Loading...
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
12#include <linux/prefetch.h>
13#include <linux/cleancache.h>
14#include "extent_io.h"
15#include "extent_map.h"
16#include "ctree.h"
17#include "btrfs_inode.h"
18#include "volumes.h"
19#include "check-integrity.h"
20#include "locking.h"
21#include "rcu-string.h"
22#include "backref.h"
23#include "transaction.h"
24
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27static struct bio_set *btrfs_bioset;
28
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
34#ifdef CONFIG_BTRFS_DEBUG
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
37
38static DEFINE_SPINLOCK(leak_lock);
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
84
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89{
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103}
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109#endif
110
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
132};
133
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
153static noinline void flush_write_bio(void *data);
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
161
162int __init extent_io_init(void)
163{
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217{
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223}
224
225static struct extent_state *alloc_extent_state(gfp_t mask)
226{
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240}
241
242void free_extent_state(struct extent_state *state)
243{
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
253
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260{
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295{
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347{
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355}
356
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413}
414
415static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417{
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424{
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427}
428
429static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448{
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464 found->start, found->end, start, end);
465 return -EEXIST;
466 }
467 merge_state(tree, state);
468 return 0;
469}
470
471static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
472 u64 split)
473{
474 if (tree->ops && tree->ops->split_extent_hook)
475 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
476}
477
478/*
479 * split a given extent state struct in two, inserting the preallocated
480 * struct 'prealloc' as the newly created second half. 'split' indicates an
481 * offset inside 'orig' where it should be split.
482 *
483 * Before calling,
484 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
485 * are two extent state structs in the tree:
486 * prealloc: [orig->start, split - 1]
487 * orig: [ split, orig->end ]
488 *
489 * The tree locks are not taken by this function. They need to be held
490 * by the caller.
491 */
492static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
493 struct extent_state *prealloc, u64 split)
494{
495 struct rb_node *node;
496
497 split_cb(tree, orig, split);
498
499 prealloc->start = orig->start;
500 prealloc->end = split - 1;
501 prealloc->state = orig->state;
502 orig->start = split;
503
504 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
505 &prealloc->rb_node, NULL, NULL);
506 if (node) {
507 free_extent_state(prealloc);
508 return -EEXIST;
509 }
510 return 0;
511}
512
513static struct extent_state *next_state(struct extent_state *state)
514{
515 struct rb_node *next = rb_next(&state->rb_node);
516 if (next)
517 return rb_entry(next, struct extent_state, rb_node);
518 else
519 return NULL;
520}
521
522/*
523 * utility function to clear some bits in an extent state struct.
524 * it will optionally wake up any one waiting on this state (wake == 1).
525 *
526 * If no bits are set on the state struct after clearing things, the
527 * struct is freed and removed from the tree
528 */
529static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
530 struct extent_state *state,
531 unsigned *bits, int wake,
532 struct extent_changeset *changeset)
533{
534 struct extent_state *next;
535 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
536
537 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
538 u64 range = state->end - state->start + 1;
539 WARN_ON(range > tree->dirty_bytes);
540 tree->dirty_bytes -= range;
541 }
542 clear_state_cb(tree, state, bits);
543 add_extent_changeset(state, bits_to_clear, changeset, 0);
544 state->state &= ~bits_to_clear;
545 if (wake)
546 wake_up(&state->wq);
547 if (state->state == 0) {
548 next = next_state(state);
549 if (extent_state_in_tree(state)) {
550 rb_erase(&state->rb_node, &tree->state);
551 RB_CLEAR_NODE(&state->rb_node);
552 free_extent_state(state);
553 } else {
554 WARN_ON(1);
555 }
556 } else {
557 merge_state(tree, state);
558 next = next_state(state);
559 }
560 return next;
561}
562
563static struct extent_state *
564alloc_extent_state_atomic(struct extent_state *prealloc)
565{
566 if (!prealloc)
567 prealloc = alloc_extent_state(GFP_ATOMIC);
568
569 return prealloc;
570}
571
572static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
573{
574 btrfs_panic(tree_fs_info(tree), err,
575 "Locking error: Extent tree was modified by another thread while locked.");
576}
577
578/*
579 * clear some bits on a range in the tree. This may require splitting
580 * or inserting elements in the tree, so the gfp mask is used to
581 * indicate which allocations or sleeping are allowed.
582 *
583 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584 * the given range from the tree regardless of state (ie for truncate).
585 *
586 * the range [start, end] is inclusive.
587 *
588 * This takes the tree lock, and returns 0 on success and < 0 on error.
589 */
590static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
591 unsigned bits, int wake, int delete,
592 struct extent_state **cached_state,
593 gfp_t mask, struct extent_changeset *changeset)
594{
595 struct extent_state *state;
596 struct extent_state *cached;
597 struct extent_state *prealloc = NULL;
598 struct rb_node *node;
599 u64 last_end;
600 int err;
601 int clear = 0;
602
603 btrfs_debug_check_extent_io_range(tree, start, end);
604
605 if (bits & EXTENT_DELALLOC)
606 bits |= EXTENT_NORESERVE;
607
608 if (delete)
609 bits |= ~EXTENT_CTLBITS;
610 bits |= EXTENT_FIRST_DELALLOC;
611
612 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
613 clear = 1;
614again:
615 if (!prealloc && gfpflags_allow_blocking(mask)) {
616 /*
617 * Don't care for allocation failure here because we might end
618 * up not needing the pre-allocated extent state at all, which
619 * is the case if we only have in the tree extent states that
620 * cover our input range and don't cover too any other range.
621 * If we end up needing a new extent state we allocate it later.
622 */
623 prealloc = alloc_extent_state(mask);
624 }
625
626 spin_lock(&tree->lock);
627 if (cached_state) {
628 cached = *cached_state;
629
630 if (clear) {
631 *cached_state = NULL;
632 cached_state = NULL;
633 }
634
635 if (cached && extent_state_in_tree(cached) &&
636 cached->start <= start && cached->end > start) {
637 if (clear)
638 atomic_dec(&cached->refs);
639 state = cached;
640 goto hit_next;
641 }
642 if (clear)
643 free_extent_state(cached);
644 }
645 /*
646 * this search will find the extents that end after
647 * our range starts
648 */
649 node = tree_search(tree, start);
650 if (!node)
651 goto out;
652 state = rb_entry(node, struct extent_state, rb_node);
653hit_next:
654 if (state->start > end)
655 goto out;
656 WARN_ON(state->end < start);
657 last_end = state->end;
658
659 /* the state doesn't have the wanted bits, go ahead */
660 if (!(state->state & bits)) {
661 state = next_state(state);
662 goto next;
663 }
664
665 /*
666 * | ---- desired range ---- |
667 * | state | or
668 * | ------------- state -------------- |
669 *
670 * We need to split the extent we found, and may flip
671 * bits on second half.
672 *
673 * If the extent we found extends past our range, we
674 * just split and search again. It'll get split again
675 * the next time though.
676 *
677 * If the extent we found is inside our range, we clear
678 * the desired bit on it.
679 */
680
681 if (state->start < start) {
682 prealloc = alloc_extent_state_atomic(prealloc);
683 BUG_ON(!prealloc);
684 err = split_state(tree, state, prealloc, start);
685 if (err)
686 extent_io_tree_panic(tree, err);
687
688 prealloc = NULL;
689 if (err)
690 goto out;
691 if (state->end <= end) {
692 state = clear_state_bit(tree, state, &bits, wake,
693 changeset);
694 goto next;
695 }
696 goto search_again;
697 }
698 /*
699 * | ---- desired range ---- |
700 * | state |
701 * We need to split the extent, and clear the bit
702 * on the first half
703 */
704 if (state->start <= end && state->end > end) {
705 prealloc = alloc_extent_state_atomic(prealloc);
706 BUG_ON(!prealloc);
707 err = split_state(tree, state, prealloc, end + 1);
708 if (err)
709 extent_io_tree_panic(tree, err);
710
711 if (wake)
712 wake_up(&state->wq);
713
714 clear_state_bit(tree, prealloc, &bits, wake, changeset);
715
716 prealloc = NULL;
717 goto out;
718 }
719
720 state = clear_state_bit(tree, state, &bits, wake, changeset);
721next:
722 if (last_end == (u64)-1)
723 goto out;
724 start = last_end + 1;
725 if (start <= end && state && !need_resched())
726 goto hit_next;
727
728search_again:
729 if (start > end)
730 goto out;
731 spin_unlock(&tree->lock);
732 if (gfpflags_allow_blocking(mask))
733 cond_resched();
734 goto again;
735
736out:
737 spin_unlock(&tree->lock);
738 if (prealloc)
739 free_extent_state(prealloc);
740
741 return 0;
742
743}
744
745static void wait_on_state(struct extent_io_tree *tree,
746 struct extent_state *state)
747 __releases(tree->lock)
748 __acquires(tree->lock)
749{
750 DEFINE_WAIT(wait);
751 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
752 spin_unlock(&tree->lock);
753 schedule();
754 spin_lock(&tree->lock);
755 finish_wait(&state->wq, &wait);
756}
757
758/*
759 * waits for one or more bits to clear on a range in the state tree.
760 * The range [start, end] is inclusive.
761 * The tree lock is taken by this function
762 */
763static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
764 unsigned long bits)
765{
766 struct extent_state *state;
767 struct rb_node *node;
768
769 btrfs_debug_check_extent_io_range(tree, start, end);
770
771 spin_lock(&tree->lock);
772again:
773 while (1) {
774 /*
775 * this search will find all the extents that end after
776 * our range starts
777 */
778 node = tree_search(tree, start);
779process_node:
780 if (!node)
781 break;
782
783 state = rb_entry(node, struct extent_state, rb_node);
784
785 if (state->start > end)
786 goto out;
787
788 if (state->state & bits) {
789 start = state->start;
790 atomic_inc(&state->refs);
791 wait_on_state(tree, state);
792 free_extent_state(state);
793 goto again;
794 }
795 start = state->end + 1;
796
797 if (start > end)
798 break;
799
800 if (!cond_resched_lock(&tree->lock)) {
801 node = rb_next(node);
802 goto process_node;
803 }
804 }
805out:
806 spin_unlock(&tree->lock);
807}
808
809static void set_state_bits(struct extent_io_tree *tree,
810 struct extent_state *state,
811 unsigned *bits, struct extent_changeset *changeset)
812{
813 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
814
815 set_state_cb(tree, state, bits);
816 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
817 u64 range = state->end - state->start + 1;
818 tree->dirty_bytes += range;
819 }
820 add_extent_changeset(state, bits_to_set, changeset, 1);
821 state->state |= bits_to_set;
822}
823
824static void cache_state_if_flags(struct extent_state *state,
825 struct extent_state **cached_ptr,
826 unsigned flags)
827{
828 if (cached_ptr && !(*cached_ptr)) {
829 if (!flags || (state->state & flags)) {
830 *cached_ptr = state;
831 atomic_inc(&state->refs);
832 }
833 }
834}
835
836static void cache_state(struct extent_state *state,
837 struct extent_state **cached_ptr)
838{
839 return cache_state_if_flags(state, cached_ptr,
840 EXTENT_IOBITS | EXTENT_BOUNDARY);
841}
842
843/*
844 * set some bits on a range in the tree. This may require allocations or
845 * sleeping, so the gfp mask is used to indicate what is allowed.
846 *
847 * If any of the exclusive bits are set, this will fail with -EEXIST if some
848 * part of the range already has the desired bits set. The start of the
849 * existing range is returned in failed_start in this case.
850 *
851 * [start, end] is inclusive This takes the tree lock.
852 */
853
854static int __must_check
855__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
856 unsigned bits, unsigned exclusive_bits,
857 u64 *failed_start, struct extent_state **cached_state,
858 gfp_t mask, struct extent_changeset *changeset)
859{
860 struct extent_state *state;
861 struct extent_state *prealloc = NULL;
862 struct rb_node *node;
863 struct rb_node **p;
864 struct rb_node *parent;
865 int err = 0;
866 u64 last_start;
867 u64 last_end;
868
869 btrfs_debug_check_extent_io_range(tree, start, end);
870
871 bits |= EXTENT_FIRST_DELALLOC;
872again:
873 if (!prealloc && gfpflags_allow_blocking(mask)) {
874 /*
875 * Don't care for allocation failure here because we might end
876 * up not needing the pre-allocated extent state at all, which
877 * is the case if we only have in the tree extent states that
878 * cover our input range and don't cover too any other range.
879 * If we end up needing a new extent state we allocate it later.
880 */
881 prealloc = alloc_extent_state(mask);
882 }
883
884 spin_lock(&tree->lock);
885 if (cached_state && *cached_state) {
886 state = *cached_state;
887 if (state->start <= start && state->end > start &&
888 extent_state_in_tree(state)) {
889 node = &state->rb_node;
890 goto hit_next;
891 }
892 }
893 /*
894 * this search will find all the extents that end after
895 * our range starts.
896 */
897 node = tree_search_for_insert(tree, start, &p, &parent);
898 if (!node) {
899 prealloc = alloc_extent_state_atomic(prealloc);
900 BUG_ON(!prealloc);
901 err = insert_state(tree, prealloc, start, end,
902 &p, &parent, &bits, changeset);
903 if (err)
904 extent_io_tree_panic(tree, err);
905
906 cache_state(prealloc, cached_state);
907 prealloc = NULL;
908 goto out;
909 }
910 state = rb_entry(node, struct extent_state, rb_node);
911hit_next:
912 last_start = state->start;
913 last_end = state->end;
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 *
919 * Just lock what we found and keep going
920 */
921 if (state->start == start && state->end <= end) {
922 if (state->state & exclusive_bits) {
923 *failed_start = state->start;
924 err = -EEXIST;
925 goto out;
926 }
927
928 set_state_bits(tree, state, &bits, changeset);
929 cache_state(state, cached_state);
930 merge_state(tree, state);
931 if (last_end == (u64)-1)
932 goto out;
933 start = last_end + 1;
934 state = next_state(state);
935 if (start < end && state && state->start == start &&
936 !need_resched())
937 goto hit_next;
938 goto search_again;
939 }
940
941 /*
942 * | ---- desired range ---- |
943 * | state |
944 * or
945 * | ------------- state -------------- |
946 *
947 * We need to split the extent we found, and may flip bits on
948 * second half.
949 *
950 * If the extent we found extends past our
951 * range, we just split and search again. It'll get split
952 * again the next time though.
953 *
954 * If the extent we found is inside our range, we set the
955 * desired bit on it.
956 */
957 if (state->start < start) {
958 if (state->state & exclusive_bits) {
959 *failed_start = start;
960 err = -EEXIST;
961 goto out;
962 }
963
964 prealloc = alloc_extent_state_atomic(prealloc);
965 BUG_ON(!prealloc);
966 err = split_state(tree, state, prealloc, start);
967 if (err)
968 extent_io_tree_panic(tree, err);
969
970 prealloc = NULL;
971 if (err)
972 goto out;
973 if (state->end <= end) {
974 set_state_bits(tree, state, &bits, changeset);
975 cache_state(state, cached_state);
976 merge_state(tree, state);
977 if (last_end == (u64)-1)
978 goto out;
979 start = last_end + 1;
980 state = next_state(state);
981 if (start < end && state && state->start == start &&
982 !need_resched())
983 goto hit_next;
984 }
985 goto search_again;
986 }
987 /*
988 * | ---- desired range ---- |
989 * | state | or | state |
990 *
991 * There's a hole, we need to insert something in it and
992 * ignore the extent we found.
993 */
994 if (state->start > start) {
995 u64 this_end;
996 if (end < last_start)
997 this_end = end;
998 else
999 this_end = last_start - 1;
1000
1001 prealloc = alloc_extent_state_atomic(prealloc);
1002 BUG_ON(!prealloc);
1003
1004 /*
1005 * Avoid to free 'prealloc' if it can be merged with
1006 * the later extent.
1007 */
1008 err = insert_state(tree, prealloc, start, this_end,
1009 NULL, NULL, &bits, changeset);
1010 if (err)
1011 extent_io_tree_panic(tree, err);
1012
1013 cache_state(prealloc, cached_state);
1014 prealloc = NULL;
1015 start = this_end + 1;
1016 goto search_again;
1017 }
1018 /*
1019 * | ---- desired range ---- |
1020 * | state |
1021 * We need to split the extent, and set the bit
1022 * on the first half
1023 */
1024 if (state->start <= end && state->end > end) {
1025 if (state->state & exclusive_bits) {
1026 *failed_start = start;
1027 err = -EEXIST;
1028 goto out;
1029 }
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 BUG_ON(!prealloc);
1033 err = split_state(tree, state, prealloc, end + 1);
1034 if (err)
1035 extent_io_tree_panic(tree, err);
1036
1037 set_state_bits(tree, prealloc, &bits, changeset);
1038 cache_state(prealloc, cached_state);
1039 merge_state(tree, prealloc);
1040 prealloc = NULL;
1041 goto out;
1042 }
1043
1044search_again:
1045 if (start > end)
1046 goto out;
1047 spin_unlock(&tree->lock);
1048 if (gfpflags_allow_blocking(mask))
1049 cond_resched();
1050 goto again;
1051
1052out:
1053 spin_unlock(&tree->lock);
1054 if (prealloc)
1055 free_extent_state(prealloc);
1056
1057 return err;
1058
1059}
1060
1061int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062 unsigned bits, u64 * failed_start,
1063 struct extent_state **cached_state, gfp_t mask)
1064{
1065 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066 cached_state, mask, NULL);
1067}
1068
1069
1070/**
1071 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * another
1073 * @tree: the io tree to search
1074 * @start: the start offset in bytes
1075 * @end: the end offset in bytes (inclusive)
1076 * @bits: the bits to set in this range
1077 * @clear_bits: the bits to clear in this range
1078 * @cached_state: state that we're going to cache
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 *
1086 * All allocations are done with GFP_NOFS.
1087 */
1088int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089 unsigned bits, unsigned clear_bits,
1090 struct extent_state **cached_state)
1091{
1092 struct extent_state *state;
1093 struct extent_state *prealloc = NULL;
1094 struct rb_node *node;
1095 struct rb_node **p;
1096 struct rb_node *parent;
1097 int err = 0;
1098 u64 last_start;
1099 u64 last_end;
1100 bool first_iteration = true;
1101
1102 btrfs_debug_check_extent_io_range(tree, start, end);
1103
1104again:
1105 if (!prealloc) {
1106 /*
1107 * Best effort, don't worry if extent state allocation fails
1108 * here for the first iteration. We might have a cached state
1109 * that matches exactly the target range, in which case no
1110 * extent state allocations are needed. We'll only know this
1111 * after locking the tree.
1112 */
1113 prealloc = alloc_extent_state(GFP_NOFS);
1114 if (!prealloc && !first_iteration)
1115 return -ENOMEM;
1116 }
1117
1118 spin_lock(&tree->lock);
1119 if (cached_state && *cached_state) {
1120 state = *cached_state;
1121 if (state->start <= start && state->end > start &&
1122 extent_state_in_tree(state)) {
1123 node = &state->rb_node;
1124 goto hit_next;
1125 }
1126 }
1127
1128 /*
1129 * this search will find all the extents that end after
1130 * our range starts.
1131 */
1132 node = tree_search_for_insert(tree, start, &p, &parent);
1133 if (!node) {
1134 prealloc = alloc_extent_state_atomic(prealloc);
1135 if (!prealloc) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
1139 err = insert_state(tree, prealloc, start, end,
1140 &p, &parent, &bits, NULL);
1141 if (err)
1142 extent_io_tree_panic(tree, err);
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
1145 goto out;
1146 }
1147 state = rb_entry(node, struct extent_state, rb_node);
1148hit_next:
1149 last_start = state->start;
1150 last_end = state->end;
1151
1152 /*
1153 * | ---- desired range ---- |
1154 * | state |
1155 *
1156 * Just lock what we found and keep going
1157 */
1158 if (state->start == start && state->end <= end) {
1159 set_state_bits(tree, state, &bits, NULL);
1160 cache_state(state, cached_state);
1161 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162 if (last_end == (u64)-1)
1163 goto out;
1164 start = last_end + 1;
1165 if (start < end && state && state->start == start &&
1166 !need_resched())
1167 goto hit_next;
1168 goto search_again;
1169 }
1170
1171 /*
1172 * | ---- desired range ---- |
1173 * | state |
1174 * or
1175 * | ------------- state -------------- |
1176 *
1177 * We need to split the extent we found, and may flip bits on
1178 * second half.
1179 *
1180 * If the extent we found extends past our
1181 * range, we just split and search again. It'll get split
1182 * again the next time though.
1183 *
1184 * If the extent we found is inside our range, we set the
1185 * desired bit on it.
1186 */
1187 if (state->start < start) {
1188 prealloc = alloc_extent_state_atomic(prealloc);
1189 if (!prealloc) {
1190 err = -ENOMEM;
1191 goto out;
1192 }
1193 err = split_state(tree, state, prealloc, start);
1194 if (err)
1195 extent_io_tree_panic(tree, err);
1196 prealloc = NULL;
1197 if (err)
1198 goto out;
1199 if (state->end <= end) {
1200 set_state_bits(tree, state, &bits, NULL);
1201 cache_state(state, cached_state);
1202 state = clear_state_bit(tree, state, &clear_bits, 0,
1203 NULL);
1204 if (last_end == (u64)-1)
1205 goto out;
1206 start = last_end + 1;
1207 if (start < end && state && state->start == start &&
1208 !need_resched())
1209 goto hit_next;
1210 }
1211 goto search_again;
1212 }
1213 /*
1214 * | ---- desired range ---- |
1215 * | state | or | state |
1216 *
1217 * There's a hole, we need to insert something in it and
1218 * ignore the extent we found.
1219 */
1220 if (state->start > start) {
1221 u64 this_end;
1222 if (end < last_start)
1223 this_end = end;
1224 else
1225 this_end = last_start - 1;
1226
1227 prealloc = alloc_extent_state_atomic(prealloc);
1228 if (!prealloc) {
1229 err = -ENOMEM;
1230 goto out;
1231 }
1232
1233 /*
1234 * Avoid to free 'prealloc' if it can be merged with
1235 * the later extent.
1236 */
1237 err = insert_state(tree, prealloc, start, this_end,
1238 NULL, NULL, &bits, NULL);
1239 if (err)
1240 extent_io_tree_panic(tree, err);
1241 cache_state(prealloc, cached_state);
1242 prealloc = NULL;
1243 start = this_end + 1;
1244 goto search_again;
1245 }
1246 /*
1247 * | ---- desired range ---- |
1248 * | state |
1249 * We need to split the extent, and set the bit
1250 * on the first half
1251 */
1252 if (state->start <= end && state->end > end) {
1253 prealloc = alloc_extent_state_atomic(prealloc);
1254 if (!prealloc) {
1255 err = -ENOMEM;
1256 goto out;
1257 }
1258
1259 err = split_state(tree, state, prealloc, end + 1);
1260 if (err)
1261 extent_io_tree_panic(tree, err);
1262
1263 set_state_bits(tree, prealloc, &bits, NULL);
1264 cache_state(prealloc, cached_state);
1265 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266 prealloc = NULL;
1267 goto out;
1268 }
1269
1270search_again:
1271 if (start > end)
1272 goto out;
1273 spin_unlock(&tree->lock);
1274 cond_resched();
1275 first_iteration = false;
1276 goto again;
1277
1278out:
1279 spin_unlock(&tree->lock);
1280 if (prealloc)
1281 free_extent_state(prealloc);
1282
1283 return err;
1284}
1285
1286/* wrappers around set/clear extent bit */
1287int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288 unsigned bits, struct extent_changeset *changeset)
1289{
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299 changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305{
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, struct extent_changeset *changeset)
1312{
1313 /*
1314 * Don't support EXTENT_LOCKED case, same reason as
1315 * set_record_extent_bits().
1316 */
1317 BUG_ON(bits & EXTENT_LOCKED);
1318
1319 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320 changeset);
1321}
1322
1323/*
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1326 */
1327int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328 struct extent_state **cached_state)
1329{
1330 int err;
1331 u64 failed_start;
1332
1333 while (1) {
1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335 EXTENT_LOCKED, &failed_start,
1336 cached_state, GFP_NOFS, NULL);
1337 if (err == -EEXIST) {
1338 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339 start = failed_start;
1340 } else
1341 break;
1342 WARN_ON(start > end);
1343 }
1344 return err;
1345}
1346
1347int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348{
1349 int err;
1350 u64 failed_start;
1351
1352 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353 &failed_start, NULL, GFP_NOFS, NULL);
1354 if (err == -EEXIST) {
1355 if (failed_start > start)
1356 clear_extent_bit(tree, start, failed_start - 1,
1357 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358 return 0;
1359 }
1360 return 1;
1361}
1362
1363void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_SHIFT;
1366 unsigned long end_index = end >> PAGE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 put_page(page);
1374 index++;
1375 }
1376}
1377
1378void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379{
1380 unsigned long index = start >> PAGE_SHIFT;
1381 unsigned long end_index = end >> PAGE_SHIFT;
1382 struct page *page;
1383
1384 while (index <= end_index) {
1385 page = find_get_page(inode->i_mapping, index);
1386 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387 __set_page_dirty_nobuffers(page);
1388 account_page_redirty(page);
1389 put_page(page);
1390 index++;
1391 }
1392}
1393
1394/*
1395 * helper function to set both pages and extents in the tree writeback
1396 */
1397static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398{
1399 unsigned long index = start >> PAGE_SHIFT;
1400 unsigned long end_index = end >> PAGE_SHIFT;
1401 struct page *page;
1402
1403 while (index <= end_index) {
1404 page = find_get_page(tree->mapping, index);
1405 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406 set_page_writeback(page);
1407 put_page(page);
1408 index++;
1409 }
1410}
1411
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned bits)
1419{
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1430
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1435
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440out:
1441 return NULL;
1442}
1443
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned bits,
1453 struct extent_state **cached_state)
1454{
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && extent_state_in_tree(state)) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
1479 state = find_first_extent_bit_state(tree, start, bits);
1480got_it:
1481 if (state) {
1482 cache_state_if_flags(state, cached_state, 0);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
1487out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1490}
1491
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1501{
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
1508 spin_lock(&tree->lock);
1509
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1519 }
1520
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1546 }
1547out:
1548 spin_unlock(&tree->lock);
1549 return found;
1550}
1551
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1555{
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_SHIFT;
1559 unsigned long end_index = end >> PAGE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
1564 return;
1565
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 put_page(pages[i]);
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585{
1586 unsigned long index = delalloc_start >> PAGE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 put_page(pages[i]);
1622 goto done;
1623 }
1624 }
1625 put_page(pages[i]);
1626 pages_locked++;
1627 }
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_SHIFT);
1639 }
1640 return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1653{
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1660
1661again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1672 }
1673
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1681
1682 /*
1683 * make sure to limit the number of pages we try to lock down
1684 */
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
1695 free_extent_state(cached_state);
1696 cached_state = NULL;
1697 if (!loops) {
1698 max_bytes = PAGE_SIZE;
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1704 }
1705 }
1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 EXTENT_DELALLOC, 1, cached_state);
1714 if (!ret) {
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1721 }
1722 free_extent_state(cached_state);
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725out_failed:
1726 return found;
1727}
1728
1729void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 u64 delalloc_end, struct page *locked_page,
1731 unsigned clear_bits,
1732 unsigned long page_ops)
1733{
1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 int ret;
1736 struct page *pages[16];
1737 unsigned long index = start >> PAGE_SHIFT;
1738 unsigned long end_index = end >> PAGE_SHIFT;
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
1741
1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 if (page_ops == 0)
1744 return;
1745
1746 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747 mapping_set_error(inode->i_mapping, -EIO);
1748
1749 while (nr_pages > 0) {
1750 ret = find_get_pages_contig(inode->i_mapping, index,
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
1753 for (i = 0; i < ret; i++) {
1754
1755 if (page_ops & PAGE_SET_PRIVATE2)
1756 SetPagePrivate2(pages[i]);
1757
1758 if (pages[i] == locked_page) {
1759 put_page(pages[i]);
1760 continue;
1761 }
1762 if (page_ops & PAGE_CLEAR_DIRTY)
1763 clear_page_dirty_for_io(pages[i]);
1764 if (page_ops & PAGE_SET_WRITEBACK)
1765 set_page_writeback(pages[i]);
1766 if (page_ops & PAGE_SET_ERROR)
1767 SetPageError(pages[i]);
1768 if (page_ops & PAGE_END_WRITEBACK)
1769 end_page_writeback(pages[i]);
1770 if (page_ops & PAGE_UNLOCK)
1771 unlock_page(pages[i]);
1772 put_page(pages[i]);
1773 }
1774 nr_pages -= ret;
1775 index += ret;
1776 cond_resched();
1777 }
1778}
1779
1780/*
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached. The total number found is returned.
1784 */
1785u64 count_range_bits(struct extent_io_tree *tree,
1786 u64 *start, u64 search_end, u64 max_bytes,
1787 unsigned bits, int contig)
1788{
1789 struct rb_node *node;
1790 struct extent_state *state;
1791 u64 cur_start = *start;
1792 u64 total_bytes = 0;
1793 u64 last = 0;
1794 int found = 0;
1795
1796 if (WARN_ON(search_end <= cur_start))
1797 return 0;
1798
1799 spin_lock(&tree->lock);
1800 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801 total_bytes = tree->dirty_bytes;
1802 goto out;
1803 }
1804 /*
1805 * this search will find all the extents that end after
1806 * our range starts.
1807 */
1808 node = tree_search(tree, cur_start);
1809 if (!node)
1810 goto out;
1811
1812 while (1) {
1813 state = rb_entry(node, struct extent_state, rb_node);
1814 if (state->start > search_end)
1815 break;
1816 if (contig && found && state->start > last + 1)
1817 break;
1818 if (state->end >= cur_start && (state->state & bits) == bits) {
1819 total_bytes += min(search_end, state->end) + 1 -
1820 max(cur_start, state->start);
1821 if (total_bytes >= max_bytes)
1822 break;
1823 if (!found) {
1824 *start = max(cur_start, state->start);
1825 found = 1;
1826 }
1827 last = state->end;
1828 } else if (contig && found) {
1829 break;
1830 }
1831 node = rb_next(node);
1832 if (!node)
1833 break;
1834 }
1835out:
1836 spin_unlock(&tree->lock);
1837 return total_bytes;
1838}
1839
1840/*
1841 * set the private field for a given byte offset in the tree. If there isn't
1842 * an extent_state there already, this does nothing.
1843 */
1844static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845 struct io_failure_record *failrec)
1846{
1847 struct rb_node *node;
1848 struct extent_state *state;
1849 int ret = 0;
1850
1851 spin_lock(&tree->lock);
1852 /*
1853 * this search will find all the extents that end after
1854 * our range starts.
1855 */
1856 node = tree_search(tree, start);
1857 if (!node) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state = rb_entry(node, struct extent_state, rb_node);
1862 if (state->start != start) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
1866 state->failrec = failrec;
1867out:
1868 spin_unlock(&tree->lock);
1869 return ret;
1870}
1871
1872static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873 struct io_failure_record **failrec)
1874{
1875 struct rb_node *node;
1876 struct extent_state *state;
1877 int ret = 0;
1878
1879 spin_lock(&tree->lock);
1880 /*
1881 * this search will find all the extents that end after
1882 * our range starts.
1883 */
1884 node = tree_search(tree, start);
1885 if (!node) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 state = rb_entry(node, struct extent_state, rb_node);
1890 if (state->start != start) {
1891 ret = -ENOENT;
1892 goto out;
1893 }
1894 *failrec = state->failrec;
1895out:
1896 spin_unlock(&tree->lock);
1897 return ret;
1898}
1899
1900/*
1901 * searches a range in the state tree for a given mask.
1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
1903 * has the bits set. Otherwise, 1 is returned if any bit in the
1904 * range is found set.
1905 */
1906int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907 unsigned bits, int filled, struct extent_state *cached)
1908{
1909 struct extent_state *state = NULL;
1910 struct rb_node *node;
1911 int bitset = 0;
1912
1913 spin_lock(&tree->lock);
1914 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915 cached->end > start)
1916 node = &cached->rb_node;
1917 else
1918 node = tree_search(tree, start);
1919 while (node && start <= end) {
1920 state = rb_entry(node, struct extent_state, rb_node);
1921
1922 if (filled && state->start > start) {
1923 bitset = 0;
1924 break;
1925 }
1926
1927 if (state->start > end)
1928 break;
1929
1930 if (state->state & bits) {
1931 bitset = 1;
1932 if (!filled)
1933 break;
1934 } else if (filled) {
1935 bitset = 0;
1936 break;
1937 }
1938
1939 if (state->end == (u64)-1)
1940 break;
1941
1942 start = state->end + 1;
1943 if (start > end)
1944 break;
1945 node = rb_next(node);
1946 if (!node) {
1947 if (filled)
1948 bitset = 0;
1949 break;
1950 }
1951 }
1952 spin_unlock(&tree->lock);
1953 return bitset;
1954}
1955
1956/*
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
1959 */
1960static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961{
1962 u64 start = page_offset(page);
1963 u64 end = start + PAGE_SIZE - 1;
1964 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965 SetPageUptodate(page);
1966}
1967
1968int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969{
1970 int ret;
1971 int err = 0;
1972 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
1974 set_state_failrec(failure_tree, rec->start, NULL);
1975 ret = clear_extent_bits(failure_tree, rec->start,
1976 rec->start + rec->len - 1,
1977 EXTENT_LOCKED | EXTENT_DIRTY);
1978 if (ret)
1979 err = ret;
1980
1981 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982 rec->start + rec->len - 1,
1983 EXTENT_DAMAGED);
1984 if (ret && !err)
1985 err = ret;
1986
1987 kfree(rec);
1988 return err;
1989}
1990
1991/*
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
1996 * to avoid any synchronization issues, wait for the data after writing, which
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
2000 */
2001int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002 struct page *page, unsigned int pg_offset, int mirror_num)
2003{
2004 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005 struct bio *bio;
2006 struct btrfs_device *dev;
2007 u64 map_length = 0;
2008 u64 sector;
2009 struct btrfs_bio *bbio = NULL;
2010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011 int ret;
2012
2013 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014 BUG_ON(!mirror_num);
2015
2016 /* we can't repair anything in raid56 yet */
2017 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018 return 0;
2019
2020 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021 if (!bio)
2022 return -EIO;
2023 bio->bi_iter.bi_size = 0;
2024 map_length = length;
2025
2026 /*
2027 * Avoid races with device replace and make sure our bbio has devices
2028 * associated to its stripes that don't go away while we are doing the
2029 * read repair operation.
