Loading...
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
12#include <linux/prefetch.h>
13#include <linux/cleancache.h>
14#include "extent_io.h"
15#include "extent_map.h"
16#include "ctree.h"
17#include "btrfs_inode.h"
18#include "volumes.h"
19#include "check-integrity.h"
20#include "locking.h"
21#include "rcu-string.h"
22#include "backref.h"
23#include "transaction.h"
24
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27static struct bio_set *btrfs_bioset;
28
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
34#ifdef CONFIG_BTRFS_DEBUG
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
37
38static DEFINE_SPINLOCK(leak_lock);
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
84
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89{
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103}
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109#endif
110
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
132};
133
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
153static noinline void flush_write_bio(void *data);
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
161
162int __init extent_io_init(void)
163{
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217{
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223}
224
225static struct extent_state *alloc_extent_state(gfp_t mask)
226{
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240}
241
242void free_extent_state(struct extent_state *state)
243{
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
253
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260{
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295{
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347{
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355}
356
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413}
414
415static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417{
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424{
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427}
428
429static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448{
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464 found->start, found->end, start, end);
465 return -EEXIST;
466 }
467 merge_state(tree, state);
468 return 0;
469}
470
471static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
472 u64 split)
473{
474 if (tree->ops && tree->ops->split_extent_hook)
475 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
476}
477
478/*
479 * split a given extent state struct in two, inserting the preallocated
480 * struct 'prealloc' as the newly created second half. 'split' indicates an
481 * offset inside 'orig' where it should be split.
482 *
483 * Before calling,
484 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
485 * are two extent state structs in the tree:
486 * prealloc: [orig->start, split - 1]
487 * orig: [ split, orig->end ]
488 *
489 * The tree locks are not taken by this function. They need to be held
490 * by the caller.
491 */
492static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
493 struct extent_state *prealloc, u64 split)
494{
495 struct rb_node *node;
496
497 split_cb(tree, orig, split);
498
499 prealloc->start = orig->start;
500 prealloc->end = split - 1;
501 prealloc->state = orig->state;
502 orig->start = split;
503
504 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
505 &prealloc->rb_node, NULL, NULL);
506 if (node) {
507 free_extent_state(prealloc);
508 return -EEXIST;
509 }
510 return 0;
511}
512
513static struct extent_state *next_state(struct extent_state *state)
514{
515 struct rb_node *next = rb_next(&state->rb_node);
516 if (next)
517 return rb_entry(next, struct extent_state, rb_node);
518 else
519 return NULL;
520}
521
522/*
523 * utility function to clear some bits in an extent state struct.
524 * it will optionally wake up any one waiting on this state (wake == 1).
525 *
526 * If no bits are set on the state struct after clearing things, the
527 * struct is freed and removed from the tree
528 */
529static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
530 struct extent_state *state,
531 unsigned *bits, int wake,
532 struct extent_changeset *changeset)
533{
534 struct extent_state *next;
535 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
536
537 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
538 u64 range = state->end - state->start + 1;
539 WARN_ON(range > tree->dirty_bytes);
540 tree->dirty_bytes -= range;
541 }
542 clear_state_cb(tree, state, bits);
543 add_extent_changeset(state, bits_to_clear, changeset, 0);
544 state->state &= ~bits_to_clear;
545 if (wake)
546 wake_up(&state->wq);
547 if (state->state == 0) {
548 next = next_state(state);
549 if (extent_state_in_tree(state)) {
550 rb_erase(&state->rb_node, &tree->state);
551 RB_CLEAR_NODE(&state->rb_node);
552 free_extent_state(state);
553 } else {
554 WARN_ON(1);
555 }
556 } else {
557 merge_state(tree, state);
558 next = next_state(state);
559 }
560 return next;
561}
562
563static struct extent_state *
564alloc_extent_state_atomic(struct extent_state *prealloc)
565{
566 if (!prealloc)
567 prealloc = alloc_extent_state(GFP_ATOMIC);
568
569 return prealloc;
570}
571
572static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
573{
574 btrfs_panic(tree_fs_info(tree), err,
575 "Locking error: Extent tree was modified by another thread while locked.");
576}
577
578/*
579 * clear some bits on a range in the tree. This may require splitting
580 * or inserting elements in the tree, so the gfp mask is used to
581 * indicate which allocations or sleeping are allowed.
582 *
583 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584 * the given range from the tree regardless of state (ie for truncate).
585 *
586 * the range [start, end] is inclusive.
587 *
588 * This takes the tree lock, and returns 0 on success and < 0 on error.
589 */
590static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
591 unsigned bits, int wake, int delete,
592 struct extent_state **cached_state,
593 gfp_t mask, struct extent_changeset *changeset)
594{
595 struct extent_state *state;
596 struct extent_state *cached;
597 struct extent_state *prealloc = NULL;
598 struct rb_node *node;
599 u64 last_end;
600 int err;
601 int clear = 0;
602
603 btrfs_debug_check_extent_io_range(tree, start, end);
604
605 if (bits & EXTENT_DELALLOC)
606 bits |= EXTENT_NORESERVE;
607
608 if (delete)
609 bits |= ~EXTENT_CTLBITS;
610 bits |= EXTENT_FIRST_DELALLOC;
611
612 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
613 clear = 1;
614again:
615 if (!prealloc && gfpflags_allow_blocking(mask)) {
616 /*
617 * Don't care for allocation failure here because we might end
618 * up not needing the pre-allocated extent state at all, which
619 * is the case if we only have in the tree extent states that
620 * cover our input range and don't cover too any other range.
621 * If we end up needing a new extent state we allocate it later.
622 */
623 prealloc = alloc_extent_state(mask);
624 }
625
626 spin_lock(&tree->lock);
627 if (cached_state) {
628 cached = *cached_state;
629
630 if (clear) {
631 *cached_state = NULL;
632 cached_state = NULL;
633 }
634
635 if (cached && extent_state_in_tree(cached) &&
636 cached->start <= start && cached->end > start) {
637 if (clear)
638 atomic_dec(&cached->refs);
639 state = cached;
640 goto hit_next;
641 }
642 if (clear)
643 free_extent_state(cached);
644 }
645 /*
646 * this search will find the extents that end after
647 * our range starts
648 */
649 node = tree_search(tree, start);
650 if (!node)
651 goto out;
652 state = rb_entry(node, struct extent_state, rb_node);
653hit_next:
654 if (state->start > end)
655 goto out;
656 WARN_ON(state->end < start);
657 last_end = state->end;
658
659 /* the state doesn't have the wanted bits, go ahead */
660 if (!(state->state & bits)) {
661 state = next_state(state);
662 goto next;
663 }
664
665 /*
666 * | ---- desired range ---- |
667 * | state | or
668 * | ------------- state -------------- |
669 *
670 * We need to split the extent we found, and may flip
671 * bits on second half.
672 *
673 * If the extent we found extends past our range, we
674 * just split and search again. It'll get split again
675 * the next time though.
676 *
677 * If the extent we found is inside our range, we clear
678 * the desired bit on it.
679 */
680
681 if (state->start < start) {
682 prealloc = alloc_extent_state_atomic(prealloc);
683 BUG_ON(!prealloc);
684 err = split_state(tree, state, prealloc, start);
685 if (err)
686 extent_io_tree_panic(tree, err);
687
688 prealloc = NULL;
689 if (err)
690 goto out;
691 if (state->end <= end) {
692 state = clear_state_bit(tree, state, &bits, wake,
693 changeset);
694 goto next;
695 }
696 goto search_again;
697 }
698 /*
699 * | ---- desired range ---- |
700 * | state |
701 * We need to split the extent, and clear the bit
702 * on the first half
703 */
704 if (state->start <= end && state->end > end) {
705 prealloc = alloc_extent_state_atomic(prealloc);
706 BUG_ON(!prealloc);
707 err = split_state(tree, state, prealloc, end + 1);
708 if (err)
709 extent_io_tree_panic(tree, err);
710
711 if (wake)
712 wake_up(&state->wq);
713
714 clear_state_bit(tree, prealloc, &bits, wake, changeset);
715
716 prealloc = NULL;
717 goto out;
718 }
719
720 state = clear_state_bit(tree, state, &bits, wake, changeset);
721next:
722 if (last_end == (u64)-1)
723 goto out;
724 start = last_end + 1;
725 if (start <= end && state && !need_resched())
726 goto hit_next;
727
728search_again:
729 if (start > end)
730 goto out;
731 spin_unlock(&tree->lock);
732 if (gfpflags_allow_blocking(mask))
733 cond_resched();
734 goto again;
735
736out:
737 spin_unlock(&tree->lock);
738 if (prealloc)
739 free_extent_state(prealloc);
740
741 return 0;
742
743}
744
745static void wait_on_state(struct extent_io_tree *tree,
746 struct extent_state *state)
747 __releases(tree->lock)
748 __acquires(tree->lock)
749{
750 DEFINE_WAIT(wait);
751 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
752 spin_unlock(&tree->lock);
753 schedule();
754 spin_lock(&tree->lock);
755 finish_wait(&state->wq, &wait);
756}
757
758/*
759 * waits for one or more bits to clear on a range in the state tree.
760 * The range [start, end] is inclusive.
761 * The tree lock is taken by this function
762 */
763static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
764 unsigned long bits)
765{
766 struct extent_state *state;
767 struct rb_node *node;
768
769 btrfs_debug_check_extent_io_range(tree, start, end);
770
771 spin_lock(&tree->lock);
772again:
773 while (1) {
774 /*
775 * this search will find all the extents that end after
776 * our range starts
777 */
778 node = tree_search(tree, start);
779process_node:
780 if (!node)
781 break;
782
783 state = rb_entry(node, struct extent_state, rb_node);
784
785 if (state->start > end)
786 goto out;
787
788 if (state->state & bits) {
789 start = state->start;
790 atomic_inc(&state->refs);
791 wait_on_state(tree, state);
792 free_extent_state(state);
793 goto again;
794 }
795 start = state->end + 1;
796
797 if (start > end)
798 break;
799
800 if (!cond_resched_lock(&tree->lock)) {
801 node = rb_next(node);
802 goto process_node;
803 }
804 }
805out:
806 spin_unlock(&tree->lock);
807}
808
809static void set_state_bits(struct extent_io_tree *tree,
810 struct extent_state *state,
811 unsigned *bits, struct extent_changeset *changeset)
812{
813 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
814
815 set_state_cb(tree, state, bits);
816 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
817 u64 range = state->end - state->start + 1;
818 tree->dirty_bytes += range;
819 }
820 add_extent_changeset(state, bits_to_set, changeset, 1);
821 state->state |= bits_to_set;
822}
823
824static void cache_state_if_flags(struct extent_state *state,
825 struct extent_state **cached_ptr,
826 unsigned flags)
827{
828 if (cached_ptr && !(*cached_ptr)) {
829 if (!flags || (state->state & flags)) {
830 *cached_ptr = state;
831 atomic_inc(&state->refs);
832 }
833 }
834}
835
836static void cache_state(struct extent_state *state,
837 struct extent_state **cached_ptr)
838{
839 return cache_state_if_flags(state, cached_ptr,
840 EXTENT_IOBITS | EXTENT_BOUNDARY);
841}
842
843/*
844 * set some bits on a range in the tree. This may require allocations or
845 * sleeping, so the gfp mask is used to indicate what is allowed.
846 *
847 * If any of the exclusive bits are set, this will fail with -EEXIST if some
848 * part of the range already has the desired bits set. The start of the
849 * existing range is returned in failed_start in this case.
850 *
851 * [start, end] is inclusive This takes the tree lock.
852 */
853
854static int __must_check
855__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
856 unsigned bits, unsigned exclusive_bits,
857 u64 *failed_start, struct extent_state **cached_state,
858 gfp_t mask, struct extent_changeset *changeset)
859{
860 struct extent_state *state;
861 struct extent_state *prealloc = NULL;
862 struct rb_node *node;
863 struct rb_node **p;
864 struct rb_node *parent;
865 int err = 0;
866 u64 last_start;
867 u64 last_end;
868
869 btrfs_debug_check_extent_io_range(tree, start, end);
870
871 bits |= EXTENT_FIRST_DELALLOC;
872again:
873 if (!prealloc && gfpflags_allow_blocking(mask)) {
874 /*
875 * Don't care for allocation failure here because we might end
876 * up not needing the pre-allocated extent state at all, which
877 * is the case if we only have in the tree extent states that
878 * cover our input range and don't cover too any other range.
879 * If we end up needing a new extent state we allocate it later.
880 */
881 prealloc = alloc_extent_state(mask);
882 }
883
884 spin_lock(&tree->lock);
885 if (cached_state && *cached_state) {
886 state = *cached_state;
887 if (state->start <= start && state->end > start &&
888 extent_state_in_tree(state)) {
889 node = &state->rb_node;
890 goto hit_next;
891 }
892 }
893 /*
894 * this search will find all the extents that end after
895 * our range starts.
896 */
897 node = tree_search_for_insert(tree, start, &p, &parent);
898 if (!node) {
899 prealloc = alloc_extent_state_atomic(prealloc);
900 BUG_ON(!prealloc);
901 err = insert_state(tree, prealloc, start, end,
902 &p, &parent, &bits, changeset);
903 if (err)
904 extent_io_tree_panic(tree, err);
905
906 cache_state(prealloc, cached_state);
907 prealloc = NULL;
908 goto out;
909 }
910 state = rb_entry(node, struct extent_state, rb_node);
911hit_next:
912 last_start = state->start;
913 last_end = state->end;
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 *
919 * Just lock what we found and keep going
920 */
921 if (state->start == start && state->end <= end) {
922 if (state->state & exclusive_bits) {
923 *failed_start = state->start;
924 err = -EEXIST;
925 goto out;
926 }
927
928 set_state_bits(tree, state, &bits, changeset);
929 cache_state(state, cached_state);
930 merge_state(tree, state);
931 if (last_end == (u64)-1)
932 goto out;
933 start = last_end + 1;
934 state = next_state(state);
935 if (start < end && state && state->start == start &&
936 !need_resched())
937 goto hit_next;
938 goto search_again;
939 }
940
941 /*
942 * | ---- desired range ---- |
943 * | state |
944 * or
945 * | ------------- state -------------- |
946 *
947 * We need to split the extent we found, and may flip bits on
948 * second half.
949 *
950 * If the extent we found extends past our
951 * range, we just split and search again. It'll get split
952 * again the next time though.
953 *
954 * If the extent we found is inside our range, we set the
955 * desired bit on it.
956 */
957 if (state->start < start) {
958 if (state->state & exclusive_bits) {
959 *failed_start = start;
960 err = -EEXIST;
961 goto out;
962 }
963
964 prealloc = alloc_extent_state_atomic(prealloc);
965 BUG_ON(!prealloc);
966 err = split_state(tree, state, prealloc, start);
967 if (err)
968 extent_io_tree_panic(tree, err);
969
970 prealloc = NULL;
971 if (err)
972 goto out;
973 if (state->end <= end) {
974 set_state_bits(tree, state, &bits, changeset);
975 cache_state(state, cached_state);
976 merge_state(tree, state);
977 if (last_end == (u64)-1)
978 goto out;
979 start = last_end + 1;
980 state = next_state(state);
981 if (start < end && state && state->start == start &&
982 !need_resched())
983 goto hit_next;
984 }
985 goto search_again;
986 }
987 /*
988 * | ---- desired range ---- |
989 * | state | or | state |
990 *
991 * There's a hole, we need to insert something in it and
992 * ignore the extent we found.
993 */
994 if (state->start > start) {
995 u64 this_end;
996 if (end < last_start)
997 this_end = end;
998 else
999 this_end = last_start - 1;
1000
1001 prealloc = alloc_extent_state_atomic(prealloc);
1002 BUG_ON(!prealloc);
1003
1004 /*
1005 * Avoid to free 'prealloc' if it can be merged with
1006 * the later extent.
1007 */
1008 err = insert_state(tree, prealloc, start, this_end,
1009 NULL, NULL, &bits, changeset);
1010 if (err)
1011 extent_io_tree_panic(tree, err);
1012
1013 cache_state(prealloc, cached_state);
1014 prealloc = NULL;
1015 start = this_end + 1;
1016 goto search_again;
1017 }
1018 /*
1019 * | ---- desired range ---- |
1020 * | state |
1021 * We need to split the extent, and set the bit
1022 * on the first half
1023 */
1024 if (state->start <= end && state->end > end) {
1025 if (state->state & exclusive_bits) {
1026 *failed_start = start;
1027 err = -EEXIST;
1028 goto out;
1029 }
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 BUG_ON(!prealloc);
1033 err = split_state(tree, state, prealloc, end + 1);
1034 if (err)
1035 extent_io_tree_panic(tree, err);
1036
1037 set_state_bits(tree, prealloc, &bits, changeset);
1038 cache_state(prealloc, cached_state);
1039 merge_state(tree, prealloc);
1040 prealloc = NULL;
1041 goto out;
1042 }
1043
1044search_again:
1045 if (start > end)
1046 goto out;
1047 spin_unlock(&tree->lock);
1048 if (gfpflags_allow_blocking(mask))
1049 cond_resched();
1050 goto again;
1051
1052out:
1053 spin_unlock(&tree->lock);
1054 if (prealloc)
1055 free_extent_state(prealloc);
1056
1057 return err;
1058
1059}
1060
1061int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062 unsigned bits, u64 * failed_start,
1063 struct extent_state **cached_state, gfp_t mask)
1064{
1065 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066 cached_state, mask, NULL);
1067}
1068
1069
1070/**
1071 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * another
1073 * @tree: the io tree to search
1074 * @start: the start offset in bytes
1075 * @end: the end offset in bytes (inclusive)
1076 * @bits: the bits to set in this range
1077 * @clear_bits: the bits to clear in this range
1078 * @cached_state: state that we're going to cache
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 *
1086 * All allocations are done with GFP_NOFS.
1087 */
1088int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089 unsigned bits, unsigned clear_bits,
1090 struct extent_state **cached_state)
1091{
1092 struct extent_state *state;
1093 struct extent_state *prealloc = NULL;
1094 struct rb_node *node;
1095 struct rb_node **p;
1096 struct rb_node *parent;
1097 int err = 0;
1098 u64 last_start;
1099 u64 last_end;
1100 bool first_iteration = true;
1101
1102 btrfs_debug_check_extent_io_range(tree, start, end);
1103
1104again:
1105 if (!prealloc) {
1106 /*
1107 * Best effort, don't worry if extent state allocation fails
1108 * here for the first iteration. We might have a cached state
1109 * that matches exactly the target range, in which case no
1110 * extent state allocations are needed. We'll only know this
1111 * after locking the tree.
1112 */
1113 prealloc = alloc_extent_state(GFP_NOFS);
1114 if (!prealloc && !first_iteration)
1115 return -ENOMEM;
1116 }
1117
1118 spin_lock(&tree->lock);
1119 if (cached_state && *cached_state) {
1120 state = *cached_state;
1121 if (state->start <= start && state->end > start &&
1122 extent_state_in_tree(state)) {
1123 node = &state->rb_node;
1124 goto hit_next;
1125 }
1126 }
1127
1128 /*
1129 * this search will find all the extents that end after
1130 * our range starts.
1131 */
1132 node = tree_search_for_insert(tree, start, &p, &parent);
1133 if (!node) {
1134 prealloc = alloc_extent_state_atomic(prealloc);
1135 if (!prealloc) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
1139 err = insert_state(tree, prealloc, start, end,
1140 &p, &parent, &bits, NULL);
1141 if (err)
1142 extent_io_tree_panic(tree, err);
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
1145 goto out;
1146 }
1147 state = rb_entry(node, struct extent_state, rb_node);
1148hit_next:
1149 last_start = state->start;
1150 last_end = state->end;
1151
1152 /*
1153 * | ---- desired range ---- |
1154 * | state |
1155 *
1156 * Just lock what we found and keep going
1157 */
1158 if (state->start == start && state->end <= end) {
1159 set_state_bits(tree, state, &bits, NULL);
1160 cache_state(state, cached_state);
1161 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162 if (last_end == (u64)-1)
1163 goto out;
1164 start = last_end + 1;
1165 if (start < end && state && state->start == start &&
1166 !need_resched())
1167 goto hit_next;
1168 goto search_again;
1169 }
1170
1171 /*
1172 * | ---- desired range ---- |
1173 * | state |
1174 * or
1175 * | ------------- state -------------- |
1176 *
1177 * We need to split the extent we found, and may flip bits on
1178 * second half.
1179 *
1180 * If the extent we found extends past our
1181 * range, we just split and search again. It'll get split
1182 * again the next time though.
1183 *
1184 * If the extent we found is inside our range, we set the
1185 * desired bit on it.
1186 */
1187 if (state->start < start) {
1188 prealloc = alloc_extent_state_atomic(prealloc);
1189 if (!prealloc) {
1190 err = -ENOMEM;
1191 goto out;
1192 }
1193 err = split_state(tree, state, prealloc, start);
1194 if (err)
1195 extent_io_tree_panic(tree, err);
1196 prealloc = NULL;
1197 if (err)
1198 goto out;
1199 if (state->end <= end) {
1200 set_state_bits(tree, state, &bits, NULL);
1201 cache_state(state, cached_state);
1202 state = clear_state_bit(tree, state, &clear_bits, 0,
1203 NULL);
1204 if (last_end == (u64)-1)
1205 goto out;
1206 start = last_end + 1;
1207 if (start < end && state && state->start == start &&
1208 !need_resched())
1209 goto hit_next;
1210 }
1211 goto search_again;
1212 }
1213 /*
1214 * | ---- desired range ---- |
1215 * | state | or | state |
1216 *
1217 * There's a hole, we need to insert something in it and
1218 * ignore the extent we found.
1219 */
1220 if (state->start > start) {
1221 u64 this_end;
1222 if (end < last_start)
1223 this_end = end;
1224 else
1225 this_end = last_start - 1;
1226
1227 prealloc = alloc_extent_state_atomic(prealloc);
1228 if (!prealloc) {
1229 err = -ENOMEM;
1230 goto out;
1231 }
1232
1233 /*
1234 * Avoid to free 'prealloc' if it can be merged with
1235 * the later extent.
1236 */
1237 err = insert_state(tree, prealloc, start, this_end,
1238 NULL, NULL, &bits, NULL);
1239 if (err)
1240 extent_io_tree_panic(tree, err);
1241 cache_state(prealloc, cached_state);
1242 prealloc = NULL;
1243 start = this_end + 1;
1244 goto search_again;
1245 }
1246 /*
1247 * | ---- desired range ---- |
1248 * | state |
1249 * We need to split the extent, and set the bit
1250 * on the first half
1251 */
1252 if (state->start <= end && state->end > end) {
1253 prealloc = alloc_extent_state_atomic(prealloc);
1254 if (!prealloc) {
1255 err = -ENOMEM;
1256 goto out;
1257 }
1258
1259 err = split_state(tree, state, prealloc, end + 1);
1260 if (err)
1261 extent_io_tree_panic(tree, err);
1262
1263 set_state_bits(tree, prealloc, &bits, NULL);
1264 cache_state(prealloc, cached_state);
1265 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266 prealloc = NULL;
1267 goto out;
1268 }
1269
1270search_again:
1271 if (start > end)
1272 goto out;
1273 spin_unlock(&tree->lock);
1274 cond_resched();
1275 first_iteration = false;
1276 goto again;
1277
1278out:
1279 spin_unlock(&tree->lock);
1280 if (prealloc)
1281 free_extent_state(prealloc);
1282
1283 return err;
1284}
1285
1286/* wrappers around set/clear extent bit */
1287int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288 unsigned bits, struct extent_changeset *changeset)
1289{
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299 changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305{
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, struct extent_changeset *changeset)
1312{
1313 /*
1314 * Don't support EXTENT_LOCKED case, same reason as
1315 * set_record_extent_bits().
1316 */
1317 BUG_ON(bits & EXTENT_LOCKED);
1318
1319 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320 changeset);
1321}
1322
1323/*
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1326 */
1327int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328 struct extent_state **cached_state)
1329{
1330 int err;
1331 u64 failed_start;
1332
1333 while (1) {
1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335 EXTENT_LOCKED, &failed_start,
1336 cached_state, GFP_NOFS, NULL);
1337 if (err == -EEXIST) {
1338 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339 start = failed_start;
1340 } else
1341 break;
1342 WARN_ON(start > end);
1343 }
1344 return err;
1345}
1346
1347int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348{
1349 int err;
1350 u64 failed_start;
1351
1352 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353 &failed_start, NULL, GFP_NOFS, NULL);
1354 if (err == -EEXIST) {
1355 if (failed_start > start)
1356 clear_extent_bit(tree, start, failed_start - 1,
1357 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358 return 0;
1359 }
1360 return 1;
1361}
1362
1363void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_SHIFT;
1366 unsigned long end_index = end >> PAGE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 put_page(page);
1374 index++;
1375 }
1376}
1377
1378void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379{
1380 unsigned long index = start >> PAGE_SHIFT;
1381 unsigned long end_index = end >> PAGE_SHIFT;
1382 struct page *page;
1383
1384 while (index <= end_index) {
1385 page = find_get_page(inode->i_mapping, index);
1386 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387 __set_page_dirty_nobuffers(page);
1388 account_page_redirty(page);
1389 put_page(page);
1390 index++;
1391 }
1392}
1393
1394/*
1395 * helper function to set both pages and extents in the tree writeback
1396 */
1397static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398{
1399 unsigned long index = start >> PAGE_SHIFT;
1400 unsigned long end_index = end >> PAGE_SHIFT;
1401 struct page *page;
1402
1403 while (index <= end_index) {
1404 page = find_get_page(tree->mapping, index);
1405 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406 set_page_writeback(page);
1407 put_page(page);
1408 index++;
1409 }
1410}
1411
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned bits)
1419{
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1430
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1435
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440out:
1441 return NULL;
1442}
1443
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned bits,
1453 struct extent_state **cached_state)
1454{
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && extent_state_in_tree(state)) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
1479 state = find_first_extent_bit_state(tree, start, bits);
1480got_it:
1481 if (state) {
1482 cache_state_if_flags(state, cached_state, 0);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
1487out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1490}
1491
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1501{
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
1508 spin_lock(&tree->lock);
1509
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1519 }
1520
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1546 }
1547out:
1548 spin_unlock(&tree->lock);
1549 return found;
1550}
1551
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1555{
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_SHIFT;
1559 unsigned long end_index = end >> PAGE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
1564 return;
1565
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 put_page(pages[i]);
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585{
1586 unsigned long index = delalloc_start >> PAGE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 put_page(pages[i]);
1622 goto done;
1623 }
1624 }
1625 put_page(pages[i]);
1626 pages_locked++;
1627 }
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_SHIFT);
1639 }
1640 return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1653{
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1660
1661again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1672 }
1673
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1681
1682 /*
1683 * make sure to limit the number of pages we try to lock down
1684 */
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
1695 free_extent_state(cached_state);
1696 cached_state = NULL;
1697 if (!loops) {
1698 max_bytes = PAGE_SIZE;
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1704 }
1705 }
1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 EXTENT_DELALLOC, 1, cached_state);
1714 if (!ret) {
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1721 }
1722 free_extent_state(cached_state);
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725out_failed:
1726 return found;
1727}
1728
1729void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 u64 delalloc_end, struct page *locked_page,
1731 unsigned clear_bits,
1732 unsigned long page_ops)
1733{
1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 int ret;
1736 struct page *pages[16];
1737 unsigned long index = start >> PAGE_SHIFT;
1738 unsigned long end_index = end >> PAGE_SHIFT;
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
1741
1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 if (page_ops == 0)
1744 return;
1745
1746 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747 mapping_set_error(inode->i_mapping, -EIO);
1748
1749 while (nr_pages > 0) {
1750 ret = find_get_pages_contig(inode->i_mapping, index,
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
1753 for (i = 0; i < ret; i++) {
1754
1755 if (page_ops & PAGE_SET_PRIVATE2)
1756 SetPagePrivate2(pages[i]);
1757
1758 if (pages[i] == locked_page) {
1759 put_page(pages[i]);
1760 continue;
1761 }
1762 if (page_ops & PAGE_CLEAR_DIRTY)
1763 clear_page_dirty_for_io(pages[i]);
1764 if (page_ops & PAGE_SET_WRITEBACK)
1765 set_page_writeback(pages[i]);
1766 if (page_ops & PAGE_SET_ERROR)
1767 SetPageError(pages[i]);
1768 if (page_ops & PAGE_END_WRITEBACK)
1769 end_page_writeback(pages[i]);
1770 if (page_ops & PAGE_UNLOCK)
1771 unlock_page(pages[i]);
1772 put_page(pages[i]);
1773 }
1774 nr_pages -= ret;
1775 index += ret;
1776 cond_resched();
1777 }
1778}
1779
1780/*
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached. The total number found is returned.
1784 */
1785u64 count_range_bits(struct extent_io_tree *tree,
1786 u64 *start, u64 search_end, u64 max_bytes,
1787 unsigned bits, int contig)
1788{
1789 struct rb_node *node;
1790 struct extent_state *state;
1791 u64 cur_start = *start;
1792 u64 total_bytes = 0;
1793 u64 last = 0;
1794 int found = 0;
1795
1796 if (WARN_ON(search_end <= cur_start))
1797 return 0;
1798
1799 spin_lock(&tree->lock);
1800 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801 total_bytes = tree->dirty_bytes;
1802 goto out;
1803 }
1804 /*
1805 * this search will find all the extents that end after
1806 * our range starts.
1807 */
1808 node = tree_search(tree, cur_start);
1809 if (!node)
1810 goto out;
1811
1812 while (1) {
1813 state = rb_entry(node, struct extent_state, rb_node);
1814 if (state->start > search_end)
1815 break;
1816 if (contig && found && state->start > last + 1)
1817 break;
1818 if (state->end >= cur_start && (state->state & bits) == bits) {
1819 total_bytes += min(search_end, state->end) + 1 -
1820 max(cur_start, state->start);
1821 if (total_bytes >= max_bytes)
1822 break;
1823 if (!found) {
1824 *start = max(cur_start, state->start);
1825 found = 1;
1826 }
1827 last = state->end;
1828 } else if (contig && found) {
1829 break;
1830 }
1831 node = rb_next(node);
1832 if (!node)
1833 break;
1834 }
1835out:
1836 spin_unlock(&tree->lock);
1837 return total_bytes;
1838}
1839
1840/*
1841 * set the private field for a given byte offset in the tree. If there isn't
1842 * an extent_state there already, this does nothing.
1843 */
1844static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845 struct io_failure_record *failrec)
1846{
1847 struct rb_node *node;
1848 struct extent_state *state;
1849 int ret = 0;
1850
1851 spin_lock(&tree->lock);
1852 /*
1853 * this search will find all the extents that end after
1854 * our range starts.
1855 */
1856 node = tree_search(tree, start);
1857 if (!node) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state = rb_entry(node, struct extent_state, rb_node);
1862 if (state->start != start) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
1866 state->failrec = failrec;
1867out:
1868 spin_unlock(&tree->lock);
1869 return ret;
1870}
1871
1872static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873 struct io_failure_record **failrec)
1874{
1875 struct rb_node *node;
1876 struct extent_state *state;
1877 int ret = 0;
1878
1879 spin_lock(&tree->lock);
1880 /*
1881 * this search will find all the extents that end after
1882 * our range starts.
1883 */
1884 node = tree_search(tree, start);
1885 if (!node) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 state = rb_entry(node, struct extent_state, rb_node);
1890 if (state->start != start) {
1891 ret = -ENOENT;
1892 goto out;
1893 }
1894 *failrec = state->failrec;
1895out:
1896 spin_unlock(&tree->lock);
1897 return ret;
1898}
1899
1900/*
1901 * searches a range in the state tree for a given mask.
1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
1903 * has the bits set. Otherwise, 1 is returned if any bit in the
1904 * range is found set.
1905 */
1906int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907 unsigned bits, int filled, struct extent_state *cached)
1908{
1909 struct extent_state *state = NULL;
1910 struct rb_node *node;
1911 int bitset = 0;
1912
1913 spin_lock(&tree->lock);
1914 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915 cached->end > start)
1916 node = &cached->rb_node;
1917 else
1918 node = tree_search(tree, start);
1919 while (node && start <= end) {
1920 state = rb_entry(node, struct extent_state, rb_node);
1921
1922 if (filled && state->start > start) {
1923 bitset = 0;
1924 break;
1925 }
1926
1927 if (state->start > end)
1928 break;
1929
1930 if (state->state & bits) {
1931 bitset = 1;
1932 if (!filled)
1933 break;
1934 } else if (filled) {
1935 bitset = 0;
1936 break;
1937 }
1938
1939 if (state->end == (u64)-1)
1940 break;
1941
1942 start = state->end + 1;
1943 if (start > end)
1944 break;
1945 node = rb_next(node);
1946 if (!node) {
1947 if (filled)
1948 bitset = 0;
1949 break;
1950 }
1951 }
1952 spin_unlock(&tree->lock);
1953 return bitset;
1954}
1955
1956/*
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
1959 */
1960static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961{
1962 u64 start = page_offset(page);
1963 u64 end = start + PAGE_SIZE - 1;
1964 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965 SetPageUptodate(page);
1966}
1967
1968int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969{
1970 int ret;
1971 int err = 0;
1972 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
1974 set_state_failrec(failure_tree, rec->start, NULL);
1975 ret = clear_extent_bits(failure_tree, rec->start,
1976 rec->start + rec->len - 1,
1977 EXTENT_LOCKED | EXTENT_DIRTY);
1978 if (ret)
1979 err = ret;
1980
1981 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982 rec->start + rec->len - 1,
1983 EXTENT_DAMAGED);
1984 if (ret && !err)
1985 err = ret;
1986
1987 kfree(rec);
1988 return err;
1989}
1990
1991/*
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
1996 * to avoid any synchronization issues, wait for the data after writing, which
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
2000 */
2001int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002 struct page *page, unsigned int pg_offset, int mirror_num)
2003{
2004 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005 struct bio *bio;
2006 struct btrfs_device *dev;
2007 u64 map_length = 0;
2008 u64 sector;
2009 struct btrfs_bio *bbio = NULL;
2010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011 int ret;
2012
2013 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014 BUG_ON(!mirror_num);
2015
2016 /* we can't repair anything in raid56 yet */
2017 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018 return 0;
2019
2020 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021 if (!bio)
2022 return -EIO;
2023 bio->bi_iter.bi_size = 0;
2024 map_length = length;
2025
2026 /*
2027 * Avoid races with device replace and make sure our bbio has devices
2028 * associated to its stripes that don't go away while we are doing the
2029 * read repair operation.
2030 */
2031 btrfs_bio_counter_inc_blocked(fs_info);
2032 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2033 &map_length, &bbio, mirror_num);
2034 if (ret) {
2035 btrfs_bio_counter_dec(fs_info);
2036 bio_put(bio);
2037 return -EIO;
2038 }
2039 BUG_ON(mirror_num != bbio->mirror_num);
2040 sector = bbio->stripes[mirror_num-1].physical >> 9;
2041 bio->bi_iter.bi_sector = sector;
2042 dev = bbio->stripes[mirror_num-1].dev;
2043 btrfs_put_bbio(bbio);
2044 if (!dev || !dev->bdev || !dev->writeable) {
2045 btrfs_bio_counter_dec(fs_info);
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 bio->bi_bdev = dev->bdev;
2050 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2051 bio_add_page(bio, page, length, pg_offset);
2052
2053 if (btrfsic_submit_bio_wait(bio)) {
2054 /* try to remap that extent elsewhere? */
2055 btrfs_bio_counter_dec(fs_info);
2056 bio_put(bio);
2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058 return -EIO;
2059 }
2060
2061 btrfs_info_rl_in_rcu(fs_info,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
2065 btrfs_bio_counter_dec(fs_info);
2066 bio_put(bio);
2067 return 0;
2068}
2069
2070int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2071 struct extent_buffer *eb, int mirror_num)
2072{
2073 u64 start = eb->start;
2074 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075 int ret = 0;
2076
2077 if (fs_info->sb->s_flags & MS_RDONLY)
2078 return -EROFS;
2079
2080 for (i = 0; i < num_pages; i++) {
2081 struct page *p = eb->pages[i];
2082
2083 ret = repair_io_failure(fs_info->btree_inode, start,
2084 PAGE_SIZE, start, p,
2085 start - page_offset(p), mirror_num);
2086 if (ret)
2087 break;
2088 start += PAGE_SIZE;
2089 }
2090
2091 return ret;
2092}
2093
2094/*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2097 */
2098int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099 unsigned int pg_offset)
2100{
2101 u64 private;
2102 struct io_failure_record *failrec;
2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104 struct extent_state *state;
2105 int num_copies;
2106 int ret;
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115 &failrec);
2116 if (ret)
2117 return 0;
2118
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
2123 btrfs_debug(fs_info,
2124 "clean_io_failure: freeing dummy error at %llu",
2125 failrec->start);
2126 goto out;
2127 }
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
2141 if (num_copies > 1) {
2142 repair_io_failure(inode, start, failrec->len,
2143 failrec->logical, page,
2144 pg_offset, failrec->failed_mirror);
2145 }
2146 }
2147
2148out:
2149 free_io_failure(inode, failrec);
2150
2151 return 0;
2152}
2153
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161{
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
2179 failrec = state->failrec;
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186}
2187
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
2190{
2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 btrfs_debug(fs_info,
2240 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 logical, start, failrec->len);
2242
2243 failrec->logical = logical;
2244 free_extent_map(em);
2245
2246 /* set the bits in the private failure tree */
2247 ret = set_extent_bits(failure_tree, start, end,
2248 EXTENT_LOCKED | EXTENT_DIRTY);
2249 if (ret >= 0)
2250 ret = set_state_failrec(failure_tree, start, failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
2259 btrfs_debug(fs_info,
2260 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 failrec->logical, failrec->start, failrec->len,
2262 failrec->in_validation);
2263 /*
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2267 */
2268 }
2269
2270 *failrec_ret = failrec;
2271
2272 return 0;
2273}
2274
2275int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276 struct io_failure_record *failrec, int failed_mirror)
2277{
2278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279 int num_copies;
2280
2281 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282 if (num_copies == 1) {
2283 /*
2284 * we only have a single copy of the data, so don't bother with
2285 * all the retry and error correction code that follows. no
2286 * matter what the error is, it is very likely to persist.
2287 */
2288 btrfs_debug(fs_info,
2289 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 num_copies, failrec->this_mirror, failed_mirror);
2291 return 0;
2292 }
2293
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
2326 }
2327
2328 if (failrec->this_mirror > num_copies) {
2329 btrfs_debug(fs_info,
2330 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 num_copies, failrec->this_mirror, failed_mirror);
2332 return 0;
2333 }
2334
2335 return 1;
2336}
2337
2338
2339struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340 struct io_failure_record *failrec,
2341 struct page *page, int pg_offset, int icsum,
2342 bio_end_io_t *endio_func, void *data)
2343{
2344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2345 struct bio *bio;
2346 struct btrfs_io_bio *btrfs_failed_bio;
2347 struct btrfs_io_bio *btrfs_bio;
2348
2349 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2350 if (!bio)
2351 return NULL;
2352
2353 bio->bi_end_io = endio_func;
2354 bio->bi_iter.bi_sector = failrec->logical >> 9;
2355 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2356 bio->bi_iter.bi_size = 0;
2357 bio->bi_private = data;
2358
2359 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2360 if (btrfs_failed_bio->csum) {
2361 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362
2363 btrfs_bio = btrfs_io_bio(bio);
2364 btrfs_bio->csum = btrfs_bio->csum_inline;
2365 icsum *= csum_size;
2366 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367 csum_size);
2368 }
2369
2370 bio_add_page(bio, page, failrec->len, pg_offset);
2371
2372 return bio;
2373}
2374
2375/*
2376 * this is a generic handler for readpage errors (default
2377 * readpage_io_failed_hook). if other copies exist, read those and write back
2378 * good data to the failed position. does not investigate in remapping the
2379 * failed extent elsewhere, hoping the device will be smart enough to do this as
2380 * needed
2381 */
2382
2383static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384 struct page *page, u64 start, u64 end,
2385 int failed_mirror)
2386{
2387 struct io_failure_record *failrec;
2388 struct inode *inode = page->mapping->host;
2389 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 struct bio *bio;
2391 int read_mode = 0;
2392 int ret;
2393
2394 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395
2396 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397 if (ret)
2398 return ret;
2399
2400 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401 if (!ret) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 if (failed_bio->bi_vcnt > 1)
2407 read_mode |= REQ_FAILFAST_DEV;
2408
2409 phy_offset >>= inode->i_sb->s_blocksize_bits;
2410 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2411 start - page_offset(page),
2412 (int)phy_offset, failed_bio->bi_end_io,
2413 NULL);
2414 if (!bio) {
2415 free_io_failure(inode, failrec);
2416 return -EIO;
2417 }
2418 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2419
2420 btrfs_debug(btrfs_sb(inode->i_sb),
2421 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422 read_mode, failrec->this_mirror, failrec->in_validation);
2423
2424 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2425 failrec->bio_flags, 0);
2426 if (ret) {
2427 free_io_failure(inode, failrec);
2428 bio_put(bio);
2429 }
2430
2431 return ret;
2432}
2433
2434/* lots and lots of room for performance fixes in the end_bio funcs */
2435
2436void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437{
2438 int uptodate = (err == 0);
2439 struct extent_io_tree *tree;
2440 int ret = 0;
2441
2442 tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444 if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 ret = tree->ops->writepage_end_io_hook(page, start,
2446 end, NULL, uptodate);
2447 if (ret)
2448 uptodate = 0;
2449 }
2450
2451 if (!uptodate) {
2452 ClearPageUptodate(page);
2453 SetPageError(page);
2454 ret = ret < 0 ? ret : -EIO;
2455 mapping_set_error(page->mapping, ret);
2456 }
2457}
2458
2459/*
2460 * after a writepage IO is done, we need to:
2461 * clear the uptodate bits on error
2462 * clear the writeback bits in the extent tree for this IO
2463 * end_page_writeback if the page has no more pending IO
2464 *
2465 * Scheduling is not allowed, so the extent state tree is expected
2466 * to have one and only one object corresponding to this IO.
2467 */
2468static void end_bio_extent_writepage(struct bio *bio)
2469{
2470 struct bio_vec *bvec;
2471 u64 start;
2472 u64 end;
2473 int i;
2474
2475 bio_for_each_segment_all(bvec, bio, i) {
2476 struct page *page = bvec->bv_page;
2477 struct inode *inode = page->mapping->host;
2478 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2479
2480 /* We always issue full-page reads, but if some block
2481 * in a page fails to read, blk_update_request() will
2482 * advance bv_offset and adjust bv_len to compensate.
