0; i < num_pages; i++) {
5175 page = eb->pages[i];
5176 if (page)
5177 ClearPageUptodate(page);
5178 }
5179}
5180
5181void set_extent_buffer_uptodate(struct extent_buffer *eb)
5182{
5183 unsigned long i;
5184 struct page *page;
5185 unsigned long num_pages;
5186
5187 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5188 num_pages = num_extent_pages(eb->start, eb->len);
5189 for (i = 0; i < num_pages; i++) {
5190 page = eb->pages[i];
5191 SetPageUptodate(page);
5192 }
5193}
5194
5195int extent_buffer_uptodate(struct extent_buffer *eb)
5196{
5197 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5198}
5199
5200int read_extent_buffer_pages(struct extent_io_tree *tree,
5201 struct extent_buffer *eb, int wait,
5202 get_extent_t *get_extent, int mirror_num)
5203{
5204 unsigned long i;
5205 struct page *page;
5206 int err;
5207 int ret = 0;
5208 int locked_pages = 0;
5209 int all_uptodate = 1;
5210 unsigned long num_pages;
5211 unsigned long num_reads = 0;
5212 struct bio *bio = NULL;
5213 unsigned long bio_flags = 0;
5214
5215 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5216 return 0;
5217
5218 num_pages = num_extent_pages(eb->start, eb->len);
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 if (wait == WAIT_NONE) {
5222 if (!trylock_page(page))
5223 goto unlock_exit;
5224 } else {
5225 lock_page(page);
5226 }
5227 locked_pages++;
5228 }
5229 /*
5230 * We need to firstly lock all pages to make sure that
5231 * the uptodate bit of our pages won't be affected by
5232 * clear_extent_buffer_uptodate().
5233 */
5234 for (i = 0; i < num_pages; i++) {
5235 page = eb->pages[i];
5236 if (!PageUptodate(page)) {
5237 num_reads++;
5238 all_uptodate = 0;
5239 }
5240 }
5241
5242 if (all_uptodate) {
5243 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5244 goto unlock_exit;
5245 }
5246
5247 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5248 eb->read_mirror = 0;
5249 atomic_set(&eb->io_pages, num_reads);
5250 for (i = 0; i < num_pages; i++) {
5251 page = eb->pages[i];
5252
5253 if (!PageUptodate(page)) {
5254 if (ret) {
5255 atomic_dec(&eb->io_pages);
5256 unlock_page(page);
5257 continue;
5258 }
5259
5260 ClearPageError(page);
5261 err = __extent_read_full_page(tree, page,
5262 get_extent, &bio,
5263 mirror_num, &bio_flags,
5264 REQ_META);
5265 if (err) {
5266 ret = err;
5267 /*
5268 * We use &bio in above __extent_read_full_page,
5269 * so we ensure that if it returns error, the
5270 * current page fails to add itself to bio and
5271 * it's been unlocked.
5272 *
5273 * We must dec io_pages by ourselves.
5274 */
5275 atomic_dec(&eb->io_pages);
5276 }
5277 } else {
5278 unlock_page(page);
5279 }
5280 }
5281
5282 if (bio) {
5283 err = submit_one_bio(bio, mirror_num, bio_flags);
5284 if (err)
5285 return err;
5286 }
5287
5288 if (ret || wait != WAIT_COMPLETE)
5289 return ret;
5290
5291 for (i = 0; i < num_pages; i++) {
5292 page = eb->pages[i];
5293 wait_on_page_locked(page);
5294 if (!PageUptodate(page))
5295 ret = -EIO;
5296 }
5297
5298 return ret;
5299
5300unlock_exit:
5301 while (locked_pages > 0) {
5302 locked_pages--;
5303 page = eb->pages[locked_pages];
5304 unlock_page(page);
5305 }
5306 return ret;
5307}
5308
5309void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5310 unsigned long start,
5311 unsigned long len)
5312{
5313 size_t cur;
5314 size_t offset;
5315 struct page *page;
5316 char *kaddr;
5317 char *dst = (char *)dstv;
5318 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5319 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5320
5321 WARN_ON(start > eb->len);
5322 WARN_ON(start + len > eb->start + eb->len);
5323
5324 offset = (start_offset + start) & (PAGE_SIZE - 1);
5325
5326 while (len > 0) {
5327 page = eb->pages[i];
5328
5329 cur = min(len, (PAGE_SIZE - offset));
5330 kaddr = page_address(page);
5331 memcpy(dst, kaddr + offset, cur);
5332
5333 dst += cur;
5334 len -= cur;
5335 offset = 0;
5336 i++;
5337 }
5338}
5339
5340int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5341 unsigned long start,
5342 unsigned long len)
5343{
5344 size_t cur;
5345 size_t offset;
5346 struct page *page;
5347 char *kaddr;
5348 char __user *dst = (char __user *)dstv;
5349 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351 int ret = 0;
5352
5353 WARN_ON(start > eb->len);
5354 WARN_ON(start + len > eb->start + eb->len);
5355
5356 offset = (start_offset + start) & (PAGE_SIZE - 1);
5357
5358 while (len > 0) {
5359 page = eb->pages[i];
5360
5361 cur = min(len, (PAGE_SIZE - offset));
5362 kaddr = page_address(page);
5363 if (copy_to_user(dst, kaddr + offset, cur)) {
5364 ret = -EFAULT;
5365 break;
5366 }
5367
5368 dst += cur;
5369 len -= cur;
5370 offset = 0;
5371 i++;
5372 }
5373
5374 return ret;
5375}
5376
5377/*
5378 * return 0 if the item is found within a page.
5379 * return 1 if the item spans two pages.
5380 * return -EINVAL otherwise.
5381 */
5382int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5383 unsigned long min_len, char **map,
5384 unsigned long *map_start,
5385 unsigned long *map_len)
5386{
5387 size_t offset = start & (PAGE_SIZE - 1);
5388 char *kaddr;
5389 struct page *p;
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 unsigned long end_i = (start_offset + start + min_len - 1) >>
5393 PAGE_SHIFT;
5394
5395 if (i != end_i)
5396 return 1;
5397
5398 if (i == 0) {
5399 offset = start_offset;
5400 *map_start = 0;
5401 } else {
5402 offset = 0;
5403 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5404 }
5405
5406 if (start + min_len > eb->len) {
5407 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5408 eb->start, eb->len, start, min_len);
5409 return -EINVAL;
5410 }
5411
5412 p = eb->pages[i];
5413 kaddr = page_address(p);
5414 *map = kaddr + offset;
5415 *map_len = PAGE_SIZE - offset;
5416 return 0;
5417}
5418
5419int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5420 unsigned long start,
5421 unsigned long len)
5422{
5423 size_t cur;
5424 size_t offset;
5425 struct page *page;
5426 char *kaddr;
5427 char *ptr = (char *)ptrv;
5428 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5429 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5430 int ret = 0;
5431
5432 WARN_ON(start > eb->len);
5433 WARN_ON(start + len > eb->start + eb->len);
5434
5435 offset = (start_offset + start) & (PAGE_SIZE - 1);
5436
5437 while (len > 0) {
5438 page = eb->pages[i];
5439
5440 cur = min(len, (PAGE_SIZE - offset));
5441
5442 kaddr = page_address(page);
5443 ret = memcmp(ptr, kaddr + offset, cur);
5444 if (ret)
5445 break;
5446
5447 ptr += cur;
5448 len -= cur;
5449 offset = 0;
5450 i++;
5451 }
5452 return ret;
5453}
5454
5455void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5456 const void *srcv)
5457{
5458 char *kaddr;
5459
5460 WARN_ON(!PageUptodate(eb->pages[0]));
5461 kaddr = page_address(eb->pages[0]);
5462 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5463 BTRFS_FSID_SIZE);
5464}
5465
5466void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5467{
5468 char *kaddr;
5469
5470 WARN_ON(!PageUptodate(eb->pages[0]));
5471 kaddr = page_address(eb->pages[0]);
5472 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5473 BTRFS_FSID_SIZE);
5474}
5475
5476void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5477 unsigned long start, unsigned long len)
5478{
5479 size_t cur;
5480 size_t offset;
5481 struct page *page;
5482 char *kaddr;
5483 char *src = (char *)srcv;
5484 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486
5487 WARN_ON(start > eb->len);
5488 WARN_ON(start + len > eb->start + eb->len);
5489
5490 offset = (start_offset + start) & (PAGE_SIZE - 1);
5491
5492 while (len > 0) {
5493 page = eb->pages[i];
5494 WARN_ON(!PageUptodate(page));
5495
5496 cur = min(len, PAGE_SIZE - offset);
5497 kaddr = page_address(page);
5498 memcpy(kaddr + offset, src, cur);
5499
5500 src += cur;
5501 len -= cur;
5502 offset = 0;
5503 i++;
5504 }
5505}
5506
5507void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5508 unsigned long len)
5509{
5510 size_t cur;
5511 size_t offset;
5512 struct page *page;
5513 char *kaddr;
5514 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516
5517 WARN_ON(start > eb->len);
5518 WARN_ON(start + len > eb->start + eb->len);
5519
5520 offset = (start_offset + start) & (PAGE_SIZE - 1);
5521
5522 while (len > 0) {
5523 page = eb->pages[i];
5524 WARN_ON(!PageUptodate(page));
5525
5526 cur = min(len, PAGE_SIZE - offset);
5527 kaddr = page_address(page);
5528 memset(kaddr + offset, 0, cur);
5529
5530 len -= cur;
5531 offset = 0;
5532 i++;
5533 }
5534}
5535
5536void copy_extent_buffer_full(struct extent_buffer *dst,
5537 struct extent_buffer *src)
5538{
5539 int i;
5540 unsigned num_pages;
5541
5542 ASSERT(dst->len == src->len);
5543
5544 num_pages = num_extent_pages(dst->start, dst->len);
5545 for (i = 0; i < num_pages; i++)
5546 copy_page(page_address(dst->pages[i]),
5547 page_address(src->pages[i]));
5548}
5549
5550void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5551 unsigned long dst_offset, unsigned long src_offset,
5552 unsigned long len)
5553{
5554 u64 dst_len = dst->len;
5555 size_t cur;
5556 size_t offset;
5557 struct page *page;
5558 char *kaddr;
5559 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5560 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5561
5562 WARN_ON(src->len != dst_len);
5563
5564 offset = (start_offset + dst_offset) &
5565 (PAGE_SIZE - 1);
5566
5567 while (len > 0) {
5568 page = dst->pages[i];
5569 WARN_ON(!PageUptodate(page));
5570
5571 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5572
5573 kaddr = page_address(page);
5574 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5575
5576 src_offset += cur;
5577 len -= cur;
5578 offset = 0;
5579 i++;
5580 }
5581}
5582
5583void le_bitmap_set(u8 *map, unsigned int start, int len)
5584{
5585 u8 *p = map + BIT_BYTE(start);
5586 const unsigned int size = start + len;
5587 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5589
5590 while (len - bits_to_set >= 0) {
5591 *p |= mask_to_set;
5592 len -= bits_to_set;
5593 bits_to_set = BITS_PER_BYTE;
5594 mask_to_set = ~0;
5595 p++;
5596 }
5597 if (len) {
5598 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5599 *p |= mask_to_set;
5600 }
5601}
5602
5603void le_bitmap_clear(u8 *map, unsigned int start, int len)
5604{
5605 u8 *p = map + BIT_BYTE(start);
5606 const unsigned int size = start + len;
5607 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5608 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5609
5610 while (len - bits_to_clear >= 0) {
5611 *p &= ~mask_to_clear;
5612 len -= bits_to_clear;
5613 bits_to_clear = BITS_PER_BYTE;
5614 mask_to_clear = ~0;
5615 p++;
5616 }
5617 if (len) {
5618 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5619 *p &= ~mask_to_clear;
5620 }
5621}
5622
5623/*
5624 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5625 * given bit number
5626 * @eb: the extent buffer
5627 * @start: offset of the bitmap item in the extent buffer
5628 * @nr: bit number
5629 * @page_index: return index of the page in the extent buffer that contains the
5630 * given bit number
5631 * @page_offset: return offset into the page given by page_index
5632 *
5633 * This helper hides the ugliness of finding the byte in an extent buffer which
5634 * contains a given bit.
5635 */
5636static inline void eb_bitmap_offset(struct extent_buffer *eb,
5637 unsigned long start, unsigned long nr,
5638 unsigned long *page_index,
5639 size_t *page_offset)
5640{
5641 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642 size_t byte_offset = BIT_BYTE(nr);
5643 size_t offset;
5644
5645 /*
5646 * The byte we want is the offset of the extent buffer + the offset of
5647 * the bitmap item in the extent buffer + the offset of the byte in the
5648 * bitmap item.
5649 */
5650 offset = start_offset + start + byte_offset;
5651
5652 *page_index = offset >> PAGE_SHIFT;
5653 *page_offset = offset & (PAGE_SIZE - 1);
5654}
5655
5656/**
5657 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5658 * @eb: the extent buffer
5659 * @start: offset of the bitmap item in the extent buffer
5660 * @nr: bit number to test
5661 */
5662int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5663 unsigned long nr)
5664{
5665 u8 *kaddr;
5666 struct page *page;
5667 unsigned long i;
5668 size_t offset;
5669
5670 eb_bitmap_offset(eb, start, nr, &i, &offset);
5671 page = eb->pages[i];
5672 WARN_ON(!PageUptodate(page));
5673 kaddr = page_address(page);
5674 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5675}
5676
5677/**
5678 * extent_buffer_bitmap_set - set an area of a bitmap
5679 * @eb: the extent buffer
5680 * @start: offset of the bitmap item in the extent buffer
5681 * @pos: bit number of the first bit
5682 * @len: number of bits to set
5683 */
5684void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5685 unsigned long pos, unsigned long len)
5686{
5687 u8 *kaddr;
5688 struct page *page;
5689 unsigned long i;
5690 size_t offset;
5691 const unsigned int size = pos + len;
5692 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5693 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5694
5695 eb_bitmap_offset(eb, start, pos, &i, &offset);
5696 page = eb->pages[i];
5697 WARN_ON(!PageUptodate(page));
5698 kaddr = page_address(page);
5699
5700 while (len >= bits_to_set) {
5701 kaddr[offset] |= mask_to_set;
5702 len -= bits_to_set;
5703 bits_to_set = BITS_PER_BYTE;
5704 mask_to_set = ~0;
5705 if (++offset >= PAGE_SIZE && len > 0) {
5706 offset = 0;
5707 page = eb->pages[++i];
5708 WARN_ON(!PageUptodate(page));
5709 kaddr = page_address(page);
5710 }
5711 }
5712 if (len) {
5713 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5714 kaddr[offset] |= mask_to_set;
5715 }
5716}
5717
5718
5719/**
5720 * extent_buffer_bitmap_clear - clear an area of a bitmap
5721 * @eb: the extent buffer
5722 * @start: offset of the bitmap item in the extent buffer
5723 * @pos: bit number of the first bit
5724 * @len: number of bits to clear
5725 */
5726void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5727 unsigned long pos, unsigned long len)
5728{
5729 u8 *kaddr;
5730 struct page *page;
5731 unsigned long i;
5732 size_t offset;
5733 const unsigned int size = pos + len;
5734 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5735 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5736
5737 eb_bitmap_offset(eb, start, pos, &i, &offset);
5738 page = eb->pages[i];
5739 WARN_ON(!PageUptodate(page));
5740 kaddr = page_address(page);
5741
5742 while (len >= bits_to_clear) {
5743 kaddr[offset] &= ~mask_to_clear;
5744 len -= bits_to_clear;
5745 bits_to_clear = BITS_PER_BYTE;
5746 mask_to_clear = ~0;
5747 if (++offset >= PAGE_SIZE && len > 0) {
5748 offset = 0;
5749 page = eb->pages[++i];
5750 WARN_ON(!PageUptodate(page));
5751 kaddr = page_address(page);
5752 }
5753 }
5754 if (len) {
5755 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5756 kaddr[offset] &= ~mask_to_clear;
5757 }
5758}
5759
5760static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5761{
5762 unsigned long distance = (src > dst) ? src - dst : dst - src;
5763 return distance < len;
5764}
5765
5766static void copy_pages(struct page *dst_page, struct page *src_page,
5767 unsigned long dst_off, unsigned long src_off,
5768 unsigned long len)
5769{
5770 char *dst_kaddr = page_address(dst_page);
5771 char *src_kaddr;
5772 int must_memmove = 0;
5773
5774 if (dst_page != src_page) {
5775 src_kaddr = page_address(src_page);
5776 } else {
5777 src_kaddr = dst_kaddr;
5778 if (areas_overlap(src_off, dst_off, len))
5779 must_memmove = 1;
5780 }
5781
5782 if (must_memmove)
5783 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5784 else
5785 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5786}
5787
5788void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5789 unsigned long src_offset, unsigned long len)
5790{
5791 struct btrfs_fs_info *fs_info = dst->fs_info;
5792 size_t cur;
5793 size_t dst_off_in_page;
5794 size_t src_off_in_page;
5795 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5796 unsigned long dst_i;
5797 unsigned long src_i;
5798
5799 if (src_offset + len > dst->len) {
5800 btrfs_err(fs_info,
5801 "memmove bogus src_offset %lu move len %lu dst len %lu",
5802 src_offset, len, dst->len);
5803 BUG_ON(1);
5804 }
5805 if (dst_offset + len > dst->len) {
5806 btrfs_err(fs_info,
5807 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5808 dst_offset, len, dst->len);
5809 BUG_ON(1);
5810 }
5811
5812 while (len > 0) {
5813 dst_off_in_page = (start_offset + dst_offset) &
5814 (PAGE_SIZE - 1);
5815 src_off_in_page = (start_offset + src_offset) &
5816 (PAGE_SIZE - 1);
5817
5818 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5819 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5820
5821 cur = min(len, (unsigned long)(PAGE_SIZE -
5822 src_off_in_page));
5823 cur = min_t(unsigned long, cur,
5824 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5825
5826 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5827 dst_off_in_page, src_off_in_page, cur);
5828
5829 src_offset += cur;
5830 dst_offset += cur;
5831 len -= cur;
5832 }
5833}
5834
5835void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5836 unsigned long src_offset, unsigned long len)
5837{
5838 struct btrfs_fs_info *fs_info = dst->fs_info;
5839 size_t cur;
5840 size_t dst_off_in_page;
5841 size_t src_off_in_page;
5842 unsigned long dst_end = dst_offset + len - 1;
5843 unsigned long src_end = src_offset + len - 1;
5844 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5845 unsigned long dst_i;
5846 unsigned long src_i;
5847
5848 if (src_offset + len > dst->len) {
5849 btrfs_err(fs_info,
5850 "memmove bogus src_offset %lu move len %lu len %lu",
5851 src_offset, len, dst->len);
5852 BUG_ON(1);
5853 }
5854 if (dst_offset + len > dst->len) {
5855 btrfs_err(fs_info,
5856 "memmove bogus dst_offset %lu move len %lu len %lu",
5857 dst_offset, len, dst->len);
5858 BUG_ON(1);
5859 }
5860 if (dst_offset < src_offset) {
5861 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5862 return;
5863 }
5864 while (len > 0) {
5865 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5866 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5867
5868 dst_off_in_page = (start_offset + dst_end) &
5869 (PAGE_SIZE - 1);
5870 src_off_in_page = (start_offset + src_end) &
5871 (PAGE_SIZE - 1);
5872
5873 cur = min_t(unsigned long, len, src_off_in_page + 1);
5874 cur = min(cur, dst_off_in_page + 1);
5875 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5876 dst_off_in_page - cur + 1,
5877 src_off_in_page - cur + 1, cur);
5878
5879 dst_end -= cur;
5880 src_end -= cur;
5881 len -= cur;
5882 }
5883}
5884
5885int try_release_extent_buffer(struct page *page)
5886{
5887 struct extent_buffer *eb;
5888
5889 /*
5890 * We need to make sure nobody is attaching this page to an eb right
5891 * now.