2030 */
2031 btrfs_bio_counter_inc_blocked(fs_info);
2032 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2033 &map_length, &bbio, mirror_num);
2034 if (ret) {
2035 btrfs_bio_counter_dec(fs_info);
2036 bio_put(bio);
2037 return -EIO;
2038 }
2039 BUG_ON(mirror_num != bbio->mirror_num);
2040 sector = bbio->stripes[mirror_num-1].physical >> 9;
2041 bio->bi_iter.bi_sector = sector;
2042 dev = bbio->stripes[mirror_num-1].dev;
2043 btrfs_put_bbio(bbio);
2044 if (!dev || !dev->bdev || !dev->writeable) {
2045 btrfs_bio_counter_dec(fs_info);
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 bio->bi_bdev = dev->bdev;
2050 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2051 bio_add_page(bio, page, length, pg_offset);
2052
2053 if (btrfsic_submit_bio_wait(bio)) {
2054 /* try to remap that extent elsewhere? */
2055 btrfs_bio_counter_dec(fs_info);
2056 bio_put(bio);
2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058 return -EIO;
2059 }
2060
2061 btrfs_info_rl_in_rcu(fs_info,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
2065 btrfs_bio_counter_dec(fs_info);
2066 bio_put(bio);
2067 return 0;
2068}
2069
2070int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2071 struct extent_buffer *eb, int mirror_num)
2072{
2073 u64 start = eb->start;
2074 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075 int ret = 0;
2076
2077 if (fs_info->sb->s_flags & MS_RDONLY)
2078 return -EROFS;
2079
2080 for (i = 0; i < num_pages; i++) {
2081 struct page *p = eb->pages[i];
2082
2083 ret = repair_io_failure(fs_info->btree_inode, start,
2084 PAGE_SIZE, start, p,
2085 start - page_offset(p), mirror_num);
2086 if (ret)
2087 break;
2088 start += PAGE_SIZE;
2089 }
2090
2091 return ret;
2092}
2093
2094/*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2097 */
2098int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099 unsigned int pg_offset)
2100{
2101 u64 private;
2102 struct io_failure_record *failrec;
2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104 struct extent_state *state;
2105 int num_copies;
2106 int ret;
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115 &failrec);
2116 if (ret)
2117 return 0;
2118
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
2123 btrfs_debug(fs_info,
2124 "clean_io_failure: freeing dummy error at %llu",
2125 failrec->start);
2126 goto out;
2127 }
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
2141 if (num_copies > 1) {
2142 repair_io_failure(inode, start, failrec->len,
2143 failrec->logical, page,
2144 pg_offset, failrec->failed_mirror);
2145 }
2146 }
2147
2148out:
2149 free_io_failure(inode, failrec);
2150
2151 return 0;
2152}
2153
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161{
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
2179 failrec = state->failrec;
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186}
2187
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
2190{
2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 btrfs_debug(fs_info,
2240 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 logical, start, failrec->len);
2242
2243 failrec->logical = logical;
2244 free_extent_map(em);
2245
2246 /* set the bits in the private failure tree */
2247 ret = set_extent_bits(failure_tree, start, end,
2248 EXTENT_LOCKED | EXTENT_DIRTY);
2249 if (ret >= 0)
2250 ret = set_state_failrec(failure_tree, start, failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
2259 btrfs_debug(fs_info,
2260 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 failrec->logical, failrec->start, failrec->len,
2262 failrec->in_validation);
2263 /*
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2267 */
2268 }
2269
2270 *failrec_ret = failrec;
2271
2272 return 0;
2273}
2274
2275int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276 struct io_failure_record *failrec, int failed_mirror)
2277{
2278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279 int num_copies;
2280
2281 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282 if (num_copies == 1) {
2283 /*
2284 * we only have a single copy of the data, so don't bother with
2285 * all the retry and error correction code that follows. no
2286 * matter what the error is, it is very likely to persist.
2287 */
2288 btrfs_debug(fs_info,
2289 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 num_copies, failrec->this_mirror, failed_mirror);
2291 return 0;
2292 }
2293
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
2326 }
2327
2328 if (failrec->this_mirror > num_copies) {
2329 btrfs_debug(fs_info,
2330 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 num_copies, failrec->this_mirror, failed_mirror);
2332 return 0;
2333 }
2334
2335 return 1;
2336}
2337
2338
2339struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340 struct io_failure_record *failrec,
2341 struct page *page, int pg_offset, int icsum,
2342 bio_end_io_t *endio_func, void *data)
2343{
2344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2345 struct bio *bio;
2346 struct btrfs_io_bio *btrfs_failed_bio;
2347 struct btrfs_io_bio *btrfs_bio;
2348
2349 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2350 if (!bio)
2351 return NULL;
2352
2353 bio->bi_end_io = endio_func;
2354 bio->bi_iter.bi_sector = failrec->logical >> 9;
2355 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2356 bio->bi_iter.bi_size = 0;
2357 bio->bi_private = data;
2358
2359 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2360 if (btrfs_failed_bio->csum) {
2361 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362
2363 btrfs_bio = btrfs_io_bio(bio);
2364 btrfs_bio->csum = btrfs_bio->csum_inline;
2365 icsum *= csum_size;
2366 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367 csum_size);
2368 }
2369
2370 bio_add_page(bio, page, failrec->len, pg_offset);
2371
2372 return bio;
2373}
2374
2375/*
2376 * this is a generic handler for readpage errors (default
2377 * readpage_io_failed_hook). if other copies exist, read those and write back
2378 * good data to the failed position. does not investigate in remapping the
2379 * failed extent elsewhere, hoping the device will be smart enough to do this as
2380 * needed
2381 */
2382
2383static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384 struct page *page, u64 start, u64 end,
2385 int failed_mirror)
2386{
2387 struct io_failure_record *failrec;
2388 struct inode *inode = page->mapping->host;
2389 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 struct bio *bio;
2391 int read_mode = 0;
2392 int ret;
2393
2394 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395
2396 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397 if (ret)
2398 return ret;
2399
2400 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401 if (!ret) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 if (failed_bio->bi_vcnt > 1)
2407 read_mode |= REQ_FAILFAST_DEV;
2408
2409 phy_offset >>= inode->i_sb->s_blocksize_bits;
2410 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2411 start - page_offset(page),
2412 (int)phy_offset, failed_bio->bi_end_io,
2413 NULL);
2414 if (!bio) {
2415 free_io_failure(inode, failrec);
2416 return -EIO;
2417 }
2418 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2419
2420 btrfs_debug(btrfs_sb(inode->i_sb),
2421 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422 read_mode, failrec->this_mirror, failrec->in_validation);
2423
2424 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2425 failrec->bio_flags, 0);
2426 if (ret) {
2427 free_io_failure(inode, failrec);
2428 bio_put(bio);
2429 }
2430
2431 return ret;
2432}
2433
2434/* lots and lots of room for performance fixes in the end_bio funcs */
2435
2436void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437{
2438 int uptodate = (err == 0);
2439 struct extent_io_tree *tree;
2440 int ret = 0;
2441
2442 tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444 if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 ret = tree->ops->writepage_end_io_hook(page, start,
2446 end, NULL, uptodate);
2447 if (ret)
2448 uptodate = 0;
2449 }
2450
2451 if (!uptodate) {
2452 ClearPageUptodate(page);
2453 SetPageError(page);
2454 ret = ret < 0 ? ret : -EIO;
2455 mapping_set_error(page->mapping, ret);
2456 }
2457}
2458
2459/*
2460 * after a writepage IO is done, we need to:
2461 * clear the uptodate bits on error
2462 * clear the writeback bits in the extent tree for this IO
2463 * end_page_writeback if the page has no more pending IO
2464 *
2465 * Scheduling is not allowed, so the extent state tree is expected
2466 * to have one and only one object corresponding to this IO.
2467 */
2468static void end_bio_extent_writepage(struct bio *bio)
2469{
2470 struct bio_vec *bvec;
2471 u64 start;
2472 u64 end;
2473 int i;
2474
2475 bio_for_each_segment_all(bvec, bio, i) {
2476 struct page *page = bvec->bv_page;
2477 struct inode *inode = page->mapping->host;
2478 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2479
2480 /* We always issue full-page reads, but if some block
2481 * in a page fails to read, blk_update_request() will
2482 * advance bv_offset and adjust bv_len to compensate.
2483 * Print a warning for nonzero offsets, and an error
2484 * if they don't add up to a full page. */
2485 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2486 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2487 btrfs_err(fs_info,
2488 "partial page write in btrfs with offset %u and length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 else
2491 btrfs_info(fs_info,
2492 "incomplete page write in btrfs with offset %u and length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
2495
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
2498
2499 end_extent_writepage(page, bio->bi_error, start, end);
2500 end_page_writeback(page);
2501 }
2502
2503 bio_put(bio);
2504}
2505
2506static void
2507endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2508 int uptodate)
2509{
2510 struct extent_state *cached = NULL;
2511 u64 end = start + len - 1;
2512
2513 if (uptodate && tree->track_uptodate)
2514 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2515 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2516}
2517
2518/*
2519 * after a readpage IO is done, we need to:
2520 * clear the uptodate bits on error
2521 * set the uptodate bits if things worked
2522 * set the page up to date if all extents in the tree are uptodate
2523 * clear the lock bit in the extent tree
2524 * unlock the page if there are no other extents locked for it
2525 *
2526 * Scheduling is not allowed, so the extent state tree is expected
2527 * to have one and only one object corresponding to this IO.
2528 */
2529static void end_bio_extent_readpage(struct bio *bio)
2530{
2531 struct bio_vec *bvec;
2532 int uptodate = !bio->bi_error;
2533 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2534 struct extent_io_tree *tree;
2535 u64 offset = 0;
2536 u64 start;
2537 u64 end;
2538 u64 len;
2539 u64 extent_start = 0;
2540 u64 extent_len = 0;
2541 int mirror;
2542 int ret;
2543 int i;
2544
2545 bio_for_each_segment_all(bvec, bio, i) {
2546 struct page *page = bvec->bv_page;
2547 struct inode *inode = page->mapping->host;
2548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2549
2550 btrfs_debug(fs_info,
2551 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2553 io_bio->mirror_num);
2554 tree = &BTRFS_I(inode)->io_tree;
2555
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
2561 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2562 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2563 btrfs_err(fs_info,
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 else
2567 btrfs_info(fs_info,
2568 "incomplete page read in btrfs with offset %u and length %u",
2569 bvec->bv_offset, bvec->bv_len);
2570 }
2571
2572 start = page_offset(page);
2573 end = start + bvec->bv_offset + bvec->bv_len - 1;
2574 len = bvec->bv_len;
2575
2576 mirror = io_bio->mirror_num;
2577 if (likely(uptodate && tree->ops &&
2578 tree->ops->readpage_end_io_hook)) {
2579 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580 page, start, end,
2581 mirror);
2582 if (ret)
2583 uptodate = 0;
2584 else
2585 clean_io_failure(inode, start, page, 0);
2586 }
2587
2588 if (likely(uptodate))
2589 goto readpage_ok;
2590
2591 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2592 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2593 if (!ret && !bio->bi_error)
2594 uptodate = 1;
2595 } else {
2596 /*
2597 * The generic bio_readpage_error handles errors the
2598 * following way: If possible, new read requests are
2599 * created and submitted and will end up in
2600 * end_bio_extent_readpage as well (if we're lucky, not
2601 * in the !uptodate case). In that case it returns 0 and
2602 * we just go on with the next page in our bio. If it
2603 * can't handle the error it will return -EIO and we
2604 * remain responsible for that page.
2605 */
2606 ret = bio_readpage_error(bio, offset, page, start, end,
2607 mirror);
2608 if (ret == 0) {
2609 uptodate = !bio->bi_error;
2610 offset += len;
2611 continue;
2612 }
2613 }
2614readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, bio->bi_error);
2660 bio_put(bio);
2661}
2662
2663/*
2664 * this allocates from the btrfs_bioset. We're returning a bio right now
2665 * but you can call btrfs_io_bio for the appropriate container_of magic
2666 */
2667struct bio *
2668btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2669 gfp_t gfp_flags)
2670{
2671 struct btrfs_io_bio *btrfs_bio;
2672 struct bio *bio;
2673
2674 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2675
2676 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2677 while (!bio && (nr_vecs /= 2)) {
2678 bio = bio_alloc_bioset(gfp_flags,
2679 nr_vecs, btrfs_bioset);
2680 }
2681 }
2682
2683 if (bio) {
2684 bio->bi_bdev = bdev;
2685 bio->bi_iter.bi_sector = first_sector;
2686 btrfs_bio = btrfs_io_bio(bio);
2687 btrfs_bio->csum = NULL;
2688 btrfs_bio->csum_allocated = NULL;
2689 btrfs_bio->end_io = NULL;
2690 }
2691 return bio;
2692}
2693
2694struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2695{
2696 struct btrfs_io_bio *btrfs_bio;
2697 struct bio *new;
2698
2699 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2700 if (new) {
2701 btrfs_bio = btrfs_io_bio(new);
2702 btrfs_bio->csum = NULL;
2703 btrfs_bio->csum_allocated = NULL;
2704 btrfs_bio->end_io = NULL;
2705 }
2706 return new;
2707}
2708
2709/* this also allocates from the btrfs_bioset */
2710struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711{
2712 struct btrfs_io_bio *btrfs_bio;
2713 struct bio *bio;
2714
2715 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716 if (bio) {
2717 btrfs_bio = btrfs_io_bio(bio);
2718 btrfs_bio->csum = NULL;
2719 btrfs_bio->csum_allocated = NULL;
2720 btrfs_bio->end_io = NULL;
2721 }
2722 return bio;
2723}
2724
2725
2726static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 unsigned long bio_flags)
2728{
2729 int ret = 0;
2730 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 struct page *page = bvec->bv_page;
2732 struct extent_io_tree *tree = bio->bi_private;
2733 u64 start;
2734
2735 start = page_offset(page) + bvec->bv_offset;
2736
2737 bio->bi_private = NULL;
2738 bio_get(bio);
2739
2740 if (tree->ops && tree->ops->submit_bio_hook)
2741 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2742 mirror_num, bio_flags, start);
2743 else
2744 btrfsic_submit_bio(bio);
2745
2746 bio_put(bio);
2747 return ret;
2748}
2749
2750static int merge_bio(struct extent_io_tree *tree, struct page *page,
2751 unsigned long offset, size_t size, struct bio *bio,
2752 unsigned long bio_flags)
2753{
2754 int ret = 0;
2755 if (tree->ops && tree->ops->merge_bio_hook)
2756 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2757 bio_flags);
2758 return ret;
2759
2760}
2761
2762static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 unsigned long max_pages,
2769 bio_end_io_t end_io_func,
2770 int mirror_num,
2771 unsigned long prev_bio_flags,
2772 unsigned long bio_flags,
2773 bool force_bio_submit)
2774{
2775 int ret = 0;
2776 struct bio *bio;
2777 int contig = 0;
2778 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
2783 if (old_compressed)
2784 contig = bio->bi_iter.bi_sector == sector;
2785 else
2786 contig = bio_end_sector(bio) == sector;
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
2789 force_bio_submit ||
2790 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2796 }
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2802 }
2803 }
2804
2805 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2806 GFP_NOFS | __GFP_HIGH);
2807 if (!bio)
2808 return -ENOMEM;
2809
2810 bio_add_page(bio, page, page_size, offset);
2811 bio->bi_end_io = end_io_func;
2812 bio->bi_private = tree;
2813 bio_set_op_attrs(bio, op, op_flags);
2814 if (wbc) {
2815 wbc_init_bio(wbc, bio);
2816 wbc_account_io(wbc, page, page_size);
2817 }
2818
2819 if (bio_ret)
2820 *bio_ret = bio;
2821 else
2822 ret = submit_one_bio(bio, mirror_num, bio_flags);
2823
2824 return ret;
2825}
2826
2827static void attach_extent_buffer_page(struct extent_buffer *eb,
2828 struct page *page)
2829{
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
2832 get_page(page);
2833 set_page_private(page, (unsigned long)eb);
2834 } else {
2835 WARN_ON(page->private != (unsigned long)eb);
2836 }
2837}
2838
2839void set_page_extent_mapped(struct page *page)
2840{
2841 if (!PagePrivate(page)) {
2842 SetPagePrivate(page);
2843 get_page(page);
2844 set_page_private(page, EXTENT_PAGE_PRIVATE);
2845 }
2846}
2847
2848static struct extent_map *
2849__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2850 u64 start, u64 len, get_extent_t *get_extent,
2851 struct extent_map **em_cached)
2852{
2853 struct extent_map *em;
2854
2855 if (em_cached && *em_cached) {
2856 em = *em_cached;
2857 if (extent_map_in_tree(em) && start >= em->start &&
2858 start < extent_map_end(em)) {
2859 atomic_inc(&em->refs);
2860 return em;
2861 }
2862
2863 free_extent_map(em);
2864 *em_cached = NULL;
2865 }
2866
2867 em = get_extent(inode, page, pg_offset, start, len, 0);
2868 if (em_cached && !IS_ERR_OR_NULL(em)) {
2869 BUG_ON(*em_cached);
2870 atomic_inc(&em->refs);
2871 *em_cached = em;
2872 }
2873 return em;
2874}
2875/*
2876 * basic readpage implementation. Locked extent state structs are inserted
2877 * into the tree that are removed when the IO is done (by the end_io
2878 * handlers)
2879 * XXX JDM: This needs looking at to ensure proper page locking
2880 * return 0 on success, otherwise return error
2881 */
2882static int __do_readpage(struct extent_io_tree *tree,
2883 struct page *page,
2884 get_extent_t *get_extent,
2885 struct extent_map **em_cached,
2886 struct bio **bio, int mirror_num,
2887 unsigned long *bio_flags, int read_flags,
2888 u64 *prev_em_start)
2889{
2890 struct inode *inode = page->mapping->host;
2891 u64 start = page_offset(page);
2892 u64 page_end = start + PAGE_SIZE - 1;
2893 u64 end;
2894 u64 cur = start;
2895 u64 extent_offset;
2896 u64 last_byte = i_size_read(inode);
2897 u64 block_start;
2898 u64 cur_end;
2899 sector_t sector;
2900 struct extent_map *em;
2901 struct block_device *bdev;
2902 int ret = 0;
2903 int nr = 0;
2904 size_t pg_offset = 0;
2905 size_t iosize;
2906 size_t disk_io_size;
2907 size_t blocksize = inode->i_sb->s_blocksize;
2908 unsigned long this_bio_flag = 0;
2909
2910 set_page_extent_mapped(page);
2911
2912 end = page_end;
2913 if (!PageUptodate(page)) {
2914 if (cleancache_get_page(page) == 0) {
2915 BUG_ON(blocksize != PAGE_SIZE);
2916 unlock_extent(tree, start, end);
2917 goto out;
2918 }
2919 }
2920
2921 if (page->index == last_byte >> PAGE_SHIFT) {
2922 char *userpage;
2923 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2924
2925 if (zero_offset) {
2926 iosize = PAGE_SIZE - zero_offset;
2927 userpage = kmap_atomic(page);
2928 memset(userpage + zero_offset, 0, iosize);
2929 flush_dcache_page(page);
2930 kunmap_atomic(userpage);
2931 }
2932 }
2933 while (cur <= end) {
2934 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2935 bool force_bio_submit = false;
2936
2937 if (cur >= last_byte) {
2938 char *userpage;
2939 struct extent_state *cached = NULL;
2940
2941 iosize = PAGE_SIZE - pg_offset;
2942 userpage = kmap_atomic(page);
2943 memset(userpage + pg_offset, 0, iosize);
2944 flush_dcache_page(page);
2945 kunmap_atomic(userpage);
2946 set_extent_uptodate(tree, cur, cur + iosize - 1,
2947 &cached, GFP_NOFS);
2948 unlock_extent_cached(tree, cur,
2949 cur + iosize - 1,
2950 &cached, GFP_NOFS);
2951 break;
2952 }
2953 em = __get_extent_map(inode, page, pg_offset, cur,
2954 end - cur + 1, get_extent, em_cached);
2955 if (IS_ERR_OR_NULL(em)) {
2956 SetPageError(page);
2957 unlock_extent(tree, cur, end);
2958 break;
2959 }
2960 extent_offset = cur - em->start;
2961 BUG_ON(extent_map_end(em) <= cur);
2962 BUG_ON(end < cur);
2963
2964 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2965 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2966 extent_set_compress_type(&this_bio_flag,
2967 em->compress_type);
2968 }
2969
2970 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2971 cur_end = min(extent_map_end(em) - 1, end);
2972 iosize = ALIGN(iosize, blocksize);
2973 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2974 disk_io_size = em->block_len;
2975 sector = em->block_start >> 9;
2976 } else {
2977 sector = (em->block_start + extent_offset) >> 9;
2978 disk_io_size = iosize;
2979 }
2980 bdev = em->bdev;
2981 block_start = em->block_start;
2982 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2983 block_start = EXTENT_MAP_HOLE;
2984
2985 /*
2986 * If we have a file range that points to a compressed extent
2987 * and it's followed by a consecutive file range that points to
2988 * to the same compressed extent (possibly with a different
2989 * offset and/or length, so it either points to the whole extent
2990 * or only part of it), we must make sure we do not submit a
2991 * single bio to populate the pages for the 2 ranges because
2992 * this makes the compressed extent read zero out the pages
2993 * belonging to the 2nd range. Imagine the following scenario:
2994 *
2995 * File layout
2996 * [0 - 8K] [8K - 24K]
2997 * | |
2998 * | |
2999 * points to extent X, points to extent X,
3000 * offset 4K, length of 8K offset 0, length 16K
3001 *
3002 * [extent X, compressed length = 4K uncompressed length = 16K]
3003 *
3004 * If the bio to read the compressed extent covers both ranges,
3005 * it will decompress extent X into the pages belonging to the
3006 * first range and then it will stop, zeroing out the remaining
3007 * pages that belong to the other range that points to extent X.
3008 * So here we make sure we submit 2 bios, one for the first
3009 * range and another one for the third range. Both will target
3010 * the same physical extent from disk, but we can't currently
3011 * make the compressed bio endio callback populate the pages
3012 * for both ranges because each compressed bio is tightly
3013 * coupled with a single extent map, and each range can have
3014 * an extent map with a different offset value relative to the
3015 * uncompressed data of our extent and different lengths. This
3016 * is a corner case so we prioritize correctness over
3017 * non-optimal behavior (submitting 2 bios for the same extent).
3018 */
3019 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3020 prev_em_start && *prev_em_start != (u64)-1 &&
3021 *prev_em_start != em->orig_start)
3022 force_bio_submit = true;
3023
3024 if (prev_em_start)
3025 *prev_em_start = em->orig_start;
3026
3027 free_extent_map(em);
3028 em = NULL;
3029
3030 /* we've found a hole, just zero and go on */
3031 if (block_start == EXTENT_MAP_HOLE) {
3032 char *userpage;
3033 struct extent_state *cached = NULL;
3034
3035 userpage = kmap_atomic(page);
3036 memset(userpage + pg_offset, 0, iosize);
3037 flush_dcache_page(page);
3038 kunmap_atomic(userpage);
3039
3040 set_extent_uptodate(tree, cur, cur + iosize - 1,
3041 &cached, GFP_NOFS);
3042 unlock_extent_cached(tree, cur,
3043 cur + iosize - 1,
3044 &cached, GFP_NOFS);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 pnr -= page->index;
3070 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3071 page, sector, disk_io_size, pg_offset,
3072 bdev, bio, pnr,
3073 end_bio_extent_readpage, mirror_num,
3074 *bio_flags,
3075 this_bio_flag,
3076 force_bio_submit);
3077 if (!ret) {
3078 nr++;
3079 *bio_flags = this_bio_flag;
3080 } else {
3081 SetPageError(page);
3082 unlock_extent(tree, cur, cur + iosize - 1);
3083 goto out;
3084 }
3085 cur = cur + iosize;
3086 pg_offset += iosize;
3087 }
3088out:
3089 if (!nr) {
3090 if (!PageError(page))
3091 SetPageUptodate(page);
3092 unlock_page(page);
3093 }
3094 return ret;
3095}
3096
3097static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 struct page *pages[], int nr_pages,
3099 u64 start, u64 end,
3100 get_extent_t *get_extent,
3101 struct extent_map **em_cached,
3102 struct bio **bio, int mirror_num,
3103 unsigned long *bio_flags,
3104 u64 *prev_em_start)
3105{
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(inode, start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 mirror_num, bio_flags, 0, prev_em_start);
3125 put_page(pages[index]);
3126 }
3127}
3128
3129static void __extent_readpages(struct extent_io_tree *tree,
3130 struct page *pages[],
3131 int nr_pages, get_extent_t *get_extent,
3132 struct extent_map **em_cached,
3133 struct bio **bio, int mirror_num,
3134 unsigned long *bio_flags,
3135 u64 *prev_em_start)
3136{
3137 u64 start = 0;
3138 u64 end = 0;
3139 u64 page_start;
3140 int index;
3141 int first_index = 0;
3142
3143 for (index = 0; index < nr_pages; index++) {
3144 page_start = page_offset(pages[index]);
3145 if (!end) {
3146 start = page_start;
3147 end = start + PAGE_SIZE - 1;
3148 first_index = index;
3149 } else if (end + 1 == page_start) {
3150 end += PAGE_SIZE;
3151 } else {
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
3154 end, get_extent, em_cached,
3155 bio, mirror_num, bio_flags,
3156 prev_em_start);
3157 start = page_start;
3158 end = start + PAGE_SIZE - 1;
3159 first_index = index;
3160 }
3161 }
3162
3163 if (end)
3164 __do_contiguous_readpages(tree, &pages[first_index],
3165 index - first_index, start,
3166 end, get_extent, em_cached, bio,
3167 mirror_num, bio_flags,
3168 prev_em_start);
3169}
3170
3171static int __extent_read_full_page(struct extent_io_tree *tree,
3172 struct page *page,
3173 get_extent_t *get_extent,
3174 struct bio **bio, int mirror_num,
3175 unsigned long *bio_flags, int read_flags)
3176{
3177 struct inode *inode = page->mapping->host;
3178 struct btrfs_ordered_extent *ordered;
3179 u64 start = page_offset(page);
3180 u64 end = start + PAGE_SIZE - 1;
3181 int ret;
3182
3183 while (1) {
3184 lock_extent(tree, start, end);
3185 ordered = btrfs_lookup_ordered_range(inode, start,
3186 PAGE_SIZE);
3187 if (!ordered)
3188 break;
3189 unlock_extent(tree, start, end);
3190 btrfs_start_ordered_extent(inode, ordered, 1);
3191 btrfs_put_ordered_extent(ordered);
3192 }
3193
3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 bio_flags, read_flags, NULL);
3196 return ret;
3197}
3198
3199int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 get_extent_t *get_extent, int mirror_num)
3201{
3202 struct bio *bio = NULL;
3203 unsigned long bio_flags = 0;
3204 int ret;
3205
3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 &bio_flags, 0);
3208 if (bio)
3209 ret = submit_one_bio(bio, mirror_num, bio_flags);
3210 return ret;
3211}
3212
3213static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 unsigned long nr_written)
3215{
3216 wbc->nr_to_write -= nr_written;
3217}
3218
3219/*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
3229static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 struct page *page, struct writeback_control *wbc,
3231 struct extent_page_data *epd,
3232 u64 delalloc_start,
3233 unsigned long *nr_written)
3234{
3235 struct extent_io_tree *tree = epd->tree;
3236 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 u64 nr_delalloc;
3238 u64 delalloc_to_write = 0;
3239 u64 delalloc_end = 0;
3240 int ret;
3241 int page_started = 0;
3242
3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 return 0;
3245
3246 while (delalloc_end < page_end) {
3247 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 page,
3249 &delalloc_start,
3250 &delalloc_end,
3251 BTRFS_MAX_EXTENT_SIZE);
3252 if (nr_delalloc == 0) {
3253 delalloc_start = delalloc_end + 1;
3254 continue;
3255 }
3256 ret = tree->ops->fill_delalloc(inode, page,
3257 delalloc_start,
3258 delalloc_end,
3259 &page_started,
3260 nr_written);
3261 /* File system has been set read-only */
3262 if (ret) {
3263 SetPageError(page);
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3268 */
3269 ret = ret < 0 ? ret : -EIO;
3270 goto done;
3271 }
3272 /*
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
3275 */
3276 delalloc_to_write += (delalloc_end - delalloc_start +
3277 PAGE_SIZE) >> PAGE_SHIFT;
3278 delalloc_start = delalloc_end + 1;
3279 }
3280 if (wbc->nr_to_write < delalloc_to_write) {
3281 int thresh = 8192;
3282
3283 if (delalloc_to_write < thresh * 2)
3284 thresh = delalloc_to_write;
3285 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 thresh);
3287 }
3288
3289 /* did the fill delalloc function already unlock and start
3290 * the IO?
3291 */
3292 if (page_started) {
3293 /*
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3296 * nr_to_write.
3297 */
3298 wbc->nr_to_write -= *nr_written;
3299 return 1;
3300 }
3301
3302 ret = 0;
3303
3304done:
3305 return ret;
3306}
3307
3308/*
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 struct page *page,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd,
3320 loff_t i_size,
3321 unsigned long nr_written,
3322 int write_flags, int *nr_ret)
3323{
3324 struct extent_io_tree *tree = epd->tree;
3325 u64 start = page_offset(page);
3326 u64 page_end = start + PAGE_SIZE - 1;
3327 u64 end;
3328 u64 cur = start;
3329 u64 extent_offset;
3330 u64 block_start;
3331 u64 iosize;
3332 sector_t sector;
3333 struct extent_state *cached_state = NULL;
3334 struct extent_map *em;
3335 struct block_device *bdev;
3336 size_t pg_offset = 0;
3337 size_t blocksize;
3338 int ret = 0;
3339 int nr = 0;
3340 bool compressed;
3341
3342 if (tree->ops && tree->ops->writepage_start_hook) {
3343 ret = tree->ops->writepage_start_hook(page, start,
3344 page_end);
3345 if (ret) {
3346 /* Fixup worker will requeue */
3347 if (ret == -EBUSY)
3348 wbc->pages_skipped++;
3349 else
3350 redirty_page_for_writepage(wbc, page);
3351
3352 update_nr_written(page, wbc, nr_written);
3353 unlock_page(page);
3354 ret = 1;
3355 goto done_unlocked;
3356 }
3357 }
3358
3359 /*
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3362 */
3363 update_nr_written(page, wbc, nr_written + 1);
3364
3365 end = page_end;
3366 if (i_size <= start) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, start,
3369 page_end, NULL, 1);
3370 goto done;
3371 }
3372
3373 blocksize = inode->i_sb->s_blocksize;
3374
3375 while (cur <= end) {
3376 u64 em_end;
3377 unsigned long max_nr;
3378
3379 if (cur >= i_size) {
3380 if (tree->ops && tree->ops->writepage_end_io_hook)
3381 tree->ops->writepage_end_io_hook(page, cur,
3382 page_end, NULL, 1);
3383 break;
3384 }
3385 em = epd->get_extent(inode, page, pg_offset, cur,
3386 end - cur + 1, 1);
3387 if (IS_ERR_OR_NULL(em)) {
3388 SetPageError(page);
3389 ret = PTR_ERR_OR_ZERO(em);
3390 break;
3391 }
3392
3393 extent_offset = cur - em->start;
3394 em_end = extent_map_end(em);
3395 BUG_ON(em_end <= cur);
3396 BUG_ON(end < cur);
3397 iosize = min(em_end - cur, end - cur + 1);
3398 iosize = ALIGN(iosize, blocksize);
3399 sector = (em->block_start + extent_offset) >> 9;
3400 bdev = em->bdev;
3401 block_start = em->block_start;
3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 free_extent_map(em);
3404 em = NULL;
3405
3406 /*
3407 * compressed and inline extents are written through other
3408 * paths in the FS
3409 */
3410 if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 block_start == EXTENT_MAP_INLINE) {
3412 /*
3413 * end_io notification does not happen here for
3414 * compressed extents
3415 */
3416 if (!compressed && tree->ops &&
3417 tree->ops->writepage_end_io_hook)
3418 tree->ops->writepage_end_io_hook(page, cur,
3419 cur + iosize - 1,
3420 NULL, 1);
3421 else if (compressed) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3424 * elsewhere
3425 */
3426 nr++;
3427 }
3428
3429 cur += iosize;
3430 pg_offset += iosize;
3431 continue;
3432 }
3433
3434 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page->index, cur, end);
3441 }
3442
3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 page, sector, iosize, pg_offset,
3445 bdev, &epd->bio, max_nr,
3446 end_bio_extent_writepage,
3447 0, 0, 0, false);
3448 if (ret)
3449 SetPageError(page);
3450
3451 cur = cur + iosize;
3452 pg_offset += iosize;
3453 nr++;
3454 }
3455done:
3456 *nr_ret = nr;
3457
3458done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473{
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
3477 u64 page_end = start + PAGE_SIZE - 1;
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
3482 unsigned long end_index = i_size >> PAGE_SHIFT;
3483 int write_flags = 0;
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = REQ_SYNC;
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
3495 pg_offset = i_size & (PAGE_SIZE - 1);
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
3508 PAGE_SIZE - pg_offset);
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
3528done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
3538 unlock_page(page);
3539 return ret;
3540
3541done_unlocked:
3542 return 0;
3543}
3544
3545void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546{
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
3549}
3550
3551static noinline_for_stack int
3552lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
3555{
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
3579 btrfs_tree_unlock(eb);
3580 }
3581 }
3582
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591 spin_unlock(&eb->refs_lock);
3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
3596 ret = 1;
3597 } else {
3598 spin_unlock(&eb->refs_lock);
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
3608 struct page *p = eb->pages[i];
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620}
3621
3622static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623{
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625 smp_mb__after_atomic();
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627}
3628
3629static void set_btree_ioerr(struct page *page)
3630{
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632
3633 SetPageError(page);
3634 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635 return;
3636
3637 /*
3638 * If writeback for a btree extent that doesn't belong to a log tree
3639 * failed, increment the counter transaction->eb_write_errors.