2483 * Print a warning for nonzero offsets, and an error
2484 * if they don't add up to a full page. */
2485 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2486 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2487 btrfs_err(fs_info,
2488 "partial page write in btrfs with offset %u and length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 else
2491 btrfs_info(fs_info,
2492 "incomplete page write in btrfs with offset %u and length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
2495
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
2498
2499 end_extent_writepage(page, bio->bi_error, start, end);
2500 end_page_writeback(page);
2501 }
2502
2503 bio_put(bio);
2504}
2505
2506static void
2507endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2508 int uptodate)
2509{
2510 struct extent_state *cached = NULL;
2511 u64 end = start + len - 1;
2512
2513 if (uptodate && tree->track_uptodate)
2514 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2515 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2516}
2517
2518/*
2519 * after a readpage IO is done, we need to:
2520 * clear the uptodate bits on error
2521 * set the uptodate bits if things worked
2522 * set the page up to date if all extents in the tree are uptodate
2523 * clear the lock bit in the extent tree
2524 * unlock the page if there are no other extents locked for it
2525 *
2526 * Scheduling is not allowed, so the extent state tree is expected
2527 * to have one and only one object corresponding to this IO.
2528 */
2529static void end_bio_extent_readpage(struct bio *bio)
2530{
2531 struct bio_vec *bvec;
2532 int uptodate = !bio->bi_error;
2533 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2534 struct extent_io_tree *tree;
2535 u64 offset = 0;
2536 u64 start;
2537 u64 end;
2538 u64 len;
2539 u64 extent_start = 0;
2540 u64 extent_len = 0;
2541 int mirror;
2542 int ret;
2543 int i;
2544
2545 bio_for_each_segment_all(bvec, bio, i) {
2546 struct page *page = bvec->bv_page;
2547 struct inode *inode = page->mapping->host;
2548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2549
2550 btrfs_debug(fs_info,
2551 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2553 io_bio->mirror_num);
2554 tree = &BTRFS_I(inode)->io_tree;
2555
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
2561 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2562 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2563 btrfs_err(fs_info,
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 else
2567 btrfs_info(fs_info,
2568 "incomplete page read in btrfs with offset %u and length %u",
2569 bvec->bv_offset, bvec->bv_len);
2570 }
2571
2572 start = page_offset(page);
2573 end = start + bvec->bv_offset + bvec->bv_len - 1;
2574 len = bvec->bv_len;
2575
2576 mirror = io_bio->mirror_num;
2577 if (likely(uptodate && tree->ops &&
2578 tree->ops->readpage_end_io_hook)) {
2579 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580 page, start, end,
2581 mirror);
2582 if (ret)
2583 uptodate = 0;
2584 else
2585 clean_io_failure(inode, start, page, 0);
2586 }
2587
2588 if (likely(uptodate))
2589 goto readpage_ok;
2590
2591 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2592 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2593 if (!ret && !bio->bi_error)
2594 uptodate = 1;
2595 } else {
2596 /*
2597 * The generic bio_readpage_error handles errors the
2598 * following way: If possible, new read requests are
2599 * created and submitted and will end up in
2600 * end_bio_extent_readpage as well (if we're lucky, not
2601 * in the !uptodate case). In that case it returns 0 and
2602 * we just go on with the next page in our bio. If it
2603 * can't handle the error it will return -EIO and we
2604 * remain responsible for that page.
2605 */
2606 ret = bio_readpage_error(bio, offset, page, start, end,
2607 mirror);
2608 if (ret == 0) {
2609 uptodate = !bio->bi_error;
2610 offset += len;
2611 continue;
2612 }
2613 }
2614readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, bio->bi_error);
2660 bio_put(bio);
2661}
2662
2663/*
2664 * this allocates from the btrfs_bioset. We're returning a bio right now
2665 * but you can call btrfs_io_bio for the appropriate container_of magic
2666 */
2667struct bio *
2668btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2669 gfp_t gfp_flags)
2670{
2671 struct btrfs_io_bio *btrfs_bio;
2672 struct bio *bio;
2673
2674 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2675
2676 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2677 while (!bio && (nr_vecs /= 2)) {
2678 bio = bio_alloc_bioset(gfp_flags,
2679 nr_vecs, btrfs_bioset);
2680 }
2681 }
2682
2683 if (bio) {
2684 bio->bi_bdev = bdev;
2685 bio->bi_iter.bi_sector = first_sector;
2686 btrfs_bio = btrfs_io_bio(bio);
2687 btrfs_bio->csum = NULL;
2688 btrfs_bio->csum_allocated = NULL;
2689 btrfs_bio->end_io = NULL;
2690 }
2691 return bio;
2692}
2693
2694struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2695{
2696 struct btrfs_io_bio *btrfs_bio;
2697 struct bio *new;
2698
2699 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2700 if (new) {
2701 btrfs_bio = btrfs_io_bio(new);
2702 btrfs_bio->csum = NULL;
2703 btrfs_bio->csum_allocated = NULL;
2704 btrfs_bio->end_io = NULL;
2705 }
2706 return new;
2707}
2708
2709/* this also allocates from the btrfs_bioset */
2710struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711{
2712 struct btrfs_io_bio *btrfs_bio;
2713 struct bio *bio;
2714
2715 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716 if (bio) {
2717 btrfs_bio = btrfs_io_bio(bio);
2718 btrfs_bio->csum = NULL;
2719 btrfs_bio->csum_allocated = NULL;
2720 btrfs_bio->end_io = NULL;
2721 }
2722 return bio;
2723}
2724
2725
2726static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 unsigned long bio_flags)
2728{
2729 int ret = 0;
2730 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 struct page *page = bvec->bv_page;
2732 struct extent_io_tree *tree = bio->bi_private;
2733 u64 start;
2734
2735 start = page_offset(page) + bvec->bv_offset;
2736
2737 bio->bi_private = NULL;
2738 bio_get(bio);
2739
2740 if (tree->ops && tree->ops->submit_bio_hook)
2741 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2742 mirror_num, bio_flags, start);
2743 else
2744 btrfsic_submit_bio(bio);
2745
2746 bio_put(bio);
2747 return ret;
2748}
2749
2750static int merge_bio(struct extent_io_tree *tree, struct page *page,
2751 unsigned long offset, size_t size, struct bio *bio,
2752 unsigned long bio_flags)
2753{
2754 int ret = 0;
2755 if (tree->ops && tree->ops->merge_bio_hook)
2756 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2757 bio_flags);
2758 return ret;
2759
2760}
2761
2762static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 unsigned long max_pages,
2769 bio_end_io_t end_io_func,
2770 int mirror_num,
2771 unsigned long prev_bio_flags,
2772 unsigned long bio_flags,
2773 bool force_bio_submit)
2774{
2775 int ret = 0;
2776 struct bio *bio;
2777 int contig = 0;
2778 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
2783 if (old_compressed)
2784 contig = bio->bi_iter.bi_sector == sector;
2785 else
2786 contig = bio_end_sector(bio) == sector;
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
2789 force_bio_submit ||
2790 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2796 }
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2802 }
2803 }
2804
2805 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2806 GFP_NOFS | __GFP_HIGH);
2807 if (!bio)
2808 return -ENOMEM;
2809
2810 bio_add_page(bio, page, page_size, offset);
2811 bio->bi_end_io = end_io_func;
2812 bio->bi_private = tree;
2813 bio_set_op_attrs(bio, op, op_flags);
2814 if (wbc) {
2815 wbc_init_bio(wbc, bio);
2816 wbc_account_io(wbc, page, page_size);
2817 }
2818
2819 if (bio_ret)
2820 *bio_ret = bio;
2821 else
2822 ret = submit_one_bio(bio, mirror_num, bio_flags);
2823
2824 return ret;
2825}
2826
2827static void attach_extent_buffer_page(struct extent_buffer *eb,
2828 struct page *page)
2829{
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
2832 get_page(page);
2833 set_page_private(page, (unsigned long)eb);
2834 } else {
2835 WARN_ON(page->private != (unsigned long)eb);
2836 }
2837}
2838
2839void set_page_extent_mapped(struct page *page)
2840{
2841 if (!PagePrivate(page)) {
2842 SetPagePrivate(page);
2843 get_page(page);
2844 set_page_private(page, EXTENT_PAGE_PRIVATE);
2845 }
2846}
2847
2848static struct extent_map *
2849__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2850 u64 start, u64 len, get_extent_t *get_extent,
2851 struct extent_map **em_cached)
2852{
2853 struct extent_map *em;
2854
2855 if (em_cached && *em_cached) {
2856 em = *em_cached;
2857 if (extent_map_in_tree(em) && start >= em->start &&
2858 start < extent_map_end(em)) {
2859 atomic_inc(&em->refs);
2860 return em;
2861 }
2862
2863 free_extent_map(em);
2864 *em_cached = NULL;
2865 }
2866
2867 em = get_extent(inode, page, pg_offset, start, len, 0);
2868 if (em_cached && !IS_ERR_OR_NULL(em)) {
2869 BUG_ON(*em_cached);
2870 atomic_inc(&em->refs);
2871 *em_cached = em;
2872 }
2873 return em;
2874}
2875/*
2876 * basic readpage implementation. Locked extent state structs are inserted
2877 * into the tree that are removed when the IO is done (by the end_io
2878 * handlers)
2879 * XXX JDM: This needs looking at to ensure proper page locking
2880 * return 0 on success, otherwise return error
2881 */
2882static int __do_readpage(struct extent_io_tree *tree,
2883 struct page *page,
2884 get_extent_t *get_extent,
2885 struct extent_map **em_cached,
2886 struct bio **bio, int mirror_num,
2887 unsigned long *bio_flags, int read_flags,
2888 u64 *prev_em_start)
2889{
2890 struct inode *inode = page->mapping->host;
2891 u64 start = page_offset(page);
2892 u64 page_end = start + PAGE_SIZE - 1;
2893 u64 end;
2894 u64 cur = start;
2895 u64 extent_offset;
2896 u64 last_byte = i_size_read(inode);
2897 u64 block_start;
2898 u64 cur_end;
2899 sector_t sector;
2900 struct extent_map *em;
2901 struct block_device *bdev;
2902 int ret = 0;
2903 int nr = 0;
2904 size_t pg_offset = 0;
2905 size_t iosize;
2906 size_t disk_io_size;
2907 size_t blocksize = inode->i_sb->s_blocksize;
2908 unsigned long this_bio_flag = 0;
2909
2910 set_page_extent_mapped(page);
2911
2912 end = page_end;
2913 if (!PageUptodate(page)) {
2914 if (cleancache_get_page(page) == 0) {
2915 BUG_ON(blocksize != PAGE_SIZE);
2916 unlock_extent(tree, start, end);
2917 goto out;
2918 }
2919 }
2920
2921 if (page->index == last_byte >> PAGE_SHIFT) {
2922 char *userpage;
2923 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2924
2925 if (zero_offset) {
2926 iosize = PAGE_SIZE - zero_offset;
2927 userpage = kmap_atomic(page);
2928 memset(userpage + zero_offset, 0, iosize);
2929 flush_dcache_page(page);
2930 kunmap_atomic(userpage);
2931 }
2932 }
2933 while (cur <= end) {
2934 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2935 bool force_bio_submit = false;
2936
2937 if (cur >= last_byte) {
2938 char *userpage;
2939 struct extent_state *cached = NULL;
2940
2941 iosize = PAGE_SIZE - pg_offset;
2942 userpage = kmap_atomic(page);
2943 memset(userpage + pg_offset, 0, iosize);
2944 flush_dcache_page(page);
2945 kunmap_atomic(userpage);
2946 set_extent_uptodate(tree, cur, cur + iosize - 1,
2947 &cached, GFP_NOFS);
2948 unlock_extent_cached(tree, cur,
2949 cur + iosize - 1,
2950 &cached, GFP_NOFS);
2951 break;
2952 }
2953 em = __get_extent_map(inode, page, pg_offset, cur,
2954 end - cur + 1, get_extent, em_cached);
2955 if (IS_ERR_OR_NULL(em)) {
2956 SetPageError(page);
2957 unlock_extent(tree, cur, end);
2958 break;
2959 }
2960 extent_offset = cur - em->start;
2961 BUG_ON(extent_map_end(em) <= cur);
2962 BUG_ON(end < cur);
2963
2964 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2965 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2966 extent_set_compress_type(&this_bio_flag,
2967 em->compress_type);
2968 }
2969
2970 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2971 cur_end = min(extent_map_end(em) - 1, end);
2972 iosize = ALIGN(iosize, blocksize);
2973 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2974 disk_io_size = em->block_len;
2975 sector = em->block_start >> 9;
2976 } else {
2977 sector = (em->block_start + extent_offset) >> 9;
2978 disk_io_size = iosize;
2979 }
2980 bdev = em->bdev;
2981 block_start = em->block_start;
2982 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2983 block_start = EXTENT_MAP_HOLE;
2984
2985 /*
2986 * If we have a file range that points to a compressed extent
2987 * and it's followed by a consecutive file range that points to
2988 * to the same compressed extent (possibly with a different
2989 * offset and/or length, so it either points to the whole extent
2990 * or only part of it), we must make sure we do not submit a
2991 * single bio to populate the pages for the 2 ranges because
2992 * this makes the compressed extent read zero out the pages
2993 * belonging to the 2nd range. Imagine the following scenario:
2994 *
2995 * File layout
2996 * [0 - 8K] [8K - 24K]
2997 * | |
2998 * | |
2999 * points to extent X, points to extent X,
3000 * offset 4K, length of 8K offset 0, length 16K
3001 *
3002 * [extent X, compressed length = 4K uncompressed length = 16K]
3003 *
3004 * If the bio to read the compressed extent covers both ranges,
3005 * it will decompress extent X into the pages belonging to the
3006 * first range and then it will stop, zeroing out the remaining
3007 * pages that belong to the other range that points to extent X.
3008 * So here we make sure we submit 2 bios, one for the first
3009 * range and another one for the third range. Both will target
3010 * the same physical extent from disk, but we can't currently
3011 * make the compressed bio endio callback populate the pages
3012 * for both ranges because each compressed bio is tightly
3013 * coupled with a single extent map, and each range can have
3014 * an extent map with a different offset value relative to the
3015 * uncompressed data of our extent and different lengths. This
3016 * is a corner case so we prioritize correctness over
3017 * non-optimal behavior (submitting 2 bios for the same extent).
3018 */
3019 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3020 prev_em_start && *prev_em_start != (u64)-1 &&
3021 *prev_em_start != em->orig_start)
3022 force_bio_submit = true;
3023
3024 if (prev_em_start)
3025 *prev_em_start = em->orig_start;
3026
3027 free_extent_map(em);
3028 em = NULL;
3029
3030 /* we've found a hole, just zero and go on */
3031 if (block_start == EXTENT_MAP_HOLE) {
3032 char *userpage;
3033 struct extent_state *cached = NULL;
3034
3035 userpage = kmap_atomic(page);
3036 memset(userpage + pg_offset, 0, iosize);
3037 flush_dcache_page(page);
3038 kunmap_atomic(userpage);
3039
3040 set_extent_uptodate(tree, cur, cur + iosize - 1,
3041 &cached, GFP_NOFS);
3042 unlock_extent_cached(tree, cur,
3043 cur + iosize - 1,
3044 &cached, GFP_NOFS);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 pnr -= page->index;
3070 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3071 page, sector, disk_io_size, pg_offset,
3072 bdev, bio, pnr,
3073 end_bio_extent_readpage, mirror_num,
3074 *bio_flags,
3075 this_bio_flag,
3076 force_bio_submit);
3077 if (!ret) {
3078 nr++;
3079 *bio_flags = this_bio_flag;
3080 } else {
3081 SetPageError(page);
3082 unlock_extent(tree, cur, cur + iosize - 1);
3083 goto out;
3084 }
3085 cur = cur + iosize;
3086 pg_offset += iosize;
3087 }
3088out:
3089 if (!nr) {
3090 if (!PageError(page))
3091 SetPageUptodate(page);
3092 unlock_page(page);
3093 }
3094 return ret;
3095}
3096
3097static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 struct page *pages[], int nr_pages,
3099 u64 start, u64 end,
3100 get_extent_t *get_extent,
3101 struct extent_map **em_cached,
3102 struct bio **bio, int mirror_num,
3103 unsigned long *bio_flags,
3104 u64 *prev_em_start)
3105{
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(inode, start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 mirror_num, bio_flags, 0, prev_em_start);
3125 put_page(pages[index]);
3126 }
3127}
3128
3129static void __extent_readpages(struct extent_io_tree *tree,
3130 struct page *pages[],
3131 int nr_pages, get_extent_t *get_extent,
3132 struct extent_map **em_cached,
3133 struct bio **bio, int mirror_num,
3134 unsigned long *bio_flags,
3135 u64 *prev_em_start)
3136{
3137 u64 start = 0;
3138 u64 end = 0;
3139 u64 page_start;
3140 int index;
3141 int first_index = 0;
3142
3143 for (index = 0; index < nr_pages; index++) {
3144 page_start = page_offset(pages[index]);
3145 if (!end) {
3146 start = page_start;
3147 end = start + PAGE_SIZE - 1;
3148 first_index = index;
3149 } else if (end + 1 == page_start) {
3150 end += PAGE_SIZE;
3151 } else {
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
3154 end, get_extent, em_cached,
3155 bio, mirror_num, bio_flags,
3156 prev_em_start);
3157 start = page_start;
3158 end = start + PAGE_SIZE - 1;
3159 first_index = index;
3160 }
3161 }
3162
3163 if (end)
3164 __do_contiguous_readpages(tree, &pages[first_index],
3165 index - first_index, start,
3166 end, get_extent, em_cached, bio,
3167 mirror_num, bio_flags,
3168 prev_em_start);
3169}
3170
3171static int __extent_read_full_page(struct extent_io_tree *tree,
3172 struct page *page,
3173 get_extent_t *get_extent,
3174 struct bio **bio, int mirror_num,
3175 unsigned long *bio_flags, int read_flags)
3176{
3177 struct inode *inode = page->mapping->host;
3178 struct btrfs_ordered_extent *ordered;
3179 u64 start = page_offset(page);
3180 u64 end = start + PAGE_SIZE - 1;
3181 int ret;
3182
3183 while (1) {
3184 lock_extent(tree, start, end);
3185 ordered = btrfs_lookup_ordered_range(inode, start,
3186 PAGE_SIZE);
3187 if (!ordered)
3188 break;
3189 unlock_extent(tree, start, end);
3190 btrfs_start_ordered_extent(inode, ordered, 1);
3191 btrfs_put_ordered_extent(ordered);
3192 }
3193
3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 bio_flags, read_flags, NULL);
3196 return ret;
3197}
3198
3199int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 get_extent_t *get_extent, int mirror_num)
3201{
3202 struct bio *bio = NULL;
3203 unsigned long bio_flags = 0;
3204 int ret;
3205
3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 &bio_flags, 0);
3208 if (bio)
3209 ret = submit_one_bio(bio, mirror_num, bio_flags);
3210 return ret;
3211}
3212
3213static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 unsigned long nr_written)
3215{
3216 wbc->nr_to_write -= nr_written;
3217}
3218
3219/*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
3229static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 struct page *page, struct writeback_control *wbc,
3231 struct extent_page_data *epd,
3232 u64 delalloc_start,
3233 unsigned long *nr_written)
3234{
3235 struct extent_io_tree *tree = epd->tree;
3236 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 u64 nr_delalloc;
3238 u64 delalloc_to_write = 0;
3239 u64 delalloc_end = 0;
3240 int ret;
3241 int page_started = 0;
3242
3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 return 0;
3245
3246 while (delalloc_end < page_end) {
3247 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 page,
3249 &delalloc_start,
3250 &delalloc_end,
3251 BTRFS_MAX_EXTENT_SIZE);
3252 if (nr_delalloc == 0) {
3253 delalloc_start = delalloc_end + 1;
3254 continue;
3255 }
3256 ret = tree->ops->fill_delalloc(inode, page,
3257 delalloc_start,
3258 delalloc_end,
3259 &page_started,
3260 nr_written);
3261 /* File system has been set read-only */
3262 if (ret) {
3263 SetPageError(page);
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3268 */
3269 ret = ret < 0 ? ret : -EIO;
3270 goto done;
3271 }
3272 /*
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
3275 */
3276 delalloc_to_write += (delalloc_end - delalloc_start +
3277 PAGE_SIZE) >> PAGE_SHIFT;
3278 delalloc_start = delalloc_end + 1;
3279 }
3280 if (wbc->nr_to_write < delalloc_to_write) {
3281 int thresh = 8192;
3282
3283 if (delalloc_to_write < thresh * 2)
3284 thresh = delalloc_to_write;
3285 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 thresh);
3287 }
3288
3289 /* did the fill delalloc function already unlock and start
3290 * the IO?
3291 */
3292 if (page_started) {
3293 /*
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3296 * nr_to_write.
3297 */
3298 wbc->nr_to_write -= *nr_written;
3299 return 1;
3300 }
3301
3302 ret = 0;
3303
3304done:
3305 return ret;
3306}
3307
3308/*
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 struct page *page,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd,
3320 loff_t i_size,
3321 unsigned long nr_written,
3322 int write_flags, int *nr_ret)
3323{
3324 struct extent_io_tree *tree = epd->tree;
3325 u64 start = page_offset(page);
3326 u64 page_end = start + PAGE_SIZE - 1;
3327 u64 end;
3328 u64 cur = start;
3329 u64 extent_offset;
3330 u64 block_start;
3331 u64 iosize;
3332 sector_t sector;
3333 struct extent_state *cached_state = NULL;
3334 struct extent_map *em;
3335 struct block_device *bdev;
3336 size_t pg_offset = 0;
3337 size_t blocksize;
3338 int ret = 0;
3339 int nr = 0;
3340 bool compressed;
3341
3342 if (tree->ops && tree->ops->writepage_start_hook) {
3343 ret = tree->ops->writepage_start_hook(page, start,
3344 page_end);
3345 if (ret) {
3346 /* Fixup worker will requeue */
3347 if (ret == -EBUSY)
3348 wbc->pages_skipped++;
3349 else
3350 redirty_page_for_writepage(wbc, page);
3351
3352 update_nr_written(page, wbc, nr_written);
3353 unlock_page(page);
3354 ret = 1;
3355 goto done_unlocked;
3356 }
3357 }
3358
3359 /*
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3362 */
3363 update_nr_written(page, wbc, nr_written + 1);
3364
3365 end = page_end;
3366 if (i_size <= start) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, start,
3369 page_end, NULL, 1);
3370 goto done;
3371 }
3372
3373 blocksize = inode->i_sb->s_blocksize;
3374
3375 while (cur <= end) {
3376 u64 em_end;
3377 unsigned long max_nr;
3378
3379 if (cur >= i_size) {
3380 if (tree->ops && tree->ops->writepage_end_io_hook)
3381 tree->ops->writepage_end_io_hook(page, cur,
3382 page_end, NULL, 1);
3383 break;
3384 }
3385 em = epd->get_extent(inode, page, pg_offset, cur,
3386 end - cur + 1, 1);
3387 if (IS_ERR_OR_NULL(em)) {
3388 SetPageError(page);
3389 ret = PTR_ERR_OR_ZERO(em);
3390 break;
3391 }
3392
3393 extent_offset = cur - em->start;
3394 em_end = extent_map_end(em);
3395 BUG_ON(em_end <= cur);
3396 BUG_ON(end < cur);
3397 iosize = min(em_end - cur, end - cur + 1);
3398 iosize = ALIGN(iosize, blocksize);
3399 sector = (em->block_start + extent_offset) >> 9;
3400 bdev = em->bdev;
3401 block_start = em->block_start;
3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 free_extent_map(em);
3404 em = NULL;
3405
3406 /*
3407 * compressed and inline extents are written through other
3408 * paths in the FS
3409 */
3410 if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 block_start == EXTENT_MAP_INLINE) {
3412 /*
3413 * end_io notification does not happen here for
3414 * compressed extents
3415 */
3416 if (!compressed && tree->ops &&
3417 tree->ops->writepage_end_io_hook)
3418 tree->ops->writepage_end_io_hook(page, cur,
3419 cur + iosize - 1,
3420 NULL, 1);
3421 else if (compressed) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3424 * elsewhere
3425 */
3426 nr++;
3427 }
3428
3429 cur += iosize;
3430 pg_offset += iosize;
3431 continue;
3432 }
3433
3434 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page->index, cur, end);
3441 }
3442
3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 page, sector, iosize, pg_offset,
3445 bdev, &epd->bio, max_nr,
3446 end_bio_extent_writepage,
3447 0, 0, 0, false);
3448 if (ret)
3449 SetPageError(page);
3450
3451 cur = cur + iosize;
3452 pg_offset += iosize;
3453 nr++;
3454 }
3455done:
3456 *nr_ret = nr;
3457
3458done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473{
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
3477 u64 page_end = start + PAGE_SIZE - 1;
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
3482 unsigned long end_index = i_size >> PAGE_SHIFT;
3483 int write_flags = 0;
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = REQ_SYNC;
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
3495 pg_offset = i_size & (PAGE_SIZE - 1);
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
3508 PAGE_SIZE - pg_offset);
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
3528done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
3538 unlock_page(page);
3539 return ret;
3540
3541done_unlocked:
3542 return 0;
3543}
3544
3545void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546{
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
3549}
3550
3551static noinline_for_stack int
3552lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
3555{
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
3579 btrfs_tree_unlock(eb);
3580 }
3581 }
3582
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591 spin_unlock(&eb->refs_lock);
3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
3596 ret = 1;
3597 } else {
3598 spin_unlock(&eb->refs_lock);
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
3608 struct page *p = eb->pages[i];
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620}
3621
3622static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623{
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625 smp_mb__after_atomic();
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627}
3628
3629static void set_btree_ioerr(struct page *page)
3630{
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632
3633 SetPageError(page);
3634 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635 return;
3636
3637 /*
3638 * If writeback for a btree extent that doesn't belong to a log tree
3639 * failed, increment the counter transaction->eb_write_errors.
3640 * We do this because while the transaction is running and before it's
3641 * committing (when we call filemap_fdata[write|wait]_range against
3642 * the btree inode), we might have
3643 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 * returns an error or an error happens during writeback, when we're
3645 * committing the transaction we wouldn't know about it, since the pages
3646 * can be no longer dirty nor marked anymore for writeback (if a
3647 * subsequent modification to the extent buffer didn't happen before the
3648 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 * able to find the pages tagged with SetPageError at transaction
3650 * commit time. So if this happens we must abort the transaction,
3651 * otherwise we commit a super block with btree roots that point to
3652 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 * or the content of some node/leaf from a past generation that got
3654 * cowed or deleted and is no longer valid.
3655 *
3656 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 * not be enough - we need to distinguish between log tree extents vs
3658 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 * will catch and clear such errors in the mapping - and that call might
3660 * be from a log sync and not from a transaction commit. Also, checking
3661 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 * not done and would not be reliable - the eb might have been released
3663 * from memory and reading it back again means that flag would not be
3664 * set (since it's a runtime flag, not persisted on disk).
3665 *
3666 * Using the flags below in the btree inode also makes us achieve the
3667 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 * is called, the writeback for all dirty pages had already finished
3670 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 * filemap_fdatawait_range() would return success, as it could not know
3672 * that writeback errors happened (the pages were no longer tagged for
3673 * writeback).
3674 */
3675 switch (eb->log_index) {
3676 case -1:
3677 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3678 break;
3679 case 0:
3680 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3681 break;
3682 case 1:
3683 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3684 break;
3685 default:
3686 BUG(); /* unexpected, logic error */
3687 }
3688}
3689
3690static void end_bio_extent_buffer_writepage(struct bio *bio)
3691{
3692 struct bio_vec *bvec;
3693 struct extent_buffer *eb;
3694 int i, done;
3695
3696 bio_for_each_segment_all(bvec, bio, i) {
3697 struct page *page = bvec->bv_page;
3698
3699 eb = (struct extent_buffer *)page->private;
3700 BUG_ON(!eb);
3701 done = atomic_dec_and_test(&eb->io_pages);
3702
3703 if (bio->bi_error ||
3704 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3705 ClearPageUptodate(page);
3706 set_btree_ioerr(page);
3707 }
3708
3709 end_page_writeback(page);
3710
3711 if (!done)
3712 continue;
3713
3714 end_extent_buffer_writeback(eb);
3715 }
3716
3717 bio_put(bio);
3718}
3719
3720static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3721 struct btrfs_fs_info *fs_info,
3722 struct writeback_control *wbc,
3723 struct extent_page_data *epd)
3724{
3725 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3726 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3727 u64 offset = eb->start;
3728 u32 nritems;
3729 unsigned long i, num_pages;
3730 unsigned long bio_flags = 0;
3731 unsigned long start, end;
3732 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3733 int ret = 0;
3734
3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3742 nritems = btrfs_header_nritems(eb);
3743 if (btrfs_header_level(eb) > 0) {
3744 end = btrfs_node_key_ptr_offset(nritems);
3745
3746 memzero_extent_buffer(eb, end, eb->len - end);
3747 } else {
3748 /*
3749 * leaf:
3750 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3751 */
3752 start = btrfs_item_nr_offset(nritems);
3753 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3754 memzero_extent_buffer(eb, start, end - start);
3755 }
3756
3757 for (i = 0; i < num_pages; i++) {
3758 struct page *p = eb->pages[i];
3759
3760 clear_page_dirty_for_io(p);
3761 set_page_writeback(p);
3762 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3763 p, offset >> 9, PAGE_SIZE, 0, bdev,
3764 &epd->bio, -1,
3765 end_bio_extent_buffer_writepage,
3766 0, epd->bio_flags, bio_flags, false);
3767 epd->bio_flags = bio_flags;
3768 if (ret) {
3769 set_btree_ioerr(p);
3770 end_page_writeback(p);
3771 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3772 end_extent_buffer_writeback(eb);
3773 ret = -EIO;
3774 break;
3775 }
3776 offset += PAGE_SIZE;
3777 update_nr_written(p, wbc, 1);
3778 unlock_page(p);
3779 }
3780
3781 if (unlikely(ret)) {
3782 for (; i < num_pages; i++) {
3783 struct page *p = eb->pages[i];
3784 clear_page_dirty_for_io(p);
3785 unlock_page(p);
3786 }
3787 }
3788
3789 return ret;
3790}
3791
3792int btree_write_cache_pages(struct address_space *mapping,
3793 struct writeback_control *wbc)
3794{
3795 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3796 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3797 struct extent_buffer *eb, *prev_eb = NULL;
3798 struct extent_page_data epd = {
3799 .bio = NULL,
3800 .tree = tree,
3801 .extent_locked = 0,
3802 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3803 .bio_flags = 0,
3804 };
3805 int ret = 0;
3806 int done = 0;
3807 int nr_to_write_done = 0;
3808 struct pagevec pvec;
3809 int nr_pages;
3810 pgoff_t index;
3811 pgoff_t end; /* Inclusive */
3812 int scanned = 0;
3813 int tag;
3814
3815 pagevec_init(&pvec, 0);
3816 if (wbc->range_cyclic) {
3817 index = mapping->writeback_index; /* Start from prev offset */
3818 end = -1;
3819 } else {
3820 index = wbc->range_start >> PAGE_SHIFT;
3821 end = wbc->range_end >> PAGE_SHIFT;
3822 scanned = 1;
3823 }
3824 if (wbc->sync_mode == WB_SYNC_ALL)
3825 tag = PAGECACHE_TAG_TOWRITE;
3826 else
3827 tag = PAGECACHE_TAG_DIRTY;
3828retry:
3829 if (wbc->sync_mode == WB_SYNC_ALL)
3830 tag_pages_for_writeback(mapping, index, end);
3831 while (!done && !nr_to_write_done && (index <= end) &&
3832 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3833 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3834 unsigned i;
3835
3836 scanned = 1;
3837 for (i = 0; i < nr_pages; i++) {
3838 struct page *page = pvec.pages[i];
3839
3840 if (!PagePrivate(page))
3841 continue;
3842
3843 if (!wbc->range_cyclic && page->index > end) {
3844 done = 1;
3845 break;
3846 }
3847
3848 spin_lock(&mapping->private_lock);
3849 if (!PagePrivate(page)) {
3850 spin_unlock(&mapping->private_lock);
3851 continue;
3852 }
3853
3854 eb = (struct extent_buffer *)page->private;
3855
3856 /*
3857 * Shouldn't happen and normally this would be a BUG_ON
3858 * but no sense in crashing the users box for something
3859 * we can survive anyway.
3860 */
3861 if (WARN_ON(!eb)) {
3862 spin_unlock(&mapping->private_lock);
3863 continue;
3864 }
3865
3866 if (eb == prev_eb) {
3867 spin_unlock(&mapping->private_lock);
3868 continue;
3869 }
3870
3871 ret = atomic_inc_not_zero(&eb->refs);
3872 spin_unlock(&mapping->private_lock);
3873 if (!ret)
3874 continue;
3875
3876 prev_eb = eb;
3877 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3878 if (!ret) {
3879 free_extent_buffer(eb);
3880 continue;
3881 }
3882
3883 ret = write_one_eb(eb, fs_info, wbc, &epd);
3884 if (ret) {
3885 done = 1;
3886 free_extent_buffer(eb);
3887 break;
3888 }
3889 free_extent_buffer(eb);
3890
3891 /*
3892 * the filesystem may choose to bump up nr_to_write.
3893 * We have to make sure to honor the new nr_to_write
3894 * at any time
3895 */
3896 nr_to_write_done = wbc->nr_to_write <= 0;
3897 }
3898 pagevec_release(&pvec);
3899 cond_resched();
3900 }
3901 if (!scanned && !done) {
3902 /*
3903 * We hit the last page and there is more work to be done: wrap
3904 * back to the start of the file
3905 */
3906 scanned = 1;
3907 index = 0;
3908 goto retry;
3909 }
3910 flush_write_bio(&epd);
3911 return ret;
3912}
3913
3914/**
3915 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3916 * @mapping: address space structure to write
3917 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3918 * @writepage: function called for each page
3919 * @data: data passed to writepage function
3920 *
3921 * If a page is already under I/O, write_cache_pages() skips it, even
3922 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3923 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3924 * and msync() need to guarantee that all the data which was dirty at the time
3925 * the call was made get new I/O started against them. If wbc->sync_mode is
3926 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3927 * existing IO to complete.
3928 */
3929static int extent_write_cache_pages(struct extent_io_tree *tree,
3930 struct address_space *mapping,
3931 struct writeback_control *wbc,
3932 writepage_t writepage, void *data,
3933 void (*flush_fn)(void *))
3934{
3935 struct inode *inode = mapping->host;
3936 int ret = 0;
3937 int done = 0;
3938 int nr_to_write_done = 0;
3939 struct pagevec pvec;
3940 int nr_pages;
3941 pgoff_t index;
3942 pgoff_t end; /* Inclusive */
3943 pgoff_t done_index;
3944 int range_whole = 0;
3945 int scanned = 0;
3946 int tag;
3947
3948 /*
3949 * We have to hold onto the inode so that ordered extents can do their
3950 * work when the IO finishes. The alternative to this is failing to add
3951 * an ordered extent if the igrab() fails there and that is a huge pain
3952 * to deal with, so instead just hold onto the inode throughout the
3953 * writepages operation. If it fails here we are freeing up the inode
3954 * anyway and we'd rather not waste our time writing out stuff that is
3955 * going to be truncated anyway.
3956 */
3957 if (!igrab(inode))
3958 return 0;
3959
3960 pagevec_init(&pvec, 0);
3961 if (wbc->range_cyclic) {
3962 index = mapping->writeback_index; /* Start from prev offset */
3963 end = -1;
3964 } else {
3965 index = wbc->range_start >> PAGE_SHIFT;
3966 end = wbc->range_end >> PAGE_SHIFT;
3967 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3968 range_whole = 1;
3969 scanned = 1;
3970 }
3971 if (wbc->sync_mode == WB_SYNC_ALL)
3972 tag = PAGECACHE_TAG_TOWRITE;
3973 else
3974 tag = PAGECACHE_TAG_DIRTY;
3975retry:
3976 if (wbc->sync_mode == WB_SYNC_ALL)
3977 tag_pages_for_writeback(mapping, index, end);
3978 done_index = index;
3979 while (!done && !nr_to_write_done && (index <= end) &&
3980 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3981 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3982 unsigned i;
3983
3984 scanned = 1;
3985 for (i = 0; i < nr_pages; i++) {
3986 struct page *page = pvec.pages[i];
3987
3988 done_index = page->index;
3989 /*
3990 * At this point we hold neither mapping->tree_lock nor
3991 * lock on the page itself: the page may be truncated or
3992 * invalidated (changing page->mapping to NULL), or even
3993 * swizzled back from swapper_space to tmpfs file
3994 * mapping
3995 */
3996 if (!trylock_page(page)) {
3997 flush_fn(data);
3998 lock_page(page);
3999 }
4000
4001 if (unlikely(page->mapping != mapping)) {
4002 unlock_page(page);
4003 continue;
4004 }
4005
4006 if (!wbc->range_cyclic && page->index > end) {
4007 done = 1;
4008 unlock_page(page);
4009 continue;
4010 }
4011
4012 if (wbc->sync_mode != WB_SYNC_NONE) {
4013 if (PageWriteback(page))
4014 flush_fn(data);
4015 wait_on_page_writeback(page);
4016 }
4017
4018 if (PageWriteback(page) ||
4019 !clear_page_dirty_for_io(page)) {
4020 unlock_page(page);
4021 continue;
4022 }
4023
4024 ret = (*writepage)(page, wbc, data);
4025
4026 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4027 unlock_page(page);
4028 ret = 0;
4029 }
4030 if (ret < 0) {
4031 /*
4032 * done_index is set past this page,
4033 * so media errors will not choke
4034 * background writeout for the entire
4035 * file. This has consequences for
4036 * range_cyclic semantics (ie. it may
4037 * not be suitable for data integrity
4038 * writeout).
4039 */
4040 done_index = page->index + 1;
4041 done = 1;
4042 break;
4043 }
4044
4045 /*
4046 * the filesystem may choose to bump up nr_to_write.
4047 * We have to make sure to honor the new nr_to_write
4048 * at any time
4049 */
4050 nr_to_write_done = wbc->nr_to_write <= 0;
4051 }
4052 pagevec_release(&pvec);
4053 cond_resched();
4054 }
4055 if (!scanned && !done) {
4056 /*
4057 * We hit the last page and there is more work to be done: wrap
4058 * back to the start of the file
4059 */
4060 scanned = 1;
4061 index = 0;
4062 goto retry;
4063 }
4064
4065 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4066 mapping->writeback_index = done_index;
4067
4068 btrfs_add_delayed_iput(inode);
4069 return ret;
4070}
4071
4072static void flush_epd_write_bio(struct extent_page_data *epd)
4073{
4074 if (epd->bio) {
4075 int ret;
4076
4077 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4078 epd->sync_io ? REQ_SYNC : 0);
4079
4080 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4081 BUG_ON(ret < 0); /* -ENOMEM */
4082 epd->bio = NULL;
4083 }
4084}
4085
4086static noinline void flush_write_bio(void *data)
4087{
4088 struct extent_page_data *epd = data;
4089 flush_epd_write_bio(epd);
4090}
4091
4092int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4093 get_extent_t *get_extent,
4094 struct writeback_control *wbc)
4095{
4096 int ret;
4097 struct extent_page_data epd = {
4098 .bio = NULL,
4099 .tree = tree,
4100 .get_extent = get_extent,
4101 .extent_locked = 0,
4102 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4103 .bio_flags = 0,
4104 };
4105
4106 ret = __extent_writepage(page, wbc, &epd);
4107
4108 flush_epd_write_bio(&epd);
4109 return ret;
4110}
4111
4112int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4113 u64 start, u64 end, get_extent_t *get_extent,
4114 int mode)
4115{
4116 int ret = 0;
4117 struct address_space *mapping = inode->i_mapping;
4118 struct page *page;
4119 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4120 PAGE_SHIFT;
4121
4122 struct extent_page_data epd = {
4123 .bio = NULL,
4124 .tree = tree,
4125 .get_extent = get_extent,
4126 .extent_locked = 1,
4127 .sync_io = mode == WB_SYNC_ALL,
4128 .bio_flags = 0,
4129 };
4130 struct writeback_control wbc_writepages = {
4131 .sync_mode = mode,
4132 .nr_to_write = nr_pages * 2,
4133 .range_start = start,
4134 .range_end = end + 1,
4135 };
4136
4137 while (start <= end) {
4138 page = find_get_page(mapping, start >> PAGE_SHIFT);
4139 if (clear_page_dirty_for_io(page))
4140 ret = __extent_writepage(page, &wbc_writepages, &epd);
4141 else {
4142 if (tree->ops && tree->ops->writepage_end_io_hook)
4143 tree->ops->writepage_end_io_hook(page, start,
4144 start + PAGE_SIZE - 1,
4145 NULL, 1);
4146 unlock_page(page);
4147 }
4148 put_page(page);
4149 start += PAGE_SIZE;
4150 }
4151
4152 flush_epd_write_bio(&epd);
4153 return ret;
4154}
4155
4156int extent_writepages(struct extent_io_tree *tree,
4157 struct address_space *mapping,
4158 get_extent_t *get_extent,
4159 struct writeback_control *wbc)
4160{
4161 int ret = 0;
4162 struct extent_page_data epd = {
4163 .bio = NULL,
4164 .tree = tree,
4165 .get_extent = get_extent,
4166 .extent_locked = 0,
4167 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4168 .bio_flags = 0,
4169 };
4170
4171 ret = extent_write_cache_pages(tree, mapping, wbc,
4172 __extent_writepage, &epd,
4173 flush_write_bio);
4174 flush_epd_write_bio(&epd);
4175 return ret;
4176}
4177
4178int extent_readpages(struct extent_io_tree *tree,
4179 struct address_space *mapping,
4180 struct list_head *pages, unsigned nr_pages,
4181 get_extent_t get_extent)
4182{
4183 struct bio *bio = NULL;
4184 unsigned page_idx;
4185 unsigned long bio_flags = 0;
4186 struct page *pagepool[16];
4187 struct page *page;
4188 struct extent_map *em_cached = NULL;
4189 int nr = 0;
4190 u64 prev_em_start = (u64)-1;
4191
4192 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4193 page = list_entry(pages->prev, struct page, lru);
4194
4195 prefetchw(&page->flags);
4196 list_del(&page->lru);
4197 if (add_to_page_cache_lru(page, mapping,
4198 page->index,
4199 readahead_gfp_mask(mapping))) {
4200 put_page(page);
4201 continue;
4202 }
4203
4204 pagepool[nr++] = page;
4205 if (nr < ARRAY_SIZE(pagepool))
4206 continue;
4207 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4208 &bio, 0, &bio_flags, &prev_em_start);
4209 nr = 0;
4210 }
4211 if (nr)
4212 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4213 &bio, 0, &bio_flags, &prev_em_start);
4214
4215 if (em_cached)
4216 free_extent_map(em_cached);
4217
4218 BUG_ON(!list_empty(pages));
4219 if (bio)
4220 return submit_one_bio(bio, 0, bio_flags);
4221 return 0;
4222}
4223
4224/*
4225 * basic invalidatepage code, this waits on any locked or writeback
4226 * ranges corresponding to the page, and then deletes any extent state
4227 * records from the tree
4228 */
4229int extent_invalidatepage(struct extent_io_tree *tree,
4230 struct page *page, unsigned long offset)
4231{
4232 struct extent_state *cached_state = NULL;
4233 u64 start = page_offset(page);
4234 u64 end = start + PAGE_SIZE - 1;
4235 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4236
4237 start += ALIGN(offset, blocksize);
4238 if (start > end)
4239 return 0;
4240
4241 lock_extent_bits(tree, start, end, &cached_state);
4242 wait_on_page_writeback(page);
4243 clear_extent_bit(tree, start, end,
4244 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4245 EXTENT_DO_ACCOUNTING,
4246 1, 1, &cached_state, GFP_NOFS);
4247 return 0;
4248}
4249
4250/*
4251 * a helper for releasepage, this tests for areas of the page that
4252 * are locked or under IO and drops the related state bits if it is safe
4253 * to drop the page.