5892 */
5893 spin_lock(&page->mapping->private_lock);
5894 if (!PagePrivate(page)) {
5895 spin_unlock(&page->mapping->private_lock);
5896 return 1;
5897 }
5898
5899 eb = (struct extent_buffer *)page->private;
5900 BUG_ON(!eb);
5901
5902 /*
5903 * This is a little awful but should be ok, we need to make sure that
5904 * the eb doesn't disappear out from under us while we're looking at
5905 * this page.
5906 */
5907 spin_lock(&eb->refs_lock);
5908 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5909 spin_unlock(&eb->refs_lock);
5910 spin_unlock(&page->mapping->private_lock);
5911 return 0;
5912 }
5913 spin_unlock(&page->mapping->private_lock);
5914
5915 /*
5916 * If tree ref isn't set then we know the ref on this eb is a real ref,
5917 * so just return, this page will likely be freed soon anyway.
5918 */
5919 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5920 spin_unlock(&eb->refs_lock);
5921 return 0;
5922 }
5923
5924 return release_extent_buffer(eb);
5925}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "bio.h"
23#include "locking.h"
24#include "backref.h"
25#include "disk-io.h"
26#include "subpage.h"
27#include "zoned.h"
28#include "block-group.h"
29#include "compression.h"
30#include "fs.h"
31#include "accessors.h"
32#include "file-item.h"
33#include "file.h"
34#include "dev-replace.h"
35#include "super.h"
36#include "transaction.h"
37
38static struct kmem_cache *extent_buffer_cache;
39
40#ifdef CONFIG_BTRFS_DEBUG
41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42{
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49}
50
51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52{
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59}
60
61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62{
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87}
88#else
89#define btrfs_leak_debug_add_eb(eb) do {} while (0)
90#define btrfs_leak_debug_del_eb(eb) do {} while (0)
91#endif
92
93/*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 enum btrfs_compression_type compress_type;
100 u32 len_to_oe_boundary;
101 blk_opf_t opf;
102 btrfs_bio_end_io_t end_io_func;
103 struct writeback_control *wbc;
104
105 /*
106 * The sectors of the page which are going to be submitted by
107 * extent_writepage_io().
108 * This is to avoid touching ranges covered by compression/inline.
109 */
110 unsigned long submit_bitmap;
111};
112
113static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114{
115 struct btrfs_bio *bbio = bio_ctrl->bbio;
116
117 if (!bbio)
118 return;
119
120 /* Caller should ensure the bio has at least some range added */
121 ASSERT(bbio->bio.bi_iter.bi_size);
122
123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
125 btrfs_submit_compressed_read(bbio);
126 else
127 btrfs_submit_bbio(bbio, 0);
128
129 /* The bbio is owned by the end_io handler now */
130 bio_ctrl->bbio = NULL;
131}
132
133/*
134 * Submit or fail the current bio in the bio_ctrl structure.
135 */
136static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
137{
138 struct btrfs_bio *bbio = bio_ctrl->bbio;
139
140 if (!bbio)
141 return;
142
143 if (ret) {
144 ASSERT(ret < 0);
145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
146 /* The bio is owned by the end_io handler now */
147 bio_ctrl->bbio = NULL;
148 } else {
149 submit_one_bio(bio_ctrl);
150 }
151}
152
153int __init extent_buffer_init_cachep(void)
154{
155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
156 sizeof(struct extent_buffer), 0, 0,
157 NULL);
158 if (!extent_buffer_cache)
159 return -ENOMEM;
160
161 return 0;
162}
163
164void __cold extent_buffer_free_cachep(void)
165{
166 /*
167 * Make sure all delayed rcu free are flushed before we
168 * destroy caches.
169 */
170 rcu_barrier();
171 kmem_cache_destroy(extent_buffer_cache);
172}
173
174static void process_one_folio(struct btrfs_fs_info *fs_info,
175 struct folio *folio, const struct folio *locked_folio,
176 unsigned long page_ops, u64 start, u64 end)
177{
178 u32 len;
179
180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
181 len = end + 1 - start;
182
183 if (page_ops & PAGE_SET_ORDERED)
184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
185 if (page_ops & PAGE_START_WRITEBACK) {
186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
188 }
189 if (page_ops & PAGE_END_WRITEBACK)
190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
191
192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
193 btrfs_folio_end_lock(fs_info, folio, start, len);
194}
195
196static void __process_folios_contig(struct address_space *mapping,
197 const struct folio *locked_folio, u64 start,
198 u64 end, unsigned long page_ops)
199{
200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
201 pgoff_t start_index = start >> PAGE_SHIFT;
202 pgoff_t end_index = end >> PAGE_SHIFT;
203 pgoff_t index = start_index;
204 struct folio_batch fbatch;
205 int i;
206
207 folio_batch_init(&fbatch);
208 while (index <= end_index) {
209 int found_folios;
210
211 found_folios = filemap_get_folios_contig(mapping, &index,
212 end_index, &fbatch);
213 for (i = 0; i < found_folios; i++) {
214 struct folio *folio = fbatch.folios[i];
215
216 process_one_folio(fs_info, folio, locked_folio,
217 page_ops, start, end);
218 }
219 folio_batch_release(&fbatch);
220 cond_resched();
221 }
222}
223
224static noinline void __unlock_for_delalloc(const struct inode *inode,
225 const struct folio *locked_folio,
226 u64 start, u64 end)
227{
228 unsigned long index = start >> PAGE_SHIFT;
229 unsigned long end_index = end >> PAGE_SHIFT;
230
231 ASSERT(locked_folio);
232 if (index == locked_folio->index && end_index == index)
233 return;
234
235 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
236 PAGE_UNLOCK);
237}
238
239static noinline int lock_delalloc_folios(struct inode *inode,
240 const struct folio *locked_folio,
241 u64 start, u64 end)
242{
243 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
244 struct address_space *mapping = inode->i_mapping;
245 pgoff_t start_index = start >> PAGE_SHIFT;
246 pgoff_t end_index = end >> PAGE_SHIFT;
247 pgoff_t index = start_index;
248 u64 processed_end = start;
249 struct folio_batch fbatch;
250
251 if (index == locked_folio->index && index == end_index)
252 return 0;
253
254 folio_batch_init(&fbatch);
255 while (index <= end_index) {
256 unsigned int found_folios, i;
257
258 found_folios = filemap_get_folios_contig(mapping, &index,
259 end_index, &fbatch);
260 if (found_folios == 0)
261 goto out;
262
263 for (i = 0; i < found_folios; i++) {
264 struct folio *folio = fbatch.folios[i];
265 u64 range_start;
266 u32 range_len;
267
268 if (folio == locked_folio)
269 continue;
270
271 folio_lock(folio);
272 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
273 folio_unlock(folio);
274 goto out;
275 }
276 range_start = max_t(u64, folio_pos(folio), start);
277 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
278 end + 1) - range_start;
279 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
280
281 processed_end = range_start + range_len - 1;
282 }
283 folio_batch_release(&fbatch);
284 cond_resched();
285 }
286
287 return 0;
288out:
289 folio_batch_release(&fbatch);
290 if (processed_end > start)
291 __unlock_for_delalloc(inode, locked_folio, start,
292 processed_end);
293 return -EAGAIN;
294}
295
296/*
297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
298 * more than @max_bytes.
299 *
300 * @start: The original start bytenr to search.
301 * Will store the extent range start bytenr.
302 * @end: The original end bytenr of the search range
303 * Will store the extent range end bytenr.
304 *
305 * Return true if we find a delalloc range which starts inside the original
306 * range, and @start/@end will store the delalloc range start/end.
307 *
308 * Return false if we can't find any delalloc range which starts inside the
309 * original range, and @start/@end will be the non-delalloc range start/end.
310 */
311EXPORT_FOR_TESTS
312noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
313 struct folio *locked_folio,
314 u64 *start, u64 *end)
315{
316 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
317 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
318 const u64 orig_start = *start;
319 const u64 orig_end = *end;
320 /* The sanity tests may not set a valid fs_info. */
321 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
322 u64 delalloc_start;
323 u64 delalloc_end;
324 bool found;
325 struct extent_state *cached_state = NULL;
326 int ret;
327 int loops = 0;
328
329 /* Caller should pass a valid @end to indicate the search range end */
330 ASSERT(orig_end > orig_start);
331
332 /* The range should at least cover part of the folio */
333 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
334 orig_end <= folio_pos(locked_folio)));
335again:
336 /* step one, find a bunch of delalloc bytes starting at start */
337 delalloc_start = *start;
338 delalloc_end = 0;
339 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
340 max_bytes, &cached_state);
341 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
342 *start = delalloc_start;
343
344 /* @delalloc_end can be -1, never go beyond @orig_end */
345 *end = min(delalloc_end, orig_end);
346 free_extent_state(cached_state);
347 return false;
348 }
349
350 /*
351 * start comes from the offset of locked_folio. We have to lock
352 * folios in order, so we can't process delalloc bytes before
353 * locked_folio
354 */
355 if (delalloc_start < *start)
356 delalloc_start = *start;
357
358 /*
359 * make sure to limit the number of folios we try to lock down
360 */
361 if (delalloc_end + 1 - delalloc_start > max_bytes)
362 delalloc_end = delalloc_start + max_bytes - 1;
363
364 /* step two, lock all the folioss after the folios that has start */
365 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
366 delalloc_end);
367 ASSERT(!ret || ret == -EAGAIN);
368 if (ret == -EAGAIN) {
369 /* some of the folios are gone, lets avoid looping by
370 * shortening the size of the delalloc range we're searching
371 */
372 free_extent_state(cached_state);
373 cached_state = NULL;
374 if (!loops) {
375 max_bytes = PAGE_SIZE;
376 loops = 1;
377 goto again;
378 } else {
379 found = false;
380 goto out_failed;
381 }
382 }
383
384 /* step three, lock the state bits for the whole range */
385 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
386
387 /* then test to make sure it is all still delalloc */
388 ret = test_range_bit(tree, delalloc_start, delalloc_end,
389 EXTENT_DELALLOC, cached_state);
390
391 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
392 if (!ret) {
393 __unlock_for_delalloc(inode, locked_folio, delalloc_start,
394 delalloc_end);
395 cond_resched();
396 goto again;
397 }
398 *start = delalloc_start;
399 *end = delalloc_end;
400out_failed:
401 return found;
402}
403
404void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
405 const struct folio *locked_folio,
406 struct extent_state **cached,
407 u32 clear_bits, unsigned long page_ops)
408{
409 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
410
411 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
412 end, page_ops);
413}
414
415static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
416{
417 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
418
419 if (!fsverity_active(folio->mapping->host) ||
420 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
421 start >= i_size_read(folio->mapping->host))
422 return true;
423 return fsverity_verify_folio(folio);
424}
425
426static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
427{
428 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
429
430 ASSERT(folio_pos(folio) <= start &&
431 start + len <= folio_pos(folio) + PAGE_SIZE);
432
433 if (uptodate && btrfs_verify_folio(folio, start, len))
434 btrfs_folio_set_uptodate(fs_info, folio, start, len);
435 else
436 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
437
438 if (!btrfs_is_subpage(fs_info, folio->mapping))
439 folio_unlock(folio);
440 else
441 btrfs_folio_end_lock(fs_info, folio, start, len);
442}
443
444/*
445 * After a write IO is done, we need to:
446 *
447 * - clear the uptodate bits on error
448 * - clear the writeback bits in the extent tree for the range
449 * - filio_end_writeback() if there is no more pending io for the folio
450 *
451 * Scheduling is not allowed, so the extent state tree is expected
452 * to have one and only one object corresponding to this IO.
453 */
454static void end_bbio_data_write(struct btrfs_bio *bbio)
455{
456 struct btrfs_fs_info *fs_info = bbio->fs_info;
457 struct bio *bio = &bbio->bio;
458 int error = blk_status_to_errno(bio->bi_status);
459 struct folio_iter fi;
460 const u32 sectorsize = fs_info->sectorsize;
461
462 ASSERT(!bio_flagged(bio, BIO_CLONED));
463 bio_for_each_folio_all(fi, bio) {
464 struct folio *folio = fi.folio;
465 u64 start = folio_pos(folio) + fi.offset;
466 u32 len = fi.length;
467
468 /* Only order 0 (single page) folios are allowed for data. */
469 ASSERT(folio_order(folio) == 0);
470
471 /* Our read/write should always be sector aligned. */
472 if (!IS_ALIGNED(fi.offset, sectorsize))
473 btrfs_err(fs_info,
474 "partial page write in btrfs with offset %zu and length %zu",
475 fi.offset, fi.length);
476 else if (!IS_ALIGNED(fi.length, sectorsize))
477 btrfs_info(fs_info,
478 "incomplete page write with offset %zu and length %zu",
479 fi.offset, fi.length);
480
481 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
482 !error);
483 if (error)
484 mapping_set_error(folio->mapping, error);
485 btrfs_folio_clear_writeback(fs_info, folio, start, len);
486 }
487
488 bio_put(bio);
489}
490
491static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
492{
493 ASSERT(folio_test_locked(folio));
494 if (!btrfs_is_subpage(fs_info, folio->mapping))
495 return;
496
497 ASSERT(folio_test_private(folio));
498 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
499}
500
501/*
502 * After a data read IO is done, we need to:
503 *
504 * - clear the uptodate bits on error
505 * - set the uptodate bits if things worked
506 * - set the folio up to date if all extents in the tree are uptodate
507 * - clear the lock bit in the extent tree
508 * - unlock the folio if there are no other extents locked for it
509 *
510 * Scheduling is not allowed, so the extent state tree is expected
511 * to have one and only one object corresponding to this IO.
512 */
513static void end_bbio_data_read(struct btrfs_bio *bbio)
514{
515 struct btrfs_fs_info *fs_info = bbio->fs_info;
516 struct bio *bio = &bbio->bio;
517 struct folio_iter fi;
518 const u32 sectorsize = fs_info->sectorsize;
519
520 ASSERT(!bio_flagged(bio, BIO_CLONED));
521 bio_for_each_folio_all(fi, &bbio->bio) {
522 bool uptodate = !bio->bi_status;
523 struct folio *folio = fi.folio;
524 struct inode *inode = folio->mapping->host;
525 u64 start;
526 u64 end;
527 u32 len;
528
529 /* For now only order 0 folios are supported for data. */
530 ASSERT(folio_order(folio) == 0);
531 btrfs_debug(fs_info,
532 "%s: bi_sector=%llu, err=%d, mirror=%u",
533 __func__, bio->bi_iter.bi_sector, bio->bi_status,
534 bbio->mirror_num);
535
536 /*
537 * We always issue full-sector reads, but if some block in a
538 * folio fails to read, blk_update_request() will advance
539 * bv_offset and adjust bv_len to compensate. Print a warning
540 * for unaligned offsets, and an error if they don't add up to
541 * a full sector.
542 */
543 if (!IS_ALIGNED(fi.offset, sectorsize))
544 btrfs_err(fs_info,
545 "partial page read in btrfs with offset %zu and length %zu",
546 fi.offset, fi.length);
547 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
548 btrfs_info(fs_info,
549 "incomplete page read with offset %zu and length %zu",
550 fi.offset, fi.length);
551
552 start = folio_pos(folio) + fi.offset;
553 end = start + fi.length - 1;
554 len = fi.length;
555
556 if (likely(uptodate)) {
557 loff_t i_size = i_size_read(inode);
558 pgoff_t end_index = i_size >> folio_shift(folio);
559
560 /*
561 * Zero out the remaining part if this range straddles
562 * i_size.
563 *
564 * Here we should only zero the range inside the folio,
565 * not touch anything else.
566 *
567 * NOTE: i_size is exclusive while end is inclusive.
568 */
569 if (folio_index(folio) == end_index && i_size <= end) {
570 u32 zero_start = max(offset_in_folio(folio, i_size),
571 offset_in_folio(folio, start));
572 u32 zero_len = offset_in_folio(folio, end) + 1 -
573 zero_start;
574
575 folio_zero_range(folio, zero_start, zero_len);
576 }
577 }
578
579 /* Update page status and unlock. */
580 end_folio_read(folio, uptodate, start, len);
581 }
582 bio_put(bio);
583}
584
585/*
586 * Populate every free slot in a provided array with folios using GFP_NOFS.
587 *
588 * @nr_folios: number of folios to allocate
589 * @folio_array: the array to fill with folios; any existing non-NULL entries in
590 * the array will be skipped
591 *
592 * Return: 0 if all folios were able to be allocated;
593 * -ENOMEM otherwise, the partially allocated folios would be freed and
594 * the array slots zeroed
595 */
596int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
597{
598 for (int i = 0; i < nr_folios; i++) {
599 if (folio_array[i])
600 continue;
601 folio_array[i] = folio_alloc(GFP_NOFS, 0);
602 if (!folio_array[i])
603 goto error;
604 }
605 return 0;
606error:
607 for (int i = 0; i < nr_folios; i++) {
608 if (folio_array[i])
609 folio_put(folio_array[i]);
610 }
611 return -ENOMEM;
612}
613
614/*
615 * Populate every free slot in a provided array with pages, using GFP_NOFS.
616 *
617 * @nr_pages: number of pages to allocate
618 * @page_array: the array to fill with pages; any existing non-null entries in
619 * the array will be skipped
620 * @nofail: whether using __GFP_NOFAIL flag
621 *
622 * Return: 0 if all pages were able to be allocated;
623 * -ENOMEM otherwise, the partially allocated pages would be freed and
624 * the array slots zeroed
625 */
626int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
627 bool nofail)
628{
629 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
630 unsigned int allocated;
631
632 for (allocated = 0; allocated < nr_pages;) {
633 unsigned int last = allocated;
634
635 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
636 if (unlikely(allocated == last)) {
637 /* No progress, fail and do cleanup. */
638 for (int i = 0; i < allocated; i++) {
639 __free_page(page_array[i]);
640 page_array[i] = NULL;
641 }
642 return -ENOMEM;
643 }
644 }
645 return 0;
646}
647
648/*
649 * Populate needed folios for the extent buffer.