3640 * We do this because while the transaction is running and before it's
3641 * committing (when we call filemap_fdata[write|wait]_range against
3642 * the btree inode), we might have
3643 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 * returns an error or an error happens during writeback, when we're
3645 * committing the transaction we wouldn't know about it, since the pages
3646 * can be no longer dirty nor marked anymore for writeback (if a
3647 * subsequent modification to the extent buffer didn't happen before the
3648 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 * able to find the pages tagged with SetPageError at transaction
3650 * commit time. So if this happens we must abort the transaction,
3651 * otherwise we commit a super block with btree roots that point to
3652 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 * or the content of some node/leaf from a past generation that got
3654 * cowed or deleted and is no longer valid.
3655 *
3656 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 * not be enough - we need to distinguish between log tree extents vs
3658 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 * will catch and clear such errors in the mapping - and that call might
3660 * be from a log sync and not from a transaction commit. Also, checking
3661 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 * not done and would not be reliable - the eb might have been released
3663 * from memory and reading it back again means that flag would not be
3664 * set (since it's a runtime flag, not persisted on disk).
3665 *
3666 * Using the flags below in the btree inode also makes us achieve the
3667 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 * is called, the writeback for all dirty pages had already finished
3670 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 * filemap_fdatawait_range() would return success, as it could not know
3672 * that writeback errors happened (the pages were no longer tagged for
3673 * writeback).
3674 */
3675 switch (eb->log_index) {
3676 case -1:
3677 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3678 break;
3679 case 0:
3680 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3681 break;
3682 case 1:
3683 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3684 break;
3685 default:
3686 BUG(); /* unexpected, logic error */
3687 }
3688}
3689
3690static void end_bio_extent_buffer_writepage(struct bio *bio)
3691{
3692 struct bio_vec *bvec;
3693 struct extent_buffer *eb;
3694 int i, done;
3695
3696 bio_for_each_segment_all(bvec, bio, i) {
3697 struct page *page = bvec->bv_page;
3698
3699 eb = (struct extent_buffer *)page->private;
3700 BUG_ON(!eb);
3701 done = atomic_dec_and_test(&eb->io_pages);
3702
3703 if (bio->bi_error ||
3704 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3705 ClearPageUptodate(page);
3706 set_btree_ioerr(page);
3707 }
3708
3709 end_page_writeback(page);
3710
3711 if (!done)
3712 continue;
3713
3714 end_extent_buffer_writeback(eb);
3715 }
3716
3717 bio_put(bio);
3718}
3719
3720static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3721 struct btrfs_fs_info *fs_info,
3722 struct writeback_control *wbc,
3723 struct extent_page_data *epd)
3724{
3725 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3726 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3727 u64 offset = eb->start;
3728 u32 nritems;
3729 unsigned long i, num_pages;
3730 unsigned long bio_flags = 0;
3731 unsigned long start, end;
3732 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3733 int ret = 0;
3734
3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3742 nritems = btrfs_header_nritems(eb);
3743 if (btrfs_header_level(eb) > 0) {
3744 end = btrfs_node_key_ptr_offset(nritems);
3745
3746 memzero_extent_buffer(eb, end, eb->len - end);
3747 } else {
3748 /*
3749 * leaf:
3750 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3751 */
3752 start = btrfs_item_nr_offset(nritems);
3753 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3754 memzero_extent_buffer(eb, start, end - start);
3755 }
3756
3757 for (i = 0; i < num_pages; i++) {
3758 struct page *p = eb->pages[i];
3759
3760 clear_page_dirty_for_io(p);
3761 set_page_writeback(p);
3762 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3763 p, offset >> 9, PAGE_SIZE, 0, bdev,
3764 &epd->bio, -1,
3765 end_bio_extent_buffer_writepage,
3766 0, epd->bio_flags, bio_flags, false);
3767 epd->bio_flags = bio_flags;
3768 if (ret) {
3769 set_btree_ioerr(p);
3770 end_page_writeback(p);
3771 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3772 end_extent_buffer_writeback(eb);
3773 ret = -EIO;
3774 break;
3775 }
3776 offset += PAGE_SIZE;
3777 update_nr_written(p, wbc, 1);
3778 unlock_page(p);
3779 }
3780
3781 if (unlikely(ret)) {
3782 for (; i < num_pages; i++) {
3783 struct page *p = eb->pages[i];
3784 clear_page_dirty_for_io(p);
3785 unlock_page(p);
3786 }
3787 }
3788
3789 return ret;
3790}
3791
3792int btree_write_cache_pages(struct address_space *mapping,
3793 struct writeback_control *wbc)
3794{
3795 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3796 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3797 struct extent_buffer *eb, *prev_eb = NULL;
3798 struct extent_page_data epd = {
3799 .bio = NULL,
3800 .tree = tree,
3801 .extent_locked = 0,
3802 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3803 .bio_flags = 0,
3804 };
3805 int ret = 0;
3806 int done = 0;
3807 int nr_to_write_done = 0;
3808 struct pagevec pvec;
3809 int nr_pages;
3810 pgoff_t index;
3811 pgoff_t end; /* Inclusive */
3812 int scanned = 0;
3813 int tag;
3814
3815 pagevec_init(&pvec, 0);
3816 if (wbc->range_cyclic) {
3817 index = mapping->writeback_index; /* Start from prev offset */
3818 end = -1;
3819 } else {
3820 index = wbc->range_start >> PAGE_SHIFT;
3821 end = wbc->range_end >> PAGE_SHIFT;
3822 scanned = 1;
3823 }
3824 if (wbc->sync_mode == WB_SYNC_ALL)
3825 tag = PAGECACHE_TAG_TOWRITE;
3826 else
3827 tag = PAGECACHE_TAG_DIRTY;
3828retry:
3829 if (wbc->sync_mode == WB_SYNC_ALL)
3830 tag_pages_for_writeback(mapping, index, end);
3831 while (!done && !nr_to_write_done && (index <= end) &&
3832 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3833 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3834 unsigned i;
3835
3836 scanned = 1;
3837 for (i = 0; i < nr_pages; i++) {
3838 struct page *page = pvec.pages[i];
3839
3840 if (!PagePrivate(page))
3841 continue;
3842
3843 if (!wbc->range_cyclic && page->index > end) {
3844 done = 1;
3845 break;
3846 }
3847
3848 spin_lock(&mapping->private_lock);
3849 if (!PagePrivate(page)) {
3850 spin_unlock(&mapping->private_lock);
3851 continue;
3852 }
3853
3854 eb = (struct extent_buffer *)page->private;
3855
3856 /*
3857 * Shouldn't happen and normally this would be a BUG_ON
3858 * but no sense in crashing the users box for something
3859 * we can survive anyway.
3860 */
3861 if (WARN_ON(!eb)) {
3862 spin_unlock(&mapping->private_lock);
3863 continue;
3864 }
3865
3866 if (eb == prev_eb) {
3867 spin_unlock(&mapping->private_lock);
3868 continue;
3869 }
3870
3871 ret = atomic_inc_not_zero(&eb->refs);
3872 spin_unlock(&mapping->private_lock);
3873 if (!ret)
3874 continue;
3875
3876 prev_eb = eb;
3877 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3878 if (!ret) {
3879 free_extent_buffer(eb);
3880 continue;
3881 }
3882
3883 ret = write_one_eb(eb, fs_info, wbc, &epd);
3884 if (ret) {
3885 done = 1;
3886 free_extent_buffer(eb);
3887 break;
3888 }
3889 free_extent_buffer(eb);
3890
3891 /*
3892 * the filesystem may choose to bump up nr_to_write.
3893 * We have to make sure to honor the new nr_to_write
3894 * at any time
3895 */
3896 nr_to_write_done = wbc->nr_to_write <= 0;
3897 }
3898 pagevec_release(&pvec);
3899 cond_resched();
3900 }
3901 if (!scanned && !done) {
3902 /*
3903 * We hit the last page and there is more work to be done: wrap
3904 * back to the start of the file
3905 */
3906 scanned = 1;
3907 index = 0;
3908 goto retry;
3909 }
3910 flush_write_bio(&epd);
3911 return ret;
3912}
3913
3914/**
3915 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3916 * @mapping: address space structure to write
3917 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3918 * @writepage: function called for each page
3919 * @data: data passed to writepage function
3920 *
3921 * If a page is already under I/O, write_cache_pages() skips it, even
3922 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3923 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3924 * and msync() need to guarantee that all the data which was dirty at the time
3925 * the call was made get new I/O started against them. If wbc->sync_mode is
3926 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3927 * existing IO to complete.
3928 */
3929static int extent_write_cache_pages(struct extent_io_tree *tree,
3930 struct address_space *mapping,
3931 struct writeback_control *wbc,
3932 writepage_t writepage, void *data,
3933 void (*flush_fn)(void *))
3934{
3935 struct inode *inode = mapping->host;
3936 int ret = 0;
3937 int done = 0;
3938 int nr_to_write_done = 0;
3939 struct pagevec pvec;
3940 int nr_pages;
3941 pgoff_t index;
3942 pgoff_t end; /* Inclusive */
3943 pgoff_t done_index;
3944 int range_whole = 0;
3945 int scanned = 0;
3946 int tag;
3947
3948 /*
3949 * We have to hold onto the inode so that ordered extents can do their
3950 * work when the IO finishes. The alternative to this is failing to add
3951 * an ordered extent if the igrab() fails there and that is a huge pain
3952 * to deal with, so instead just hold onto the inode throughout the
3953 * writepages operation. If it fails here we are freeing up the inode
3954 * anyway and we'd rather not waste our time writing out stuff that is
3955 * going to be truncated anyway.
3956 */
3957 if (!igrab(inode))
3958 return 0;
3959
3960 pagevec_init(&pvec, 0);
3961 if (wbc->range_cyclic) {
3962 index = mapping->writeback_index; /* Start from prev offset */
3963 end = -1;
3964 } else {
3965 index = wbc->range_start >> PAGE_SHIFT;
3966 end = wbc->range_end >> PAGE_SHIFT;
3967 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3968 range_whole = 1;
3969 scanned = 1;
3970 }
3971 if (wbc->sync_mode == WB_SYNC_ALL)
3972 tag = PAGECACHE_TAG_TOWRITE;
3973 else
3974 tag = PAGECACHE_TAG_DIRTY;
3975retry:
3976 if (wbc->sync_mode == WB_SYNC_ALL)
3977 tag_pages_for_writeback(mapping, index, end);
3978 done_index = index;
3979 while (!done && !nr_to_write_done && (index <= end) &&
3980 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3981 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3982 unsigned i;
3983
3984 scanned = 1;
3985 for (i = 0; i < nr_pages; i++) {
3986 struct page *page = pvec.pages[i];
3987
3988 done_index = page->index;
3989 /*
3990 * At this point we hold neither mapping->tree_lock nor
3991 * lock on the page itself: the page may be truncated or
3992 * invalidated (changing page->mapping to NULL), or even
3993 * swizzled back from swapper_space to tmpfs file
3994 * mapping
3995 */
3996 if (!trylock_page(page)) {
3997 flush_fn(data);
3998 lock_page(page);
3999 }
4000
4001 if (unlikely(page->mapping != mapping)) {
4002 unlock_page(page);
4003 continue;
4004 }
4005
4006 if (!wbc->range_cyclic && page->index > end) {
4007 done = 1;
4008 unlock_page(page);
4009 continue;
4010 }
4011
4012 if (wbc->sync_mode != WB_SYNC_NONE) {
4013 if (PageWriteback(page))
4014 flush_fn(data);
4015 wait_on_page_writeback(page);
4016 }
4017
4018 if (PageWriteback(page) ||
4019 !clear_page_dirty_for_io(page)) {
4020 unlock_page(page);
4021 continue;
4022 }
4023
4024 ret = (*writepage)(page, wbc, data);
4025
4026 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4027 unlock_page(page);
4028 ret = 0;
4029 }
4030 if (ret < 0) {
4031 /*
4032 * done_index is set past this page,
4033 * so media errors will not choke
4034 * background writeout for the entire
4035 * file. This has consequences for
4036 * range_cyclic semantics (ie. it may
4037 * not be suitable for data integrity
4038 * writeout).
4039 */
4040 done_index = page->index + 1;
4041 done = 1;
4042 break;
4043 }
4044
4045 /*
4046 * the filesystem may choose to bump up nr_to_write.
4047 * We have to make sure to honor the new nr_to_write
4048 * at any time
4049 */
4050 nr_to_write_done = wbc->nr_to_write <= 0;
4051 }
4052 pagevec_release(&pvec);
4053 cond_resched();
4054 }
4055 if (!scanned && !done) {
4056 /*
4057 * We hit the last page and there is more work to be done: wrap
4058 * back to the start of the file
4059 */
4060 scanned = 1;
4061 index = 0;
4062 goto retry;
4063 }
4064
4065 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4066 mapping->writeback_index = done_index;
4067
4068 btrfs_add_delayed_iput(inode);
4069 return ret;
4070}
4071
4072static void flush_epd_write_bio(struct extent_page_data *epd)
4073{
4074 if (epd->bio) {
4075 int ret;
4076
4077 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4078 epd->sync_io ? REQ_SYNC : 0);
4079
4080 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4081 BUG_ON(ret < 0); /* -ENOMEM */
4082 epd->bio = NULL;
4083 }
4084}
4085
4086static noinline void flush_write_bio(void *data)
4087{
4088 struct extent_page_data *epd = data;
4089 flush_epd_write_bio(epd);
4090}
4091
4092int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4093 get_extent_t *get_extent,
4094 struct writeback_control *wbc)
4095{
4096 int ret;
4097 struct extent_page_data epd = {
4098 .bio = NULL,
4099 .tree = tree,
4100 .get_extent = get_extent,
4101 .extent_locked = 0,
4102 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4103 .bio_flags = 0,
4104 };
4105
4106 ret = __extent_writepage(page, wbc, &epd);
4107
4108 flush_epd_write_bio(&epd);
4109 return ret;
4110}
4111
4112int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4113 u64 start, u64 end, get_extent_t *get_extent,
4114 int mode)
4115{
4116 int ret = 0;
4117 struct address_space *mapping = inode->i_mapping;
4118 struct page *page;
4119 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4120 PAGE_SHIFT;
4121
4122 struct extent_page_data epd = {
4123 .bio = NULL,
4124 .tree = tree,
4125 .get_extent = get_extent,
4126 .extent_locked = 1,
4127 .sync_io = mode == WB_SYNC_ALL,
4128 .bio_flags = 0,
4129 };
4130 struct writeback_control wbc_writepages = {
4131 .sync_mode = mode,
4132 .nr_to_write = nr_pages * 2,
4133 .range_start = start,
4134 .range_end = end + 1,
4135 };
4136
4137 while (start <= end) {
4138 page = find_get_page(mapping, start >> PAGE_SHIFT);
4139 if (clear_page_dirty_for_io(page))
4140 ret = __extent_writepage(page, &wbc_writepages, &epd);
4141 else {
4142 if (tree->ops && tree->ops->writepage_end_io_hook)
4143 tree->ops->writepage_end_io_hook(page, start,
4144 start + PAGE_SIZE - 1,
4145 NULL, 1);
4146 unlock_page(page);
4147 }
4148 put_page(page);
4149 start += PAGE_SIZE;
4150 }
4151
4152 flush_epd_write_bio(&epd);
4153 return ret;
4154}
4155
4156int extent_writepages(struct extent_io_tree *tree,
4157 struct address_space *mapping,
4158 get_extent_t *get_extent,
4159 struct writeback_control *wbc)
4160{
4161 int ret = 0;
4162 struct extent_page_data epd = {
4163 .bio = NULL,
4164 .tree = tree,
4165 .get_extent = get_extent,
4166 .extent_locked = 0,
4167 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4168 .bio_flags = 0,
4169 };
4170
4171 ret = extent_write_cache_pages(tree, mapping, wbc,
4172 __extent_writepage, &epd,
4173 flush_write_bio);
4174 flush_epd_write_bio(&epd);
4175 return ret;
4176}
4177
4178int extent_readpages(struct extent_io_tree *tree,
4179 struct address_space *mapping,
4180 struct list_head *pages, unsigned nr_pages,
4181 get_extent_t get_extent)
4182{
4183 struct bio *bio = NULL;
4184 unsigned page_idx;
4185 unsigned long bio_flags = 0;
4186 struct page *pagepool[16];
4187 struct page *page;
4188 struct extent_map *em_cached = NULL;
4189 int nr = 0;
4190 u64 prev_em_start = (u64)-1;
4191
4192 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4193 page = list_entry(pages->prev, struct page, lru);
4194
4195 prefetchw(&page->flags);
4196 list_del(&page->lru);
4197 if (add_to_page_cache_lru(page, mapping,
4198 page->index,
4199 readahead_gfp_mask(mapping))) {
4200 put_page(page);
4201 continue;
4202 }
4203
4204 pagepool[nr++] = page;
4205 if (nr < ARRAY_SIZE(pagepool))
4206 continue;
4207 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4208 &bio, 0, &bio_flags, &prev_em_start);
4209 nr = 0;
4210 }
4211 if (nr)
4212 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4213 &bio, 0, &bio_flags, &prev_em_start);
4214
4215 if (em_cached)
4216 free_extent_map(em_cached);
4217
4218 BUG_ON(!list_empty(pages));
4219 if (bio)
4220 return submit_one_bio(bio, 0, bio_flags);
4221 return 0;
4222}
4223
4224/*
4225 * basic invalidatepage code, this waits on any locked or writeback
4226 * ranges corresponding to the page, and then deletes any extent state
4227 * records from the tree
4228 */
4229int extent_invalidatepage(struct extent_io_tree *tree,
4230 struct page *page, unsigned long offset)
4231{
4232 struct extent_state *cached_state = NULL;
4233 u64 start = page_offset(page);
4234 u64 end = start + PAGE_SIZE - 1;
4235 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4236
4237 start += ALIGN(offset, blocksize);
4238 if (start > end)
4239 return 0;
4240
4241 lock_extent_bits(tree, start, end, &cached_state);
4242 wait_on_page_writeback(page);
4243 clear_extent_bit(tree, start, end,
4244 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4245 EXTENT_DO_ACCOUNTING,
4246 1, 1, &cached_state, GFP_NOFS);
4247 return 0;
4248}
4249
4250/*
4251 * a helper for releasepage, this tests for areas of the page that
4252 * are locked or under IO and drops the related state bits if it is safe
4253 * to drop the page.
4254 */
4255static int try_release_extent_state(struct extent_map_tree *map,
4256 struct extent_io_tree *tree,
4257 struct page *page, gfp_t mask)
4258{
4259 u64 start = page_offset(page);
4260 u64 end = start + PAGE_SIZE - 1;
4261 int ret = 1;
4262
4263 if (test_range_bit(tree, start, end,
4264 EXTENT_IOBITS, 0, NULL))
4265 ret = 0;
4266 else {
4267 if ((mask & GFP_NOFS) == GFP_NOFS)
4268 mask = GFP_NOFS;
4269 /*
4270 * at this point we can safely clear everything except the
4271 * locked bit and the nodatasum bit
4272 */
4273 ret = clear_extent_bit(tree, start, end,
4274 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4275 0, 0, NULL, mask);
4276
4277 /* if clear_extent_bit failed for enomem reasons,
4278 * we can't allow the release to continue.
4279 */
4280 if (ret < 0)
4281 ret = 0;
4282 else
4283 ret = 1;
4284 }
4285 return ret;
4286}
4287
4288/*
4289 * a helper for releasepage. As long as there are no locked extents
4290 * in the range corresponding to the page, both state records and extent
4291 * map records are removed
4292 */
4293int try_release_extent_mapping(struct extent_map_tree *map,
4294 struct extent_io_tree *tree, struct page *page,
4295 gfp_t mask)
4296{
4297 struct extent_map *em;
4298 u64 start = page_offset(page);
4299 u64 end = start + PAGE_SIZE - 1;
4300
4301 if (gfpflags_allow_blocking(mask) &&
4302 page->mapping->host->i_size > SZ_16M) {
4303 u64 len;
4304 while (start <= end) {
4305 len = end - start + 1;
4306 write_lock(&map->lock);
4307 em = lookup_extent_mapping(map, start, len);
4308 if (!em) {
4309 write_unlock(&map->lock);
4310 break;
4311 }
4312 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4313 em->start != start) {
4314 write_unlock(&map->lock);
4315 free_extent_map(em);
4316 break;
4317 }
4318 if (!test_range_bit(tree, em->start,
4319 extent_map_end(em) - 1,
4320 EXTENT_LOCKED | EXTENT_WRITEBACK,
4321 0, NULL)) {
4322 remove_extent_mapping(map, em);
4323 /* once for the rb tree */
4324 free_extent_map(em);
4325 }
4326 start = extent_map_end(em);
4327 write_unlock(&map->lock);
4328
4329 /* once for us */
4330 free_extent_map(em);
4331 }
4332 }
4333 return try_release_extent_state(map, tree, page, mask);
4334}
4335
4336/*
4337 * helper function for fiemap, which doesn't want to see any holes.
4338 * This maps until we find something past 'last'
4339 */
4340static struct extent_map *get_extent_skip_holes(struct inode *inode,
4341 u64 offset,
4342 u64 last,
4343 get_extent_t *get_extent)
4344{
4345 u64 sectorsize = btrfs_inode_sectorsize(inode);
4346 struct extent_map *em;
4347 u64 len;
4348
4349 if (offset >= last)
4350 return NULL;
4351
4352 while (1) {
4353 len = last - offset;
4354 if (len == 0)
4355 break;
4356 len = ALIGN(len, sectorsize);
4357 em = get_extent(inode, NULL, 0, offset, len, 0);
4358 if (IS_ERR_OR_NULL(em))
4359 return em;
4360
4361 /* if this isn't a hole return it */
4362 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4363 em->block_start != EXTENT_MAP_HOLE) {
4364 return em;
4365 }
4366
4367 /* this is a hole, advance to the next extent */
4368 offset = extent_map_end(em);
4369 free_extent_map(em);
4370 if (offset >= last)
4371 break;
4372 }
4373 return NULL;
4374}
4375
4376int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4377 __u64 start, __u64 len, get_extent_t *get_extent)
4378{
4379 int ret = 0;
4380 u64 off = start;
4381 u64 max = start + len;
4382 u32 flags = 0;
4383 u32 found_type;
4384 u64 last;
4385 u64 last_for_get_extent = 0;
4386 u64 disko = 0;
4387 u64 isize = i_size_read(inode);
4388 struct btrfs_key found_key;
4389 struct extent_map *em = NULL;
4390 struct extent_state *cached_state = NULL;
4391 struct btrfs_path *path;
4392 struct btrfs_root *root = BTRFS_I(inode)->root;
4393 int end = 0;
4394 u64 em_start = 0;
4395 u64 em_len = 0;
4396 u64 em_end = 0;
4397
4398 if (len == 0)
4399 return -EINVAL;
4400
4401 path = btrfs_alloc_path();
4402 if (!path)
4403 return -ENOMEM;
4404 path->leave_spinning = 1;
4405
4406 start = round_down(start, btrfs_inode_sectorsize(inode));
4407 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4408
4409 /*
4410 * lookup the last file extent. We're not using i_size here
4411 * because there might be preallocation past i_size
4412 */
4413 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4414 0);
4415 if (ret < 0) {
4416 btrfs_free_path(path);
4417 return ret;
4418 } else {
4419 WARN_ON(!ret);
4420 if (ret == 1)
4421 ret = 0;
4422 }
4423
4424 path->slots[0]--;
4425 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4426 found_type = found_key.type;
4427
4428 /* No extents, but there might be delalloc bits */
4429 if (found_key.objectid != btrfs_ino(inode) ||
4430 found_type != BTRFS_EXTENT_DATA_KEY) {
4431 /* have to trust i_size as the end */
4432 last = (u64)-1;
4433 last_for_get_extent = isize;
4434 } else {
4435 /*
4436 * remember the start of the last extent. There are a
4437 * bunch of different factors that go into the length of the
4438 * extent, so its much less complex to remember where it started
4439 */
4440 last = found_key.offset;
4441 last_for_get_extent = last + 1;
4442 }
4443 btrfs_release_path(path);
4444
4445 /*
4446 * we might have some extents allocated but more delalloc past those
4447 * extents. so, we trust isize unless the start of the last extent is
4448 * beyond isize
4449 */
4450 if (last < isize) {
4451 last = (u64)-1;
4452 last_for_get_extent = isize;
4453 }
4454
4455 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4456 &cached_state);
4457
4458 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4459 get_extent);
4460 if (!em)
4461 goto out;
4462 if (IS_ERR(em)) {
4463 ret = PTR_ERR(em);
4464 goto out;
4465 }
4466
4467 while (!end) {
4468 u64 offset_in_extent = 0;
4469
4470 /* break if the extent we found is outside the range */
4471 if (em->start >= max || extent_map_end(em) < off)
4472 break;
4473
4474 /*
4475 * get_extent may return an extent that starts before our
4476 * requested range. We have to make sure the ranges
4477 * we return to fiemap always move forward and don't
4478 * overlap, so adjust the offsets here
4479 */
4480 em_start = max(em->start, off);
4481
4482 /*
4483 * record the offset from the start of the extent
4484 * for adjusting the disk offset below. Only do this if the
4485 * extent isn't compressed since our in ram offset may be past
4486 * what we have actually allocated on disk.
4487 */
4488 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4489 offset_in_extent = em_start - em->start;
4490 em_end = extent_map_end(em);
4491 em_len = em_end - em_start;
4492 disko = 0;
4493 flags = 0;
4494
4495 /*
4496 * bump off for our next call to get_extent
4497 */
4498 off = extent_map_end(em);
4499 if (off >= max)
4500 end = 1;
4501
4502 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4503 end = 1;
4504 flags |= FIEMAP_EXTENT_LAST;
4505 } else if (em->block_start == EXTENT_MAP_INLINE) {
4506 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4507 FIEMAP_EXTENT_NOT_ALIGNED);
4508 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4509 flags |= (FIEMAP_EXTENT_DELALLOC |
4510 FIEMAP_EXTENT_UNKNOWN);
4511 } else if (fieinfo->fi_extents_max) {
4512 struct btrfs_trans_handle *trans;
4513
4514 u64 bytenr = em->block_start -
4515 (em->start - em->orig_start);
4516
4517 disko = em->block_start + offset_in_extent;
4518
4519 /*
4520 * We need a trans handle to get delayed refs
4521 */
4522 trans = btrfs_join_transaction(root);
4523 /*
4524 * It's OK if we can't start a trans we can still check
4525 * from commit_root
4526 */
4527 if (IS_ERR(trans))
4528 trans = NULL;
4529
4530 /*
4531 * As btrfs supports shared space, this information
4532 * can be exported to userspace tools via
4533 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4534 * then we're just getting a count and we can skip the
4535 * lookup stuff.
4536 */
4537 ret = btrfs_check_shared(trans, root->fs_info,
4538 root->objectid,
4539 btrfs_ino(inode), bytenr);
4540 if (trans)
4541 btrfs_end_transaction(trans);
4542 if (ret < 0)
4543 goto out_free;
4544 if (ret)
4545 flags |= FIEMAP_EXTENT_SHARED;
4546 ret = 0;
4547 }
4548 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4549 flags |= FIEMAP_EXTENT_ENCODED;
4550 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4551 flags |= FIEMAP_EXTENT_UNWRITTEN;
4552
4553 free_extent_map(em);
4554 em = NULL;
4555 if ((em_start >= last) || em_len == (u64)-1 ||
4556 (last == (u64)-1 && isize <= em_end)) {
4557 flags |= FIEMAP_EXTENT_LAST;
4558 end = 1;
4559 }
4560
4561 /* now scan forward to see if this is really the last extent. */
4562 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4563 get_extent);
4564 if (IS_ERR(em)) {
4565 ret = PTR_ERR(em);
4566 goto out;
4567 }
4568 if (!em) {
4569 flags |= FIEMAP_EXTENT_LAST;
4570 end = 1;
4571 }
4572 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4573 em_len, flags);
4574 if (ret) {
4575 if (ret == 1)
4576 ret = 0;
4577 goto out_free;
4578 }
4579 }
4580out_free:
4581 free_extent_map(em);
4582out:
4583 btrfs_free_path(path);
4584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4585 &cached_state, GFP_NOFS);
4586 return ret;
4587}
4588
4589static void __free_extent_buffer(struct extent_buffer *eb)
4590{
4591 btrfs_leak_debug_del(&eb->leak_list);
4592 kmem_cache_free(extent_buffer_cache, eb);
4593}
4594
4595int extent_buffer_under_io(struct extent_buffer *eb)
4596{
4597 return (atomic_read(&eb->io_pages) ||
4598 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4599 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4600}
4601
4602/*
4603 * Helper for releasing extent buffer page.
4604 */
4605static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4606{
4607 unsigned long index;
4608 struct page *page;
4609 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4610
4611 BUG_ON(extent_buffer_under_io(eb));
4612
4613 index = num_extent_pages(eb->start, eb->len);
4614 if (index == 0)
4615 return;
4616
4617 do {
4618 index--;
4619 page = eb->pages[index];
4620 if (!page)
4621 continue;
4622 if (mapped)
4623 spin_lock(&page->mapping->private_lock);
4624 /*
4625 * We do this since we'll remove the pages after we've
4626 * removed the eb from the radix tree, so we could race
4627 * and have this page now attached to the new eb. So
4628 * only clear page_private if it's still connected to
4629 * this eb.
4630 */
4631 if (PagePrivate(page) &&
4632 page->private == (unsigned long)eb) {
4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 BUG_ON(PageDirty(page));
4635 BUG_ON(PageWriteback(page));
4636 /*
4637 * We need to make sure we haven't be attached
4638 * to a new eb.
4639 */
4640 ClearPagePrivate(page);
4641 set_page_private(page, 0);
4642 /* One for the page private */
4643 put_page(page);
4644 }
4645
4646 if (mapped)
4647 spin_unlock(&page->mapping->private_lock);
4648
4649 /* One for when we allocated the page */
4650 put_page(page);
4651 } while (index != 0);
4652}
4653
4654/*
4655 * Helper for releasing the extent buffer.
4656 */
4657static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658{
4659 btrfs_release_extent_buffer_page(eb);
4660 __free_extent_buffer(eb);
4661}
4662
4663static struct extent_buffer *
4664__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 unsigned long len)
4666{
4667 struct extent_buffer *eb = NULL;
4668
4669 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 eb->start = start;
4671 eb->len = len;
4672 eb->fs_info = fs_info;
4673 eb->bflags = 0;
4674 rwlock_init(&eb->lock);
4675 atomic_set(&eb->write_locks, 0);
4676 atomic_set(&eb->read_locks, 0);
4677 atomic_set(&eb->blocking_readers, 0);
4678 atomic_set(&eb->blocking_writers, 0);
4679 atomic_set(&eb->spinning_readers, 0);
4680 atomic_set(&eb->spinning_writers, 0);
4681 eb->lock_nested = 0;
4682 init_waitqueue_head(&eb->write_lock_wq);
4683 init_waitqueue_head(&eb->read_lock_wq);
4684
4685 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686
4687 spin_lock_init(&eb->refs_lock);
4688 atomic_set(&eb->refs, 1);
4689 atomic_set(&eb->io_pages, 0);
4690
4691 /*
4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 */
4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697
4698 return eb;
4699}
4700
4701struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702{
4703 unsigned long i;
4704 struct page *p;
4705 struct extent_buffer *new;
4706 unsigned long num_pages = num_extent_pages(src->start, src->len);
4707
4708 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 if (new == NULL)
4710 return NULL;
4711
4712 for (i = 0; i < num_pages; i++) {
4713 p = alloc_page(GFP_NOFS);
4714 if (!p) {
4715 btrfs_release_extent_buffer(new);
4716 return NULL;
4717 }
4718 attach_extent_buffer_page(new, p);
4719 WARN_ON(PageDirty(p));
4720 SetPageUptodate(p);
4721 new->pages[i] = p;
4722 copy_page(page_address(p), page_address(src->pages[i]));
4723 }
4724
4725 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4727
4728 return new;
4729}
4730
4731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start, unsigned long len)
4733{
4734 struct extent_buffer *eb;
4735 unsigned long num_pages;
4736 unsigned long i;
4737
4738 num_pages = num_extent_pages(start, len);
4739
4740 eb = __alloc_extent_buffer(fs_info, start, len);
4741 if (!eb)
4742 return NULL;
4743
4744 for (i = 0; i < num_pages; i++) {
4745 eb->pages[i] = alloc_page(GFP_NOFS);
4746 if (!eb->pages[i])
4747 goto err;
4748 }
4749 set_extent_buffer_uptodate(eb);
4750 btrfs_set_header_nritems(eb, 0);
4751 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4752
4753 return eb;
4754err:
4755 for (; i > 0; i--)
4756 __free_page(eb->pages[i - 1]);
4757 __free_extent_buffer(eb);
4758 return NULL;
4759}
4760
4761struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4762 u64 start)
4763{
4764 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4765}
4766
4767static void check_buffer_tree_ref(struct extent_buffer *eb)
4768{
4769 int refs;
4770 /* the ref bit is tricky. We have to make sure it is set
4771 * if we have the buffer dirty. Otherwise the
4772 * code to free a buffer can end up dropping a dirty
4773 * page
4774 *
4775 * Once the ref bit is set, it won't go away while the
4776 * buffer is dirty or in writeback, and it also won't
4777 * go away while we have the reference count on the
4778 * eb bumped.