4254 */
4255static int try_release_extent_state(struct extent_map_tree *map,
4256 struct extent_io_tree *tree,
4257 struct page *page, gfp_t mask)
4258{
4259 u64 start = page_offset(page);
4260 u64 end = start + PAGE_SIZE - 1;
4261 int ret = 1;
4262
4263 if (test_range_bit(tree, start, end,
4264 EXTENT_IOBITS, 0, NULL))
4265 ret = 0;
4266 else {
4267 if ((mask & GFP_NOFS) == GFP_NOFS)
4268 mask = GFP_NOFS;
4269 /*
4270 * at this point we can safely clear everything except the
4271 * locked bit and the nodatasum bit
4272 */
4273 ret = clear_extent_bit(tree, start, end,
4274 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4275 0, 0, NULL, mask);
4276
4277 /* if clear_extent_bit failed for enomem reasons,
4278 * we can't allow the release to continue.
4279 */
4280 if (ret < 0)
4281 ret = 0;
4282 else
4283 ret = 1;
4284 }
4285 return ret;
4286}
4287
4288/*
4289 * a helper for releasepage. As long as there are no locked extents
4290 * in the range corresponding to the page, both state records and extent
4291 * map records are removed
4292 */
4293int try_release_extent_mapping(struct extent_map_tree *map,
4294 struct extent_io_tree *tree, struct page *page,
4295 gfp_t mask)
4296{
4297 struct extent_map *em;
4298 u64 start = page_offset(page);
4299 u64 end = start + PAGE_SIZE - 1;
4300
4301 if (gfpflags_allow_blocking(mask) &&
4302 page->mapping->host->i_size > SZ_16M) {
4303 u64 len;
4304 while (start <= end) {
4305 len = end - start + 1;
4306 write_lock(&map->lock);
4307 em = lookup_extent_mapping(map, start, len);
4308 if (!em) {
4309 write_unlock(&map->lock);
4310 break;
4311 }
4312 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4313 em->start != start) {
4314 write_unlock(&map->lock);
4315 free_extent_map(em);
4316 break;
4317 }
4318 if (!test_range_bit(tree, em->start,
4319 extent_map_end(em) - 1,
4320 EXTENT_LOCKED | EXTENT_WRITEBACK,
4321 0, NULL)) {
4322 remove_extent_mapping(map, em);
4323 /* once for the rb tree */
4324 free_extent_map(em);
4325 }
4326 start = extent_map_end(em);
4327 write_unlock(&map->lock);
4328
4329 /* once for us */
4330 free_extent_map(em);
4331 }
4332 }
4333 return try_release_extent_state(map, tree, page, mask);
4334}
4335
4336/*
4337 * helper function for fiemap, which doesn't want to see any holes.
4338 * This maps until we find something past 'last'
4339 */
4340static struct extent_map *get_extent_skip_holes(struct inode *inode,
4341 u64 offset,
4342 u64 last,
4343 get_extent_t *get_extent)
4344{
4345 u64 sectorsize = btrfs_inode_sectorsize(inode);
4346 struct extent_map *em;
4347 u64 len;
4348
4349 if (offset >= last)
4350 return NULL;
4351
4352 while (1) {
4353 len = last - offset;
4354 if (len == 0)
4355 break;
4356 len = ALIGN(len, sectorsize);
4357 em = get_extent(inode, NULL, 0, offset, len, 0);
4358 if (IS_ERR_OR_NULL(em))
4359 return em;
4360
4361 /* if this isn't a hole return it */
4362 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4363 em->block_start != EXTENT_MAP_HOLE) {
4364 return em;
4365 }
4366
4367 /* this is a hole, advance to the next extent */
4368 offset = extent_map_end(em);
4369 free_extent_map(em);
4370 if (offset >= last)
4371 break;
4372 }
4373 return NULL;
4374}
4375
4376int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4377 __u64 start, __u64 len, get_extent_t *get_extent)
4378{
4379 int ret = 0;
4380 u64 off = start;
4381 u64 max = start + len;
4382 u32 flags = 0;
4383 u32 found_type;
4384 u64 last;
4385 u64 last_for_get_extent = 0;
4386 u64 disko = 0;
4387 u64 isize = i_size_read(inode);
4388 struct btrfs_key found_key;
4389 struct extent_map *em = NULL;
4390 struct extent_state *cached_state = NULL;
4391 struct btrfs_path *path;
4392 struct btrfs_root *root = BTRFS_I(inode)->root;
4393 int end = 0;
4394 u64 em_start = 0;
4395 u64 em_len = 0;
4396 u64 em_end = 0;
4397
4398 if (len == 0)
4399 return -EINVAL;
4400
4401 path = btrfs_alloc_path();
4402 if (!path)
4403 return -ENOMEM;
4404 path->leave_spinning = 1;
4405
4406 start = round_down(start, btrfs_inode_sectorsize(inode));
4407 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4408
4409 /*
4410 * lookup the last file extent. We're not using i_size here
4411 * because there might be preallocation past i_size
4412 */
4413 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4414 0);
4415 if (ret < 0) {
4416 btrfs_free_path(path);
4417 return ret;
4418 } else {
4419 WARN_ON(!ret);
4420 if (ret == 1)
4421 ret = 0;
4422 }
4423
4424 path->slots[0]--;
4425 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4426 found_type = found_key.type;
4427
4428 /* No extents, but there might be delalloc bits */
4429 if (found_key.objectid != btrfs_ino(inode) ||
4430 found_type != BTRFS_EXTENT_DATA_KEY) {
4431 /* have to trust i_size as the end */
4432 last = (u64)-1;
4433 last_for_get_extent = isize;
4434 } else {
4435 /*
4436 * remember the start of the last extent. There are a
4437 * bunch of different factors that go into the length of the
4438 * extent, so its much less complex to remember where it started
4439 */
4440 last = found_key.offset;
4441 last_for_get_extent = last + 1;
4442 }
4443 btrfs_release_path(path);
4444
4445 /*
4446 * we might have some extents allocated but more delalloc past those
4447 * extents. so, we trust isize unless the start of the last extent is
4448 * beyond isize
4449 */
4450 if (last < isize) {
4451 last = (u64)-1;
4452 last_for_get_extent = isize;
4453 }
4454
4455 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4456 &cached_state);
4457
4458 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4459 get_extent);
4460 if (!em)
4461 goto out;
4462 if (IS_ERR(em)) {
4463 ret = PTR_ERR(em);
4464 goto out;
4465 }
4466
4467 while (!end) {
4468 u64 offset_in_extent = 0;
4469
4470 /* break if the extent we found is outside the range */
4471 if (em->start >= max || extent_map_end(em) < off)
4472 break;
4473
4474 /*
4475 * get_extent may return an extent that starts before our
4476 * requested range. We have to make sure the ranges
4477 * we return to fiemap always move forward and don't
4478 * overlap, so adjust the offsets here
4479 */
4480 em_start = max(em->start, off);
4481
4482 /*
4483 * record the offset from the start of the extent
4484 * for adjusting the disk offset below. Only do this if the
4485 * extent isn't compressed since our in ram offset may be past
4486 * what we have actually allocated on disk.
4487 */
4488 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4489 offset_in_extent = em_start - em->start;
4490 em_end = extent_map_end(em);
4491 em_len = em_end - em_start;
4492 disko = 0;
4493 flags = 0;
4494
4495 /*
4496 * bump off for our next call to get_extent
4497 */
4498 off = extent_map_end(em);
4499 if (off >= max)
4500 end = 1;
4501
4502 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4503 end = 1;
4504 flags |= FIEMAP_EXTENT_LAST;
4505 } else if (em->block_start == EXTENT_MAP_INLINE) {
4506 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4507 FIEMAP_EXTENT_NOT_ALIGNED);
4508 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4509 flags |= (FIEMAP_EXTENT_DELALLOC |
4510 FIEMAP_EXTENT_UNKNOWN);
4511 } else if (fieinfo->fi_extents_max) {
4512 struct btrfs_trans_handle *trans;
4513
4514 u64 bytenr = em->block_start -
4515 (em->start - em->orig_start);
4516
4517 disko = em->block_start + offset_in_extent;
4518
4519 /*
4520 * We need a trans handle to get delayed refs
4521 */
4522 trans = btrfs_join_transaction(root);
4523 /*
4524 * It's OK if we can't start a trans we can still check
4525 * from commit_root
4526 */
4527 if (IS_ERR(trans))
4528 trans = NULL;
4529
4530 /*
4531 * As btrfs supports shared space, this information
4532 * can be exported to userspace tools via
4533 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4534 * then we're just getting a count and we can skip the
4535 * lookup stuff.
4536 */
4537 ret = btrfs_check_shared(trans, root->fs_info,
4538 root->objectid,
4539 btrfs_ino(inode), bytenr);
4540 if (trans)
4541 btrfs_end_transaction(trans);
4542 if (ret < 0)
4543 goto out_free;
4544 if (ret)
4545 flags |= FIEMAP_EXTENT_SHARED;
4546 ret = 0;
4547 }
4548 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4549 flags |= FIEMAP_EXTENT_ENCODED;
4550 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4551 flags |= FIEMAP_EXTENT_UNWRITTEN;
4552
4553 free_extent_map(em);
4554 em = NULL;
4555 if ((em_start >= last) || em_len == (u64)-1 ||
4556 (last == (u64)-1 && isize <= em_end)) {
4557 flags |= FIEMAP_EXTENT_LAST;
4558 end = 1;
4559 }
4560
4561 /* now scan forward to see if this is really the last extent. */
4562 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4563 get_extent);
4564 if (IS_ERR(em)) {
4565 ret = PTR_ERR(em);
4566 goto out;
4567 }
4568 if (!em) {
4569 flags |= FIEMAP_EXTENT_LAST;
4570 end = 1;
4571 }
4572 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4573 em_len, flags);
4574 if (ret) {
4575 if (ret == 1)
4576 ret = 0;
4577 goto out_free;
4578 }
4579 }
4580out_free:
4581 free_extent_map(em);
4582out:
4583 btrfs_free_path(path);
4584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4585 &cached_state, GFP_NOFS);
4586 return ret;
4587}
4588
4589static void __free_extent_buffer(struct extent_buffer *eb)
4590{
4591 btrfs_leak_debug_del(&eb->leak_list);
4592 kmem_cache_free(extent_buffer_cache, eb);
4593}
4594
4595int extent_buffer_under_io(struct extent_buffer *eb)
4596{
4597 return (atomic_read(&eb->io_pages) ||
4598 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4599 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4600}
4601
4602/*
4603 * Helper for releasing extent buffer page.
4604 */
4605static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4606{
4607 unsigned long index;
4608 struct page *page;
4609 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4610
4611 BUG_ON(extent_buffer_under_io(eb));
4612
4613 index = num_extent_pages(eb->start, eb->len);
4614 if (index == 0)
4615 return;
4616
4617 do {
4618 index--;
4619 page = eb->pages[index];
4620 if (!page)
4621 continue;
4622 if (mapped)
4623 spin_lock(&page->mapping->private_lock);
4624 /*
4625 * We do this since we'll remove the pages after we've
4626 * removed the eb from the radix tree, so we could race
4627 * and have this page now attached to the new eb. So
4628 * only clear page_private if it's still connected to
4629 * this eb.
4630 */
4631 if (PagePrivate(page) &&
4632 page->private == (unsigned long)eb) {
4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 BUG_ON(PageDirty(page));
4635 BUG_ON(PageWriteback(page));
4636 /*
4637 * We need to make sure we haven't be attached
4638 * to a new eb.
4639 */
4640 ClearPagePrivate(page);
4641 set_page_private(page, 0);
4642 /* One for the page private */
4643 put_page(page);
4644 }
4645
4646 if (mapped)
4647 spin_unlock(&page->mapping->private_lock);
4648
4649 /* One for when we allocated the page */
4650 put_page(page);
4651 } while (index != 0);
4652}
4653
4654/*
4655 * Helper for releasing the extent buffer.
4656 */
4657static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658{
4659 btrfs_release_extent_buffer_page(eb);
4660 __free_extent_buffer(eb);
4661}
4662
4663static struct extent_buffer *
4664__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 unsigned long len)
4666{
4667 struct extent_buffer *eb = NULL;
4668
4669 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 eb->start = start;
4671 eb->len = len;
4672 eb->fs_info = fs_info;
4673 eb->bflags = 0;
4674 rwlock_init(&eb->lock);
4675 atomic_set(&eb->write_locks, 0);
4676 atomic_set(&eb->read_locks, 0);
4677 atomic_set(&eb->blocking_readers, 0);
4678 atomic_set(&eb->blocking_writers, 0);
4679 atomic_set(&eb->spinning_readers, 0);
4680 atomic_set(&eb->spinning_writers, 0);
4681 eb->lock_nested = 0;
4682 init_waitqueue_head(&eb->write_lock_wq);
4683 init_waitqueue_head(&eb->read_lock_wq);
4684
4685 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686
4687 spin_lock_init(&eb->refs_lock);
4688 atomic_set(&eb->refs, 1);
4689 atomic_set(&eb->io_pages, 0);
4690
4691 /*
4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 */
4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697
4698 return eb;
4699}
4700
4701struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702{
4703 unsigned long i;
4704 struct page *p;
4705 struct extent_buffer *new;
4706 unsigned long num_pages = num_extent_pages(src->start, src->len);
4707
4708 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 if (new == NULL)
4710 return NULL;
4711
4712 for (i = 0; i < num_pages; i++) {
4713 p = alloc_page(GFP_NOFS);
4714 if (!p) {
4715 btrfs_release_extent_buffer(new);
4716 return NULL;
4717 }
4718 attach_extent_buffer_page(new, p);
4719 WARN_ON(PageDirty(p));
4720 SetPageUptodate(p);
4721 new->pages[i] = p;
4722 copy_page(page_address(p), page_address(src->pages[i]));
4723 }
4724
4725 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4727
4728 return new;
4729}
4730
4731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start, unsigned long len)
4733{
4734 struct extent_buffer *eb;
4735 unsigned long num_pages;
4736 unsigned long i;
4737
4738 num_pages = num_extent_pages(start, len);
4739
4740 eb = __alloc_extent_buffer(fs_info, start, len);
4741 if (!eb)
4742 return NULL;
4743
4744 for (i = 0; i < num_pages; i++) {
4745 eb->pages[i] = alloc_page(GFP_NOFS);
4746 if (!eb->pages[i])
4747 goto err;
4748 }
4749 set_extent_buffer_uptodate(eb);
4750 btrfs_set_header_nritems(eb, 0);
4751 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4752
4753 return eb;
4754err:
4755 for (; i > 0; i--)
4756 __free_page(eb->pages[i - 1]);
4757 __free_extent_buffer(eb);
4758 return NULL;
4759}
4760
4761struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4762 u64 start)
4763{
4764 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4765}
4766
4767static void check_buffer_tree_ref(struct extent_buffer *eb)
4768{
4769 int refs;
4770 /* the ref bit is tricky. We have to make sure it is set
4771 * if we have the buffer dirty. Otherwise the
4772 * code to free a buffer can end up dropping a dirty
4773 * page
4774 *
4775 * Once the ref bit is set, it won't go away while the
4776 * buffer is dirty or in writeback, and it also won't
4777 * go away while we have the reference count on the
4778 * eb bumped.
4779 *
4780 * We can't just set the ref bit without bumping the
4781 * ref on the eb because free_extent_buffer might
4782 * see the ref bit and try to clear it. If this happens
4783 * free_extent_buffer might end up dropping our original
4784 * ref by mistake and freeing the page before we are able
4785 * to add one more ref.
4786 *
4787 * So bump the ref count first, then set the bit. If someone
4788 * beat us to it, drop the ref we added.
4789 */
4790 refs = atomic_read(&eb->refs);
4791 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4792 return;
4793
4794 spin_lock(&eb->refs_lock);
4795 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796 atomic_inc(&eb->refs);
4797 spin_unlock(&eb->refs_lock);
4798}
4799
4800static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4801 struct page *accessed)
4802{
4803 unsigned long num_pages, i;
4804
4805 check_buffer_tree_ref(eb);
4806
4807 num_pages = num_extent_pages(eb->start, eb->len);
4808 for (i = 0; i < num_pages; i++) {
4809 struct page *p = eb->pages[i];
4810
4811 if (p != accessed)
4812 mark_page_accessed(p);
4813 }
4814}
4815
4816struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4817 u64 start)
4818{
4819 struct extent_buffer *eb;
4820
4821 rcu_read_lock();
4822 eb = radix_tree_lookup(&fs_info->buffer_radix,
4823 start >> PAGE_SHIFT);
4824 if (eb && atomic_inc_not_zero(&eb->refs)) {
4825 rcu_read_unlock();
4826 /*
4827 * Lock our eb's refs_lock to avoid races with
4828 * free_extent_buffer. When we get our eb it might be flagged
4829 * with EXTENT_BUFFER_STALE and another task running
4830 * free_extent_buffer might have seen that flag set,
4831 * eb->refs == 2, that the buffer isn't under IO (dirty and
4832 * writeback flags not set) and it's still in the tree (flag
4833 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4834 * of decrementing the extent buffer's reference count twice.
4835 * So here we could race and increment the eb's reference count,
4836 * clear its stale flag, mark it as dirty and drop our reference
4837 * before the other task finishes executing free_extent_buffer,
4838 * which would later result in an attempt to free an extent
4839 * buffer that is dirty.
4840 */
4841 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4842 spin_lock(&eb->refs_lock);
4843 spin_unlock(&eb->refs_lock);
4844 }
4845 mark_extent_buffer_accessed(eb, NULL);
4846 return eb;
4847 }
4848 rcu_read_unlock();
4849
4850 return NULL;
4851}
4852
4853#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4854struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4855 u64 start)
4856{
4857 struct extent_buffer *eb, *exists = NULL;
4858 int ret;
4859
4860 eb = find_extent_buffer(fs_info, start);
4861 if (eb)
4862 return eb;
4863 eb = alloc_dummy_extent_buffer(fs_info, start);
4864 if (!eb)
4865 return NULL;
4866 eb->fs_info = fs_info;
4867again:
4868 ret = radix_tree_preload(GFP_NOFS);
4869 if (ret)
4870 goto free_eb;
4871 spin_lock(&fs_info->buffer_lock);
4872 ret = radix_tree_insert(&fs_info->buffer_radix,
4873 start >> PAGE_SHIFT, eb);
4874 spin_unlock(&fs_info->buffer_lock);
4875 radix_tree_preload_end();
4876 if (ret == -EEXIST) {
4877 exists = find_extent_buffer(fs_info, start);
4878 if (exists)
4879 goto free_eb;
4880 else
4881 goto again;
4882 }
4883 check_buffer_tree_ref(eb);
4884 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4885
4886 /*
4887 * We will free dummy extent buffer's if they come into
4888 * free_extent_buffer with a ref count of 2, but if we are using this we
4889 * want the buffers to stay in memory until we're done with them, so
4890 * bump the ref count again.
4891 */
4892 atomic_inc(&eb->refs);
4893 return eb;
4894free_eb:
4895 btrfs_release_extent_buffer(eb);
4896 return exists;
4897}
4898#endif
4899
4900struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4901 u64 start)
4902{
4903 unsigned long len = fs_info->nodesize;
4904 unsigned long num_pages = num_extent_pages(start, len);
4905 unsigned long i;
4906 unsigned long index = start >> PAGE_SHIFT;
4907 struct extent_buffer *eb;
4908 struct extent_buffer *exists = NULL;
4909 struct page *p;
4910 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4911 int uptodate = 1;
4912 int ret;
4913
4914 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4915 btrfs_err(fs_info, "bad tree block start %llu", start);
4916 return ERR_PTR(-EINVAL);
4917 }
4918
4919 eb = find_extent_buffer(fs_info, start);
4920 if (eb)
4921 return eb;
4922
4923 eb = __alloc_extent_buffer(fs_info, start, len);
4924 if (!eb)
4925 return ERR_PTR(-ENOMEM);
4926
4927 for (i = 0; i < num_pages; i++, index++) {
4928 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4929 if (!p) {
4930 exists = ERR_PTR(-ENOMEM);
4931 goto free_eb;
4932 }
4933
4934 spin_lock(&mapping->private_lock);
4935 if (PagePrivate(p)) {
4936 /*
4937 * We could have already allocated an eb for this page
4938 * and attached one so lets see if we can get a ref on
4939 * the existing eb, and if we can we know it's good and
4940 * we can just return that one, else we know we can just
4941 * overwrite page->private.
4942 */
4943 exists = (struct extent_buffer *)p->private;
4944 if (atomic_inc_not_zero(&exists->refs)) {
4945 spin_unlock(&mapping->private_lock);
4946 unlock_page(p);
4947 put_page(p);
4948 mark_extent_buffer_accessed(exists, p);
4949 goto free_eb;
4950 }
4951 exists = NULL;
4952
4953 /*
4954 * Do this so attach doesn't complain and we need to
4955 * drop the ref the old guy had.
4956 */
4957 ClearPagePrivate(p);
4958 WARN_ON(PageDirty(p));
4959 put_page(p);
4960 }
4961 attach_extent_buffer_page(eb, p);
4962 spin_unlock(&mapping->private_lock);
4963 WARN_ON(PageDirty(p));
4964 eb->pages[i] = p;
4965 if (!PageUptodate(p))
4966 uptodate = 0;
4967
4968 /*
4969 * see below about how we avoid a nasty race with release page
4970 * and why we unlock later
4971 */
4972 }
4973 if (uptodate)
4974 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4975again:
4976 ret = radix_tree_preload(GFP_NOFS);
4977 if (ret) {
4978 exists = ERR_PTR(ret);
4979 goto free_eb;
4980 }
4981
4982 spin_lock(&fs_info->buffer_lock);
4983 ret = radix_tree_insert(&fs_info->buffer_radix,
4984 start >> PAGE_SHIFT, eb);
4985 spin_unlock(&fs_info->buffer_lock);
4986 radix_tree_preload_end();
4987 if (ret == -EEXIST) {
4988 exists = find_extent_buffer(fs_info, start);
4989 if (exists)
4990 goto free_eb;
4991 else
4992 goto again;
4993 }
4994 /* add one reference for the tree */
4995 check_buffer_tree_ref(eb);
4996 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4997
4998 /*
4999 * there is a race where release page may have
5000 * tried to find this extent buffer in the radix
5001 * but failed. It will tell the VM it is safe to
5002 * reclaim the, and it will clear the page private bit.
5003 * We must make sure to set the page private bit properly
5004 * after the extent buffer is in the radix tree so
5005 * it doesn't get lost
5006 */
5007 SetPageChecked(eb->pages[0]);
5008 for (i = 1; i < num_pages; i++) {
5009 p = eb->pages[i];
5010 ClearPageChecked(p);
5011 unlock_page(p);
5012 }
5013 unlock_page(eb->pages[0]);
5014 return eb;
5015
5016free_eb:
5017 WARN_ON(!atomic_dec_and_test(&eb->refs));
5018 for (i = 0; i < num_pages; i++) {
5019 if (eb->pages[i])
5020 unlock_page(eb->pages[i]);
5021 }
5022
5023 btrfs_release_extent_buffer(eb);
5024 return exists;
5025}
5026
5027static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5028{
5029 struct extent_buffer *eb =
5030 container_of(head, struct extent_buffer, rcu_head);
5031
5032 __free_extent_buffer(eb);
5033}
5034
5035/* Expects to have eb->eb_lock already held */
5036static int release_extent_buffer(struct extent_buffer *eb)
5037{
5038 WARN_ON(atomic_read(&eb->refs) == 0);
5039 if (atomic_dec_and_test(&eb->refs)) {
5040 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5041 struct btrfs_fs_info *fs_info = eb->fs_info;
5042
5043 spin_unlock(&eb->refs_lock);
5044
5045 spin_lock(&fs_info->buffer_lock);
5046 radix_tree_delete(&fs_info->buffer_radix,
5047 eb->start >> PAGE_SHIFT);
5048 spin_unlock(&fs_info->buffer_lock);
5049 } else {
5050 spin_unlock(&eb->refs_lock);
5051 }
5052
5053 /* Should be safe to release our pages at this point */
5054 btrfs_release_extent_buffer_page(eb);
5055#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5057 __free_extent_buffer(eb);
5058 return 1;
5059 }
5060#endif
5061 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5062 return 1;
5063 }
5064 spin_unlock(&eb->refs_lock);
5065
5066 return 0;
5067}
5068
5069void free_extent_buffer(struct extent_buffer *eb)
5070{
5071 int refs;
5072 int old;
5073 if (!eb)
5074 return;
5075
5076 while (1) {
5077 refs = atomic_read(&eb->refs);
5078 if (refs <= 3)
5079 break;
5080 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5081 if (old == refs)
5082 return;
5083 }
5084
5085 spin_lock(&eb->refs_lock);
5086 if (atomic_read(&eb->refs) == 2 &&
5087 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5088 atomic_dec(&eb->refs);
5089
5090 if (atomic_read(&eb->refs) == 2 &&
5091 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5092 !extent_buffer_under_io(eb) &&
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
5095
5096 /*
5097 * I know this is terrible, but it's temporary until we stop tracking
5098 * the uptodate bits and such for the extent buffers.
5099 */
5100 release_extent_buffer(eb);
5101}
5102
5103void free_extent_buffer_stale(struct extent_buffer *eb)
5104{
5105 if (!eb)
5106 return;
5107
5108 spin_lock(&eb->refs_lock);
5109 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5110
5111 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5112 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5113 atomic_dec(&eb->refs);
5114 release_extent_buffer(eb);
5115}
5116
5117void clear_extent_buffer_dirty(struct extent_buffer *eb)
5118{
5119 unsigned long i;
5120 unsigned long num_pages;
5121 struct page *page;
5122
5123 num_pages = num_extent_pages(eb->start, eb->len);
5124
5125 for (i = 0; i < num_pages; i++) {
5126 page = eb->pages[i];
5127 if (!PageDirty(page))
5128 continue;
5129
5130 lock_page(page);
5131 WARN_ON(!PagePrivate(page));
5132
5133 clear_page_dirty_for_io(page);
5134 spin_lock_irq(&page->mapping->tree_lock);
5135 if (!PageDirty(page)) {
5136 radix_tree_tag_clear(&page->mapping->page_tree,
5137 page_index(page),
5138 PAGECACHE_TAG_DIRTY);
5139 }
5140 spin_unlock_irq(&page->mapping->tree_lock);
5141 ClearPageError(page);
5142 unlock_page(page);
5143 }
5144 WARN_ON(atomic_read(&eb->refs) == 0);
5145}
5146
5147int set_extent_buffer_dirty(struct extent_buffer *eb)
5148{
5149 unsigned long i;
5150 unsigned long num_pages;
5151 int was_dirty = 0;
5152
5153 check_buffer_tree_ref(eb);
5154
5155 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5156
5157 num_pages = num_extent_pages(eb->start, eb->len);
5158 WARN_ON(atomic_read(&eb->refs) == 0);
5159 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5160
5161 for (i = 0; i < num_pages; i++)
5162 set_page_dirty(eb->pages[i]);
5163 return was_dirty;
5164}
5165
5166void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5167{
5168 unsigned long i;
5169 struct page *page;
5170 unsigned long num_pages;
5171
5172 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173 num_pages = num_extent_pages(eb->start, eb->len);
5174 for (i = 0; i < num_pages; i++) {
5175 page = eb->pages[i];
5176 if (page)
5177 ClearPageUptodate(page);
5178 }
5179}
5180
5181void set_extent_buffer_uptodate(struct extent_buffer *eb)
5182{
5183 unsigned long i;
5184 struct page *page;
5185 unsigned long num_pages;
5186
5187 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5188 num_pages = num_extent_pages(eb->start, eb->len);
5189 for (i = 0; i < num_pages; i++) {
5190 page = eb->pages[i];
5191 SetPageUptodate(page);
5192 }
5193}
5194
5195int extent_buffer_uptodate(struct extent_buffer *eb)
5196{
5197 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5198}
5199
5200int read_extent_buffer_pages(struct extent_io_tree *tree,
5201 struct extent_buffer *eb, int wait,
5202 get_extent_t *get_extent, int mirror_num)
5203{
5204 unsigned long i;
5205 struct page *page;
5206 int err;
5207 int ret = 0;
5208 int locked_pages = 0;
5209 int all_uptodate = 1;
5210 unsigned long num_pages;
5211 unsigned long num_reads = 0;
5212 struct bio *bio = NULL;
5213 unsigned long bio_flags = 0;
5214
5215 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5216 return 0;
5217
5218 num_pages = num_extent_pages(eb->start, eb->len);
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 if (wait == WAIT_NONE) {
5222 if (!trylock_page(page))
5223 goto unlock_exit;
5224 } else {
5225 lock_page(page);
5226 }
5227 locked_pages++;
5228 }
5229 /*
5230 * We need to firstly lock all pages to make sure that
5231 * the uptodate bit of our pages won't be affected by
5232 * clear_extent_buffer_uptodate().
5233 */
5234 for (i = 0; i < num_pages; i++) {
5235 page = eb->pages[i];
5236 if (!PageUptodate(page)) {
5237 num_reads++;
5238 all_uptodate = 0;
5239 }
5240 }
5241
5242 if (all_uptodate) {
5243 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5244 goto unlock_exit;
5245 }
5246
5247 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5248 eb->read_mirror = 0;
5249 atomic_set(&eb->io_pages, num_reads);
5250 for (i = 0; i < num_pages; i++) {
5251 page = eb->pages[i];
5252
5253 if (!PageUptodate(page)) {
5254 if (ret) {
5255 atomic_dec(&eb->io_pages);
5256 unlock_page(page);
5257 continue;
5258 }
5259
5260 ClearPageError(page);
5261 err = __extent_read_full_page(tree, page,
5262 get_extent, &bio,
5263 mirror_num, &bio_flags,
5264 REQ_META);
5265 if (err) {
5266 ret = err;
5267 /*
5268 * We use &bio in above __extent_read_full_page,
5269 * so we ensure that if it returns error, the
5270 * current page fails to add itself to bio and
5271 * it's been unlocked.
5272 *
5273 * We must dec io_pages by ourselves.
5274 */
5275 atomic_dec(&eb->io_pages);
5276 }
5277 } else {
5278 unlock_page(page);
5279 }
5280 }
5281
5282 if (bio) {
5283 err = submit_one_bio(bio, mirror_num, bio_flags);
5284 if (err)
5285 return err;
5286 }
5287
5288 if (ret || wait != WAIT_COMPLETE)
5289 return ret;
5290
5291 for (i = 0; i < num_pages; i++) {
5292 page = eb->pages[i];
5293 wait_on_page_locked(page);
5294 if (!PageUptodate(page))
5295 ret = -EIO;
5296 }
5297
5298 return ret;
5299
5300unlock_exit:
5301 while (locked_pages > 0) {
5302 locked_pages--;
5303 page = eb->pages[locked_pages];
5304 unlock_page(page);
5305 }
5306 return ret;
5307}
5308
5309void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5310 unsigned long start,
5311 unsigned long len)
5312{
5313 size_t cur;
5314 size_t offset;
5315 struct page *page;
5316 char *kaddr;
5317 char *dst = (char *)dstv;
5318 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5319 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5320
5321 WARN_ON(start > eb->len);
5322 WARN_ON(start + len > eb->start + eb->len);
5323
5324 offset = (start_offset + start) & (PAGE_SIZE - 1);
5325
5326 while (len > 0) {
5327 page = eb->pages[i];
5328
5329 cur = min(len, (PAGE_SIZE - offset));
5330 kaddr = page_address(page);
5331 memcpy(dst, kaddr + offset, cur);
5332
5333 dst += cur;
5334 len -= cur;
5335 offset = 0;
5336 i++;
5337 }
5338}
5339
5340int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5341 unsigned long start,
5342 unsigned long len)
5343{
5344 size_t cur;
5345 size_t offset;
5346 struct page *page;
5347 char *kaddr;
5348 char __user *dst = (char __user *)dstv;
5349 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351 int ret = 0;
5352
5353 WARN_ON(start > eb->len);
5354 WARN_ON(start + len > eb->start + eb->len);
5355
5356 offset = (start_offset + start) & (PAGE_SIZE - 1);
5357
5358 while (len > 0) {
5359 page = eb->pages[i];
5360
5361 cur = min(len, (PAGE_SIZE - offset));
5362 kaddr = page_address(page);
5363 if (copy_to_user(dst, kaddr + offset, cur)) {
5364 ret = -EFAULT;
5365 break;
5366 }
5367
5368 dst += cur;
5369 len -= cur;
5370 offset = 0;
5371 i++;
5372 }
5373
5374 return ret;
5375}
5376
5377/*
5378 * return 0 if the item is found within a page.
5379 * return 1 if the item spans two pages.
5380 * return -EINVAL otherwise.
5381 */
5382int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5383 unsigned long min_len, char **map,
5384 unsigned long *map_start,
5385 unsigned long *map_len)
5386{
5387 size_t offset = start & (PAGE_SIZE - 1);
5388 char *kaddr;
5389 struct page *p;
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 unsigned long end_i = (start_offset + start + min_len - 1) >>
5393 PAGE_SHIFT;
5394
5395 if (i != end_i)
5396 return 1;
5397
5398 if (i == 0) {
5399 offset = start_offset;
5400 *map_start = 0;
5401 } else {
5402 offset = 0;
5403 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5404 }
5405
5406 if (start + min_len > eb->len) {
5407 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5408 eb->start, eb->len, start, min_len);
5409 return -EINVAL;
5410 }
5411
5412 p = eb->pages[i];
5413 kaddr = page_address(p);
5414 *map = kaddr + offset;
5415 *map_len = PAGE_SIZE - offset;
5416 return 0;
5417}
5418
5419int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5420 unsigned long start,
5421 unsigned long len)
5422{
5423 size_t cur;
5424 size_t offset;
5425 struct page *page;
5426 char *kaddr;
5427 char *ptr = (char *)ptrv;
5428 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5429 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5430 int ret = 0;
5431
5432 WARN_ON(start > eb->len);
5433 WARN_ON(start + len > eb->start + eb->len);
5434
5435 offset = (start_offset + start) & (PAGE_SIZE - 1);
5436
5437 while (len > 0) {
5438 page = eb->pages[i];
5439
5440 cur = min(len, (PAGE_SIZE - offset));
5441
5442 kaddr = page_address(page);
5443 ret = memcmp(ptr, kaddr + offset, cur);
5444 if (ret)
5445 break;
5446
5447 ptr += cur;
5448 len -= cur;
5449 offset = 0;
5450 i++;
5451 }
5452 return ret;
5453}
5454
5455void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5456 const void *srcv)
5457{
5458 char *kaddr;
5459
5460 WARN_ON(!PageUptodate(eb->pages[0]));
5461 kaddr = page_address(eb->pages[0]);
5462 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5463 BTRFS_FSID_SIZE);
5464}
5465
5466void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5467{
5468 char *kaddr;
5469
5470 WARN_ON(!PageUptodate(eb->pages[0]));
5471 kaddr = page_address(eb->pages[0]);
5472 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5473 BTRFS_FSID_SIZE);
5474}
5475
5476void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5477 unsigned long start, unsigned long len)
5478{
5479 size_t cur;
5480 size_t offset;
5481 struct page *page;
5482 char *kaddr;
5483 char *src = (char *)srcv;
5484 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486
5487 WARN_ON(start > eb->len);
5488 WARN_ON(start + len > eb->start + eb->len);
5489
5490 offset = (start_offset + start) & (PAGE_SIZE - 1);
5491
5492 while (len > 0) {
5493 page = eb->pages[i];
5494 WARN_ON(!PageUptodate(page));
5495
5496 cur = min(len, PAGE_SIZE - offset);
5497 kaddr = page_address(page);
5498 memcpy(kaddr + offset, src, cur);
5499
5500 src += cur;
5501 len -= cur;
5502 offset = 0;
5503 i++;
5504 }
5505}
5506
5507void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5508 unsigned long len)
5509{
5510 size_t cur;
5511 size_t offset;
5512 struct page *page;
5513 char *kaddr;
5514 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516
5517 WARN_ON(start > eb->len);
5518 WARN_ON(start + len > eb->start + eb->len);
5519
5520 offset = (start_offset + start) & (PAGE_SIZE - 1);
5521
5522 while (len > 0) {
5523 page = eb->pages[i];
5524 WARN_ON(!PageUptodate(page));
5525
5526 cur = min(len, PAGE_SIZE - offset);
5527 kaddr = page_address(page);
5528 memset(kaddr + offset, 0, cur);
5529
5530 len -= cur;
5531 offset = 0;
5532 i++;
5533 }
5534}
5535
5536void copy_extent_buffer_full(struct extent_buffer *dst,
5537 struct extent_buffer *src)
5538{
5539 int i;
5540 unsigned num_pages;
5541
5542 ASSERT(dst->len == src->len);
5543
5544 num_pages = num_extent_pages(dst->start, dst->len);
5545 for (i = 0; i < num_pages; i++)
5546 copy_page(page_address(dst->pages[i]),
5547 page_address(src->pages[i]));
5548}
5549
5550void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5551 unsigned long dst_offset, unsigned long src_offset,
5552 unsigned long len)
5553{
5554 u64 dst_len = dst->len;
5555 size_t cur;
5556 size_t offset;
5557 struct page *page;
5558 char *kaddr;
5559 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5560 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5561
5562 WARN_ON(src->len != dst_len);
5563
5564 offset = (start_offset + dst_offset) &
5565 (PAGE_SIZE - 1);
5566
5567 while (len > 0) {
5568 page = dst->pages[i];
5569 WARN_ON(!PageUptodate(page));
5570
5571 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5572
5573 kaddr = page_address(page);
5574 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5575
5576 src_offset += cur;
5577 len -= cur;
5578 offset = 0;
5579 i++;
5580 }
5581}
5582
5583void le_bitmap_set(u8 *map, unsigned int start, int len)
5584{
5585 u8 *p = map + BIT_BYTE(start);
5586 const unsigned int size = start + len;
5587 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5589
5590 while (len - bits_to_set >= 0) {
5591 *p |= mask_to_set;
5592 len -= bits_to_set;
5593 bits_to_set = BITS_PER_BYTE;
5594 mask_to_set = ~0;
5595 p++;
5596 }
5597 if (len) {
5598 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5599 *p |= mask_to_set;
5600 }
5601}
5602
5603void le_bitmap_clear(u8 *map, unsigned int start, int len)
5604{
5605 u8 *p = map + BIT_BYTE(start);
5606 const unsigned int size = start + len;
5607 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5608 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5609
5610 while (len - bits_to_clear >= 0) {
5611 *p &= ~mask_to_clear;
5612 len -= bits_to_clear;
5613 bits_to_clear = BITS_PER_BYTE;
5614 mask_to_clear = ~0;
5615 p++;
5616 }
5617 if (len) {
5618 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5619 *p &= ~mask_to_clear;
5620 }
5621}
5622
5623/*
5624 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5625 * given bit number
5626 * @eb: the extent buffer
5627 * @start: offset of the bitmap item in the extent buffer
5628 * @nr: bit number
5629 * @page_index: return index of the page in the extent buffer that contains the
5630 * given bit number
5631 * @page_offset: return offset into the page given by page_index
5632 *
5633 * This helper hides the ugliness of finding the byte in an extent buffer which
5634 * contains a given bit.
5635 */
5636static inline void eb_bitmap_offset(struct extent_buffer *eb,
5637 unsigned long start, unsigned long nr,
5638 unsigned long *page_index,
5639 size_t *page_offset)
5640{
5641 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642 size_t byte_offset = BIT_BYTE(nr);
5643 size_t offset;
5644
5645 /*
5646 * The byte we want is the offset of the extent buffer + the offset of
5647 * the bitmap item in the extent buffer + the offset of the byte in the
5648 * bitmap item.
