Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 59/**
 60 * sg_nents_for_len - return total count of entries in scatterlist
 61 *                    needed to satisfy the supplied length
 62 * @sg:		The scatterlist
 63 * @len:	The total required length
 64 *
 65 * Description:
 66 * Determines the number of entries in sg that are required to meet
 67 * the supplied length, taking into acount chaining as well
 68 *
 69 * Returns:
 70 *   the number of sg entries needed, negative error on failure
 71 *
 72 **/
 73int sg_nents_for_len(struct scatterlist *sg, u64 len)
 74{
 75	int nents;
 76	u64 total;
 77
 78	if (!len)
 79		return 0;
 80
 81	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
 82		nents++;
 83		total += sg->length;
 84		if (total >= len)
 85			return nents;
 86	}
 87
 88	return -EINVAL;
 89}
 90EXPORT_SYMBOL(sg_nents_for_len);
 91
 92/**
 93 * sg_last - return the last scatterlist entry in a list
 94 * @sgl:	First entry in the scatterlist
 95 * @nents:	Number of entries in the scatterlist
 96 *
 97 * Description:
 98 *   Should only be used casually, it (currently) scans the entire list
 99 *   to get the last entry.
100 *
101 *   Note that the @sgl@ pointer passed in need not be the first one,
102 *   the important bit is that @nents@ denotes the number of entries that
103 *   exist from @sgl@.
104 *
105 **/
106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107{
108	struct scatterlist *sg, *ret = NULL;
109	unsigned int i;
110
111	for_each_sg(sgl, sg, nents, i)
112		ret = sg;
113
114#ifdef CONFIG_DEBUG_SG
115	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
116	BUG_ON(!sg_is_last(ret));
117#endif
118	return ret;
119}
120EXPORT_SYMBOL(sg_last);
121
122/**
123 * sg_init_table - Initialize SG table
124 * @sgl:	   The SG table
125 * @nents:	   Number of entries in table
126 *
127 * Notes:
128 *   If this is part of a chained sg table, sg_mark_end() should be
129 *   used only on the last table part.
130 *
131 **/
132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
133{
134	memset(sgl, 0, sizeof(*sgl) * nents);
135#ifdef CONFIG_DEBUG_SG
136	{
137		unsigned int i;
138		for (i = 0; i < nents; i++)
139			sgl[i].sg_magic = SG_MAGIC;
140	}
141#endif
142	sg_mark_end(&sgl[nents - 1]);
143}
144EXPORT_SYMBOL(sg_init_table);
145
146/**
147 * sg_init_one - Initialize a single entry sg list
148 * @sg:		 SG entry
149 * @buf:	 Virtual address for IO
150 * @buflen:	 IO length
151 *
152 **/
153void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
154{
155	sg_init_table(sg, 1);
156	sg_set_buf(sg, buf, buflen);
157}
158EXPORT_SYMBOL(sg_init_one);
159
160/*
161 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
162 * helpers.
163 */
164static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
165{
166	if (nents == SG_MAX_SINGLE_ALLOC) {
167		/*
168		 * Kmemleak doesn't track page allocations as they are not
169		 * commonly used (in a raw form) for kernel data structures.
170		 * As we chain together a list of pages and then a normal
171		 * kmalloc (tracked by kmemleak), in order to for that last
172		 * allocation not to become decoupled (and thus a
173		 * false-positive) we need to inform kmemleak of all the
174		 * intermediate allocations.
175		 */
176		void *ptr = (void *) __get_free_page(gfp_mask);
177		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
178		return ptr;
179	} else
180		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 
181}
182
183static void sg_kfree(struct scatterlist *sg, unsigned int nents)
184{
185	if (nents == SG_MAX_SINGLE_ALLOC) {
186		kmemleak_free(sg);
187		free_page((unsigned long) sg);
188	} else
189		kfree(sg);
190}
191
192/**
193 * __sg_free_table - Free a previously mapped sg table
194 * @table:	The sg table header to use
195 * @max_ents:	The maximum number of entries per single scatterlist
196 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
 