4779 *
4780 * We can't just set the ref bit without bumping the
4781 * ref on the eb because free_extent_buffer might
4782 * see the ref bit and try to clear it. If this happens
4783 * free_extent_buffer might end up dropping our original
4784 * ref by mistake and freeing the page before we are able
4785 * to add one more ref.
4786 *
4787 * So bump the ref count first, then set the bit. If someone
4788 * beat us to it, drop the ref we added.
4789 */
4790 refs = atomic_read(&eb->refs);
4791 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4792 return;
4793
4794 spin_lock(&eb->refs_lock);
4795 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796 atomic_inc(&eb->refs);
4797 spin_unlock(&eb->refs_lock);
4798}
4799
4800static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4801 struct page *accessed)
4802{
4803 unsigned long num_pages, i;
4804
4805 check_buffer_tree_ref(eb);
4806
4807 num_pages = num_extent_pages(eb->start, eb->len);
4808 for (i = 0; i < num_pages; i++) {
4809 struct page *p = eb->pages[i];
4810
4811 if (p != accessed)
4812 mark_page_accessed(p);
4813 }
4814}
4815
4816struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4817 u64 start)
4818{
4819 struct extent_buffer *eb;
4820
4821 rcu_read_lock();
4822 eb = radix_tree_lookup(&fs_info->buffer_radix,
4823 start >> PAGE_SHIFT);
4824 if (eb && atomic_inc_not_zero(&eb->refs)) {
4825 rcu_read_unlock();
4826 /*
4827 * Lock our eb's refs_lock to avoid races with
4828 * free_extent_buffer. When we get our eb it might be flagged
4829 * with EXTENT_BUFFER_STALE and another task running
4830 * free_extent_buffer might have seen that flag set,
4831 * eb->refs == 2, that the buffer isn't under IO (dirty and
4832 * writeback flags not set) and it's still in the tree (flag
4833 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4834 * of decrementing the extent buffer's reference count twice.
4835 * So here we could race and increment the eb's reference count,
4836 * clear its stale flag, mark it as dirty and drop our reference
4837 * before the other task finishes executing free_extent_buffer,
4838 * which would later result in an attempt to free an extent
4839 * buffer that is dirty.
4840 */
4841 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4842 spin_lock(&eb->refs_lock);
4843 spin_unlock(&eb->refs_lock);
4844 }
4845 mark_extent_buffer_accessed(eb, NULL);
4846 return eb;
4847 }
4848 rcu_read_unlock();
4849
4850 return NULL;
4851}
4852
4853#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4854struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4855 u64 start)
4856{
4857 struct extent_buffer *eb, *exists = NULL;
4858 int ret;
4859
4860 eb = find_extent_buffer(fs_info, start);
4861 if (eb)
4862 return eb;
4863 eb = alloc_dummy_extent_buffer(fs_info, start);
4864 if (!eb)
4865 return NULL;
4866 eb->fs_info = fs_info;
4867again:
4868 ret = radix_tree_preload(GFP_NOFS);
4869 if (ret)
4870 goto free_eb;
4871 spin_lock(&fs_info->buffer_lock);
4872 ret = radix_tree_insert(&fs_info->buffer_radix,
4873 start >> PAGE_SHIFT, eb);
4874 spin_unlock(&fs_info->buffer_lock);
4875 radix_tree_preload_end();
4876 if (ret == -EEXIST) {
4877 exists = find_extent_buffer(fs_info, start);
4878 if (exists)
4879 goto free_eb;
4880 else
4881 goto again;
4882 }
4883 check_buffer_tree_ref(eb);
4884 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4885
4886 /*
4887 * We will free dummy extent buffer's if they come into
4888 * free_extent_buffer with a ref count of 2, but if we are using this we
4889 * want the buffers to stay in memory until we're done with them, so
4890 * bump the ref count again.
4891 */
4892 atomic_inc(&eb->refs);
4893 return eb;
4894free_eb:
4895 btrfs_release_extent_buffer(eb);
4896 return exists;
4897}
4898#endif
4899
4900struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4901 u64 start)
4902{
4903 unsigned long len = fs_info->nodesize;
4904 unsigned long num_pages = num_extent_pages(start, len);
4905 unsigned long i;
4906 unsigned long index = start >> PAGE_SHIFT;
4907 struct extent_buffer *eb;
4908 struct extent_buffer *exists = NULL;
4909 struct page *p;
4910 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4911 int uptodate = 1;
4912 int ret;
4913
4914 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4915 btrfs_err(fs_info, "bad tree block start %llu", start);
4916 return ERR_PTR(-EINVAL);
4917 }
4918
4919 eb = find_extent_buffer(fs_info, start);
4920 if (eb)
4921 return eb;
4922
4923 eb = __alloc_extent_buffer(fs_info, start, len);
4924 if (!eb)
4925 return ERR_PTR(-ENOMEM);
4926
4927 for (i = 0; i < num_pages; i++, index++) {
4928 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4929 if (!p) {
4930 exists = ERR_PTR(-ENOMEM);
4931 goto free_eb;
4932 }
4933
4934 spin_lock(&mapping->private_lock);
4935 if (PagePrivate(p)) {
4936 /*
4937 * We could have already allocated an eb for this page
4938 * and attached one so lets see if we can get a ref on
4939 * the existing eb, and if we can we know it's good and
4940 * we can just return that one, else we know we can just
4941 * overwrite page->private.
4942 */
4943 exists = (struct extent_buffer *)p->private;
4944 if (atomic_inc_not_zero(&exists->refs)) {
4945 spin_unlock(&mapping->private_lock);
4946 unlock_page(p);
4947 put_page(p);
4948 mark_extent_buffer_accessed(exists, p);
4949 goto free_eb;
4950 }
4951 exists = NULL;
4952
4953 /*
4954 * Do this so attach doesn't complain and we need to
4955 * drop the ref the old guy had.
4956 */
4957 ClearPagePrivate(p);
4958 WARN_ON(PageDirty(p));
4959 put_page(p);
4960 }
4961 attach_extent_buffer_page(eb, p);
4962 spin_unlock(&mapping->private_lock);
4963 WARN_ON(PageDirty(p));
4964 eb->pages[i] = p;
4965 if (!PageUptodate(p))
4966 uptodate = 0;
4967
4968 /*
4969 * see below about how we avoid a nasty race with release page
4970 * and why we unlock later
4971 */
4972 }
4973 if (uptodate)
4974 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4975again:
4976 ret = radix_tree_preload(GFP_NOFS);
4977 if (ret) {
4978 exists = ERR_PTR(ret);
4979 goto free_eb;
4980 }
4981
4982 spin_lock(&fs_info->buffer_lock);
4983 ret = radix_tree_insert(&fs_info->buffer_radix,
4984 start >> PAGE_SHIFT, eb);
4985 spin_unlock(&fs_info->buffer_lock);
4986 radix_tree_preload_end();
4987 if (ret == -EEXIST) {
4988 exists = find_extent_buffer(fs_info, start);
4989 if (exists)
4990 goto free_eb;
4991 else
4992 goto again;
4993 }
4994 /* add one reference for the tree */
4995 check_buffer_tree_ref(eb);
4996 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4997
4998 /*
4999 * there is a race where release page may have
5000 * tried to find this extent buffer in the radix
5001 * but failed. It will tell the VM it is safe to
5002 * reclaim the, and it will clear the page private bit.
5003 * We must make sure to set the page private bit properly
5004 * after the extent buffer is in the radix tree so
5005 * it doesn't get lost
5006 */
5007 SetPageChecked(eb->pages[0]);
5008 for (i = 1; i < num_pages; i++) {
5009 p = eb->pages[i];
5010 ClearPageChecked(p);
5011 unlock_page(p);
5012 }
5013 unlock_page(eb->pages[0]);
5014 return eb;
5015
5016free_eb:
5017 WARN_ON(!atomic_dec_and_test(&eb->refs));
5018 for (i = 0; i < num_pages; i++) {
5019 if (eb->pages[i])
5020 unlock_page(eb->pages[i]);
5021 }
5022
5023 btrfs_release_extent_buffer(eb);
5024 return exists;
5025}
5026
5027static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5028{
5029 struct extent_buffer *eb =
5030 container_of(head, struct extent_buffer, rcu_head);
5031
5032 __free_extent_buffer(eb);
5033}
5034
5035/* Expects to have eb->eb_lock already held */
5036static int release_extent_buffer(struct extent_buffer *eb)
5037{
5038 WARN_ON(atomic_read(&eb->refs) == 0);
5039 if (atomic_dec_and_test(&eb->refs)) {
5040 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5041 struct btrfs_fs_info *fs_info = eb->fs_info;
5042
5043 spin_unlock(&eb->refs_lock);
5044
5045 spin_lock(&fs_info->buffer_lock);
5046 radix_tree_delete(&fs_info->buffer_radix,
5047 eb->start >> PAGE_SHIFT);
5048 spin_unlock(&fs_info->buffer_lock);
5049 } else {
5050 spin_unlock(&eb->refs_lock);
5051 }
5052
5053 /* Should be safe to release our pages at this point */
5054 btrfs_release_extent_buffer_page(eb);
5055#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5057 __free_extent_buffer(eb);
5058 return 1;
5059 }
5060#endif
5061 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5062 return 1;
5063 }
5064 spin_unlock(&eb->refs_lock);
5065
5066 return 0;
5067}
5068
5069void free_extent_buffer(struct extent_buffer *eb)
5070{
5071 int refs;
5072 int old;
5073 if (!eb)
5074 return;
5075
5076 while (1) {
5077 refs = atomic_read(&eb->refs);
5078 if (refs <= 3)
5079 break;
5080 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5081 if (old == refs)
5082 return;
5083 }
5084
5085 spin_lock(&eb->refs_lock);
5086 if (atomic_read(&eb->refs) == 2 &&
5087 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5088 atomic_dec(&eb->refs);
5089
5090 if (atomic_read(&eb->refs) == 2 &&
5091 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5092 !extent_buffer_under_io(eb) &&
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
5095
5096 /*
5097 * I know this is terrible, but it's temporary until we stop tracking
5098 * the uptodate bits and such for the extent buffers.
5099 */
5100 release_extent_buffer(eb);
5101}
5102
5103void free_extent_buffer_stale(struct extent_buffer *eb)
5104{
5105 if (!eb)
5106 return;
5107
5108 spin_lock(&eb->refs_lock);
5109 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5110
5111 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5112 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5113 atomic_dec(&eb->refs);
5114 release_extent_buffer(eb);
5115}
5116
5117void clear_extent_buffer_dirty(struct extent_buffer *eb)
5118{
5119 unsigned long i;
5120 unsigned long num_pages;
5121 struct page *page;
5122
5123 num_pages = num_extent_pages(eb->start, eb->len);
5124
5125 for (i = 0; i < num_pages; i++) {
5126 page = eb->pages[i];
5127 if (!PageDirty(page))
5128 continue;
5129
5130 lock_page(page);
5131 WARN_ON(!PagePrivate(page));
5132
5133 clear_page_dirty_for_io(page);
5134 spin_lock_irq(&page->mapping->tree_lock);
5135 if (!PageDirty(page)) {
5136 radix_tree_tag_clear(&page->mapping->page_tree,
5137 page_index(page),
5138 PAGECACHE_TAG_DIRTY);
5139 }
5140 spin_unlock_irq(&page->mapping->tree_lock);
5141 ClearPageError(page);
5142 unlock_page(page);
5143 }
5144 WARN_ON(atomic_read(&eb->refs) == 0);
5145}
5146
5147int set_extent_buffer_dirty(struct extent_buffer *eb)
5148{
5149 unsigned long i;
5150 unsigned long num_pages;
5151 int was_dirty = 0;
5152
5153 check_buffer_tree_ref(eb);
5154
5155 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5156
5157 num_pages = num_extent_pages(eb->start, eb->len);
5158 WARN_ON(atomic_read(&eb->refs) == 0);
5159 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5160
5161 for (i = 0; i < num_pages; i++)
5162 set_page_dirty(eb->pages[i]);
5163 return was_dirty;
5164}
5165
5166void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5167{
5168 unsigned long i;
5169 struct page *page;
5170 unsigned long num_pages;
5171
5172 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173 num_pages = num_extent_pages(eb->start, eb->len);
5174 for (i = 0; i < num_pages; i++) {
5175 page = eb->pages[i];
5176 if (page)
5177 ClearPageUptodate(page);
5178 }
5179}
5180
5181void set_extent_buffer_uptodate(struct extent_buffer *eb)
5182{
5183 unsigned long i;
5184 struct page *page;
5185 unsigned long num_pages;
5186
5187 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5188 num_pages = num_extent_pages(eb->start, eb->len);
5189 for (i = 0; i < num_pages; i++) {
5190 page = eb->pages[i];
5191 SetPageUptodate(page);
5192 }
5193}
5194
5195int extent_buffer_uptodate(struct extent_buffer *eb)
5196{
5197 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5198}
5199
5200int read_extent_buffer_pages(struct extent_io_tree *tree,
5201 struct extent_buffer *eb, int wait,
5202 get_extent_t *get_extent, int mirror_num)
5203{
5204 unsigned long i;
5205 struct page *page;
5206 int err;
5207 int ret = 0;
5208 int locked_pages = 0;
5209 int all_uptodate = 1;
5210 unsigned long num_pages;
5211 unsigned long num_reads = 0;
5212 struct bio *bio = NULL;
5213 unsigned long bio_flags = 0;
5214
5215 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5216 return 0;
5217
5218 num_pages = num_extent_pages(eb->start, eb->len);
5219 for (i = 0; i < num_pages; i++) {
5220 page = eb->pages[i];
5221 if (wait == WAIT_NONE) {
5222 if (!trylock_page(page))
5223 goto unlock_exit;
5224 } else {
5225 lock_page(page);
5226 }
5227 locked_pages++;
5228 }
5229 /*
5230 * We need to firstly lock all pages to make sure that
5231 * the uptodate bit of our pages won't be affected by
5232 * clear_extent_buffer_uptodate().
5233 */
5234 for (i = 0; i < num_pages; i++) {
5235 page = eb->pages[i];
5236 if (!PageUptodate(page)) {
5237 num_reads++;
5238 all_uptodate = 0;
5239 }
5240 }
5241
5242 if (all_uptodate) {
5243 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5244 goto unlock_exit;
5245 }
5246
5247 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5248 eb->read_mirror = 0;
5249 atomic_set(&eb->io_pages, num_reads);
5250 for (i = 0; i < num_pages; i++) {
5251 page = eb->pages[i];
5252
5253 if (!PageUptodate(page)) {
5254 if (ret) {
5255 atomic_dec(&eb->io_pages);
5256 unlock_page(page);
5257 continue;
5258 }
5259
5260 ClearPageError(page);
5261 err = __extent_read_full_page(tree, page,
5262 get_extent, &bio,
5263 mirror_num, &bio_flags,
5264 REQ_META);
5265 if (err) {
5266 ret = err;
5267 /*
5268 * We use &bio in above __extent_read_full_page,
5269 * so we ensure that if it returns error, the
5270 * current page fails to add itself to bio and
5271 * it's been unlocked.
5272 *
5273 * We must dec io_pages by ourselves.
5274 */
5275 atomic_dec(&eb->io_pages);
5276 }
5277 } else {
5278 unlock_page(page);
5279 }
5280 }
5281
5282 if (bio) {
5283 err = submit_one_bio(bio, mirror_num, bio_flags);
5284 if (err)
5285 return err;
5286 }
5287
5288 if (ret || wait != WAIT_COMPLETE)
5289 return ret;
5290
5291 for (i = 0; i < num_pages; i++) {
5292 page = eb->pages[i];
5293 wait_on_page_locked(page);
5294 if (!PageUptodate(page))
5295 ret = -EIO;
5296 }
5297
5298 return ret;
5299
5300unlock_exit:
5301 while (locked_pages > 0) {
5302 locked_pages--;
5303 page = eb->pages[locked_pages];
5304 unlock_page(page);
5305 }
5306 return ret;
5307}
5308
5309void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5310 unsigned long start,
5311 unsigned long len)
5312{
5313 size_t cur;
5314 size_t offset;
5315 struct page *page;
5316 char *kaddr;
5317 char *dst = (char *)dstv;
5318 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5319 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5320
5321 WARN_ON(start > eb->len);
5322 WARN_ON(start + len > eb->start + eb->len);
5323
5324 offset = (start_offset + start) & (PAGE_SIZE - 1);
5325
5326 while (len > 0) {
5327 page = eb->pages[i];
5328
5329 cur = min(len, (PAGE_SIZE - offset));
5330 kaddr = page_address(page);
5331 memcpy(dst, kaddr + offset, cur);
5332
5333 dst += cur;
5334 len -= cur;
5335 offset = 0;
5336 i++;
5337 }
5338}
5339
5340int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5341 unsigned long start,
5342 unsigned long len)
5343{
5344 size_t cur;
5345 size_t offset;
5346 struct page *page;
5347 char *kaddr;
5348 char __user *dst = (char __user *)dstv;
5349 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351 int ret = 0;
5352
5353 WARN_ON(start > eb->len);
5354 WARN_ON(start + len > eb->start + eb->len);
5355
5356 offset = (start_offset + start) & (PAGE_SIZE - 1);
5357
5358 while (len > 0) {
5359 page = eb->pages[i];
5360
5361 cur = min(len, (PAGE_SIZE - offset));
5362 kaddr = page_address(page);
5363 if (copy_to_user(dst, kaddr + offset, cur)) {
5364 ret = -EFAULT;
5365 break;
5366 }
5367
5368 dst += cur;
5369 len -= cur;
5370 offset = 0;
5371 i++;
5372 }
5373
5374 return ret;
5375}
5376
5377/*
5378 * return 0 if the item is found within a page.
5379 * return 1 if the item spans two pages.
5380 * return -EINVAL otherwise.
5381 */
5382int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5383 unsigned long min_len, char **map,
5384 unsigned long *map_start,
5385 unsigned long *map_len)
5386{
5387 size_t offset = start & (PAGE_SIZE - 1);
5388 char *kaddr;
5389 struct page *p;
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 unsigned long end_i = (start_offset + start + min_len - 1) >>
5393 PAGE_SHIFT;
5394
5395 if (i != end_i)
5396 return 1;
5397
5398 if (i == 0) {
5399 offset = start_offset;
5400 *map_start = 0;
5401 } else {
5402 offset = 0;
5403 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5404 }
5405
5406 if (start + min_len > eb->len) {
5407 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5408 eb->start, eb->len, start, min_len);
5409 return -EINVAL;
5410 }
5411
5412 p = eb->pages[i];
5413 kaddr = page_address(p);
5414 *map = kaddr + offset;
5415 *map_len = PAGE_SIZE - offset;
5416 return 0;
5417}
5418
5419int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5420 unsigned long start,
5421 unsigned long len)
5422{
5423 size_t cur;
5424 size_t offset;
5425 struct page *page;
5426 char *kaddr;
5427 char *ptr = (char *)ptrv;
5428 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5429 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5430 int ret = 0;
5431
5432 WARN_ON(start > eb->len);
5433 WARN_ON(start + len > eb->start + eb->len);
5434
5435 offset = (start_offset + start) & (PAGE_SIZE - 1);
5436
5437 while (len > 0) {
5438 page = eb->pages[i];
5439
5440 cur = min(len, (PAGE_SIZE - offset));
5441
5442 kaddr = page_address(page);
5443 ret = memcmp(ptr, kaddr + offset, cur);
5444 if (ret)
5445 break;
5446
5447 ptr += cur;
5448 len -= cur;
5449 offset = 0;
5450 i++;
5451 }
5452 return ret;
5453}
5454
5455void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5456 const void *srcv)
5457{
5458 char *kaddr;
5459
5460 WARN_ON(!PageUptodate(eb->pages[0]));
5461 kaddr = page_address(eb->pages[0]);
5462 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5463 BTRFS_FSID_SIZE);
5464}
5465
5466void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5467{
5468 char *kaddr;
5469
5470 WARN_ON(!PageUptodate(eb->pages[0]));
5471 kaddr = page_address(eb->pages[0]);
5472 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5473 BTRFS_FSID_SIZE);
5474}
5475
5476void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5477 unsigned long start, unsigned long len)
5478{
5479 size_t cur;
5480 size_t offset;
5481 struct page *page;
5482 char *kaddr;
5483 char *src = (char *)srcv;
5484 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486
5487 WARN_ON(start > eb->len);
5488 WARN_ON(start + len > eb->start + eb->len);
5489
5490 offset = (start_offset + start) & (PAGE_SIZE - 1);
5491
5492 while (len > 0) {
5493 page = eb->pages[i];
5494 WARN_ON(!PageUptodate(page));
5495
5496 cur = min(len, PAGE_SIZE - offset);
5497 kaddr = page_address(page);
5498 memcpy(kaddr + offset, src, cur);
5499
5500 src += cur;
5501 len -= cur;
5502 offset = 0;
5503 i++;
5504 }
5505}
5506
5507void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5508 unsigned long len)
5509{
5510 size_t cur;
5511 size_t offset;
5512 struct page *page;
5513 char *kaddr;
5514 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516
5517 WARN_ON(start > eb->len);
5518 WARN_ON(start + len > eb->start + eb->len);
5519
5520 offset = (start_offset + start) & (PAGE_SIZE - 1);
5521
5522 while (len > 0) {
5523 page = eb->pages[i];
5524 WARN_ON(!PageUptodate(page));
5525
5526 cur = min(len, PAGE_SIZE - offset);
5527 kaddr = page_address(page);
5528 memset(kaddr + offset, 0, cur);
5529
5530 len -= cur;
5531 offset = 0;
5532 i++;
5533 }
5534}
5535
5536void copy_extent_buffer_full(struct extent_buffer *dst,
5537 struct extent_buffer *src)
5538{
5539 int i;
5540 unsigned num_pages;
5541
5542 ASSERT(dst->len == src->len);
5543
5544 num_pages = num_extent_pages(dst->start, dst->len);
5545 for (i = 0; i < num_pages; i++)
5546 copy_page(page_address(dst->pages[i]),
5547 page_address(src->pages[i]));
5548}
5549
5550void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5551 unsigned long dst_offset, unsigned long src_offset,
5552 unsigned long len)
5553{
5554 u64 dst_len = dst->len;
5555 size_t cur;
5556 size_t offset;
5557 struct page *page;
5558 char *kaddr;
5559 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5560 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5561
5562 WARN_ON(src->len != dst_len);
5563
5564 offset = (start_offset + dst_offset) &
5565 (PAGE_SIZE - 1);
5566
5567 while (len > 0) {
5568 page = dst->pages[i];
5569 WARN_ON(!PageUptodate(page));
5570
5571 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5572
5573 kaddr = page_address(page);
5574 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5575
5576 src_offset += cur;
5577 len -= cur;
5578 offset = 0;
5579 i++;
5580 }
5581}
5582
5583void le_bitmap_set(u8 *map, unsigned int start, int len)
5584{
5585 u8 *p = map + BIT_BYTE(start);
5586 const unsigned int size = start + len;
5587 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5589
5590 while (len - bits_to_set >= 0) {
5591 *p |= mask_to_set;
5592 len -= bits_to_set;
5593 bits_to_set = BITS_PER_BYTE;
5594 mask_to_set = ~0;
5595 p++;
5596 }
5597 if (len) {
5598 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5599 *p |= mask_to_set;
5600 }
5601}
5602
5603void le_bitmap_clear(u8 *map, unsigned int start, int len)
5604{
5605 u8 *p = map + BIT_BYTE(start);
5606 const unsigned int size = start + len;
5607 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5608 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5609
5610 while (len - bits_to_clear >= 0) {
5611 *p &= ~mask_to_clear;
5612 len -= bits_to_clear;
5613 bits_to_clear = BITS_PER_BYTE;
5614 mask_to_clear = ~0;
5615 p++;
5616 }
5617 if (len) {
5618 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5619 *p &= ~mask_to_clear;
5620 }
5621}
5622
5623/*
5624 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5625 * given bit number
5626 * @eb: the extent buffer
5627 * @start: offset of the bitmap item in the extent buffer
5628 * @nr: bit number
5629 * @page_index: return index of the page in the extent buffer that contains the
5630 * given bit number
5631 * @page_offset: return offset into the page given by page_index
5632 *
5633 * This helper hides the ugliness of finding the byte in an extent buffer which
5634 * contains a given bit.
5635 */
5636static inline void eb_bitmap_offset(struct extent_buffer *eb,
5637 unsigned long start, unsigned long nr,
5638 unsigned long *page_index,
5639 size_t *page_offset)
5640{
5641 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642 size_t byte_offset = BIT_BYTE(nr);
5643 size_t offset;
5644
5645 /*
5646 * The byte we want is the offset of the extent buffer + the offset of
5647 * the bitmap item in the extent buffer + the offset of the byte in the
5648 * bitmap item.
5649 */
5650 offset = start_offset + start + byte_offset;
5651
5652 *page_index = offset >> PAGE_SHIFT;
5653 *page_offset = offset & (PAGE_SIZE - 1);
5654}
5655
5656/**
5657 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5658 * @eb: the extent buffer
5659 * @start: offset of the bitmap item in the extent buffer
5660 * @nr: bit number to test
5661 */
5662int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5663 unsigned long nr)
5664{
5665 u8 *kaddr;
5666 struct page *page;
5667 unsigned long i;
5668 size_t offset;
5669
5670 eb_bitmap_offset(eb, start, nr, &i, &offset);
5671 page = eb->pages[i];
5672 WARN_ON(!PageUptodate(page));
5673 kaddr = page_address(page);
5674 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5675}
5676
5677/**
5678 * extent_buffer_bitmap_set - set an area of a bitmap
5679 * @eb: the extent buffer
5680 * @start: offset of the bitmap item in the extent buffer
5681 * @pos: bit number of the first bit
5682 * @len: number of bits to set
5683 */
5684void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5685 unsigned long pos, unsigned long len)
5686{
5687 u8 *kaddr;
5688 struct page *page;
5689 unsigned long i;
5690 size_t offset;
5691 const unsigned int size = pos + len;
5692 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5693 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5694
5695 eb_bitmap_offset(eb, start, pos, &i, &offset);
5696 page = eb->pages[i];
5697 WARN_ON(!PageUptodate(page));
5698 kaddr = page_address(page);
5699
5700 while (len >= bits_to_set) {
5701 kaddr[offset] |= mask_to_set;
5702 len -= bits_to_set;
5703 bits_to_set = BITS_PER_BYTE;
5704 mask_to_set = ~0;
5705 if (++offset >= PAGE_SIZE && len > 0) {
5706 offset = 0;
5707 page = eb->pages[++i];
5708 WARN_ON(!PageUptodate(page));
5709 kaddr = page_address(page);
5710 }
5711 }
5712 if (len) {
5713 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5714 kaddr[offset] |= mask_to_set;
5715 }
5716}
5717
5718
5719/**
5720 * extent_buffer_bitmap_clear - clear an area of a bitmap
5721 * @eb: the extent buffer
5722 * @start: offset of the bitmap item in the extent buffer
5723 * @pos: bit number of the first bit
5724 * @len: number of bits to clear
5725 */
5726void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5727 unsigned long pos, unsigned long len)
5728{
5729 u8 *kaddr;
5730 struct page *page;
5731 unsigned long i;
5732 size_t offset;
5733 const unsigned int size = pos + len;
5734 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5735 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5736
5737 eb_bitmap_offset(eb, start, pos, &i, &offset);
5738 page = eb->pages[i];
5739 WARN_ON(!PageUptodate(page));
5740 kaddr = page_address(page);
5741
5742 while (len >= bits_to_clear) {
5743 kaddr[offset] &= ~mask_to_clear;
5744 len -= bits_to_clear;
5745 bits_to_clear = BITS_PER_BYTE;
5746 mask_to_clear = ~0;
5747 if (++offset >= PAGE_SIZE && len > 0) {
5748 offset = 0;
5749 page = eb->pages[++i];
5750 WARN_ON(!PageUptodate(page));
5751 kaddr = page_address(page);
5752 }
5753 }
5754 if (len) {
5755 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5756 kaddr[offset] &= ~mask_to_clear;
5757 }
5758}
5759
5760static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5761{
5762 unsigned long distance = (src > dst) ? src - dst : dst - src;
5763 return distance < len;
5764}
5765
5766static void copy_pages(struct page *dst_page, struct page *src_page,
5767 unsigned long dst_off, unsigned long src_off,
5768 unsigned long len)
5769{
5770 char *dst_kaddr = page_address(dst_page);
5771 char *src_kaddr;
5772 int must_memmove = 0;
5773
5774 if (dst_page != src_page) {
5775 src_kaddr = page_address(src_page);
5776 } else {
5777 src_kaddr = dst_kaddr;
5778 if (areas_overlap(src_off, dst_off, len))
5779 must_memmove = 1;
5780 }
5781
5782 if (must_memmove)
5783 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5784 else
5785 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5786}
5787
5788void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5789 unsigned long src_offset, unsigned long len)
5790{
5791 struct btrfs_fs_info *fs_info = dst->fs_info;
5792 size_t cur;
5793 size_t dst_off_in_page;
5794 size_t src_off_in_page;
5795 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5796 unsigned long dst_i;
5797 unsigned long src_i;
5798
5799 if (src_offset + len > dst->len) {
5800 btrfs_err(fs_info,
5801 "memmove bogus src_offset %lu move len %lu dst len %lu",
5802 src_offset, len, dst->len);
5803 BUG_ON(1);
5804 }
5805 if (dst_offset + len > dst->len) {
5806 btrfs_err(fs_info,
5807 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5808 dst_offset, len, dst->len);
5809 BUG_ON(1);
5810 }
5811
5812 while (len > 0) {
5813 dst_off_in_page = (start_offset + dst_offset) &
5814 (PAGE_SIZE - 1);
5815 src_off_in_page = (start_offset + src_offset) &
5816 (PAGE_SIZE - 1);
5817
5818 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5819 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5820
5821 cur = min(len, (unsigned long)(PAGE_SIZE -
5822 src_off_in_page));
5823 cur = min_t(unsigned long, cur,
5824 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5825
5826 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5827 dst_off_in_page, src_off_in_page, cur);
5828
5829 src_offset += cur;
5830 dst_offset += cur;
5831 len -= cur;
5832 }
5833}
5834
5835void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5836 unsigned long src_offset, unsigned long len)
5837{
5838 struct btrfs_fs_info *fs_info = dst->fs_info;
5839 size_t cur;
5840 size_t dst_off_in_page;
5841 size_t src_off_in_page;
5842 unsigned long dst_end = dst_offset + len - 1;
5843 unsigned long src_end = src_offset + len - 1;
5844 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5845 unsigned long dst_i;
5846 unsigned long src_i;
5847
5848 if (src_offset + len > dst->len) {
5849 btrfs_err(fs_info,
5850 "memmove bogus src_offset %lu move len %lu len %lu",
5851 src_offset, len, dst->len);
5852 BUG_ON(1);
5853 }
5854 if (dst_offset + len > dst->len) {
5855 btrfs_err(fs_info,
5856 "memmove bogus dst_offset %lu move len %lu len %lu",
5857 dst_offset, len, dst->len);
5858 BUG_ON(1);
5859 }
5860 if (dst_offset < src_offset) {
5861 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5862 return;
5863 }
5864 while (len > 0) {
5865 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5866 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5867
5868 dst_off_in_page = (start_offset + dst_end) &
5869 (PAGE_SIZE - 1);
5870 src_off_in_page = (start_offset + src_end) &
5871 (PAGE_SIZE - 1);
5872
5873 cur = min_t(unsigned long, len, src_off_in_page + 1);
5874 cur = min(cur, dst_off_in_page + 1);
5875 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5876 dst_off_in_page - cur + 1,
5877 src_off_in_page - cur + 1, cur);
5878
5879 dst_end -= cur;
5880 src_end -= cur;
5881 len -= cur;
5882 }
5883}
5884
5885int try_release_extent_buffer(struct page *page)
5886{
5887 struct extent_buffer *eb;
5888
5889 /*
5890 * We need to make sure nobody is attaching this page to an eb right
5891 * now.
5892 */
5893 spin_lock(&page->mapping->private_lock);
5894 if (!PagePrivate(page)) {
5895 spin_unlock(&page->mapping->private_lock);
5896 return 1;
5897 }
5898
5899 eb = (struct extent_buffer *)page->private;
5900 BUG_ON(!eb);
5901
5902 /*
5903 * This is a little awful but should be ok, we need to make sure that
5904 * the eb doesn't disappear out from under us while we're looking at
5905 * this page.
5906 */
5907 spin_lock(&eb->refs_lock);
5908 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5909 spin_unlock(&eb->refs_lock);
5910 spin_unlock(&page->mapping->private_lock);
5911 return 0;
5912 }
5913 spin_unlock(&page->mapping->private_lock);
5914
5915 /*
5916 * If tree ref isn't set then we know the ref on this eb is a real ref,
5917 * so just return, this page will likely be freed soon anyway.