5649 */
5650 offset = start_offset + start + byte_offset;
5651
5652 *page_index = offset >> PAGE_SHIFT;
5653 *page_offset = offset & (PAGE_SIZE - 1);
5654}
5655
5656/**
5657 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5658 * @eb: the extent buffer
5659 * @start: offset of the bitmap item in the extent buffer
5660 * @nr: bit number to test
5661 */
5662int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5663 unsigned long nr)
5664{
5665 u8 *kaddr;
5666 struct page *page;
5667 unsigned long i;
5668 size_t offset;
5669
5670 eb_bitmap_offset(eb, start, nr, &i, &offset);
5671 page = eb->pages[i];
5672 WARN_ON(!PageUptodate(page));
5673 kaddr = page_address(page);
5674 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5675}
5676
5677/**
5678 * extent_buffer_bitmap_set - set an area of a bitmap
5679 * @eb: the extent buffer
5680 * @start: offset of the bitmap item in the extent buffer
5681 * @pos: bit number of the first bit
5682 * @len: number of bits to set
5683 */
5684void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5685 unsigned long pos, unsigned long len)
5686{
5687 u8 *kaddr;
5688 struct page *page;
5689 unsigned long i;
5690 size_t offset;
5691 const unsigned int size = pos + len;
5692 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5693 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5694
5695 eb_bitmap_offset(eb, start, pos, &i, &offset);
5696 page = eb->pages[i];
5697 WARN_ON(!PageUptodate(page));
5698 kaddr = page_address(page);
5699
5700 while (len >= bits_to_set) {
5701 kaddr[offset] |= mask_to_set;
5702 len -= bits_to_set;
5703 bits_to_set = BITS_PER_BYTE;
5704 mask_to_set = ~0;
5705 if (++offset >= PAGE_SIZE && len > 0) {
5706 offset = 0;
5707 page = eb->pages[++i];
5708 WARN_ON(!PageUptodate(page));
5709 kaddr = page_address(page);
5710 }
5711 }
5712 if (len) {
5713 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5714 kaddr[offset] |= mask_to_set;
5715 }
5716}
5717
5718
5719/**
5720 * extent_buffer_bitmap_clear - clear an area of a bitmap
5721 * @eb: the extent buffer
5722 * @start: offset of the bitmap item in the extent buffer
5723 * @pos: bit number of the first bit
5724 * @len: number of bits to clear
5725 */
5726void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5727 unsigned long pos, unsigned long len)
5728{
5729 u8 *kaddr;
5730 struct page *page;
5731 unsigned long i;
5732 size_t offset;
5733 const unsigned int size = pos + len;
5734 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5735 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5736
5737 eb_bitmap_offset(eb, start, pos, &i, &offset);
5738 page = eb->pages[i];
5739 WARN_ON(!PageUptodate(page));
5740 kaddr = page_address(page);
5741
5742 while (len >= bits_to_clear) {
5743 kaddr[offset] &= ~mask_to_clear;
5744 len -= bits_to_clear;
5745 bits_to_clear = BITS_PER_BYTE;
5746 mask_to_clear = ~0;
5747 if (++offset >= PAGE_SIZE && len > 0) {
5748 offset = 0;
5749 page = eb->pages[++i];
5750 WARN_ON(!PageUptodate(page));
5751 kaddr = page_address(page);
5752 }
5753 }
5754 if (len) {
5755 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5756 kaddr[offset] &= ~mask_to_clear;
5757 }
5758}
5759
5760static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5761{
5762 unsigned long distance = (src > dst) ? src - dst : dst - src;
5763 return distance < len;
5764}
5765
5766static void copy_pages(struct page *dst_page, struct page *src_page,
5767 unsigned long dst_off, unsigned long src_off,
5768 unsigned long len)
5769{
5770 char *dst_kaddr = page_address(dst_page);
5771 char *src_kaddr;
5772 int must_memmove = 0;
5773
5774 if (dst_page != src_page) {
5775 src_kaddr = page_address(src_page);
5776 } else {
5777 src_kaddr = dst_kaddr;
5778 if (areas_overlap(src_off, dst_off, len))
5779 must_memmove = 1;
5780 }
5781
5782 if (must_memmove)
5783 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5784 else
5785 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5786}
5787
5788void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5789 unsigned long src_offset, unsigned long len)
5790{
5791 struct btrfs_fs_info *fs_info = dst->fs_info;
5792 size_t cur;
5793 size_t dst_off_in_page;
5794 size_t src_off_in_page;
5795 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5796 unsigned long dst_i;
5797 unsigned long src_i;
5798
5799 if (src_offset + len > dst->len) {
5800 btrfs_err(fs_info,
5801 "memmove bogus src_offset %lu move len %lu dst len %lu",
5802 src_offset, len, dst->len);
5803 BUG_ON(1);
5804 }
5805 if (dst_offset + len > dst->len) {
5806 btrfs_err(fs_info,
5807 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5808 dst_offset, len, dst->len);
5809 BUG_ON(1);
5810 }
5811
5812 while (len > 0) {
5813 dst_off_in_page = (start_offset + dst_offset) &
5814 (PAGE_SIZE - 1);
5815 src_off_in_page = (start_offset + src_offset) &
5816 (PAGE_SIZE - 1);
5817
5818 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5819 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5820
5821 cur = min(len, (unsigned long)(PAGE_SIZE -
5822 src_off_in_page));
5823 cur = min_t(unsigned long, cur,
5824 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5825
5826 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5827 dst_off_in_page, src_off_in_page, cur);
5828
5829 src_offset += cur;
5830 dst_offset += cur;
5831 len -= cur;
5832 }
5833}
5834
5835void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5836 unsigned long src_offset, unsigned long len)
5837{
5838 struct btrfs_fs_info *fs_info = dst->fs_info;
5839 size_t cur;
5840 size_t dst_off_in_page;
5841 size_t src_off_in_page;
5842 unsigned long dst_end = dst_offset + len - 1;
5843 unsigned long src_end = src_offset + len - 1;
5844 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5845 unsigned long dst_i;
5846 unsigned long src_i;
5847
5848 if (src_offset + len > dst->len) {
5849 btrfs_err(fs_info,
5850 "memmove bogus src_offset %lu move len %lu len %lu",
5851 src_offset, len, dst->len);
5852 BUG_ON(1);
5853 }
5854 if (dst_offset + len > dst->len) {
5855 btrfs_err(fs_info,
5856 "memmove bogus dst_offset %lu move len %lu len %lu",
5857 dst_offset, len, dst->len);
5858 BUG_ON(1);
5859 }
5860 if (dst_offset < src_offset) {
5861 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5862 return;
5863 }
5864 while (len > 0) {
5865 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5866 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5867
5868 dst_off_in_page = (start_offset + dst_end) &
5869 (PAGE_SIZE - 1);
5870 src_off_in_page = (start_offset + src_end) &
5871 (PAGE_SIZE - 1);
5872
5873 cur = min_t(unsigned long, len, src_off_in_page + 1);
5874 cur = min(cur, dst_off_in_page + 1);
5875 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5876 dst_off_in_page - cur + 1,
5877 src_off_in_page - cur + 1, cur);
5878
5879 dst_end -= cur;
5880 src_end -= cur;
5881 len -= cur;
5882 }
5883}
5884
5885int try_release_extent_buffer(struct page *page)
5886{
5887 struct extent_buffer *eb;
5888
5889 /*
5890 * We need to make sure nobody is attaching this page to an eb right
5891 * now.
5892 */
5893 spin_lock(&page->mapping->private_lock);
5894 if (!PagePrivate(page)) {
5895 spin_unlock(&page->mapping->private_lock);
5896 return 1;
5897 }
5898
5899 eb = (struct extent_buffer *)page->private;
5900 BUG_ON(!eb);
5901
5902 /*
5903 * This is a little awful but should be ok, we need to make sure that
5904 * the eb doesn't disappear out from under us while we're looking at
5905 * this page.
5906 */
5907 spin_lock(&eb->refs_lock);
5908 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5909 spin_unlock(&eb->refs_lock);
5910 spin_unlock(&page->mapping->private_lock);
5911 return 0;
5912 }
5913 spin_unlock(&page->mapping->private_lock);
5914
5915 /*
5916 * If tree ref isn't set then we know the ref on this eb is a real ref,
5917 * so just return, this page will likely be freed soon anyway.
5918 */
5919 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5920 spin_unlock(&eb->refs_lock);
5921 return 0;
5922 }
5923
5924 return release_extent_buffer(eb);
5925}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "misc.h"
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "volumes.h"
23#include "check-integrity.h"
24#include "locking.h"
25#include "rcu-string.h"
26#include "backref.h"
27#include "disk-io.h"
28#include "subpage.h"
29#include "zoned.h"
30#include "block-group.h"
31
32static struct kmem_cache *extent_state_cache;
33static struct kmem_cache *extent_buffer_cache;
34static struct bio_set btrfs_bioset;
35
36static inline bool extent_state_in_tree(const struct extent_state *state)
37{
38 return !RB_EMPTY_NODE(&state->rb_node);
39}
40
41#ifdef CONFIG_BTRFS_DEBUG
42static LIST_HEAD(states);
43static DEFINE_SPINLOCK(leak_lock);
44
45static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 struct list_head *new,
47 struct list_head *head)
48{
49 unsigned long flags;
50
51 spin_lock_irqsave(lock, flags);
52 list_add(new, head);
53 spin_unlock_irqrestore(lock, flags);
54}
55
56static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 struct list_head *entry)
58{
59 unsigned long flags;
60
61 spin_lock_irqsave(lock, flags);
62 list_del(entry);
63 spin_unlock_irqrestore(lock, flags);
64}
65
66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67{
68 struct extent_buffer *eb;
69 unsigned long flags;
70
71 /*
72 * If we didn't get into open_ctree our allocated_ebs will not be
73 * initialized, so just skip this.
74 */
75 if (!fs_info->allocated_ebs.next)
76 return;
77
78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 while (!list_empty(&fs_info->allocated_ebs)) {
80 eb = list_first_entry(&fs_info->allocated_ebs,
81 struct extent_buffer, leak_list);
82 pr_err(
83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 btrfs_header_owner(eb));
86 list_del(&eb->leak_list);
87 kmem_cache_free(extent_buffer_cache, eb);
88 }
89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90}
91
92static inline void btrfs_extent_state_leak_debug_check(void)
93{
94 struct extent_state *state;
95
96 while (!list_empty(&states)) {
97 state = list_entry(states.next, struct extent_state, leak_list);
98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 state->start, state->end, state->state,
100 extent_state_in_tree(state),
101 refcount_read(&state->refs));
102 list_del(&state->leak_list);
103 kmem_cache_free(extent_state_cache, state);
104 }
105}
106
107#define btrfs_debug_check_extent_io_range(tree, start, end) \
108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110 struct extent_io_tree *tree, u64 start, u64 end)
111{
112 struct inode *inode = tree->private_data;
113 u64 isize;
114
115 if (!inode || !is_data_inode(inode))
116 return;
117
118 isize = i_size_read(inode);
119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 }
124}
125#else
126#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
127#define btrfs_leak_debug_del(lock, entry) do {} while (0)
128#define btrfs_extent_state_leak_debug_check() do {} while (0)
129#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
130#endif
131
132struct tree_entry {
133 u64 start;
134 u64 end;
135 struct rb_node rb_node;
136};
137
138struct extent_page_data {
139 struct btrfs_bio_ctrl bio_ctrl;
140 /* tells writepage not to lock the state bits for this range
141 * it still does the unlocking
142 */
143 unsigned int extent_locked:1;
144
145 /* tells the submit_bio code to use REQ_SYNC */
146 unsigned int sync_io:1;
147};
148
149static int add_extent_changeset(struct extent_state *state, u32 bits,
150 struct extent_changeset *changeset,
151 int set)
152{
153 int ret;
154
155 if (!changeset)
156 return 0;
157 if (set && (state->state & bits) == bits)
158 return 0;
159 if (!set && (state->state & bits) == 0)
160 return 0;
161 changeset->bytes_changed += state->end - state->start + 1;
162 ret = ulist_add(&changeset->range_changed, state->start, state->end,
163 GFP_ATOMIC);
164 return ret;
165}
166
167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 unsigned long bio_flags)
169{
170 blk_status_t ret = 0;
171 struct extent_io_tree *tree = bio->bi_private;
172
173 bio->bi_private = NULL;
174
175 if (is_data_inode(tree->private_data))
176 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
177 bio_flags);
178 else
179 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
180 mirror_num, bio_flags);
181
182 return blk_status_to_errno(ret);
183}
184
185/* Cleanup unsubmitted bios */
186static void end_write_bio(struct extent_page_data *epd, int ret)
187{
188 struct bio *bio = epd->bio_ctrl.bio;
189
190 if (bio) {
191 bio->bi_status = errno_to_blk_status(ret);
192 bio_endio(bio);
193 epd->bio_ctrl.bio = NULL;
194 }
195}
196
197/*
198 * Submit bio from extent page data via submit_one_bio
199 *
200 * Return 0 if everything is OK.
201 * Return <0 for error.
202 */
203static int __must_check flush_write_bio(struct extent_page_data *epd)
204{
205 int ret = 0;
206 struct bio *bio = epd->bio_ctrl.bio;
207
208 if (bio) {
209 ret = submit_one_bio(bio, 0, 0);
210 /*
211 * Clean up of epd->bio is handled by its endio function.
212 * And endio is either triggered by successful bio execution
213 * or the error handler of submit bio hook.
214 * So at this point, no matter what happened, we don't need
215 * to clean up epd->bio.
216 */
217 epd->bio_ctrl.bio = NULL;
218 }
219 return ret;
220}
221
222int __init extent_state_cache_init(void)
223{
224 extent_state_cache = kmem_cache_create("btrfs_extent_state",
225 sizeof(struct extent_state), 0,
226 SLAB_MEM_SPREAD, NULL);
227 if (!extent_state_cache)
228 return -ENOMEM;
229 return 0;
230}
231
232int __init extent_io_init(void)
233{
234 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
235 sizeof(struct extent_buffer), 0,
236 SLAB_MEM_SPREAD, NULL);
237 if (!extent_buffer_cache)
238 return -ENOMEM;
239
240 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
241 offsetof(struct btrfs_io_bio, bio),
242 BIOSET_NEED_BVECS))
243 goto free_buffer_cache;
244
245 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
246 goto free_bioset;
247
248 return 0;
249
250free_bioset:
251 bioset_exit(&btrfs_bioset);
252
253free_buffer_cache:
254 kmem_cache_destroy(extent_buffer_cache);
255 extent_buffer_cache = NULL;
256 return -ENOMEM;
257}
258
259void __cold extent_state_cache_exit(void)
260{
261 btrfs_extent_state_leak_debug_check();
262 kmem_cache_destroy(extent_state_cache);
263}
264
265void __cold extent_io_exit(void)
266{
267 /*
268 * Make sure all delayed rcu free are flushed before we
269 * destroy caches.
270 */
271 rcu_barrier();
272 kmem_cache_destroy(extent_buffer_cache);
273 bioset_exit(&btrfs_bioset);
274}
275
276/*
277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
279 * the tree lock and get the inode lock when setting delalloc. These two things
280 * are unrelated, so make a class for the file_extent_tree so we don't get the
281 * two locking patterns mixed up.
282 */
283static struct lock_class_key file_extent_tree_class;
284
285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
286 struct extent_io_tree *tree, unsigned int owner,
287 void *private_data)
288{
289 tree->fs_info = fs_info;
290 tree->state = RB_ROOT;
291 tree->dirty_bytes = 0;
292 spin_lock_init(&tree->lock);
293 tree->private_data = private_data;
294 tree->owner = owner;
295 if (owner == IO_TREE_INODE_FILE_EXTENT)
296 lockdep_set_class(&tree->lock, &file_extent_tree_class);
297}
298
299void extent_io_tree_release(struct extent_io_tree *tree)
300{
301 spin_lock(&tree->lock);
302 /*
303 * Do a single barrier for the waitqueue_active check here, the state
304 * of the waitqueue should not change once extent_io_tree_release is
305 * called.
306 */
307 smp_mb();
308 while (!RB_EMPTY_ROOT(&tree->state)) {
309 struct rb_node *node;
310 struct extent_state *state;
311
312 node = rb_first(&tree->state);
313 state = rb_entry(node, struct extent_state, rb_node);
314 rb_erase(&state->rb_node, &tree->state);
315 RB_CLEAR_NODE(&state->rb_node);
316 /*
317 * btree io trees aren't supposed to have tasks waiting for
318 * changes in the flags of extent states ever.
319 */
320 ASSERT(!waitqueue_active(&state->wq));
321 free_extent_state(state);
322
323 cond_resched_lock(&tree->lock);
324 }
325 spin_unlock(&tree->lock);
326}
327
328static struct extent_state *alloc_extent_state(gfp_t mask)
329{
330 struct extent_state *state;
331
332 /*
333 * The given mask might be not appropriate for the slab allocator,
334 * drop the unsupported bits
335 */
336 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
337 state = kmem_cache_alloc(extent_state_cache, mask);
338 if (!state)
339 return state;
340 state->state = 0;
341 state->failrec = NULL;
342 RB_CLEAR_NODE(&state->rb_node);
343 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
344 refcount_set(&state->refs, 1);
345 init_waitqueue_head(&state->wq);
346 trace_alloc_extent_state(state, mask, _RET_IP_);
347 return state;
348}
349
350void free_extent_state(struct extent_state *state)
351{
352 if (!state)
353 return;
354 if (refcount_dec_and_test(&state->refs)) {
355 WARN_ON(extent_state_in_tree(state));
356 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
357 trace_free_extent_state(state, _RET_IP_);
358 kmem_cache_free(extent_state_cache, state);
359 }
360}
361
362static struct rb_node *tree_insert(struct rb_root *root,
363 struct rb_node *search_start,
364 u64 offset,
365 struct rb_node *node,
366 struct rb_node ***p_in,
367 struct rb_node **parent_in)
368{
369 struct rb_node **p;
370 struct rb_node *parent = NULL;
371 struct tree_entry *entry;
372
373 if (p_in && parent_in) {
374 p = *p_in;
375 parent = *parent_in;
376 goto do_insert;
377 }
378
379 p = search_start ? &search_start : &root->rb_node;
380 while (*p) {
381 parent = *p;
382 entry = rb_entry(parent, struct tree_entry, rb_node);
383
384 if (offset < entry->start)
385 p = &(*p)->rb_left;
386 else if (offset > entry->end)
387 p = &(*p)->rb_right;
388 else
389 return parent;
390 }
391
392do_insert:
393 rb_link_node(node, parent, p);
394 rb_insert_color(node, root);
395 return NULL;
396}
397
398/**
399 * Search @tree for an entry that contains @offset. Such entry would have
400 * entry->start <= offset && entry->end >= offset.
401 *
402 * @tree: the tree to search
403 * @offset: offset that should fall within an entry in @tree
404 * @next_ret: pointer to the first entry whose range ends after @offset
405 * @prev_ret: pointer to the first entry whose range begins before @offset
406 * @p_ret: pointer where new node should be anchored (used when inserting an
407 * entry in the tree)
408 * @parent_ret: points to entry which would have been the parent of the entry,
409 * containing @offset
410 *
411 * This function returns a pointer to the entry that contains @offset byte
412 * address. If no such entry exists, then NULL is returned and the other
413 * pointer arguments to the function are filled, otherwise the found entry is
414 * returned and other pointers are left untouched.
415 */
416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
417 struct rb_node **next_ret,
418 struct rb_node **prev_ret,
419 struct rb_node ***p_ret,
420 struct rb_node **parent_ret)
421{
422 struct rb_root *root = &tree->state;
423 struct rb_node **n = &root->rb_node;
424 struct rb_node *prev = NULL;
425 struct rb_node *orig_prev = NULL;
426 struct tree_entry *entry;
427 struct tree_entry *prev_entry = NULL;
428
429 while (*n) {
430 prev = *n;
431 entry = rb_entry(prev, struct tree_entry, rb_node);
432 prev_entry = entry;
433
434 if (offset < entry->start)
435 n = &(*n)->rb_left;
436 else if (offset > entry->end)
437 n = &(*n)->rb_right;
438 else
439 return *n;
440 }
441
442 if (p_ret)
443 *p_ret = n;
444 if (parent_ret)
445 *parent_ret = prev;
446
447 if (next_ret) {
448 orig_prev = prev;
449 while (prev && offset > prev_entry->end) {
450 prev = rb_next(prev);
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 }
453 *next_ret = prev;
454 prev = orig_prev;
455 }
456
457 if (prev_ret) {
458 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
459 while (prev && offset < prev_entry->start) {
460 prev = rb_prev(prev);
461 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 }
463 *prev_ret = prev;
464 }
465 return NULL;
466}
467
468static inline struct rb_node *
469tree_search_for_insert(struct extent_io_tree *tree,
470 u64 offset,
471 struct rb_node ***p_ret,
472 struct rb_node **parent_ret)
473{
474 struct rb_node *next= NULL;
475 struct rb_node *ret;
476
477 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
478 if (!ret)
479 return next;
480 return ret;
481}
482
483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
484 u64 offset)
485{
486 return tree_search_for_insert(tree, offset, NULL, NULL);
487}
488
489/*
490 * utility function to look for merge candidates inside a given range.
491 * Any extents with matching state are merged together into a single
492 * extent in the tree. Extents with EXTENT_IO in their state field
493 * are not merged because the end_io handlers need to be able to do
494 * operations on them without sleeping (or doing allocations/splits).
495 *
496 * This should be called with the tree lock held.
497 */
498static void merge_state(struct extent_io_tree *tree,
499 struct extent_state *state)
500{
501 struct extent_state *other;
502 struct rb_node *other_node;
503
504 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
505 return;
506
507 other_node = rb_prev(&state->rb_node);
508 if (other_node) {
509 other = rb_entry(other_node, struct extent_state, rb_node);
510 if (other->end == state->start - 1 &&
511 other->state == state->state) {
512 if (tree->private_data &&
513 is_data_inode(tree->private_data))
514 btrfs_merge_delalloc_extent(tree->private_data,
515 state, other);
516 state->start = other->start;
517 rb_erase(&other->rb_node, &tree->state);
518 RB_CLEAR_NODE(&other->rb_node);
519 free_extent_state(other);
520 }
521 }
522 other_node = rb_next(&state->rb_node);
523 if (other_node) {
524 other = rb_entry(other_node, struct extent_state, rb_node);
525 if (other->start == state->end + 1 &&
526 other->state == state->state) {
527 if (tree->private_data &&
528 is_data_inode(tree->private_data))
529 btrfs_merge_delalloc_extent(tree->private_data,
530 state, other);
531 state->end = other->end;
532 rb_erase(&other->rb_node, &tree->state);
533 RB_CLEAR_NODE(&other->rb_node);
534 free_extent_state(other);
535 }
536 }
537}
538
539static void set_state_bits(struct extent_io_tree *tree,
540 struct extent_state *state, u32 *bits,
541 struct extent_changeset *changeset);
542
543/*
544 * insert an extent_state struct into the tree. 'bits' are set on the
545 * struct before it is inserted.
546 *
547 * This may return -EEXIST if the extent is already there, in which case the
548 * state struct is freed.
549 *
550 * The tree lock is not taken internally. This is a utility function and
551 * probably isn't what you want to call (see set/clear_extent_bit).
552 */
553static int insert_state(struct extent_io_tree *tree,
554 struct extent_state *state, u64 start, u64 end,
555 struct rb_node ***p,
556 struct rb_node **parent,
557 u32 *bits, struct extent_changeset *changeset)
558{
559 struct rb_node *node;
560
561 if (end < start) {
562 btrfs_err(tree->fs_info,
563 "insert state: end < start %llu %llu", end, start);
564 WARN_ON(1);
565 }
566 state->start = start;
567 state->end = end;
568
569 set_state_bits(tree, state, bits, changeset);
570
571 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
572 if (node) {
573 struct extent_state *found;
574 found = rb_entry(node, struct extent_state, rb_node);
575 btrfs_err(tree->fs_info,
576 "found node %llu %llu on insert of %llu %llu",
577 found->start, found->end, start, end);
578 return -EEXIST;
579 }
580 merge_state(tree, state);
581 return 0;
582}
583
584/*
585 * split a given extent state struct in two, inserting the preallocated
586 * struct 'prealloc' as the newly created second half. 'split' indicates an
587 * offset inside 'orig' where it should be split.
588 *
589 * Before calling,
590 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
591 * are two extent state structs in the tree:
592 * prealloc: [orig->start, split - 1]
593 * orig: [ split, orig->end ]
594 *
595 * The tree locks are not taken by this function. They need to be held
596 * by the caller.
597 */
598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
599 struct extent_state *prealloc, u64 split)
600{
601 struct rb_node *node;
602
603 if (tree->private_data && is_data_inode(tree->private_data))
604 btrfs_split_delalloc_extent(tree->private_data, orig, split);
605
606 prealloc->start = orig->start;
607 prealloc->end = split - 1;
608 prealloc->state = orig->state;
609 orig->start = split;
610
611 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
612 &prealloc->rb_node, NULL, NULL);
613 if (node) {
614 free_extent_state(prealloc);
615 return -EEXIST;
616 }
617 return 0;
618}
619
620static struct extent_state *next_state(struct extent_state *state)
621{
622 struct rb_node *next = rb_next(&state->rb_node);
623 if (next)
624 return rb_entry(next, struct extent_state, rb_node);
625 else
626 return NULL;
627}
628
629/*
630 * utility function to clear some bits in an extent state struct.
631 * it will optionally wake up anyone waiting on this state (wake == 1).
632 *
633 * If no bits are set on the state struct after clearing things, the
634 * struct is freed and removed from the tree
635 */
636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
637 struct extent_state *state,
638 u32 *bits, int wake,
639 struct extent_changeset *changeset)
640{
641 struct extent_state *next;
642 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
643 int ret;
644
645 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
646 u64 range = state->end - state->start + 1;
647 WARN_ON(range > tree->dirty_bytes);
648 tree->dirty_bytes -= range;
649 }
650
651 if (tree->private_data && is_data_inode(tree->private_data))
652 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
653
654 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
655 BUG_ON(ret < 0);
656 state->state &= ~bits_to_clear;
657 if (wake)
658 wake_up(&state->wq);
659 if (state->state == 0) {
660 next = next_state(state);
661 if (extent_state_in_tree(state)) {
662 rb_erase(&state->rb_node, &tree->state);
663 RB_CLEAR_NODE(&state->rb_node);
664 free_extent_state(state);
665 } else {
666 WARN_ON(1);
667 }
668 } else {
669 merge_state(tree, state);
670 next = next_state(state);
671 }
672 return next;
673}
674
675static struct extent_state *
676alloc_extent_state_atomic(struct extent_state *prealloc)
677{
678 if (!prealloc)
679 prealloc = alloc_extent_state(GFP_ATOMIC);
680
681 return prealloc;
682}
683
684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
685{
686 btrfs_panic(tree->fs_info, err,
687 "locking error: extent tree was modified by another thread while locked");
688}
689
690/*
691 * clear some bits on a range in the tree. This may require splitting
692 * or inserting elements in the tree, so the gfp mask is used to
693 * indicate which allocations or sleeping are allowed.
694 *
695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
696 * the given range from the tree regardless of state (ie for truncate).
697 *
698 * the range [start, end] is inclusive.
699 *
700 * This takes the tree lock, and returns 0 on success and < 0 on error.
701 */
702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
703 u32 bits, int wake, int delete,
704 struct extent_state **cached_state,
705 gfp_t mask, struct extent_changeset *changeset)
706{
707 struct extent_state *state;
708 struct extent_state *cached;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 u64 last_end;
712 int err;
713 int clear = 0;
714
715 btrfs_debug_check_extent_io_range(tree, start, end);
716 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
717
718 if (bits & EXTENT_DELALLOC)
719 bits |= EXTENT_NORESERVE;
720
721 if (delete)
722 bits |= ~EXTENT_CTLBITS;
723
724 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
725 clear = 1;
726again:
727 if (!prealloc && gfpflags_allow_blocking(mask)) {
728 /*
729 * Don't care for allocation failure here because we might end
730 * up not needing the pre-allocated extent state at all, which
731 * is the case if we only have in the tree extent states that
732 * cover our input range and don't cover too any other range.
733 * If we end up needing a new extent state we allocate it later.
734 */
735 prealloc = alloc_extent_state(mask);
736 }
737
738 spin_lock(&tree->lock);
739 if (cached_state) {
740 cached = *cached_state;
741
742 if (clear) {
743 *cached_state = NULL;
744 cached_state = NULL;
745 }
746
747 if (cached && extent_state_in_tree(cached) &&
748 cached->start <= start && cached->end > start) {
749 if (clear)
750 refcount_dec(&cached->refs);
751 state = cached;
752 goto hit_next;
753 }
754 if (clear)
755 free_extent_state(cached);
756 }
757 /*
758 * this search will find the extents that end after
759 * our range starts
760 */
761 node = tree_search(tree, start);
762 if (!node)
763 goto out;
764 state = rb_entry(node, struct extent_state, rb_node);
765hit_next:
766 if (state->start > end)
767 goto out;
768 WARN_ON(state->end < start);
769 last_end = state->end;
770
771 /* the state doesn't have the wanted bits, go ahead */
772 if (!(state->state & bits)) {
773 state = next_state(state);
774 goto next;
775 }
776
777 /*
778 * | ---- desired range ---- |
779 * | state | or
780 * | ------------- state -------------- |
781 *
782 * We need to split the extent we found, and may flip
783 * bits on second half.
784 *
785 * If the extent we found extends past our range, we
786 * just split and search again. It'll get split again
787 * the next time though.
788 *
789 * If the extent we found is inside our range, we clear
790 * the desired bit on it.
791 */
792
793 if (state->start < start) {
794 prealloc = alloc_extent_state_atomic(prealloc);
795 BUG_ON(!prealloc);
796 err = split_state(tree, state, prealloc, start);
797 if (err)
798 extent_io_tree_panic(tree, err);
799
800 prealloc = NULL;
801 if (err)
802 goto out;
803 if (state->end <= end) {
804 state = clear_state_bit(tree, state, &bits, wake,
805 changeset);
806 goto next;
807 }
808 goto search_again;
809 }
810 /*
811 * | ---- desired range ---- |
812 * | state |
813 * We need to split the extent, and clear the bit
814 * on the first half
815 */
816 if (state->start <= end && state->end > end) {
817 prealloc = alloc_extent_state_atomic(prealloc);
818 BUG_ON(!prealloc);
819 err = split_state(tree, state, prealloc, end + 1);
820 if (err)
821 extent_io_tree_panic(tree, err);
822
823 if (wake)
824 wake_up(&state->wq);
825
826 clear_state_bit(tree, prealloc, &bits, wake, changeset);
827
828 prealloc = NULL;
829 goto out;
830 }
831
832 state = clear_state_bit(tree, state, &bits, wake, changeset);
833next:
834 if (last_end == (u64)-1)
835 goto out;
836 start = last_end + 1;
837 if (start <= end && state && !need_resched())
838 goto hit_next;
839
840search_again:
841 if (start > end)
842 goto out;
843 spin_unlock(&tree->lock);
844 if (gfpflags_allow_blocking(mask))
845 cond_resched();
846 goto again;
847
848out:
849 spin_unlock(&tree->lock);
850 if (prealloc)
851 free_extent_state(prealloc);
852
853 return 0;
854
855}
856
857static void wait_on_state(struct extent_io_tree *tree,
858 struct extent_state *state)
859 __releases(tree->lock)
860 __acquires(tree->lock)
861{
862 DEFINE_WAIT(wait);
863 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
864 spin_unlock(&tree->lock);
865 schedule();
866 spin_lock(&tree->lock);
867 finish_wait(&state->wq, &wait);
868}
869
870/*
871 * waits for one or more bits to clear on a range in the state tree.
872 * The range [start, end] is inclusive.
873 * The tree lock is taken by this function
874 */
875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
876 u32 bits)
877{
878 struct extent_state *state;
879 struct rb_node *node;
880
881 btrfs_debug_check_extent_io_range(tree, start, end);
882
883 spin_lock(&tree->lock);
884again:
885 while (1) {
886 /*
887 * this search will find all the extents that end after
888 * our range starts
889 */
890 node = tree_search(tree, start);
891process_node:
892 if (!node)
893 break;
894
895 state = rb_entry(node, struct extent_state, rb_node);
896
897 if (state->start > end)
898 goto out;
899
900 if (state->state & bits) {
901 start = state->start;
902 refcount_inc(&state->refs);
903 wait_on_state(tree, state);
904 free_extent_state(state);
905 goto again;
906 }
907 start = state->end + 1;
908
909 if (start > end)
910 break;
911
912 if (!cond_resched_lock(&tree->lock)) {
913 node = rb_next(node);
914 goto process_node;
915 }
916 }
917out:
918 spin_unlock(&tree->lock);
919}
920
921static void set_state_bits(struct extent_io_tree *tree,
922 struct extent_state *state,
923 u32 *bits, struct extent_changeset *changeset)
924{
925 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
926 int ret;
927
928 if (tree->private_data && is_data_inode(tree->private_data))
929 btrfs_set_delalloc_extent(tree->private_data, state, bits);
930
931 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
932 u64 range = state->end - state->start + 1;
933 tree->dirty_bytes += range;
934 }
935 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
936 BUG_ON(ret < 0);
937 state->state |= bits_to_set;
938}
939
940static void cache_state_if_flags(struct extent_state *state,
941 struct extent_state **cached_ptr,
942 unsigned flags)
943{
944 if (cached_ptr && !(*cached_ptr)) {
945 if (!flags || (state->state & flags)) {
946 *cached_ptr = state;
947 refcount_inc(&state->refs);
948 }
949 }
950}
951
952static void cache_state(struct extent_state *state,
953 struct extent_state **cached_ptr)
954{
955 return cache_state_if_flags(state, cached_ptr,
956 EXTENT_LOCKED | EXTENT_BOUNDARY);
957}
958
959/*
960 * set some bits on a range in the tree. This may require allocations or
961 * sleeping, so the gfp mask is used to indicate what is allowed.
962 *
963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
964 * part of the range already has the desired bits set. The start of the
965 * existing range is returned in failed_start in this case.
966 *
967 * [start, end] is inclusive This takes the tree lock.
968 */
969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
970 u32 exclusive_bits, u64 *failed_start,
971 struct extent_state **cached_state, gfp_t mask,
972 struct extent_changeset *changeset)
973{
974 struct extent_state *state;
975 struct extent_state *prealloc = NULL;
976 struct rb_node *node;
977 struct rb_node **p;
978 struct rb_node *parent;
979 int err = 0;
980 u64 last_start;
981 u64 last_end;
982
983 btrfs_debug_check_extent_io_range(tree, start, end);
984 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
985
986 if (exclusive_bits)
987 ASSERT(failed_start);
988 else
989 ASSERT(failed_start == NULL);
990again:
991 if (!prealloc && gfpflags_allow_blocking(mask)) {
992 /*
993 * Don't care for allocation failure here because we might end
994 * up not needing the pre-allocated extent state at all, which
995 * is the case if we only have in the tree extent states that
996 * cover our input range and don't cover too any other range.
997 * If we end up needing a new extent state we allocate it later.
998 */
999 prealloc = alloc_extent_state(mask);
1000 }
1001
1002 spin_lock(&tree->lock);
1003 if (cached_state && *cached_state) {
1004 state = *cached_state;
1005 if (state->start <= start && state->end > start &&
1006 extent_state_in_tree(state)) {
1007 node = &state->rb_node;
1008 goto hit_next;
1009 }
1010 }
1011 /*
1012 * this search will find all the extents that end after
1013 * our range starts.
1014 */
1015 node = tree_search_for_insert(tree, start, &p, &parent);
1016 if (!node) {
1017 prealloc = alloc_extent_state_atomic(prealloc);
1018 BUG_ON(!prealloc);
1019 err = insert_state(tree, prealloc, start, end,
1020 &p, &parent, &bits, changeset);
1021 if (err)
1022 extent_io_tree_panic(tree, err);
1023
1024 cache_state(prealloc, cached_state);
1025 prealloc = NULL;
1026 goto out;
1027 }
1028 state = rb_entry(node, struct extent_state, rb_node);
1029hit_next:
1030 last_start = state->start;
1031 last_end = state->end;
1032
1033 /*
1034 * | ---- desired range ---- |
1035 * | state |
1036 *
1037 * Just lock what we found and keep going
1038 */
1039 if (state->start == start && state->end <= end) {
1040 if (state->state & exclusive_bits) {
1041 *failed_start = state->start;
1042 err = -EEXIST;
1043 goto out;
1044 }
1045
1046 set_state_bits(tree, state, &bits, changeset);
1047 cache_state(state, cached_state);
1048 merge_state(tree, state);
1049 if (last_end == (u64)-1)
1050 goto out;
1051 start = last_end + 1;
1052 state = next_state(state);
1053 if (start < end && state && state->start == start &&
1054 !need_resched())
1055 goto hit_next;
1056 goto search_again;
1057 }
1058
1059 /*
1060 * | ---- desired range ---- |
1061 * | state |
1062 * or
1063 * | ------------- state -------------- |
1064 *
1065 * We need to split the extent we found, and may flip bits on
1066 * second half.
1067 *
1068 * If the extent we found extends past our
1069 * range, we just split and search again. It'll get split
1070 * again the next time though.
1071 *
1072 * If the extent we found is inside our range, we set the
1073 * desired bit on it.
1074 */
1075 if (state->start < start) {
1076 if (state->state & exclusive_bits) {
1077 *failed_start = start;
1078 err = -EEXIST;
1079 goto out;
1080 }
1081
1082 /*
1083 * If this extent already has all the bits we want set, then
1084 * skip it, not necessary to split it or do anything with it.
1085 */
1086 if ((state->state & bits) == bits) {
1087 start = state->end + 1;
1088 cache_state(state, cached_state);
1089 goto search_again;
1090 }
1091
1092 prealloc = alloc_extent_state_atomic(prealloc);
1093 BUG_ON(!prealloc);
1094 err = split_state(tree, state, prealloc, start);
1095 if (err)
1096 extent_io_tree_panic(tree, err);
1097
1098 prealloc = NULL;
1099 if (err)
1100 goto out;
1101 if (state->end <= end) {
1102 set_state_bits(tree, state, &bits, changeset);
1103 cache_state(state, cached_state);
1104 merge_state(tree, state);
1105 if (last_end == (u64)-1)
1106 goto out;
1107 start = last_end + 1;
1108 state = next_state(state);
1109 if (start < end && state && state->start == start &&
1110 !need_resched())
1111 goto hit_next;
1112 }
1113 goto search_again;
1114 }
1115 /*
1116 * | ---- desired range ---- |
1117 * | state | or | state |
1118 *
1119 * There's a hole, we need to insert something in it and
1120 * ignore the extent we found.
1121 */
1122 if (state->start > start) {
1123 u64 this_end;
1124 if (end < last_start)
1125 this_end = end;
1126 else
1127 this_end = last_start - 1;
1128
1129 prealloc = alloc_extent_state_atomic(prealloc);
1130 BUG_ON(!prealloc);
1131
1132 /*
1133 * Avoid to free 'prealloc' if it can be merged with
1134 * the later extent.
1135 */
1136 err = insert_state(tree, prealloc, start, this_end,
1137 NULL, NULL, &bits, changeset);
1138 if (err)
1139 extent_io_tree_panic(tree, err);
1140
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 start = this_end + 1;
1144 goto search_again;
1145 }
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 * We need to split the extent, and set the bit
1150 * on the first half
1151 */
1152 if (state->start <= end && state->end > end) {
1153 if (state->state & exclusive_bits) {
1154 *failed_start = start;
1155 err = -EEXIST;
1156 goto out;
1157 }
1158
1159 prealloc = alloc_extent_state_atomic(prealloc);
1160 BUG_ON(!prealloc);
1161 err = split_state(tree, state, prealloc, end + 1);
1162 if (err)
1163 extent_io_tree_panic(tree, err);
1164
1165 set_state_bits(tree, prealloc, &bits, changeset);
1166 cache_state(prealloc, cached_state);
1167 merge_state(tree, prealloc);
1168 prealloc = NULL;
1169 goto out;
1170 }
1171
1172search_again:
1173 if (start > end)
1174 goto out;
1175 spin_unlock(&tree->lock);
1176 if (gfpflags_allow_blocking(mask))
1177 cond_resched();
1178 goto again;
1179
1180out:
1181 spin_unlock(&tree->lock);
1182 if (prealloc)
1183 free_extent_state(prealloc);
1184
1185 return err;
1186
1187}
1188
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * another
1192 * @tree: the io tree to search
1193 * @start: the start offset in bytes
1194 * @end: the end offset in bytes (inclusive)
1195 * @bits: the bits to set in this range
1196 * @clear_bits: the bits to clear in this range
1197 * @cached_state: state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range. If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits. This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208 u32 bits, u32 clear_bits,
1209 struct extent_state **cached_state)
1210{
1211 struct extent_state *state;
1212 struct extent_state *prealloc = NULL;
1213 struct rb_node *node;
1214 struct rb_node **p;
1215 struct rb_node *parent;
1216 int err = 0;
1217 u64 last_start;
1218 u64 last_end;
1219 bool first_iteration = true;
1220
1221 btrfs_debug_check_extent_io_range(tree, start, end);
1222 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223 clear_bits);
1224
1225again:
1226 if (!prealloc) {
1227 /*
1228 * Best effort, don't worry if extent state allocation fails
1229 * here for the first iteration. We might have a cached state
1230 * that matches exactly the target range, in which case no
1231 * extent state allocations are needed. We'll only know this
1232 * after locking the tree.
1233 */
1234 prealloc = alloc_extent_state(GFP_NOFS);
1235 if (!prealloc && !first_iteration)
1236 return -ENOMEM;
1237 }
1238
1239 spin_lock(&tree->lock);
1240 if (cached_state && *cached_state) {
1241 state = *cached_state;
1242 if (state->start <= start && state->end > start &&
1243 extent_state_in_tree(state)) {
1244 node = &state->rb_node;
1245 goto hit_next;
1246 }
1247 }
1248
1249 /*
1250 * this search will find all the extents that end after
1251 * our range starts.
1252 */
1253 node = tree_search_for_insert(tree, start, &p, &parent);
1254 if (!node) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260 err = insert_state(tree, prealloc, start, end,
1261 &p, &parent, &bits, NULL);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264 cache_state(prealloc, cached_state);
1265 prealloc = NULL;
1266 goto out;
1267 }
1268 state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270 last_start = state->start;
1271 last_end = state->end;
1272
1273 /*
1274 * | ---- desired range ---- |
1275 * | state |
1276 *
1277 * Just lock what we found and keep going
1278 */
1279 if (state->start == start && state->end <= end) {
1280 set_state_bits(tree, state, &bits, NULL);
1281 cache_state(state, cached_state);
1282 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283 if (last_end == (u64)-1)
1284 goto out;
1285 start = last_end + 1;
1286 if (start < end && state && state->start == start &&
1287 !need_resched())
1288 goto hit_next;
1289 goto search_again;
1290 }
1291
1292 /*
1293 * | ---- desired range ---- |
1294 * | state |
1295 * or
1296 * | ------------- state -------------- |
1297 *
1298 * We need to split the extent we found, and may flip bits on
1299 * second half.
1300 *
1301 * If the extent we found extends past our
1302 * range, we just split and search again. It'll get split
1303 * again the next time though.