650 *
651 * For now, the folios populated are always in order 0 (aka, single page).
652 */
653static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
654{
655 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
656 int num_pages = num_extent_pages(eb);
657 int ret;
658
659 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
660 if (ret < 0)
661 return ret;
662
663 for (int i = 0; i < num_pages; i++)
664 eb->folios[i] = page_folio(page_array[i]);
665 eb->folio_size = PAGE_SIZE;
666 eb->folio_shift = PAGE_SHIFT;
667 return 0;
668}
669
670static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
671 struct folio *folio, u64 disk_bytenr,
672 unsigned int pg_offset)
673{
674 struct bio *bio = &bio_ctrl->bbio->bio;
675 struct bio_vec *bvec = bio_last_bvec_all(bio);
676 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
677 struct folio *bv_folio = page_folio(bvec->bv_page);
678
679 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
680 /*
681 * For compression, all IO should have its logical bytenr set
682 * to the starting bytenr of the compressed extent.
683 */
684 return bio->bi_iter.bi_sector == sector;
685 }
686
687 /*
688 * The contig check requires the following conditions to be met:
689 *
690 * 1) The folios are belonging to the same inode
691 * This is implied by the call chain.
692 *
693 * 2) The range has adjacent logical bytenr
694 *
695 * 3) The range has adjacent file offset
696 * This is required for the usage of btrfs_bio->file_offset.
697 */
698 return bio_end_sector(bio) == sector &&
699 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
700 folio_pos(folio) + pg_offset;
701}
702
703static void alloc_new_bio(struct btrfs_inode *inode,
704 struct btrfs_bio_ctrl *bio_ctrl,
705 u64 disk_bytenr, u64 file_offset)
706{
707 struct btrfs_fs_info *fs_info = inode->root->fs_info;
708 struct btrfs_bio *bbio;
709
710 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
711 bio_ctrl->end_io_func, NULL);
712 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
713 bbio->inode = inode;
714 bbio->file_offset = file_offset;
715 bio_ctrl->bbio = bbio;
716 bio_ctrl->len_to_oe_boundary = U32_MAX;
717
718 /* Limit data write bios to the ordered boundary. */
719 if (bio_ctrl->wbc) {
720 struct btrfs_ordered_extent *ordered;
721
722 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
723 if (ordered) {
724 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
725 ordered->file_offset +
726 ordered->disk_num_bytes - file_offset);
727 bbio->ordered = ordered;
728 }
729
730 /*
731 * Pick the last added device to support cgroup writeback. For
732 * multi-device file systems this means blk-cgroup policies have
733 * to always be set on the last added/replaced device.
734 * This is a bit odd but has been like that for a long time.
735 */
736 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
737 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
738 }
739}
740
741/*
742 * @disk_bytenr: logical bytenr where the write will be
743 * @page: page to add to the bio
744 * @size: portion of page that we want to write to
745 * @pg_offset: offset of the new bio or to check whether we are adding
746 * a contiguous page to the previous one
747 *
748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
749 * new one in @bio_ctrl->bbio.
750 * The mirror number for this IO should already be initizlied in
751 * @bio_ctrl->mirror_num.
752 */
753static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
754 u64 disk_bytenr, struct folio *folio,
755 size_t size, unsigned long pg_offset)
756{
757 struct btrfs_inode *inode = folio_to_inode(folio);
758
759 ASSERT(pg_offset + size <= PAGE_SIZE);
760 ASSERT(bio_ctrl->end_io_func);
761
762 if (bio_ctrl->bbio &&
763 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
764 submit_one_bio(bio_ctrl);
765
766 do {
767 u32 len = size;
768
769 /* Allocate new bio if needed */
770 if (!bio_ctrl->bbio) {
771 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
772 folio_pos(folio) + pg_offset);
773 }
774
775 /* Cap to the current ordered extent boundary if there is one. */
776 if (len > bio_ctrl->len_to_oe_boundary) {
777 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
778 ASSERT(is_data_inode(inode));
779 len = bio_ctrl->len_to_oe_boundary;
780 }
781
782 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
783 /* bio full: move on to a new one */
784 submit_one_bio(bio_ctrl);
785 continue;
786 }
787
788 if (bio_ctrl->wbc)
789 wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
790 len);
791
792 size -= len;
793 pg_offset += len;
794 disk_bytenr += len;
795
796 /*
797 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
798 * sector aligned. alloc_new_bio() then sets it to the end of
799 * our ordered extent for writes into zoned devices.
800 *
801 * When len_to_oe_boundary is tracking an ordered extent, we
802 * trust the ordered extent code to align things properly, and
803 * the check above to cap our write to the ordered extent
804 * boundary is correct.
805 *
806 * When len_to_oe_boundary is U32_MAX, the cap above would
807 * result in a 4095 byte IO for the last folio right before
808 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
809 * the checks required to make sure we don't overflow the bio,
810 * and we should just ignore len_to_oe_boundary completely
811 * unless we're using it to track an ordered extent.
812 *
813 * It's pretty hard to make a bio sized U32_MAX, but it can
814 * happen when the page cache is able to feed us contiguous
815 * folios for large extents.
816 */
817 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
818 bio_ctrl->len_to_oe_boundary -= len;
819
820 /* Ordered extent boundary: move on to a new bio. */
821 if (bio_ctrl->len_to_oe_boundary == 0)
822 submit_one_bio(bio_ctrl);
823 } while (size);
824}
825
826static int attach_extent_buffer_folio(struct extent_buffer *eb,
827 struct folio *folio,
828 struct btrfs_subpage *prealloc)
829{
830 struct btrfs_fs_info *fs_info = eb->fs_info;
831 int ret = 0;
832
833 /*
834 * If the page is mapped to btree inode, we should hold the private
835 * lock to prevent race.
836 * For cloned or dummy extent buffers, their pages are not mapped and
837 * will not race with any other ebs.
838 */
839 if (folio->mapping)
840 lockdep_assert_held(&folio->mapping->i_private_lock);
841
842 if (fs_info->nodesize >= PAGE_SIZE) {
843 if (!folio_test_private(folio))
844 folio_attach_private(folio, eb);
845 else
846 WARN_ON(folio_get_private(folio) != eb);
847 return 0;
848 }
849
850 /* Already mapped, just free prealloc */
851 if (folio_test_private(folio)) {
852 btrfs_free_subpage(prealloc);
853 return 0;
854 }
855
856 if (prealloc)
857 /* Has preallocated memory for subpage */
858 folio_attach_private(folio, prealloc);
859 else
860 /* Do new allocation to attach subpage */
861 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
862 return ret;
863}
864
865int set_page_extent_mapped(struct page *page)
866{
867 return set_folio_extent_mapped(page_folio(page));
868}
869
870int set_folio_extent_mapped(struct folio *folio)
871{
872 struct btrfs_fs_info *fs_info;
873
874 ASSERT(folio->mapping);
875
876 if (folio_test_private(folio))
877 return 0;
878
879 fs_info = folio_to_fs_info(folio);
880
881 if (btrfs_is_subpage(fs_info, folio->mapping))
882 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
883
884 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
885 return 0;
886}
887
888void clear_folio_extent_mapped(struct folio *folio)
889{
890 struct btrfs_fs_info *fs_info;
891
892 ASSERT(folio->mapping);
893
894 if (!folio_test_private(folio))
895 return;
896
897 fs_info = folio_to_fs_info(folio);
898 if (btrfs_is_subpage(fs_info, folio->mapping))
899 return btrfs_detach_subpage(fs_info, folio);
900
901 folio_detach_private(folio);
902}
903
904static struct extent_map *get_extent_map(struct btrfs_inode *inode,
905 struct folio *folio, u64 start,
906 u64 len, struct extent_map **em_cached)
907{
908 struct extent_map *em;
909
910 ASSERT(em_cached);
911
912 if (*em_cached) {
913 em = *em_cached;
914 if (extent_map_in_tree(em) && start >= em->start &&
915 start < extent_map_end(em)) {
916 refcount_inc(&em->refs);
917 return em;
918 }
919
920 free_extent_map(em);
921 *em_cached = NULL;
922 }
923
924 em = btrfs_get_extent(inode, folio, start, len);
925 if (!IS_ERR(em)) {
926 BUG_ON(*em_cached);
927 refcount_inc(&em->refs);
928 *em_cached = em;
929 }
930
931 return em;
932}
933/*
934 * basic readpage implementation. Locked extent state structs are inserted
935 * into the tree that are removed when the IO is done (by the end_io
936 * handlers)
937 * XXX JDM: This needs looking at to ensure proper page locking
938 * return 0 on success, otherwise return error
939 */
940static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
941 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
942{
943 struct inode *inode = folio->mapping->host;
944 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
945 u64 start = folio_pos(folio);
946 const u64 end = start + PAGE_SIZE - 1;
947 u64 cur = start;
948 u64 extent_offset;
949 u64 last_byte = i_size_read(inode);
950 u64 block_start;
951 struct extent_map *em;
952 int ret = 0;
953 size_t pg_offset = 0;
954 size_t iosize;
955 size_t blocksize = fs_info->sectorsize;
956
957 ret = set_folio_extent_mapped(folio);
958 if (ret < 0) {
959 folio_unlock(folio);
960 return ret;
961 }
962
963 if (folio->index == last_byte >> folio_shift(folio)) {
964 size_t zero_offset = offset_in_folio(folio, last_byte);
965
966 if (zero_offset) {
967 iosize = folio_size(folio) - zero_offset;
968 folio_zero_range(folio, zero_offset, iosize);
969 }
970 }
971 bio_ctrl->end_io_func = end_bbio_data_read;
972 begin_folio_read(fs_info, folio);
973 while (cur <= end) {
974 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
975 bool force_bio_submit = false;
976 u64 disk_bytenr;
977
978 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
979 if (cur >= last_byte) {
980 iosize = folio_size(folio) - pg_offset;
981 folio_zero_range(folio, pg_offset, iosize);
982 end_folio_read(folio, true, cur, iosize);
983 break;
984 }
985 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
986 if (IS_ERR(em)) {
987 end_folio_read(folio, false, cur, end + 1 - cur);
988 return PTR_ERR(em);
989 }
990 extent_offset = cur - em->start;
991 BUG_ON(extent_map_end(em) <= cur);
992 BUG_ON(end < cur);
993
994 compress_type = extent_map_compression(em);
995
996 iosize = min(extent_map_end(em) - cur, end - cur + 1);
997 iosize = ALIGN(iosize, blocksize);
998 if (compress_type != BTRFS_COMPRESS_NONE)
999 disk_bytenr = em->disk_bytenr;
1000 else
1001 disk_bytenr = extent_map_block_start(em) + extent_offset;
1002 block_start = extent_map_block_start(em);
1003 if (em->flags & EXTENT_FLAG_PREALLOC)
1004 block_start = EXTENT_MAP_HOLE;
1005
1006 /*
1007 * If we have a file range that points to a compressed extent
1008 * and it's followed by a consecutive file range that points
1009 * to the same compressed extent (possibly with a different
1010 * offset and/or length, so it either points to the whole extent
1011 * or only part of it), we must make sure we do not submit a
1012 * single bio to populate the folios for the 2 ranges because
1013 * this makes the compressed extent read zero out the folios
1014 * belonging to the 2nd range. Imagine the following scenario:
1015 *
1016 * File layout
1017 * [0 - 8K] [8K - 24K]
1018 * | |
1019 * | |
1020 * points to extent X, points to extent X,
1021 * offset 4K, length of 8K offset 0, length 16K
1022 *
1023 * [extent X, compressed length = 4K uncompressed length = 16K]
1024 *
1025 * If the bio to read the compressed extent covers both ranges,
1026 * it will decompress extent X into the folios belonging to the
1027 * first range and then it will stop, zeroing out the remaining
1028 * folios that belong to the other range that points to extent X.
1029 * So here we make sure we submit 2 bios, one for the first
1030 * range and another one for the third range. Both will target
1031 * the same physical extent from disk, but we can't currently
1032 * make the compressed bio endio callback populate the folios
1033 * for both ranges because each compressed bio is tightly
1034 * coupled with a single extent map, and each range can have
1035 * an extent map with a different offset value relative to the
1036 * uncompressed data of our extent and different lengths. This
1037 * is a corner case so we prioritize correctness over
1038 * non-optimal behavior (submitting 2 bios for the same extent).
1039 */
1040 if (compress_type != BTRFS_COMPRESS_NONE &&
1041 prev_em_start && *prev_em_start != (u64)-1 &&
1042 *prev_em_start != em->start)
1043 force_bio_submit = true;
1044
1045 if (prev_em_start)
1046 *prev_em_start = em->start;
1047
1048 free_extent_map(em);
1049 em = NULL;
1050
1051 /* we've found a hole, just zero and go on */
1052 if (block_start == EXTENT_MAP_HOLE) {
1053 folio_zero_range(folio, pg_offset, iosize);
1054
1055 end_folio_read(folio, true, cur, iosize);
1056 cur = cur + iosize;
1057 pg_offset += iosize;
1058 continue;
1059 }
1060 /* the get_extent function already copied into the folio */
1061 if (block_start == EXTENT_MAP_INLINE) {
1062 end_folio_read(folio, true, cur, iosize);
1063 cur = cur + iosize;
1064 pg_offset += iosize;
1065 continue;
1066 }
1067
1068 if (bio_ctrl->compress_type != compress_type) {
1069 submit_one_bio(bio_ctrl);
1070 bio_ctrl->compress_type = compress_type;
1071 }
1072
1073 if (force_bio_submit)
1074 submit_one_bio(bio_ctrl);
1075 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1076 pg_offset);
1077 cur = cur + iosize;
1078 pg_offset += iosize;
1079 }
1080
1081 return 0;
1082}
1083
1084int btrfs_read_folio(struct file *file, struct folio *folio)
1085{
1086 struct btrfs_inode *inode = folio_to_inode(folio);
1087 const u64 start = folio_pos(folio);
1088 const u64 end = start + folio_size(folio) - 1;
1089 struct extent_state *cached_state = NULL;
1090 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091 struct extent_map *em_cached = NULL;
1092 int ret;
1093
1094 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1095 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1096 unlock_extent(&inode->io_tree, start, end, &cached_state);
1097
1098 free_extent_map(em_cached);
1099
1100 /*
1101 * If btrfs_do_readpage() failed we will want to submit the assembled
1102 * bio to do the cleanup.
1103 */
1104 submit_one_bio(&bio_ctrl);
1105 return ret;
1106}
1107
1108static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1109 u64 start, u32 len)
1110{
1111 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1112 const u64 folio_start = folio_pos(folio);
1113 unsigned int start_bit;
1114 unsigned int nbits;
1115
1116 ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1117 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1118 nbits = len >> fs_info->sectorsize_bits;
1119 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1120 bitmap_set(delalloc_bitmap, start_bit, nbits);
1121}
1122
1123static bool find_next_delalloc_bitmap(struct folio *folio,
1124 unsigned long *delalloc_bitmap, u64 start,
1125 u64 *found_start, u32 *found_len)
1126{
1127 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1128 const u64 folio_start = folio_pos(folio);
1129 const unsigned int bitmap_size = fs_info->sectors_per_page;
1130 unsigned int start_bit;
1131 unsigned int first_zero;
1132 unsigned int first_set;
1133
1134 ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1135
1136 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1137 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1138 if (first_set >= bitmap_size)
1139 return false;
1140
1141 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1142 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1143 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1144 return true;
1145}
1146
1147/*
1148 * Do all of the delayed allocation setup.
1149 *
1150 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1151 * The @folio should no longer be touched (treat it as already unlocked).
1152 *
1153 * Return 0 if there is still dirty block that needs to be submitted through
1154 * extent_writepage_io().
1155 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1156 * submitted, and @folio is still kept locked.
1157 *
1158 * Return <0 if there is any error hit.
1159 * Any allocated ordered extent range covering this folio will be marked
1160 * finished (IOERR), and @folio is still kept locked.
1161 */
1162static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163 struct folio *folio,
1164 struct btrfs_bio_ctrl *bio_ctrl)
1165{
1166 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1167 struct writeback_control *wbc = bio_ctrl->wbc;
1168 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1169 const u64 page_start = folio_pos(folio);
1170 const u64 page_end = page_start + folio_size(folio) - 1;
1171 unsigned long delalloc_bitmap = 0;
1172 /*
1173 * Save the last found delalloc end. As the delalloc end can go beyond
1174 * page boundary, thus we cannot rely on subpage bitmap to locate the
1175 * last delalloc end.
1176 */
1177 u64 last_delalloc_end = 0;
1178 /*
1179 * The range end (exclusive) of the last successfully finished delalloc
1180 * range.
1181 * Any range covered by ordered extent must either be manually marked
1182 * finished (error handling), or has IO submitted (and finish the
1183 * ordered extent normally).
1184 *
1185 * This records the end of ordered extent cleanup if we hit an error.
1186 */
1187 u64 last_finished_delalloc_end = page_start;
1188 u64 delalloc_start = page_start;
1189 u64 delalloc_end = page_end;
1190 u64 delalloc_to_write = 0;
1191 int ret = 0;
1192 int bit;
1193
1194 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1195 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1196 ASSERT(fs_info->sectors_per_page > 1);
1197 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1198 } else {
1199 bio_ctrl->submit_bitmap = 1;
1200 }
1201
1202 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1203 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1204
1205 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1206 }
1207
1208 /* Lock all (subpage) delalloc ranges inside the folio first. */
1209 while (delalloc_start < page_end) {
1210 delalloc_end = page_end;
1211 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1212 &delalloc_start, &delalloc_end)) {
1213 delalloc_start = delalloc_end + 1;
1214 continue;
1215 }
1216 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1217 min(delalloc_end, page_end) + 1 - delalloc_start);
1218 last_delalloc_end = delalloc_end;
1219 delalloc_start = delalloc_end + 1;
1220 }
1221 delalloc_start = page_start;
1222
1223 if (!last_delalloc_end)
1224 goto out;
1225
1226 /* Run the delalloc ranges for the above locked ranges. */
1227 while (delalloc_start < page_end) {
1228 u64 found_start;
1229 u32 found_len;
1230 bool found;
1231
1232 if (!is_subpage) {
1233 /*
1234 * For non-subpage case, the found delalloc range must
1235 * cover this folio and there must be only one locked
1236 * delalloc range.
1237 */
1238 found_start = page_start;
1239 found_len = last_delalloc_end + 1 - found_start;
1240 found = true;
1241 } else {
1242 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1243 delalloc_start, &found_start, &found_len);
1244 }
1245 if (!found)
1246 break;
1247 /*
1248 * The subpage range covers the last sector, the delalloc range may
1249 * end beyond the folio boundary, use the saved delalloc_end
1250 * instead.
1251 */
1252 if (found_start + found_len >= page_end)
1253 found_len = last_delalloc_end + 1 - found_start;
1254
1255 if (ret >= 0) {
1256 /*
1257 * Some delalloc range may be created by previous folios.