5918 */
5919 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5920 spin_unlock(&eb->refs_lock);
5921 return 0;
5922 }
5923
5924 return release_extent_buffer(eb);
5925}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent-io-tree.h"
18#include "extent_map.h"
19#include "ctree.h"
20#include "btrfs_inode.h"
21#include "volumes.h"
22#include "check-integrity.h"
23#include "locking.h"
24#include "rcu-string.h"
25#include "backref.h"
26#include "disk-io.h"
27
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
30static struct bio_set btrfs_bioset;
31
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
37#ifdef CONFIG_BTRFS_DEBUG
38static LIST_HEAD(states);
39static DEFINE_SPINLOCK(leak_lock);
40
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(lock, flags);
50}
51
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(lock, flags);
60}
61
62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63{
64 struct extent_buffer *eb;
65 unsigned long flags;
66
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
97 refcount_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
101}
102
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 struct extent_io_tree *tree, u64 start, u64 end)
107{
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
120}
121#else
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
124#define btrfs_extent_state_leak_debug_check() do {} while (0)
125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
126#endif
127
128struct tree_entry {
129 u64 start;
130 u64 end;
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
139 unsigned int extent_locked:1;
140
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io:1;
143};
144
145static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
152 return 0;
153 if (set && (state->state & bits) == bits)
154 return 0;
155 if (!set && (state->state & bits) == 0)
156 return 0;
157 changeset->bytes_changed += state->end - state->start + 1;
158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 GFP_ATOMIC);
160 return ret;
161}
162
163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165{
166 blk_status_t ret = 0;
167 struct extent_io_tree *tree = bio->bi_private;
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 mirror_num, bio_flags);
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178}
179
180/* Cleanup unsubmitted bios */
181static void end_write_bio(struct extent_page_data *epd, int ret)
182{
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188}
189
190/*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196static int __must_check flush_write_bio(struct extent_page_data *epd)
197{
198 int ret = 0;
199
200 if (epd->bio) {
201 ret = submit_one_bio(epd->bio, 0, 0);
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
209 epd->bio = NULL;
210 }
211 return ret;
212}
213
214int __init extent_state_cache_init(void)
215{
216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 sizeof(struct extent_state), 0,
218 SLAB_MEM_SPREAD, NULL);
219 if (!extent_state_cache)
220 return -ENOMEM;
221 return 0;
222}
223
224int __init extent_io_init(void)
225{
226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 sizeof(struct extent_buffer), 0,
228 SLAB_MEM_SPREAD, NULL);
229 if (!extent_buffer_cache)
230 return -ENOMEM;
231
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
235 goto free_buffer_cache;
236
237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 goto free_bioset;
239
240 return 0;
241
242free_bioset:
243 bioset_exit(&btrfs_bioset);
244
245free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
248 return -ENOMEM;
249}
250
251void __cold extent_state_cache_exit(void)
252{
253 btrfs_extent_state_leak_debug_check();
254 kmem_cache_destroy(extent_state_cache);
255}
256
257void __cold extent_io_exit(void)
258{
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
264 kmem_cache_destroy(extent_buffer_cache);
265 bioset_exit(&btrfs_bioset);
266}
267
268/*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275static struct lock_class_key file_extent_tree_class;
276
277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
280{
281 tree->fs_info = fs_info;
282 tree->state = RB_ROOT;
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
285 spin_lock_init(&tree->lock);
286 tree->private_data = private_data;
287 tree->owner = owner;
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290}
291
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
321static struct extent_state *alloc_extent_state(gfp_t mask)
322{
323 struct extent_state *state;
324
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 state = kmem_cache_alloc(extent_state_cache, mask);
331 if (!state)
332 return state;
333 state->state = 0;
334 state->failrec = NULL;
335 RB_CLEAR_NODE(&state->rb_node);
336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 refcount_set(&state->refs, 1);
338 init_waitqueue_head(&state->wq);
339 trace_alloc_extent_state(state, mask, _RET_IP_);
340 return state;
341}
342
343void free_extent_state(struct extent_state *state)
344{
345 if (!state)
346 return;
347 if (refcount_dec_and_test(&state->refs)) {
348 WARN_ON(extent_state_in_tree(state));
349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 trace_free_extent_state(state, _RET_IP_);
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
354
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
361{
362 struct rb_node **p;
363 struct rb_node *parent = NULL;
364 struct tree_entry *entry;
365
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
372 p = search_start ? &search_start : &root->rb_node;
373 while (*p) {
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
385do_insert:
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 struct rb_node **next_ret,
411 struct rb_node **prev_ret,
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
414{
415 struct rb_root *root = &tree->state;
416 struct rb_node **n = &root->rb_node;
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
425 prev_entry = entry;
426
427 if (offset < entry->start)
428 n = &(*n)->rb_left;
429 else if (offset > entry->end)
430 n = &(*n)->rb_right;
431 else
432 return *n;
433 }
434
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
440 if (next_ret) {
441 orig_prev = prev;
442 while (prev && offset > prev_entry->end) {
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
446 *next_ret = prev;
447 prev = orig_prev;
448 }
449
450 if (prev_ret) {
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 while (prev && offset < prev_entry->start) {
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
456 *prev_ret = prev;
457 }
458 return NULL;
459}
460
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
466{
467 struct rb_node *next= NULL;
468 struct rb_node *ret;
469
470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 if (!ret)
472 return next;
473 return ret;
474}
475
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 return;
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
509 state->start = other->start;
510 rb_erase(&other->rb_node, &tree->state);
511 RB_CLEAR_NODE(&other->rb_node);
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
524 state->end = other->end;
525 rb_erase(&other->rb_node, &tree->state);
526 RB_CLEAR_NODE(&other->rb_node);
527 free_extent_state(other);
528 }
529 }
530}
531
532static void set_state_bits(struct extent_io_tree *tree,
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
535
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
548 struct rb_node ***p,
549 struct rb_node **parent,
550 unsigned *bits, struct extent_changeset *changeset)
551{
552 struct rb_node *node;
553
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
559 state->start = start;
560 state->end = end;
561
562 set_state_bits(tree, state, bits, changeset);
563
564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
570 found->start, found->end, start, end);
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
595
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
606 if (node) {
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
622/*
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
633{
634 struct extent_state *next;
635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 int ret;
637
638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
649 state->state &= ~bits_to_clear;
650 if (wake)
651 wake_up(&state->wq);
652 if (state->state == 0) {
653 next = next_state(state);
654 if (extent_state_in_tree(state)) {
655 rb_erase(&state->rb_node, &tree->state);
656 RB_CLEAR_NODE(&state->rb_node);
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
663 next = next_state(state);
664 }
665 return next;
666}
667
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678{
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
683}
684
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
696 */
697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
701{
702 struct extent_state *state;
703 struct extent_state *cached;
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
706 u64 last_end;
707 int err;
708 int clear = 0;
709
710 btrfs_debug_check_extent_io_range(tree, start, end);
711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
718
719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 clear = 1;
721again:
722 if (!prealloc && gfpflags_allow_blocking(mask)) {
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
730 prealloc = alloc_extent_state(mask);
731 }
732
733 spin_lock(&tree->lock);
734 if (cached_state) {
735 cached = *cached_state;
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
744 if (clear)
745 refcount_dec(&cached->refs);
746 state = cached;
747 goto hit_next;
748 }
749 if (clear)
750 free_extent_state(cached);
751 }
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
756 node = tree_search(tree, start);
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
760hit_next:
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
764 last_end = state->end;
765
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state->state & bits)) {
768 state = next_state(state);
769 goto next;
770 }
771
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
791 err = split_state(tree, state, prealloc, start);
792 if (err)
793 extent_io_tree_panic(tree, err);
794
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
801 goto next;
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
814 err = split_state(tree, state, prealloc, end + 1);
815 if (err)
816 extent_io_tree_panic(tree, err);
817
818 if (wake)
819 wake_up(&state->wq);
820
821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823 prealloc = NULL;
824 goto out;
825 }
826
827 state = clear_state_bit(tree, state, &bits, wake, changeset);
828next:
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
832 if (start <= end && state && !need_resched())
833 goto hit_next;
834
835search_again:
836 if (start > end)
837 goto out;
838 spin_unlock(&tree->lock);
839 if (gfpflags_allow_blocking(mask))
840 cond_resched();
841 goto again;
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
850}
851
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
854 __releases(tree->lock)
855 __acquires(tree->lock)
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 spin_unlock(&tree->lock);
860 schedule();
861 spin_lock(&tree->lock);
862 finish_wait(&state->wq, &wait);
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
876 btrfs_debug_check_extent_io_range(tree, start, end);
877
878 spin_lock(&tree->lock);
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
885 node = tree_search(tree, start);
886process_node:
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
897 refcount_inc(&state->refs);
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
911 }
912out:
913 spin_unlock(&tree->lock);
914}
915
916static void set_state_bits(struct extent_io_tree *tree,
917 struct extent_state *state,
918 unsigned *bits, struct extent_changeset *changeset)
919{
920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 int ret;
922
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
932 state->state |= bits_to_set;
933}
934
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
937 unsigned flags)
938{
939 if (cached_ptr && !(*cached_ptr)) {
940 if (!flags || (state->state & flags)) {
941 *cached_ptr = state;
942 refcount_inc(&state->refs);
943 }
944 }
945}
946
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
951 EXTENT_LOCKED | EXTENT_BOUNDARY);
952}
953
954/*
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
957 *
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
961 *
962 * [start, end] is inclusive This takes the tree lock.
963 */
964
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 unsigned bits, unsigned exclusive_bits,
968 u64 *failed_start, struct extent_state **cached_state,
969 gfp_t mask, struct extent_changeset *changeset)
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
974 struct rb_node **p;
975 struct rb_node *parent;
976 int err = 0;
977 u64 last_start;
978 u64 last_end;
979
980 btrfs_debug_check_extent_io_range(tree, start, end);
981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983again:
984 if (!prealloc && gfpflags_allow_blocking(mask)) {
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
992 prealloc = alloc_extent_state(mask);
993 }
994
995 spin_lock(&tree->lock);
996 if (cached_state && *cached_state) {
997 state = *cached_state;
998 if (state->start <= start && state->end > start &&
999 extent_state_in_tree(state)) {
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
1008 node = tree_search_for_insert(tree, start, &p, &parent);
1009 if (!node) {
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
1012 err = insert_state(tree, prealloc, start, end,
1013 &p, &parent, &bits, changeset);
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
1017 cache_state(prealloc, cached_state);
1018 prealloc = NULL;
1019 goto out;
1020 }
1021 state = rb_entry(node, struct extent_state, rb_node);
1022hit_next:
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1033 if (state->state & exclusive_bits) {
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
1038
1039 set_state_bits(tree, state, &bits, changeset);
1040 cache_state(state, cached_state);
1041 merge_state(tree, state);
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1069 if (state->state & exclusive_bits) {
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
1074
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
1087 err = split_state(tree, state, prealloc, start);
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
1095 set_state_bits(tree, state, &bits, changeset);
1096 cache_state(state, cached_state);
1097 merge_state(tree, state);
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
1120 this_end = last_start - 1;
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
1129 err = insert_state(tree, prealloc, start, this_end,
1130 NULL, NULL, &bits, changeset);
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1146 if (state->state & exclusive_bits) {
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
1154 err = split_state(tree, state, prealloc, end + 1);
1155 if (err)
1156 extent_io_tree_panic(tree, err);
1157
1158 set_state_bits(tree, prealloc, &bits, changeset);
1159 cache_state(prealloc, cached_state);
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
1165search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
1172
1173out:
1174 spin_unlock(&tree->lock);
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
1180}
1181
1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 unsigned bits, u64 * failed_start,
1184 struct extent_state **cached_state, gfp_t mask)
1185{
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 cached_state, mask, NULL);
1188}
1189
1190
1191/**
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
1199 * @cached_state: state that we're going to cache
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
1206 *
1207 * All allocations are done with GFP_NOFS.
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 unsigned bits, unsigned clear_bits,
1211 struct extent_state **cached_state)
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
1216 struct rb_node **p;
1217 struct rb_node *parent;
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
1221 bool first_iteration = true;
1222
1223 btrfs_debug_check_extent_io_range(tree, start, end);
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
1226
1227again:
1228 if (!prealloc) {
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
1236 prealloc = alloc_extent_state(GFP_NOFS);
1237 if (!prealloc && !first_iteration)
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
1245 extent_state_in_tree(state)) {
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
1255 node = tree_search_for_insert(tree, start, &p, &parent);
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
1262 err = insert_state(tree, prealloc, start, end,
1263 &p, &parent, &bits, NULL);
1264 if (err)
1265 extent_io_tree_panic(tree, err);
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
1282 set_state_bits(tree, state, &bits, NULL);
1283 cache_state(state, cached_state);
1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 if (last_end == (u64)-1)
1286 goto out;
1287 start = last_end + 1;
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316 err = split_state(tree, state, prealloc, start);
1317 if (err)
1318 extent_io_tree_panic(tree, err);
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
1323 set_state_bits(tree, state, &bits, NULL);
1324 cache_state(state, cached_state);
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
1361 NULL, NULL, &bits, NULL);
1362 if (err)
1363 extent_io_tree_panic(tree, err);
1364 cache_state(prealloc, cached_state);
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
1381
1382 err = split_state(tree, state, prealloc, end + 1);
1383 if (err)
1384 extent_io_tree_panic(tree, err);
1385
1386 set_state_bits(tree, prealloc, &bits, NULL);
1387 cache_state(prealloc, cached_state);
1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
1397 cond_resched();
1398 first_iteration = false;
1399 goto again;
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
1407}
1408
1409/* wrappers around set/clear extent bit */
1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 unsigned bits, struct extent_changeset *changeset)
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
1423}
1424
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427{
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430}
1431
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
1434 struct extent_state **cached)
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 cached, GFP_NOFS, NULL);
1438}
1439
1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 unsigned bits, struct extent_changeset *changeset)
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 changeset);
1451}
1452
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 struct extent_state **cached_state)
1459{
1460 int err;
1461 u64 failed_start;
1462
1463 while (1) {
1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
1467 if (err == -EEXIST) {
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
1470 } else
1471 break;
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
1476
1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478{
1479 int err;
1480 u64 failed_start;
1481
1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
1487 EXTENT_LOCKED, 1, 0, NULL);
1488 return 0;
1489 }
1490 return 1;
1491}
1492
1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494{
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
1503 put_page(page);
1504 index++;
1505 }
1506}
1507
1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509{
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 __set_page_dirty_nobuffers(page);
1518 account_page_redirty(page);
1519 put_page(page);
1520 index++;
1521 }
1522}
1523
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
1530 u64 start, unsigned bits)
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
1540 if (!node)
1541 goto out;
1542
1543 while (1) {
1544 state = rb_entry(node, struct extent_state, rb_node);
1545 if (state->end >= start && (state->state & bits))
1546 return state;
1547
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
1555
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
1561 * If nothing was found, 1 is returned. If found something, return 0.
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 u64 *start_ret, u64 *end_ret, unsigned bits,
1565 struct extent_state **cached_state)
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 while ((state = next_state(state)) != NULL) {
1575 if (state->state & bits)
1576 goto got_it;
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
1586 state = find_first_extent_bit_state(tree, start, bits);
1587got_it:
1588 if (state) {
1589 cache_state_if_flags(state, cached_state, 0);
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
1594out:
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634}
1635
1636/**
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
1680 node = next;
1681 }
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
1686 state = rb_entry(node, struct extent_state, rb_node);
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
1709 } else {
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749out:
1750 spin_unlock(&tree->lock);
1751}
1752
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
1757 * true is returned if we find something, false if nothing was in the tree
1758 */
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 bool found = false;
1767 u64 total_bytes = 0;
1768
1769 spin_lock(&tree->lock);
1770
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
1775 node = tree_search(tree, cur_start);
1776 if (!node) {
1777 *end = (u64)-1;
1778 goto out;
1779 }
1780
1781 while (1) {
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
1792 if (!found) {
1793 *start = state->start;
1794 *cached_state = state;
1795 refcount_inc(&state->refs);
1796 }
1797 found = true;
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
1801 total_bytes += state->end - state->start + 1;
1802 if (total_bytes >= max_bytes)
1803 break;
1804 if (!node)
1805 break;
1806 }
1807out:
1808 spin_unlock(&tree->lock);
1809 return found;
1810}
1811
1812static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
1820{
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
1823
1824 ASSERT(locked_page);
1825 if (index == locked_page->index && end_index == index)
1826 return;
1827
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836{
1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 unsigned long index_ret = index;
1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 int ret;
1841
1842 ASSERT(locked_page);
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
1851 return ret;
1852}
1853
1854/*
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
1857 *
1858 * Return: true if we find something
1859 * false if nothing was in the tree
1860 */
1861EXPORT_FOR_TESTS
1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 struct page *locked_page, u64 *start,
1864 u64 *end)
1865{
1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 u64 delalloc_start;
1869 u64 delalloc_end;
1870 bool found;
1871 struct extent_state *cached_state = NULL;
1872 int ret;
1873 int loops = 0;
1874
1875again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
1881 if (!found || delalloc_end <= *start) {
1882 *start = delalloc_start;
1883 *end = delalloc_end;
1884 free_extent_state(cached_state);
1885 return false;
1886 }
1887
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
1893 if (delalloc_start < *start)
1894 delalloc_start = *start;
1895
1896 /*
1897 * make sure to limit the number of pages we try to lock down
1898 */
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
1905 ASSERT(!ret || ret == -EAGAIN);
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
1910 free_extent_state(cached_state);
1911 cached_state = NULL;
1912 if (!loops) {
1913 max_bytes = PAGE_SIZE;
1914 loops = 1;
1915 goto again;
1916 } else {
1917 found = false;
1918 goto out_failed;
1919 }
1920 }
1921
1922 /* step three, lock the state bits for the whole range */
1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 EXTENT_DELALLOC, 1, cached_state);
1928 if (!ret) {
1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 &cached_state);
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
1936 free_extent_state(cached_state);
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939out_failed:
1940 return found;
1941}
1942
1943static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
1947{
1948 unsigned long nr_pages = end_index - start_index + 1;
1949 unsigned long pages_locked = 0;
1950 pgoff_t index = start_index;
1951 struct page *pages[16];
1952 unsigned ret;
1953 int err = 0;
1954 int i;
1955
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 mapping_set_error(mapping, -EIO);
1963
1964 while (nr_pages > 0) {
1965 ret = find_get_pages_contig(mapping, index,
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
1974 err = -EAGAIN;
1975 goto out;
1976 }
1977
1978 for (i = 0; i < ret; i++) {
1979 if (page_ops & PAGE_SET_PRIVATE2)
1980 SetPagePrivate2(pages[i]);
1981
1982 if (locked_page && pages[i] == locked_page) {
1983 put_page(pages[i]);
1984 pages_locked++;
1985 continue;
1986 }
1987 if (page_ops & PAGE_CLEAR_DIRTY)
1988 clear_page_dirty_for_io(pages[i]);
1989 if (page_ops & PAGE_SET_WRITEBACK)
1990 set_page_writeback(pages[i]);
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
1993 if (page_ops & PAGE_END_WRITEBACK)
1994 end_page_writeback(pages[i]);
1995 if (page_ops & PAGE_UNLOCK)
1996 unlock_page(pages[i]);
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
2002 for (; i < ret; i++)
2003 put_page(pages[i]);
2004 err = -EAGAIN;
2005 goto out;
2006 }
2007 }
2008 put_page(pages[i]);
2009 pages_locked++;
2010 }
2011 nr_pages -= ret;
2012 index += ret;
2013 cond_resched();
2014 }
2015out:
2016 if (err && index_ret)
2017 *index_ret = start_index + pages_locked - 1;
2018 return err;
2019}
2020
2021void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022 struct page *locked_page,
2023 unsigned clear_bits,
2024 unsigned long page_ops)
2025{
2026 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027
2028 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 page_ops, NULL);
2031}
2032
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
2038u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
2040 unsigned bits, int contig)
2041{
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
2046 u64 last = 0;
2047 int found = 0;
2048
2049 if (WARN_ON(search_end <= cur_start))
2050 return 0;
2051
2052 spin_lock(&tree->lock);
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
2061 node = tree_search(tree, cur_start);
2062 if (!node)
2063 goto out;
2064
2065 while (1) {
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
2077 *start = max(cur_start, state->start);
2078 found = 1;
2079 }
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088out:
2089 spin_unlock(&tree->lock);
2090 return total_bytes;
2091}
2092
2093/*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
2099{
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
2104 spin_lock(&tree->lock);
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
2109 node = tree_search(tree, start);
2110 if (!node) {
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
2119 state->failrec = failrec;
2120out:
2121 spin_unlock(&tree->lock);
2122 return ret;
2123}
2124
2125struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126{
2127 struct rb_node *node;
2128 struct extent_state *state;
2129 struct io_failure_record *failrec;
2130
2131 spin_lock(&tree->lock);
2132 /*
2133 * this search will find all the extents that end after
2134 * our range starts.
2135 */
2136 node = tree_search(tree, start);
2137 if (!node) {
2138 failrec = ERR_PTR(-ENOENT);
2139 goto out;
2140 }
2141 state = rb_entry(node, struct extent_state, rb_node);
2142 if (state->start != start) {
2143 failrec = ERR_PTR(-ENOENT);
2144 goto out;
2145 }
2146
2147 failrec = state->failrec;
2148out:
2149 spin_unlock(&tree->lock);
2150 return failrec;
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 unsigned bits, int filled, struct extent_state *cached)
2161{
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
2165
2166 spin_lock(&tree->lock);
2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 cached->end > start)
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
2205 spin_unlock(&tree->lock);
2206 return bitset;
2207}
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214{
2215 u64 start = page_offset(page);
2216 u64 end = start + PAGE_SIZE - 1;
2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 SetPageUptodate(page);
2219}
2220
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
2224{
2225 int ret;
2226 int err = 0;
2227
2228 set_state_failrec(failure_tree, rec->start, NULL);
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
2231 EXTENT_LOCKED | EXTENT_DIRTY);
2232 if (ret)
2233 err = ret;
2234
2235 ret = clear_extent_bits(io_tree, rec->start,
2236 rec->start + rec->len - 1,
2237 EXTENT_DAMAGED);
2238 if (ret && !err)
2239 err = ret;
2240
2241 kfree(rec);
2242 return err;
2243}
2244
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
2250 * to avoid any synchronization issues, wait for the data after writing, which
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
2258{
2259 struct bio *bio;
2260 struct btrfs_device *dev;
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 BUG_ON(!mirror_num);
2268
2269 bio = btrfs_io_bio_alloc(1);
2270 bio->bi_iter.bi_size = 0;
2271 map_length = length;
2272
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
2303 }
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 bio->bi_iter.bi_sector = sector;
2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 btrfs_put_bbio(bbio);
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 btrfs_bio_counter_dec(fs_info);
2312 bio_put(bio);
2313 return -EIO;
2314 }
2315 bio_set_dev(bio, dev->bdev);
2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 bio_add_page(bio, page, length, pg_offset);
2318
2319 if (btrfsic_submit_bio_wait(bio)) {
2320 /* try to remap that extent elsewhere? */
2321 btrfs_bio_counter_dec(fs_info);
2322 bio_put(bio);
2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 return -EIO;
2325 }
2326
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 ino, start,
2330 rcu_str_deref(dev->name), sector);
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return 0;
2334}
2335
2336int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337{
2338 struct btrfs_fs_info *fs_info = eb->fs_info;
2339 u64 start = eb->start;
2340 int i, num_pages = num_extent_pages(eb);
2341 int ret = 0;
2342
2343 if (sb_rdonly(fs_info->sb))
2344 return -EROFS;
2345
2346 for (i = 0; i < num_pages; i++) {
2347 struct page *p = eb->pages[i];
2348
2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 start - page_offset(p), mirror_num);
2351 if (ret)
2352 break;
2353 start += PAGE_SIZE;
2354 }
2355
2356 return ret;
2357}
2358
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
2367{
2368 u64 private;
2369 struct io_failure_record *failrec;
2370 struct extent_state *state;
2371 int num_copies;
2372 int ret;
2373
2374 private = 0;
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
2377 if (!ret)
2378 return 0;
2379
2380 failrec = get_state_failrec(failure_tree, start);
2381 if (IS_ERR(failrec))
2382 return 0;
2383
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
2391 goto out;
2392 }
2393 if (sb_rdonly(fs_info->sb))
2394 goto out;
2395
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
2398 failrec->start,
2399 EXTENT_LOCKED);
2400 spin_unlock(&io_tree->lock);
2401
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
2406 if (num_copies > 1) {
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
2410 }
2411 }
2412
2413out:
2414 free_io_failure(failure_tree, io_tree, failrec);
2415
2416 return 0;
2417}
2418
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426{
2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
2444 failrec = state->failrec;
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451}
2452
2453static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454 u64 start, u64 end)
2455{
2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 struct io_failure_record *failrec;
2458 struct extent_map *em;
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 int ret;
2463 u64 logical;
2464
2465 failrec = get_state_failrec(failure_tree, start);
2466 if (!IS_ERR(failrec)) {
2467 btrfs_debug(fs_info,
2468 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469 failrec->logical, failrec->start, failrec->len,
2470 failrec->in_validation);
2471 /*
2472 * when data can be on disk more than twice, add to failrec here
2473 * (e.g. with a list for failed_mirror) to make
2474 * clean_io_failure() clean all those errors at once.
2475 */
2476
2477 return failrec;
2478 }
2479
2480 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481 if (!failrec)
2482 return ERR_PTR(-ENOMEM);
2483
2484 failrec->start = start;
2485 failrec->len = end - start + 1;
2486 failrec->this_mirror = 0;
2487 failrec->bio_flags = 0;
2488 failrec->in_validation = 0;
2489
2490 read_lock(&em_tree->lock);
2491 em = lookup_extent_mapping(em_tree, start, failrec->len);
2492 if (!em) {
2493 read_unlock(&em_tree->lock);
2494 kfree(failrec);
2495 return ERR_PTR(-EIO);
2496 }
2497
2498 if (em->start > start || em->start + em->len <= start) {
2499 free_extent_map(em);
2500 em = NULL;
2501 }
2502 read_unlock(&em_tree->lock);
2503 if (!em) {
2504 kfree(failrec);
2505 return ERR_PTR(-EIO);
2506 }
2507
2508 logical = start - em->start;
2509 logical = em->block_start + logical;
2510 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511 logical = em->block_start;
2512 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514 }
2515
2516 btrfs_debug(fs_info,
2517 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518 logical, start, failrec->len);
2519
2520 failrec->logical = logical;
2521 free_extent_map(em);
2522
2523 /* Set the bits in the private failure tree */
2524 ret = set_extent_bits(failure_tree, start, end,
2525 EXTENT_LOCKED | EXTENT_DIRTY);
2526 if (ret >= 0) {
2527 ret = set_state_failrec(failure_tree, start, failrec);
2528 /* Set the bits in the inode's tree */
2529 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530 } else if (ret < 0) {
2531 kfree(failrec);
2532 return ERR_PTR(ret);
2533 }
2534
2535 return failrec;
2536}
2537
2538static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539 struct io_failure_record *failrec,
2540 int failed_mirror)
2541{
2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 int num_copies;
2544
2545 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546 if (num_copies == 1) {
2547 /*
2548 * we only have a single copy of the data, so don't bother with
2549 * all the retry and error correction code that follows. no
2550 * matter what the error is, it is very likely to persist.
2551 */
2552 btrfs_debug(fs_info,
2553 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554 num_copies, failrec->this_mirror, failed_mirror);
2555 return false;
2556 }
2557
2558 /*
2559 * there are two premises:
2560 * a) deliver good data to the caller
2561 * b) correct the bad sectors on disk
2562 */
2563 if (needs_validation) {
2564 /*
2565 * to fulfill b), we need to know the exact failing sectors, as
2566 * we don't want to rewrite any more than the failed ones. thus,
2567 * we need separate read requests for the failed bio
2568 *
2569 * if the following BUG_ON triggers, our validation request got
2570 * merged. we need separate requests for our algorithm to work.
2571 */
2572 BUG_ON(failrec->in_validation);
2573 failrec->in_validation = 1;
2574 failrec->this_mirror = failed_mirror;
2575 } else {
2576 /*
2577 * we're ready to fulfill a) and b) alongside. get a good copy
2578 * of the failed sector and if we succeed, we have setup
2579 * everything for repair_io_failure to do the rest for us.
2580 */
2581 if (failrec->in_validation) {
2582 BUG_ON(failrec->this_mirror != failed_mirror);
2583 failrec->in_validation = 0;
2584 failrec->this_mirror = 0;
2585 }
2586 failrec->failed_mirror = failed_mirror;
2587 failrec->this_mirror++;
2588 if (failrec->this_mirror == failed_mirror)
2589 failrec->this_mirror++;
2590 }
2591
2592 if (failrec->this_mirror > num_copies) {
2593 btrfs_debug(fs_info,
2594 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595 num_copies, failrec->this_mirror, failed_mirror);
2596 return false;
2597 }
2598
2599 return true;
2600}
2601
2602static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603{
2604 u64 len = 0;
2605 const u32 blocksize = inode->i_sb->s_blocksize;
2606
2607 /*
2608 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609 * I/O error. In this case, we already know exactly which sector was
2610 * bad, so we don't need to validate.
2611 */
2612 if (bio->bi_status == BLK_STS_OK)
2613 return false;
2614
2615 /*
2616 * We need to validate each sector individually if the failed I/O was
2617 * for multiple sectors.
2618 *
2619 * There are a few possible bios that can end up here:
2620 * 1. A buffered read bio, which is not cloned.
2621 * 2. A direct I/O read bio, which is cloned.
2622 * 3. A (buffered or direct) repair bio, which is not cloned.
2623 *
2624 * For cloned bios (case 2), we can get the size from
2625 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626 * it from the bvecs.
2627 */
2628 if (bio_flagged(bio, BIO_CLONED)) {
2629 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630 return true;
2631 } else {
2632 struct bio_vec *bvec;
2633 int i;
2634
2635 bio_for_each_bvec_all(bvec, bio, i) {
2636 len += bvec->bv_len;
2637 if (len > blocksize)
2638 return true;
2639 }
2640 }
2641 return false;
2642}
2643
2644blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645 struct bio *failed_bio, u64 phy_offset,
2646 struct page *page, unsigned int pgoff,
2647 u64 start, u64 end, int failed_mirror,
2648 submit_bio_hook_t *submit_bio_hook)
2649{
2650 struct io_failure_record *failrec;
2651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656 bool need_validation;
2657 struct bio *repair_bio;
2658 struct btrfs_io_bio *repair_io_bio;
2659 blk_status_t status;
2660
2661 btrfs_debug(fs_info,
2662 "repair read error: read error at %llu", start);
2663
2664 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665
2666 failrec = btrfs_get_io_failure_record(inode, start, end);
2667 if (IS_ERR(failrec))
2668 return errno_to_blk_status(PTR_ERR(failrec));
2669
2670 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671
2672 if (!btrfs_check_repairable(inode, need_validation, failrec,
2673 failed_mirror)) {
2674 free_io_failure(failure_tree, tree, failrec);
2675 return BLK_STS_IOERR;
2676 }
2677
2678 repair_bio = btrfs_io_bio_alloc(1);
2679 repair_io_bio = btrfs_io_bio(repair_bio);
2680 repair_bio->bi_opf = REQ_OP_READ;
2681 if (need_validation)
2682 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683 repair_bio->bi_end_io = failed_bio->bi_end_io;
2684 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685 repair_bio->bi_private = failed_bio->bi_private;
2686
2687 if (failed_io_bio->csum) {
2688 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689
2690 repair_io_bio->csum = repair_io_bio->csum_inline;
2691 memcpy(repair_io_bio->csum,
2692 failed_io_bio->csum + csum_size * icsum, csum_size);
2693 }
2694
2695 bio_add_page(repair_bio, page, failrec->len, pgoff);
2696 repair_io_bio->logical = failrec->start;
2697 repair_io_bio->iter = repair_bio->bi_iter;
2698
2699 btrfs_debug(btrfs_sb(inode->i_sb),
2700"repair read error: submitting new read to mirror %d, in_validation=%d",
2701 failrec->this_mirror, failrec->in_validation);
2702
2703 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704 failrec->bio_flags);
2705 if (status) {
2706 free_io_failure(failure_tree, tree, failrec);
2707 bio_put(repair_bio);
2708 }
2709 return status;
2710}
2711
2712/* lots and lots of room for performance fixes in the end_bio funcs */
2713
2714void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715{
2716 int uptodate = (err == 0);
2717 int ret = 0;
2718
2719 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720
2721 if (!uptodate) {
2722 ClearPageUptodate(page);
2723 SetPageError(page);
2724 ret = err < 0 ? err : -EIO;
2725 mapping_set_error(page->mapping, ret);
2726 }
2727}
2728
2729/*
2730 * after a writepage IO is done, we need to:
2731 * clear the uptodate bits on error
2732 * clear the writeback bits in the extent tree for this IO
2733 * end_page_writeback if the page has no more pending IO
2734 *
2735 * Scheduling is not allowed, so the extent state tree is expected
2736 * to have one and only one object corresponding to this IO.
2737 */
2738static void end_bio_extent_writepage(struct bio *bio)
2739{
2740 int error = blk_status_to_errno(bio->bi_status);
2741 struct bio_vec *bvec;
2742 u64 start;
2743 u64 end;
2744 struct bvec_iter_all iter_all;
2745
2746 ASSERT(!bio_flagged(bio, BIO_CLONED));
2747 bio_for_each_segment_all(bvec, bio, iter_all) {
2748 struct page *page = bvec->bv_page;
2749 struct inode *inode = page->mapping->host;
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751
2752 /* We always issue full-page reads, but if some block
2753 * in a page fails to read, blk_update_request() will
2754 * advance bv_offset and adjust bv_len to compensate.