1304 *
1305 * If the extent we found is inside our range, we set the
1306 * desired bit on it.
1307 */
1308 if (state->start < start) {
1309 prealloc = alloc_extent_state_atomic(prealloc);
1310 if (!prealloc) {
1311 err = -ENOMEM;
1312 goto out;
1313 }
1314 err = split_state(tree, state, prealloc, start);
1315 if (err)
1316 extent_io_tree_panic(tree, err);
1317 prealloc = NULL;
1318 if (err)
1319 goto out;
1320 if (state->end <= end) {
1321 set_state_bits(tree, state, &bits, NULL);
1322 cache_state(state, cached_state);
1323 state = clear_state_bit(tree, state, &clear_bits, 0,
1324 NULL);
1325 if (last_end == (u64)-1)
1326 goto out;
1327 start = last_end + 1;
1328 if (start < end && state && state->start == start &&
1329 !need_resched())
1330 goto hit_next;
1331 }
1332 goto search_again;
1333 }
1334 /*
1335 * | ---- desired range ---- |
1336 * | state | or | state |
1337 *
1338 * There's a hole, we need to insert something in it and
1339 * ignore the extent we found.
1340 */
1341 if (state->start > start) {
1342 u64 this_end;
1343 if (end < last_start)
1344 this_end = end;
1345 else
1346 this_end = last_start - 1;
1347
1348 prealloc = alloc_extent_state_atomic(prealloc);
1349 if (!prealloc) {
1350 err = -ENOMEM;
1351 goto out;
1352 }
1353
1354 /*
1355 * Avoid to free 'prealloc' if it can be merged with
1356 * the later extent.
1357 */
1358 err = insert_state(tree, prealloc, start, this_end,
1359 NULL, NULL, &bits, NULL);
1360 if (err)
1361 extent_io_tree_panic(tree, err);
1362 cache_state(prealloc, cached_state);
1363 prealloc = NULL;
1364 start = this_end + 1;
1365 goto search_again;
1366 }
1367 /*
1368 * | ---- desired range ---- |
1369 * | state |
1370 * We need to split the extent, and set the bit
1371 * on the first half
1372 */
1373 if (state->start <= end && state->end > end) {
1374 prealloc = alloc_extent_state_atomic(prealloc);
1375 if (!prealloc) {
1376 err = -ENOMEM;
1377 goto out;
1378 }
1379
1380 err = split_state(tree, state, prealloc, end + 1);
1381 if (err)
1382 extent_io_tree_panic(tree, err);
1383
1384 set_state_bits(tree, prealloc, &bits, NULL);
1385 cache_state(prealloc, cached_state);
1386 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387 prealloc = NULL;
1388 goto out;
1389 }
1390
1391search_again:
1392 if (start > end)
1393 goto out;
1394 spin_unlock(&tree->lock);
1395 cond_resched();
1396 first_iteration = false;
1397 goto again;
1398
1399out:
1400 spin_unlock(&tree->lock);
1401 if (prealloc)
1402 free_extent_state(prealloc);
1403
1404 return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409 u32 bits, struct extent_changeset *changeset)
1410{
1411 /*
1412 * We don't support EXTENT_LOCKED yet, as current changeset will
1413 * record any bits changed, so for EXTENT_LOCKED case, it will
1414 * either fail with -EEXIST or changeset will record the whole
1415 * range.
1416 */
1417 BUG_ON(bits & EXTENT_LOCKED);
1418
1419 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420 changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424 u32 bits)
1425{
1426 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427 GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431 u32 bits, int wake, int delete,
1432 struct extent_state **cached)
1433{
1434 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435 cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439 u32 bits, struct extent_changeset *changeset)
1440{
1441 /*
1442 * Don't support EXTENT_LOCKED case, same reason as
1443 * set_record_extent_bits().
1444 */
1445 BUG_ON(bits & EXTENT_LOCKED);
1446
1447 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456 struct extent_state **cached_state)
1457{
1458 int err;
1459 u64 failed_start;
1460
1461 while (1) {
1462 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463 EXTENT_LOCKED, &failed_start,
1464 cached_state, GFP_NOFS, NULL);
1465 if (err == -EEXIST) {
1466 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467 start = failed_start;
1468 } else
1469 break;
1470 WARN_ON(start > end);
1471 }
1472 return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477 int err;
1478 u64 failed_start;
1479
1480 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481 &failed_start, NULL, GFP_NOFS, NULL);
1482 if (err == -EEXIST) {
1483 if (failed_start > start)
1484 clear_extent_bit(tree, start, failed_start - 1,
1485 EXTENT_LOCKED, 1, 0, NULL);
1486 return 0;
1487 }
1488 return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493 unsigned long index = start >> PAGE_SHIFT;
1494 unsigned long end_index = end >> PAGE_SHIFT;
1495 struct page *page;
1496
1497 while (index <= end_index) {
1498 page = find_get_page(inode->i_mapping, index);
1499 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500 clear_page_dirty_for_io(page);
1501 put_page(page);
1502 index++;
1503 }
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508 unsigned long index = start >> PAGE_SHIFT;
1509 unsigned long end_index = end >> PAGE_SHIFT;
1510 struct page *page;
1511
1512 while (index <= end_index) {
1513 page = find_get_page(inode->i_mapping, index);
1514 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515 __set_page_dirty_nobuffers(page);
1516 account_page_redirty(page);
1517 put_page(page);
1518 index++;
1519 }
1520}
1521
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it. tree->lock must be held. NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1528{
1529 struct rb_node *node;
1530 struct extent_state *state;
1531
1532 /*
1533 * this search will find all the extents that end after
1534 * our range starts.
1535 */
1536 node = tree_search(tree, start);
1537 if (!node)
1538 goto out;
1539
1540 while (1) {
1541 state = rb_entry(node, struct extent_state, rb_node);
1542 if (state->end >= start && (state->state & bits))
1543 return state;
1544
1545 node = rb_next(node);
1546 if (!node)
1547 break;
1548 }
1549out:
1550 return NULL;
1551}
1552
1553/*
1554 * Find the first offset in the io tree with one or more @bits set.
1555 *
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562 u64 *start_ret, u64 *end_ret, u32 bits,
1563 struct extent_state **cached_state)
1564{
1565 struct extent_state *state;
1566 int ret = 1;
1567
1568 spin_lock(&tree->lock);
1569 if (cached_state && *cached_state) {
1570 state = *cached_state;
1571 if (state->end == start - 1 && extent_state_in_tree(state)) {
1572 while ((state = next_state(state)) != NULL) {
1573 if (state->state & bits)
1574 goto got_it;
1575 }
1576 free_extent_state(*cached_state);
1577 *cached_state = NULL;
1578 goto out;
1579 }
1580 free_extent_state(*cached_state);
1581 *cached_state = NULL;
1582 }
1583
1584 state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586 if (state) {
1587 cache_state_if_flags(state, cached_state, 0);
1588 *start_ret = state->start;
1589 *end_ret = state->end;
1590 ret = 0;
1591 }
1592out:
1593 spin_unlock(&tree->lock);
1594 return ret;
1595}
1596
1597/**
1598 * Find a contiguous area of bits
1599 *
1600 * @tree: io tree to check
1601 * @start: offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret: the final contiguous range of the bits that were set
1604 * @bits: bits to look for
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again. During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits. We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area. The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614 u64 *start_ret, u64 *end_ret, u32 bits)
1615{
1616 struct extent_state *state;
1617 int ret = 1;
1618
1619 spin_lock(&tree->lock);
1620 state = find_first_extent_bit_state(tree, start, bits);
1621 if (state) {
1622 *start_ret = state->start;
1623 *end_ret = state->end;
1624 while ((state = next_state(state)) != NULL) {
1625 if (state->start > (*end_ret + 1))
1626 break;
1627 *end_ret = state->end;
1628 }
1629 ret = 0;
1630 }
1631 spin_unlock(&tree->lock);
1632 return ret;
1633}
1634
1635/**
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
1638 *
1639 * @tree: the tree to search
1640 * @start: offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret: records the end of the range (inclusive)
1643 * @bits: the set of bits which must be unset
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651 u64 *start_ret, u64 *end_ret, u32 bits)
1652{
1653 struct extent_state *state;
1654 struct rb_node *node, *prev = NULL, *next;
1655
1656 spin_lock(&tree->lock);
1657
1658 /* Find first extent with bits cleared */
1659 while (1) {
1660 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661 if (!node && !next && !prev) {
1662 /*
1663 * Tree is completely empty, send full range and let
1664 * caller deal with it
1665 */
1666 *start_ret = 0;
1667 *end_ret = -1;
1668 goto out;
1669 } else if (!node && !next) {
1670 /*
1671 * We are past the last allocated chunk, set start at
1672 * the end of the last extent.
1673 */
1674 state = rb_entry(prev, struct extent_state, rb_node);
1675 *start_ret = state->end + 1;
1676 *end_ret = -1;
1677 goto out;
1678 } else if (!node) {
1679 node = next;
1680 }
1681 /*
1682 * At this point 'node' either contains 'start' or start is
1683 * before 'node'
1684 */
1685 state = rb_entry(node, struct extent_state, rb_node);
1686
1687 if (in_range(start, state->start, state->end - state->start + 1)) {
1688 if (state->state & bits) {
1689 /*
1690 * |--range with bits sets--|
1691 * |
1692 * start
1693 */
1694 start = state->end + 1;
1695 } else {
1696 /*
1697 * 'start' falls within a range that doesn't
1698 * have the bits set, so take its start as
1699 * the beginning of the desired range
1700 *
1701 * |--range with bits cleared----|
1702 * |
1703 * start
1704 */
1705 *start_ret = state->start;
1706 break;
1707 }
1708 } else {
1709 /*
1710 * |---prev range---|---hole/unset---|---node range---|
1711 * |
1712 * start
1713 *
1714 * or
1715 *
1716 * |---hole/unset--||--first node--|
1717 * 0 |
1718 * start
1719 */
1720 if (prev) {
1721 state = rb_entry(prev, struct extent_state,
1722 rb_node);
1723 *start_ret = state->end + 1;
1724 } else {
1725 *start_ret = 0;
1726 }
1727 break;
1728 }
1729 }
1730
1731 /*
1732 * Find the longest stretch from start until an entry which has the
1733 * bits set
1734 */
1735 while (1) {
1736 state = rb_entry(node, struct extent_state, rb_node);
1737 if (state->end >= start && !(state->state & bits)) {
1738 *end_ret = state->end;
1739 } else {
1740 *end_ret = state->start - 1;
1741 break;
1742 }
1743
1744 node = rb_next(node);
1745 if (!node)
1746 break;
1747 }
1748out:
1749 spin_unlock(&tree->lock);
1750}
1751
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'. start and end are used to return the range,
1755 *
1756 * true is returned if we find something, false if nothing was in the tree
1757 */
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759 u64 *end, u64 max_bytes,
1760 struct extent_state **cached_state)
1761{
1762 struct rb_node *node;
1763 struct extent_state *state;
1764 u64 cur_start = *start;
1765 bool found = false;
1766 u64 total_bytes = 0;
1767
1768 spin_lock(&tree->lock);
1769
1770 /*
1771 * this search will find all the extents that end after
1772 * our range starts.
1773 */
1774 node = tree_search(tree, cur_start);
1775 if (!node) {
1776 *end = (u64)-1;
1777 goto out;
1778 }
1779
1780 while (1) {
1781 state = rb_entry(node, struct extent_state, rb_node);
1782 if (found && (state->start != cur_start ||
1783 (state->state & EXTENT_BOUNDARY))) {
1784 goto out;
1785 }
1786 if (!(state->state & EXTENT_DELALLOC)) {
1787 if (!found)
1788 *end = state->end;
1789 goto out;
1790 }
1791 if (!found) {
1792 *start = state->start;
1793 *cached_state = state;
1794 refcount_inc(&state->refs);
1795 }
1796 found = true;
1797 *end = state->end;
1798 cur_start = state->end + 1;
1799 node = rb_next(node);
1800 total_bytes += state->end - state->start + 1;
1801 if (total_bytes >= max_bytes)
1802 break;
1803 if (!node)
1804 break;
1805 }
1806out:
1807 spin_unlock(&tree->lock);
1808 return found;
1809}
1810
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820 struct address_space *mapping,
1821 struct page *page, struct page *locked_page,
1822 unsigned long page_ops, u64 start, u64 end)
1823{
1824 u32 len;
1825
1826 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827 len = end + 1 - start;
1828
1829 if (page_ops & PAGE_SET_ORDERED)
1830 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831 if (page_ops & PAGE_SET_ERROR)
1832 btrfs_page_clamp_set_error(fs_info, page, start, len);
1833 if (page_ops & PAGE_START_WRITEBACK) {
1834 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836 }
1837 if (page_ops & PAGE_END_WRITEBACK)
1838 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839
1840 if (page == locked_page)
1841 return 1;
1842
1843 if (page_ops & PAGE_LOCK) {
1844 int ret;
1845
1846 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847 if (ret)
1848 return ret;
1849 if (!PageDirty(page) || page->mapping != mapping) {
1850 btrfs_page_end_writer_lock(fs_info, page, start, len);
1851 return -EAGAIN;
1852 }
1853 }
1854 if (page_ops & PAGE_UNLOCK)
1855 btrfs_page_end_writer_lock(fs_info, page, start, len);
1856 return 0;
1857}
1858
1859static int __process_pages_contig(struct address_space *mapping,
1860 struct page *locked_page,
1861 u64 start, u64 end, unsigned long page_ops,
1862 u64 *processed_end)
1863{
1864 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865 pgoff_t start_index = start >> PAGE_SHIFT;
1866 pgoff_t end_index = end >> PAGE_SHIFT;
1867 pgoff_t index = start_index;
1868 unsigned long nr_pages = end_index - start_index + 1;
1869 unsigned long pages_processed = 0;
1870 struct page *pages[16];
1871 int err = 0;
1872 int i;
1873
1874 if (page_ops & PAGE_LOCK) {
1875 ASSERT(page_ops == PAGE_LOCK);
1876 ASSERT(processed_end && *processed_end == start);
1877 }
1878
1879 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880 mapping_set_error(mapping, -EIO);
1881
1882 while (nr_pages > 0) {
1883 int found_pages;
1884
1885 found_pages = find_get_pages_contig(mapping, index,
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
1888 if (found_pages == 0) {
1889 /*
1890 * Only if we're going to lock these pages, we can find
1891 * nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
1894 err = -EAGAIN;
1895 goto out;
1896 }
1897
1898 for (i = 0; i < found_pages; i++) {
1899 int process_ret;
1900
1901 process_ret = process_one_page(fs_info, mapping,
1902 pages[i], locked_page, page_ops,
1903 start, end);
1904 if (process_ret < 0) {
1905 for (; i < found_pages; i++)
1906 put_page(pages[i]);
1907 err = -EAGAIN;
1908 goto out;
1909 }
1910 put_page(pages[i]);
1911 pages_processed++;
1912 }
1913 nr_pages -= found_pages;
1914 index += found_pages;
1915 cond_resched();
1916 }
1917out:
1918 if (err && processed_end) {
1919 /*
1920 * Update @processed_end. I know this is awful since it has
1921 * two different return value patterns (inclusive vs exclusive).
1922 *
1923 * But the exclusive pattern is necessary if @start is 0, or we
1924 * underflow and check against processed_end won't work as
1925 * expected.
1926 */
1927 if (pages_processed)
1928 *processed_end = min(end,
1929 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930 else
1931 *processed_end = start;
1932 }
1933 return err;
1934}
1935
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937 struct page *locked_page,
1938 u64 start, u64 end)
1939{
1940 unsigned long index = start >> PAGE_SHIFT;
1941 unsigned long end_index = end >> PAGE_SHIFT;
1942
1943 ASSERT(locked_page);
1944 if (index == locked_page->index && end_index == index)
1945 return;
1946
1947 __process_pages_contig(inode->i_mapping, locked_page, start, end,
1948 PAGE_UNLOCK, NULL);
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952 struct page *locked_page,
1953 u64 delalloc_start,
1954 u64 delalloc_end)
1955{
1956 unsigned long index = delalloc_start >> PAGE_SHIFT;
1957 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958 u64 processed_end = delalloc_start;
1959 int ret;
1960
1961 ASSERT(locked_page);
1962 if (index == locked_page->index && index == end_index)
1963 return 0;
1964
1965 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966 delalloc_end, PAGE_LOCK, &processed_end);
1967 if (ret == -EAGAIN && processed_end > delalloc_start)
1968 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1969 processed_end);
1970 return ret;
1971}
1972
1973/*
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes. @Start and @end are used to return the range,
1976 *
1977 * Return: true if we find something
1978 * false if nothing was in the tree
1979 */
1980EXPORT_FOR_TESTS
1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982 struct page *locked_page, u64 *start,
1983 u64 *end)
1984{
1985 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1987 u64 delalloc_start;
1988 u64 delalloc_end;
1989 bool found;
1990 struct extent_state *cached_state = NULL;
1991 int ret;
1992 int loops = 0;
1993
1994again:
1995 /* step one, find a bunch of delalloc bytes starting at start */
1996 delalloc_start = *start;
1997 delalloc_end = 0;
1998 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999 max_bytes, &cached_state);
2000 if (!found || delalloc_end <= *start) {
2001 *start = delalloc_start;
2002 *end = delalloc_end;
2003 free_extent_state(cached_state);
2004 return false;
2005 }
2006
2007 /*
2008 * start comes from the offset of locked_page. We have to lock
2009 * pages in order, so we can't process delalloc bytes before
2010 * locked_page
2011 */
2012 if (delalloc_start < *start)
2013 delalloc_start = *start;
2014
2015 /*
2016 * make sure to limit the number of pages we try to lock down
2017 */
2018 if (delalloc_end + 1 - delalloc_start > max_bytes)
2019 delalloc_end = delalloc_start + max_bytes - 1;
2020
2021 /* step two, lock all the pages after the page that has start */
2022 ret = lock_delalloc_pages(inode, locked_page,
2023 delalloc_start, delalloc_end);
2024 ASSERT(!ret || ret == -EAGAIN);
2025 if (ret == -EAGAIN) {
2026 /* some of the pages are gone, lets avoid looping by
2027 * shortening the size of the delalloc range we're searching
2028 */
2029 free_extent_state(cached_state);
2030 cached_state = NULL;
2031 if (!loops) {
2032 max_bytes = PAGE_SIZE;
2033 loops = 1;
2034 goto again;
2035 } else {
2036 found = false;
2037 goto out_failed;
2038 }
2039 }
2040
2041 /* step three, lock the state bits for the whole range */
2042 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043
2044 /* then test to make sure it is all still delalloc */
2045 ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046 EXTENT_DELALLOC, 1, cached_state);
2047 if (!ret) {
2048 unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049 &cached_state);
2050 __unlock_for_delalloc(inode, locked_page,
2051 delalloc_start, delalloc_end);
2052 cond_resched();
2053 goto again;
2054 }
2055 free_extent_state(cached_state);
2056 *start = delalloc_start;
2057 *end = delalloc_end;
2058out_failed:
2059 return found;
2060}
2061
2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063 struct page *locked_page,
2064 u32 clear_bits, unsigned long page_ops)
2065{
2066 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067
2068 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069 start, end, page_ops, NULL);
2070}
2071
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached. The total number found is returned.
2076 */
2077u64 count_range_bits(struct extent_io_tree *tree,
2078 u64 *start, u64 search_end, u64 max_bytes,
2079 u32 bits, int contig)
2080{
2081 struct rb_node *node;
2082 struct extent_state *state;
2083 u64 cur_start = *start;
2084 u64 total_bytes = 0;
2085 u64 last = 0;
2086 int found = 0;
2087
2088 if (WARN_ON(search_end <= cur_start))
2089 return 0;
2090
2091 spin_lock(&tree->lock);
2092 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093 total_bytes = tree->dirty_bytes;
2094 goto out;
2095 }
2096 /*
2097 * this search will find all the extents that end after
2098 * our range starts.
2099 */
2100 node = tree_search(tree, cur_start);
2101 if (!node)
2102 goto out;
2103
2104 while (1) {
2105 state = rb_entry(node, struct extent_state, rb_node);
2106 if (state->start > search_end)
2107 break;
2108 if (contig && found && state->start > last + 1)
2109 break;
2110 if (state->end >= cur_start && (state->state & bits) == bits) {
2111 total_bytes += min(search_end, state->end) + 1 -
2112 max(cur_start, state->start);
2113 if (total_bytes >= max_bytes)
2114 break;
2115 if (!found) {
2116 *start = max(cur_start, state->start);
2117 found = 1;
2118 }
2119 last = state->end;
2120 } else if (contig && found) {
2121 break;
2122 }
2123 node = rb_next(node);
2124 if (!node)
2125 break;
2126 }
2127out:
2128 spin_unlock(&tree->lock);
2129 return total_bytes;
2130}
2131
2132/*
2133 * set the private field for a given byte offset in the tree. If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137 struct io_failure_record *failrec)
2138{
2139 struct rb_node *node;
2140 struct extent_state *state;
2141 int ret = 0;
2142
2143 spin_lock(&tree->lock);
2144 /*
2145 * this search will find all the extents that end after
2146 * our range starts.
2147 */
2148 node = tree_search(tree, start);
2149 if (!node) {
2150 ret = -ENOENT;
2151 goto out;
2152 }
2153 state = rb_entry(node, struct extent_state, rb_node);
2154 if (state->start != start) {
2155 ret = -ENOENT;
2156 goto out;
2157 }
2158 state->failrec = failrec;
2159out:
2160 spin_unlock(&tree->lock);
2161 return ret;
2162}
2163
2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165{
2166 struct rb_node *node;
2167 struct extent_state *state;
2168 struct io_failure_record *failrec;
2169
2170 spin_lock(&tree->lock);
2171 /*
2172 * this search will find all the extents that end after
2173 * our range starts.
2174 */
2175 node = tree_search(tree, start);
2176 if (!node) {
2177 failrec = ERR_PTR(-ENOENT);
2178 goto out;
2179 }
2180 state = rb_entry(node, struct extent_state, rb_node);
2181 if (state->start != start) {
2182 failrec = ERR_PTR(-ENOENT);
2183 goto out;
2184 }
2185
2186 failrec = state->failrec;
2187out:
2188 spin_unlock(&tree->lock);
2189 return failrec;
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 * has the bits set. Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199 u32 bits, int filled, struct extent_state *cached)
2200{
2201 struct extent_state *state = NULL;
2202 struct rb_node *node;
2203 int bitset = 0;
2204
2205 spin_lock(&tree->lock);
2206 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207 cached->end > start)
2208 node = &cached->rb_node;
2209 else
2210 node = tree_search(tree, start);
2211 while (node && start <= end) {
2212 state = rb_entry(node, struct extent_state, rb_node);
2213
2214 if (filled && state->start > start) {
2215 bitset = 0;
2216 break;
2217 }
2218
2219 if (state->start > end)
2220 break;
2221
2222 if (state->state & bits) {
2223 bitset = 1;
2224 if (!filled)
2225 break;
2226 } else if (filled) {
2227 bitset = 0;
2228 break;
2229 }
2230
2231 if (state->end == (u64)-1)
2232 break;
2233
2234 start = state->end + 1;
2235 if (start > end)
2236 break;
2237 node = rb_next(node);
2238 if (!node) {
2239 if (filled)
2240 bitset = 0;
2241 break;
2242 }
2243 }
2244 spin_unlock(&tree->lock);
2245 return bitset;
2246}
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253{
2254 u64 start = page_offset(page);
2255 u64 end = start + PAGE_SIZE - 1;
2256 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257 SetPageUptodate(page);
2258}
2259
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261 struct extent_io_tree *io_tree,
2262 struct io_failure_record *rec)
2263{
2264 int ret;
2265 int err = 0;
2266
2267 set_state_failrec(failure_tree, rec->start, NULL);
2268 ret = clear_extent_bits(failure_tree, rec->start,
2269 rec->start + rec->len - 1,
2270 EXTENT_LOCKED | EXTENT_DIRTY);
2271 if (ret)
2272 err = ret;
2273
2274 ret = clear_extent_bits(io_tree, rec->start,
2275 rec->start + rec->len - 1,
2276 EXTENT_DAMAGED);
2277 if (ret && !err)
2278 err = ret;
2279
2280 kfree(rec);
2281 return err;
2282}
2283
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
2289 * to avoid any synchronization issues, wait for the data after writing, which
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295 u64 length, u64 logical, struct page *page,
2296 unsigned int pg_offset, int mirror_num)
2297{
2298 struct bio *bio;
2299 struct btrfs_device *dev;
2300 u64 map_length = 0;
2301 u64 sector;
2302 struct btrfs_bio *bbio = NULL;
2303 int ret;
2304
2305 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306 BUG_ON(!mirror_num);
2307
2308 if (btrfs_is_zoned(fs_info))
2309 return btrfs_repair_one_zone(fs_info, logical);
2310
2311 bio = btrfs_io_bio_alloc(1);
2312 bio->bi_iter.bi_size = 0;
2313 map_length = length;
2314
2315 /*
2316 * Avoid races with device replace and make sure our bbio has devices
2317 * associated to its stripes that don't go away while we are doing the
2318 * read repair operation.
2319 */
2320 btrfs_bio_counter_inc_blocked(fs_info);
2321 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322 /*
2323 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324 * to update all raid stripes, but here we just want to correct
2325 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326 * stripe's dev and sector.
2327 */
2328 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329 &map_length, &bbio, 0);
2330 if (ret) {
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return -EIO;
2334 }
2335 ASSERT(bbio->mirror_num == 1);
2336 } else {
2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338 &map_length, &bbio, mirror_num);
2339 if (ret) {
2340 btrfs_bio_counter_dec(fs_info);
2341 bio_put(bio);
2342 return -EIO;
2343 }
2344 BUG_ON(mirror_num != bbio->mirror_num);
2345 }
2346
2347 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348 bio->bi_iter.bi_sector = sector;
2349 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350 btrfs_put_bbio(bbio);
2351 if (!dev || !dev->bdev ||
2352 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353 btrfs_bio_counter_dec(fs_info);
2354 bio_put(bio);
2355 return -EIO;
2356 }
2357 bio_set_dev(bio, dev->bdev);
2358 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359 bio_add_page(bio, page, length, pg_offset);
2360
2361 if (btrfsic_submit_bio_wait(bio)) {
2362 /* try to remap that extent elsewhere? */
2363 btrfs_bio_counter_dec(fs_info);
2364 bio_put(bio);
2365 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366 return -EIO;
2367 }
2368
2369 btrfs_info_rl_in_rcu(fs_info,
2370 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371 ino, start,
2372 rcu_str_deref(dev->name), sector);
2373 btrfs_bio_counter_dec(fs_info);
2374 bio_put(bio);
2375 return 0;
2376}
2377
2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379{
2380 struct btrfs_fs_info *fs_info = eb->fs_info;
2381 u64 start = eb->start;
2382 int i, num_pages = num_extent_pages(eb);
2383 int ret = 0;
2384
2385 if (sb_rdonly(fs_info->sb))
2386 return -EROFS;
2387
2388 for (i = 0; i < num_pages; i++) {
2389 struct page *p = eb->pages[i];
2390
2391 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392 start - page_offset(p), mirror_num);
2393 if (ret)
2394 break;
2395 start += PAGE_SIZE;
2396 }
2397
2398 return ret;
2399}
2400
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406 struct extent_io_tree *failure_tree,
2407 struct extent_io_tree *io_tree, u64 start,
2408 struct page *page, u64 ino, unsigned int pg_offset)
2409{
2410 u64 private;
2411 struct io_failure_record *failrec;
2412 struct extent_state *state;
2413 int num_copies;
2414 int ret;
2415
2416 private = 0;
2417 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418 EXTENT_DIRTY, 0);
2419 if (!ret)
2420 return 0;
2421
2422 failrec = get_state_failrec(failure_tree, start);
2423 if (IS_ERR(failrec))
2424 return 0;
2425
2426 BUG_ON(!failrec->this_mirror);
2427
2428 if (sb_rdonly(fs_info->sb))
2429 goto out;
2430
2431 spin_lock(&io_tree->lock);
2432 state = find_first_extent_bit_state(io_tree,
2433 failrec->start,
2434 EXTENT_LOCKED);
2435 spin_unlock(&io_tree->lock);
2436
2437 if (state && state->start <= failrec->start &&
2438 state->end >= failrec->start + failrec->len - 1) {
2439 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440 failrec->len);
2441 if (num_copies > 1) {
2442 repair_io_failure(fs_info, ino, start, failrec->len,
2443 failrec->logical, page, pg_offset,
2444 failrec->failed_mirror);
2445 }
2446 }
2447
2448out:
2449 free_io_failure(failure_tree, io_tree, failrec);
2450
2451 return 0;
2452}
2453
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461{
2462 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463 struct io_failure_record *failrec;
2464 struct extent_state *state, *next;
2465
2466 if (RB_EMPTY_ROOT(&failure_tree->state))
2467 return;
2468
2469 spin_lock(&failure_tree->lock);
2470 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471 while (state) {
2472 if (state->start > end)
2473 break;
2474
2475 ASSERT(state->end <= end);
2476
2477 next = next_state(state);
2478
2479 failrec = state->failrec;
2480 free_extent_state(state);
2481 kfree(failrec);
2482
2483 state = next;
2484 }
2485 spin_unlock(&failure_tree->lock);
2486}
2487
2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489 u64 start)
2490{
2491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492 struct io_failure_record *failrec;
2493 struct extent_map *em;
2494 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497 const u32 sectorsize = fs_info->sectorsize;
2498 int ret;
2499 u64 logical;
2500
2501 failrec = get_state_failrec(failure_tree, start);
2502 if (!IS_ERR(failrec)) {
2503 btrfs_debug(fs_info,
2504 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505 failrec->logical, failrec->start, failrec->len);
2506 /*
2507 * when data can be on disk more than twice, add to failrec here
2508 * (e.g. with a list for failed_mirror) to make
2509 * clean_io_failure() clean all those errors at once.
2510 */
2511
2512 return failrec;
2513 }
2514
2515 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516 if (!failrec)
2517 return ERR_PTR(-ENOMEM);
2518
2519 failrec->start = start;
2520 failrec->len = sectorsize;
2521 failrec->this_mirror = 0;
2522 failrec->bio_flags = 0;
2523
2524 read_lock(&em_tree->lock);
2525 em = lookup_extent_mapping(em_tree, start, failrec->len);
2526 if (!em) {
2527 read_unlock(&em_tree->lock);
2528 kfree(failrec);
2529 return ERR_PTR(-EIO);
2530 }
2531
2532 if (em->start > start || em->start + em->len <= start) {
2533 free_extent_map(em);
2534 em = NULL;
2535 }
2536 read_unlock(&em_tree->lock);
2537 if (!em) {
2538 kfree(failrec);
2539 return ERR_PTR(-EIO);
2540 }
2541
2542 logical = start - em->start;
2543 logical = em->block_start + logical;
2544 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545 logical = em->block_start;
2546 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2548 }
2549
2550 btrfs_debug(fs_info,
2551 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552 logical, start, failrec->len);
2553
2554 failrec->logical = logical;
2555 free_extent_map(em);
2556
2557 /* Set the bits in the private failure tree */
2558 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559 EXTENT_LOCKED | EXTENT_DIRTY);
2560 if (ret >= 0) {
2561 ret = set_state_failrec(failure_tree, start, failrec);
2562 /* Set the bits in the inode's tree */
2563 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564 EXTENT_DAMAGED);
2565 } else if (ret < 0) {
2566 kfree(failrec);
2567 return ERR_PTR(ret);
2568 }
2569
2570 return failrec;
2571}
2572
2573static bool btrfs_check_repairable(struct inode *inode,
2574 struct io_failure_record *failrec,
2575 int failed_mirror)
2576{
2577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578 int num_copies;
2579
2580 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581 if (num_copies == 1) {
2582 /*
2583 * we only have a single copy of the data, so don't bother with
2584 * all the retry and error correction code that follows. no
2585 * matter what the error is, it is very likely to persist.
2586 */
2587 btrfs_debug(fs_info,
2588 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589 num_copies, failrec->this_mirror, failed_mirror);
2590 return false;
2591 }
2592
2593 /* The failure record should only contain one sector */
2594 ASSERT(failrec->len == fs_info->sectorsize);
2595
2596 /*
2597 * There are two premises:
2598 * a) deliver good data to the caller
2599 * b) correct the bad sectors on disk
2600 *
2601 * Since we're only doing repair for one sector, we only need to get
2602 * a good copy of the failed sector and if we succeed, we have setup
2603 * everything for repair_io_failure to do the rest for us.
2604 */
2605 failrec->failed_mirror = failed_mirror;
2606 failrec->this_mirror++;
2607 if (failrec->this_mirror == failed_mirror)
2608 failrec->this_mirror++;
2609
2610 if (failrec->this_mirror > num_copies) {
2611 btrfs_debug(fs_info,
2612 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613 num_copies, failrec->this_mirror, failed_mirror);
2614 return false;
2615 }
2616
2617 return true;
2618}
2619
2620int btrfs_repair_one_sector(struct inode *inode,
2621 struct bio *failed_bio, u32 bio_offset,
2622 struct page *page, unsigned int pgoff,
2623 u64 start, int failed_mirror,
2624 submit_bio_hook_t *submit_bio_hook)
2625{
2626 struct io_failure_record *failrec;
2627 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631 const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632 struct bio *repair_bio;
2633 struct btrfs_io_bio *repair_io_bio;
2634 blk_status_t status;
2635
2636 btrfs_debug(fs_info,
2637 "repair read error: read error at %llu", start);
2638
2639 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640
2641 failrec = btrfs_get_io_failure_record(inode, start);
2642 if (IS_ERR(failrec))
2643 return PTR_ERR(failrec);
2644
2645
2646 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647 free_io_failure(failure_tree, tree, failrec);
2648 return -EIO;
2649 }
2650
2651 repair_bio = btrfs_io_bio_alloc(1);
2652 repair_io_bio = btrfs_io_bio(repair_bio);
2653 repair_bio->bi_opf = REQ_OP_READ;
2654 repair_bio->bi_end_io = failed_bio->bi_end_io;
2655 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656 repair_bio->bi_private = failed_bio->bi_private;
2657
2658 if (failed_io_bio->csum) {
2659 const u32 csum_size = fs_info->csum_size;
2660
2661 repair_io_bio->csum = repair_io_bio->csum_inline;
2662 memcpy(repair_io_bio->csum,
2663 failed_io_bio->csum + csum_size * icsum, csum_size);
2664 }
2665
2666 bio_add_page(repair_bio, page, failrec->len, pgoff);
2667 repair_io_bio->logical = failrec->start;
2668 repair_io_bio->iter = repair_bio->bi_iter;
2669
2670 btrfs_debug(btrfs_sb(inode->i_sb),
2671 "repair read error: submitting new read to mirror %d",
2672 failrec->this_mirror);
2673
2674 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675 failrec->bio_flags);
2676 if (status) {
2677 free_io_failure(failure_tree, tree, failrec);
2678 bio_put(repair_bio);
2679 }
2680 return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686
2687 ASSERT(page_offset(page) <= start &&
2688 start + len <= page_offset(page) + PAGE_SIZE);
2689
2690 if (uptodate) {
2691 btrfs_page_set_uptodate(fs_info, page, start, len);
2692 } else {
2693 btrfs_page_clear_uptodate(fs_info, page, start, len);
2694 btrfs_page_set_error(fs_info, page, start, len);
2695 }
2696
2697 if (fs_info->sectorsize == PAGE_SIZE)
2698 unlock_page(page);
2699 else
2700 btrfs_subpage_end_reader(fs_info, page, start, len);
2701}
2702
2703static blk_status_t submit_read_repair(struct inode *inode,
2704 struct bio *failed_bio, u32 bio_offset,
2705 struct page *page, unsigned int pgoff,
2706 u64 start, u64 end, int failed_mirror,
2707 unsigned int error_bitmap,
2708 submit_bio_hook_t *submit_bio_hook)
2709{
2710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711 const u32 sectorsize = fs_info->sectorsize;
2712 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713 int error = 0;
2714 int i;
2715
2716 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717
2718 /* We're here because we had some read errors or csum mismatch */
2719 ASSERT(error_bitmap);
2720
2721 /*
2722 * We only get called on buffered IO, thus page must be mapped and bio
2723 * must not be cloned.
2724 */
2725 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726
2727 /* Iterate through all the sectors in the range */
2728 for (i = 0; i < nr_bits; i++) {
2729 const unsigned int offset = i * sectorsize;
2730 struct extent_state *cached = NULL;
2731 bool uptodate = false;
2732 int ret;
2733
2734 if (!(error_bitmap & (1U << i))) {
2735 /*
2736 * This sector has no error, just end the page read
2737 * and unlock the range.
2738 */
2739 uptodate = true;
2740 goto next;
2741 }
2742
2743 ret = btrfs_repair_one_sector(inode, failed_bio,
2744 bio_offset + offset,
2745 page, pgoff + offset, start + offset,
2746 failed_mirror, submit_bio_hook);
2747 if (!ret) {
2748 /*
2749 * We have submitted the read repair, the page release
2750 * will be handled by the endio function of the
2751 * submitted repair bio.
2752 * Thus we don't need to do any thing here.
2753 */
2754 continue;
2755 }
2756 /*
2757 * Repair failed, just record the error but still continue.
2758 * Or the remaining sectors will not be properly unlocked.
2759 */
2760 if (!error)
2761 error = ret;
2762next:
2763 end_page_read(page, uptodate, start + offset, sectorsize);
2764 if (uptodate)
2765 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766 start + offset,
2767 start + offset + sectorsize - 1,
2768 &cached, GFP_ATOMIC);
2769 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770 start + offset,
2771 start + offset + sectorsize - 1,
2772 &cached);
2773 }
2774 return errno_to_blk_status(error);
2775}
2776
2777/* lots and lots of room for performance fixes in the end_bio funcs */
2778
2779void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780{
2781 struct btrfs_inode *inode;
2782 int uptodate = (err == 0);
2783 int ret = 0;
2784
2785 ASSERT(page && page->mapping);
2786 inode = BTRFS_I(page->mapping->host);
2787 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788
2789 if (!uptodate) {
2790 ClearPageUptodate(page);
2791 SetPageError(page);
2792 ret = err < 0 ? err : -EIO;
2793 mapping_set_error(page->mapping, ret);
2794 }
2795}
2796
2797/*
2798 * after a writepage IO is done, we need to:
2799 * clear the uptodate bits on error
2800 * clear the writeback bits in the extent tree for this IO
2801 * end_page_writeback if the page has no more pending IO
2802 *
2803 * Scheduling is not allowed, so the extent state tree is expected
2804 * to have one and only one object corresponding to this IO.
2805 */
2806static void end_bio_extent_writepage(struct bio *bio)
2807{
2808 int error = blk_status_to_errno(bio->bi_status);
2809 struct bio_vec *bvec;
2810 u64 start;
2811 u64 end;
2812 struct bvec_iter_all iter_all;
2813 bool first_bvec = true;
2814
2815 ASSERT(!bio_flagged(bio, BIO_CLONED));
2816 bio_for_each_segment_all(bvec, bio, iter_all) {
2817 struct page *page = bvec->bv_page;
2818 struct inode *inode = page->mapping->host;
2819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 const u32 sectorsize = fs_info->sectorsize;
2821
2822 /* Our read/write should always be sector aligned. */
2823 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824 btrfs_err(fs_info,
2825 "partial page write in btrfs with offset %u and length %u",
2826 bvec->bv_offset, bvec->bv_len);
2827 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828 btrfs_info(fs_info,
2829 "incomplete page write with offset %u and length %u",
2830 bvec->bv_offset, bvec->bv_len);
2831
2832 start = page_offset(page) + bvec->bv_offset;
2833 end = start + bvec->bv_len - 1;
2834
2835 if (first_bvec) {
2836 btrfs_record_physical_zoned(inode, start, bio);
2837 first_bvec = false;
2838 }
2839
2840 end_extent_writepage(page, error, start, end);
2841
2842 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843 }
2844
2845 bio_put(bio);
2846}
2847
2848/*
2849 * Record previously processed extent range
2850 *
2851 * For endio_readpage_release_extent() to handle a full extent range, reducing
2852 * the extent io operations.
2853 */
2854struct processed_extent {
2855 struct btrfs_inode *inode;
2856 /* Start of the range in @inode */
2857 u64 start;
2858 /* End of the range in @inode */
2859 u64 end;
2860 bool uptodate;
2861};
2862
2863/*
2864 * Try to release processed extent range
2865 *
2866 * May not release the extent range right now if the current range is
2867 * contiguous to processed extent.
2868 *
2869 * Will release processed extent when any of @inode, @uptodate, the range is
2870 * no longer contiguous to the processed range.
2871 *
2872 * Passing @inode == NULL will force processed extent to be released.
2873 */
2874static void endio_readpage_release_extent(struct processed_extent *processed,
2875 struct btrfs_inode *inode, u64 start, u64 end,
2876 bool uptodate)
2877{
2878 struct extent_state *cached = NULL;
2879 struct extent_io_tree *tree;
2880
2881 /* The first extent, initialize @processed */
2882 if (!processed->inode)
2883 goto update;
2884
2885 /*
2886 * Contiguous to processed extent, just uptodate the end.
2887 *
2888 * Several things to notice:
2889 *
2890 * - bio can be merged as long as on-disk bytenr is contiguous
2891 * This means we can have page belonging to other inodes, thus need to
2892 * check if the inode still matches.
2893 * - bvec can contain range beyond current page for multi-page bvec
2894 * Thus we need to do processed->end + 1 >= start check
2895 */
2896 if (processed->inode == inode && processed->uptodate == uptodate &&
2897 processed->end + 1 >= start && end >= processed->end) {
2898 processed->end = end;
2899 return;
2900 }
2901
2902 tree = &processed->inode->io_tree;
2903 /*
2904 * Now we don't have range contiguous to the processed range, release
2905 * the processed range now.
2906 */
2907 if (processed->uptodate && tree->track_uptodate)
2908 set_extent_uptodate(tree, processed->start, processed->end,
2909 &cached, GFP_ATOMIC);
2910 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911 &cached);
2912
2913update:
2914 /* Update processed to current range */
2915 processed->inode = inode;
2916 processed->start = start;
2917 processed->end = end;
2918 processed->uptodate = uptodate;
2919}
2920
2921static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922{
2923 ASSERT(PageLocked(page));
2924 if (fs_info->sectorsize == PAGE_SIZE)
2925 return;
2926
2927 ASSERT(PagePrivate(page));
2928 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929}
2930
2931/*
2932 * Find extent buffer for a givne bytenr.