197 * @free_fn:	Free function
198 *
199 *  Description:
200 *    Free an sg table previously allocated and setup with
201 *    __sg_alloc_table().  The @max_ents value must be identical to
202 *    that previously used with __sg_alloc_table().
203 *
204 **/
205void __sg_free_table(struct sg_table *table, unsigned int max_ents,
206		     bool skip_first_chunk, sg_free_fn *free_fn)
207{
208	struct scatterlist *sgl, *next;
 
209
210	if (unlikely(!table->sgl))
211		return;
212
213	sgl = table->sgl;
214	while (table->orig_nents) {
215		unsigned int alloc_size = table->orig_nents;
216		unsigned int sg_size;
217
218		/*
219		 * If we have more than max_ents segments left,
220		 * then assign 'next' to the sg table after the current one.
221		 * sg_size is then one less than alloc size, since the last
222		 * element is the chain pointer.
223		 */
224		if (alloc_size > max_ents) {
225			next = sg_chain_ptr(&sgl[max_ents - 1]);
226			alloc_size = max_ents;
227			sg_size = alloc_size - 1;
228		} else {
229			sg_size = alloc_size;
230			next = NULL;
231		}
232
233		table->orig_nents -= sg_size;
234		if (skip_first_chunk)
235			skip_first_chunk = false;
236		else
237			free_fn(sgl, alloc_size);
238		sgl = next;
 
239	}
240
241	table->sgl = NULL;
242}
243EXPORT_SYMBOL(__sg_free_table);
244
245/**
246 * sg_free_table - Free a previously allocated sg table
247 * @table:	The mapped sg table header
248 *
249 **/
250void sg_free_table(struct sg_table *table)
251{
252	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
253}
254EXPORT_SYMBOL(sg_free_table);
255
256/**
257 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
258 * @table:	The sg table header to use
259 * @nents:	Number of entries in sg list
260 * @max_ents:	The maximum number of entries the allocator returns per call
 
 
261 * @gfp_mask:	GFP allocation mask
262 * @alloc_fn:	Allocator to use
263 *
264 * Description:
265 *   This function returns a @table @nents long. The allocator is
266 *   defined to return scatterlist chunks of maximum size @max_ents.
267 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
268 *   chained in units of @max_ents.
269 *
270 * Notes:
271 *   If this function returns non-0 (eg failure), the caller must call
272 *   __sg_free_table() to cleanup any leftover allocations.
273 *
274 **/
275int __sg_alloc_table(struct sg_table *table, unsigned int nents,
276		     unsigned int max_ents, struct scatterlist *first_chunk,
277		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
 
278{
279	struct scatterlist *sg, *prv;
280	unsigned int left;
 
 
281
282	memset(table, 0, sizeof(*table));
283
284	if (nents == 0)
285		return -EINVAL;
286#ifndef CONFIG_ARCH_HAS_SG_CHAIN
287	if (WARN_ON_ONCE(nents > max_ents))
288		return -EINVAL;
289#endif
290
291	left = nents;
292	prv = NULL;
293	do {
294		unsigned int sg_size, alloc_size = left;
295
296		if (alloc_size > max_ents) {
297			alloc_size = max_ents;
298			sg_size = alloc_size - 1;
299		} else
300			sg_size = alloc_size;
301
302		left -= sg_size;
303
304		if (first_chunk) {
305			sg = first_chunk;
306			first_chunk = NULL;
307		} else {
308			sg = alloc_fn(alloc_size, gfp_mask);
309		}
310		if (unlikely(!sg)) {
311			/*
312			 * Adjust entry count to reflect that the last
313			 * entry of the previous table won't be used for
314			 * linkage.  Without this, sg_kfree() may get
315			 * confused.
316			 */
317			if (prv)
318				table->nents = ++table->orig_nents;
319
320 			return -ENOMEM;
321		}
322
323		sg_init_table(sg, alloc_size);
324		table->nents = table->orig_nents += sg_size;
325
326		/*
327		 * If this is the first mapping, assign the sg table header.
328		 * If this is not the first mapping, chain previous part.
329		 */
330		if (prv)
331			sg_chain(prv, max_ents, sg);
332		else
333			table->sgl = sg;
334
335		/*
336		 * If no more entries after this one, mark the end
337		 */
338		if (!left)
339			sg_mark_end(&sg[sg_size - 1]);
340
341		prv = sg;
 