2755 * Print a warning for nonzero offsets, and an error
2756 * if they don't add up to a full page. */
2757 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759 btrfs_err(fs_info,
2760 "partial page write in btrfs with offset %u and length %u",
2761 bvec->bv_offset, bvec->bv_len);
2762 else
2763 btrfs_info(fs_info,
2764 "incomplete page write in btrfs with offset %u and length %u",
2765 bvec->bv_offset, bvec->bv_len);
2766 }
2767
2768 start = page_offset(page);
2769 end = start + bvec->bv_offset + bvec->bv_len - 1;
2770
2771 end_extent_writepage(page, error, start, end);
2772 end_page_writeback(page);
2773 }
2774
2775 bio_put(bio);
2776}
2777
2778static void
2779endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780 int uptodate)
2781{
2782 struct extent_state *cached = NULL;
2783 u64 end = start + len - 1;
2784
2785 if (uptodate && tree->track_uptodate)
2786 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787 unlock_extent_cached_atomic(tree, start, end, &cached);
2788}
2789
2790/*
2791 * after a readpage IO is done, we need to:
2792 * clear the uptodate bits on error
2793 * set the uptodate bits if things worked
2794 * set the page up to date if all extents in the tree are uptodate
2795 * clear the lock bit in the extent tree
2796 * unlock the page if there are no other extents locked for it
2797 *
2798 * Scheduling is not allowed, so the extent state tree is expected
2799 * to have one and only one object corresponding to this IO.
2800 */
2801static void end_bio_extent_readpage(struct bio *bio)
2802{
2803 struct bio_vec *bvec;
2804 int uptodate = !bio->bi_status;
2805 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806 struct extent_io_tree *tree, *failure_tree;
2807 u64 offset = 0;
2808 u64 start;
2809 u64 end;
2810 u64 len;
2811 u64 extent_start = 0;
2812 u64 extent_len = 0;
2813 int mirror;
2814 int ret;
2815 struct bvec_iter_all iter_all;
2816
2817 ASSERT(!bio_flagged(bio, BIO_CLONED));
2818 bio_for_each_segment_all(bvec, bio, iter_all) {
2819 struct page *page = bvec->bv_page;
2820 struct inode *inode = page->mapping->host;
2821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822 bool data_inode = btrfs_ino(BTRFS_I(inode))
2823 != BTRFS_BTREE_INODE_OBJECTID;
2824
2825 btrfs_debug(fs_info,
2826 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2827 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2828 io_bio->mirror_num);
2829 tree = &BTRFS_I(inode)->io_tree;
2830 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2831
2832 /* We always issue full-page reads, but if some block
2833 * in a page fails to read, blk_update_request() will
2834 * advance bv_offset and adjust bv_len to compensate.
2835 * Print a warning for nonzero offsets, and an error
2836 * if they don't add up to a full page. */
2837 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2838 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2839 btrfs_err(fs_info,
2840 "partial page read in btrfs with offset %u and length %u",
2841 bvec->bv_offset, bvec->bv_len);
2842 else
2843 btrfs_info(fs_info,
2844 "incomplete page read in btrfs with offset %u and length %u",
2845 bvec->bv_offset, bvec->bv_len);
2846 }
2847
2848 start = page_offset(page);
2849 end = start + bvec->bv_offset + bvec->bv_len - 1;
2850 len = bvec->bv_len;
2851
2852 mirror = io_bio->mirror_num;
2853 if (likely(uptodate)) {
2854 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2855 page, start, end,
2856 mirror);
2857 if (ret)
2858 uptodate = 0;
2859 else
2860 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2861 failure_tree, tree, start,
2862 page,
2863 btrfs_ino(BTRFS_I(inode)), 0);
2864 }
2865
2866 if (likely(uptodate))
2867 goto readpage_ok;
2868
2869 if (data_inode) {
2870
2871 /*
2872 * The generic bio_readpage_error handles errors the
2873 * following way: If possible, new read requests are
2874 * created and submitted and will end up in
2875 * end_bio_extent_readpage as well (if we're lucky,
2876 * not in the !uptodate case). In that case it returns
2877 * 0 and we just go on with the next page in our bio.
2878 * If it can't handle the error it will return -EIO and
2879 * we remain responsible for that page.
2880 */
2881 if (!btrfs_submit_read_repair(inode, bio, offset, page,
2882 start - page_offset(page),
2883 start, end, mirror,
2884 tree->ops->submit_bio_hook)) {
2885 uptodate = !bio->bi_status;
2886 offset += len;
2887 continue;
2888 }
2889 } else {
2890 struct extent_buffer *eb;
2891
2892 eb = (struct extent_buffer *)page->private;
2893 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2894 eb->read_mirror = mirror;
2895 atomic_dec(&eb->io_pages);
2896 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2897 &eb->bflags))
2898 btree_readahead_hook(eb, -EIO);
2899 }
2900readpage_ok:
2901 if (likely(uptodate)) {
2902 loff_t i_size = i_size_read(inode);
2903 pgoff_t end_index = i_size >> PAGE_SHIFT;
2904 unsigned off;
2905
2906 /* Zero out the end if this page straddles i_size */
2907 off = offset_in_page(i_size);
2908 if (page->index == end_index && off)
2909 zero_user_segment(page, off, PAGE_SIZE);
2910 SetPageUptodate(page);
2911 } else {
2912 ClearPageUptodate(page);
2913 SetPageError(page);
2914 }
2915 unlock_page(page);
2916 offset += len;
2917
2918 if (unlikely(!uptodate)) {
2919 if (extent_len) {
2920 endio_readpage_release_extent(tree,
2921 extent_start,
2922 extent_len, 1);
2923 extent_start = 0;
2924 extent_len = 0;
2925 }
2926 endio_readpage_release_extent(tree, start,
2927 end - start + 1, 0);
2928 } else if (!extent_len) {
2929 extent_start = start;
2930 extent_len = end + 1 - start;
2931 } else if (extent_start + extent_len == start) {
2932 extent_len += end + 1 - start;
2933 } else {
2934 endio_readpage_release_extent(tree, extent_start,
2935 extent_len, uptodate);
2936 extent_start = start;
2937 extent_len = end + 1 - start;
2938 }
2939 }
2940
2941 if (extent_len)
2942 endio_readpage_release_extent(tree, extent_start, extent_len,
2943 uptodate);
2944 btrfs_io_bio_free_csum(io_bio);
2945 bio_put(bio);
2946}
2947
2948/*
2949 * Initialize the members up to but not including 'bio'. Use after allocating a
2950 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2951 * 'bio' because use of __GFP_ZERO is not supported.
2952 */
2953static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2954{
2955 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2956}
2957
2958/*
2959 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2960 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2961 * for the appropriate container_of magic
2962 */
2963struct bio *btrfs_bio_alloc(u64 first_byte)
2964{
2965 struct bio *bio;
2966
2967 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2968 bio->bi_iter.bi_sector = first_byte >> 9;
2969 btrfs_io_bio_init(btrfs_io_bio(bio));
2970 return bio;
2971}
2972
2973struct bio *btrfs_bio_clone(struct bio *bio)
2974{
2975 struct btrfs_io_bio *btrfs_bio;
2976 struct bio *new;
2977
2978 /* Bio allocation backed by a bioset does not fail */
2979 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2980 btrfs_bio = btrfs_io_bio(new);
2981 btrfs_io_bio_init(btrfs_bio);
2982 btrfs_bio->iter = bio->bi_iter;
2983 return new;
2984}
2985
2986struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2987{
2988 struct bio *bio;
2989
2990 /* Bio allocation backed by a bioset does not fail */
2991 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2992 btrfs_io_bio_init(btrfs_io_bio(bio));
2993 return bio;
2994}
2995
2996struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2997{
2998 struct bio *bio;
2999 struct btrfs_io_bio *btrfs_bio;
3000
3001 /* this will never fail when it's backed by a bioset */
3002 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3003 ASSERT(bio);
3004
3005 btrfs_bio = btrfs_io_bio(bio);
3006 btrfs_io_bio_init(btrfs_bio);
3007
3008 bio_trim(bio, offset >> 9, size >> 9);
3009 btrfs_bio->iter = bio->bi_iter;
3010 return bio;
3011}
3012
3013/*
3014 * @opf: bio REQ_OP_* and REQ_* flags as one value
3015 * @wbc: optional writeback control for io accounting
3016 * @page: page to add to the bio
3017 * @pg_offset: offset of the new bio or to check whether we are adding
3018 * a contiguous page to the previous one
3019 * @size: portion of page that we want to write
3020 * @offset: starting offset in the page
3021 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3022 * @end_io_func: end_io callback for new bio
3023 * @mirror_num: desired mirror to read/write
3024 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3025 * @bio_flags: flags of the current bio to see if we can merge them
3026 */
3027static int submit_extent_page(unsigned int opf,
3028 struct writeback_control *wbc,
3029 struct page *page, u64 offset,
3030 size_t size, unsigned long pg_offset,
3031 struct bio **bio_ret,
3032 bio_end_io_t end_io_func,
3033 int mirror_num,
3034 unsigned long prev_bio_flags,
3035 unsigned long bio_flags,
3036 bool force_bio_submit)
3037{
3038 int ret = 0;
3039 struct bio *bio;
3040 size_t page_size = min_t(size_t, size, PAGE_SIZE);
3041 sector_t sector = offset >> 9;
3042 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3043
3044 ASSERT(bio_ret);
3045
3046 if (*bio_ret) {
3047 bool contig;
3048 bool can_merge = true;
3049
3050 bio = *bio_ret;
3051 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3052 contig = bio->bi_iter.bi_sector == sector;
3053 else
3054 contig = bio_end_sector(bio) == sector;
3055
3056 ASSERT(tree->ops);
3057 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058 can_merge = false;
3059
3060 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061 force_bio_submit ||
3062 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064 if (ret < 0) {
3065 *bio_ret = NULL;
3066 return ret;
3067 }
3068 bio = NULL;
3069 } else {
3070 if (wbc)
3071 wbc_account_cgroup_owner(wbc, page, page_size);
3072 return 0;
3073 }
3074 }
3075
3076 bio = btrfs_bio_alloc(offset);
3077 bio_add_page(bio, page, page_size, pg_offset);
3078 bio->bi_end_io = end_io_func;
3079 bio->bi_private = tree;
3080 bio->bi_write_hint = page->mapping->host->i_write_hint;
3081 bio->bi_opf = opf;
3082 if (wbc) {
3083 struct block_device *bdev;
3084
3085 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086 bio_set_dev(bio, bdev);
3087 wbc_init_bio(wbc, bio);
3088 wbc_account_cgroup_owner(wbc, page, page_size);
3089 }
3090
3091 *bio_ret = bio;
3092
3093 return ret;
3094}
3095
3096static void attach_extent_buffer_page(struct extent_buffer *eb,
3097 struct page *page)
3098{
3099 if (!PagePrivate(page))
3100 attach_page_private(page, eb);
3101 else
3102 WARN_ON(page->private != (unsigned long)eb);
3103}
3104
3105void set_page_extent_mapped(struct page *page)
3106{
3107 if (!PagePrivate(page))
3108 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109}
3110
3111static struct extent_map *
3112__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113 u64 start, u64 len, get_extent_t *get_extent,
3114 struct extent_map **em_cached)
3115{
3116 struct extent_map *em;
3117
3118 if (em_cached && *em_cached) {
3119 em = *em_cached;
3120 if (extent_map_in_tree(em) && start >= em->start &&
3121 start < extent_map_end(em)) {
3122 refcount_inc(&em->refs);
3123 return em;
3124 }
3125
3126 free_extent_map(em);
3127 *em_cached = NULL;
3128 }
3129
3130 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3131 if (em_cached && !IS_ERR_OR_NULL(em)) {
3132 BUG_ON(*em_cached);
3133 refcount_inc(&em->refs);
3134 *em_cached = em;
3135 }
3136 return em;
3137}
3138/*
3139 * basic readpage implementation. Locked extent state structs are inserted
3140 * into the tree that are removed when the IO is done (by the end_io
3141 * handlers)
3142 * XXX JDM: This needs looking at to ensure proper page locking
3143 * return 0 on success, otherwise return error
3144 */
3145static int __do_readpage(struct page *page,
3146 get_extent_t *get_extent,
3147 struct extent_map **em_cached,
3148 struct bio **bio, int mirror_num,
3149 unsigned long *bio_flags, unsigned int read_flags,
3150 u64 *prev_em_start)
3151{
3152 struct inode *inode = page->mapping->host;
3153 u64 start = page_offset(page);
3154 const u64 end = start + PAGE_SIZE - 1;
3155 u64 cur = start;
3156 u64 extent_offset;
3157 u64 last_byte = i_size_read(inode);
3158 u64 block_start;
3159 u64 cur_end;
3160 struct extent_map *em;
3161 int ret = 0;
3162 int nr = 0;
3163 size_t pg_offset = 0;
3164 size_t iosize;
3165 size_t disk_io_size;
3166 size_t blocksize = inode->i_sb->s_blocksize;
3167 unsigned long this_bio_flag = 0;
3168 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3169
3170 set_page_extent_mapped(page);
3171
3172 if (!PageUptodate(page)) {
3173 if (cleancache_get_page(page) == 0) {
3174 BUG_ON(blocksize != PAGE_SIZE);
3175 unlock_extent(tree, start, end);
3176 goto out;
3177 }
3178 }
3179
3180 if (page->index == last_byte >> PAGE_SHIFT) {
3181 char *userpage;
3182 size_t zero_offset = offset_in_page(last_byte);
3183
3184 if (zero_offset) {
3185 iosize = PAGE_SIZE - zero_offset;
3186 userpage = kmap_atomic(page);
3187 memset(userpage + zero_offset, 0, iosize);
3188 flush_dcache_page(page);
3189 kunmap_atomic(userpage);
3190 }
3191 }
3192 while (cur <= end) {
3193 bool force_bio_submit = false;
3194 u64 offset;
3195
3196 if (cur >= last_byte) {
3197 char *userpage;
3198 struct extent_state *cached = NULL;
3199
3200 iosize = PAGE_SIZE - pg_offset;
3201 userpage = kmap_atomic(page);
3202 memset(userpage + pg_offset, 0, iosize);
3203 flush_dcache_page(page);
3204 kunmap_atomic(userpage);
3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 &cached, GFP_NOFS);
3207 unlock_extent_cached(tree, cur,
3208 cur + iosize - 1, &cached);
3209 break;
3210 }
3211 em = __get_extent_map(inode, page, pg_offset, cur,
3212 end - cur + 1, get_extent, em_cached);
3213 if (IS_ERR_OR_NULL(em)) {
3214 SetPageError(page);
3215 unlock_extent(tree, cur, end);
3216 break;
3217 }
3218 extent_offset = cur - em->start;
3219 BUG_ON(extent_map_end(em) <= cur);
3220 BUG_ON(end < cur);
3221
3222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3223 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3224 extent_set_compress_type(&this_bio_flag,
3225 em->compress_type);
3226 }
3227
3228 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3229 cur_end = min(extent_map_end(em) - 1, end);
3230 iosize = ALIGN(iosize, blocksize);
3231 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3232 disk_io_size = em->block_len;
3233 offset = em->block_start;
3234 } else {
3235 offset = em->block_start + extent_offset;
3236 disk_io_size = iosize;
3237 }
3238 block_start = em->block_start;
3239 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3240 block_start = EXTENT_MAP_HOLE;
3241
3242 /*
3243 * If we have a file range that points to a compressed extent
3244 * and it's followed by a consecutive file range that points to
3245 * to the same compressed extent (possibly with a different
3246 * offset and/or length, so it either points to the whole extent
3247 * or only part of it), we must make sure we do not submit a
3248 * single bio to populate the pages for the 2 ranges because
3249 * this makes the compressed extent read zero out the pages
3250 * belonging to the 2nd range. Imagine the following scenario:
3251 *
3252 * File layout
3253 * [0 - 8K] [8K - 24K]
3254 * | |
3255 * | |
3256 * points to extent X, points to extent X,
3257 * offset 4K, length of 8K offset 0, length 16K
3258 *
3259 * [extent X, compressed length = 4K uncompressed length = 16K]
3260 *
3261 * If the bio to read the compressed extent covers both ranges,
3262 * it will decompress extent X into the pages belonging to the
3263 * first range and then it will stop, zeroing out the remaining
3264 * pages that belong to the other range that points to extent X.
3265 * So here we make sure we submit 2 bios, one for the first
3266 * range and another one for the third range. Both will target
3267 * the same physical extent from disk, but we can't currently
3268 * make the compressed bio endio callback populate the pages
3269 * for both ranges because each compressed bio is tightly
3270 * coupled with a single extent map, and each range can have
3271 * an extent map with a different offset value relative to the
3272 * uncompressed data of our extent and different lengths. This
3273 * is a corner case so we prioritize correctness over
3274 * non-optimal behavior (submitting 2 bios for the same extent).
3275 */
3276 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3277 prev_em_start && *prev_em_start != (u64)-1 &&
3278 *prev_em_start != em->start)
3279 force_bio_submit = true;
3280
3281 if (prev_em_start)
3282 *prev_em_start = em->start;
3283
3284 free_extent_map(em);
3285 em = NULL;
3286
3287 /* we've found a hole, just zero and go on */
3288 if (block_start == EXTENT_MAP_HOLE) {
3289 char *userpage;
3290 struct extent_state *cached = NULL;
3291
3292 userpage = kmap_atomic(page);
3293 memset(userpage + pg_offset, 0, iosize);
3294 flush_dcache_page(page);
3295 kunmap_atomic(userpage);
3296
3297 set_extent_uptodate(tree, cur, cur + iosize - 1,
3298 &cached, GFP_NOFS);
3299 unlock_extent_cached(tree, cur,
3300 cur + iosize - 1, &cached);
3301 cur = cur + iosize;
3302 pg_offset += iosize;
3303 continue;
3304 }
3305 /* the get_extent function already copied into the page */
3306 if (test_range_bit(tree, cur, cur_end,
3307 EXTENT_UPTODATE, 1, NULL)) {
3308 check_page_uptodate(tree, page);
3309 unlock_extent(tree, cur, cur + iosize - 1);
3310 cur = cur + iosize;
3311 pg_offset += iosize;
3312 continue;
3313 }
3314 /* we have an inline extent but it didn't get marked up
3315 * to date. Error out
3316 */
3317 if (block_start == EXTENT_MAP_INLINE) {
3318 SetPageError(page);
3319 unlock_extent(tree, cur, cur + iosize - 1);
3320 cur = cur + iosize;
3321 pg_offset += iosize;
3322 continue;
3323 }
3324
3325 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3326 page, offset, disk_io_size,
3327 pg_offset, bio,
3328 end_bio_extent_readpage, mirror_num,
3329 *bio_flags,
3330 this_bio_flag,
3331 force_bio_submit);
3332 if (!ret) {
3333 nr++;
3334 *bio_flags = this_bio_flag;
3335 } else {
3336 SetPageError(page);
3337 unlock_extent(tree, cur, cur + iosize - 1);
3338 goto out;
3339 }
3340 cur = cur + iosize;
3341 pg_offset += iosize;
3342 }
3343out:
3344 if (!nr) {
3345 if (!PageError(page))
3346 SetPageUptodate(page);
3347 unlock_page(page);
3348 }
3349 return ret;
3350}
3351
3352static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3353 u64 start, u64 end,
3354 struct extent_map **em_cached,
3355 struct bio **bio,
3356 unsigned long *bio_flags,
3357 u64 *prev_em_start)
3358{
3359 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3360 int index;
3361
3362 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3363
3364 for (index = 0; index < nr_pages; index++) {
3365 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3366 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3367 put_page(pages[index]);
3368 }
3369}
3370
3371static int __extent_read_full_page(struct page *page,
3372 get_extent_t *get_extent,
3373 struct bio **bio, int mirror_num,
3374 unsigned long *bio_flags,
3375 unsigned int read_flags)
3376{
3377 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3378 u64 start = page_offset(page);
3379 u64 end = start + PAGE_SIZE - 1;
3380 int ret;
3381
3382 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3383
3384 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3385 bio_flags, read_flags, NULL);
3386 return ret;
3387}
3388
3389int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3390 int mirror_num)
3391{
3392 struct bio *bio = NULL;
3393 unsigned long bio_flags = 0;
3394 int ret;
3395
3396 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3397 &bio_flags, 0);
3398 if (bio)
3399 ret = submit_one_bio(bio, mirror_num, bio_flags);
3400 return ret;
3401}
3402
3403static void update_nr_written(struct writeback_control *wbc,
3404 unsigned long nr_written)
3405{
3406 wbc->nr_to_write -= nr_written;
3407}
3408
3409/*
3410 * helper for __extent_writepage, doing all of the delayed allocation setup.
3411 *
3412 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3413 * to write the page (copy into inline extent). In this case the IO has
3414 * been started and the page is already unlocked.
3415 *
3416 * This returns 0 if all went well (page still locked)
3417 * This returns < 0 if there were errors (page still locked)
3418 */
3419static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3420 struct page *page, struct writeback_control *wbc,
3421 u64 delalloc_start, unsigned long *nr_written)
3422{
3423 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3424 bool found;
3425 u64 delalloc_to_write = 0;
3426 u64 delalloc_end = 0;
3427 int ret;
3428 int page_started = 0;
3429
3430
3431 while (delalloc_end < page_end) {
3432 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3433 &delalloc_start,
3434 &delalloc_end);
3435 if (!found) {
3436 delalloc_start = delalloc_end + 1;
3437 continue;
3438 }
3439 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3440 delalloc_end, &page_started, nr_written, wbc);
3441 if (ret) {
3442 SetPageError(page);
3443 /*
3444 * btrfs_run_delalloc_range should return < 0 for error
3445 * but just in case, we use > 0 here meaning the IO is
3446 * started, so we don't want to return > 0 unless
3447 * things are going well.
3448 */
3449 return ret < 0 ? ret : -EIO;
3450 }
3451 /*
3452 * delalloc_end is already one less than the total length, so
3453 * we don't subtract one from PAGE_SIZE
3454 */
3455 delalloc_to_write += (delalloc_end - delalloc_start +
3456 PAGE_SIZE) >> PAGE_SHIFT;
3457 delalloc_start = delalloc_end + 1;
3458 }
3459 if (wbc->nr_to_write < delalloc_to_write) {
3460 int thresh = 8192;
3461
3462 if (delalloc_to_write < thresh * 2)
3463 thresh = delalloc_to_write;
3464 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3465 thresh);
3466 }
3467
3468 /* did the fill delalloc function already unlock and start
3469 * the IO?
3470 */
3471 if (page_started) {
3472 /*
3473 * we've unlocked the page, so we can't update
3474 * the mapping's writeback index, just update
3475 * nr_to_write.
3476 */
3477 wbc->nr_to_write -= *nr_written;
3478 return 1;
3479 }
3480
3481 return 0;
3482}
3483
3484/*
3485 * helper for __extent_writepage. This calls the writepage start hooks,
3486 * and does the loop to map the page into extents and bios.
3487 *
3488 * We return 1 if the IO is started and the page is unlocked,
3489 * 0 if all went well (page still locked)
3490 * < 0 if there were errors (page still locked)
3491 */
3492static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3493 struct page *page,
3494 struct writeback_control *wbc,
3495 struct extent_page_data *epd,
3496 loff_t i_size,
3497 unsigned long nr_written,
3498 int *nr_ret)
3499{
3500 struct extent_io_tree *tree = &inode->io_tree;
3501 u64 start = page_offset(page);
3502 u64 page_end = start + PAGE_SIZE - 1;
3503 u64 end;
3504 u64 cur = start;
3505 u64 extent_offset;
3506 u64 block_start;
3507 u64 iosize;
3508 struct extent_map *em;
3509 size_t pg_offset = 0;
3510 size_t blocksize;
3511 int ret = 0;
3512 int nr = 0;
3513 const unsigned int write_flags = wbc_to_write_flags(wbc);
3514 bool compressed;
3515
3516 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3517 if (ret) {
3518 /* Fixup worker will requeue */
3519 redirty_page_for_writepage(wbc, page);
3520 update_nr_written(wbc, nr_written);
3521 unlock_page(page);
3522 return 1;
3523 }
3524
3525 /*
3526 * we don't want to touch the inode after unlocking the page,
3527 * so we update the mapping writeback index now
3528 */
3529 update_nr_written(wbc, nr_written + 1);
3530
3531 end = page_end;
3532 blocksize = inode->vfs_inode.i_sb->s_blocksize;
3533
3534 while (cur <= end) {
3535 u64 em_end;
3536 u64 offset;
3537
3538 if (cur >= i_size) {
3539 btrfs_writepage_endio_finish_ordered(page, cur,
3540 page_end, 1);
3541 break;
3542 }
3543 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3544 if (IS_ERR_OR_NULL(em)) {
3545 SetPageError(page);
3546 ret = PTR_ERR_OR_ZERO(em);
3547 break;
3548 }
3549
3550 extent_offset = cur - em->start;
3551 em_end = extent_map_end(em);
3552 BUG_ON(em_end <= cur);
3553 BUG_ON(end < cur);
3554 iosize = min(em_end - cur, end - cur + 1);
3555 iosize = ALIGN(iosize, blocksize);
3556 offset = em->block_start + extent_offset;
3557 block_start = em->block_start;
3558 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3559 free_extent_map(em);
3560 em = NULL;
3561
3562 /*
3563 * compressed and inline extents are written through other
3564 * paths in the FS
3565 */
3566 if (compressed || block_start == EXTENT_MAP_HOLE ||
3567 block_start == EXTENT_MAP_INLINE) {
3568 if (compressed)
3569 nr++;
3570 else
3571 btrfs_writepage_endio_finish_ordered(page, cur,
3572 cur + iosize - 1, 1);
3573 cur += iosize;
3574 pg_offset += iosize;
3575 continue;
3576 }
3577
3578 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3579 if (!PageWriteback(page)) {
3580 btrfs_err(inode->root->fs_info,
3581 "page %lu not writeback, cur %llu end %llu",
3582 page->index, cur, end);
3583 }
3584
3585 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3586 page, offset, iosize, pg_offset,
3587 &epd->bio,
3588 end_bio_extent_writepage,
3589 0, 0, 0, false);
3590 if (ret) {
3591 SetPageError(page);
3592 if (PageWriteback(page))
3593 end_page_writeback(page);
3594 }
3595
3596 cur = cur + iosize;
3597 pg_offset += iosize;
3598 nr++;
3599 }
3600 *nr_ret = nr;
3601 return ret;
3602}
3603
3604/*
3605 * the writepage semantics are similar to regular writepage. extent
3606 * records are inserted to lock ranges in the tree, and as dirty areas
3607 * are found, they are marked writeback. Then the lock bits are removed
3608 * and the end_io handler clears the writeback ranges
3609 *
3610 * Return 0 if everything goes well.
3611 * Return <0 for error.
3612 */
3613static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3614 struct extent_page_data *epd)
3615{
3616 struct inode *inode = page->mapping->host;
3617 u64 start = page_offset(page);
3618 u64 page_end = start + PAGE_SIZE - 1;
3619 int ret;
3620 int nr = 0;
3621 size_t pg_offset;
3622 loff_t i_size = i_size_read(inode);
3623 unsigned long end_index = i_size >> PAGE_SHIFT;
3624 unsigned long nr_written = 0;
3625
3626 trace___extent_writepage(page, inode, wbc);
3627
3628 WARN_ON(!PageLocked(page));
3629
3630 ClearPageError(page);
3631
3632 pg_offset = offset_in_page(i_size);
3633 if (page->index > end_index ||
3634 (page->index == end_index && !pg_offset)) {
3635 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3636 unlock_page(page);
3637 return 0;
3638 }
3639
3640 if (page->index == end_index) {
3641 char *userpage;
3642
3643 userpage = kmap_atomic(page);
3644 memset(userpage + pg_offset, 0,
3645 PAGE_SIZE - pg_offset);
3646 kunmap_atomic(userpage);
3647 flush_dcache_page(page);
3648 }
3649
3650 set_page_extent_mapped(page);
3651
3652 if (!epd->extent_locked) {
3653 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3654 &nr_written);
3655 if (ret == 1)
3656 return 0;
3657 if (ret)
3658 goto done;
3659 }
3660
3661 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3662 nr_written, &nr);
3663 if (ret == 1)
3664 return 0;
3665
3666done:
3667 if (nr == 0) {
3668 /* make sure the mapping tag for page dirty gets cleared */
3669 set_page_writeback(page);
3670 end_page_writeback(page);
3671 }
3672 if (PageError(page)) {
3673 ret = ret < 0 ? ret : -EIO;
3674 end_extent_writepage(page, ret, start, page_end);
3675 }
3676 unlock_page(page);
3677 ASSERT(ret <= 0);
3678 return ret;
3679}
3680
3681void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3682{
3683 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3684 TASK_UNINTERRUPTIBLE);
3685}
3686
3687static void end_extent_buffer_writeback(struct extent_buffer *eb)
3688{
3689 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3690 smp_mb__after_atomic();
3691 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3692}
3693
3694/*
3695 * Lock eb pages and flush the bio if we can't the locks
3696 *
3697 * Return 0 if nothing went wrong
3698 * Return >0 is same as 0, except bio is not submitted
3699 * Return <0 if something went wrong, no page is locked
3700 */
3701static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3702 struct extent_page_data *epd)
3703{
3704 struct btrfs_fs_info *fs_info = eb->fs_info;
3705 int i, num_pages, failed_page_nr;
3706 int flush = 0;
3707 int ret = 0;
3708
3709 if (!btrfs_try_tree_write_lock(eb)) {
3710 ret = flush_write_bio(epd);
3711 if (ret < 0)
3712 return ret;
3713 flush = 1;
3714 btrfs_tree_lock(eb);
3715 }
3716
3717 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3718 btrfs_tree_unlock(eb);
3719 if (!epd->sync_io)
3720 return 0;
3721 if (!flush) {
3722 ret = flush_write_bio(epd);
3723 if (ret < 0)
3724 return ret;
3725 flush = 1;
3726 }
3727 while (1) {
3728 wait_on_extent_buffer_writeback(eb);
3729 btrfs_tree_lock(eb);
3730 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3731 break;
3732 btrfs_tree_unlock(eb);
3733 }
3734 }
3735
3736 /*
3737 * We need to do this to prevent races in people who check if the eb is
3738 * under IO since we can end up having no IO bits set for a short period
3739 * of time.
3740 */
3741 spin_lock(&eb->refs_lock);
3742 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3744 spin_unlock(&eb->refs_lock);
3745 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3746 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3747 -eb->len,
3748 fs_info->dirty_metadata_batch);
3749 ret = 1;
3750 } else {
3751 spin_unlock(&eb->refs_lock);
3752 }
3753
3754 btrfs_tree_unlock(eb);
3755
3756 if (!ret)
3757 return ret;
3758
3759 num_pages = num_extent_pages(eb);
3760 for (i = 0; i < num_pages; i++) {
3761 struct page *p = eb->pages[i];
3762
3763 if (!trylock_page(p)) {
3764 if (!flush) {
3765 int err;
3766
3767 err = flush_write_bio(epd);
3768 if (err < 0) {
3769 ret = err;
3770 failed_page_nr = i;
3771 goto err_unlock;
3772 }
3773 flush = 1;
3774 }
3775 lock_page(p);
3776 }
3777 }
3778
3779 return ret;
3780err_unlock:
3781 /* Unlock already locked pages */
3782 for (i = 0; i < failed_page_nr; i++)
3783 unlock_page(eb->pages[i]);
3784 /*
3785 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3786 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3787 * be made and undo everything done before.
3788 */
3789 btrfs_tree_lock(eb);
3790 spin_lock(&eb->refs_lock);
3791 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3792 end_extent_buffer_writeback(eb);
3793 spin_unlock(&eb->refs_lock);
3794 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3795 fs_info->dirty_metadata_batch);
3796 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3797 btrfs_tree_unlock(eb);
3798 return ret;
3799}
3800
3801static void set_btree_ioerr(struct page *page)
3802{
3803 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3804 struct btrfs_fs_info *fs_info;
3805
3806 SetPageError(page);
3807 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3808 return;
3809
3810 /*
3811 * If we error out, we should add back the dirty_metadata_bytes
3812 * to make it consistent.
3813 */
3814 fs_info = eb->fs_info;
3815 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3816 eb->len, fs_info->dirty_metadata_batch);
3817
3818 /*
3819 * If writeback for a btree extent that doesn't belong to a log tree
3820 * failed, increment the counter transaction->eb_write_errors.
3821 * We do this because while the transaction is running and before it's
3822 * committing (when we call filemap_fdata[write|wait]_range against
3823 * the btree inode), we might have
3824 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3825 * returns an error or an error happens during writeback, when we're
3826 * committing the transaction we wouldn't know about it, since the pages
3827 * can be no longer dirty nor marked anymore for writeback (if a
3828 * subsequent modification to the extent buffer didn't happen before the
3829 * transaction commit), which makes filemap_fdata[write|wait]_range not
3830 * able to find the pages tagged with SetPageError at transaction
3831 * commit time. So if this happens we must abort the transaction,
3832 * otherwise we commit a super block with btree roots that point to
3833 * btree nodes/leafs whose content on disk is invalid - either garbage
3834 * or the content of some node/leaf from a past generation that got
3835 * cowed or deleted and is no longer valid.
3836 *
3837 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3838 * not be enough - we need to distinguish between log tree extents vs
3839 * non-log tree extents, and the next filemap_fdatawait_range() call
3840 * will catch and clear such errors in the mapping - and that call might
3841 * be from a log sync and not from a transaction commit. Also, checking
3842 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3843 * not done and would not be reliable - the eb might have been released
3844 * from memory and reading it back again means that flag would not be
3845 * set (since it's a runtime flag, not persisted on disk).
3846 *
3847 * Using the flags below in the btree inode also makes us achieve the
3848 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3849 * writeback for all dirty pages and before filemap_fdatawait_range()
3850 * is called, the writeback for all dirty pages had already finished
3851 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3852 * filemap_fdatawait_range() would return success, as it could not know
3853 * that writeback errors happened (the pages were no longer tagged for
3854 * writeback).