1258 * Thus we still need to clean up this range during error
1259 * handling.
1260 */
1261 last_finished_delalloc_end = found_start;
1262 /* No errors hit so far, run the current delalloc range. */
1263 ret = btrfs_run_delalloc_range(inode, folio,
1264 found_start,
1265 found_start + found_len - 1,
1266 wbc);
1267 if (ret >= 0)
1268 last_finished_delalloc_end = found_start + found_len;
1269 } else {
1270 /*
1271 * We've hit an error during previous delalloc range,
1272 * have to cleanup the remaining locked ranges.
1273 */
1274 unlock_extent(&inode->io_tree, found_start,
1275 found_start + found_len - 1, NULL);
1276 __unlock_for_delalloc(&inode->vfs_inode, folio,
1277 found_start,
1278 found_start + found_len - 1);
1279 }
1280
1281 /*
1282 * We have some ranges that's going to be submitted asynchronously
1283 * (compression or inline). These range have their own control
1284 * on when to unlock the pages. We should not touch them
1285 * anymore, so clear the range from the submission bitmap.
1286 */
1287 if (ret > 0) {
1288 unsigned int start_bit = (found_start - page_start) >>
1289 fs_info->sectorsize_bits;
1290 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1291 page_start) >> fs_info->sectorsize_bits;
1292 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1293 }
1294 /*
1295 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1296 * thus for the last range, we cannot touch the folio anymore.
1297 */
1298 if (found_start + found_len >= last_delalloc_end + 1)
1299 break;
1300
1301 delalloc_start = found_start + found_len;
1302 }
1303 /*
1304 * It's possible we had some ordered extents created before we hit
1305 * an error, cleanup non-async successfully created delalloc ranges.
1306 */
1307 if (unlikely(ret < 0)) {
1308 unsigned int bitmap_size = min(
1309 (last_finished_delalloc_end - page_start) >>
1310 fs_info->sectorsize_bits,
1311 fs_info->sectors_per_page);
1312
1313 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1314 btrfs_mark_ordered_io_finished(inode, folio,
1315 page_start + (bit << fs_info->sectorsize_bits),
1316 fs_info->sectorsize, false);
1317 return ret;
1318 }
1319out:
1320 if (last_delalloc_end)
1321 delalloc_end = last_delalloc_end;
1322 else
1323 delalloc_end = page_end;
1324 /*
1325 * delalloc_end is already one less than the total length, so
1326 * we don't subtract one from PAGE_SIZE
1327 */
1328 delalloc_to_write +=
1329 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1330
1331 /*
1332 * If all ranges are submitted asynchronously, we just need to account
1333 * for them here.
1334 */
1335 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1336 wbc->nr_to_write -= delalloc_to_write;
1337 return 1;
1338 }
1339
1340 if (wbc->nr_to_write < delalloc_to_write) {
1341 int thresh = 8192;
1342
1343 if (delalloc_to_write < thresh * 2)
1344 thresh = delalloc_to_write;
1345 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1346 thresh);
1347 }
1348
1349 return 0;
1350}
1351
1352/*
1353 * Return 0 if we have submitted or queued the sector for submission.
1354 * Return <0 for critical errors.
1355 *
1356 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1357 */
1358static int submit_one_sector(struct btrfs_inode *inode,
1359 struct folio *folio,
1360 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1361 loff_t i_size)
1362{
1363 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1364 struct extent_map *em;
1365 u64 block_start;
1366 u64 disk_bytenr;
1367 u64 extent_offset;
1368 u64 em_end;
1369 const u32 sectorsize = fs_info->sectorsize;
1370
1371 ASSERT(IS_ALIGNED(filepos, sectorsize));
1372
1373 /* @filepos >= i_size case should be handled by the caller. */
1374 ASSERT(filepos < i_size);
1375
1376 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1377 if (IS_ERR(em))
1378 return PTR_ERR_OR_ZERO(em);
1379
1380 extent_offset = filepos - em->start;
1381 em_end = extent_map_end(em);
1382 ASSERT(filepos <= em_end);
1383 ASSERT(IS_ALIGNED(em->start, sectorsize));
1384 ASSERT(IS_ALIGNED(em->len, sectorsize));
1385
1386 block_start = extent_map_block_start(em);
1387 disk_bytenr = extent_map_block_start(em) + extent_offset;
1388
1389 ASSERT(!extent_map_is_compressed(em));
1390 ASSERT(block_start != EXTENT_MAP_HOLE);
1391 ASSERT(block_start != EXTENT_MAP_INLINE);
1392
1393 free_extent_map(em);
1394 em = NULL;
1395
1396 /*
1397 * Although the PageDirty bit is cleared before entering this
1398 * function, subpage dirty bit is not cleared.
1399 * So clear subpage dirty bit here so next time we won't submit
1400 * a folio for a range already written to disk.
1401 */
1402 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1403 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1404 /*
1405 * Above call should set the whole folio with writeback flag, even
1406 * just for a single subpage sector.
1407 * As long as the folio is properly locked and the range is correct,
1408 * we should always get the folio with writeback flag.
1409 */
1410 ASSERT(folio_test_writeback(folio));
1411
1412 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1413 sectorsize, filepos - folio_pos(folio));
1414 return 0;
1415}
1416
1417/*
1418 * Helper for extent_writepage(). This calls the writepage start hooks,
1419 * and does the loop to map the page into extents and bios.
1420 *
1421 * We return 1 if the IO is started and the page is unlocked,
1422 * 0 if all went well (page still locked)
1423 * < 0 if there were errors (page still locked)
1424 */
1425static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1426 struct folio *folio,
1427 u64 start, u32 len,
1428 struct btrfs_bio_ctrl *bio_ctrl,
1429 loff_t i_size)
1430{
1431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432 unsigned long range_bitmap = 0;
1433 bool submitted_io = false;
1434 bool error = false;
1435 const u64 folio_start = folio_pos(folio);
1436 u64 cur;
1437 int bit;
1438 int ret = 0;
1439
1440 ASSERT(start >= folio_start &&
1441 start + len <= folio_start + folio_size(folio));
1442
1443 ret = btrfs_writepage_cow_fixup(folio);
1444 if (ret) {
1445 /* Fixup worker will requeue */
1446 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1447 folio_unlock(folio);
1448 return 1;
1449 }
1450
1451 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1452 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1453 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1454 fs_info->sectors_per_page);
1455
1456 bio_ctrl->end_io_func = end_bbio_data_write;
1457
1458 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1459 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1460
1461 if (cur >= i_size) {
1462 btrfs_mark_ordered_io_finished(inode, folio, cur,
1463 start + len - cur, true);
1464 /*
1465 * This range is beyond i_size, thus we don't need to
1466 * bother writing back.
1467 * But we still need to clear the dirty subpage bit, or
1468 * the next time the folio gets dirtied, we will try to
1469 * writeback the sectors with subpage dirty bits,
1470 * causing writeback without ordered extent.
1471 */
1472 btrfs_folio_clear_dirty(fs_info, folio, cur,
1473 start + len - cur);
1474 break;
1475 }
1476 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1477 if (unlikely(ret < 0)) {
1478 /*
1479 * bio_ctrl may contain a bio crossing several folios.
1480 * Submit it immediately so that the bio has a chance
1481 * to finish normally, other than marked as error.
1482 */
1483 submit_one_bio(bio_ctrl);
1484 /*
1485 * Failed to grab the extent map which should be very rare.
1486 * Since there is no bio submitted to finish the ordered
1487 * extent, we have to manually finish this sector.
1488 */
1489 btrfs_mark_ordered_io_finished(inode, folio, cur,
1490 fs_info->sectorsize, false);
1491 error = true;
1492 continue;
1493 }
1494 submitted_io = true;
1495 }
1496
1497 /*
1498 * If we didn't submitted any sector (>= i_size), folio dirty get
1499 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1500 * by folio_start_writeback() if the folio is not dirty).
1501 *
1502 * Here we set writeback and clear for the range. If the full folio
1503 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1504 *
1505 * If we hit any error, the corresponding sector will still be dirty
1506 * thus no need to clear PAGECACHE_TAG_DIRTY.
1507 */
1508 if (!submitted_io && !error) {
1509 btrfs_folio_set_writeback(fs_info, folio, start, len);
1510 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1511 }
1512 return ret;
1513}
1514
1515/*
1516 * the writepage semantics are similar to regular writepage. extent
1517 * records are inserted to lock ranges in the tree, and as dirty areas
1518 * are found, they are marked writeback. Then the lock bits are removed
1519 * and the end_io handler clears the writeback ranges
1520 *
1521 * Return 0 if everything goes well.
1522 * Return <0 for error.
1523 */
1524static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1525{
1526 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528 int ret;
1529 size_t pg_offset;
1530 loff_t i_size = i_size_read(&inode->vfs_inode);
1531 unsigned long end_index = i_size >> PAGE_SHIFT;
1532
1533 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1534
1535 WARN_ON(!folio_test_locked(folio));
1536
1537 pg_offset = offset_in_folio(folio, i_size);
1538 if (folio->index > end_index ||
1539 (folio->index == end_index && !pg_offset)) {
1540 folio_invalidate(folio, 0, folio_size(folio));
1541 folio_unlock(folio);
1542 return 0;
1543 }
1544
1545 if (folio->index == end_index)
1546 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1547
1548 /*
1549 * Default to unlock the whole folio.
1550 * The proper bitmap can only be initialized until writepage_delalloc().
1551 */
1552 bio_ctrl->submit_bitmap = (unsigned long)-1;
1553 ret = set_folio_extent_mapped(folio);
1554 if (ret < 0)
1555 goto done;
1556
1557 ret = writepage_delalloc(inode, folio, bio_ctrl);
1558 if (ret == 1)
1559 return 0;
1560 if (ret)
1561 goto done;
1562
1563 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1564 PAGE_SIZE, bio_ctrl, i_size);
1565 if (ret == 1)
1566 return 0;
1567
1568 bio_ctrl->wbc->nr_to_write--;
1569
1570done:
1571 if (ret < 0)
1572 mapping_set_error(folio->mapping, ret);
1573 /*
1574 * Only unlock ranges that are submitted. As there can be some async
1575 * submitted ranges inside the folio.
1576 */
1577 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1578 ASSERT(ret <= 0);
1579 return ret;
1580}
1581
1582void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1583{
1584 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1585 TASK_UNINTERRUPTIBLE);
1586}
1587
1588/*
1589 * Lock extent buffer status and pages for writeback.
1590 *
1591 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1592 * extent buffer is not dirty)
1593 * Return %true is the extent buffer is submitted to bio.
1594 */
1595static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1596 struct writeback_control *wbc)
1597{
1598 struct btrfs_fs_info *fs_info = eb->fs_info;
1599 bool ret = false;
1600
1601 btrfs_tree_lock(eb);
1602 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1603 btrfs_tree_unlock(eb);
1604 if (wbc->sync_mode != WB_SYNC_ALL)
1605 return false;
1606 wait_on_extent_buffer_writeback(eb);
1607 btrfs_tree_lock(eb);
1608 }
1609
1610 /*
1611 * We need to do this to prevent races in people who check if the eb is
1612 * under IO since we can end up having no IO bits set for a short period
1613 * of time.
1614 */
1615 spin_lock(&eb->refs_lock);
1616 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1617 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1618 spin_unlock(&eb->refs_lock);
1619 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1620 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1621 -eb->len,
1622 fs_info->dirty_metadata_batch);
1623 ret = true;
1624 } else {
1625 spin_unlock(&eb->refs_lock);
1626 }
1627 btrfs_tree_unlock(eb);
1628 return ret;
1629}
1630
1631static void set_btree_ioerr(struct extent_buffer *eb)
1632{
1633 struct btrfs_fs_info *fs_info = eb->fs_info;
1634
1635 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637 /*
1638 * A read may stumble upon this buffer later, make sure that it gets an
1639 * error and knows there was an error.
1640 */
1641 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1642
1643 /*
1644 * We need to set the mapping with the io error as well because a write
1645 * error will flip the file system readonly, and then syncfs() will
1646 * return a 0 because we are readonly if we don't modify the err seq for
1647 * the superblock.
1648 */
1649 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1650
1651 /*
1652 * If writeback for a btree extent that doesn't belong to a log tree
1653 * failed, increment the counter transaction->eb_write_errors.
1654 * We do this because while the transaction is running and before it's
1655 * committing (when we call filemap_fdata[write|wait]_range against
1656 * the btree inode), we might have
1657 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1658 * returns an error or an error happens during writeback, when we're
1659 * committing the transaction we wouldn't know about it, since the pages
1660 * can be no longer dirty nor marked anymore for writeback (if a
1661 * subsequent modification to the extent buffer didn't happen before the
1662 * transaction commit), which makes filemap_fdata[write|wait]_range not
1663 * able to find the pages which contain errors at transaction
1664 * commit time. So if this happens we must abort the transaction,
1665 * otherwise we commit a super block with btree roots that point to
1666 * btree nodes/leafs whose content on disk is invalid - either garbage
1667 * or the content of some node/leaf from a past generation that got
1668 * cowed or deleted and is no longer valid.
1669 *
1670 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1671 * not be enough - we need to distinguish between log tree extents vs
1672 * non-log tree extents, and the next filemap_fdatawait_range() call
1673 * will catch and clear such errors in the mapping - and that call might
1674 * be from a log sync and not from a transaction commit. Also, checking
1675 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1676 * not done and would not be reliable - the eb might have been released
1677 * from memory and reading it back again means that flag would not be
1678 * set (since it's a runtime flag, not persisted on disk).
1679 *
1680 * Using the flags below in the btree inode also makes us achieve the
1681 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1682 * writeback for all dirty pages and before filemap_fdatawait_range()
1683 * is called, the writeback for all dirty pages had already finished
1684 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1685 * filemap_fdatawait_range() would return success, as it could not know
1686 * that writeback errors happened (the pages were no longer tagged for
1687 * writeback).
1688 */
1689 switch (eb->log_index) {
1690 case -1:
1691 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1692 break;
1693 case 0:
1694 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1695 break;
1696 case 1:
1697 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1698 break;
1699 default:
1700 BUG(); /* unexpected, logic error */
1701 }
1702}
1703
1704/*
1705 * The endio specific version which won't touch any unsafe spinlock in endio
1706 * context.
1707 */
1708static struct extent_buffer *find_extent_buffer_nolock(
1709 const struct btrfs_fs_info *fs_info, u64 start)
1710{
1711 struct extent_buffer *eb;
1712
1713 rcu_read_lock();
1714 eb = radix_tree_lookup(&fs_info->buffer_radix,
1715 start >> fs_info->sectorsize_bits);
1716 if (eb && atomic_inc_not_zero(&eb->refs)) {
1717 rcu_read_unlock();
1718 return eb;
1719 }
1720 rcu_read_unlock();
1721 return NULL;
1722}
1723
1724static void end_bbio_meta_write(struct btrfs_bio *bbio)
1725{
1726 struct extent_buffer *eb = bbio->private;
1727 struct btrfs_fs_info *fs_info = eb->fs_info;
1728 bool uptodate = !bbio->bio.bi_status;
1729 struct folio_iter fi;
1730 u32 bio_offset = 0;
1731
1732 if (!uptodate)
1733 set_btree_ioerr(eb);
1734
1735 bio_for_each_folio_all(fi, &bbio->bio) {
1736 u64 start = eb->start + bio_offset;
1737 struct folio *folio = fi.folio;
1738 u32 len = fi.length;
1739
1740 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1741 bio_offset += len;
1742 }
1743
1744 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1745 smp_mb__after_atomic();
1746 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1747
1748 bio_put(&bbio->bio);
1749}
1750
1751static void prepare_eb_write(struct extent_buffer *eb)
1752{
1753 u32 nritems;
1754 unsigned long start;
1755 unsigned long end;
1756
1757 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1758
1759 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1760 nritems = btrfs_header_nritems(eb);
1761 if (btrfs_header_level(eb) > 0) {
1762 end = btrfs_node_key_ptr_offset(eb, nritems);
1763 memzero_extent_buffer(eb, end, eb->len - end);
1764 } else {
1765 /*
1766 * Leaf:
1767 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1768 */
1769 start = btrfs_item_nr_offset(eb, nritems);
1770 end = btrfs_item_nr_offset(eb, 0);
1771 if (nritems == 0)
1772 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1773 else
1774 end += btrfs_item_offset(eb, nritems - 1);
1775 memzero_extent_buffer(eb, start, end - start);
1776 }
1777}
1778
1779static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1780 struct writeback_control *wbc)
1781{
1782 struct btrfs_fs_info *fs_info = eb->fs_info;
1783 struct btrfs_bio *bbio;
1784
1785 prepare_eb_write(eb);
1786
1787 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1788 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1789 eb->fs_info, end_bbio_meta_write, eb);
1790 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1791 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1792 wbc_init_bio(wbc, &bbio->bio);
1793 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1794 bbio->file_offset = eb->start;
1795 if (fs_info->nodesize < PAGE_SIZE) {
1796 struct folio *folio = eb->folios[0];
1797 bool ret;
1798
1799 folio_lock(folio);
1800 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1801 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1802 eb->len)) {
1803 folio_clear_dirty_for_io(folio);
1804 wbc->nr_to_write--;
1805 }
1806 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1807 eb->start - folio_pos(folio));
1808 ASSERT(ret);
1809 wbc_account_cgroup_owner(wbc, folio, eb->len);
1810 folio_unlock(folio);
1811 } else {
1812 int num_folios = num_extent_folios(eb);
1813
1814 for (int i = 0; i < num_folios; i++) {
1815 struct folio *folio = eb->folios[i];
1816 bool ret;
1817
1818 folio_lock(folio);
1819 folio_clear_dirty_for_io(folio);
1820 folio_start_writeback(folio);
1821 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1822 ASSERT(ret);
1823 wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1824 wbc->nr_to_write -= folio_nr_pages(folio);
1825 folio_unlock(folio);
1826 }
1827 }
1828 btrfs_submit_bbio(bbio, 0);
1829}
1830
1831/*
1832 * Submit one subpage btree page.
1833 *
1834 * The main difference to submit_eb_page() is:
1835 * - Page locking
1836 * For subpage, we don't rely on page locking at all.
1837 *
1838 * - Flush write bio
1839 * We only flush bio if we may be unable to fit current extent buffers into
1840 * current bio.
1841 *
1842 * Return >=0 for the number of submitted extent buffers.
1843 * Return <0 for fatal error.
1844 */
1845static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1846{
1847 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1848 int submitted = 0;
1849 u64 folio_start = folio_pos(folio);
1850 int bit_start = 0;
1851 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1852
1853 /* Lock and write each dirty extent buffers in the range */
1854 while (bit_start < fs_info->sectors_per_page) {
1855 struct btrfs_subpage *subpage = folio_get_private(folio);
1856 struct extent_buffer *eb;
1857 unsigned long flags;
1858 u64 start;
1859
1860 /*
1861 * Take private lock to ensure the subpage won't be detached
1862 * in the meantime.