 
342	} while (left);
343
344	return 0;
345}
346EXPORT_SYMBOL(__sg_alloc_table);
347
348/**
349 * sg_alloc_table - Allocate and initialize an sg table
350 * @table:	The sg table header to use
351 * @nents:	Number of entries in sg list
352 * @gfp_mask:	GFP allocation mask
353 *
354 *  Description:
355 *    Allocate and initialize an sg table. If @nents@ is larger than
356 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
357 *
358 **/
359int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
360{
361	int ret;
362
363	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
364			       NULL, gfp_mask, sg_kmalloc);
365	if (unlikely(ret))
366		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
367
368	return ret;
369}
370EXPORT_SYMBOL(sg_alloc_table);
371
372/**
373 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
374 *			       an array of pages
375 * @sgt:	The sg table header to use
376 * @pages:	Pointer to an array of page pointers
377 * @n_pages:	Number of pages in the pages array
378 * @offset:     Offset from start of the first page to the start of a buffer
379 * @size:       Number of valid bytes in the buffer (after offset)
380 * @gfp_mask:	GFP allocation mask
 
381 *
382 *  Description:
383 *    Allocate and initialize an sg table from a list of pages. Contiguous
384 *    ranges of the pages are squashed into a single scatterlist node. A user
385 *    may provide an offset at a start and a size of valid data in a buffer
386 *    specified by the page array. The returned sg table is released by
387 *    sg_free_table.
388 *
389 * Returns:
390 *   0 on success, negative error on failure
391 */
392int sg_alloc_table_from_pages(struct sg_table *sgt,
393	struct page **pages, unsigned int n_pages,
394	unsigned long offset, unsigned long size,
395	gfp_t gfp_mask)
396{
397	unsigned int chunks;
398	unsigned int i;
399	unsigned int cur_page;
400	int ret;
401	struct scatterlist *s;
402
 
 
 
403	/* compute number of contiguous chunks */
404	chunks = 1;
405	for (i = 1; i < n_pages; ++i)
406		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
407			++chunks;
 
 
 
 
 
 
408
409	ret = sg_alloc_table(sgt, chunks, gfp_mask);
410	if (unlikely(ret))
411		return ret;
412
413	/* merging chunks and putting them into the scatterlist */
414	cur_page = 0;
415	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
416		unsigned long chunk_size;
417		unsigned int j;
418
419		/* look for the end of the current chunk */
420		for (j = cur_page + 1; j < n_pages; ++j)
421			if (page_to_pfn(pages[j]) !=
 
 
 
422			    page_to_pfn(pages[j - 1]) + 1)
423				break;
 