3855 */
3856 switch (eb->log_index) {
3857 case -1:
3858 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3859 break;
3860 case 0:
3861 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3862 break;
3863 case 1:
3864 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3865 break;
3866 default:
3867 BUG(); /* unexpected, logic error */
3868 }
3869}
3870
3871static void end_bio_extent_buffer_writepage(struct bio *bio)
3872{
3873 struct bio_vec *bvec;
3874 struct extent_buffer *eb;
3875 int done;
3876 struct bvec_iter_all iter_all;
3877
3878 ASSERT(!bio_flagged(bio, BIO_CLONED));
3879 bio_for_each_segment_all(bvec, bio, iter_all) {
3880 struct page *page = bvec->bv_page;
3881
3882 eb = (struct extent_buffer *)page->private;
3883 BUG_ON(!eb);
3884 done = atomic_dec_and_test(&eb->io_pages);
3885
3886 if (bio->bi_status ||
3887 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3888 ClearPageUptodate(page);
3889 set_btree_ioerr(page);
3890 }
3891
3892 end_page_writeback(page);
3893
3894 if (!done)
3895 continue;
3896
3897 end_extent_buffer_writeback(eb);
3898 }
3899
3900 bio_put(bio);
3901}
3902
3903static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3904 struct writeback_control *wbc,
3905 struct extent_page_data *epd)
3906{
3907 u64 offset = eb->start;
3908 u32 nritems;
3909 int i, num_pages;
3910 unsigned long start, end;
3911 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3912 int ret = 0;
3913
3914 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3915 num_pages = num_extent_pages(eb);
3916 atomic_set(&eb->io_pages, num_pages);
3917
3918 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3919 nritems = btrfs_header_nritems(eb);
3920 if (btrfs_header_level(eb) > 0) {
3921 end = btrfs_node_key_ptr_offset(nritems);
3922
3923 memzero_extent_buffer(eb, end, eb->len - end);
3924 } else {
3925 /*
3926 * leaf:
3927 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3928 */
3929 start = btrfs_item_nr_offset(nritems);
3930 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3931 memzero_extent_buffer(eb, start, end - start);
3932 }
3933
3934 for (i = 0; i < num_pages; i++) {
3935 struct page *p = eb->pages[i];
3936
3937 clear_page_dirty_for_io(p);
3938 set_page_writeback(p);
3939 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3940 p, offset, PAGE_SIZE, 0,
3941 &epd->bio,
3942 end_bio_extent_buffer_writepage,
3943 0, 0, 0, false);
3944 if (ret) {
3945 set_btree_ioerr(p);
3946 if (PageWriteback(p))
3947 end_page_writeback(p);
3948 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3949 end_extent_buffer_writeback(eb);
3950 ret = -EIO;
3951 break;
3952 }
3953 offset += PAGE_SIZE;
3954 update_nr_written(wbc, 1);
3955 unlock_page(p);
3956 }
3957
3958 if (unlikely(ret)) {
3959 for (; i < num_pages; i++) {
3960 struct page *p = eb->pages[i];
3961 clear_page_dirty_for_io(p);
3962 unlock_page(p);
3963 }
3964 }
3965
3966 return ret;
3967}
3968
3969int btree_write_cache_pages(struct address_space *mapping,
3970 struct writeback_control *wbc)
3971{
3972 struct extent_buffer *eb, *prev_eb = NULL;
3973 struct extent_page_data epd = {
3974 .bio = NULL,
3975 .extent_locked = 0,
3976 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3977 };
3978 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3979 int ret = 0;
3980 int done = 0;
3981 int nr_to_write_done = 0;
3982 struct pagevec pvec;
3983 int nr_pages;
3984 pgoff_t index;
3985 pgoff_t end; /* Inclusive */
3986 int scanned = 0;
3987 xa_mark_t tag;
3988
3989 pagevec_init(&pvec);
3990 if (wbc->range_cyclic) {
3991 index = mapping->writeback_index; /* Start from prev offset */
3992 end = -1;
3993 /*
3994 * Start from the beginning does not need to cycle over the
3995 * range, mark it as scanned.
3996 */
3997 scanned = (index == 0);
3998 } else {
3999 index = wbc->range_start >> PAGE_SHIFT;
4000 end = wbc->range_end >> PAGE_SHIFT;
4001 scanned = 1;
4002 }
4003 if (wbc->sync_mode == WB_SYNC_ALL)
4004 tag = PAGECACHE_TAG_TOWRITE;
4005 else
4006 tag = PAGECACHE_TAG_DIRTY;
4007retry:
4008 if (wbc->sync_mode == WB_SYNC_ALL)
4009 tag_pages_for_writeback(mapping, index, end);
4010 while (!done && !nr_to_write_done && (index <= end) &&
4011 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4012 tag))) {
4013 unsigned i;
4014
4015 for (i = 0; i < nr_pages; i++) {
4016 struct page *page = pvec.pages[i];
4017
4018 if (!PagePrivate(page))
4019 continue;
4020
4021 spin_lock(&mapping->private_lock);
4022 if (!PagePrivate(page)) {
4023 spin_unlock(&mapping->private_lock);
4024 continue;
4025 }
4026
4027 eb = (struct extent_buffer *)page->private;
4028
4029 /*
4030 * Shouldn't happen and normally this would be a BUG_ON
4031 * but no sense in crashing the users box for something
4032 * we can survive anyway.
4033 */
4034 if (WARN_ON(!eb)) {
4035 spin_unlock(&mapping->private_lock);
4036 continue;
4037 }
4038
4039 if (eb == prev_eb) {
4040 spin_unlock(&mapping->private_lock);
4041 continue;
4042 }
4043
4044 ret = atomic_inc_not_zero(&eb->refs);
4045 spin_unlock(&mapping->private_lock);
4046 if (!ret)
4047 continue;
4048
4049 prev_eb = eb;
4050 ret = lock_extent_buffer_for_io(eb, &epd);
4051 if (!ret) {
4052 free_extent_buffer(eb);
4053 continue;
4054 } else if (ret < 0) {
4055 done = 1;
4056 free_extent_buffer(eb);
4057 break;
4058 }
4059
4060 ret = write_one_eb(eb, wbc, &epd);
4061 if (ret) {
4062 done = 1;
4063 free_extent_buffer(eb);
4064 break;
4065 }
4066 free_extent_buffer(eb);
4067
4068 /*
4069 * the filesystem may choose to bump up nr_to_write.
4070 * We have to make sure to honor the new nr_to_write
4071 * at any time
4072 */
4073 nr_to_write_done = wbc->nr_to_write <= 0;
4074 }
4075 pagevec_release(&pvec);
4076 cond_resched();
4077 }
4078 if (!scanned && !done) {
4079 /*
4080 * We hit the last page and there is more work to be done: wrap
4081 * back to the start of the file
4082 */
4083 scanned = 1;
4084 index = 0;
4085 goto retry;
4086 }
4087 ASSERT(ret <= 0);
4088 if (ret < 0) {
4089 end_write_bio(&epd, ret);
4090 return ret;
4091 }
4092 /*
4093 * If something went wrong, don't allow any metadata write bio to be
4094 * submitted.
4095 *
4096 * This would prevent use-after-free if we had dirty pages not
4097 * cleaned up, which can still happen by fuzzed images.
4098 *
4099 * - Bad extent tree
4100 * Allowing existing tree block to be allocated for other trees.
4101 *
4102 * - Log tree operations
4103 * Exiting tree blocks get allocated to log tree, bumps its
4104 * generation, then get cleaned in tree re-balance.
4105 * Such tree block will not be written back, since it's clean,
4106 * thus no WRITTEN flag set.
4107 * And after log writes back, this tree block is not traced by
4108 * any dirty extent_io_tree.
4109 *
4110 * - Offending tree block gets re-dirtied from its original owner
4111 * Since it has bumped generation, no WRITTEN flag, it can be
4112 * reused without COWing. This tree block will not be traced
4113 * by btrfs_transaction::dirty_pages.
4114 *
4115 * Now such dirty tree block will not be cleaned by any dirty
4116 * extent io tree. Thus we don't want to submit such wild eb
4117 * if the fs already has error.
4118 */
4119 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4120 ret = flush_write_bio(&epd);
4121 } else {
4122 ret = -EROFS;
4123 end_write_bio(&epd, ret);
4124 }
4125 return ret;
4126}
4127
4128/**
4129 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4130 * @mapping: address space structure to write
4131 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4132 * @data: data passed to __extent_writepage function
4133 *
4134 * If a page is already under I/O, write_cache_pages() skips it, even
4135 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4136 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4137 * and msync() need to guarantee that all the data which was dirty at the time
4138 * the call was made get new I/O started against them. If wbc->sync_mode is
4139 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4140 * existing IO to complete.
4141 */
4142static int extent_write_cache_pages(struct address_space *mapping,
4143 struct writeback_control *wbc,
4144 struct extent_page_data *epd)
4145{
4146 struct inode *inode = mapping->host;
4147 int ret = 0;
4148 int done = 0;
4149 int nr_to_write_done = 0;
4150 struct pagevec pvec;
4151 int nr_pages;
4152 pgoff_t index;
4153 pgoff_t end; /* Inclusive */
4154 pgoff_t done_index;
4155 int range_whole = 0;
4156 int scanned = 0;
4157 xa_mark_t tag;
4158
4159 /*
4160 * We have to hold onto the inode so that ordered extents can do their
4161 * work when the IO finishes. The alternative to this is failing to add
4162 * an ordered extent if the igrab() fails there and that is a huge pain
4163 * to deal with, so instead just hold onto the inode throughout the
4164 * writepages operation. If it fails here we are freeing up the inode
4165 * anyway and we'd rather not waste our time writing out stuff that is
4166 * going to be truncated anyway.
4167 */
4168 if (!igrab(inode))
4169 return 0;
4170
4171 pagevec_init(&pvec);
4172 if (wbc->range_cyclic) {
4173 index = mapping->writeback_index; /* Start from prev offset */
4174 end = -1;
4175 /*
4176 * Start from the beginning does not need to cycle over the
4177 * range, mark it as scanned.
4178 */
4179 scanned = (index == 0);
4180 } else {
4181 index = wbc->range_start >> PAGE_SHIFT;
4182 end = wbc->range_end >> PAGE_SHIFT;
4183 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4184 range_whole = 1;
4185 scanned = 1;
4186 }
4187
4188 /*
4189 * We do the tagged writepage as long as the snapshot flush bit is set
4190 * and we are the first one who do the filemap_flush() on this inode.
4191 *
4192 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4193 * not race in and drop the bit.
4194 */
4195 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4196 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4197 &BTRFS_I(inode)->runtime_flags))
4198 wbc->tagged_writepages = 1;
4199
4200 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4201 tag = PAGECACHE_TAG_TOWRITE;
4202 else
4203 tag = PAGECACHE_TAG_DIRTY;
4204retry:
4205 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4206 tag_pages_for_writeback(mapping, index, end);
4207 done_index = index;
4208 while (!done && !nr_to_write_done && (index <= end) &&
4209 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4210 &index, end, tag))) {
4211 unsigned i;
4212
4213 for (i = 0; i < nr_pages; i++) {
4214 struct page *page = pvec.pages[i];
4215
4216 done_index = page->index + 1;
4217 /*
4218 * At this point we hold neither the i_pages lock nor
4219 * the page lock: the page may be truncated or
4220 * invalidated (changing page->mapping to NULL),
4221 * or even swizzled back from swapper_space to
4222 * tmpfs file mapping
4223 */
4224 if (!trylock_page(page)) {
4225 ret = flush_write_bio(epd);
4226 BUG_ON(ret < 0);
4227 lock_page(page);
4228 }
4229
4230 if (unlikely(page->mapping != mapping)) {
4231 unlock_page(page);
4232 continue;
4233 }
4234
4235 if (wbc->sync_mode != WB_SYNC_NONE) {
4236 if (PageWriteback(page)) {
4237 ret = flush_write_bio(epd);
4238 BUG_ON(ret < 0);
4239 }
4240 wait_on_page_writeback(page);
4241 }
4242
4243 if (PageWriteback(page) ||
4244 !clear_page_dirty_for_io(page)) {
4245 unlock_page(page);
4246 continue;
4247 }
4248
4249 ret = __extent_writepage(page, wbc, epd);
4250 if (ret < 0) {
4251 done = 1;
4252 break;
4253 }
4254
4255 /*
4256 * the filesystem may choose to bump up nr_to_write.
4257 * We have to make sure to honor the new nr_to_write
4258 * at any time
4259 */
4260 nr_to_write_done = wbc->nr_to_write <= 0;
4261 }
4262 pagevec_release(&pvec);
4263 cond_resched();
4264 }
4265 if (!scanned && !done) {
4266 /*
4267 * We hit the last page and there is more work to be done: wrap
4268 * back to the start of the file
4269 */
4270 scanned = 1;
4271 index = 0;
4272
4273 /*
4274 * If we're looping we could run into a page that is locked by a
4275 * writer and that writer could be waiting on writeback for a
4276 * page in our current bio, and thus deadlock, so flush the
4277 * write bio here.
4278 */
4279 ret = flush_write_bio(epd);
4280 if (!ret)
4281 goto retry;
4282 }
4283
4284 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4285 mapping->writeback_index = done_index;
4286
4287 btrfs_add_delayed_iput(inode);
4288 return ret;
4289}
4290
4291int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4292{
4293 int ret;
4294 struct extent_page_data epd = {
4295 .bio = NULL,
4296 .extent_locked = 0,
4297 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4298 };
4299
4300 ret = __extent_writepage(page, wbc, &epd);
4301 ASSERT(ret <= 0);
4302 if (ret < 0) {
4303 end_write_bio(&epd, ret);
4304 return ret;
4305 }
4306
4307 ret = flush_write_bio(&epd);
4308 ASSERT(ret <= 0);
4309 return ret;
4310}
4311
4312int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4313 int mode)
4314{
4315 int ret = 0;
4316 struct address_space *mapping = inode->i_mapping;
4317 struct page *page;
4318 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4319 PAGE_SHIFT;
4320
4321 struct extent_page_data epd = {
4322 .bio = NULL,
4323 .extent_locked = 1,
4324 .sync_io = mode == WB_SYNC_ALL,
4325 };
4326 struct writeback_control wbc_writepages = {
4327 .sync_mode = mode,
4328 .nr_to_write = nr_pages * 2,
4329 .range_start = start,
4330 .range_end = end + 1,
4331 /* We're called from an async helper function */
4332 .punt_to_cgroup = 1,
4333 .no_cgroup_owner = 1,
4334 };
4335
4336 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4337 while (start <= end) {
4338 page = find_get_page(mapping, start >> PAGE_SHIFT);
4339 if (clear_page_dirty_for_io(page))
4340 ret = __extent_writepage(page, &wbc_writepages, &epd);
4341 else {
4342 btrfs_writepage_endio_finish_ordered(page, start,
4343 start + PAGE_SIZE - 1, 1);
4344 unlock_page(page);
4345 }
4346 put_page(page);
4347 start += PAGE_SIZE;
4348 }
4349
4350 ASSERT(ret <= 0);
4351 if (ret == 0)
4352 ret = flush_write_bio(&epd);
4353 else
4354 end_write_bio(&epd, ret);
4355
4356 wbc_detach_inode(&wbc_writepages);
4357 return ret;
4358}
4359
4360int extent_writepages(struct address_space *mapping,
4361 struct writeback_control *wbc)
4362{
4363 int ret = 0;
4364 struct extent_page_data epd = {
4365 .bio = NULL,
4366 .extent_locked = 0,
4367 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4368 };
4369
4370 ret = extent_write_cache_pages(mapping, wbc, &epd);
4371 ASSERT(ret <= 0);
4372 if (ret < 0) {
4373 end_write_bio(&epd, ret);
4374 return ret;
4375 }
4376 ret = flush_write_bio(&epd);
4377 return ret;
4378}
4379
4380void extent_readahead(struct readahead_control *rac)
4381{
4382 struct bio *bio = NULL;
4383 unsigned long bio_flags = 0;
4384 struct page *pagepool[16];
4385 struct extent_map *em_cached = NULL;
4386 u64 prev_em_start = (u64)-1;
4387 int nr;
4388
4389 while ((nr = readahead_page_batch(rac, pagepool))) {
4390 u64 contig_start = page_offset(pagepool[0]);
4391 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4392
4393 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4394
4395 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4396 &em_cached, &bio, &bio_flags, &prev_em_start);
4397 }
4398
4399 if (em_cached)
4400 free_extent_map(em_cached);
4401
4402 if (bio) {
4403 if (submit_one_bio(bio, 0, bio_flags))
4404 return;
4405 }
4406}
4407
4408/*
4409 * basic invalidatepage code, this waits on any locked or writeback
4410 * ranges corresponding to the page, and then deletes any extent state
4411 * records from the tree
4412 */
4413int extent_invalidatepage(struct extent_io_tree *tree,
4414 struct page *page, unsigned long offset)
4415{
4416 struct extent_state *cached_state = NULL;
4417 u64 start = page_offset(page);
4418 u64 end = start + PAGE_SIZE - 1;
4419 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4420
4421 start += ALIGN(offset, blocksize);
4422 if (start > end)
4423 return 0;
4424
4425 lock_extent_bits(tree, start, end, &cached_state);
4426 wait_on_page_writeback(page);
4427 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4428 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4429 return 0;
4430}
4431
4432/*
4433 * a helper for releasepage, this tests for areas of the page that
4434 * are locked or under IO and drops the related state bits if it is safe
4435 * to drop the page.
4436 */
4437static int try_release_extent_state(struct extent_io_tree *tree,
4438 struct page *page, gfp_t mask)
4439{
4440 u64 start = page_offset(page);
4441 u64 end = start + PAGE_SIZE - 1;
4442 int ret = 1;
4443
4444 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4445 ret = 0;
4446 } else {
4447 /*
4448 * at this point we can safely clear everything except the
4449 * locked bit and the nodatasum bit
4450 */
4451 ret = __clear_extent_bit(tree, start, end,
4452 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4453 0, 0, NULL, mask, NULL);
4454
4455 /* if clear_extent_bit failed for enomem reasons,
4456 * we can't allow the release to continue.
4457 */
4458 if (ret < 0)
4459 ret = 0;
4460 else
4461 ret = 1;
4462 }
4463 return ret;
4464}
4465
4466/*
4467 * a helper for releasepage. As long as there are no locked extents
4468 * in the range corresponding to the page, both state records and extent
4469 * map records are removed
4470 */
4471int try_release_extent_mapping(struct page *page, gfp_t mask)
4472{
4473 struct extent_map *em;
4474 u64 start = page_offset(page);
4475 u64 end = start + PAGE_SIZE - 1;
4476 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4477 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4478 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4479
4480 if (gfpflags_allow_blocking(mask) &&
4481 page->mapping->host->i_size > SZ_16M) {
4482 u64 len;
4483 while (start <= end) {
4484 struct btrfs_fs_info *fs_info;
4485 u64 cur_gen;
4486
4487 len = end - start + 1;
4488 write_lock(&map->lock);
4489 em = lookup_extent_mapping(map, start, len);
4490 if (!em) {
4491 write_unlock(&map->lock);
4492 break;
4493 }
4494 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4495 em->start != start) {
4496 write_unlock(&map->lock);
4497 free_extent_map(em);
4498 break;
4499 }
4500 if (test_range_bit(tree, em->start,
4501 extent_map_end(em) - 1,
4502 EXTENT_LOCKED, 0, NULL))
4503 goto next;
4504 /*
4505 * If it's not in the list of modified extents, used
4506 * by a fast fsync, we can remove it. If it's being
4507 * logged we can safely remove it since fsync took an
4508 * extra reference on the em.
4509 */
4510 if (list_empty(&em->list) ||
4511 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4512 goto remove_em;
4513 /*
4514 * If it's in the list of modified extents, remove it
4515 * only if its generation is older then the current one,
4516 * in which case we don't need it for a fast fsync.
4517 * Otherwise don't remove it, we could be racing with an
4518 * ongoing fast fsync that could miss the new extent.
4519 */
4520 fs_info = btrfs_inode->root->fs_info;
4521 spin_lock(&fs_info->trans_lock);
4522 cur_gen = fs_info->generation;
4523 spin_unlock(&fs_info->trans_lock);
4524 if (em->generation >= cur_gen)
4525 goto next;
4526remove_em:
4527 /*
4528 * We only remove extent maps that are not in the list of
4529 * modified extents or that are in the list but with a
4530 * generation lower then the current generation, so there
4531 * is no need to set the full fsync flag on the inode (it
4532 * hurts the fsync performance for workloads with a data
4533 * size that exceeds or is close to the system's memory).
4534 */
4535 remove_extent_mapping(map, em);
4536 /* once for the rb tree */
4537 free_extent_map(em);
4538next:
4539 start = extent_map_end(em);
4540 write_unlock(&map->lock);
4541
4542 /* once for us */
4543 free_extent_map(em);
4544
4545 cond_resched(); /* Allow large-extent preemption. */
4546 }
4547 }
4548 return try_release_extent_state(tree, page, mask);
4549}
4550
4551/*
4552 * helper function for fiemap, which doesn't want to see any holes.
4553 * This maps until we find something past 'last'
4554 */
4555static struct extent_map *get_extent_skip_holes(struct inode *inode,
4556 u64 offset, u64 last)
4557{
4558 u64 sectorsize = btrfs_inode_sectorsize(inode);
4559 struct extent_map *em;
4560 u64 len;
4561
4562 if (offset >= last)
4563 return NULL;
4564
4565 while (1) {
4566 len = last - offset;
4567 if (len == 0)
4568 break;
4569 len = ALIGN(len, sectorsize);
4570 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4571 if (IS_ERR_OR_NULL(em))
4572 return em;
4573
4574 /* if this isn't a hole return it */
4575 if (em->block_start != EXTENT_MAP_HOLE)
4576 return em;
4577
4578 /* this is a hole, advance to the next extent */
4579 offset = extent_map_end(em);
4580 free_extent_map(em);
4581 if (offset >= last)
4582 break;
4583 }
4584 return NULL;
4585}
4586
4587/*
4588 * To cache previous fiemap extent
4589 *
4590 * Will be used for merging fiemap extent
4591 */
4592struct fiemap_cache {
4593 u64 offset;
4594 u64 phys;
4595 u64 len;
4596 u32 flags;
4597 bool cached;
4598};
4599
4600/*
4601 * Helper to submit fiemap extent.
4602 *
4603 * Will try to merge current fiemap extent specified by @offset, @phys,
4604 * @len and @flags with cached one.
4605 * And only when we fails to merge, cached one will be submitted as
4606 * fiemap extent.
4607 *
4608 * Return value is the same as fiemap_fill_next_extent().
4609 */
4610static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4611 struct fiemap_cache *cache,
4612 u64 offset, u64 phys, u64 len, u32 flags)
4613{
4614 int ret = 0;
4615
4616 if (!cache->cached)
4617 goto assign;
4618
4619 /*
4620 * Sanity check, extent_fiemap() should have ensured that new
4621 * fiemap extent won't overlap with cached one.
4622 * Not recoverable.
4623 *
4624 * NOTE: Physical address can overlap, due to compression
4625 */
4626 if (cache->offset + cache->len > offset) {
4627 WARN_ON(1);
4628 return -EINVAL;
4629 }
4630
4631 /*
4632 * Only merges fiemap extents if
4633 * 1) Their logical addresses are continuous
4634 *
4635 * 2) Their physical addresses are continuous
4636 * So truly compressed (physical size smaller than logical size)
4637 * extents won't get merged with each other
4638 *
4639 * 3) Share same flags except FIEMAP_EXTENT_LAST
4640 * So regular extent won't get merged with prealloc extent
4641 */
4642 if (cache->offset + cache->len == offset &&
4643 cache->phys + cache->len == phys &&
4644 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4645 (flags & ~FIEMAP_EXTENT_LAST)) {
4646 cache->len += len;
4647 cache->flags |= flags;
4648 goto try_submit_last;
4649 }
4650
4651 /* Not mergeable, need to submit cached one */
4652 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4653 cache->len, cache->flags);
4654 cache->cached = false;
4655 if (ret)
4656 return ret;
4657assign:
4658 cache->cached = true;
4659 cache->offset = offset;
4660 cache->phys = phys;
4661 cache->len = len;
4662 cache->flags = flags;
4663try_submit_last:
4664 if (cache->flags & FIEMAP_EXTENT_LAST) {
4665 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4666 cache->phys, cache->len, cache->flags);
4667 cache->cached = false;
4668 }
4669 return ret;
4670}
4671
4672/*
4673 * Emit last fiemap cache
4674 *
4675 * The last fiemap cache may still be cached in the following case:
4676 * 0 4k 8k
4677 * |<- Fiemap range ->|
4678 * |<------------ First extent ----------->|
4679 *
4680 * In this case, the first extent range will be cached but not emitted.
4681 * So we must emit it before ending extent_fiemap().
4682 */
4683static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4684 struct fiemap_cache *cache)
4685{
4686 int ret;
4687
4688 if (!cache->cached)
4689 return 0;
4690
4691 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4692 cache->len, cache->flags);
4693 cache->cached = false;
4694 if (ret > 0)
4695 ret = 0;
4696 return ret;
4697}
4698
4699int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4700 u64 start, u64 len)
4701{
4702 int ret = 0;
4703 u64 off = start;
4704 u64 max = start + len;
4705 u32 flags = 0;
4706 u32 found_type;
4707 u64 last;
4708 u64 last_for_get_extent = 0;
4709 u64 disko = 0;
4710 u64 isize = i_size_read(inode);
4711 struct btrfs_key found_key;
4712 struct extent_map *em = NULL;
4713 struct extent_state *cached_state = NULL;
4714 struct btrfs_path *path;
4715 struct btrfs_root *root = BTRFS_I(inode)->root;
4716 struct fiemap_cache cache = { 0 };
4717 struct ulist *roots;
4718 struct ulist *tmp_ulist;
4719 int end = 0;
4720 u64 em_start = 0;
4721 u64 em_len = 0;
4722 u64 em_end = 0;
4723
4724 if (len == 0)
4725 return -EINVAL;
4726
4727 path = btrfs_alloc_path();
4728 if (!path)
4729 return -ENOMEM;
4730 path->leave_spinning = 1;
4731
4732 roots = ulist_alloc(GFP_KERNEL);
4733 tmp_ulist = ulist_alloc(GFP_KERNEL);
4734 if (!roots || !tmp_ulist) {
4735 ret = -ENOMEM;
4736 goto out_free_ulist;
4737 }
4738
4739 start = round_down(start, btrfs_inode_sectorsize(inode));
4740 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4741
4742 /*
4743 * lookup the last file extent. We're not using i_size here
4744 * because there might be preallocation past i_size
4745 */
4746 ret = btrfs_lookup_file_extent(NULL, root, path,
4747 btrfs_ino(BTRFS_I(inode)), -1, 0);
4748 if (ret < 0) {
4749 goto out_free_ulist;
4750 } else {
4751 WARN_ON(!ret);
4752 if (ret == 1)
4753 ret = 0;
4754 }
4755
4756 path->slots[0]--;
4757 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4758 found_type = found_key.type;
4759
4760 /* No extents, but there might be delalloc bits */
4761 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4762 found_type != BTRFS_EXTENT_DATA_KEY) {
4763 /* have to trust i_size as the end */
4764 last = (u64)-1;
4765 last_for_get_extent = isize;
4766 } else {
4767 /*
4768 * remember the start of the last extent. There are a
4769 * bunch of different factors that go into the length of the
4770 * extent, so its much less complex to remember where it started
4771 */
4772 last = found_key.offset;
4773 last_for_get_extent = last + 1;
4774 }
4775 btrfs_release_path(path);
4776
4777 /*
4778 * we might have some extents allocated but more delalloc past those
4779 * extents. so, we trust isize unless the start of the last extent is
4780 * beyond isize
4781 */
4782 if (last < isize) {
4783 last = (u64)-1;
4784 last_for_get_extent = isize;
4785 }
4786
4787 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4788 &cached_state);
4789
4790 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4791 if (!em)
4792 goto out;
4793 if (IS_ERR(em)) {
4794 ret = PTR_ERR(em);
4795 goto out;
4796 }
4797
4798 while (!end) {
4799 u64 offset_in_extent = 0;
4800
4801 /* break if the extent we found is outside the range */
4802 if (em->start >= max || extent_map_end(em) < off)
4803 break;
4804
4805 /*
4806 * get_extent may return an extent that starts before our
4807 * requested range. We have to make sure the ranges
4808 * we return to fiemap always move forward and don't
4809 * overlap, so adjust the offsets here
4810 */
4811 em_start = max(em->start, off);
4812
4813 /*
4814 * record the offset from the start of the extent
4815 * for adjusting the disk offset below. Only do this if the
4816 * extent isn't compressed since our in ram offset may be past
4817 * what we have actually allocated on disk.
4818 */
4819 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4820 offset_in_extent = em_start - em->start;
4821 em_end = extent_map_end(em);
4822 em_len = em_end - em_start;
4823 flags = 0;
4824 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4825 disko = em->block_start + offset_in_extent;
4826 else
4827 disko = 0;
4828
4829 /*
4830 * bump off for our next call to get_extent
4831 */
4832 off = extent_map_end(em);
4833 if (off >= max)
4834 end = 1;
4835
4836 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4837 end = 1;
4838 flags |= FIEMAP_EXTENT_LAST;
4839 } else if (em->block_start == EXTENT_MAP_INLINE) {
4840 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4841 FIEMAP_EXTENT_NOT_ALIGNED);
4842 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4843 flags |= (FIEMAP_EXTENT_DELALLOC |
4844 FIEMAP_EXTENT_UNKNOWN);
4845 } else if (fieinfo->fi_extents_max) {
4846 u64 bytenr = em->block_start -
4847 (em->start - em->orig_start);
4848
4849 /*
4850 * As btrfs supports shared space, this information
4851 * can be exported to userspace tools via
4852 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4853 * then we're just getting a count and we can skip the
4854 * lookup stuff.
4855 */
4856 ret = btrfs_check_shared(root,
4857 btrfs_ino(BTRFS_I(inode)),
4858 bytenr, roots, tmp_ulist);
4859 if (ret < 0)
4860 goto out_free;
4861 if (ret)
4862 flags |= FIEMAP_EXTENT_SHARED;
4863 ret = 0;
4864 }
4865 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4866 flags |= FIEMAP_EXTENT_ENCODED;
4867 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4868 flags |= FIEMAP_EXTENT_UNWRITTEN;
4869
4870 free_extent_map(em);
4871 em = NULL;
4872 if ((em_start >= last) || em_len == (u64)-1 ||
4873 (last == (u64)-1 && isize <= em_end)) {
4874 flags |= FIEMAP_EXTENT_LAST;
4875 end = 1;
4876 }
4877
4878 /* now scan forward to see if this is really the last extent. */
4879 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4880 if (IS_ERR(em)) {
4881 ret = PTR_ERR(em);
4882 goto out;
4883 }
4884 if (!em) {
4885 flags |= FIEMAP_EXTENT_LAST;
4886 end = 1;
4887 }
4888 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4889 em_len, flags);
4890 if (ret) {
4891 if (ret == 1)
4892 ret = 0;
4893 goto out_free;
4894 }
4895 }
4896out_free:
4897 if (!ret)
4898 ret = emit_last_fiemap_cache(fieinfo, &cache);
4899 free_extent_map(em);
4900out:
4901 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4902 &cached_state);
4903
4904out_free_ulist:
4905 btrfs_free_path(path);
4906 ulist_free(roots);
4907 ulist_free(tmp_ulist);
4908 return ret;
4909}
4910
4911static void __free_extent_buffer(struct extent_buffer *eb)
4912{
4913 kmem_cache_free(extent_buffer_cache, eb);
4914}
4915
4916int extent_buffer_under_io(const struct extent_buffer *eb)
4917{
4918 return (atomic_read(&eb->io_pages) ||
4919 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4920 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4921}
4922
4923/*
4924 * Release all pages attached to the extent buffer.
4925 */
4926static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4927{
4928 int i;
4929 int num_pages;
4930 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4931
4932 BUG_ON(extent_buffer_under_io(eb));
4933
4934 num_pages = num_extent_pages(eb);
4935 for (i = 0; i < num_pages; i++) {
4936 struct page *page = eb->pages[i];
4937
4938 if (!page)
4939 continue;
4940 if (mapped)
4941 spin_lock(&page->mapping->private_lock);
4942 /*
4943 * We do this since we'll remove the pages after we've
4944 * removed the eb from the radix tree, so we could race
4945 * and have this page now attached to the new eb. So
4946 * only clear page_private if it's still connected to
4947 * this eb.
4948 */
4949 if (PagePrivate(page) &&
4950 page->private == (unsigned long)eb) {
4951 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4952 BUG_ON(PageDirty(page));
4953 BUG_ON(PageWriteback(page));
4954 /*
4955 * We need to make sure we haven't be attached
4956 * to a new eb.
4957 */
4958 detach_page_private(page);
4959 }
4960
4961 if (mapped)
4962 spin_unlock(&page->mapping->private_lock);
4963
4964 /* One for when we allocated the page */
4965 put_page(page);
4966 }
4967}
4968
4969/*
4970 * Helper for releasing the extent buffer.