2933 *
2934 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935 * in endio context.
2936 */
2937static struct extent_buffer *find_extent_buffer_readpage(
2938 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939{
2940 struct extent_buffer *eb;
2941
2942 /*
2943 * For regular sectorsize, we can use page->private to grab extent
2944 * buffer
2945 */
2946 if (fs_info->sectorsize == PAGE_SIZE) {
2947 ASSERT(PagePrivate(page) && page->private);
2948 return (struct extent_buffer *)page->private;
2949 }
2950
2951 /* For subpage case, we need to lookup buffer radix tree */
2952 rcu_read_lock();
2953 eb = radix_tree_lookup(&fs_info->buffer_radix,
2954 bytenr >> fs_info->sectorsize_bits);
2955 rcu_read_unlock();
2956 ASSERT(eb);
2957 return eb;
2958}
2959
2960/*
2961 * after a readpage IO is done, we need to:
2962 * clear the uptodate bits on error
2963 * set the uptodate bits if things worked
2964 * set the page up to date if all extents in the tree are uptodate
2965 * clear the lock bit in the extent tree
2966 * unlock the page if there are no other extents locked for it
2967 *
2968 * Scheduling is not allowed, so the extent state tree is expected
2969 * to have one and only one object corresponding to this IO.
2970 */
2971static void end_bio_extent_readpage(struct bio *bio)
2972{
2973 struct bio_vec *bvec;
2974 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975 struct extent_io_tree *tree, *failure_tree;
2976 struct processed_extent processed = { 0 };
2977 /*
2978 * The offset to the beginning of a bio, since one bio can never be
2979 * larger than UINT_MAX, u32 here is enough.
2980 */
2981 u32 bio_offset = 0;
2982 int mirror;
2983 int ret;
2984 struct bvec_iter_all iter_all;
2985
2986 ASSERT(!bio_flagged(bio, BIO_CLONED));
2987 bio_for_each_segment_all(bvec, bio, iter_all) {
2988 bool uptodate = !bio->bi_status;
2989 struct page *page = bvec->bv_page;
2990 struct inode *inode = page->mapping->host;
2991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992 const u32 sectorsize = fs_info->sectorsize;
2993 unsigned int error_bitmap = (unsigned int)-1;
2994 u64 start;
2995 u64 end;
2996 u32 len;
2997
2998 btrfs_debug(fs_info,
2999 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000 bio->bi_iter.bi_sector, bio->bi_status,
3001 io_bio->mirror_num);
3002 tree = &BTRFS_I(inode)->io_tree;
3003 failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004
3005 /*
3006 * We always issue full-sector reads, but if some block in a
3007 * page fails to read, blk_update_request() will advance
3008 * bv_offset and adjust bv_len to compensate. Print a warning
3009 * for unaligned offsets, and an error if they don't add up to
3010 * a full sector.
3011 */
3012 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013 btrfs_err(fs_info,
3014 "partial page read in btrfs with offset %u and length %u",
3015 bvec->bv_offset, bvec->bv_len);
3016 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017 sectorsize))
3018 btrfs_info(fs_info,
3019 "incomplete page read with offset %u and length %u",
3020 bvec->bv_offset, bvec->bv_len);
3021
3022 start = page_offset(page) + bvec->bv_offset;
3023 end = start + bvec->bv_len - 1;
3024 len = bvec->bv_len;
3025
3026 mirror = io_bio->mirror_num;
3027 if (likely(uptodate)) {
3028 if (is_data_inode(inode)) {
3029 error_bitmap = btrfs_verify_data_csum(io_bio,
3030 bio_offset, page, start, end);
3031 ret = error_bitmap;
3032 } else {
3033 ret = btrfs_validate_metadata_buffer(io_bio,
3034 page, start, end, mirror);
3035 }
3036 if (ret)
3037 uptodate = false;
3038 else
3039 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040 failure_tree, tree, start,
3041 page,
3042 btrfs_ino(BTRFS_I(inode)), 0);
3043 }
3044
3045 if (likely(uptodate))
3046 goto readpage_ok;
3047
3048 if (is_data_inode(inode)) {
3049 /*
3050 * btrfs_submit_read_repair() will handle all the good
3051 * and bad sectors, we just continue to the next bvec.
3052 */
3053 submit_read_repair(inode, bio, bio_offset, page,
3054 start - page_offset(page), start,
3055 end, mirror, error_bitmap,
3056 btrfs_submit_data_bio);
3057
3058 ASSERT(bio_offset + len > bio_offset);
3059 bio_offset += len;
3060 continue;
3061 } else {
3062 struct extent_buffer *eb;
3063
3064 eb = find_extent_buffer_readpage(fs_info, page, start);
3065 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066 eb->read_mirror = mirror;
3067 atomic_dec(&eb->io_pages);
3068 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069 &eb->bflags))
3070 btree_readahead_hook(eb, -EIO);
3071 }
3072readpage_ok:
3073 if (likely(uptodate)) {
3074 loff_t i_size = i_size_read(inode);
3075 pgoff_t end_index = i_size >> PAGE_SHIFT;
3076
3077 /*
3078 * Zero out the remaining part if this range straddles
3079 * i_size.
3080 *
3081 * Here we should only zero the range inside the bvec,
3082 * not touch anything else.
3083 *
3084 * NOTE: i_size is exclusive while end is inclusive.
3085 */
3086 if (page->index == end_index && i_size <= end) {
3087 u32 zero_start = max(offset_in_page(i_size),
3088 offset_in_page(start));
3089
3090 zero_user_segment(page, zero_start,
3091 offset_in_page(end) + 1);
3092 }
3093 }
3094 ASSERT(bio_offset + len > bio_offset);
3095 bio_offset += len;
3096
3097 /* Update page status and unlock */
3098 end_page_read(page, uptodate, start, len);
3099 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100 start, end, uptodate);
3101 }
3102 /* Release the last extent */
3103 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104 btrfs_io_bio_free_csum(io_bio);
3105 bio_put(bio);
3106}
3107
3108/*
3109 * Initialize the members up to but not including 'bio'. Use after allocating a
3110 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111 * 'bio' because use of __GFP_ZERO is not supported.
3112 */
3113static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114{
3115 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3116}
3117
3118/*
3119 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120 * never fail. We're returning a bio right now but you can call btrfs_io_bio
3121 * for the appropriate container_of magic
3122 */
3123struct bio *btrfs_bio_alloc(u64 first_byte)
3124{
3125 struct bio *bio;
3126
3127 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128 bio->bi_iter.bi_sector = first_byte >> 9;
3129 btrfs_io_bio_init(btrfs_io_bio(bio));
3130 return bio;
3131}
3132
3133struct bio *btrfs_bio_clone(struct bio *bio)
3134{
3135 struct btrfs_io_bio *btrfs_bio;
3136 struct bio *new;
3137
3138 /* Bio allocation backed by a bioset does not fail */
3139 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140 btrfs_bio = btrfs_io_bio(new);
3141 btrfs_io_bio_init(btrfs_bio);
3142 btrfs_bio->iter = bio->bi_iter;
3143 return new;
3144}
3145
3146struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147{
3148 struct bio *bio;
3149
3150 /* Bio allocation backed by a bioset does not fail */
3151 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152 btrfs_io_bio_init(btrfs_io_bio(bio));
3153 return bio;
3154}
3155
3156struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157{
3158 struct bio *bio;
3159 struct btrfs_io_bio *btrfs_bio;
3160
3161 /* this will never fail when it's backed by a bioset */
3162 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163 ASSERT(bio);
3164
3165 btrfs_bio = btrfs_io_bio(bio);
3166 btrfs_io_bio_init(btrfs_bio);
3167
3168 bio_trim(bio, offset >> 9, size >> 9);
3169 btrfs_bio->iter = bio->bi_iter;
3170 return bio;
3171}
3172
3173/**
3174 * Attempt to add a page to bio
3175 *
3176 * @bio: destination bio
3177 * @page: page to add to the bio
3178 * @disk_bytenr: offset of the new bio or to check whether we are adding
3179 * a contiguous page to the previous one
3180 * @pg_offset: starting offset in the page
3181 * @size: portion of page that we want to write
3182 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3183 * @bio_flags: flags of the current bio to see if we can merge them
3184 * @return: true if page was added, false otherwise
3185 *
3186 * Attempt to add a page to bio considering stripe alignment etc.
3187 *
3188 * Return true if successfully page added. Otherwise, return false.
3189 */
3190static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191 struct page *page,
3192 u64 disk_bytenr, unsigned int size,
3193 unsigned int pg_offset,
3194 unsigned long bio_flags)
3195{
3196 struct bio *bio = bio_ctrl->bio;
3197 u32 bio_size = bio->bi_iter.bi_size;
3198 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199 bool contig;
3200 int ret;
3201
3202 ASSERT(bio);
3203 /* The limit should be calculated when bio_ctrl->bio is allocated */
3204 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205 if (bio_ctrl->bio_flags != bio_flags)
3206 return false;
3207
3208 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209 contig = bio->bi_iter.bi_sector == sector;
3210 else
3211 contig = bio_end_sector(bio) == sector;
3212 if (!contig)
3213 return false;
3214
3215 if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216 bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217 return false;
3218
3219 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220 ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221 else
3222 ret = bio_add_page(bio, page, size, pg_offset);
3223
3224 return ret == size;
3225}
3226
3227static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228 struct btrfs_inode *inode)
3229{
3230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231 struct btrfs_io_geometry geom;
3232 struct btrfs_ordered_extent *ordered;
3233 struct extent_map *em;
3234 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235 int ret;
3236
3237 /*
3238 * Pages for compressed extent are never submitted to disk directly,
3239 * thus it has no real boundary, just set them to U32_MAX.
3240 *
3241 * The split happens for real compressed bio, which happens in
3242 * btrfs_submit_compressed_read/write().
3243 */
3244 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245 bio_ctrl->len_to_oe_boundary = U32_MAX;
3246 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247 return 0;
3248 }
3249 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250 if (IS_ERR(em))
3251 return PTR_ERR(em);
3252 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253 logical, &geom);
3254 free_extent_map(em);
3255 if (ret < 0) {
3256 return ret;
3257 }
3258 if (geom.len > U32_MAX)
3259 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260 else
3261 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262
3263 if (!btrfs_is_zoned(fs_info) ||
3264 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265 bio_ctrl->len_to_oe_boundary = U32_MAX;
3266 return 0;
3267 }
3268
3269 ASSERT(fs_info->max_zone_append_size > 0);
3270 /* Ordered extent not yet created, so we're good */
3271 ordered = btrfs_lookup_ordered_extent(inode, logical);
3272 if (!ordered) {
3273 bio_ctrl->len_to_oe_boundary = U32_MAX;
3274 return 0;
3275 }
3276
3277 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279 btrfs_put_ordered_extent(ordered);
3280 return 0;
3281}
3282
3283/*
3284 * @opf: bio REQ_OP_* and REQ_* flags as one value
3285 * @wbc: optional writeback control for io accounting
3286 * @page: page to add to the bio
3287 * @disk_bytenr: logical bytenr where the write will be
3288 * @size: portion of page that we want to write to
3289 * @pg_offset: offset of the new bio or to check whether we are adding
3290 * a contiguous page to the previous one
3291 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3292 * @end_io_func: end_io callback for new bio
3293 * @mirror_num: desired mirror to read/write
3294 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3295 * @bio_flags: flags of the current bio to see if we can merge them
3296 */
3297static int submit_extent_page(unsigned int opf,
3298 struct writeback_control *wbc,
3299 struct btrfs_bio_ctrl *bio_ctrl,
3300 struct page *page, u64 disk_bytenr,
3301 size_t size, unsigned long pg_offset,
3302 bio_end_io_t end_io_func,
3303 int mirror_num,
3304 unsigned long bio_flags,
3305 bool force_bio_submit)
3306{
3307 int ret = 0;
3308 struct bio *bio;
3309 size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311 struct extent_io_tree *tree = &inode->io_tree;
3312 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313
3314 ASSERT(bio_ctrl);
3315
3316 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317 pg_offset + size <= PAGE_SIZE);
3318 if (bio_ctrl->bio) {
3319 bio = bio_ctrl->bio;
3320 if (force_bio_submit ||
3321 !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322 pg_offset, bio_flags)) {
3323 ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324 bio_ctrl->bio = NULL;
3325 if (ret < 0)
3326 return ret;
3327 } else {
3328 if (wbc)
3329 wbc_account_cgroup_owner(wbc, page, io_size);
3330 return 0;
3331 }
3332 }
3333
3334 bio = btrfs_bio_alloc(disk_bytenr);
3335 bio_add_page(bio, page, io_size, pg_offset);
3336 bio->bi_end_io = end_io_func;
3337 bio->bi_private = tree;
3338 bio->bi_write_hint = page->mapping->host->i_write_hint;
3339 bio->bi_opf = opf;
3340 if (wbc) {
3341 struct block_device *bdev;
3342
3343 bdev = fs_info->fs_devices->latest_bdev;
3344 bio_set_dev(bio, bdev);
3345 wbc_init_bio(wbc, bio);
3346 wbc_account_cgroup_owner(wbc, page, io_size);
3347 }
3348 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349 struct btrfs_device *device;
3350
3351 device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352 if (IS_ERR(device))
3353 return PTR_ERR(device);
3354
3355 btrfs_io_bio(bio)->device = device;
3356 }
3357
3358 bio_ctrl->bio = bio;
3359 bio_ctrl->bio_flags = bio_flags;
3360 ret = calc_bio_boundaries(bio_ctrl, inode);
3361
3362 return ret;
3363}
3364
3365static int attach_extent_buffer_page(struct extent_buffer *eb,
3366 struct page *page,
3367 struct btrfs_subpage *prealloc)
3368{
3369 struct btrfs_fs_info *fs_info = eb->fs_info;
3370 int ret = 0;
3371
3372 /*
3373 * If the page is mapped to btree inode, we should hold the private
3374 * lock to prevent race.
3375 * For cloned or dummy extent buffers, their pages are not mapped and
3376 * will not race with any other ebs.
3377 */
3378 if (page->mapping)
3379 lockdep_assert_held(&page->mapping->private_lock);
3380
3381 if (fs_info->sectorsize == PAGE_SIZE) {
3382 if (!PagePrivate(page))
3383 attach_page_private(page, eb);
3384 else
3385 WARN_ON(page->private != (unsigned long)eb);
3386 return 0;
3387 }
3388
3389 /* Already mapped, just free prealloc */
3390 if (PagePrivate(page)) {
3391 btrfs_free_subpage(prealloc);
3392 return 0;
3393 }
3394
3395 if (prealloc)
3396 /* Has preallocated memory for subpage */
3397 attach_page_private(page, prealloc);
3398 else
3399 /* Do new allocation to attach subpage */
3400 ret = btrfs_attach_subpage(fs_info, page,
3401 BTRFS_SUBPAGE_METADATA);
3402 return ret;
3403}
3404
3405int set_page_extent_mapped(struct page *page)
3406{
3407 struct btrfs_fs_info *fs_info;
3408
3409 ASSERT(page->mapping);
3410
3411 if (PagePrivate(page))
3412 return 0;
3413
3414 fs_info = btrfs_sb(page->mapping->host->i_sb);
3415
3416 if (fs_info->sectorsize < PAGE_SIZE)
3417 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418
3419 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420 return 0;
3421}
3422
3423void clear_page_extent_mapped(struct page *page)
3424{
3425 struct btrfs_fs_info *fs_info;
3426
3427 ASSERT(page->mapping);
3428
3429 if (!PagePrivate(page))
3430 return;
3431
3432 fs_info = btrfs_sb(page->mapping->host->i_sb);
3433 if (fs_info->sectorsize < PAGE_SIZE)
3434 return btrfs_detach_subpage(fs_info, page);
3435
3436 detach_page_private(page);
3437}
3438
3439static struct extent_map *
3440__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441 u64 start, u64 len, struct extent_map **em_cached)
3442{
3443 struct extent_map *em;
3444
3445 if (em_cached && *em_cached) {
3446 em = *em_cached;
3447 if (extent_map_in_tree(em) && start >= em->start &&
3448 start < extent_map_end(em)) {
3449 refcount_inc(&em->refs);
3450 return em;
3451 }
3452
3453 free_extent_map(em);
3454 *em_cached = NULL;
3455 }
3456
3457 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458 if (em_cached && !IS_ERR_OR_NULL(em)) {
3459 BUG_ON(*em_cached);
3460 refcount_inc(&em->refs);
3461 *em_cached = em;
3462 }
3463 return em;
3464}
3465/*
3466 * basic readpage implementation. Locked extent state structs are inserted
3467 * into the tree that are removed when the IO is done (by the end_io
3468 * handlers)
3469 * XXX JDM: This needs looking at to ensure proper page locking
3470 * return 0 on success, otherwise return error
3471 */
3472int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473 struct btrfs_bio_ctrl *bio_ctrl,
3474 unsigned int read_flags, u64 *prev_em_start)
3475{
3476 struct inode *inode = page->mapping->host;
3477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478 u64 start = page_offset(page);
3479 const u64 end = start + PAGE_SIZE - 1;
3480 u64 cur = start;
3481 u64 extent_offset;
3482 u64 last_byte = i_size_read(inode);
3483 u64 block_start;
3484 u64 cur_end;
3485 struct extent_map *em;
3486 int ret = 0;
3487 int nr = 0;
3488 size_t pg_offset = 0;
3489 size_t iosize;
3490 size_t blocksize = inode->i_sb->s_blocksize;
3491 unsigned long this_bio_flag = 0;
3492 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493
3494 ret = set_page_extent_mapped(page);
3495 if (ret < 0) {
3496 unlock_extent(tree, start, end);
3497 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498 unlock_page(page);
3499 goto out;
3500 }
3501
3502 if (!PageUptodate(page)) {
3503 if (cleancache_get_page(page) == 0) {
3504 BUG_ON(blocksize != PAGE_SIZE);
3505 unlock_extent(tree, start, end);
3506 unlock_page(page);
3507 goto out;
3508 }
3509 }
3510
3511 if (page->index == last_byte >> PAGE_SHIFT) {
3512 size_t zero_offset = offset_in_page(last_byte);
3513
3514 if (zero_offset) {
3515 iosize = PAGE_SIZE - zero_offset;
3516 memzero_page(page, zero_offset, iosize);
3517 flush_dcache_page(page);
3518 }
3519 }
3520 begin_page_read(fs_info, page);
3521 while (cur <= end) {
3522 bool force_bio_submit = false;
3523 u64 disk_bytenr;
3524
3525 if (cur >= last_byte) {
3526 struct extent_state *cached = NULL;
3527
3528 iosize = PAGE_SIZE - pg_offset;
3529 memzero_page(page, pg_offset, iosize);
3530 flush_dcache_page(page);
3531 set_extent_uptodate(tree, cur, cur + iosize - 1,
3532 &cached, GFP_NOFS);
3533 unlock_extent_cached(tree, cur,
3534 cur + iosize - 1, &cached);
3535 end_page_read(page, true, cur, iosize);
3536 break;
3537 }
3538 em = __get_extent_map(inode, page, pg_offset, cur,
3539 end - cur + 1, em_cached);
3540 if (IS_ERR_OR_NULL(em)) {
3541 unlock_extent(tree, cur, end);
3542 end_page_read(page, false, cur, end + 1 - cur);
3543 break;
3544 }
3545 extent_offset = cur - em->start;
3546 BUG_ON(extent_map_end(em) <= cur);
3547 BUG_ON(end < cur);
3548
3549 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551 extent_set_compress_type(&this_bio_flag,
3552 em->compress_type);
3553 }
3554
3555 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556 cur_end = min(extent_map_end(em) - 1, end);
3557 iosize = ALIGN(iosize, blocksize);
3558 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559 disk_bytenr = em->block_start;
3560 else
3561 disk_bytenr = em->block_start + extent_offset;
3562 block_start = em->block_start;
3563 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564 block_start = EXTENT_MAP_HOLE;
3565
3566 /*
3567 * If we have a file range that points to a compressed extent
3568 * and it's followed by a consecutive file range that points
3569 * to the same compressed extent (possibly with a different
3570 * offset and/or length, so it either points to the whole extent
3571 * or only part of it), we must make sure we do not submit a
3572 * single bio to populate the pages for the 2 ranges because
3573 * this makes the compressed extent read zero out the pages
3574 * belonging to the 2nd range. Imagine the following scenario:
3575 *
3576 * File layout
3577 * [0 - 8K] [8K - 24K]
3578 * | |
3579 * | |
3580 * points to extent X, points to extent X,
3581 * offset 4K, length of 8K offset 0, length 16K
3582 *
3583 * [extent X, compressed length = 4K uncompressed length = 16K]
3584 *
3585 * If the bio to read the compressed extent covers both ranges,
3586 * it will decompress extent X into the pages belonging to the
3587 * first range and then it will stop, zeroing out the remaining
3588 * pages that belong to the other range that points to extent X.
3589 * So here we make sure we submit 2 bios, one for the first
3590 * range and another one for the third range. Both will target
3591 * the same physical extent from disk, but we can't currently
3592 * make the compressed bio endio callback populate the pages
3593 * for both ranges because each compressed bio is tightly
3594 * coupled with a single extent map, and each range can have
3595 * an extent map with a different offset value relative to the
3596 * uncompressed data of our extent and different lengths. This
3597 * is a corner case so we prioritize correctness over
3598 * non-optimal behavior (submitting 2 bios for the same extent).
3599 */
3600 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601 prev_em_start && *prev_em_start != (u64)-1 &&
3602 *prev_em_start != em->start)
3603 force_bio_submit = true;
3604
3605 if (prev_em_start)
3606 *prev_em_start = em->start;
3607
3608 free_extent_map(em);
3609 em = NULL;
3610
3611 /* we've found a hole, just zero and go on */
3612 if (block_start == EXTENT_MAP_HOLE) {
3613 struct extent_state *cached = NULL;
3614
3615 memzero_page(page, pg_offset, iosize);
3616 flush_dcache_page(page);
3617
3618 set_extent_uptodate(tree, cur, cur + iosize - 1,
3619 &cached, GFP_NOFS);
3620 unlock_extent_cached(tree, cur,
3621 cur + iosize - 1, &cached);
3622 end_page_read(page, true, cur, iosize);
3623 cur = cur + iosize;
3624 pg_offset += iosize;
3625 continue;
3626 }
3627 /* the get_extent function already copied into the page */
3628 if (test_range_bit(tree, cur, cur_end,
3629 EXTENT_UPTODATE, 1, NULL)) {
3630 check_page_uptodate(tree, page);
3631 unlock_extent(tree, cur, cur + iosize - 1);
3632 end_page_read(page, true, cur, iosize);
3633 cur = cur + iosize;
3634 pg_offset += iosize;
3635 continue;
3636 }
3637 /* we have an inline extent but it didn't get marked up
3638 * to date. Error out
3639 */
3640 if (block_start == EXTENT_MAP_INLINE) {
3641 unlock_extent(tree, cur, cur + iosize - 1);
3642 end_page_read(page, false, cur, iosize);
3643 cur = cur + iosize;
3644 pg_offset += iosize;
3645 continue;
3646 }
3647
3648 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649 bio_ctrl, page, disk_bytenr, iosize,
3650 pg_offset,
3651 end_bio_extent_readpage, 0,
3652 this_bio_flag,
3653 force_bio_submit);
3654 if (!ret) {
3655 nr++;
3656 } else {
3657 unlock_extent(tree, cur, cur + iosize - 1);
3658 end_page_read(page, false, cur, iosize);
3659 goto out;
3660 }
3661 cur = cur + iosize;
3662 pg_offset += iosize;
3663 }
3664out:
3665 return ret;
3666}
3667
3668static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669 u64 start, u64 end,
3670 struct extent_map **em_cached,
3671 struct btrfs_bio_ctrl *bio_ctrl,
3672 u64 *prev_em_start)
3673{
3674 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3675 int index;
3676
3677 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3678
3679 for (index = 0; index < nr_pages; index++) {
3680 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681 REQ_RAHEAD, prev_em_start);
3682 put_page(pages[index]);
3683 }
3684}
3685
3686static void update_nr_written(struct writeback_control *wbc,
3687 unsigned long nr_written)
3688{
3689 wbc->nr_to_write -= nr_written;
3690}
3691
3692/*
3693 * helper for __extent_writepage, doing all of the delayed allocation setup.
3694 *
3695 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696 * to write the page (copy into inline extent). In this case the IO has
3697 * been started and the page is already unlocked.
3698 *
3699 * This returns 0 if all went well (page still locked)
3700 * This returns < 0 if there were errors (page still locked)
3701 */
3702static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703 struct page *page, struct writeback_control *wbc,
3704 u64 delalloc_start, unsigned long *nr_written)
3705{
3706 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707 bool found;
3708 u64 delalloc_to_write = 0;
3709 u64 delalloc_end = 0;
3710 int ret;
3711 int page_started = 0;
3712
3713
3714 while (delalloc_end < page_end) {
3715 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3716 &delalloc_start,
3717 &delalloc_end);
3718 if (!found) {
3719 delalloc_start = delalloc_end + 1;
3720 continue;
3721 }
3722 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723 delalloc_end, &page_started, nr_written, wbc);
3724 if (ret) {
3725 SetPageError(page);
3726 /*
3727 * btrfs_run_delalloc_range should return < 0 for error
3728 * but just in case, we use > 0 here meaning the IO is
3729 * started, so we don't want to return > 0 unless
3730 * things are going well.
3731 */
3732 return ret < 0 ? ret : -EIO;
3733 }
3734 /*
3735 * delalloc_end is already one less than the total length, so
3736 * we don't subtract one from PAGE_SIZE
3737 */
3738 delalloc_to_write += (delalloc_end - delalloc_start +
3739 PAGE_SIZE) >> PAGE_SHIFT;
3740 delalloc_start = delalloc_end + 1;
3741 }
3742 if (wbc->nr_to_write < delalloc_to_write) {
3743 int thresh = 8192;
3744
3745 if (delalloc_to_write < thresh * 2)
3746 thresh = delalloc_to_write;
3747 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748 thresh);
3749 }
3750
3751 /* did the fill delalloc function already unlock and start
3752 * the IO?
3753 */
3754 if (page_started) {
3755 /*
3756 * we've unlocked the page, so we can't update
3757 * the mapping's writeback index, just update
3758 * nr_to_write.
3759 */
3760 wbc->nr_to_write -= *nr_written;
3761 return 1;
3762 }
3763
3764 return 0;
3765}
3766
3767/*
3768 * Find the first byte we need to write.
3769 *
3770 * For subpage, one page can contain several sectors, and
3771 * __extent_writepage_io() will just grab all extent maps in the page
3772 * range and try to submit all non-inline/non-compressed extents.
3773 *
3774 * This is a big problem for subpage, we shouldn't re-submit already written
3775 * data at all.
3776 * This function will lookup subpage dirty bit to find which range we really
3777 * need to submit.
3778 *
3779 * Return the next dirty range in [@start, @end).
3780 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781 */
3782static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783 struct page *page, u64 *start, u64 *end)
3784{
3785 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3786 u64 orig_start = *start;
3787 /* Declare as unsigned long so we can use bitmap ops */
3788 unsigned long dirty_bitmap;
3789 unsigned long flags;
3790 int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791 int range_start_bit = nbits;
3792 int range_end_bit;
3793
3794 /*
3795 * For regular sector size == page size case, since one page only
3796 * contains one sector, we return the page offset directly.
3797 */
3798 if (fs_info->sectorsize == PAGE_SIZE) {
3799 *start = page_offset(page);
3800 *end = page_offset(page) + PAGE_SIZE;
3801 return;
3802 }
3803
3804 /* We should have the page locked, but just in case */
3805 spin_lock_irqsave(&subpage->lock, flags);
3806 dirty_bitmap = subpage->dirty_bitmap;
3807 spin_unlock_irqrestore(&subpage->lock, flags);
3808
3809 bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810 BTRFS_SUBPAGE_BITMAP_SIZE);
3811 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813}
3814
3815/*
3816 * helper for __extent_writepage. This calls the writepage start hooks,
3817 * and does the loop to map the page into extents and bios.
3818 *
3819 * We return 1 if the IO is started and the page is unlocked,
3820 * 0 if all went well (page still locked)
3821 * < 0 if there were errors (page still locked)
3822 */
3823static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824 struct page *page,
3825 struct writeback_control *wbc,
3826 struct extent_page_data *epd,
3827 loff_t i_size,
3828 unsigned long nr_written,
3829 int *nr_ret)
3830{
3831 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832 u64 start = page_offset(page);
3833 u64 end = start + PAGE_SIZE - 1;
3834 u64 cur = start;
3835 u64 extent_offset;
3836 u64 block_start;
3837 struct extent_map *em;
3838 int ret = 0;
3839 int nr = 0;
3840 u32 opf = REQ_OP_WRITE;
3841 const unsigned int write_flags = wbc_to_write_flags(wbc);
3842 bool compressed;
3843
3844 ret = btrfs_writepage_cow_fixup(page, start, end);
3845 if (ret) {
3846 /* Fixup worker will requeue */
3847 redirty_page_for_writepage(wbc, page);
3848 update_nr_written(wbc, nr_written);
3849 unlock_page(page);
3850 return 1;
3851 }
3852
3853 /*
3854 * we don't want to touch the inode after unlocking the page,
3855 * so we update the mapping writeback index now
3856 */
3857 update_nr_written(wbc, nr_written + 1);
3858
3859 while (cur <= end) {
3860 u64 disk_bytenr;
3861 u64 em_end;
3862 u64 dirty_range_start = cur;
3863 u64 dirty_range_end;
3864 u32 iosize;
3865
3866 if (cur >= i_size) {
3867 btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868 end, 1);
3869 break;
3870 }
3871
3872 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873 &dirty_range_end);
3874 if (cur < dirty_range_start) {
3875 cur = dirty_range_start;
3876 continue;
3877 }
3878
3879 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880 if (IS_ERR_OR_NULL(em)) {
3881 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882 ret = PTR_ERR_OR_ZERO(em);
3883 break;
3884 }
3885
3886 extent_offset = cur - em->start;
3887 em_end = extent_map_end(em);
3888 ASSERT(cur <= em_end);
3889 ASSERT(cur < end);
3890 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3892 block_start = em->block_start;
3893 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894 disk_bytenr = em->block_start + extent_offset;
3895
3896 /*
3897 * Note that em_end from extent_map_end() and dirty_range_end from
3898 * find_next_dirty_byte() are all exclusive
3899 */
3900 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901
3902 if (btrfs_use_zone_append(inode, em->block_start))
3903 opf = REQ_OP_ZONE_APPEND;
3904
3905 free_extent_map(em);
3906 em = NULL;
3907
3908 /*
3909 * compressed and inline extents are written through other
3910 * paths in the FS
3911 */
3912 if (compressed || block_start == EXTENT_MAP_HOLE ||
3913 block_start == EXTENT_MAP_INLINE) {
3914 if (compressed)
3915 nr++;
3916 else
3917 btrfs_writepage_endio_finish_ordered(inode,
3918 page, cur, cur + iosize - 1, 1);
3919 cur += iosize;
3920 continue;
3921 }
3922
3923 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924 if (!PageWriteback(page)) {
3925 btrfs_err(inode->root->fs_info,
3926 "page %lu not writeback, cur %llu end %llu",
3927 page->index, cur, end);
3928 }
3929
3930 /*
3931 * Although the PageDirty bit is cleared before entering this
3932 * function, subpage dirty bit is not cleared.
3933 * So clear subpage dirty bit here so next time we won't submit
3934 * page for range already written to disk.
3935 */
3936 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937
3938 ret = submit_extent_page(opf | write_flags, wbc,
3939 &epd->bio_ctrl, page,
3940 disk_bytenr, iosize,
3941 cur - page_offset(page),
3942 end_bio_extent_writepage,
3943 0, 0, false);
3944 if (ret) {
3945 btrfs_page_set_error(fs_info, page, cur, iosize);
3946 if (PageWriteback(page))
3947 btrfs_page_clear_writeback(fs_info, page, cur,
3948 iosize);
3949 }
3950
3951 cur += iosize;
3952 nr++;
3953 }
3954 *nr_ret = nr;
3955 return ret;
3956}
3957
3958/*
3959 * the writepage semantics are similar to regular writepage. extent
3960 * records are inserted to lock ranges in the tree, and as dirty areas
3961 * are found, they are marked writeback. Then the lock bits are removed
3962 * and the end_io handler clears the writeback ranges
3963 *
3964 * Return 0 if everything goes well.
3965 * Return <0 for error.
3966 */
3967static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968 struct extent_page_data *epd)
3969{
3970 struct inode *inode = page->mapping->host;
3971 u64 start = page_offset(page);
3972 u64 page_end = start + PAGE_SIZE - 1;
3973 int ret;
3974 int nr = 0;
3975 size_t pg_offset;
3976 loff_t i_size = i_size_read(inode);
3977 unsigned long end_index = i_size >> PAGE_SHIFT;
3978 unsigned long nr_written = 0;
3979
3980 trace___extent_writepage(page, inode, wbc);
3981
3982 WARN_ON(!PageLocked(page));
3983
3984 ClearPageError(page);
3985
3986 pg_offset = offset_in_page(i_size);
3987 if (page->index > end_index ||
3988 (page->index == end_index && !pg_offset)) {
3989 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990 unlock_page(page);
3991 return 0;
3992 }
3993
3994 if (page->index == end_index) {
3995 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3996 flush_dcache_page(page);
3997 }
3998
3999 ret = set_page_extent_mapped(page);
4000 if (ret < 0) {
4001 SetPageError(page);
4002 goto done;
4003 }
4004
4005 if (!epd->extent_locked) {
4006 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007 &nr_written);
4008 if (ret == 1)
4009 return 0;
4010 if (ret)
4011 goto done;
4012 }
4013
4014 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015 nr_written, &nr);
4016 if (ret == 1)
4017 return 0;
4018
4019done:
4020 if (nr == 0) {
4021 /* make sure the mapping tag for page dirty gets cleared */
4022 set_page_writeback(page);
4023 end_page_writeback(page);
4024 }
4025 if (PageError(page)) {
4026 ret = ret < 0 ? ret : -EIO;
4027 end_extent_writepage(page, ret, start, page_end);
4028 }
4029 unlock_page(page);
4030 ASSERT(ret <= 0);
4031 return ret;
4032}
4033
4034void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035{
4036 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037 TASK_UNINTERRUPTIBLE);
4038}
4039
4040static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041{
4042 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043 smp_mb__after_atomic();
4044 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045}
4046
4047/*
4048 * Lock extent buffer status and pages for writeback.
4049 *
4050 * May try to flush write bio if we can't get the lock.
4051 *
4052 * Return 0 if the extent buffer doesn't need to be submitted.
4053 * (E.g. the extent buffer is not dirty)
4054 * Return >0 is the extent buffer is submitted to bio.
4055 * Return <0 if something went wrong, no page is locked.
4056 */
4057static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058 struct extent_page_data *epd)
4059{
4060 struct btrfs_fs_info *fs_info = eb->fs_info;
4061 int i, num_pages, failed_page_nr;
4062 int flush = 0;
4063 int ret = 0;
4064
4065 if (!btrfs_try_tree_write_lock(eb)) {
4066 ret = flush_write_bio(epd);
4067 if (ret < 0)
4068 return ret;
4069 flush = 1;
4070 btrfs_tree_lock(eb);
4071 }
4072
4073 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074 btrfs_tree_unlock(eb);
4075 if (!epd->sync_io)
4076 return 0;
4077 if (!flush) {
4078 ret = flush_write_bio(epd);
4079 if (ret < 0)
4080 return ret;
4081 flush = 1;
4082 }
4083 while (1) {
4084 wait_on_extent_buffer_writeback(eb);
4085 btrfs_tree_lock(eb);
4086 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087 break;
4088 btrfs_tree_unlock(eb);
4089 }
4090 }
4091
4092 /*
4093 * We need to do this to prevent races in people who check if the eb is
4094 * under IO since we can end up having no IO bits set for a short period
4095 * of time.
4096 */
4097 spin_lock(&eb->refs_lock);
4098 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100 spin_unlock(&eb->refs_lock);
4101 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103 -eb->len,
4104 fs_info->dirty_metadata_batch);
4105 ret = 1;
4106 } else {
4107 spin_unlock(&eb->refs_lock);
4108 }
4109
4110 btrfs_tree_unlock(eb);
4111
4112 /*
4113 * Either we don't need to submit any tree block, or we're submitting
4114 * subpage eb.
4115 * Subpage metadata doesn't use page locking at all, so we can skip
4116 * the page locking.
4117 */
4118 if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119 return ret;
4120
4121 num_pages = num_extent_pages(eb);
4122 for (i = 0; i < num_pages; i++) {
4123 struct page *p = eb->pages[i];
4124
4125 if (!trylock_page(p)) {
4126 if (!flush) {
4127 int err;
4128
4129 err = flush_write_bio(epd);
4130 if (err < 0) {
4131 ret = err;
4132 failed_page_nr = i;
4133 goto err_unlock;
4134 }
4135 flush = 1;
4136 }
4137 lock_page(p);
4138 }
4139 }
4140
4141 return ret;
4142err_unlock:
4143 /* Unlock already locked pages */
4144 for (i = 0; i < failed_page_nr; i++)
4145 unlock_page(eb->pages[i]);
4146 /*
4147 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149 * be made and undo everything done before.
4150 */
4151 btrfs_tree_lock(eb);
4152 spin_lock(&eb->refs_lock);
4153 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154 end_extent_buffer_writeback(eb);
4155 spin_unlock(&eb->refs_lock);
4156 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157 fs_info->dirty_metadata_batch);
4158 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159 btrfs_tree_unlock(eb);
4160 return ret;
4161}
4162
4163static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4164{
4165 struct btrfs_fs_info *fs_info = eb->fs_info;
4166
4167 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169 return;
4170
4171 /*
4172 * If we error out, we should add back the dirty_metadata_bytes
4173 * to make it consistent.
4174 */
4175 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176 eb->len, fs_info->dirty_metadata_batch);
4177
4178 /*
4179 * If writeback for a btree extent that doesn't belong to a log tree
4180 * failed, increment the counter transaction->eb_write_errors.
4181 * We do this because while the transaction is running and before it's
4182 * committing (when we call filemap_fdata[write|wait]_range against
4183 * the btree inode), we might have
4184 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185 * returns an error or an error happens during writeback, when we're
4186 * committing the transaction we wouldn't know about it, since the pages
4187 * can be no longer dirty nor marked anymore for writeback (if a
4188 * subsequent modification to the extent buffer didn't happen before the
4189 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190 * able to find the pages tagged with SetPageError at transaction
4191 * commit time. So if this happens we must abort the transaction,
4192 * otherwise we commit a super block with btree roots that point to
4193 * btree nodes/leafs whose content on disk is invalid - either garbage
4194 * or the content of some node/leaf from a past generation that got
4195 * cowed or deleted and is no longer valid.
4196 *
4197 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198 * not be enough - we need to distinguish between log tree extents vs
4199 * non-log tree extents, and the next filemap_fdatawait_range() call
4200 * will catch and clear such errors in the mapping - and that call might
4201 * be from a log sync and not from a transaction commit. Also, checking
4202 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203 * not done and would not be reliable - the eb might have been released
4204 * from memory and reading it back again means that flag would not be
4205 * set (since it's a runtime flag, not persisted on disk).
4206 *
4207 * Using the flags below in the btree inode also makes us achieve the
4208 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209 * writeback for all dirty pages and before filemap_fdatawait_range()
4210 * is called, the writeback for all dirty pages had already finished
4211 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212 * filemap_fdatawait_range() would return success, as it could not know
4213 * that writeback errors happened (the pages were no longer tagged for
4214 * writeback).
4215 */
4216 switch (eb->log_index) {
4217 case -1:
4218 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219 break;
4220 case 0:
4221 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222 break;
4223 case 1:
4224 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225 break;
4226 default:
4227 BUG(); /* unexpected, logic error */
4228 }
4229}
4230
4231/*
4232 * The endio specific version which won't touch any unsafe spinlock in endio
4233 * context.
4234 */
4235static struct extent_buffer *find_extent_buffer_nolock(
4236 struct btrfs_fs_info *fs_info, u64 start)
4237{
4238 struct extent_buffer *eb;
4239
4240 rcu_read_lock();
4241 eb = radix_tree_lookup(&fs_info->buffer_radix,
4242 start >> fs_info->sectorsize_bits);
4243 if (eb && atomic_inc_not_zero(&eb->refs)) {
4244 rcu_read_unlock();
4245 return eb;
4246 }
4247 rcu_read_unlock();
4248 return NULL;
4249}
4250
4251/*
4252 * The endio function for subpage extent buffer write.
4253 *
4254 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255 * after all extent buffers in the page has finished their writeback.
4256 */
4257static void end_bio_subpage_eb_writepage(struct bio *bio)
4258{
4259 struct btrfs_fs_info *fs_info;
4260 struct bio_vec *bvec;
4261 struct bvec_iter_all iter_all;
4262
4263 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265
4266 ASSERT(!bio_flagged(bio, BIO_CLONED));
4267 bio_for_each_segment_all(bvec, bio, iter_all) {
4268 struct page *page = bvec->bv_page;
4269 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271 u64 cur_bytenr = bvec_start;
4272
4273 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274
4275 /* Iterate through all extent buffers in the range */
4276 while (cur_bytenr <= bvec_end) {
4277 struct extent_buffer *eb;
4278 int done;
4279
4280 /*
4281 * Here we can't use find_extent_buffer(), as it may
4282 * try to lock eb->refs_lock, which is not safe in endio
4283 * context.
4284 */
4285 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286 ASSERT(eb);
4287
4288 cur_bytenr = eb->start + eb->len;
4289
4290 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291 done = atomic_dec_and_test(&eb->io_pages);
4292 ASSERT(done);
4293
4294 if (bio->bi_status ||
4295 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296 ClearPageUptodate(page);
4297 set_btree_ioerr(page, eb);
4298 }
4299
4300 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301 eb->len);
4302 end_extent_buffer_writeback(eb);
4303 /*
4304 * free_extent_buffer() will grab spinlock which is not
4305 * safe in endio context. Thus here we manually dec
4306 * the ref.