424
425		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
426		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 
427		size -= chunk_size;
428		offset = 0;
429		cur_page = j;
430	}
431
432	return 0;
433}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434EXPORT_SYMBOL(sg_alloc_table_from_pages);
435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436void __sg_page_iter_start(struct sg_page_iter *piter,
437			  struct scatterlist *sglist, unsigned int nents,
438			  unsigned long pgoffset)
439{
440	piter->__pg_advance = 0;
441	piter->__nents = nents;
442
443	piter->sg = sglist;
444	piter->sg_pgoffset = pgoffset;
445}
446EXPORT_SYMBOL(__sg_page_iter_start);
447
448static int sg_page_count(struct scatterlist *sg)
449{
450	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
451}
452
453bool __sg_page_iter_next(struct sg_page_iter *piter)
454{
455	if (!piter->__nents || !piter->sg)
456		return false;
457
458	piter->sg_pgoffset += piter->__pg_advance;
459	piter->__pg_advance = 1;
460
461	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
462		piter->sg_pgoffset -= sg_page_count(piter->sg);
463		piter->sg = sg_next(piter->sg);
464		if (!--piter->__nents || !piter->sg)
465			return false;
466	}
467
468	return true;
469}
470EXPORT_SYMBOL(__sg_page_iter_next);
471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472/**
473 * sg_miter_start - start mapping iteration over a sg list
474 * @miter: sg mapping iter to be started
475 * @sgl: sg list to iterate over
476 * @nents: number of sg entries
477 *
478 * Description:
479 *   Starts mapping iterator @miter.
480 *
481 * Context:
482 *   Don't care.
483 */
484void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
485		    unsigned int nents, unsigned int flags)
486{
487	memset(miter, 0, sizeof(struct sg_mapping_iter));
488
489	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
490	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
491	miter->__flags = flags;
492}
493EXPORT_SYMBOL(sg_miter_start);
494
495static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
496{
497	if (!miter->__remaining) {
498		struct scatterlist *sg;
499		unsigned long pgoffset;
500
501		if (!__sg_page_iter_next(&miter->piter))
502			return false;
503
504		sg = miter->piter.sg;
505		pgoffset = miter->piter.sg_pgoffset;
506
507		miter->__offset = pgoffset ? 0 : sg->offset;
 
 
508		miter->__remaining = sg->offset + sg->length -
509				(pgoffset << PAGE_SHIFT) - miter->__offset;
 