4971 */
4972static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4973{
4974 btrfs_release_extent_buffer_pages(eb);
4975 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4976 __free_extent_buffer(eb);
4977}
4978
4979static struct extent_buffer *
4980__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4981 unsigned long len)
4982{
4983 struct extent_buffer *eb = NULL;
4984
4985 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4986 eb->start = start;
4987 eb->len = len;
4988 eb->fs_info = fs_info;
4989 eb->bflags = 0;
4990 rwlock_init(&eb->lock);
4991 atomic_set(&eb->blocking_readers, 0);
4992 eb->blocking_writers = 0;
4993 eb->lock_nested = false;
4994 init_waitqueue_head(&eb->write_lock_wq);
4995 init_waitqueue_head(&eb->read_lock_wq);
4996
4997 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4998 &fs_info->allocated_ebs);
4999
5000 spin_lock_init(&eb->refs_lock);
5001 atomic_set(&eb->refs, 1);
5002 atomic_set(&eb->io_pages, 0);
5003
5004 /*
5005 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5006 */
5007 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5008 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5009 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5010
5011#ifdef CONFIG_BTRFS_DEBUG
5012 eb->spinning_writers = 0;
5013 atomic_set(&eb->spinning_readers, 0);
5014 atomic_set(&eb->read_locks, 0);
5015 eb->write_locks = 0;
5016#endif
5017
5018 return eb;
5019}
5020
5021struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5022{
5023 int i;
5024 struct page *p;
5025 struct extent_buffer *new;
5026 int num_pages = num_extent_pages(src);
5027
5028 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5029 if (new == NULL)
5030 return NULL;
5031
5032 for (i = 0; i < num_pages; i++) {
5033 p = alloc_page(GFP_NOFS);
5034 if (!p) {
5035 btrfs_release_extent_buffer(new);
5036 return NULL;
5037 }
5038 attach_extent_buffer_page(new, p);
5039 WARN_ON(PageDirty(p));
5040 SetPageUptodate(p);
5041 new->pages[i] = p;
5042 copy_page(page_address(p), page_address(src->pages[i]));
5043 }
5044
5045 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5046 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5047
5048 return new;
5049}
5050
5051struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5052 u64 start, unsigned long len)
5053{
5054 struct extent_buffer *eb;
5055 int num_pages;
5056 int i;
5057
5058 eb = __alloc_extent_buffer(fs_info, start, len);
5059 if (!eb)
5060 return NULL;
5061
5062 num_pages = num_extent_pages(eb);
5063 for (i = 0; i < num_pages; i++) {
5064 eb->pages[i] = alloc_page(GFP_NOFS);
5065 if (!eb->pages[i])
5066 goto err;
5067 }
5068 set_extent_buffer_uptodate(eb);
5069 btrfs_set_header_nritems(eb, 0);
5070 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5071
5072 return eb;
5073err:
5074 for (; i > 0; i--)
5075 __free_page(eb->pages[i - 1]);
5076 __free_extent_buffer(eb);
5077 return NULL;
5078}
5079
5080struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5081 u64 start)
5082{
5083 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5084}
5085
5086static void check_buffer_tree_ref(struct extent_buffer *eb)
5087{
5088 int refs;
5089 /*
5090 * The TREE_REF bit is first set when the extent_buffer is added
5091 * to the radix tree. It is also reset, if unset, when a new reference
5092 * is created by find_extent_buffer.
5093 *
5094 * It is only cleared in two cases: freeing the last non-tree
5095 * reference to the extent_buffer when its STALE bit is set or
5096 * calling releasepage when the tree reference is the only reference.
5097 *
5098 * In both cases, care is taken to ensure that the extent_buffer's
5099 * pages are not under io. However, releasepage can be concurrently
5100 * called with creating new references, which is prone to race
5101 * conditions between the calls to check_buffer_tree_ref in those
5102 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5103 *
5104 * The actual lifetime of the extent_buffer in the radix tree is
5105 * adequately protected by the refcount, but the TREE_REF bit and
5106 * its corresponding reference are not. To protect against this
5107 * class of races, we call check_buffer_tree_ref from the codepaths
5108 * which trigger io after they set eb->io_pages. Note that once io is
5109 * initiated, TREE_REF can no longer be cleared, so that is the
5110 * moment at which any such race is best fixed.
5111 */
5112 refs = atomic_read(&eb->refs);
5113 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5114 return;
5115
5116 spin_lock(&eb->refs_lock);
5117 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5118 atomic_inc(&eb->refs);
5119 spin_unlock(&eb->refs_lock);
5120}
5121
5122static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5123 struct page *accessed)
5124{
5125 int num_pages, i;
5126
5127 check_buffer_tree_ref(eb);
5128
5129 num_pages = num_extent_pages(eb);
5130 for (i = 0; i < num_pages; i++) {
5131 struct page *p = eb->pages[i];
5132
5133 if (p != accessed)
5134 mark_page_accessed(p);
5135 }
5136}
5137
5138struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5139 u64 start)
5140{
5141 struct extent_buffer *eb;
5142
5143 rcu_read_lock();
5144 eb = radix_tree_lookup(&fs_info->buffer_radix,
5145 start >> PAGE_SHIFT);
5146 if (eb && atomic_inc_not_zero(&eb->refs)) {
5147 rcu_read_unlock();
5148 /*
5149 * Lock our eb's refs_lock to avoid races with
5150 * free_extent_buffer. When we get our eb it might be flagged
5151 * with EXTENT_BUFFER_STALE and another task running
5152 * free_extent_buffer might have seen that flag set,
5153 * eb->refs == 2, that the buffer isn't under IO (dirty and
5154 * writeback flags not set) and it's still in the tree (flag
5155 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5156 * of decrementing the extent buffer's reference count twice.
5157 * So here we could race and increment the eb's reference count,
5158 * clear its stale flag, mark it as dirty and drop our reference
5159 * before the other task finishes executing free_extent_buffer,
5160 * which would later result in an attempt to free an extent
5161 * buffer that is dirty.
5162 */
5163 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5164 spin_lock(&eb->refs_lock);
5165 spin_unlock(&eb->refs_lock);
5166 }
5167 mark_extent_buffer_accessed(eb, NULL);
5168 return eb;
5169 }
5170 rcu_read_unlock();
5171
5172 return NULL;
5173}
5174
5175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5176struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5177 u64 start)
5178{
5179 struct extent_buffer *eb, *exists = NULL;
5180 int ret;
5181
5182 eb = find_extent_buffer(fs_info, start);
5183 if (eb)
5184 return eb;
5185 eb = alloc_dummy_extent_buffer(fs_info, start);
5186 if (!eb)
5187 return ERR_PTR(-ENOMEM);
5188 eb->fs_info = fs_info;
5189again:
5190 ret = radix_tree_preload(GFP_NOFS);
5191 if (ret) {
5192 exists = ERR_PTR(ret);
5193 goto free_eb;
5194 }
5195 spin_lock(&fs_info->buffer_lock);
5196 ret = radix_tree_insert(&fs_info->buffer_radix,
5197 start >> PAGE_SHIFT, eb);
5198 spin_unlock(&fs_info->buffer_lock);
5199 radix_tree_preload_end();
5200 if (ret == -EEXIST) {
5201 exists = find_extent_buffer(fs_info, start);
5202 if (exists)
5203 goto free_eb;
5204 else
5205 goto again;
5206 }
5207 check_buffer_tree_ref(eb);
5208 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5209
5210 return eb;
5211free_eb:
5212 btrfs_release_extent_buffer(eb);
5213 return exists;
5214}
5215#endif
5216
5217struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5218 u64 start)
5219{
5220 unsigned long len = fs_info->nodesize;
5221 int num_pages;
5222 int i;
5223 unsigned long index = start >> PAGE_SHIFT;
5224 struct extent_buffer *eb;
5225 struct extent_buffer *exists = NULL;
5226 struct page *p;
5227 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5228 int uptodate = 1;
5229 int ret;
5230
5231 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5232 btrfs_err(fs_info, "bad tree block start %llu", start);
5233 return ERR_PTR(-EINVAL);
5234 }
5235
5236 eb = find_extent_buffer(fs_info, start);
5237 if (eb)
5238 return eb;
5239
5240 eb = __alloc_extent_buffer(fs_info, start, len);
5241 if (!eb)
5242 return ERR_PTR(-ENOMEM);
5243
5244 num_pages = num_extent_pages(eb);
5245 for (i = 0; i < num_pages; i++, index++) {
5246 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5247 if (!p) {
5248 exists = ERR_PTR(-ENOMEM);
5249 goto free_eb;
5250 }
5251
5252 spin_lock(&mapping->private_lock);
5253 if (PagePrivate(p)) {
5254 /*
5255 * We could have already allocated an eb for this page
5256 * and attached one so lets see if we can get a ref on
5257 * the existing eb, and if we can we know it's good and
5258 * we can just return that one, else we know we can just
5259 * overwrite page->private.
5260 */
5261 exists = (struct extent_buffer *)p->private;
5262 if (atomic_inc_not_zero(&exists->refs)) {
5263 spin_unlock(&mapping->private_lock);
5264 unlock_page(p);
5265 put_page(p);
5266 mark_extent_buffer_accessed(exists, p);
5267 goto free_eb;
5268 }
5269 exists = NULL;
5270
5271 /*
5272 * Do this so attach doesn't complain and we need to
5273 * drop the ref the old guy had.
5274 */
5275 ClearPagePrivate(p);
5276 WARN_ON(PageDirty(p));
5277 put_page(p);
5278 }
5279 attach_extent_buffer_page(eb, p);
5280 spin_unlock(&mapping->private_lock);
5281 WARN_ON(PageDirty(p));
5282 eb->pages[i] = p;
5283 if (!PageUptodate(p))
5284 uptodate = 0;
5285
5286 /*
5287 * We can't unlock the pages just yet since the extent buffer
5288 * hasn't been properly inserted in the radix tree, this
5289 * opens a race with btree_releasepage which can free a page
5290 * while we are still filling in all pages for the buffer and
5291 * we could crash.
5292 */
5293 }
5294 if (uptodate)
5295 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5296again:
5297 ret = radix_tree_preload(GFP_NOFS);
5298 if (ret) {
5299 exists = ERR_PTR(ret);
5300 goto free_eb;
5301 }
5302
5303 spin_lock(&fs_info->buffer_lock);
5304 ret = radix_tree_insert(&fs_info->buffer_radix,
5305 start >> PAGE_SHIFT, eb);
5306 spin_unlock(&fs_info->buffer_lock);
5307 radix_tree_preload_end();
5308 if (ret == -EEXIST) {
5309 exists = find_extent_buffer(fs_info, start);
5310 if (exists)
5311 goto free_eb;
5312 else
5313 goto again;
5314 }
5315 /* add one reference for the tree */
5316 check_buffer_tree_ref(eb);
5317 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5318
5319 /*
5320 * Now it's safe to unlock the pages because any calls to
5321 * btree_releasepage will correctly detect that a page belongs to a
5322 * live buffer and won't free them prematurely.
5323 */
5324 for (i = 0; i < num_pages; i++)
5325 unlock_page(eb->pages[i]);
5326 return eb;
5327
5328free_eb:
5329 WARN_ON(!atomic_dec_and_test(&eb->refs));
5330 for (i = 0; i < num_pages; i++) {
5331 if (eb->pages[i])
5332 unlock_page(eb->pages[i]);
5333 }
5334
5335 btrfs_release_extent_buffer(eb);
5336 return exists;
5337}
5338
5339static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5340{
5341 struct extent_buffer *eb =
5342 container_of(head, struct extent_buffer, rcu_head);
5343
5344 __free_extent_buffer(eb);
5345}
5346
5347static int release_extent_buffer(struct extent_buffer *eb)
5348 __releases(&eb->refs_lock)
5349{
5350 lockdep_assert_held(&eb->refs_lock);
5351
5352 WARN_ON(atomic_read(&eb->refs) == 0);
5353 if (atomic_dec_and_test(&eb->refs)) {
5354 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5355 struct btrfs_fs_info *fs_info = eb->fs_info;
5356
5357 spin_unlock(&eb->refs_lock);
5358
5359 spin_lock(&fs_info->buffer_lock);
5360 radix_tree_delete(&fs_info->buffer_radix,
5361 eb->start >> PAGE_SHIFT);
5362 spin_unlock(&fs_info->buffer_lock);
5363 } else {
5364 spin_unlock(&eb->refs_lock);
5365 }
5366
5367 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5368 /* Should be safe to release our pages at this point */
5369 btrfs_release_extent_buffer_pages(eb);
5370#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5371 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5372 __free_extent_buffer(eb);
5373 return 1;
5374 }
5375#endif
5376 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5377 return 1;
5378 }
5379 spin_unlock(&eb->refs_lock);
5380
5381 return 0;
5382}
5383
5384void free_extent_buffer(struct extent_buffer *eb)
5385{
5386 int refs;
5387 int old;
5388 if (!eb)
5389 return;
5390
5391 while (1) {
5392 refs = atomic_read(&eb->refs);
5393 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5394 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5395 refs == 1))
5396 break;
5397 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5398 if (old == refs)
5399 return;
5400 }
5401
5402 spin_lock(&eb->refs_lock);
5403 if (atomic_read(&eb->refs) == 2 &&
5404 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5405 !extent_buffer_under_io(eb) &&
5406 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5407 atomic_dec(&eb->refs);
5408
5409 /*
5410 * I know this is terrible, but it's temporary until we stop tracking
5411 * the uptodate bits and such for the extent buffers.
5412 */
5413 release_extent_buffer(eb);
5414}
5415
5416void free_extent_buffer_stale(struct extent_buffer *eb)
5417{
5418 if (!eb)
5419 return;
5420
5421 spin_lock(&eb->refs_lock);
5422 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5423
5424 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5425 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5426 atomic_dec(&eb->refs);
5427 release_extent_buffer(eb);
5428}
5429
5430void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5431{
5432 int i;
5433 int num_pages;
5434 struct page *page;
5435
5436 num_pages = num_extent_pages(eb);
5437
5438 for (i = 0; i < num_pages; i++) {
5439 page = eb->pages[i];
5440 if (!PageDirty(page))
5441 continue;
5442
5443 lock_page(page);
5444 WARN_ON(!PagePrivate(page));
5445
5446 clear_page_dirty_for_io(page);
5447 xa_lock_irq(&page->mapping->i_pages);
5448 if (!PageDirty(page))
5449 __xa_clear_mark(&page->mapping->i_pages,
5450 page_index(page), PAGECACHE_TAG_DIRTY);
5451 xa_unlock_irq(&page->mapping->i_pages);
5452 ClearPageError(page);
5453 unlock_page(page);
5454 }
5455 WARN_ON(atomic_read(&eb->refs) == 0);
5456}
5457
5458bool set_extent_buffer_dirty(struct extent_buffer *eb)
5459{
5460 int i;
5461 int num_pages;
5462 bool was_dirty;
5463
5464 check_buffer_tree_ref(eb);
5465
5466 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5467
5468 num_pages = num_extent_pages(eb);
5469 WARN_ON(atomic_read(&eb->refs) == 0);
5470 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5471
5472 if (!was_dirty)
5473 for (i = 0; i < num_pages; i++)
5474 set_page_dirty(eb->pages[i]);
5475
5476#ifdef CONFIG_BTRFS_DEBUG
5477 for (i = 0; i < num_pages; i++)
5478 ASSERT(PageDirty(eb->pages[i]));
5479#endif
5480
5481 return was_dirty;
5482}
5483
5484void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5485{
5486 int i;
5487 struct page *page;
5488 int num_pages;
5489
5490 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5491 num_pages = num_extent_pages(eb);
5492 for (i = 0; i < num_pages; i++) {
5493 page = eb->pages[i];
5494 if (page)
5495 ClearPageUptodate(page);
5496 }
5497}
5498
5499void set_extent_buffer_uptodate(struct extent_buffer *eb)
5500{
5501 int i;
5502 struct page *page;
5503 int num_pages;
5504
5505 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5506 num_pages = num_extent_pages(eb);
5507 for (i = 0; i < num_pages; i++) {
5508 page = eb->pages[i];
5509 SetPageUptodate(page);
5510 }
5511}
5512
5513int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5514{
5515 int i;
5516 struct page *page;
5517 int err;
5518 int ret = 0;
5519 int locked_pages = 0;
5520 int all_uptodate = 1;
5521 int num_pages;
5522 unsigned long num_reads = 0;
5523 struct bio *bio = NULL;
5524 unsigned long bio_flags = 0;
5525
5526 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5527 return 0;
5528
5529 num_pages = num_extent_pages(eb);
5530 for (i = 0; i < num_pages; i++) {
5531 page = eb->pages[i];
5532 if (wait == WAIT_NONE) {
5533 if (!trylock_page(page))
5534 goto unlock_exit;
5535 } else {
5536 lock_page(page);
5537 }
5538 locked_pages++;
5539 }
5540 /*
5541 * We need to firstly lock all pages to make sure that
5542 * the uptodate bit of our pages won't be affected by
5543 * clear_extent_buffer_uptodate().
5544 */
5545 for (i = 0; i < num_pages; i++) {
5546 page = eb->pages[i];
5547 if (!PageUptodate(page)) {
5548 num_reads++;
5549 all_uptodate = 0;
5550 }
5551 }
5552
5553 if (all_uptodate) {
5554 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5555 goto unlock_exit;
5556 }
5557
5558 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5559 eb->read_mirror = 0;
5560 atomic_set(&eb->io_pages, num_reads);
5561 /*
5562 * It is possible for releasepage to clear the TREE_REF bit before we
5563 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5564 */
5565 check_buffer_tree_ref(eb);
5566 for (i = 0; i < num_pages; i++) {
5567 page = eb->pages[i];
5568
5569 if (!PageUptodate(page)) {
5570 if (ret) {
5571 atomic_dec(&eb->io_pages);
5572 unlock_page(page);
5573 continue;
5574 }
5575
5576 ClearPageError(page);
5577 err = __extent_read_full_page(page,
5578 btree_get_extent, &bio,
5579 mirror_num, &bio_flags,
5580 REQ_META);
5581 if (err) {
5582 ret = err;
5583 /*
5584 * We use &bio in above __extent_read_full_page,
5585 * so we ensure that if it returns error, the
5586 * current page fails to add itself to bio and
5587 * it's been unlocked.
5588 *
5589 * We must dec io_pages by ourselves.
5590 */
5591 atomic_dec(&eb->io_pages);
5592 }
5593 } else {
5594 unlock_page(page);
5595 }
5596 }
5597
5598 if (bio) {
5599 err = submit_one_bio(bio, mirror_num, bio_flags);
5600 if (err)
5601 return err;
5602 }
5603
5604 if (ret || wait != WAIT_COMPLETE)
5605 return ret;
5606
5607 for (i = 0; i < num_pages; i++) {
5608 page = eb->pages[i];
5609 wait_on_page_locked(page);
5610 if (!PageUptodate(page))
5611 ret = -EIO;
5612 }
5613
5614 return ret;
5615
5616unlock_exit:
5617 while (locked_pages > 0) {
5618 locked_pages--;
5619 page = eb->pages[locked_pages];
5620 unlock_page(page);
5621 }
5622 return ret;
5623}
5624
5625void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5626 unsigned long start, unsigned long len)
5627{
5628 size_t cur;
5629 size_t offset;
5630 struct page *page;
5631 char *kaddr;
5632 char *dst = (char *)dstv;
5633 unsigned long i = start >> PAGE_SHIFT;
5634
5635 if (start + len > eb->len) {
5636 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5637 eb->start, eb->len, start, len);
5638 memset(dst, 0, len);
5639 return;
5640 }
5641
5642 offset = offset_in_page(start);
5643
5644 while (len > 0) {
5645 page = eb->pages[i];
5646
5647 cur = min(len, (PAGE_SIZE - offset));
5648 kaddr = page_address(page);
5649 memcpy(dst, kaddr + offset, cur);
5650
5651 dst += cur;
5652 len -= cur;
5653 offset = 0;
5654 i++;
5655 }
5656}
5657
5658int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5659 void __user *dstv,
5660 unsigned long start, unsigned long len)
5661{
5662 size_t cur;
5663 size_t offset;
5664 struct page *page;
5665 char *kaddr;
5666 char __user *dst = (char __user *)dstv;
5667 unsigned long i = start >> PAGE_SHIFT;
5668 int ret = 0;
5669
5670 WARN_ON(start > eb->len);
5671 WARN_ON(start + len > eb->start + eb->len);
5672
5673 offset = offset_in_page(start);
5674
5675 while (len > 0) {
5676 page = eb->pages[i];
5677
5678 cur = min(len, (PAGE_SIZE - offset));
5679 kaddr = page_address(page);
5680 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5681 ret = -EFAULT;
5682 break;
5683 }
5684
5685 dst += cur;
5686 len -= cur;
5687 offset = 0;
5688 i++;
5689 }
5690
5691 return ret;
5692}
5693
5694int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5695 unsigned long start, unsigned long len)
5696{
5697 size_t cur;
5698 size_t offset;
5699 struct page *page;
5700 char *kaddr;
5701 char *ptr = (char *)ptrv;
5702 unsigned long i = start >> PAGE_SHIFT;
5703 int ret = 0;
5704
5705 WARN_ON(start > eb->len);
5706 WARN_ON(start + len > eb->start + eb->len);
5707
5708 offset = offset_in_page(start);
5709
5710 while (len > 0) {
5711 page = eb->pages[i];
5712
5713 cur = min(len, (PAGE_SIZE - offset));
5714
5715 kaddr = page_address(page);
5716 ret = memcmp(ptr, kaddr + offset, cur);
5717 if (ret)
5718 break;
5719
5720 ptr += cur;
5721 len -= cur;
5722 offset = 0;
5723 i++;
5724 }
5725 return ret;
5726}
5727
5728void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5729 const void *srcv)
5730{
5731 char *kaddr;
5732
5733 WARN_ON(!PageUptodate(eb->pages[0]));
5734 kaddr = page_address(eb->pages[0]);
5735 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5736 BTRFS_FSID_SIZE);
5737}
5738
5739void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5740{
5741 char *kaddr;
5742
5743 WARN_ON(!PageUptodate(eb->pages[0]));
5744 kaddr = page_address(eb->pages[0]);
5745 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5746 BTRFS_FSID_SIZE);
5747}
5748
5749void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5750 unsigned long start, unsigned long len)
5751{
5752 size_t cur;
5753 size_t offset;
5754 struct page *page;
5755 char *kaddr;
5756 char *src = (char *)srcv;
5757 unsigned long i = start >> PAGE_SHIFT;
5758
5759 WARN_ON(start > eb->len);
5760 WARN_ON(start + len > eb->start + eb->len);
5761
5762 offset = offset_in_page(start);
5763
5764 while (len > 0) {
5765 page = eb->pages[i];
5766 WARN_ON(!PageUptodate(page));
5767
5768 cur = min(len, PAGE_SIZE - offset);
5769 kaddr = page_address(page);
5770 memcpy(kaddr + offset, src, cur);
5771
5772 src += cur;
5773 len -= cur;
5774 offset = 0;
5775 i++;
5776 }
5777}
5778
5779void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5780 unsigned long len)
5781{
5782 size_t cur;
5783 size_t offset;
5784 struct page *page;
5785 char *kaddr;
5786 unsigned long i = start >> PAGE_SHIFT;
5787
5788 WARN_ON(start > eb->len);
5789 WARN_ON(start + len > eb->start + eb->len);
5790
5791 offset = offset_in_page(start);
5792
5793 while (len > 0) {
5794 page = eb->pages[i];
5795 WARN_ON(!PageUptodate(page));
5796
5797 cur = min(len, PAGE_SIZE - offset);
5798 kaddr = page_address(page);
5799 memset(kaddr + offset, 0, cur);
5800
5801 len -= cur;
5802 offset = 0;
5803 i++;
5804 }
5805}
5806
5807void copy_extent_buffer_full(const struct extent_buffer *dst,
5808 const struct extent_buffer *src)
5809{
5810 int i;
5811 int num_pages;
5812
5813 ASSERT(dst->len == src->len);
5814
5815 num_pages = num_extent_pages(dst);
5816 for (i = 0; i < num_pages; i++)
5817 copy_page(page_address(dst->pages[i]),
5818 page_address(src->pages[i]));
5819}
5820
5821void copy_extent_buffer(const struct extent_buffer *dst,
5822 const struct extent_buffer *src,
5823 unsigned long dst_offset, unsigned long src_offset,
5824 unsigned long len)
5825{
5826 u64 dst_len = dst->len;
5827 size_t cur;
5828 size_t offset;
5829 struct page *page;
5830 char *kaddr;
5831 unsigned long i = dst_offset >> PAGE_SHIFT;
5832
5833 WARN_ON(src->len != dst_len);
5834
5835 offset = offset_in_page(dst_offset);
5836
5837 while (len > 0) {
5838 page = dst->pages[i];
5839 WARN_ON(!PageUptodate(page));
5840
5841 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5842
5843 kaddr = page_address(page);
5844 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5845
5846 src_offset += cur;
5847 len -= cur;
5848 offset = 0;
5849 i++;
5850 }
5851}
5852
5853/*
5854 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5855 * given bit number
5856 * @eb: the extent buffer
5857 * @start: offset of the bitmap item in the extent buffer
5858 * @nr: bit number
5859 * @page_index: return index of the page in the extent buffer that contains the
5860 * given bit number
5861 * @page_offset: return offset into the page given by page_index
5862 *
5863 * This helper hides the ugliness of finding the byte in an extent buffer which
5864 * contains a given bit.
5865 */
5866static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5867 unsigned long start, unsigned long nr,
5868 unsigned long *page_index,
5869 size_t *page_offset)
5870{
5871 size_t byte_offset = BIT_BYTE(nr);
5872 size_t offset;
5873
5874 /*
5875 * The byte we want is the offset of the extent buffer + the offset of
5876 * the bitmap item in the extent buffer + the offset of the byte in the
5877 * bitmap item.
5878 */
5879 offset = start + byte_offset;
5880
5881 *page_index = offset >> PAGE_SHIFT;
5882 *page_offset = offset_in_page(offset);
5883}
5884
5885/**
5886 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5887 * @eb: the extent buffer
5888 * @start: offset of the bitmap item in the extent buffer
5889 * @nr: bit number to test
5890 */
5891int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5892 unsigned long nr)
5893{
5894 u8 *kaddr;
5895 struct page *page;
5896 unsigned long i;
5897 size_t offset;
5898
5899 eb_bitmap_offset(eb, start, nr, &i, &offset);
5900 page = eb->pages[i];
5901 WARN_ON(!PageUptodate(page));
5902 kaddr = page_address(page);
5903 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5904}
5905
5906/**
5907 * extent_buffer_bitmap_set - set an area of a bitmap
5908 * @eb: the extent buffer
5909 * @start: offset of the bitmap item in the extent buffer
5910 * @pos: bit number of the first bit
5911 * @len: number of bits to set
5912 */
5913void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5914 unsigned long pos, unsigned long len)
5915{
5916 u8 *kaddr;
5917 struct page *page;
5918 unsigned long i;
5919 size_t offset;
5920 const unsigned int size = pos + len;
5921 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5922 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5923
5924 eb_bitmap_offset(eb, start, pos, &i, &offset);
5925 page = eb->pages[i];
5926 WARN_ON(!PageUptodate(page));
5927 kaddr = page_address(page);
5928
5929 while (len >= bits_to_set) {
5930 kaddr[offset] |= mask_to_set;
5931 len -= bits_to_set;
5932 bits_to_set = BITS_PER_BYTE;
5933 mask_to_set = ~0;
5934 if (++offset >= PAGE_SIZE && len > 0) {
5935 offset = 0;
5936 page = eb->pages[++i];
5937 WARN_ON(!PageUptodate(page));
5938 kaddr = page_address(page);
5939 }
5940 }
5941 if (len) {
5942 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5943 kaddr[offset] |= mask_to_set;
5944 }
5945}
5946
5947
5948/**
5949 * extent_buffer_bitmap_clear - clear an area of a bitmap
5950 * @eb: the extent buffer
5951 * @start: offset of the bitmap item in the extent buffer
5952 * @pos: bit number of the first bit
5953 * @len: number of bits to clear
5954 */
5955void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5956 unsigned long start, unsigned long pos,
5957 unsigned long len)
5958{
5959 u8 *kaddr;
5960 struct page *page;
5961 unsigned long i;
5962 size_t offset;
5963 const unsigned int size = pos + len;
5964 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5965 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5966
5967 eb_bitmap_offset(eb, start, pos, &i, &offset);
5968 page = eb->pages[i];
5969 WARN_ON(!PageUptodate(page));
5970 kaddr = page_address(page);
5971
5972 while (len >= bits_to_clear) {
5973 kaddr[offset] &= ~mask_to_clear;
5974 len -= bits_to_clear;
5975 bits_to_clear = BITS_PER_BYTE;
5976 mask_to_clear = ~0;
5977 if (++offset >= PAGE_SIZE && len > 0) {
5978 offset = 0;
5979 page = eb->pages[++i];
5980 WARN_ON(!PageUptodate(page));
5981 kaddr = page_address(page);
5982 }
5983 }
5984 if (len) {
5985 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5986 kaddr[offset] &= ~mask_to_clear;
5987 }
5988}
5989
5990static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5991{
5992 unsigned long distance = (src > dst) ? src - dst : dst - src;
5993 return distance < len;
5994}
5995
5996static void copy_pages(struct page *dst_page, struct page *src_page,
5997 unsigned long dst_off, unsigned long src_off,
5998 unsigned long len)
5999{
6000 char *dst_kaddr = page_address(dst_page);
6001 char *src_kaddr;
6002 int must_memmove = 0;
6003
6004 if (dst_page != src_page) {
6005 src_kaddr = page_address(src_page);
6006 } else {
6007 src_kaddr = dst_kaddr;
6008 if (areas_overlap(src_off, dst_off, len))
6009 must_memmove = 1;
6010 }
6011
6012 if (must_memmove)
6013 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6014 else
6015 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6016}
6017
6018void memcpy_extent_buffer(const struct extent_buffer *dst,
6019 unsigned long dst_offset, unsigned long src_offset,
6020 unsigned long len)
6021{
6022 struct btrfs_fs_info *fs_info = dst->fs_info;
6023 size_t cur;
6024 size_t dst_off_in_page;
6025 size_t src_off_in_page;
6026 unsigned long dst_i;
6027 unsigned long src_i;
6028
6029 if (src_offset + len > dst->len) {
6030 btrfs_err(fs_info,
6031 "memmove bogus src_offset %lu move len %lu dst len %lu",
6032 src_offset, len, dst->len);
6033 BUG();
6034 }
6035 if (dst_offset + len > dst->len) {
6036 btrfs_err(fs_info,
6037 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6038 dst_offset, len, dst->len);
6039 BUG();
6040 }
6041
6042 while (len > 0) {
6043 dst_off_in_page = offset_in_page(dst_offset);
6044 src_off_in_page = offset_in_page(src_offset);
6045
6046 dst_i = dst_offset >> PAGE_SHIFT;
6047 src_i = src_offset >> PAGE_SHIFT;
6048
6049 cur = min(len, (unsigned long)(PAGE_SIZE -
6050 src_off_in_page));
6051 cur = min_t(unsigned long, cur,
6052 (unsigned long)(PAGE_SIZE - dst_off_in_page));
6053
6054 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6055 dst_off_in_page, src_off_in_page, cur);
6056
6057 src_offset += cur;
6058 dst_offset += cur;
6059 len -= cur;
6060 }
6061}
6062
6063void memmove_extent_buffer(const struct extent_buffer *dst,
6064 unsigned long dst_offset, unsigned long src_offset,
6065 unsigned long len)
6066{
6067 struct btrfs_fs_info *fs_info = dst->fs_info;
6068 size_t cur;
6069 size_t dst_off_in_page;
6070 size_t src_off_in_page;
6071 unsigned long dst_end = dst_offset + len - 1;
6072 unsigned long src_end = src_offset + len - 1;
6073 unsigned long dst_i;
6074 unsigned long src_i;
6075
6076 if (src_offset + len > dst->len) {
6077 btrfs_err(fs_info,
6078 "memmove bogus src_offset %lu move len %lu len %lu",
6079 src_offset, len, dst->len);
6080 BUG();
6081 }
6082 if (dst_offset + len > dst->len) {
6083 btrfs_err(fs_info,
6084 "memmove bogus dst_offset %lu move len %lu len %lu",
6085 dst_offset, len, dst->len);
6086 BUG();
6087 }
6088 if (dst_offset < src_offset) {
6089 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6090 return;
6091 }
6092 while (len > 0) {
6093 dst_i = dst_end >> PAGE_SHIFT;
6094 src_i = src_end >> PAGE_SHIFT;
6095
6096 dst_off_in_page = offset_in_page(dst_end);
6097 src_off_in_page = offset_in_page(src_end);
6098
6099 cur = min_t(unsigned long, len, src_off_in_page + 1);
6100 cur = min(cur, dst_off_in_page + 1);
6101 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6102 dst_off_in_page - cur + 1,
6103 src_off_in_page - cur + 1, cur);
6104
6105 dst_end -= cur;
6106 src_end -= cur;
6107 len -= cur;
6108 }
6109}
6110
6111int try_release_extent_buffer(struct page *page)
6112{
6113 struct extent_buffer *eb;
6114
6115 /*
6116 * We need to make sure nobody is attaching this page to an eb right
6117 * now.
6118 */
6119 spin_lock(&page->mapping->private_lock);
6120 if (!PagePrivate(page)) {
6121 spin_unlock(&page->mapping->private_lock);
6122 return 1;
6123 }
6124
6125 eb = (struct extent_buffer *)page->private;
6126 BUG_ON(!eb);
6127
6128 /*
6129 * This is a little awful but should be ok, we need to make sure that
6130 * the eb doesn't disappear out from under us while we're looking at
6131 * this page.
6132 */
6133 spin_lock(&eb->refs_lock);
6134 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6135 spin_unlock(&eb->refs_lock);
6136 spin_unlock(&page->mapping->private_lock);
6137 return 0;
6138 }
6139 spin_unlock(&page->mapping->private_lock);
6140
6141 /*
6142 * If tree ref isn't set then we know the ref on this eb is a real ref,
6143 * so just return, this page will likely be freed soon anyway.
6144 */
6145 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6146 spin_unlock(&eb->refs_lock);
6147 return 0;
6148 }
6149
6150 return release_extent_buffer(eb);
6151}