1863 */
1864 spin_lock(&folio->mapping->i_private_lock);
1865 if (!folio_test_private(folio)) {
1866 spin_unlock(&folio->mapping->i_private_lock);
1867 break;
1868 }
1869 spin_lock_irqsave(&subpage->lock, flags);
1870 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1871 subpage->bitmaps)) {
1872 spin_unlock_irqrestore(&subpage->lock, flags);
1873 spin_unlock(&folio->mapping->i_private_lock);
1874 bit_start++;
1875 continue;
1876 }
1877
1878 start = folio_start + bit_start * fs_info->sectorsize;
1879 bit_start += sectors_per_node;
1880
1881 /*
1882 * Here we just want to grab the eb without touching extra
1883 * spin locks, so call find_extent_buffer_nolock().
1884 */
1885 eb = find_extent_buffer_nolock(fs_info, start);
1886 spin_unlock_irqrestore(&subpage->lock, flags);
1887 spin_unlock(&folio->mapping->i_private_lock);
1888
1889 /*
1890 * The eb has already reached 0 refs thus find_extent_buffer()
1891 * doesn't return it. We don't need to write back such eb
1892 * anyway.
1893 */
1894 if (!eb)
1895 continue;
1896
1897 if (lock_extent_buffer_for_io(eb, wbc)) {
1898 write_one_eb(eb, wbc);
1899 submitted++;
1900 }
1901 free_extent_buffer(eb);
1902 }
1903 return submitted;
1904}
1905
1906/*
1907 * Submit all page(s) of one extent buffer.
1908 *
1909 * @page: the page of one extent buffer
1910 * @eb_context: to determine if we need to submit this page, if current page
1911 * belongs to this eb, we don't need to submit
1912 *
1913 * The caller should pass each page in their bytenr order, and here we use
1914 * @eb_context to determine if we have submitted pages of one extent buffer.
1915 *
1916 * If we have, we just skip until we hit a new page that doesn't belong to
1917 * current @eb_context.
1918 *
1919 * If not, we submit all the page(s) of the extent buffer.
1920 *
1921 * Return >0 if we have submitted the extent buffer successfully.
1922 * Return 0 if we don't need to submit the page, as it's already submitted by
1923 * previous call.
1924 * Return <0 for fatal error.
1925 */
1926static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1927{
1928 struct writeback_control *wbc = ctx->wbc;
1929 struct address_space *mapping = folio->mapping;
1930 struct extent_buffer *eb;
1931 int ret;
1932
1933 if (!folio_test_private(folio))
1934 return 0;
1935
1936 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1937 return submit_eb_subpage(folio, wbc);
1938
1939 spin_lock(&mapping->i_private_lock);
1940 if (!folio_test_private(folio)) {
1941 spin_unlock(&mapping->i_private_lock);
1942 return 0;
1943 }
1944
1945 eb = folio_get_private(folio);
1946
1947 /*
1948 * Shouldn't happen and normally this would be a BUG_ON but no point
1949 * crashing the machine for something we can survive anyway.
1950 */
1951 if (WARN_ON(!eb)) {
1952 spin_unlock(&mapping->i_private_lock);
1953 return 0;
1954 }
1955
1956 if (eb == ctx->eb) {
1957 spin_unlock(&mapping->i_private_lock);
1958 return 0;
1959 }
1960 ret = atomic_inc_not_zero(&eb->refs);
1961 spin_unlock(&mapping->i_private_lock);
1962 if (!ret)
1963 return 0;
1964
1965 ctx->eb = eb;
1966
1967 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1968 if (ret) {
1969 if (ret == -EBUSY)
1970 ret = 0;
1971 free_extent_buffer(eb);
1972 return ret;
1973 }
1974
1975 if (!lock_extent_buffer_for_io(eb, wbc)) {
1976 free_extent_buffer(eb);
1977 return 0;
1978 }
1979 /* Implies write in zoned mode. */
1980 if (ctx->zoned_bg) {
1981 /* Mark the last eb in the block group. */
1982 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1983 ctx->zoned_bg->meta_write_pointer += eb->len;
1984 }
1985 write_one_eb(eb, wbc);
1986 free_extent_buffer(eb);
1987 return 1;
1988}
1989
1990int btree_write_cache_pages(struct address_space *mapping,
1991 struct writeback_control *wbc)
1992{
1993 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1994 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1995 int ret = 0;
1996 int done = 0;
1997 int nr_to_write_done = 0;
1998 struct folio_batch fbatch;
1999 unsigned int nr_folios;
2000 pgoff_t index;
2001 pgoff_t end; /* Inclusive */
2002 int scanned = 0;
2003 xa_mark_t tag;
2004
2005 folio_batch_init(&fbatch);
2006 if (wbc->range_cyclic) {
2007 index = mapping->writeback_index; /* Start from prev offset */
2008 end = -1;
2009 /*
2010 * Start from the beginning does not need to cycle over the
2011 * range, mark it as scanned.
2012 */
2013 scanned = (index == 0);
2014 } else {
2015 index = wbc->range_start >> PAGE_SHIFT;
2016 end = wbc->range_end >> PAGE_SHIFT;
2017 scanned = 1;
2018 }
2019 if (wbc->sync_mode == WB_SYNC_ALL)
2020 tag = PAGECACHE_TAG_TOWRITE;
2021 else
2022 tag = PAGECACHE_TAG_DIRTY;
2023 btrfs_zoned_meta_io_lock(fs_info);
2024retry:
2025 if (wbc->sync_mode == WB_SYNC_ALL)
2026 tag_pages_for_writeback(mapping, index, end);
2027 while (!done && !nr_to_write_done && (index <= end) &&
2028 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2029 tag, &fbatch))) {
2030 unsigned i;
2031
2032 for (i = 0; i < nr_folios; i++) {
2033 struct folio *folio = fbatch.folios[i];
2034
2035 ret = submit_eb_page(folio, &ctx);
2036 if (ret == 0)
2037 continue;
2038 if (ret < 0) {
2039 done = 1;
2040 break;
2041 }
2042
2043 /*
2044 * the filesystem may choose to bump up nr_to_write.
2045 * We have to make sure to honor the new nr_to_write
2046 * at any time
2047 */
2048 nr_to_write_done = wbc->nr_to_write <= 0;
2049 }
2050 folio_batch_release(&fbatch);
2051 cond_resched();
2052 }
2053 if (!scanned && !done) {
2054 /*
2055 * We hit the last page and there is more work to be done: wrap
2056 * back to the start of the file
2057 */
2058 scanned = 1;
2059 index = 0;
2060 goto retry;
2061 }
2062 /*
2063 * If something went wrong, don't allow any metadata write bio to be
2064 * submitted.
2065 *
2066 * This would prevent use-after-free if we had dirty pages not
2067 * cleaned up, which can still happen by fuzzed images.
2068 *
2069 * - Bad extent tree
2070 * Allowing existing tree block to be allocated for other trees.
2071 *
2072 * - Log tree operations
2073 * Exiting tree blocks get allocated to log tree, bumps its
2074 * generation, then get cleaned in tree re-balance.
2075 * Such tree block will not be written back, since it's clean,
2076 * thus no WRITTEN flag set.
2077 * And after log writes back, this tree block is not traced by
2078 * any dirty extent_io_tree.
2079 *
2080 * - Offending tree block gets re-dirtied from its original owner
2081 * Since it has bumped generation, no WRITTEN flag, it can be
2082 * reused without COWing. This tree block will not be traced
2083 * by btrfs_transaction::dirty_pages.
2084 *
2085 * Now such dirty tree block will not be cleaned by any dirty
2086 * extent io tree. Thus we don't want to submit such wild eb
2087 * if the fs already has error.
2088 *
2089 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2090 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2091 */
2092 if (ret > 0)
2093 ret = 0;
2094 if (!ret && BTRFS_FS_ERROR(fs_info))
2095 ret = -EROFS;
2096
2097 if (ctx.zoned_bg)
2098 btrfs_put_block_group(ctx.zoned_bg);
2099 btrfs_zoned_meta_io_unlock(fs_info);
2100 return ret;
2101}
2102
2103/*
2104 * Walk the list of dirty pages of the given address space and write all of them.
2105 *
2106 * @mapping: address space structure to write
2107 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2108 * @bio_ctrl: holds context for the write, namely the bio
2109 *
2110 * If a page is already under I/O, write_cache_pages() skips it, even
2111 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2112 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2113 * and msync() need to guarantee that all the data which was dirty at the time
2114 * the call was made get new I/O started against them. If wbc->sync_mode is
2115 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2116 * existing IO to complete.
2117 */
2118static int extent_write_cache_pages(struct address_space *mapping,
2119 struct btrfs_bio_ctrl *bio_ctrl)
2120{
2121 struct writeback_control *wbc = bio_ctrl->wbc;
2122 struct inode *inode = mapping->host;
2123 int ret = 0;
2124 int done = 0;
2125 int nr_to_write_done = 0;
2126 struct folio_batch fbatch;
2127 unsigned int nr_folios;
2128 pgoff_t index;
2129 pgoff_t end; /* Inclusive */
2130 pgoff_t done_index;
2131 int range_whole = 0;
2132 int scanned = 0;
2133 xa_mark_t tag;
2134
2135 /*
2136 * We have to hold onto the inode so that ordered extents can do their
2137 * work when the IO finishes. The alternative to this is failing to add
2138 * an ordered extent if the igrab() fails there and that is a huge pain
2139 * to deal with, so instead just hold onto the inode throughout the
2140 * writepages operation. If it fails here we are freeing up the inode
2141 * anyway and we'd rather not waste our time writing out stuff that is
2142 * going to be truncated anyway.
2143 */
2144 if (!igrab(inode))
2145 return 0;
2146
2147 folio_batch_init(&fbatch);
2148 if (wbc->range_cyclic) {
2149 index = mapping->writeback_index; /* Start from prev offset */
2150 end = -1;
2151 /*
2152 * Start from the beginning does not need to cycle over the
2153 * range, mark it as scanned.
2154 */
2155 scanned = (index == 0);
2156 } else {
2157 index = wbc->range_start >> PAGE_SHIFT;
2158 end = wbc->range_end >> PAGE_SHIFT;
2159 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2160 range_whole = 1;
2161 scanned = 1;
2162 }
2163
2164 /*
2165 * We do the tagged writepage as long as the snapshot flush bit is set
2166 * and we are the first one who do the filemap_flush() on this inode.
2167 *
2168 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2169 * not race in and drop the bit.
2170 */
2171 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2172 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2173 &BTRFS_I(inode)->runtime_flags))
2174 wbc->tagged_writepages = 1;
2175
2176 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177 tag = PAGECACHE_TAG_TOWRITE;
2178 else
2179 tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182 tag_pages_for_writeback(mapping, index, end);
2183 done_index = index;
2184 while (!done && !nr_to_write_done && (index <= end) &&
2185 (nr_folios = filemap_get_folios_tag(mapping, &index,
2186 end, tag, &fbatch))) {
2187 unsigned i;
2188
2189 for (i = 0; i < nr_folios; i++) {
2190 struct folio *folio = fbatch.folios[i];
2191
2192 done_index = folio_next_index(folio);
2193 /*
2194 * At this point we hold neither the i_pages lock nor
2195 * the page lock: the page may be truncated or
2196 * invalidated (changing page->mapping to NULL),
2197 * or even swizzled back from swapper_space to
2198 * tmpfs file mapping
2199 */
2200 if (!folio_trylock(folio)) {
2201 submit_write_bio(bio_ctrl, 0);
2202 folio_lock(folio);
2203 }
2204
2205 if (unlikely(folio->mapping != mapping)) {
2206 folio_unlock(folio);
2207 continue;
2208 }
2209
2210 if (!folio_test_dirty(folio)) {
2211 /* Someone wrote it for us. */
2212 folio_unlock(folio);
2213 continue;
2214 }
2215
2216 /*
2217 * For subpage case, compression can lead to mixed
2218 * writeback and dirty flags, e.g:
2219 * 0 32K 64K 96K 128K
2220 * | |//////||/////| |//|
2221 *
2222 * In above case, [32K, 96K) is asynchronously submitted
2223 * for compression, and [124K, 128K) needs to be written back.
2224 *
2225 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2226 * won't be submitted as the page still has writeback flag
2227 * and will be skipped in the next check.
2228 *
2229 * This mixed writeback and dirty case is only possible for
2230 * subpage case.
2231 *
2232 * TODO: Remove this check after migrating compression to
2233 * regular submission.
2234 */
2235 if (wbc->sync_mode != WB_SYNC_NONE ||
2236 btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2237 if (folio_test_writeback(folio))
2238 submit_write_bio(bio_ctrl, 0);
2239 folio_wait_writeback(folio);
2240 }
2241
2242 if (folio_test_writeback(folio) ||
2243 !folio_clear_dirty_for_io(folio)) {
2244 folio_unlock(folio);
2245 continue;
2246 }
2247
2248 ret = extent_writepage(folio, bio_ctrl);
2249 if (ret < 0) {
2250 done = 1;
2251 break;
2252 }
2253
2254 /*
2255 * The filesystem may choose to bump up nr_to_write.
2256 * We have to make sure to honor the new nr_to_write
2257 * at any time.
2258 */
2259 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2260 wbc->nr_to_write <= 0);
2261 }
2262 folio_batch_release(&fbatch);
2263 cond_resched();
2264 }
2265 if (!scanned && !done) {
2266 /*
2267 * We hit the last page and there is more work to be done: wrap
2268 * back to the start of the file
2269 */
2270 scanned = 1;
2271 index = 0;
2272
2273 /*
2274 * If we're looping we could run into a page that is locked by a
2275 * writer and that writer could be waiting on writeback for a
2276 * page in our current bio, and thus deadlock, so flush the
2277 * write bio here.
2278 */
2279 submit_write_bio(bio_ctrl, 0);
2280 goto retry;
2281 }
2282
2283 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2284 mapping->writeback_index = done_index;
2285
2286 btrfs_add_delayed_iput(BTRFS_I(inode));
2287 return ret;
2288}
2289
2290/*
2291 * Submit the pages in the range to bio for call sites which delalloc range has
2292 * already been ran (aka, ordered extent inserted) and all pages are still
2293 * locked.
2294 */
2295void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2296 u64 start, u64 end, struct writeback_control *wbc,
2297 bool pages_dirty)
2298{
2299 bool found_error = false;
2300 int ret = 0;
2301 struct address_space *mapping = inode->i_mapping;
2302 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2303 const u32 sectorsize = fs_info->sectorsize;
2304 loff_t i_size = i_size_read(inode);
2305 u64 cur = start;
2306 struct btrfs_bio_ctrl bio_ctrl = {
2307 .wbc = wbc,
2308 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2309 };
2310
2311 if (wbc->no_cgroup_owner)
2312 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2313
2314 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2315
2316 while (cur <= end) {
2317 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2318 u32 cur_len = cur_end + 1 - cur;
2319 struct folio *folio;
2320
2321 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2322
2323 /*
2324 * This shouldn't happen, the pages are pinned and locked, this
2325 * code is just in case, but shouldn't actually be run.
2326 */
2327 if (IS_ERR(folio)) {
2328 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2329 cur, cur_len, false);
2330 mapping_set_error(mapping, PTR_ERR(folio));
2331 cur = cur_end + 1;
2332 continue;
2333 }
2334
2335 ASSERT(folio_test_locked(folio));
2336 if (pages_dirty && folio != locked_folio)
2337 ASSERT(folio_test_dirty(folio));
2338
2339 /*
2340 * Set the submission bitmap to submit all sectors.
2341 * extent_writepage_io() will do the truncation correctly.
2342 */
2343 bio_ctrl.submit_bitmap = (unsigned long)-1;
2344 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2345 &bio_ctrl, i_size);
2346 if (ret == 1)
2347 goto next_page;
2348
2349 if (ret)
2350 mapping_set_error(mapping, ret);
2351 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2352 if (ret < 0)
2353 found_error = true;
2354next_page:
2355 folio_put(folio);
2356 cur = cur_end + 1;
2357 }
2358
2359 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2360}
2361
2362int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2363{
2364 struct inode *inode = mapping->host;
2365 int ret = 0;
2366 struct btrfs_bio_ctrl bio_ctrl = {
2367 .wbc = wbc,
2368 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2369 };
2370
2371 /*
2372 * Allow only a single thread to do the reloc work in zoned mode to
2373 * protect the write pointer updates.
2374 */
2375 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2376 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2377 submit_write_bio(&bio_ctrl, ret);
2378 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2379 return ret;
2380}
2381
2382void btrfs_readahead(struct readahead_control *rac)
2383{
2384 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2385 struct folio *folio;
2386 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2387 const u64 start = readahead_pos(rac);
2388 const u64 end = start + readahead_length(rac) - 1;
2389 struct extent_state *cached_state = NULL;
2390 struct extent_map *em_cached = NULL;
2391 u64 prev_em_start = (u64)-1;
2392
2393 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
2394
2395 while ((folio = readahead_folio(rac)) != NULL)
2396 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2397
2398 unlock_extent(&inode->io_tree, start, end, &cached_state);
2399
2400 if (em_cached)
2401 free_extent_map(em_cached);
2402 submit_one_bio(&bio_ctrl);
2403}
2404
2405/*
2406 * basic invalidate_folio code, this waits on any locked or writeback
2407 * ranges corresponding to the folio, and then deletes any extent state
2408 * records from the tree
2409 */
2410int extent_invalidate_folio(struct extent_io_tree *tree,
2411 struct folio *folio, size_t offset)
2412{
2413 struct extent_state *cached_state = NULL;
2414 u64 start = folio_pos(folio);
2415 u64 end = start + folio_size(folio) - 1;
2416 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2417
2418 /* This function is only called for the btree inode */
2419 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2420
2421 start += ALIGN(offset, blocksize);
2422 if (start > end)
2423 return 0;
2424
2425 lock_extent(tree, start, end, &cached_state);
2426 folio_wait_writeback(folio);
2427
2428 /*
2429 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2430 * so here we only need to unlock the extent range to free any
2431 * existing extent state.
2432 */
2433 unlock_extent(tree, start, end, &cached_state);
2434 return 0;
2435}
2436
2437/*
2438 * a helper for release_folio, this tests for areas of the page that
2439 * are locked or under IO and drops the related state bits if it is safe
2440 * to drop the page.
2441 */
2442static bool try_release_extent_state(struct extent_io_tree *tree,
2443 struct folio *folio)
2444{
2445 u64 start = folio_pos(folio);
2446 u64 end = start + PAGE_SIZE - 1;
2447 bool ret;
2448
2449 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2450 ret = false;
2451 } else {
2452 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2453 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2454 EXTENT_QGROUP_RESERVED);
2455 int ret2;
2456
2457 /*
2458 * At this point we can safely clear everything except the
2459 * locked bit, the nodatasum bit and the delalloc new bit.
2460 * The delalloc new bit will be cleared by ordered extent
2461 * completion.
2462 */
2463 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2464
2465 /* if clear_extent_bit failed for enomem reasons,
2466 * we can't allow the release to continue.