510		miter->__remaining = min_t(unsigned long, miter->__remaining,
511					   PAGE_SIZE - miter->__offset);
512	}
513
514	return true;
515}
516
517/**
518 * sg_miter_skip - reposition mapping iterator
519 * @miter: sg mapping iter to be skipped
520 * @offset: number of bytes to plus the current location
521 *
522 * Description:
523 *   Sets the offset of @miter to its current location plus @offset bytes.
524 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
525 *   stops @miter.
526 *
527 * Context:
528 *   Don't care if @miter is stopped, or not proceeded yet.
529 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
530 *
531 * Returns:
532 *   true if @miter contains the valid mapping.  false if end of sg
533 *   list is reached.
534 */
535bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
536{
537	sg_miter_stop(miter);
538
539	while (offset) {
540		off_t consumed;
541
542		if (!sg_miter_get_next_page(miter))
543			return false;
544
545		consumed = min_t(off_t, offset, miter->__remaining);
546		miter->__offset += consumed;
547		miter->__remaining -= consumed;
548		offset -= consumed;
549	}
550
551	return true;
552}
553EXPORT_SYMBOL(sg_miter_skip);
554
555/**
556 * sg_miter_next - proceed mapping iterator to the next mapping
557 * @miter: sg mapping iter to proceed
558 *
559 * Description:
560 *   Proceeds @miter to the next mapping.  @miter should have been started
561 *   using sg_miter_start().  On successful return, @miter->page,
562 *   @miter->addr and @miter->length point to the current mapping.
563 *
564 * Context:
565 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
566 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
567 *
568 * Returns:
569 *   true if @miter contains the next mapping.  false if end of sg
570 *   list is reached.
571 */
572bool sg_miter_next(struct sg_mapping_iter *miter)
573{
574	sg_miter_stop(miter);
575
576	/*
577	 * Get to the next page if necessary.
578	 * __remaining, __offset is adjusted by sg_miter_stop
579	 */
580	if (!sg_miter_get_next_page(miter))
581		return false;
582
583	miter->page = sg_page_iter_page(&miter->piter);
584	miter->consumed = miter->length = miter->__remaining;
585
586	if (miter->__flags & SG_MITER_ATOMIC)
587		miter->addr = kmap_atomic(miter->page) + miter->__offset;
588	else
589		miter->addr = kmap(miter->page) + miter->__offset;
590
591	return true;
592}
593EXPORT_SYMBOL(sg_miter_next);
594
595/**
596 * sg_miter_stop - stop mapping iteration
597 * @miter: sg mapping iter to be stopped
598 *
599 * Description:
600 *   Stops mapping iterator @miter.  @miter should have been started
601 *   using sg_miter_start().  A stopped iteration can be resumed by
602 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
603 *   need to be released during iteration.
604 *
605 * Context:
606 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
607 *   otherwise.
608 */
609void sg_miter_stop(struct sg_mapping_iter *miter)
610{
611	WARN_ON(miter->consumed > miter->length);
612
613	/* drop resources from the last iteration */
614	if (miter->addr) {
615		miter->__offset += miter->consumed;
616		miter->__remaining -= miter->consumed;
617
618		if ((miter->__flags & SG_MITER_TO_SG) &&
619		    !PageSlab(miter->page))
620			flush_kernel_dcache_page(miter->page);
621
622		if (miter->__flags & SG_MITER_ATOMIC) {
623			WARN_ON_ONCE(preemptible());
624			kunmap_atomic(miter->addr);
625		} else
626			kunmap(miter->page);
627
628		miter->page = NULL;
629		miter->addr = NULL;
630		miter->length = 0;
631		miter->consumed = 0;
632	}
633}
634EXPORT_SYMBOL(sg_miter_stop);
635
636/**
637 * sg_copy_buffer - Copy data between a linear buffer and an SG list
638 * @sgl:		 The SG list
639 * @nents:		 Number of SG entries
640 * @buf:		 Where to copy from
641 * @buflen:		 The number of bytes to copy
642 * @skip:		 Number of bytes to skip before copying
643 * @to_buffer:		 transfer direction (true == from an sg list to a
644 *			 buffer, false == from a buffer to an sg list
645 *
646 * Returns the number of copied bytes.
647 *
648 **/
649size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
650		      size_t buflen, off_t skip, bool to_buffer)
651{
652	unsigned int offset = 0;
653	struct sg_mapping_iter miter;
654	unsigned long flags;
655	unsigned int sg_flags = SG_MITER_ATOMIC;
656
657	if (to_buffer)
658		sg_flags |= SG_MITER_FROM_SG;
659	else
660		sg_flags |= SG_MITER_TO_SG;
661
662	sg_miter_start(&miter, sgl, nents, sg_flags);
663
664	if (!sg_miter_skip(&miter, skip))
665		return false;
666
667	local_irq_save(flags);
668
669	while (sg_miter_next(&miter) && offset < buflen) {
670		unsigned int len;
671
672		len = min(miter.length, buflen - offset);
673
674		if (to_buffer)
675			memcpy(buf + offset, miter.addr, len);
676		else
677			memcpy(miter.addr, buf + offset, len);
678
679		offset += len;
680	}
681
682	sg_miter_stop(&miter);
683
684	local_irq_restore(flags);
685	return offset;
686}
687EXPORT_SYMBOL(sg_copy_buffer);
688
689/**
690 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
691 * @sgl:		 The SG list
692 * @nents:		 Number of SG entries
693 * @buf:		 Where to copy from
694 * @buflen:		 The number of bytes to copy
695 *
696 * Returns the number of copied bytes.
697 *
698 **/
699size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
700			   const void *buf, size_t buflen)
701{
702	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
703}
704EXPORT_SYMBOL(sg_copy_from_buffer);
705
706/**
707 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
708 * @sgl:		 The SG list
709 * @nents:		 Number of SG entries
710 * @buf:		 Where to copy to
711 * @buflen:		 The number of bytes to copy
712 *
713 * Returns the number of copied bytes.
714 *
715 **/
716size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
717			 void *buf, size_t buflen)
718{
719	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
720}
721EXPORT_SYMBOL(sg_copy_to_buffer);
722
723/**
724 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
725 * @sgl:		 The SG list
726 * @nents:		 Number of SG entries
727 * @buf:		 Where to copy from
728 * @buflen:		 The number of bytes to copy
729 * @skip:		 Number of bytes to skip before copying
730 *
731 * Returns the number of copied bytes.
732 *
733 **/
734size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
735			    const void *buf, size_t buflen, off_t skip)
736{
737	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
738}
739EXPORT_SYMBOL(sg_pcopy_from_buffer);
740
741/**
742 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
743 * @sgl:		 The SG list
744 * @nents:		 Number of SG entries
745 * @buf:		 Where to copy to
746 * @buflen:		 The number of bytes to copy
747 * @skip:		 Number of bytes to skip before copying
748 *
749 * Returns the number of copied bytes.
750 *
751 **/
752size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
753			  void *buf, size_t buflen, off_t skip)
754{
755	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
756}
757EXPORT_SYMBOL(sg_pcopy_to_buffer);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  4 *
  5 * Scatterlist handling helpers.
 