4307 */
4308 atomic_dec(&eb->refs);
4309 }
4310 }
4311 bio_put(bio);
4312}
4313
4314static void end_bio_extent_buffer_writepage(struct bio *bio)
4315{
4316 struct bio_vec *bvec;
4317 struct extent_buffer *eb;
4318 int done;
4319 struct bvec_iter_all iter_all;
4320
4321 ASSERT(!bio_flagged(bio, BIO_CLONED));
4322 bio_for_each_segment_all(bvec, bio, iter_all) {
4323 struct page *page = bvec->bv_page;
4324
4325 eb = (struct extent_buffer *)page->private;
4326 BUG_ON(!eb);
4327 done = atomic_dec_and_test(&eb->io_pages);
4328
4329 if (bio->bi_status ||
4330 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331 ClearPageUptodate(page);
4332 set_btree_ioerr(page, eb);
4333 }
4334
4335 end_page_writeback(page);
4336
4337 if (!done)
4338 continue;
4339
4340 end_extent_buffer_writeback(eb);
4341 }
4342
4343 bio_put(bio);
4344}
4345
4346static void prepare_eb_write(struct extent_buffer *eb)
4347{
4348 u32 nritems;
4349 unsigned long start;
4350 unsigned long end;
4351
4352 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353 atomic_set(&eb->io_pages, num_extent_pages(eb));
4354
4355 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4356 nritems = btrfs_header_nritems(eb);
4357 if (btrfs_header_level(eb) > 0) {
4358 end = btrfs_node_key_ptr_offset(nritems);
4359 memzero_extent_buffer(eb, end, eb->len - end);
4360 } else {
4361 /*
4362 * Leaf:
4363 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364 */
4365 start = btrfs_item_nr_offset(nritems);
4366 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4367 memzero_extent_buffer(eb, start, end - start);
4368 }
4369}
4370
4371/*
4372 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373 * Page locking is only utilized at minimum to keep the VMM code happy.
4374 */
4375static int write_one_subpage_eb(struct extent_buffer *eb,
4376 struct writeback_control *wbc,
4377 struct extent_page_data *epd)
4378{
4379 struct btrfs_fs_info *fs_info = eb->fs_info;
4380 struct page *page = eb->pages[0];
4381 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382 bool no_dirty_ebs = false;
4383 int ret;
4384
4385 prepare_eb_write(eb);
4386
4387 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4388 lock_page(page);
4389 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390
4391 /* Check if this is the last dirty bit to update nr_written */
4392 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393 eb->start, eb->len);
4394 if (no_dirty_ebs)
4395 clear_page_dirty_for_io(page);
4396
4397 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398 &epd->bio_ctrl, page, eb->start, eb->len,
4399 eb->start - page_offset(page),
4400 end_bio_subpage_eb_writepage, 0, 0, false);
4401 if (ret) {
4402 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403 set_btree_ioerr(page, eb);
4404 unlock_page(page);
4405
4406 if (atomic_dec_and_test(&eb->io_pages))
4407 end_extent_buffer_writeback(eb);
4408 return -EIO;
4409 }
4410 unlock_page(page);
4411 /*
4412 * Submission finished without problem, if no range of the page is
4413 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4414 */
4415 if (no_dirty_ebs)
4416 update_nr_written(wbc, 1);
4417 return ret;
4418}
4419
4420static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421 struct writeback_control *wbc,
4422 struct extent_page_data *epd)
4423{
4424 u64 disk_bytenr = eb->start;
4425 int i, num_pages;
4426 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427 int ret = 0;
4428
4429 prepare_eb_write(eb);
4430
4431 num_pages = num_extent_pages(eb);
4432 for (i = 0; i < num_pages; i++) {
4433 struct page *p = eb->pages[i];
4434
4435 clear_page_dirty_for_io(p);
4436 set_page_writeback(p);
4437 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438 &epd->bio_ctrl, p, disk_bytenr,
4439 PAGE_SIZE, 0,
4440 end_bio_extent_buffer_writepage,
4441 0, 0, false);
4442 if (ret) {
4443 set_btree_ioerr(p, eb);
4444 if (PageWriteback(p))
4445 end_page_writeback(p);
4446 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447 end_extent_buffer_writeback(eb);
4448 ret = -EIO;
4449 break;
4450 }
4451 disk_bytenr += PAGE_SIZE;
4452 update_nr_written(wbc, 1);
4453 unlock_page(p);
4454 }
4455
4456 if (unlikely(ret)) {
4457 for (; i < num_pages; i++) {
4458 struct page *p = eb->pages[i];
4459 clear_page_dirty_for_io(p);
4460 unlock_page(p);
4461 }
4462 }
4463
4464 return ret;
4465}
4466
4467/*
4468 * Submit one subpage btree page.
4469 *
4470 * The main difference to submit_eb_page() is:
4471 * - Page locking
4472 * For subpage, we don't rely on page locking at all.
4473 *
4474 * - Flush write bio
4475 * We only flush bio if we may be unable to fit current extent buffers into
4476 * current bio.
4477 *
4478 * Return >=0 for the number of submitted extent buffers.
4479 * Return <0 for fatal error.
4480 */
4481static int submit_eb_subpage(struct page *page,
4482 struct writeback_control *wbc,
4483 struct extent_page_data *epd)
4484{
4485 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4486 int submitted = 0;
4487 u64 page_start = page_offset(page);
4488 int bit_start = 0;
4489 const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491 int ret;
4492
4493 /* Lock and write each dirty extent buffers in the range */
4494 while (bit_start < nbits) {
4495 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496 struct extent_buffer *eb;
4497 unsigned long flags;
4498 u64 start;
4499
4500 /*
4501 * Take private lock to ensure the subpage won't be detached
4502 * in the meantime.
4503 */
4504 spin_lock(&page->mapping->private_lock);
4505 if (!PagePrivate(page)) {
4506 spin_unlock(&page->mapping->private_lock);
4507 break;
4508 }
4509 spin_lock_irqsave(&subpage->lock, flags);
4510 if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4511 spin_unlock_irqrestore(&subpage->lock, flags);
4512 spin_unlock(&page->mapping->private_lock);
4513 bit_start++;
4514 continue;
4515 }
4516
4517 start = page_start + bit_start * fs_info->sectorsize;
4518 bit_start += sectors_per_node;
4519
4520 /*
4521 * Here we just want to grab the eb without touching extra
4522 * spin locks, so call find_extent_buffer_nolock().
4523 */
4524 eb = find_extent_buffer_nolock(fs_info, start);
4525 spin_unlock_irqrestore(&subpage->lock, flags);
4526 spin_unlock(&page->mapping->private_lock);
4527
4528 /*
4529 * The eb has already reached 0 refs thus find_extent_buffer()
4530 * doesn't return it. We don't need to write back such eb
4531 * anyway.
4532 */
4533 if (!eb)
4534 continue;
4535
4536 ret = lock_extent_buffer_for_io(eb, epd);
4537 if (ret == 0) {
4538 free_extent_buffer(eb);
4539 continue;
4540 }
4541 if (ret < 0) {
4542 free_extent_buffer(eb);
4543 goto cleanup;
4544 }
4545 ret = write_one_subpage_eb(eb, wbc, epd);
4546 free_extent_buffer(eb);
4547 if (ret < 0)
4548 goto cleanup;
4549 submitted++;
4550 }
4551 return submitted;
4552
4553cleanup:
4554 /* We hit error, end bio for the submitted extent buffers */
4555 end_write_bio(epd, ret);
4556 return ret;
4557}
4558
4559/*
4560 * Submit all page(s) of one extent buffer.
4561 *
4562 * @page: the page of one extent buffer
4563 * @eb_context: to determine if we need to submit this page, if current page
4564 * belongs to this eb, we don't need to submit
4565 *
4566 * The caller should pass each page in their bytenr order, and here we use
4567 * @eb_context to determine if we have submitted pages of one extent buffer.
4568 *
4569 * If we have, we just skip until we hit a new page that doesn't belong to
4570 * current @eb_context.
4571 *
4572 * If not, we submit all the page(s) of the extent buffer.
4573 *
4574 * Return >0 if we have submitted the extent buffer successfully.
4575 * Return 0 if we don't need to submit the page, as it's already submitted by
4576 * previous call.
4577 * Return <0 for fatal error.
4578 */
4579static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580 struct extent_page_data *epd,
4581 struct extent_buffer **eb_context)
4582{
4583 struct address_space *mapping = page->mapping;
4584 struct btrfs_block_group *cache = NULL;
4585 struct extent_buffer *eb;
4586 int ret;
4587
4588 if (!PagePrivate(page))
4589 return 0;
4590
4591 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592 return submit_eb_subpage(page, wbc, epd);
4593
4594 spin_lock(&mapping->private_lock);
4595 if (!PagePrivate(page)) {
4596 spin_unlock(&mapping->private_lock);
4597 return 0;
4598 }
4599
4600 eb = (struct extent_buffer *)page->private;
4601
4602 /*
4603 * Shouldn't happen and normally this would be a BUG_ON but no point
4604 * crashing the machine for something we can survive anyway.
4605 */
4606 if (WARN_ON(!eb)) {
4607 spin_unlock(&mapping->private_lock);
4608 return 0;
4609 }
4610
4611 if (eb == *eb_context) {
4612 spin_unlock(&mapping->private_lock);
4613 return 0;
4614 }
4615 ret = atomic_inc_not_zero(&eb->refs);
4616 spin_unlock(&mapping->private_lock);
4617 if (!ret)
4618 return 0;
4619
4620 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621 /*
4622 * If for_sync, this hole will be filled with
4623 * trasnsaction commit.
4624 */
4625 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626 ret = -EAGAIN;
4627 else
4628 ret = 0;
4629 free_extent_buffer(eb);
4630 return ret;
4631 }
4632
4633 *eb_context = eb;
4634
4635 ret = lock_extent_buffer_for_io(eb, epd);
4636 if (ret <= 0) {
4637 btrfs_revert_meta_write_pointer(cache, eb);
4638 if (cache)
4639 btrfs_put_block_group(cache);
4640 free_extent_buffer(eb);
4641 return ret;
4642 }
4643 if (cache)
4644 btrfs_put_block_group(cache);
4645 ret = write_one_eb(eb, wbc, epd);
4646 free_extent_buffer(eb);
4647 if (ret < 0)
4648 return ret;
4649 return 1;
4650}
4651
4652int btree_write_cache_pages(struct address_space *mapping,
4653 struct writeback_control *wbc)
4654{
4655 struct extent_buffer *eb_context = NULL;
4656 struct extent_page_data epd = {
4657 .bio_ctrl = { 0 },
4658 .extent_locked = 0,
4659 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660 };
4661 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662 int ret = 0;
4663 int done = 0;
4664 int nr_to_write_done = 0;
4665 struct pagevec pvec;
4666 int nr_pages;
4667 pgoff_t index;
4668 pgoff_t end; /* Inclusive */
4669 int scanned = 0;
4670 xa_mark_t tag;
4671
4672 pagevec_init(&pvec);
4673 if (wbc->range_cyclic) {
4674 index = mapping->writeback_index; /* Start from prev offset */
4675 end = -1;
4676 /*
4677 * Start from the beginning does not need to cycle over the
4678 * range, mark it as scanned.
4679 */
4680 scanned = (index == 0);
4681 } else {
4682 index = wbc->range_start >> PAGE_SHIFT;
4683 end = wbc->range_end >> PAGE_SHIFT;
4684 scanned = 1;
4685 }
4686 if (wbc->sync_mode == WB_SYNC_ALL)
4687 tag = PAGECACHE_TAG_TOWRITE;
4688 else
4689 tag = PAGECACHE_TAG_DIRTY;
4690 btrfs_zoned_meta_io_lock(fs_info);
4691retry:
4692 if (wbc->sync_mode == WB_SYNC_ALL)
4693 tag_pages_for_writeback(mapping, index, end);
4694 while (!done && !nr_to_write_done && (index <= end) &&
4695 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696 tag))) {
4697 unsigned i;
4698
4699 for (i = 0; i < nr_pages; i++) {
4700 struct page *page = pvec.pages[i];
4701
4702 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703 if (ret == 0)
4704 continue;
4705 if (ret < 0) {
4706 done = 1;
4707 break;
4708 }
4709
4710 /*
4711 * the filesystem may choose to bump up nr_to_write.
4712 * We have to make sure to honor the new nr_to_write
4713 * at any time
4714 */
4715 nr_to_write_done = wbc->nr_to_write <= 0;
4716 }
4717 pagevec_release(&pvec);
4718 cond_resched();
4719 }
4720 if (!scanned && !done) {
4721 /*
4722 * We hit the last page and there is more work to be done: wrap
4723 * back to the start of the file
4724 */
4725 scanned = 1;
4726 index = 0;
4727 goto retry;
4728 }
4729 if (ret < 0) {
4730 end_write_bio(&epd, ret);
4731 goto out;
4732 }
4733 /*
4734 * If something went wrong, don't allow any metadata write bio to be
4735 * submitted.
4736 *
4737 * This would prevent use-after-free if we had dirty pages not
4738 * cleaned up, which can still happen by fuzzed images.
4739 *
4740 * - Bad extent tree
4741 * Allowing existing tree block to be allocated for other trees.
4742 *
4743 * - Log tree operations
4744 * Exiting tree blocks get allocated to log tree, bumps its
4745 * generation, then get cleaned in tree re-balance.
4746 * Such tree block will not be written back, since it's clean,
4747 * thus no WRITTEN flag set.
4748 * And after log writes back, this tree block is not traced by
4749 * any dirty extent_io_tree.
4750 *
4751 * - Offending tree block gets re-dirtied from its original owner
4752 * Since it has bumped generation, no WRITTEN flag, it can be
4753 * reused without COWing. This tree block will not be traced
4754 * by btrfs_transaction::dirty_pages.
4755 *
4756 * Now such dirty tree block will not be cleaned by any dirty
4757 * extent io tree. Thus we don't want to submit such wild eb
4758 * if the fs already has error.
4759 */
4760 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761 ret = flush_write_bio(&epd);
4762 } else {
4763 ret = -EROFS;
4764 end_write_bio(&epd, ret);
4765 }
4766out:
4767 btrfs_zoned_meta_io_unlock(fs_info);
4768 return ret;
4769}
4770
4771/**
4772 * Walk the list of dirty pages of the given address space and write all of them.
4773 *
4774 * @mapping: address space structure to write
4775 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4776 * @epd: holds context for the write, namely the bio
4777 *
4778 * If a page is already under I/O, write_cache_pages() skips it, even
4779 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4780 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4781 * and msync() need to guarantee that all the data which was dirty at the time
4782 * the call was made get new I/O started against them. If wbc->sync_mode is
4783 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784 * existing IO to complete.
4785 */
4786static int extent_write_cache_pages(struct address_space *mapping,
4787 struct writeback_control *wbc,
4788 struct extent_page_data *epd)
4789{
4790 struct inode *inode = mapping->host;
4791 int ret = 0;
4792 int done = 0;
4793 int nr_to_write_done = 0;
4794 struct pagevec pvec;
4795 int nr_pages;
4796 pgoff_t index;
4797 pgoff_t end; /* Inclusive */
4798 pgoff_t done_index;
4799 int range_whole = 0;
4800 int scanned = 0;
4801 xa_mark_t tag;
4802
4803 /*
4804 * We have to hold onto the inode so that ordered extents can do their
4805 * work when the IO finishes. The alternative to this is failing to add
4806 * an ordered extent if the igrab() fails there and that is a huge pain
4807 * to deal with, so instead just hold onto the inode throughout the
4808 * writepages operation. If it fails here we are freeing up the inode
4809 * anyway and we'd rather not waste our time writing out stuff that is
4810 * going to be truncated anyway.
4811 */
4812 if (!igrab(inode))
4813 return 0;
4814
4815 pagevec_init(&pvec);
4816 if (wbc->range_cyclic) {
4817 index = mapping->writeback_index; /* Start from prev offset */
4818 end = -1;
4819 /*
4820 * Start from the beginning does not need to cycle over the
4821 * range, mark it as scanned.
4822 */
4823 scanned = (index == 0);
4824 } else {
4825 index = wbc->range_start >> PAGE_SHIFT;
4826 end = wbc->range_end >> PAGE_SHIFT;
4827 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828 range_whole = 1;
4829 scanned = 1;
4830 }
4831
4832 /*
4833 * We do the tagged writepage as long as the snapshot flush bit is set
4834 * and we are the first one who do the filemap_flush() on this inode.
4835 *
4836 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837 * not race in and drop the bit.
4838 */
4839 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841 &BTRFS_I(inode)->runtime_flags))
4842 wbc->tagged_writepages = 1;
4843
4844 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845 tag = PAGECACHE_TAG_TOWRITE;
4846 else
4847 tag = PAGECACHE_TAG_DIRTY;
4848retry:
4849 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850 tag_pages_for_writeback(mapping, index, end);
4851 done_index = index;
4852 while (!done && !nr_to_write_done && (index <= end) &&
4853 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854 &index, end, tag))) {
4855 unsigned i;
4856
4857 for (i = 0; i < nr_pages; i++) {
4858 struct page *page = pvec.pages[i];
4859
4860 done_index = page->index + 1;
4861 /*
4862 * At this point we hold neither the i_pages lock nor
4863 * the page lock: the page may be truncated or
4864 * invalidated (changing page->mapping to NULL),
4865 * or even swizzled back from swapper_space to
4866 * tmpfs file mapping
4867 */
4868 if (!trylock_page(page)) {
4869 ret = flush_write_bio(epd);
4870 BUG_ON(ret < 0);
4871 lock_page(page);
4872 }
4873
4874 if (unlikely(page->mapping != mapping)) {
4875 unlock_page(page);
4876 continue;
4877 }
4878
4879 if (wbc->sync_mode != WB_SYNC_NONE) {
4880 if (PageWriteback(page)) {
4881 ret = flush_write_bio(epd);
4882 BUG_ON(ret < 0);
4883 }
4884 wait_on_page_writeback(page);
4885 }
4886
4887 if (PageWriteback(page) ||
4888 !clear_page_dirty_for_io(page)) {
4889 unlock_page(page);
4890 continue;
4891 }
4892
4893 ret = __extent_writepage(page, wbc, epd);
4894 if (ret < 0) {
4895 done = 1;
4896 break;
4897 }
4898
4899 /*
4900 * the filesystem may choose to bump up nr_to_write.
4901 * We have to make sure to honor the new nr_to_write
4902 * at any time
4903 */
4904 nr_to_write_done = wbc->nr_to_write <= 0;
4905 }
4906 pagevec_release(&pvec);
4907 cond_resched();
4908 }
4909 if (!scanned && !done) {
4910 /*
4911 * We hit the last page and there is more work to be done: wrap
4912 * back to the start of the file
4913 */
4914 scanned = 1;
4915 index = 0;
4916
4917 /*
4918 * If we're looping we could run into a page that is locked by a
4919 * writer and that writer could be waiting on writeback for a
4920 * page in our current bio, and thus deadlock, so flush the
4921 * write bio here.
4922 */
4923 ret = flush_write_bio(epd);
4924 if (!ret)
4925 goto retry;
4926 }
4927
4928 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929 mapping->writeback_index = done_index;
4930
4931 btrfs_add_delayed_iput(inode);
4932 return ret;
4933}
4934
4935int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4936{
4937 int ret;
4938 struct extent_page_data epd = {
4939 .bio_ctrl = { 0 },
4940 .extent_locked = 0,
4941 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4942 };
4943
4944 ret = __extent_writepage(page, wbc, &epd);
4945 ASSERT(ret <= 0);
4946 if (ret < 0) {
4947 end_write_bio(&epd, ret);
4948 return ret;
4949 }
4950
4951 ret = flush_write_bio(&epd);
4952 ASSERT(ret <= 0);
4953 return ret;
4954}
4955
4956int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957 int mode)
4958{
4959 int ret = 0;
4960 struct address_space *mapping = inode->i_mapping;
4961 struct page *page;
4962 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963 PAGE_SHIFT;
4964
4965 struct extent_page_data epd = {
4966 .bio_ctrl = { 0 },
4967 .extent_locked = 1,
4968 .sync_io = mode == WB_SYNC_ALL,
4969 };
4970 struct writeback_control wbc_writepages = {
4971 .sync_mode = mode,
4972 .nr_to_write = nr_pages * 2,
4973 .range_start = start,
4974 .range_end = end + 1,
4975 /* We're called from an async helper function */
4976 .punt_to_cgroup = 1,
4977 .no_cgroup_owner = 1,
4978 };
4979
4980 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981 while (start <= end) {
4982 page = find_get_page(mapping, start >> PAGE_SHIFT);
4983 if (clear_page_dirty_for_io(page))
4984 ret = __extent_writepage(page, &wbc_writepages, &epd);
4985 else {
4986 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987 page, start, start + PAGE_SIZE - 1, 1);
4988 unlock_page(page);
4989 }
4990 put_page(page);
4991 start += PAGE_SIZE;
4992 }
4993
4994 ASSERT(ret <= 0);
4995 if (ret == 0)
4996 ret = flush_write_bio(&epd);
4997 else
4998 end_write_bio(&epd, ret);
4999
5000 wbc_detach_inode(&wbc_writepages);
5001 return ret;
5002}
5003
5004int extent_writepages(struct address_space *mapping,
5005 struct writeback_control *wbc)
5006{
5007 int ret = 0;
5008 struct extent_page_data epd = {
5009 .bio_ctrl = { 0 },
5010 .extent_locked = 0,
5011 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012 };
5013
5014 ret = extent_write_cache_pages(mapping, wbc, &epd);
5015 ASSERT(ret <= 0);
5016 if (ret < 0) {
5017 end_write_bio(&epd, ret);
5018 return ret;
5019 }
5020 ret = flush_write_bio(&epd);
5021 return ret;
5022}
5023
5024void extent_readahead(struct readahead_control *rac)
5025{
5026 struct btrfs_bio_ctrl bio_ctrl = { 0 };
5027 struct page *pagepool[16];
5028 struct extent_map *em_cached = NULL;
5029 u64 prev_em_start = (u64)-1;
5030 int nr;
5031
5032 while ((nr = readahead_page_batch(rac, pagepool))) {
5033 u64 contig_start = readahead_pos(rac);
5034 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5035
5036 contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037 &em_cached, &bio_ctrl, &prev_em_start);
5038 }
5039
5040 if (em_cached)
5041 free_extent_map(em_cached);
5042
5043 if (bio_ctrl.bio) {
5044 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045 return;
5046 }
5047}
5048
5049/*
5050 * basic invalidatepage code, this waits on any locked or writeback
5051 * ranges corresponding to the page, and then deletes any extent state
5052 * records from the tree
5053 */
5054int extent_invalidatepage(struct extent_io_tree *tree,
5055 struct page *page, unsigned long offset)
5056{
5057 struct extent_state *cached_state = NULL;
5058 u64 start = page_offset(page);
5059 u64 end = start + PAGE_SIZE - 1;
5060 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061
5062 /* This function is only called for the btree inode */
5063 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064
5065 start += ALIGN(offset, blocksize);
5066 if (start > end)
5067 return 0;
5068
5069 lock_extent_bits(tree, start, end, &cached_state);
5070 wait_on_page_writeback(page);
5071
5072 /*
5073 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074 * so here we only need to unlock the extent range to free any
5075 * existing extent state.
5076 */
5077 unlock_extent_cached(tree, start, end, &cached_state);
5078 return 0;
5079}
5080
5081/*
5082 * a helper for releasepage, this tests for areas of the page that
5083 * are locked or under IO and drops the related state bits if it is safe
5084 * to drop the page.
5085 */
5086static int try_release_extent_state(struct extent_io_tree *tree,
5087 struct page *page, gfp_t mask)
5088{
5089 u64 start = page_offset(page);
5090 u64 end = start + PAGE_SIZE - 1;
5091 int ret = 1;
5092
5093 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5094 ret = 0;
5095 } else {
5096 /*
5097 * At this point we can safely clear everything except the
5098 * locked bit, the nodatasum bit and the delalloc new bit.
5099 * The delalloc new bit will be cleared by ordered extent
5100 * completion.
5101 */
5102 ret = __clear_extent_bit(tree, start, end,
5103 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104 0, 0, NULL, mask, NULL);
5105
5106 /* if clear_extent_bit failed for enomem reasons,
5107 * we can't allow the release to continue.
5108 */
5109 if (ret < 0)
5110 ret = 0;
5111 else
5112 ret = 1;
5113 }
5114 return ret;
5115}
5116
5117/*
5118 * a helper for releasepage. As long as there are no locked extents
5119 * in the range corresponding to the page, both state records and extent
5120 * map records are removed
5121 */
5122int try_release_extent_mapping(struct page *page, gfp_t mask)
5123{
5124 struct extent_map *em;
5125 u64 start = page_offset(page);
5126 u64 end = start + PAGE_SIZE - 1;
5127 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129 struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130
5131 if (gfpflags_allow_blocking(mask) &&
5132 page->mapping->host->i_size > SZ_16M) {
5133 u64 len;
5134 while (start <= end) {
5135 struct btrfs_fs_info *fs_info;
5136 u64 cur_gen;
5137
5138 len = end - start + 1;
5139 write_lock(&map->lock);
5140 em = lookup_extent_mapping(map, start, len);
5141 if (!em) {
5142 write_unlock(&map->lock);
5143 break;
5144 }
5145 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146 em->start != start) {
5147 write_unlock(&map->lock);
5148 free_extent_map(em);
5149 break;
5150 }
5151 if (test_range_bit(tree, em->start,
5152 extent_map_end(em) - 1,
5153 EXTENT_LOCKED, 0, NULL))
5154 goto next;
5155 /*
5156 * If it's not in the list of modified extents, used
5157 * by a fast fsync, we can remove it. If it's being
5158 * logged we can safely remove it since fsync took an
5159 * extra reference on the em.
5160 */
5161 if (list_empty(&em->list) ||
5162 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163 goto remove_em;
5164 /*
5165 * If it's in the list of modified extents, remove it
5166 * only if its generation is older then the current one,
5167 * in which case we don't need it for a fast fsync.
5168 * Otherwise don't remove it, we could be racing with an
5169 * ongoing fast fsync that could miss the new extent.
5170 */
5171 fs_info = btrfs_inode->root->fs_info;
5172 spin_lock(&fs_info->trans_lock);
5173 cur_gen = fs_info->generation;
5174 spin_unlock(&fs_info->trans_lock);
5175 if (em->generation >= cur_gen)
5176 goto next;
5177remove_em:
5178 /*
5179 * We only remove extent maps that are not in the list of
5180 * modified extents or that are in the list but with a
5181 * generation lower then the current generation, so there
5182 * is no need to set the full fsync flag on the inode (it
5183 * hurts the fsync performance for workloads with a data
5184 * size that exceeds or is close to the system's memory).
5185 */
5186 remove_extent_mapping(map, em);
5187 /* once for the rb tree */
5188 free_extent_map(em);
5189next:
5190 start = extent_map_end(em);
5191 write_unlock(&map->lock);
5192
5193 /* once for us */
5194 free_extent_map(em);
5195
5196 cond_resched(); /* Allow large-extent preemption. */
5197 }
5198 }
5199 return try_release_extent_state(tree, page, mask);
5200}
5201
5202/*
5203 * helper function for fiemap, which doesn't want to see any holes.
5204 * This maps until we find something past 'last'
5205 */
5206static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207 u64 offset, u64 last)
5208{
5209 u64 sectorsize = btrfs_inode_sectorsize(inode);
5210 struct extent_map *em;
5211 u64 len;
5212
5213 if (offset >= last)
5214 return NULL;
5215
5216 while (1) {
5217 len = last - offset;
5218 if (len == 0)
5219 break;
5220 len = ALIGN(len, sectorsize);
5221 em = btrfs_get_extent_fiemap(inode, offset, len);
5222 if (IS_ERR_OR_NULL(em))
5223 return em;
5224
5225 /* if this isn't a hole return it */
5226 if (em->block_start != EXTENT_MAP_HOLE)
5227 return em;
5228
5229 /* this is a hole, advance to the next extent */
5230 offset = extent_map_end(em);
5231 free_extent_map(em);
5232 if (offset >= last)
5233 break;
5234 }
5235 return NULL;
5236}
5237
5238/*
5239 * To cache previous fiemap extent
5240 *
5241 * Will be used for merging fiemap extent
5242 */
5243struct fiemap_cache {
5244 u64 offset;
5245 u64 phys;
5246 u64 len;
5247 u32 flags;
5248 bool cached;
5249};
5250
5251/*
5252 * Helper to submit fiemap extent.
5253 *
5254 * Will try to merge current fiemap extent specified by @offset, @phys,
5255 * @len and @flags with cached one.
5256 * And only when we fails to merge, cached one will be submitted as
5257 * fiemap extent.
5258 *
5259 * Return value is the same as fiemap_fill_next_extent().
5260 */
5261static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262 struct fiemap_cache *cache,
5263 u64 offset, u64 phys, u64 len, u32 flags)
5264{
5265 int ret = 0;
5266
5267 if (!cache->cached)
5268 goto assign;
5269
5270 /*
5271 * Sanity check, extent_fiemap() should have ensured that new
5272 * fiemap extent won't overlap with cached one.
5273 * Not recoverable.
5274 *
5275 * NOTE: Physical address can overlap, due to compression
5276 */
5277 if (cache->offset + cache->len > offset) {
5278 WARN_ON(1);
5279 return -EINVAL;
5280 }
5281
5282 /*
5283 * Only merges fiemap extents if
5284 * 1) Their logical addresses are continuous
5285 *
5286 * 2) Their physical addresses are continuous
5287 * So truly compressed (physical size smaller than logical size)
5288 * extents won't get merged with each other
5289 *
5290 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291 * So regular extent won't get merged with prealloc extent
5292 */
5293 if (cache->offset + cache->len == offset &&
5294 cache->phys + cache->len == phys &&
5295 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296 (flags & ~FIEMAP_EXTENT_LAST)) {
5297 cache->len += len;
5298 cache->flags |= flags;
5299 goto try_submit_last;
5300 }
5301
5302 /* Not mergeable, need to submit cached one */
5303 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304 cache->len, cache->flags);
5305 cache->cached = false;
5306 if (ret)
5307 return ret;
5308assign:
5309 cache->cached = true;
5310 cache->offset = offset;
5311 cache->phys = phys;
5312 cache->len = len;
5313 cache->flags = flags;
5314try_submit_last:
5315 if (cache->flags & FIEMAP_EXTENT_LAST) {
5316 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317 cache->phys, cache->len, cache->flags);
5318 cache->cached = false;
5319 }
5320 return ret;
5321}
5322
5323/*
5324 * Emit last fiemap cache
5325 *
5326 * The last fiemap cache may still be cached in the following case:
5327 * 0 4k 8k
5328 * |<- Fiemap range ->|
5329 * |<------------ First extent ----------->|
5330 *
5331 * In this case, the first extent range will be cached but not emitted.
5332 * So we must emit it before ending extent_fiemap().
5333 */
5334static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5335 struct fiemap_cache *cache)
5336{
5337 int ret;
5338
5339 if (!cache->cached)
5340 return 0;
5341
5342 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343 cache->len, cache->flags);
5344 cache->cached = false;
5345 if (ret > 0)
5346 ret = 0;
5347 return ret;
5348}
5349
5350int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351 u64 start, u64 len)
5352{
5353 int ret = 0;
5354 u64 off;
5355 u64 max = start + len;
5356 u32 flags = 0;
5357 u32 found_type;
5358 u64 last;
5359 u64 last_for_get_extent = 0;
5360 u64 disko = 0;
5361 u64 isize = i_size_read(&inode->vfs_inode);
5362 struct btrfs_key found_key;
5363 struct extent_map *em = NULL;
5364 struct extent_state *cached_state = NULL;
5365 struct btrfs_path *path;
5366 struct btrfs_root *root = inode->root;
5367 struct fiemap_cache cache = { 0 };
5368 struct ulist *roots;
5369 struct ulist *tmp_ulist;
5370 int end = 0;
5371 u64 em_start = 0;
5372 u64 em_len = 0;
5373 u64 em_end = 0;
5374
5375 if (len == 0)
5376 return -EINVAL;
5377
5378 path = btrfs_alloc_path();
5379 if (!path)
5380 return -ENOMEM;
5381
5382 roots = ulist_alloc(GFP_KERNEL);
5383 tmp_ulist = ulist_alloc(GFP_KERNEL);
5384 if (!roots || !tmp_ulist) {
5385 ret = -ENOMEM;
5386 goto out_free_ulist;
5387 }
5388
5389 /*
5390 * We can't initialize that to 'start' as this could miss extents due
5391 * to extent item merging
5392 */
5393 off = 0;
5394 start = round_down(start, btrfs_inode_sectorsize(inode));
5395 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5396
5397 /*
5398 * lookup the last file extent. We're not using i_size here
5399 * because there might be preallocation past i_size
5400 */
5401 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402 0);
5403 if (ret < 0) {
5404 goto out_free_ulist;
5405 } else {
5406 WARN_ON(!ret);
5407 if (ret == 1)
5408 ret = 0;
5409 }
5410
5411 path->slots[0]--;
5412 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413 found_type = found_key.type;
5414
5415 /* No extents, but there might be delalloc bits */
5416 if (found_key.objectid != btrfs_ino(inode) ||
5417 found_type != BTRFS_EXTENT_DATA_KEY) {
5418 /* have to trust i_size as the end */
5419 last = (u64)-1;
5420 last_for_get_extent = isize;
5421 } else {
5422 /*
5423 * remember the start of the last extent. There are a
5424 * bunch of different factors that go into the length of the
5425 * extent, so its much less complex to remember where it started
5426 */
5427 last = found_key.offset;
5428 last_for_get_extent = last + 1;
5429 }
5430 btrfs_release_path(path);
5431
5432 /*
5433 * we might have some extents allocated but more delalloc past those
5434 * extents. so, we trust isize unless the start of the last extent is
5435 * beyond isize
5436 */
5437 if (last < isize) {
5438 last = (u64)-1;
5439 last_for_get_extent = isize;
5440 }
5441
5442 lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443 &cached_state);
5444
5445 em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446 if (!em)
5447 goto out;
5448 if (IS_ERR(em)) {
5449 ret = PTR_ERR(em);
5450 goto out;
5451 }
5452
5453 while (!end) {
5454 u64 offset_in_extent = 0;
5455
5456 /* break if the extent we found is outside the range */
5457 if (em->start >= max || extent_map_end(em) < off)
5458 break;
5459
5460 /*
5461 * get_extent may return an extent that starts before our
5462 * requested range. We have to make sure the ranges
5463 * we return to fiemap always move forward and don't
5464 * overlap, so adjust the offsets here
5465 */
5466 em_start = max(em->start, off);
5467
5468 /*
5469 * record the offset from the start of the extent
5470 * for adjusting the disk offset below. Only do this if the
5471 * extent isn't compressed since our in ram offset may be past
5472 * what we have actually allocated on disk.
5473 */
5474 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475 offset_in_extent = em_start - em->start;
5476 em_end = extent_map_end(em);
5477 em_len = em_end - em_start;
5478 flags = 0;
5479 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480 disko = em->block_start + offset_in_extent;
5481 else
5482 disko = 0;
5483
5484 /*
5485 * bump off for our next call to get_extent
5486 */
5487 off = extent_map_end(em);
5488 if (off >= max)
5489 end = 1;
5490
5491 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492 end = 1;
5493 flags |= FIEMAP_EXTENT_LAST;
5494 } else if (em->block_start == EXTENT_MAP_INLINE) {
5495 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496 FIEMAP_EXTENT_NOT_ALIGNED);
5497 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498 flags |= (FIEMAP_EXTENT_DELALLOC |
5499 FIEMAP_EXTENT_UNKNOWN);
5500 } else if (fieinfo->fi_extents_max) {
5501 u64 bytenr = em->block_start -
5502 (em->start - em->orig_start);
5503
5504 /*
5505 * As btrfs supports shared space, this information
5506 * can be exported to userspace tools via
5507 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5508 * then we're just getting a count and we can skip the
5509 * lookup stuff.
5510 */
5511 ret = btrfs_check_shared(root, btrfs_ino(inode),
5512 bytenr, roots, tmp_ulist);
5513 if (ret < 0)
5514 goto out_free;
5515 if (ret)
5516 flags |= FIEMAP_EXTENT_SHARED;
5517 ret = 0;
5518 }
5519 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5520 flags |= FIEMAP_EXTENT_ENCODED;
5521 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522 flags |= FIEMAP_EXTENT_UNWRITTEN;
5523
5524 free_extent_map(em);
5525 em = NULL;
5526 if ((em_start >= last) || em_len == (u64)-1 ||
5527 (last == (u64)-1 && isize <= em_end)) {
5528 flags |= FIEMAP_EXTENT_LAST;
5529 end = 1;
5530 }
5531
5532 /* now scan forward to see if this is really the last extent. */
5533 em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534 if (IS_ERR(em)) {
5535 ret = PTR_ERR(em);
5536 goto out;
5537 }
5538 if (!em) {
5539 flags |= FIEMAP_EXTENT_LAST;
5540 end = 1;
5541 }
5542 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543 em_len, flags);
5544 if (ret) {
5545 if (ret == 1)
5546 ret = 0;
5547 goto out_free;
5548 }
5549 }
5550out_free:
5551 if (!ret)
5552 ret = emit_last_fiemap_cache(fieinfo, &cache);
5553 free_extent_map(em);
5554out:
5555 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5556 &cached_state);
5557
5558out_free_ulist:
5559 btrfs_free_path(path);
5560 ulist_free(roots);
5561 ulist_free(tmp_ulist);
5562 return ret;
5563}
5564
5565static void __free_extent_buffer(struct extent_buffer *eb)
5566{
5567 kmem_cache_free(extent_buffer_cache, eb);
5568}
5569
5570int extent_buffer_under_io(const struct extent_buffer *eb)
5571{
5572 return (atomic_read(&eb->io_pages) ||
5573 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575}
5576
5577static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5578{
5579 struct btrfs_subpage *subpage;
5580
5581 lockdep_assert_held(&page->mapping->private_lock);
5582
5583 if (PagePrivate(page)) {
5584 subpage = (struct btrfs_subpage *)page->private;
5585 if (atomic_read(&subpage->eb_refs))
5586 return true;
5587 /*
5588 * Even there is no eb refs here, we may still have
5589 * end_page_read() call relying on page::private.
5590 */
5591 if (atomic_read(&subpage->readers))
5592 return true;
5593 }
5594 return false;
5595}
5596
5597static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598{
5599 struct btrfs_fs_info *fs_info = eb->fs_info;
5600 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601
5602 /*
5603 * For mapped eb, we're going to change the page private, which should
5604 * be done under the private_lock.
5605 */
5606 if (mapped)
5607 spin_lock(&page->mapping->private_lock);
5608
5609 if (!PagePrivate(page)) {
5610 if (mapped)
5611 spin_unlock(&page->mapping->private_lock);
5612 return;
5613 }
5614
5615 if (fs_info->sectorsize == PAGE_SIZE) {
5616 /*
5617 * We do this since we'll remove the pages after we've
5618 * removed the eb from the radix tree, so we could race
5619 * and have this page now attached to the new eb. So
5620 * only clear page_private if it's still connected to
5621 * this eb.
5622 */
5623 if (PagePrivate(page) &&
5624 page->private == (unsigned long)eb) {
5625 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626 BUG_ON(PageDirty(page));
5627 BUG_ON(PageWriteback(page));
5628 /*
5629 * We need to make sure we haven't be attached
5630 * to a new eb.
5631 */
5632 detach_page_private(page);
5633 }
5634 if (mapped)
5635 spin_unlock(&page->mapping->private_lock);
5636 return;
5637 }
5638
5639 /*
5640 * For subpage, we can have dummy eb with page private. In this case,
5641 * we can directly detach the private as such page is only attached to
5642 * one dummy eb, no sharing.
5643 */
5644 if (!mapped) {
5645 btrfs_detach_subpage(fs_info, page);
5646 return;
5647 }
5648
5649 btrfs_page_dec_eb_refs(fs_info, page);
5650
5651 /*
5652 * We can only detach the page private if there are no other ebs in the
5653 * page range and no unfinished IO.
5654 */
5655 if (!page_range_has_eb(fs_info, page))
5656 btrfs_detach_subpage(fs_info, page);
5657
5658 spin_unlock(&page->mapping->private_lock);
5659}
5660
5661/* Release all pages attached to the extent buffer */
5662static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663{
5664 int i;
5665 int num_pages;
5666
5667 ASSERT(!extent_buffer_under_io(eb));
5668
5669 num_pages = num_extent_pages(eb);
5670 for (i = 0; i < num_pages; i++) {
5671 struct page *page = eb->pages[i];
5672
5673 if (!page)
5674 continue;
5675
5676 detach_extent_buffer_page(eb, page);
5677
5678 /* One for when we allocated the page */
5679 put_page(page);
5680 }
5681}
5682
5683/*
5684 * Helper for releasing the extent buffer.
5685 */
5686static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687{
5688 btrfs_release_extent_buffer_pages(eb);
5689 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690 __free_extent_buffer(eb);
5691}
5692
5693static struct extent_buffer *
5694__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695 unsigned long len)
5696{
5697 struct extent_buffer *eb = NULL;
5698
5699 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700 eb->start = start;
5701 eb->len = len;
5702 eb->fs_info = fs_info;
5703 eb->bflags = 0;
5704 init_rwsem(&eb->lock);
5705
5706 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707 &fs_info->allocated_ebs);
5708 INIT_LIST_HEAD(&eb->release_list);
5709
5710 spin_lock_init(&eb->refs_lock);
5711 atomic_set(&eb->refs, 1);
5712 atomic_set(&eb->io_pages, 0);
5713
5714 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5715
5716 return eb;
5717}
5718
5719struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720{
5721 int i;
5722 struct page *p;
5723 struct extent_buffer *new;
5724 int num_pages = num_extent_pages(src);
5725
5726 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727 if (new == NULL)
5728 return NULL;
5729
5730 /*
5731 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732 * btrfs_release_extent_buffer() have different behavior for
5733 * UNMAPPED subpage extent buffer.