2467 */
2468 if (ret2 < 0)
2469 ret = false;
2470 else
2471 ret = true;
2472 }
2473 return ret;
2474}
2475
2476/*
2477 * a helper for release_folio. As long as there are no locked extents
2478 * in the range corresponding to the page, both state records and extent
2479 * map records are removed
2480 */
2481bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2482{
2483 u64 start = folio_pos(folio);
2484 u64 end = start + PAGE_SIZE - 1;
2485 struct btrfs_inode *inode = folio_to_inode(folio);
2486 struct extent_io_tree *io_tree = &inode->io_tree;
2487
2488 while (start <= end) {
2489 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2490 const u64 len = end - start + 1;
2491 struct extent_map_tree *extent_tree = &inode->extent_tree;
2492 struct extent_map *em;
2493
2494 write_lock(&extent_tree->lock);
2495 em = lookup_extent_mapping(extent_tree, start, len);
2496 if (!em) {
2497 write_unlock(&extent_tree->lock);
2498 break;
2499 }
2500 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2501 write_unlock(&extent_tree->lock);
2502 free_extent_map(em);
2503 break;
2504 }
2505 if (test_range_bit_exists(io_tree, em->start,
2506 extent_map_end(em) - 1, EXTENT_LOCKED))
2507 goto next;
2508 /*
2509 * If it's not in the list of modified extents, used by a fast
2510 * fsync, we can remove it. If it's being logged we can safely
2511 * remove it since fsync took an extra reference on the em.
2512 */
2513 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2514 goto remove_em;
2515 /*
2516 * If it's in the list of modified extents, remove it only if
2517 * its generation is older then the current one, in which case
2518 * we don't need it for a fast fsync. Otherwise don't remove it,
2519 * we could be racing with an ongoing fast fsync that could miss
2520 * the new extent.
2521 */
2522 if (em->generation >= cur_gen)
2523 goto next;
2524remove_em:
2525 /*
2526 * We only remove extent maps that are not in the list of
2527 * modified extents or that are in the list but with a
2528 * generation lower then the current generation, so there is no
2529 * need to set the full fsync flag on the inode (it hurts the
2530 * fsync performance for workloads with a data size that exceeds
2531 * or is close to the system's memory).
2532 */
2533 remove_extent_mapping(inode, em);
2534 /* Once for the inode's extent map tree. */
2535 free_extent_map(em);
2536next:
2537 start = extent_map_end(em);
2538 write_unlock(&extent_tree->lock);
2539
2540 /* Once for us, for the lookup_extent_mapping() reference. */
2541 free_extent_map(em);
2542
2543 if (need_resched()) {
2544 /*
2545 * If we need to resched but we can't block just exit
2546 * and leave any remaining extent maps.
2547 */
2548 if (!gfpflags_allow_blocking(mask))
2549 break;
2550
2551 cond_resched();
2552 }
2553 }
2554 return try_release_extent_state(io_tree, folio);
2555}
2556
2557static void __free_extent_buffer(struct extent_buffer *eb)
2558{
2559 kmem_cache_free(extent_buffer_cache, eb);
2560}
2561
2562static int extent_buffer_under_io(const struct extent_buffer *eb)
2563{
2564 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2565 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2566}
2567
2568static bool folio_range_has_eb(struct folio *folio)
2569{
2570 struct btrfs_subpage *subpage;
2571
2572 lockdep_assert_held(&folio->mapping->i_private_lock);
2573
2574 if (folio_test_private(folio)) {
2575 subpage = folio_get_private(folio);
2576 if (atomic_read(&subpage->eb_refs))
2577 return true;
2578 }
2579 return false;
2580}
2581
2582static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2583{
2584 struct btrfs_fs_info *fs_info = eb->fs_info;
2585 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2586
2587 /*
2588 * For mapped eb, we're going to change the folio private, which should
2589 * be done under the i_private_lock.
2590 */
2591 if (mapped)
2592 spin_lock(&folio->mapping->i_private_lock);
2593
2594 if (!folio_test_private(folio)) {
2595 if (mapped)
2596 spin_unlock(&folio->mapping->i_private_lock);
2597 return;
2598 }
2599
2600 if (fs_info->nodesize >= PAGE_SIZE) {
2601 /*
2602 * We do this since we'll remove the pages after we've
2603 * removed the eb from the radix tree, so we could race
2604 * and have this page now attached to the new eb. So
2605 * only clear folio if it's still connected to
2606 * this eb.
2607 */
2608 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2609 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2610 BUG_ON(folio_test_dirty(folio));
2611 BUG_ON(folio_test_writeback(folio));
2612 /* We need to make sure we haven't be attached to a new eb. */
2613 folio_detach_private(folio);
2614 }
2615 if (mapped)
2616 spin_unlock(&folio->mapping->i_private_lock);
2617 return;
2618 }
2619
2620 /*
2621 * For subpage, we can have dummy eb with folio private attached. In
2622 * this case, we can directly detach the private as such folio is only
2623 * attached to one dummy eb, no sharing.
2624 */
2625 if (!mapped) {
2626 btrfs_detach_subpage(fs_info, folio);
2627 return;
2628 }
2629
2630 btrfs_folio_dec_eb_refs(fs_info, folio);
2631
2632 /*
2633 * We can only detach the folio private if there are no other ebs in the
2634 * page range and no unfinished IO.
2635 */
2636 if (!folio_range_has_eb(folio))
2637 btrfs_detach_subpage(fs_info, folio);
2638
2639 spin_unlock(&folio->mapping->i_private_lock);
2640}
2641
2642/* Release all pages attached to the extent buffer */
2643static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2644{
2645 ASSERT(!extent_buffer_under_io(eb));
2646
2647 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2648 struct folio *folio = eb->folios[i];
2649
2650 if (!folio)
2651 continue;
2652
2653 detach_extent_buffer_folio(eb, folio);
2654
2655 /* One for when we allocated the folio. */
2656 folio_put(folio);
2657 }
2658}
2659
2660/*
2661 * Helper for releasing the extent buffer.
2662 */
2663static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2664{
2665 btrfs_release_extent_buffer_pages(eb);
2666 btrfs_leak_debug_del_eb(eb);
2667 __free_extent_buffer(eb);
2668}
2669
2670static struct extent_buffer *
2671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2672 unsigned long len)
2673{
2674 struct extent_buffer *eb = NULL;
2675
2676 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2677 eb->start = start;
2678 eb->len = len;
2679 eb->fs_info = fs_info;
2680 init_rwsem(&eb->lock);
2681
2682 btrfs_leak_debug_add_eb(eb);
2683
2684 spin_lock_init(&eb->refs_lock);
2685 atomic_set(&eb->refs, 1);
2686
2687 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2688
2689 return eb;
2690}
2691
2692struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2693{
2694 struct extent_buffer *new;
2695 int num_folios = num_extent_folios(src);
2696 int ret;
2697
2698 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2699 if (new == NULL)
2700 return NULL;
2701
2702 /*
2703 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2704 * btrfs_release_extent_buffer() have different behavior for
2705 * UNMAPPED subpage extent buffer.
2706 */
2707 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2708
2709 ret = alloc_eb_folio_array(new, false);
2710 if (ret) {
2711 btrfs_release_extent_buffer(new);
2712 return NULL;
2713 }
2714
2715 for (int i = 0; i < num_folios; i++) {
2716 struct folio *folio = new->folios[i];
2717
2718 ret = attach_extent_buffer_folio(new, folio, NULL);
2719 if (ret < 0) {
2720 btrfs_release_extent_buffer(new);
2721 return NULL;
2722 }
2723 WARN_ON(folio_test_dirty(folio));
2724 }
2725 copy_extent_buffer_full(new, src);
2726 set_extent_buffer_uptodate(new);
2727
2728 return new;
2729}
2730
2731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2732 u64 start, unsigned long len)
2733{
2734 struct extent_buffer *eb;
2735 int num_folios = 0;
2736 int ret;
2737
2738 eb = __alloc_extent_buffer(fs_info, start, len);
2739 if (!eb)
2740 return NULL;
2741
2742 ret = alloc_eb_folio_array(eb, false);
2743 if (ret)
2744 goto err;
2745
2746 num_folios = num_extent_folios(eb);
2747 for (int i = 0; i < num_folios; i++) {
2748 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2749 if (ret < 0)
2750 goto err;
2751 }
2752
2753 set_extent_buffer_uptodate(eb);
2754 btrfs_set_header_nritems(eb, 0);
2755 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2756
2757 return eb;
2758err:
2759 for (int i = 0; i < num_folios; i++) {
2760 if (eb->folios[i]) {
2761 detach_extent_buffer_folio(eb, eb->folios[i]);
2762 folio_put(eb->folios[i]);
2763 }
2764 }
2765 __free_extent_buffer(eb);
2766 return NULL;
2767}
2768
2769struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2770 u64 start)
2771{
2772 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2773}
2774
2775static void check_buffer_tree_ref(struct extent_buffer *eb)
2776{
2777 int refs;
2778 /*
2779 * The TREE_REF bit is first set when the extent_buffer is added
2780 * to the radix tree. It is also reset, if unset, when a new reference
2781 * is created by find_extent_buffer.
2782 *
2783 * It is only cleared in two cases: freeing the last non-tree
2784 * reference to the extent_buffer when its STALE bit is set or
2785 * calling release_folio when the tree reference is the only reference.
2786 *
2787 * In both cases, care is taken to ensure that the extent_buffer's
2788 * pages are not under io. However, release_folio can be concurrently
2789 * called with creating new references, which is prone to race
2790 * conditions between the calls to check_buffer_tree_ref in those
2791 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2792 *
2793 * The actual lifetime of the extent_buffer in the radix tree is
2794 * adequately protected by the refcount, but the TREE_REF bit and
2795 * its corresponding reference are not. To protect against this
2796 * class of races, we call check_buffer_tree_ref from the codepaths
2797 * which trigger io. Note that once io is initiated, TREE_REF can no
2798 * longer be cleared, so that is the moment at which any such race is
2799 * best fixed.
2800 */
2801 refs = atomic_read(&eb->refs);
2802 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2803 return;
2804
2805 spin_lock(&eb->refs_lock);
2806 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2807 atomic_inc(&eb->refs);
2808 spin_unlock(&eb->refs_lock);
2809}
2810
2811static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2812{
2813 int num_folios= num_extent_folios(eb);
2814
2815 check_buffer_tree_ref(eb);
2816
2817 for (int i = 0; i < num_folios; i++)
2818 folio_mark_accessed(eb->folios[i]);
2819}
2820
2821struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2822 u64 start)
2823{
2824 struct extent_buffer *eb;
2825
2826 eb = find_extent_buffer_nolock(fs_info, start);
2827 if (!eb)
2828 return NULL;
2829 /*
2830 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2831 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2832 * another task running free_extent_buffer() might have seen that flag
2833 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2834 * writeback flags not set) and it's still in the tree (flag
2835 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2836 * decrementing the extent buffer's reference count twice. So here we
2837 * could race and increment the eb's reference count, clear its stale
2838 * flag, mark it as dirty and drop our reference before the other task
2839 * finishes executing free_extent_buffer, which would later result in
2840 * an attempt to free an extent buffer that is dirty.
2841 */
2842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2843 spin_lock(&eb->refs_lock);
2844 spin_unlock(&eb->refs_lock);
2845 }
2846 mark_extent_buffer_accessed(eb);
2847 return eb;
2848}
2849
2850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2852 u64 start)
2853{
2854 struct extent_buffer *eb, *exists = NULL;
2855 int ret;
2856
2857 eb = find_extent_buffer(fs_info, start);
2858 if (eb)
2859 return eb;
2860 eb = alloc_dummy_extent_buffer(fs_info, start);
2861 if (!eb)
2862 return ERR_PTR(-ENOMEM);
2863 eb->fs_info = fs_info;
2864again:
2865 ret = radix_tree_preload(GFP_NOFS);
2866 if (ret) {
2867 exists = ERR_PTR(ret);
2868 goto free_eb;
2869 }
2870 spin_lock(&fs_info->buffer_lock);
2871 ret = radix_tree_insert(&fs_info->buffer_radix,
2872 start >> fs_info->sectorsize_bits, eb);
2873 spin_unlock(&fs_info->buffer_lock);
2874 radix_tree_preload_end();
2875 if (ret == -EEXIST) {
2876 exists = find_extent_buffer(fs_info, start);
2877 if (exists)
2878 goto free_eb;
2879 else
2880 goto again;
2881 }
2882 check_buffer_tree_ref(eb);
2883 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2884
2885 return eb;
2886free_eb:
2887 btrfs_release_extent_buffer(eb);
2888 return exists;
2889}
2890#endif
2891
2892static struct extent_buffer *grab_extent_buffer(
2893 struct btrfs_fs_info *fs_info, struct page *page)
2894{
2895 struct folio *folio = page_folio(page);
2896 struct extent_buffer *exists;
2897
2898 lockdep_assert_held(&page->mapping->i_private_lock);
2899
2900 /*
2901 * For subpage case, we completely rely on radix tree to ensure we
2902 * don't try to insert two ebs for the same bytenr. So here we always
2903 * return NULL and just continue.
2904 */
2905 if (fs_info->nodesize < PAGE_SIZE)
2906 return NULL;
2907
2908 /* Page not yet attached to an extent buffer */
2909 if (!folio_test_private(folio))
2910 return NULL;
2911
2912 /*
2913 * We could have already allocated an eb for this page and attached one
2914 * so lets see if we can get a ref on the existing eb, and if we can we
2915 * know it's good and we can just return that one, else we know we can
2916 * just overwrite folio private.
2917 */
2918 exists = folio_get_private(folio);
2919 if (atomic_inc_not_zero(&exists->refs))
2920 return exists;
2921
2922 WARN_ON(PageDirty(page));
2923 folio_detach_private(folio);
2924 return NULL;
2925}
2926
2927static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2928{
2929 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2930 btrfs_err(fs_info, "bad tree block start %llu", start);
2931 return -EINVAL;
2932 }
2933
2934 if (fs_info->nodesize < PAGE_SIZE &&
2935 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2936 btrfs_err(fs_info,
2937 "tree block crosses page boundary, start %llu nodesize %u",
2938 start, fs_info->nodesize);
2939 return -EINVAL;
2940 }
2941 if (fs_info->nodesize >= PAGE_SIZE &&
2942 !PAGE_ALIGNED(start)) {
2943 btrfs_err(fs_info,
2944 "tree block is not page aligned, start %llu nodesize %u",
2945 start, fs_info->nodesize);
2946 return -EINVAL;
2947 }
2948 if (!IS_ALIGNED(start, fs_info->nodesize) &&
2949 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2950 btrfs_warn(fs_info,
2951"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2952 start, fs_info->nodesize);
2953 }
2954 return 0;
2955}
2956
2957
2958/*
2959 * Return 0 if eb->folios[i] is attached to btree inode successfully.
2960 * Return >0 if there is already another extent buffer for the range,
2961 * and @found_eb_ret would be updated.
2962 * Return -EAGAIN if the filemap has an existing folio but with different size
2963 * than @eb.
2964 * The caller needs to free the existing folios and retry using the same order.
2965 */
2966static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2967 struct btrfs_subpage *prealloc,
2968 struct extent_buffer **found_eb_ret)
2969{
2970
2971 struct btrfs_fs_info *fs_info = eb->fs_info;
2972 struct address_space *mapping = fs_info->btree_inode->i_mapping;
2973 const unsigned long index = eb->start >> PAGE_SHIFT;
2974 struct folio *existing_folio = NULL;
2975 int ret;
2976
2977 ASSERT(found_eb_ret);
2978
2979 /* Caller should ensure the folio exists. */
2980 ASSERT(eb->folios[i]);
2981
2982retry:
2983 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2984 GFP_NOFS | __GFP_NOFAIL);
2985 if (!ret)
2986 goto finish;
2987
2988 existing_folio = filemap_lock_folio(mapping, index + i);
2989 /* The page cache only exists for a very short time, just retry. */
2990 if (IS_ERR(existing_folio)) {
2991 existing_folio = NULL;
2992 goto retry;
2993 }
2994
2995 /* For now, we should only have single-page folios for btree inode. */
2996 ASSERT(folio_nr_pages(existing_folio) == 1);
2997
2998 if (folio_size(existing_folio) != eb->folio_size) {
2999 folio_unlock(existing_folio);
3000 folio_put(existing_folio);
3001 return -EAGAIN;
3002 }
3003
3004finish:
3005 spin_lock(&mapping->i_private_lock);
3006 if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3007 /* We're going to reuse the existing page, can drop our folio now. */
3008 __free_page(folio_page(eb->folios[i], 0));
3009 eb->folios[i] = existing_folio;
3010 } else if (existing_folio) {
3011 struct extent_buffer *existing_eb;
3012
3013 existing_eb = grab_extent_buffer(fs_info,
3014 folio_page(existing_folio, 0));
3015 if (existing_eb) {
3016 /* The extent buffer still exists, we can use it directly. */
3017 *found_eb_ret = existing_eb;
3018 spin_unlock(&mapping->i_private_lock);
3019 folio_unlock(existing_folio);
3020 folio_put(existing_folio);
3021 return 1;
3022 }
3023 /* The extent buffer no longer exists, we can reuse the folio. */
3024 __free_page(folio_page(eb->folios[i], 0));
3025 eb->folios[i] = existing_folio;
3026 }
3027 eb->folio_size = folio_size(eb->folios[i]);
3028 eb->folio_shift = folio_shift(eb->folios[i]);
3029 /* Should not fail, as we have preallocated the memory. */
3030 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3031 ASSERT(!ret);
3032 /*
3033 * To inform we have an extra eb under allocation, so that
3034 * detach_extent_buffer_page() won't release the folio private when the
3035 * eb hasn't been inserted into radix tree yet.
3036 *
3037 * The ref will be decreased when the eb releases the page, in
3038 * detach_extent_buffer_page(). Thus needs no special handling in the
3039 * error path.
3040 */
3041 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3042 spin_unlock(&mapping->i_private_lock);
3043 return 0;
3044}
3045
3046struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3047 u64 start, u64 owner_root, int level)
3048{
3049 unsigned long len = fs_info->nodesize;
3050 int num_folios;
3051 int attached = 0;
3052 struct extent_buffer *eb;
3053 struct extent_buffer *existing_eb = NULL;
3054 struct btrfs_subpage *prealloc = NULL;
3055 u64 lockdep_owner = owner_root;
3056 bool page_contig = true;
3057 int uptodate = 1;
3058 int ret;
3059
3060 if (check_eb_alignment(fs_info, start))
3061 return ERR_PTR(-EINVAL);
3062
3063#if BITS_PER_LONG == 32
3064 if (start >= MAX_LFS_FILESIZE) {
3065 btrfs_err_rl(fs_info,
3066 "extent buffer %llu is beyond 32bit page cache limit", start);
3067 btrfs_err_32bit_limit(fs_info);
3068 return ERR_PTR(-EOVERFLOW);
3069 }
3070 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3071 btrfs_warn_32bit_limit(fs_info);
3072#endif
3073
3074 eb = find_extent_buffer(fs_info, start);
3075 if (eb)
3076 return eb;
3077
3078 eb = __alloc_extent_buffer(fs_info, start, len);
3079 if (!eb)
3080 return ERR_PTR(-ENOMEM);
3081
3082 /*
3083 * The reloc trees are just snapshots, so we need them to appear to be
3084 * just like any other fs tree WRT lockdep.