 
 
  6 */
  7#include <linux/export.h>
  8#include <linux/slab.h>
  9#include <linux/scatterlist.h>
 10#include <linux/highmem.h>
 11#include <linux/kmemleak.h>
 12
 13/**
 14 * sg_next - return the next scatterlist entry in a list
 15 * @sg:		The current sg entry
 16 *
 17 * Description:
 18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 19 *   of a chained scatterlist, it could jump to the start of a new
 20 *   scatterlist array.
 21 *
 22 **/
 23struct scatterlist *sg_next(struct scatterlist *sg)
 24{
 
 
 
 25	if (sg_is_last(sg))
 26		return NULL;
 27
 28	sg++;
 29	if (unlikely(sg_is_chain(sg)))
 30		sg = sg_chain_ptr(sg);
 31
 32	return sg;
 33}
 34EXPORT_SYMBOL(sg_next);
 35
 36/**
 37 * sg_nents - return total count of entries in scatterlist
 38 * @sg:		The scatterlist
 39 *
 40 * Description:
 41 * Allows to know how many entries are in sg, taking into acount
 42 * chaining as well
 43 *
 44 **/
 45int sg_nents(struct scatterlist *sg)
 46{
 47	int nents;
 48	for (nents = 0; sg; sg = sg_next(sg))
 49		nents++;
 50	return nents;
 51}
 52EXPORT_SYMBOL(sg_nents);
 53
 54/**
 55 * sg_nents_for_len - return total count of entries in scatterlist
 56 *                    needed to satisfy the supplied length
 57 * @sg:		The scatterlist
 58 * @len:	The total required length
 59 *
 60 * Description:
 61 * Determines the number of entries in sg that are required to meet
 62 * the supplied length, taking into acount chaining as well
 63 *
 64 * Returns:
 65 *   the number of sg entries needed, negative error on failure
 66 *
 67 **/
 68int sg_nents_for_len(struct scatterlist *sg, u64 len)
 69{
 70	int nents;
 71	u64 total;
 72
 73	if (!len)
 74		return 0;
 75
 76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
 77		nents++;
 78		total += sg->length;
 79		if (total >= len)
 80			return nents;
 81	}
 82
 83	return -EINVAL;
 84}
 85EXPORT_SYMBOL(sg_nents_for_len);
 86
 87/**
 88 * sg_last - return the last scatterlist entry in a list
 89 * @sgl:	First entry in the scatterlist
 90 * @nents:	Number of entries in the scatterlist
 91 *
 92 * Description:
 93 *   Should only be used casually, it (currently) scans the entire list
 94 *   to get the last entry.
 95 *
 96 *   Note that the @sgl@ pointer passed in need not be the first one,
 97 *   the important bit is that @nents@ denotes the number of entries that
 98 *   exist from @sgl@.
 99 *
100 **/
101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102{
103	struct scatterlist *sg, *ret = NULL;
104	unsigned int i;
105
106	for_each_sg(sgl, sg, nents, i)
107		ret = sg;
108
 