5734 */
5735 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736
5737 for (i = 0; i < num_pages; i++) {
5738 int ret;
5739
5740 p = alloc_page(GFP_NOFS);
5741 if (!p) {
5742 btrfs_release_extent_buffer(new);
5743 return NULL;
5744 }
5745 ret = attach_extent_buffer_page(new, p, NULL);
5746 if (ret < 0) {
5747 put_page(p);
5748 btrfs_release_extent_buffer(new);
5749 return NULL;
5750 }
5751 WARN_ON(PageDirty(p));
5752 new->pages[i] = p;
5753 copy_page(page_address(p), page_address(src->pages[i]));
5754 }
5755 set_extent_buffer_uptodate(new);
5756
5757 return new;
5758}
5759
5760struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761 u64 start, unsigned long len)
5762{
5763 struct extent_buffer *eb;
5764 int num_pages;
5765 int i;
5766
5767 eb = __alloc_extent_buffer(fs_info, start, len);
5768 if (!eb)
5769 return NULL;
5770
5771 num_pages = num_extent_pages(eb);
5772 for (i = 0; i < num_pages; i++) {
5773 int ret;
5774
5775 eb->pages[i] = alloc_page(GFP_NOFS);
5776 if (!eb->pages[i])
5777 goto err;
5778 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779 if (ret < 0)
5780 goto err;
5781 }
5782 set_extent_buffer_uptodate(eb);
5783 btrfs_set_header_nritems(eb, 0);
5784 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785
5786 return eb;
5787err:
5788 for (; i > 0; i--) {
5789 detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790 __free_page(eb->pages[i - 1]);
5791 }
5792 __free_extent_buffer(eb);
5793 return NULL;
5794}
5795
5796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797 u64 start)
5798{
5799 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800}
5801
5802static void check_buffer_tree_ref(struct extent_buffer *eb)
5803{
5804 int refs;
5805 /*
5806 * The TREE_REF bit is first set when the extent_buffer is added
5807 * to the radix tree. It is also reset, if unset, when a new reference
5808 * is created by find_extent_buffer.
5809 *
5810 * It is only cleared in two cases: freeing the last non-tree
5811 * reference to the extent_buffer when its STALE bit is set or
5812 * calling releasepage when the tree reference is the only reference.
5813 *
5814 * In both cases, care is taken to ensure that the extent_buffer's
5815 * pages are not under io. However, releasepage can be concurrently
5816 * called with creating new references, which is prone to race
5817 * conditions between the calls to check_buffer_tree_ref in those
5818 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5819 *
5820 * The actual lifetime of the extent_buffer in the radix tree is
5821 * adequately protected by the refcount, but the TREE_REF bit and
5822 * its corresponding reference are not. To protect against this
5823 * class of races, we call check_buffer_tree_ref from the codepaths
5824 * which trigger io after they set eb->io_pages. Note that once io is
5825 * initiated, TREE_REF can no longer be cleared, so that is the
5826 * moment at which any such race is best fixed.
5827 */
5828 refs = atomic_read(&eb->refs);
5829 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830 return;
5831
5832 spin_lock(&eb->refs_lock);
5833 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834 atomic_inc(&eb->refs);
5835 spin_unlock(&eb->refs_lock);
5836}
5837
5838static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839 struct page *accessed)
5840{
5841 int num_pages, i;
5842
5843 check_buffer_tree_ref(eb);
5844
5845 num_pages = num_extent_pages(eb);
5846 for (i = 0; i < num_pages; i++) {
5847 struct page *p = eb->pages[i];
5848
5849 if (p != accessed)
5850 mark_page_accessed(p);
5851 }
5852}
5853
5854struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855 u64 start)
5856{
5857 struct extent_buffer *eb;
5858
5859 eb = find_extent_buffer_nolock(fs_info, start);
5860 if (!eb)
5861 return NULL;
5862 /*
5863 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865 * another task running free_extent_buffer() might have seen that flag
5866 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867 * writeback flags not set) and it's still in the tree (flag
5868 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869 * decrementing the extent buffer's reference count twice. So here we
5870 * could race and increment the eb's reference count, clear its stale
5871 * flag, mark it as dirty and drop our reference before the other task
5872 * finishes executing free_extent_buffer, which would later result in
5873 * an attempt to free an extent buffer that is dirty.
5874 */
5875 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876 spin_lock(&eb->refs_lock);
5877 spin_unlock(&eb->refs_lock);
5878 }
5879 mark_extent_buffer_accessed(eb, NULL);
5880 return eb;
5881}
5882
5883#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885 u64 start)
5886{
5887 struct extent_buffer *eb, *exists = NULL;
5888 int ret;
5889
5890 eb = find_extent_buffer(fs_info, start);
5891 if (eb)
5892 return eb;
5893 eb = alloc_dummy_extent_buffer(fs_info, start);
5894 if (!eb)
5895 return ERR_PTR(-ENOMEM);
5896 eb->fs_info = fs_info;
5897again:
5898 ret = radix_tree_preload(GFP_NOFS);
5899 if (ret) {
5900 exists = ERR_PTR(ret);
5901 goto free_eb;
5902 }
5903 spin_lock(&fs_info->buffer_lock);
5904 ret = radix_tree_insert(&fs_info->buffer_radix,
5905 start >> fs_info->sectorsize_bits, eb);
5906 spin_unlock(&fs_info->buffer_lock);
5907 radix_tree_preload_end();
5908 if (ret == -EEXIST) {
5909 exists = find_extent_buffer(fs_info, start);
5910 if (exists)
5911 goto free_eb;
5912 else
5913 goto again;
5914 }
5915 check_buffer_tree_ref(eb);
5916 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917
5918 return eb;
5919free_eb:
5920 btrfs_release_extent_buffer(eb);
5921 return exists;
5922}
5923#endif
5924
5925static struct extent_buffer *grab_extent_buffer(
5926 struct btrfs_fs_info *fs_info, struct page *page)
5927{
5928 struct extent_buffer *exists;
5929
5930 /*
5931 * For subpage case, we completely rely on radix tree to ensure we
5932 * don't try to insert two ebs for the same bytenr. So here we always
5933 * return NULL and just continue.
5934 */
5935 if (fs_info->sectorsize < PAGE_SIZE)
5936 return NULL;
5937
5938 /* Page not yet attached to an extent buffer */
5939 if (!PagePrivate(page))
5940 return NULL;
5941
5942 /*
5943 * We could have already allocated an eb for this page and attached one
5944 * so lets see if we can get a ref on the existing eb, and if we can we
5945 * know it's good and we can just return that one, else we know we can
5946 * just overwrite page->private.
5947 */
5948 exists = (struct extent_buffer *)page->private;
5949 if (atomic_inc_not_zero(&exists->refs))
5950 return exists;
5951
5952 WARN_ON(PageDirty(page));
5953 detach_page_private(page);
5954 return NULL;
5955}
5956
5957struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958 u64 start, u64 owner_root, int level)
5959{
5960 unsigned long len = fs_info->nodesize;
5961 int num_pages;
5962 int i;
5963 unsigned long index = start >> PAGE_SHIFT;
5964 struct extent_buffer *eb;
5965 struct extent_buffer *exists = NULL;
5966 struct page *p;
5967 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5968 int uptodate = 1;
5969 int ret;
5970
5971 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972 btrfs_err(fs_info, "bad tree block start %llu", start);
5973 return ERR_PTR(-EINVAL);
5974 }
5975
5976#if BITS_PER_LONG == 32
5977 if (start >= MAX_LFS_FILESIZE) {
5978 btrfs_err_rl(fs_info,
5979 "extent buffer %llu is beyond 32bit page cache limit", start);
5980 btrfs_err_32bit_limit(fs_info);
5981 return ERR_PTR(-EOVERFLOW);
5982 }
5983 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984 btrfs_warn_32bit_limit(fs_info);
5985#endif
5986
5987 if (fs_info->sectorsize < PAGE_SIZE &&
5988 offset_in_page(start) + len > PAGE_SIZE) {
5989 btrfs_err(fs_info,
5990 "tree block crosses page boundary, start %llu nodesize %lu",
5991 start, len);
5992 return ERR_PTR(-EINVAL);
5993 }
5994
5995 eb = find_extent_buffer(fs_info, start);
5996 if (eb)
5997 return eb;
5998
5999 eb = __alloc_extent_buffer(fs_info, start, len);
6000 if (!eb)
6001 return ERR_PTR(-ENOMEM);
6002 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003
6004 num_pages = num_extent_pages(eb);
6005 for (i = 0; i < num_pages; i++, index++) {
6006 struct btrfs_subpage *prealloc = NULL;
6007
6008 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009 if (!p) {
6010 exists = ERR_PTR(-ENOMEM);
6011 goto free_eb;
6012 }
6013
6014 /*
6015 * Preallocate page->private for subpage case, so that we won't
6016 * allocate memory with private_lock hold. The memory will be
6017 * freed by attach_extent_buffer_page() or freed manually if
6018 * we exit earlier.
6019 *
6020 * Although we have ensured one subpage eb can only have one
6021 * page, but it may change in the future for 16K page size
6022 * support, so we still preallocate the memory in the loop.
6023 */
6024 ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025 BTRFS_SUBPAGE_METADATA);
6026 if (ret < 0) {
6027 unlock_page(p);
6028 put_page(p);
6029 exists = ERR_PTR(ret);
6030 goto free_eb;
6031 }
6032
6033 spin_lock(&mapping->private_lock);
6034 exists = grab_extent_buffer(fs_info, p);
6035 if (exists) {
6036 spin_unlock(&mapping->private_lock);
6037 unlock_page(p);
6038 put_page(p);
6039 mark_extent_buffer_accessed(exists, p);
6040 btrfs_free_subpage(prealloc);
6041 goto free_eb;
6042 }
6043 /* Should not fail, as we have preallocated the memory */
6044 ret = attach_extent_buffer_page(eb, p, prealloc);
6045 ASSERT(!ret);
6046 /*
6047 * To inform we have extra eb under allocation, so that
6048 * detach_extent_buffer_page() won't release the page private
6049 * when the eb hasn't yet been inserted into radix tree.
6050 *
6051 * The ref will be decreased when the eb released the page, in
6052 * detach_extent_buffer_page().
6053 * Thus needs no special handling in error path.
6054 */
6055 btrfs_page_inc_eb_refs(fs_info, p);
6056 spin_unlock(&mapping->private_lock);
6057
6058 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059 eb->pages[i] = p;
6060 if (!PageUptodate(p))
6061 uptodate = 0;
6062
6063 /*
6064 * We can't unlock the pages just yet since the extent buffer
6065 * hasn't been properly inserted in the radix tree, this
6066 * opens a race with btree_releasepage which can free a page
6067 * while we are still filling in all pages for the buffer and
6068 * we could crash.
6069 */
6070 }
6071 if (uptodate)
6072 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6073again:
6074 ret = radix_tree_preload(GFP_NOFS);
6075 if (ret) {
6076 exists = ERR_PTR(ret);
6077 goto free_eb;
6078 }
6079
6080 spin_lock(&fs_info->buffer_lock);
6081 ret = radix_tree_insert(&fs_info->buffer_radix,
6082 start >> fs_info->sectorsize_bits, eb);
6083 spin_unlock(&fs_info->buffer_lock);
6084 radix_tree_preload_end();
6085 if (ret == -EEXIST) {
6086 exists = find_extent_buffer(fs_info, start);
6087 if (exists)
6088 goto free_eb;
6089 else
6090 goto again;
6091 }
6092 /* add one reference for the tree */
6093 check_buffer_tree_ref(eb);
6094 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
6096 /*
6097 * Now it's safe to unlock the pages because any calls to
6098 * btree_releasepage will correctly detect that a page belongs to a
6099 * live buffer and won't free them prematurely.
6100 */
6101 for (i = 0; i < num_pages; i++)
6102 unlock_page(eb->pages[i]);
6103 return eb;
6104
6105free_eb:
6106 WARN_ON(!atomic_dec_and_test(&eb->refs));
6107 for (i = 0; i < num_pages; i++) {
6108 if (eb->pages[i])
6109 unlock_page(eb->pages[i]);
6110 }
6111
6112 btrfs_release_extent_buffer(eb);
6113 return exists;
6114}
6115
6116static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117{
6118 struct extent_buffer *eb =
6119 container_of(head, struct extent_buffer, rcu_head);
6120
6121 __free_extent_buffer(eb);
6122}
6123
6124static int release_extent_buffer(struct extent_buffer *eb)
6125 __releases(&eb->refs_lock)
6126{
6127 lockdep_assert_held(&eb->refs_lock);
6128
6129 WARN_ON(atomic_read(&eb->refs) == 0);
6130 if (atomic_dec_and_test(&eb->refs)) {
6131 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132 struct btrfs_fs_info *fs_info = eb->fs_info;
6133
6134 spin_unlock(&eb->refs_lock);
6135
6136 spin_lock(&fs_info->buffer_lock);
6137 radix_tree_delete(&fs_info->buffer_radix,
6138 eb->start >> fs_info->sectorsize_bits);
6139 spin_unlock(&fs_info->buffer_lock);
6140 } else {
6141 spin_unlock(&eb->refs_lock);
6142 }
6143
6144 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145 /* Should be safe to release our pages at this point */
6146 btrfs_release_extent_buffer_pages(eb);
6147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149 __free_extent_buffer(eb);
6150 return 1;
6151 }
6152#endif
6153 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154 return 1;
6155 }
6156 spin_unlock(&eb->refs_lock);
6157
6158 return 0;
6159}
6160
6161void free_extent_buffer(struct extent_buffer *eb)
6162{
6163 int refs;
6164 int old;
6165 if (!eb)
6166 return;
6167
6168 while (1) {
6169 refs = atomic_read(&eb->refs);
6170 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172 refs == 1))
6173 break;
6174 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175 if (old == refs)
6176 return;
6177 }
6178
6179 spin_lock(&eb->refs_lock);
6180 if (atomic_read(&eb->refs) == 2 &&
6181 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182 !extent_buffer_under_io(eb) &&
6183 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184 atomic_dec(&eb->refs);
6185
6186 /*
6187 * I know this is terrible, but it's temporary until we stop tracking
6188 * the uptodate bits and such for the extent buffers.
6189 */
6190 release_extent_buffer(eb);
6191}
6192
6193void free_extent_buffer_stale(struct extent_buffer *eb)
6194{
6195 if (!eb)
6196 return;
6197
6198 spin_lock(&eb->refs_lock);
6199 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200
6201 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203 atomic_dec(&eb->refs);
6204 release_extent_buffer(eb);
6205}
6206
6207static void btree_clear_page_dirty(struct page *page)
6208{
6209 ASSERT(PageDirty(page));
6210 ASSERT(PageLocked(page));
6211 clear_page_dirty_for_io(page);
6212 xa_lock_irq(&page->mapping->i_pages);
6213 if (!PageDirty(page))
6214 __xa_clear_mark(&page->mapping->i_pages,
6215 page_index(page), PAGECACHE_TAG_DIRTY);
6216 xa_unlock_irq(&page->mapping->i_pages);
6217}
6218
6219static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220{
6221 struct btrfs_fs_info *fs_info = eb->fs_info;
6222 struct page *page = eb->pages[0];
6223 bool last;
6224
6225 /* btree_clear_page_dirty() needs page locked */
6226 lock_page(page);
6227 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228 eb->len);
6229 if (last)
6230 btree_clear_page_dirty(page);
6231 unlock_page(page);
6232 WARN_ON(atomic_read(&eb->refs) == 0);
6233}
6234
6235void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6236{
6237 int i;
6238 int num_pages;
6239 struct page *page;
6240
6241 if (eb->fs_info->sectorsize < PAGE_SIZE)
6242 return clear_subpage_extent_buffer_dirty(eb);
6243
6244 num_pages = num_extent_pages(eb);
6245
6246 for (i = 0; i < num_pages; i++) {
6247 page = eb->pages[i];
6248 if (!PageDirty(page))
6249 continue;
6250 lock_page(page);
6251 btree_clear_page_dirty(page);
6252 ClearPageError(page);
6253 unlock_page(page);
6254 }
6255 WARN_ON(atomic_read(&eb->refs) == 0);
6256}
6257
6258bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259{
6260 int i;
6261 int num_pages;
6262 bool was_dirty;
6263
6264 check_buffer_tree_ref(eb);
6265
6266 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267
6268 num_pages = num_extent_pages(eb);
6269 WARN_ON(atomic_read(&eb->refs) == 0);
6270 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6271
6272 if (!was_dirty) {
6273 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6274
6275 /*
6276 * For subpage case, we can have other extent buffers in the
6277 * same page, and in clear_subpage_extent_buffer_dirty() we
6278 * have to clear page dirty without subpage lock held.
6279 * This can cause race where our page gets dirty cleared after
6280 * we just set it.
6281 *
6282 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283 * its page for other reasons, we can use page lock to prevent
6284 * the above race.
6285 */
6286 if (subpage)
6287 lock_page(eb->pages[0]);
6288 for (i = 0; i < num_pages; i++)
6289 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290 eb->start, eb->len);
6291 if (subpage)
6292 unlock_page(eb->pages[0]);
6293 }
6294#ifdef CONFIG_BTRFS_DEBUG
6295 for (i = 0; i < num_pages; i++)
6296 ASSERT(PageDirty(eb->pages[i]));
6297#endif
6298
6299 return was_dirty;
6300}
6301
6302void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303{
6304 struct btrfs_fs_info *fs_info = eb->fs_info;
6305 struct page *page;
6306 int num_pages;
6307 int i;
6308
6309 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310 num_pages = num_extent_pages(eb);
6311 for (i = 0; i < num_pages; i++) {
6312 page = eb->pages[i];
6313 if (page)
6314 btrfs_page_clear_uptodate(fs_info, page,
6315 eb->start, eb->len);
6316 }
6317}
6318
6319void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320{
6321 struct btrfs_fs_info *fs_info = eb->fs_info;
6322 struct page *page;
6323 int num_pages;
6324 int i;
6325
6326 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327 num_pages = num_extent_pages(eb);
6328 for (i = 0; i < num_pages; i++) {
6329 page = eb->pages[i];
6330 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6331 }
6332}
6333
6334static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335 int mirror_num)
6336{
6337 struct btrfs_fs_info *fs_info = eb->fs_info;
6338 struct extent_io_tree *io_tree;
6339 struct page *page = eb->pages[0];
6340 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341 int ret = 0;
6342
6343 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344 ASSERT(PagePrivate(page));
6345 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346
6347 if (wait == WAIT_NONE) {
6348 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349 return -EAGAIN;
6350 } else {
6351 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352 if (ret < 0)
6353 return ret;
6354 }
6355
6356 ret = 0;
6357 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358 PageUptodate(page) ||
6359 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362 return ret;
6363 }
6364
6365 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366 eb->read_mirror = 0;
6367 atomic_set(&eb->io_pages, 1);
6368 check_buffer_tree_ref(eb);
6369 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370
6371 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373 page, eb->start, eb->len,
6374 eb->start - page_offset(page),
6375 end_bio_extent_readpage, mirror_num, 0,
6376 true);
6377 if (ret) {
6378 /*
6379 * In the endio function, if we hit something wrong we will
6380 * increase the io_pages, so here we need to decrease it for
6381 * error path.
6382 */
6383 atomic_dec(&eb->io_pages);
6384 }
6385 if (bio_ctrl.bio) {
6386 int tmp;
6387
6388 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389 bio_ctrl.bio = NULL;
6390 if (tmp < 0)
6391 return tmp;
6392 }
6393 if (ret || wait != WAIT_COMPLETE)
6394 return ret;
6395
6396 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398 ret = -EIO;
6399 return ret;
6400}
6401
6402int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6403{
6404 int i;
6405 struct page *page;
6406 int err;
6407 int ret = 0;
6408 int locked_pages = 0;
6409 int all_uptodate = 1;
6410 int num_pages;
6411 unsigned long num_reads = 0;
6412 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6413
6414 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415 return 0;
6416
6417 if (eb->fs_info->sectorsize < PAGE_SIZE)
6418 return read_extent_buffer_subpage(eb, wait, mirror_num);
6419
6420 num_pages = num_extent_pages(eb);
6421 for (i = 0; i < num_pages; i++) {
6422 page = eb->pages[i];
6423 if (wait == WAIT_NONE) {
6424 /*
6425 * WAIT_NONE is only utilized by readahead. If we can't
6426 * acquire the lock atomically it means either the eb
6427 * is being read out or under modification.
6428 * Either way the eb will be or has been cached,
6429 * readahead can exit safely.
6430 */
6431 if (!trylock_page(page))
6432 goto unlock_exit;
6433 } else {
6434 lock_page(page);
6435 }
6436 locked_pages++;
6437 }
6438 /*
6439 * We need to firstly lock all pages to make sure that
6440 * the uptodate bit of our pages won't be affected by
6441 * clear_extent_buffer_uptodate().
6442 */
6443 for (i = 0; i < num_pages; i++) {
6444 page = eb->pages[i];
6445 if (!PageUptodate(page)) {
6446 num_reads++;
6447 all_uptodate = 0;
6448 }
6449 }
6450
6451 if (all_uptodate) {
6452 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453 goto unlock_exit;
6454 }
6455
6456 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457 eb->read_mirror = 0;
6458 atomic_set(&eb->io_pages, num_reads);
6459 /*
6460 * It is possible for releasepage to clear the TREE_REF bit before we
6461 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462 */
6463 check_buffer_tree_ref(eb);
6464 for (i = 0; i < num_pages; i++) {
6465 page = eb->pages[i];
6466
6467 if (!PageUptodate(page)) {
6468 if (ret) {
6469 atomic_dec(&eb->io_pages);
6470 unlock_page(page);
6471 continue;
6472 }
6473
6474 ClearPageError(page);
6475 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476 &bio_ctrl, page, page_offset(page),
6477 PAGE_SIZE, 0, end_bio_extent_readpage,
6478 mirror_num, 0, false);
6479 if (err) {
6480 /*
6481 * We failed to submit the bio so it's the
6482 * caller's responsibility to perform cleanup
6483 * i.e unlock page/set error bit.
6484 */
6485 ret = err;
6486 SetPageError(page);
6487 unlock_page(page);
6488 atomic_dec(&eb->io_pages);
6489 }
6490 } else {
6491 unlock_page(page);
6492 }
6493 }
6494
6495 if (bio_ctrl.bio) {
6496 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497 bio_ctrl.bio = NULL;
6498 if (err)
6499 return err;
6500 }
6501
6502 if (ret || wait != WAIT_COMPLETE)
6503 return ret;
6504
6505 for (i = 0; i < num_pages; i++) {
6506 page = eb->pages[i];
6507 wait_on_page_locked(page);
6508 if (!PageUptodate(page))
6509 ret = -EIO;
6510 }
6511
6512 return ret;
6513
6514unlock_exit:
6515 while (locked_pages > 0) {
6516 locked_pages--;
6517 page = eb->pages[locked_pages];
6518 unlock_page(page);
6519 }
6520 return ret;
6521}
6522
6523static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524 unsigned long len)
6525{
6526 btrfs_warn(eb->fs_info,
6527 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528 eb->start, eb->len, start, len);
6529 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530
6531 return true;
6532}
6533
6534/*
6535 * Check if the [start, start + len) range is valid before reading/writing
6536 * the eb.
6537 * NOTE: @start and @len are offset inside the eb, not logical address.
6538 *
6539 * Caller should not touch the dst/src memory if this function returns error.
6540 */
6541static inline int check_eb_range(const struct extent_buffer *eb,
6542 unsigned long start, unsigned long len)
6543{
6544 unsigned long offset;
6545
6546 /* start, start + len should not go beyond eb->len nor overflow */
6547 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548 return report_eb_range(eb, start, len);
6549
6550 return false;
6551}
6552
6553void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554 unsigned long start, unsigned long len)
6555{
6556 size_t cur;
6557 size_t offset;
6558 struct page *page;
6559 char *kaddr;
6560 char *dst = (char *)dstv;
6561 unsigned long i = get_eb_page_index(start);
6562
6563 if (check_eb_range(eb, start, len))
6564 return;
6565
6566 offset = get_eb_offset_in_page(eb, start);
6567
6568 while (len > 0) {
6569 page = eb->pages[i];
6570
6571 cur = min(len, (PAGE_SIZE - offset));
6572 kaddr = page_address(page);
6573 memcpy(dst, kaddr + offset, cur);
6574
6575 dst += cur;
6576 len -= cur;
6577 offset = 0;
6578 i++;
6579 }
6580}
6581
6582int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583 void __user *dstv,
6584 unsigned long start, unsigned long len)
6585{
6586 size_t cur;
6587 size_t offset;
6588 struct page *page;
6589 char *kaddr;
6590 char __user *dst = (char __user *)dstv;
6591 unsigned long i = get_eb_page_index(start);
6592 int ret = 0;
6593
6594 WARN_ON(start > eb->len);
6595 WARN_ON(start + len > eb->start + eb->len);
6596
6597 offset = get_eb_offset_in_page(eb, start);
6598
6599 while (len > 0) {
6600 page = eb->pages[i];
6601
6602 cur = min(len, (PAGE_SIZE - offset));
6603 kaddr = page_address(page);
6604 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605 ret = -EFAULT;
6606 break;
6607 }
6608
6609 dst += cur;
6610 len -= cur;
6611 offset = 0;
6612 i++;
6613 }
6614
6615 return ret;
6616}
6617
6618int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619 unsigned long start, unsigned long len)
6620{
6621 size_t cur;
6622 size_t offset;
6623 struct page *page;
6624 char *kaddr;
6625 char *ptr = (char *)ptrv;
6626 unsigned long i = get_eb_page_index(start);
6627 int ret = 0;
6628
6629 if (check_eb_range(eb, start, len))
6630 return -EINVAL;
6631
6632 offset = get_eb_offset_in_page(eb, start);
6633
6634 while (len > 0) {
6635 page = eb->pages[i];
6636
6637 cur = min(len, (PAGE_SIZE - offset));
6638
6639 kaddr = page_address(page);
6640 ret = memcmp(ptr, kaddr + offset, cur);
6641 if (ret)
6642 break;
6643
6644 ptr += cur;
6645 len -= cur;
6646 offset = 0;
6647 i++;
6648 }
6649 return ret;
6650}
6651
6652/*
6653 * Check that the extent buffer is uptodate.
6654 *
6655 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657 */
6658static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659 struct page *page)
6660{
6661 struct btrfs_fs_info *fs_info = eb->fs_info;
6662
6663 if (fs_info->sectorsize < PAGE_SIZE) {
6664 bool uptodate;
6665
6666 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667 eb->start, eb->len);
6668 WARN_ON(!uptodate);
6669 } else {
6670 WARN_ON(!PageUptodate(page));
6671 }
6672}
6673
6674void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675 const void *srcv)
6676{
6677 char *kaddr;
6678
6679 assert_eb_page_uptodate(eb, eb->pages[0]);
6680 kaddr = page_address(eb->pages[0]) +
6681 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682 chunk_tree_uuid));
6683 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684}
6685
6686void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687{
6688 char *kaddr;
6689
6690 assert_eb_page_uptodate(eb, eb->pages[0]);
6691 kaddr = page_address(eb->pages[0]) +
6692 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694}
6695
6696void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697 unsigned long start, unsigned long len)
6698{
6699 size_t cur;
6700 size_t offset;
6701 struct page *page;
6702 char *kaddr;
6703 char *src = (char *)srcv;
6704 unsigned long i = get_eb_page_index(start);
6705
6706 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6707
6708 if (check_eb_range(eb, start, len))
6709 return;
6710
6711 offset = get_eb_offset_in_page(eb, start);
6712
6713 while (len > 0) {
6714 page = eb->pages[i];
6715 assert_eb_page_uptodate(eb, page);
6716
6717 cur = min(len, PAGE_SIZE - offset);
6718 kaddr = page_address(page);
6719 memcpy(kaddr + offset, src, cur);
6720
6721 src += cur;
6722 len -= cur;
6723 offset = 0;
6724 i++;
6725 }
6726}
6727
6728void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729 unsigned long len)
6730{
6731 size_t cur;
6732 size_t offset;
6733 struct page *page;
6734 char *kaddr;
6735 unsigned long i = get_eb_page_index(start);
6736
6737 if (check_eb_range(eb, start, len))
6738 return;
6739
6740 offset = get_eb_offset_in_page(eb, start);
6741
6742 while (len > 0) {
6743 page = eb->pages[i];
6744 assert_eb_page_uptodate(eb, page);
6745
6746 cur = min(len, PAGE_SIZE - offset);
6747 kaddr = page_address(page);
6748 memset(kaddr + offset, 0, cur);
6749
6750 len -= cur;
6751 offset = 0;
6752 i++;
6753 }
6754}
6755
6756void copy_extent_buffer_full(const struct extent_buffer *dst,
6757 const struct extent_buffer *src)
6758{
6759 int i;
6760 int num_pages;
6761
6762 ASSERT(dst->len == src->len);
6763
6764 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765 num_pages = num_extent_pages(dst);
6766 for (i = 0; i < num_pages; i++)
6767 copy_page(page_address(dst->pages[i]),
6768 page_address(src->pages[i]));
6769 } else {
6770 size_t src_offset = get_eb_offset_in_page(src, 0);
6771 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772
6773 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774 memcpy(page_address(dst->pages[0]) + dst_offset,
6775 page_address(src->pages[0]) + src_offset,
6776 src->len);
6777 }
6778}
6779
6780void copy_extent_buffer(const struct extent_buffer *dst,
6781 const struct extent_buffer *src,
6782 unsigned long dst_offset, unsigned long src_offset,
6783 unsigned long len)
6784{
6785 u64 dst_len = dst->len;
6786 size_t cur;
6787 size_t offset;
6788 struct page *page;
6789 char *kaddr;
6790 unsigned long i = get_eb_page_index(dst_offset);
6791
6792 if (check_eb_range(dst, dst_offset, len) ||
6793 check_eb_range(src, src_offset, len))
6794 return;
6795
6796 WARN_ON(src->len != dst_len);
6797
6798 offset = get_eb_offset_in_page(dst, dst_offset);
6799
6800 while (len > 0) {
6801 page = dst->pages[i];
6802 assert_eb_page_uptodate(dst, page);
6803
6804 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805
6806 kaddr = page_address(page);
6807 read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808
6809 src_offset += cur;
6810 len -= cur;
6811 offset = 0;
6812 i++;
6813 }
6814}
6815
6816/*
6817 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818 * given bit number
6819 * @eb: the extent buffer
6820 * @start: offset of the bitmap item in the extent buffer
6821 * @nr: bit number
6822 * @page_index: return index of the page in the extent buffer that contains the
6823 * given bit number
6824 * @page_offset: return offset into the page given by page_index
6825 *
6826 * This helper hides the ugliness of finding the byte in an extent buffer which
6827 * contains a given bit.
6828 */
6829static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830 unsigned long start, unsigned long nr,
6831 unsigned long *page_index,
6832 size_t *page_offset)
6833{
6834 size_t byte_offset = BIT_BYTE(nr);
6835 size_t offset;
6836
6837 /*
6838 * The byte we want is the offset of the extent buffer + the offset of
6839 * the bitmap item in the extent buffer + the offset of the byte in the
6840 * bitmap item.
6841 */
6842 offset = start + offset_in_page(eb->start) + byte_offset;
6843
6844 *page_index = offset >> PAGE_SHIFT;
6845 *page_offset = offset_in_page(offset);
6846}
6847
6848/**
6849 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850 * @eb: the extent buffer
6851 * @start: offset of the bitmap item in the extent buffer
6852 * @nr: bit number to test
6853 */
6854int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855 unsigned long nr)
6856{
6857 u8 *kaddr;
6858 struct page *page;
6859 unsigned long i;
6860 size_t offset;
6861
6862 eb_bitmap_offset(eb, start, nr, &i, &offset);
6863 page = eb->pages[i];
6864 assert_eb_page_uptodate(eb, page);
6865 kaddr = page_address(page);
6866 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867}
6868
6869/**
6870 * extent_buffer_bitmap_set - set an area of a bitmap
6871 * @eb: the extent buffer
6872 * @start: offset of the bitmap item in the extent buffer
6873 * @pos: bit number of the first bit
6874 * @len: number of bits to set
6875 */
6876void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877 unsigned long pos, unsigned long len)
6878{
6879 u8 *kaddr;
6880 struct page *page;
6881 unsigned long i;
6882 size_t offset;
6883 const unsigned int size = pos + len;
6884 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886
6887 eb_bitmap_offset(eb, start, pos, &i, &offset);
6888 page = eb->pages[i];
6889 assert_eb_page_uptodate(eb, page);
6890 kaddr = page_address(page);
6891
6892 while (len >= bits_to_set) {
6893 kaddr[offset] |= mask_to_set;
6894 len -= bits_to_set;
6895 bits_to_set = BITS_PER_BYTE;
6896 mask_to_set = ~0;
6897 if (++offset >= PAGE_SIZE && len > 0) {
6898 offset = 0;
6899 page = eb->pages[++i];
6900 assert_eb_page_uptodate(eb, page);
6901 kaddr = page_address(page);
6902 }
6903 }
6904 if (len) {
6905 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906 kaddr[offset] |= mask_to_set;
6907 }
6908}
6909
6910
6911/**
6912 * extent_buffer_bitmap_clear - clear an area of a bitmap
6913 * @eb: the extent buffer
6914 * @start: offset of the bitmap item in the extent buffer
6915 * @pos: bit number of the first bit
6916 * @len: number of bits to clear
6917 */
6918void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919 unsigned long start, unsigned long pos,
6920 unsigned long len)
6921{
6922 u8 *kaddr;
6923 struct page *page;
6924 unsigned long i;
6925 size_t offset;
6926 const unsigned int size = pos + len;
6927 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929
6930 eb_bitmap_offset(eb, start, pos, &i, &offset);
6931 page = eb->pages[i];
6932 assert_eb_page_uptodate(eb, page);
6933 kaddr = page_address(page);
6934
6935 while (len >= bits_to_clear) {
6936 kaddr[offset] &= ~mask_to_clear;
6937 len -= bits_to_clear;
6938 bits_to_clear = BITS_PER_BYTE;
6939 mask_to_clear = ~0;
6940 if (++offset >= PAGE_SIZE && len > 0) {
6941 offset = 0;
6942 page = eb->pages[++i];
6943 assert_eb_page_uptodate(eb, page);
6944 kaddr = page_address(page);
6945 }
6946 }
6947 if (len) {
6948 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949 kaddr[offset] &= ~mask_to_clear;
6950 }
6951}
6952
6953static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954{
6955 unsigned long distance = (src > dst) ? src - dst : dst - src;
6956 return distance < len;
6957}
6958
6959static void copy_pages(struct page *dst_page, struct page *src_page,
6960 unsigned long dst_off, unsigned long src_off,
6961 unsigned long len)
6962{
6963 char *dst_kaddr = page_address(dst_page);
6964 char *src_kaddr;
6965 int must_memmove = 0;
6966
6967 if (dst_page != src_page) {
6968 src_kaddr = page_address(src_page);
6969 } else {
6970 src_kaddr = dst_kaddr;
6971 if (areas_overlap(src_off, dst_off, len))
6972 must_memmove = 1;
6973 }
6974
6975 if (must_memmove)
6976 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977 else
6978 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979}
6980
6981void memcpy_extent_buffer(const struct extent_buffer *dst,
6982 unsigned long dst_offset, unsigned long src_offset,
6983 unsigned long len)
6984{
6985 size_t cur;
6986 size_t dst_off_in_page;
6987 size_t src_off_in_page;
6988 unsigned long dst_i;
6989 unsigned long src_i;
6990
6991 if (check_eb_range(dst, dst_offset, len) ||
6992 check_eb_range(dst, src_offset, len))
6993 return;
6994
6995 while (len > 0) {
6996 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6998
6999 dst_i = get_eb_page_index(dst_offset);
7000 src_i = get_eb_page_index(src_offset);
7001
7002 cur = min(len, (unsigned long)(PAGE_SIZE -
7003 src_off_in_page));
7004 cur = min_t(unsigned long, cur,
7005 (unsigned long)(PAGE_SIZE - dst_off_in_page));
7006
7007 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008 dst_off_in_page, src_off_in_page, cur);
7009
7010 src_offset += cur;
7011 dst_offset += cur;
7012 len -= cur;
7013 }
7014}
7015
7016void memmove_extent_buffer(const struct extent_buffer *dst,
7017 unsigned long dst_offset, unsigned long src_offset,
7018 unsigned long len)
7019{
7020 size_t cur;
7021 size_t dst_off_in_page;
7022 size_t src_off_in_page;
7023 unsigned long dst_end = dst_offset + len - 1;
7024 unsigned long src_end = src_offset + len - 1;
7025 unsigned long dst_i;
7026 unsigned long src_i;
7027
7028 if (check_eb_range(dst, dst_offset, len) ||
7029 check_eb_range(dst, src_offset, len))
7030 return;
7031 if (dst_offset < src_offset) {
7032 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033 return;
7034 }
7035 while (len > 0) {
7036 dst_i = get_eb_page_index(dst_end);
7037 src_i = get_eb_page_index(src_end);
7038
7039 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040 src_off_in_page = get_eb_offset_in_page(dst, src_end);
7041
7042 cur = min_t(unsigned long, len, src_off_in_page + 1);
7043 cur = min(cur, dst_off_in_page + 1);
7044 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045 dst_off_in_page - cur + 1,
7046 src_off_in_page - cur + 1, cur);
7047
7048 dst_end -= cur;
7049 src_end -= cur;
7050 len -= cur;
7051 }
7052}
7053
7054static struct extent_buffer *get_next_extent_buffer(
7055 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056{
7057 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058 struct extent_buffer *found = NULL;
7059 u64 page_start = page_offset(page);
7060 int ret;
7061 int i;
7062
7063 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065 lockdep_assert_held(&fs_info->buffer_lock);
7066
7067 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068 bytenr >> fs_info->sectorsize_bits,
7069 PAGE_SIZE / fs_info->nodesize);
7070 for (i = 0; i < ret; i++) {
7071 /* Already beyond page end */
7072 if (gang[i]->start >= page_start + PAGE_SIZE)
7073 break;
7074 /* Found one */
7075 if (gang[i]->start >= bytenr) {
7076 found = gang[i];
7077 break;
7078 }
7079 }
7080 return found;
7081}
7082
7083static int try_release_subpage_extent_buffer(struct page *page)
7084{
7085 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086 u64 cur = page_offset(page);
7087 const u64 end = page_offset(page) + PAGE_SIZE;
7088 int ret;
7089
7090 while (cur < end) {
7091 struct extent_buffer *eb = NULL;
7092
7093 /*
7094 * Unlike try_release_extent_buffer() which uses page->private
7095 * to grab buffer, for subpage case we rely on radix tree, thus
7096 * we need to ensure radix tree consistency.
7097 *
7098 * We also want an atomic snapshot of the radix tree, thus go
7099 * with spinlock rather than RCU.
7100 */
7101 spin_lock(&fs_info->buffer_lock);
7102 eb = get_next_extent_buffer(fs_info, page, cur);
7103 if (!eb) {
7104 /* No more eb in the page range after or at cur */
7105 spin_unlock(&fs_info->buffer_lock);
7106 break;
7107 }
7108 cur = eb->start + eb->len;
7109
7110 /*
7111 * The same as try_release_extent_buffer(), to ensure the eb
7112 * won't disappear out from under us.
7113 */
7114 spin_lock(&eb->refs_lock);
7115 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116 spin_unlock(&eb->refs_lock);
7117 spin_unlock(&fs_info->buffer_lock);
7118 break;
7119 }
7120 spin_unlock(&fs_info->buffer_lock);
7121
7122 /*
7123 * If tree ref isn't set then we know the ref on this eb is a
7124 * real ref, so just return, this eb will likely be freed soon
7125 * anyway.
7126 */
7127 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128 spin_unlock(&eb->refs_lock);
7129 break;
7130 }
7131
7132 /*
7133 * Here we don't care about the return value, we will always
7134 * check the page private at the end. And
7135 * release_extent_buffer() will release the refs_lock.
7136 */
7137 release_extent_buffer(eb);
7138 }
7139 /*
7140 * Finally to check if we have cleared page private, as if we have
7141 * released all ebs in the page, the page private should be cleared now.
7142 */
7143 spin_lock(&page->mapping->private_lock);
7144 if (!PagePrivate(page))
7145 ret = 1;
7146 else
7147 ret = 0;
7148 spin_unlock(&page->mapping->private_lock);
7149 return ret;
7150
7151}
7152
7153int try_release_extent_buffer(struct page *page)
7154{
7155 struct extent_buffer *eb;
7156
7157 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158 return try_release_subpage_extent_buffer(page);
7159
7160 /*
7161 * We need to make sure nobody is changing page->private, as we rely on
7162 * page->private as the pointer to extent buffer.
7163 */
7164 spin_lock(&page->mapping->private_lock);
7165 if (!PagePrivate(page)) {
7166 spin_unlock(&page->mapping->private_lock);
7167 return 1;
7168 }
7169
7170 eb = (struct extent_buffer *)page->private;
7171 BUG_ON(!eb);
7172
7173 /*
7174 * This is a little awful but should be ok, we need to make sure that
7175 * the eb doesn't disappear out from under us while we're looking at
7176 * this page.
7177 */
7178 spin_lock(&eb->refs_lock);
7179 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180 spin_unlock(&eb->refs_lock);
7181 spin_unlock(&page->mapping->private_lock);
7182 return 0;
7183 }
7184 spin_unlock(&page->mapping->private_lock);
7185
7186 /*
7187 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188 * so just return, this page will likely be freed soon anyway.
7189 */
7190 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191 spin_unlock(&eb->refs_lock);
7192 return 0;
7193 }
7194
7195 return release_extent_buffer(eb);
7196}
7197
7198/*
7199 * btrfs_readahead_tree_block - attempt to readahead a child block
7200 * @fs_info: the fs_info
7201 * @bytenr: bytenr to read
7202 * @owner_root: objectid of the root that owns this eb
7203 * @gen: generation for the uptodate check, can be 0
7204 * @level: level for the eb
7205 *
7206 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7207 * normal uptodate check of the eb, without checking the generation. If we have
7208 * to read the block we will not block on anything.
7209 */
7210void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211 u64 bytenr, u64 owner_root, u64 gen, int level)
7212{
7213 struct extent_buffer *eb;
7214 int ret;
7215
7216 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217 if (IS_ERR(eb))
7218 return;
7219
7220 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221 free_extent_buffer(eb);
7222 return;
7223 }
7224
7225 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226 if (ret < 0)
7227 free_extent_buffer_stale(eb);
7228 else
7229 free_extent_buffer(eb);
7230}
7231
7232/*
7233 * btrfs_readahead_node_child - readahead a node's child block
7234 * @node: parent node we're reading from
7235 * @slot: slot in the parent node for the child we want to read
7236 *
7237 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238 * the slot in the node provided.
7239 */
7240void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241{
7242 btrfs_readahead_tree_block(node->fs_info,
7243 btrfs_node_blockptr(node, slot),
7244 btrfs_header_owner(node),
7245 btrfs_node_ptr_generation(node, slot),
7246 btrfs_header_level(node) - 1);
7247}