3085 */
3086 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3087 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3088
3089 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3090
3091 /*
3092 * Preallocate folio private for subpage case, so that we won't
3093 * allocate memory with i_private_lock nor page lock hold.
3094 *
3095 * The memory will be freed by attach_extent_buffer_page() or freed
3096 * manually if we exit earlier.
3097 */
3098 if (fs_info->nodesize < PAGE_SIZE) {
3099 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3100 if (IS_ERR(prealloc)) {
3101 ret = PTR_ERR(prealloc);
3102 goto out;
3103 }
3104 }
3105
3106reallocate:
3107 /* Allocate all pages first. */
3108 ret = alloc_eb_folio_array(eb, true);
3109 if (ret < 0) {
3110 btrfs_free_subpage(prealloc);
3111 goto out;
3112 }
3113
3114 num_folios = num_extent_folios(eb);
3115 /* Attach all pages to the filemap. */
3116 for (int i = 0; i < num_folios; i++) {
3117 struct folio *folio;
3118
3119 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3120 if (ret > 0) {
3121 ASSERT(existing_eb);
3122 goto out;
3123 }
3124
3125 /*
3126 * TODO: Special handling for a corner case where the order of
3127 * folios mismatch between the new eb and filemap.
3128 *
3129 * This happens when:
3130 *
3131 * - the new eb is using higher order folio
3132 *
3133 * - the filemap is still using 0-order folios for the range
3134 * This can happen at the previous eb allocation, and we don't
3135 * have higher order folio for the call.
3136 *
3137 * - the existing eb has already been freed
3138 *
3139 * In this case, we have to free the existing folios first, and
3140 * re-allocate using the same order.
3141 * Thankfully this is not going to happen yet, as we're still
3142 * using 0-order folios.
3143 */
3144 if (unlikely(ret == -EAGAIN)) {
3145 ASSERT(0);
3146 goto reallocate;
3147 }
3148 attached++;
3149
3150 /*
3151 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3152 * reliable, as we may choose to reuse the existing page cache
3153 * and free the allocated page.
3154 */
3155 folio = eb->folios[i];
3156 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3157
3158 /*
3159 * Check if the current page is physically contiguous with previous eb
3160 * page.
3161 * At this stage, either we allocated a large folio, thus @i
3162 * would only be 0, or we fall back to per-page allocation.
3163 */
3164 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3165 page_contig = false;
3166
3167 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3168 uptodate = 0;
3169
3170 /*
3171 * We can't unlock the pages just yet since the extent buffer
3172 * hasn't been properly inserted in the radix tree, this
3173 * opens a race with btree_release_folio which can free a page
3174 * while we are still filling in all pages for the buffer and
3175 * we could crash.
3176 */
3177 }
3178 if (uptodate)
3179 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3180 /* All pages are physically contiguous, can skip cross page handling. */
3181 if (page_contig)
3182 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3183again:
3184 ret = radix_tree_preload(GFP_NOFS);
3185 if (ret)
3186 goto out;
3187
3188 spin_lock(&fs_info->buffer_lock);
3189 ret = radix_tree_insert(&fs_info->buffer_radix,
3190 start >> fs_info->sectorsize_bits, eb);
3191 spin_unlock(&fs_info->buffer_lock);
3192 radix_tree_preload_end();
3193 if (ret == -EEXIST) {
3194 ret = 0;
3195 existing_eb = find_extent_buffer(fs_info, start);
3196 if (existing_eb)
3197 goto out;
3198 else
3199 goto again;
3200 }
3201 /* add one reference for the tree */
3202 check_buffer_tree_ref(eb);
3203 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3204
3205 /*
3206 * Now it's safe to unlock the pages because any calls to
3207 * btree_release_folio will correctly detect that a page belongs to a
3208 * live buffer and won't free them prematurely.
3209 */
3210 for (int i = 0; i < num_folios; i++)
3211 unlock_page(folio_page(eb->folios[i], 0));
3212 return eb;
3213
3214out:
3215 WARN_ON(!atomic_dec_and_test(&eb->refs));
3216
3217 /*
3218 * Any attached folios need to be detached before we unlock them. This
3219 * is because when we're inserting our new folios into the mapping, and
3220 * then attaching our eb to that folio. If we fail to insert our folio
3221 * we'll lookup the folio for that index, and grab that EB. We do not
3222 * want that to grab this eb, as we're getting ready to free it. So we
3223 * have to detach it first and then unlock it.
3224 *
3225 * We have to drop our reference and NULL it out here because in the
3226 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3227 * Below when we call btrfs_release_extent_buffer() we will call
3228 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3229 * case. If we left eb->folios[i] populated in the subpage case we'd
3230 * double put our reference and be super sad.
3231 */
3232 for (int i = 0; i < attached; i++) {
3233 ASSERT(eb->folios[i]);
3234 detach_extent_buffer_folio(eb, eb->folios[i]);
3235 unlock_page(folio_page(eb->folios[i], 0));
3236 folio_put(eb->folios[i]);
3237 eb->folios[i] = NULL;
3238 }
3239 /*
3240 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3241 * so it can be cleaned up without utilizing page->mapping.
3242 */
3243 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3244
3245 btrfs_release_extent_buffer(eb);
3246 if (ret < 0)
3247 return ERR_PTR(ret);
3248 ASSERT(existing_eb);
3249 return existing_eb;
3250}
3251
3252static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3253{
3254 struct extent_buffer *eb =
3255 container_of(head, struct extent_buffer, rcu_head);
3256
3257 __free_extent_buffer(eb);
3258}
3259
3260static int release_extent_buffer(struct extent_buffer *eb)
3261 __releases(&eb->refs_lock)
3262{
3263 lockdep_assert_held(&eb->refs_lock);
3264
3265 WARN_ON(atomic_read(&eb->refs) == 0);
3266 if (atomic_dec_and_test(&eb->refs)) {
3267 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3268 struct btrfs_fs_info *fs_info = eb->fs_info;
3269
3270 spin_unlock(&eb->refs_lock);
3271
3272 spin_lock(&fs_info->buffer_lock);
3273 radix_tree_delete(&fs_info->buffer_radix,
3274 eb->start >> fs_info->sectorsize_bits);
3275 spin_unlock(&fs_info->buffer_lock);
3276 } else {
3277 spin_unlock(&eb->refs_lock);
3278 }
3279
3280 btrfs_leak_debug_del_eb(eb);
3281 /* Should be safe to release our pages at this point */
3282 btrfs_release_extent_buffer_pages(eb);
3283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3284 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3285 __free_extent_buffer(eb);
3286 return 1;
3287 }
3288#endif
3289 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3290 return 1;
3291 }
3292 spin_unlock(&eb->refs_lock);
3293
3294 return 0;
3295}
3296
3297void free_extent_buffer(struct extent_buffer *eb)
3298{
3299 int refs;
3300 if (!eb)
3301 return;
3302
3303 refs = atomic_read(&eb->refs);
3304 while (1) {
3305 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3306 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3307 refs == 1))
3308 break;
3309 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3310 return;
3311 }
3312
3313 spin_lock(&eb->refs_lock);
3314 if (atomic_read(&eb->refs) == 2 &&
3315 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3316 !extent_buffer_under_io(eb) &&
3317 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3318 atomic_dec(&eb->refs);
3319
3320 /*
3321 * I know this is terrible, but it's temporary until we stop tracking
3322 * the uptodate bits and such for the extent buffers.
3323 */
3324 release_extent_buffer(eb);
3325}
3326
3327void free_extent_buffer_stale(struct extent_buffer *eb)
3328{
3329 if (!eb)
3330 return;
3331
3332 spin_lock(&eb->refs_lock);
3333 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3334
3335 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3336 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3337 atomic_dec(&eb->refs);
3338 release_extent_buffer(eb);
3339}
3340
3341static void btree_clear_folio_dirty(struct folio *folio)
3342{
3343 ASSERT(folio_test_dirty(folio));
3344 ASSERT(folio_test_locked(folio));
3345 folio_clear_dirty_for_io(folio);
3346 xa_lock_irq(&folio->mapping->i_pages);
3347 if (!folio_test_dirty(folio))
3348 __xa_clear_mark(&folio->mapping->i_pages,
3349 folio_index(folio), PAGECACHE_TAG_DIRTY);
3350 xa_unlock_irq(&folio->mapping->i_pages);
3351}
3352
3353static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3354{
3355 struct btrfs_fs_info *fs_info = eb->fs_info;
3356 struct folio *folio = eb->folios[0];
3357 bool last;
3358
3359 /* btree_clear_folio_dirty() needs page locked. */
3360 folio_lock(folio);
3361 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3362 if (last)
3363 btree_clear_folio_dirty(folio);
3364 folio_unlock(folio);
3365 WARN_ON(atomic_read(&eb->refs) == 0);
3366}
3367
3368void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3369 struct extent_buffer *eb)
3370{
3371 struct btrfs_fs_info *fs_info = eb->fs_info;
3372 int num_folios;
3373
3374 btrfs_assert_tree_write_locked(eb);
3375
3376 if (trans && btrfs_header_generation(eb) != trans->transid)
3377 return;
3378
3379 /*
3380 * Instead of clearing the dirty flag off of the buffer, mark it as
3381 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3382 * write-ordering in zoned mode, without the need to later re-dirty
3383 * the extent_buffer.
3384 *
3385 * The actual zeroout of the buffer will happen later in
3386 * btree_csum_one_bio.
3387 */
3388 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3389 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3390 return;
3391 }
3392
3393 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3394 return;
3395
3396 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3397 fs_info->dirty_metadata_batch);
3398
3399 if (eb->fs_info->nodesize < PAGE_SIZE)
3400 return clear_subpage_extent_buffer_dirty(eb);
3401
3402 num_folios = num_extent_folios(eb);
3403 for (int i = 0; i < num_folios; i++) {
3404 struct folio *folio = eb->folios[i];
3405
3406 if (!folio_test_dirty(folio))
3407 continue;
3408 folio_lock(folio);
3409 btree_clear_folio_dirty(folio);
3410 folio_unlock(folio);
3411 }
3412 WARN_ON(atomic_read(&eb->refs) == 0);
3413}
3414
3415void set_extent_buffer_dirty(struct extent_buffer *eb)
3416{
3417 int num_folios;
3418 bool was_dirty;
3419
3420 check_buffer_tree_ref(eb);
3421
3422 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3423
3424 num_folios = num_extent_folios(eb);
3425 WARN_ON(atomic_read(&eb->refs) == 0);
3426 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3427 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3428
3429 if (!was_dirty) {
3430 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3431
3432 /*
3433 * For subpage case, we can have other extent buffers in the
3434 * same page, and in clear_subpage_extent_buffer_dirty() we
3435 * have to clear page dirty without subpage lock held.
3436 * This can cause race where our page gets dirty cleared after
3437 * we just set it.
3438 *
3439 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3440 * its page for other reasons, we can use page lock to prevent
3441 * the above race.
3442 */
3443 if (subpage)
3444 lock_page(folio_page(eb->folios[0], 0));
3445 for (int i = 0; i < num_folios; i++)
3446 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3447 eb->start, eb->len);
3448 if (subpage)
3449 unlock_page(folio_page(eb->folios[0], 0));
3450 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3451 eb->len,
3452 eb->fs_info->dirty_metadata_batch);
3453 }
3454#ifdef CONFIG_BTRFS_DEBUG
3455 for (int i = 0; i < num_folios; i++)
3456 ASSERT(folio_test_dirty(eb->folios[i]));
3457#endif
3458}
3459
3460void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3461{
3462 struct btrfs_fs_info *fs_info = eb->fs_info;
3463 int num_folios = num_extent_folios(eb);
3464
3465 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3466 for (int i = 0; i < num_folios; i++) {
3467 struct folio *folio = eb->folios[i];
3468
3469 if (!folio)
3470 continue;
3471
3472 /*
3473 * This is special handling for metadata subpage, as regular
3474 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3475 */
3476 if (fs_info->nodesize >= PAGE_SIZE)
3477 folio_clear_uptodate(folio);
3478 else
3479 btrfs_subpage_clear_uptodate(fs_info, folio,
3480 eb->start, eb->len);
3481 }
3482}
3483
3484void set_extent_buffer_uptodate(struct extent_buffer *eb)
3485{
3486 struct btrfs_fs_info *fs_info = eb->fs_info;
3487 int num_folios = num_extent_folios(eb);
3488
3489 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3490 for (int i = 0; i < num_folios; i++) {
3491 struct folio *folio = eb->folios[i];
3492
3493 /*
3494 * This is special handling for metadata subpage, as regular
3495 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3496 */
3497 if (fs_info->nodesize >= PAGE_SIZE)
3498 folio_mark_uptodate(folio);
3499 else
3500 btrfs_subpage_set_uptodate(fs_info, folio,
3501 eb->start, eb->len);
3502 }
3503}
3504
3505static void clear_extent_buffer_reading(struct extent_buffer *eb)
3506{
3507 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3508 smp_mb__after_atomic();
3509 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3510}
3511
3512static void end_bbio_meta_read(struct btrfs_bio *bbio)
3513{
3514 struct extent_buffer *eb = bbio->private;
3515 struct btrfs_fs_info *fs_info = eb->fs_info;
3516 bool uptodate = !bbio->bio.bi_status;
3517 struct folio_iter fi;
3518 u32 bio_offset = 0;
3519
3520 /*
3521 * If the extent buffer is marked UPTODATE before the read operation
3522 * completes, other calls to read_extent_buffer_pages() will return
3523 * early without waiting for the read to finish, causing data races.
3524 */
3525 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3526
3527 eb->read_mirror = bbio->mirror_num;
3528
3529 if (uptodate &&
3530 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3531 uptodate = false;
3532
3533 if (uptodate) {
3534 set_extent_buffer_uptodate(eb);
3535 } else {
3536 clear_extent_buffer_uptodate(eb);
3537 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3538 }
3539
3540 bio_for_each_folio_all(fi, &bbio->bio) {
3541 struct folio *folio = fi.folio;
3542 u64 start = eb->start + bio_offset;
3543 u32 len = fi.length;
3544
3545 if (uptodate)
3546 btrfs_folio_set_uptodate(fs_info, folio, start, len);
3547 else
3548 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3549
3550 bio_offset += len;
3551 }
3552
3553 clear_extent_buffer_reading(eb);
3554 free_extent_buffer(eb);
3555
3556 bio_put(&bbio->bio);
3557}
3558
3559int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3560 const struct btrfs_tree_parent_check *check)
3561{
3562 struct btrfs_bio *bbio;
3563 bool ret;
3564
3565 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3566 return 0;
3567
3568 /*
3569 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3570 * operation, which could potentially still be in flight. In this case
3571 * we simply want to return an error.
3572 */
3573 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3574 return -EIO;
3575
3576 /* Someone else is already reading the buffer, just wait for it. */
3577 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3578 goto done;
3579
3580 /*
3581 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3582 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3583 * started and finished reading the same eb. In this case, UPTODATE
3584 * will now be set, and we shouldn't read it in again.
3585 */
3586 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3587 clear_extent_buffer_reading(eb);
3588 return 0;
3589 }
3590
3591 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3592 eb->read_mirror = 0;
3593 check_buffer_tree_ref(eb);
3594 atomic_inc(&eb->refs);
3595
3596 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3597 REQ_OP_READ | REQ_META, eb->fs_info,
3598 end_bbio_meta_read, eb);
3599 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3600 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3601 bbio->file_offset = eb->start;
3602 memcpy(&bbio->parent_check, check, sizeof(*check));
3603 if (eb->fs_info->nodesize < PAGE_SIZE) {
3604 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3605 eb->start - folio_pos(eb->folios[0]));
3606 ASSERT(ret);
3607 } else {
3608 int num_folios = num_extent_folios(eb);
3609
3610 for (int i = 0; i < num_folios; i++) {
3611 struct folio *folio = eb->folios[i];
3612
3613 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3614 ASSERT(ret);
3615 }
3616 }
3617 btrfs_submit_bbio(bbio, mirror_num);
3618
3619done:
3620 if (wait == WAIT_COMPLETE) {
3621 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3622 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3623 return -EIO;
3624 }
3625
3626 return 0;
3627}
3628
3629static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3630 unsigned long len)
3631{
3632 btrfs_warn(eb->fs_info,
3633 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3634 eb->start, eb->len, start, len);
3635 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3636
3637 return true;
3638}
3639
3640/*
3641 * Check if the [start, start + len) range is valid before reading/writing
3642 * the eb.
3643 * NOTE: @start and @len are offset inside the eb, not logical address.
3644 *
3645 * Caller should not touch the dst/src memory if this function returns error.
3646 */
3647static inline int check_eb_range(const struct extent_buffer *eb,
3648 unsigned long start, unsigned long len)
3649{
3650 unsigned long offset;
3651
3652 /* start, start + len should not go beyond eb->len nor overflow */
3653 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3654 return report_eb_range(eb, start, len);
3655
3656 return false;
3657}
3658
3659void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3660 unsigned long start, unsigned long len)
3661{
3662 const int unit_size = eb->folio_size;
3663 size_t cur;
3664 size_t offset;
3665 char *dst = (char *)dstv;
3666 unsigned long i = get_eb_folio_index(eb, start);
3667
3668 if (check_eb_range(eb, start, len)) {
3669 /*
3670 * Invalid range hit, reset the memory, so callers won't get
3671 * some random garbage for their uninitialized memory.
3672 */
3673 memset(dstv, 0, len);
3674 return;
3675 }
3676
3677 if (eb->addr) {
3678 memcpy(dstv, eb->addr + start, len);
3679 return;
3680 }
3681
3682 offset = get_eb_offset_in_folio(eb, start);
3683
3684 while (len > 0) {
3685 char *kaddr;
3686
3687 cur = min(len, unit_size - offset);
3688 kaddr = folio_address(eb->folios[i]);
3689 memcpy(dst, kaddr + offset, cur);
3690
3691 dst += cur;
3692 len -= cur;
3693 offset = 0;
3694 i++;
3695 }
3696}
3697
3698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3699 void __user *dstv,
3700 unsigned long start, unsigned long len)
3701{
3702 const int unit_size = eb->folio_size;
3703 size_t cur;
3704 size_t offset;
3705 char __user *dst = (char __user *)dstv;
3706 unsigned long i = get_eb_folio_index(eb, start);
3707 int ret = 0;
3708
3709 WARN_ON(start > eb->len);
3710 WARN_ON(start + len > eb->start + eb->len);
3711
3712 if (eb->addr) {
3713 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3714 ret = -EFAULT;
3715 return ret;
3716 }
3717
3718 offset = get_eb_offset_in_folio(eb, start);
3719
3720 while (len > 0) {
3721 char *kaddr;
3722
3723 cur = min(len, unit_size - offset);
3724 kaddr = folio_address(eb->folios[i]);
3725 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3726 ret = -EFAULT;
3727 break;
3728 }
3729
3730 dst += cur;
3731 len -= cur;
3732 offset = 0;
3733 i++;
3734 }
3735
3736 return ret;
3737}
3738
3739int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3740 unsigned long start, unsigned long len)
3741{
3742 const int unit_size = eb->folio_size;
3743 size_t cur;
3744 size_t offset;
3745 char *kaddr;
3746 char *ptr = (char *)ptrv;
3747 unsigned long i = get_eb_folio_index(eb, start);
3748 int ret = 0;
3749
3750 if (check_eb_range(eb, start, len))
3751 return -EINVAL;
3752
3753 if (eb->addr)
3754 return memcmp(ptrv, eb->addr + start, len);
3755
3756 offset = get_eb_offset_in_folio(eb, start);
3757
3758 while (len > 0) {
3759 cur = min(len, unit_size - offset);
3760 kaddr = folio_address(eb->folios[i]);
3761 ret = memcmp(ptr, kaddr + offset, cur);
3762 if (ret)
3763 break;
3764
3765 ptr += cur;
3766 len -= cur;
3767 offset = 0;
3768 i++;
3769 }
3770 return ret;
3771}
3772
3773/*
3774 * Check that the extent buffer is uptodate.
3775 *
3776 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3777 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3778 */
3779static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3780{
3781 struct btrfs_fs_info *fs_info = eb->fs_info;
3782 struct folio *folio = eb->folios[i];
3783
3784 ASSERT(folio);
3785
3786 /*
3787 * If we are using the commit root we could potentially clear a page
3788 * Uptodate while we're using the extent buffer that we've previously
3789 * looked up. We don't want to complain in this case, as the page was
3790 * valid before, we just didn't write it out. Instead we want to catch
3791 * the case where we didn't actually read the block properly, which
3792 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3793 */
3794 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3795 return;
3796
3797 if (fs_info->nodesize < PAGE_SIZE) {
3798 folio = eb->folios[0];
3799 ASSERT(i == 0);
3800 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3801 eb->start, eb->len)))
3802 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3803 } else {
3804 WARN_ON(!folio_test_uptodate(folio));
3805 }
3806}
3807
3808static void __write_extent_buffer(const struct extent_buffer *eb,
3809 const void *srcv, unsigned long start,
3810 unsigned long len, bool use_memmove)
3811{
3812 const int unit_size = eb->folio_size;
3813 size_t cur;
3814 size_t offset;
3815 char *kaddr;
3816 const char *src = (const char *)srcv;
3817 unsigned long i = get_eb_folio_index(eb, start);
3818 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
3819 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3820
3821 if (check_eb_range(eb, start, len))
3822 return;
3823
3824 if (eb->addr) {
3825 if (use_memmove)
3826 memmove(eb->addr + start, srcv, len);
3827 else
3828 memcpy(eb->addr + start, srcv, len);
3829 return;
3830 }
3831
3832 offset = get_eb_offset_in_folio(eb, start);
3833
3834 while (len > 0) {
3835 if (check_uptodate)
3836 assert_eb_folio_uptodate(eb, i);
3837
3838 cur = min(len, unit_size - offset);
3839 kaddr = folio_address(eb->folios[i]);
3840 if (use_memmove)
3841 memmove(kaddr + offset, src, cur);
3842 else
3843 memcpy(kaddr + offset, src, cur);
3844
3845 src += cur;
3846 len -= cur;
3847 offset = 0;
3848 i++;
3849 }
3850}
3851
3852void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3853 unsigned long start, unsigned long len)
3854{
3855 return __write_extent_buffer(eb, srcv, start, len, false);
3856}
3857
3858static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3859 unsigned long start, unsigned long len)
3860{
3861 const int unit_size = eb->folio_size;
3862 unsigned long cur = start;
3863
3864 if (eb->addr) {
3865 memset(eb->addr + start, c, len);
3866 return;
3867 }
3868
3869 while (cur < start + len) {
3870 unsigned long index = get_eb_folio_index(eb, cur);
3871 unsigned int offset = get_eb_offset_in_folio(eb, cur);
3872 unsigned int cur_len = min(start + len - cur, unit_size - offset);
3873
3874 assert_eb_folio_uptodate(eb, index);
3875 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3876
3877 cur += cur_len;
3878 }
3879}
3880
3881void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3882 unsigned long len)
3883{
3884 if (check_eb_range(eb, start, len))
3885 return;
3886 return memset_extent_buffer(eb, 0, start, len);
3887}
3888
3889void copy_extent_buffer_full(const struct extent_buffer *dst,
3890 const struct extent_buffer *src)
3891{
3892 const int unit_size = src->folio_size;
3893 unsigned long cur = 0;
3894
3895 ASSERT(dst->len == src->len);
3896
3897 while (cur < src->len) {
3898 unsigned long index = get_eb_folio_index(src, cur);
3899 unsigned long offset = get_eb_offset_in_folio(src, cur);
3900 unsigned long cur_len = min(src->len, unit_size - offset);
3901 void *addr = folio_address(src->folios[index]) + offset;
3902
3903 write_extent_buffer(dst, addr, cur, cur_len);
3904
3905 cur += cur_len;
3906 }
3907}
3908
3909void copy_extent_buffer(const struct extent_buffer *dst,
3910 const struct extent_buffer *src,
3911 unsigned long dst_offset, unsigned long src_offset,
3912 unsigned long len)
3913{
3914 const int unit_size = dst->folio_size;
3915 u64 dst_len = dst->len;
3916 size_t cur;
3917 size_t offset;
3918 char *kaddr;
3919 unsigned long i = get_eb_folio_index(dst, dst_offset);
3920
3921 if (check_eb_range(dst, dst_offset, len) ||
3922 check_eb_range(src, src_offset, len))
3923 return;
3924
3925 WARN_ON(src->len != dst_len);
3926
3927 offset = get_eb_offset_in_folio(dst, dst_offset);
3928
3929 while (len > 0) {
3930 assert_eb_folio_uptodate(dst, i);
3931
3932 cur = min(len, (unsigned long)(unit_size - offset));
3933
3934 kaddr = folio_address(dst->folios[i]);
3935 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3936
3937 src_offset += cur;
3938 len -= cur;
3939 offset = 0;
3940 i++;
3941 }
3942}
3943
3944/*
3945 * Calculate the folio and offset of the byte containing the given bit number.
3946 *
3947 * @eb: the extent buffer
3948 * @start: offset of the bitmap item in the extent buffer
3949 * @nr: bit number
3950 * @folio_index: return index of the folio in the extent buffer that contains
3951 * the given bit number
3952 * @folio_offset: return offset into the folio given by folio_index
3953 *
3954 * This helper hides the ugliness of finding the byte in an extent buffer which
3955 * contains a given bit.
3956 */
3957static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3958 unsigned long start, unsigned long nr,
3959 unsigned long *folio_index,
3960 size_t *folio_offset)
3961{
3962 size_t byte_offset = BIT_BYTE(nr);
3963 size_t offset;
3964
3965 /*
3966 * The byte we want is the offset of the extent buffer + the offset of
3967 * the bitmap item in the extent buffer + the offset of the byte in the
3968 * bitmap item.
3969 */
3970 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3971
3972 *folio_index = offset >> eb->folio_shift;
3973 *folio_offset = offset_in_eb_folio(eb, offset);
3974}
3975
3976/*
3977 * Determine whether a bit in a bitmap item is set.
3978 *
3979 * @eb: the extent buffer
3980 * @start: offset of the bitmap item in the extent buffer
3981 * @nr: bit number to test
3982 */
3983int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3984 unsigned long nr)
3985{
3986 unsigned long i;
3987 size_t offset;
3988 u8 *kaddr;
3989
3990 eb_bitmap_offset(eb, start, nr, &i, &offset);
3991 assert_eb_folio_uptodate(eb, i);
3992 kaddr = folio_address(eb->folios[i]);
3993 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3994}
3995
3996static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3997{
3998 unsigned long index = get_eb_folio_index(eb, bytenr);
3999
4000 if (check_eb_range(eb, bytenr, 1))
4001 return NULL;
4002 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4003}
4004
4005/*
4006 * Set an area of a bitmap to 1.
4007 *
4008 * @eb: the extent buffer
4009 * @start: offset of the bitmap item in the extent buffer
4010 * @pos: bit number of the first bit
4011 * @len: number of bits to set
4012 */
4013void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4014 unsigned long pos, unsigned long len)
4015{
4016 unsigned int first_byte = start + BIT_BYTE(pos);
4017 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4018 const bool same_byte = (first_byte == last_byte);
4019 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4020 u8 *kaddr;
4021
4022 if (same_byte)
4023 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4024
4025 /* Handle the first byte. */
4026 kaddr = extent_buffer_get_byte(eb, first_byte);
4027 *kaddr |= mask;
4028 if (same_byte)
4029 return;
4030
4031 /* Handle the byte aligned part. */
4032 ASSERT(first_byte + 1 <= last_byte);
4033 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4034
4035 /* Handle the last byte. */
4036 kaddr = extent_buffer_get_byte(eb, last_byte);
4037 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4038}
4039
4040
4041/*
4042 * Clear an area of a bitmap.
4043 *
4044 * @eb: the extent buffer
4045 * @start: offset of the bitmap item in the extent buffer
4046 * @pos: bit number of the first bit
4047 * @len: number of bits to clear
4048 */
4049void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4050 unsigned long start, unsigned long pos,
4051 unsigned long len)
4052{
4053 unsigned int first_byte = start + BIT_BYTE(pos);
4054 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4055 const bool same_byte = (first_byte == last_byte);
4056 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4057 u8 *kaddr;
4058
4059 if (same_byte)
4060 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4061
4062 /* Handle the first byte. */
4063 kaddr = extent_buffer_get_byte(eb, first_byte);
4064 *kaddr &= ~mask;
4065 if (same_byte)
4066 return;
4067
4068 /* Handle the byte aligned part. */
4069 ASSERT(first_byte + 1 <= last_byte);
4070 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4071
4072 /* Handle the last byte. */
4073 kaddr = extent_buffer_get_byte(eb, last_byte);
4074 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4075}
4076
4077static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4078{
4079 unsigned long distance = (src > dst) ? src - dst : dst - src;
4080 return distance < len;
4081}
4082
4083void memcpy_extent_buffer(const struct extent_buffer *dst,
4084 unsigned long dst_offset, unsigned long src_offset,
4085 unsigned long len)
4086{
4087 const int unit_size = dst->folio_size;
4088 unsigned long cur_off = 0;
4089
4090 if (check_eb_range(dst, dst_offset, len) ||
4091 check_eb_range(dst, src_offset, len))
4092 return;
4093
4094 if (dst->addr) {
4095 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4096
4097 if (use_memmove)
4098 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4099 else
4100 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4101 return;
4102 }
4103
4104 while (cur_off < len) {
4105 unsigned long cur_src = cur_off + src_offset;
4106 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4107 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4108 unsigned long cur_len = min(src_offset + len - cur_src,
4109 unit_size - folio_off);
4110 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4111 const bool use_memmove = areas_overlap(src_offset + cur_off,
4112 dst_offset + cur_off, cur_len);
4113
4114 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4115 use_memmove);
4116 cur_off += cur_len;
4117 }
4118}
4119
4120void memmove_extent_buffer(const struct extent_buffer *dst,
4121 unsigned long dst_offset, unsigned long src_offset,
4122 unsigned long len)
4123{
4124 unsigned long dst_end = dst_offset + len - 1;
4125 unsigned long src_end = src_offset + len - 1;
4126
4127 if (check_eb_range(dst, dst_offset, len) ||
4128 check_eb_range(dst, src_offset, len))
4129 return;
4130
4131 if (dst_offset < src_offset) {
4132 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4133 return;
4134 }
4135
4136 if (dst->addr) {
4137 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4138 return;
4139 }
4140
4141 while (len > 0) {
4142 unsigned long src_i;
4143 size_t cur;
4144 size_t dst_off_in_folio;
4145 size_t src_off_in_folio;
4146 void *src_addr;
4147 bool use_memmove;
4148
4149 src_i = get_eb_folio_index(dst, src_end);
4150
4151 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4152 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4153
4154 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4155 cur = min(cur, dst_off_in_folio + 1);
4156
4157 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4158 cur + 1;
4159 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4160 cur);
4161
4162 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4163 use_memmove);
4164
4165 dst_end -= cur;
4166 src_end -= cur;
4167 len -= cur;
4168 }
4169}
4170
4171#define GANG_LOOKUP_SIZE 16
4172static struct extent_buffer *get_next_extent_buffer(
4173 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4174{
4175 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4176 struct extent_buffer *found = NULL;
4177 u64 folio_start = folio_pos(folio);
4178 u64 cur = folio_start;
4179
4180 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4181 lockdep_assert_held(&fs_info->buffer_lock);
4182
4183 while (cur < folio_start + PAGE_SIZE) {
4184 int ret;
4185 int i;
4186
4187 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4188 (void **)gang, cur >> fs_info->sectorsize_bits,
4189 min_t(unsigned int, GANG_LOOKUP_SIZE,
4190 PAGE_SIZE / fs_info->nodesize));
4191 if (ret == 0)
4192 goto out;
4193 for (i = 0; i < ret; i++) {
4194 /* Already beyond page end */
4195 if (gang[i]->start >= folio_start + PAGE_SIZE)
4196 goto out;
4197 /* Found one */
4198 if (gang[i]->start >= bytenr) {
4199 found = gang[i];
4200 goto out;
4201 }
4202 }
4203 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4204 }
4205out:
4206 return found;
4207}
4208
4209static int try_release_subpage_extent_buffer(struct folio *folio)
4210{
4211 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4212 u64 cur = folio_pos(folio);
4213 const u64 end = cur + PAGE_SIZE;
4214 int ret;
4215
4216 while (cur < end) {
4217 struct extent_buffer *eb = NULL;
4218
4219 /*
4220 * Unlike try_release_extent_buffer() which uses folio private
4221 * to grab buffer, for subpage case we rely on radix tree, thus
4222 * we need to ensure radix tree consistency.
4223 *
4224 * We also want an atomic snapshot of the radix tree, thus go
4225 * with spinlock rather than RCU.
4226 */
4227 spin_lock(&fs_info->buffer_lock);
4228 eb = get_next_extent_buffer(fs_info, folio, cur);
4229 if (!eb) {
4230 /* No more eb in the page range after or at cur */
4231 spin_unlock(&fs_info->buffer_lock);
4232 break;
4233 }
4234 cur = eb->start + eb->len;
4235
4236 /*
4237 * The same as try_release_extent_buffer(), to ensure the eb
4238 * won't disappear out from under us.
4239 */
4240 spin_lock(&eb->refs_lock);
4241 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4242 spin_unlock(&eb->refs_lock);
4243 spin_unlock(&fs_info->buffer_lock);
4244 break;
4245 }
4246 spin_unlock(&fs_info->buffer_lock);
4247
4248 /*
4249 * If tree ref isn't set then we know the ref on this eb is a
4250 * real ref, so just return, this eb will likely be freed soon
4251 * anyway.
4252 */
4253 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4254 spin_unlock(&eb->refs_lock);
4255 break;
4256 }
4257
4258 /*
4259 * Here we don't care about the return value, we will always
4260 * check the folio private at the end. And
4261 * release_extent_buffer() will release the refs_lock.
4262 */
4263 release_extent_buffer(eb);
4264 }
4265 /*
4266 * Finally to check if we have cleared folio private, as if we have
4267 * released all ebs in the page, the folio private should be cleared now.
4268 */
4269 spin_lock(&folio->mapping->i_private_lock);
4270 if (!folio_test_private(folio))
4271 ret = 1;
4272 else
4273 ret = 0;
4274 spin_unlock(&folio->mapping->i_private_lock);
4275 return ret;
4276
4277}
4278
4279int try_release_extent_buffer(struct folio *folio)
4280{
4281 struct extent_buffer *eb;
4282
4283 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4284 return try_release_subpage_extent_buffer(folio);
4285
4286 /*
4287 * We need to make sure nobody is changing folio private, as we rely on
4288 * folio private as the pointer to extent buffer.
4289 */
4290 spin_lock(&folio->mapping->i_private_lock);
4291 if (!folio_test_private(folio)) {
4292 spin_unlock(&folio->mapping->i_private_lock);
4293 return 1;
4294 }
4295
4296 eb = folio_get_private(folio);
4297 BUG_ON(!eb);
4298
4299 /*
4300 * This is a little awful but should be ok, we need to make sure that
4301 * the eb doesn't disappear out from under us while we're looking at
4302 * this page.
4303 */
4304 spin_lock(&eb->refs_lock);
4305 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4306 spin_unlock(&eb->refs_lock);
4307 spin_unlock(&folio->mapping->i_private_lock);
4308 return 0;
4309 }
4310 spin_unlock(&folio->mapping->i_private_lock);
4311
4312 /*
4313 * If tree ref isn't set then we know the ref on this eb is a real ref,
4314 * so just return, this page will likely be freed soon anyway.
4315 */
4316 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4317 spin_unlock(&eb->refs_lock);
4318 return 0;
4319 }
4320
4321 return release_extent_buffer(eb);
4322}
4323
4324/*
4325 * Attempt to readahead a child block.
4326 *
4327 * @fs_info: the fs_info
4328 * @bytenr: bytenr to read
4329 * @owner_root: objectid of the root that owns this eb
4330 * @gen: generation for the uptodate check, can be 0
4331 * @level: level for the eb
4332 *
4333 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4334 * normal uptodate check of the eb, without checking the generation. If we have
4335 * to read the block we will not block on anything.
4336 */
4337void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4338 u64 bytenr, u64 owner_root, u64 gen, int level)
4339{
4340 struct btrfs_tree_parent_check check = {
4341 .level = level,
4342 .transid = gen
4343 };
4344 struct extent_buffer *eb;
4345 int ret;
4346
4347 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4348 if (IS_ERR(eb))
4349 return;
4350
4351 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4352 free_extent_buffer(eb);
4353 return;
4354 }
4355
4356 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4357 if (ret < 0)
4358 free_extent_buffer_stale(eb);
4359 else
4360 free_extent_buffer(eb);
4361}
4362
4363/*
4364 * Readahead a node's child block.
4365 *
4366 * @node: parent node we're reading from
4367 * @slot: slot in the parent node for the child we want to read
4368 *
4369 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4370 * the slot in the node provided.
4371 */
4372void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4373{
4374 btrfs_readahead_tree_block(node->fs_info,
4375 btrfs_node_blockptr(node, slot),
4376 btrfs_header_owner(node),
4377 btrfs_node_ptr_generation(node, slot),
4378 btrfs_header_level(node) - 1);
4379}