 
109	BUG_ON(!sg_is_last(ret));
 
110	return ret;
111}
112EXPORT_SYMBOL(sg_last);
113
114/**
115 * sg_init_table - Initialize SG table
116 * @sgl:	   The SG table
117 * @nents:	   Number of entries in table
118 *
119 * Notes:
120 *   If this is part of a chained sg table, sg_mark_end() should be
121 *   used only on the last table part.
122 *
123 **/
124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125{
126	memset(sgl, 0, sizeof(*sgl) * nents);
127	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
128}
129EXPORT_SYMBOL(sg_init_table);
130
131/**
132 * sg_init_one - Initialize a single entry sg list
133 * @sg:		 SG entry
134 * @buf:	 Virtual address for IO
135 * @buflen:	 IO length
136 *
137 **/
138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139{
140	sg_init_table(sg, 1);
141	sg_set_buf(sg, buf, buflen);
142}
143EXPORT_SYMBOL(sg_init_one);
144
145/*
146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147 * helpers.
148 */
149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150{
151	if (nents == SG_MAX_SINGLE_ALLOC) {
152		/*
153		 * Kmemleak doesn't track page allocations as they are not
154		 * commonly used (in a raw form) for kernel data structures.
155		 * As we chain together a list of pages and then a normal
156		 * kmalloc (tracked by kmemleak), in order to for that last
157		 * allocation not to become decoupled (and thus a
158		 * false-positive) we need to inform kmemleak of all the
159		 * intermediate allocations.
160		 */
161		void *ptr = (void *) __get_free_page(gfp_mask);
162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163		return ptr;
164	} else
165		return kmalloc_array(nents, sizeof(struct scatterlist),
166				     gfp_mask);
167}
168
169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170{
171	if (nents == SG_MAX_SINGLE_ALLOC) {
172		kmemleak_free(sg);
173		free_page((unsigned long) sg);
174	} else
175		kfree(sg);
176}
177
178/**
179 * __sg_free_table - Free a previously mapped sg table
180 * @table:	The sg table header to use
181 * @max_ents:	The maximum number of entries per single scatterlist
182 * @nents_first_chunk: Number of entries int the (preallocated) first
183 * 	scatterlist chunk, 0 means no such preallocated first chunk
184 * @free_fn:	Free function
185 *
186 *  Description:
187 *    Free an sg table previously allocated and setup with
188 *    __sg_alloc_table().  The @max_ents value must be identical to
189 *    that previously used with __sg_alloc_table().
190 *
191 **/
192void __sg_free_table(struct sg_table *table, unsigned int max_ents,
193		     unsigned int nents_first_chunk, sg_free_fn *free_fn)
194{
195	struct scatterlist *sgl, *next;
196	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
197
198	if (unlikely(!table->sgl))
199		return;
200
201	sgl = table->sgl;
202	while (table->orig_nents) {
203		unsigned int alloc_size = table->orig_nents;
204		unsigned int sg_size;
205
206		/*
207		 * If we have more than max_ents segments left,
208		 * then assign 'next' to the sg table after the current one.
209		 * sg_size is then one less than alloc size, since the last
210		 * element is the chain pointer.
211		 */
212		if (alloc_size > curr_max_ents) {
213			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
214			alloc_size = curr_max_ents;
215			sg_size = alloc_size - 1;
216		} else {
217			sg_size = alloc_size;
218			next = NULL;
219		}
220
221		table->orig_nents -= sg_size;
222		if (nents_first_chunk)
223			nents_first_chunk = 0;
224		else
225			free_fn(sgl, alloc_size);
226		sgl = next;
227		curr_max_ents = max_ents;
228	}
229
230	table->sgl = NULL;
231}
232EXPORT_SYMBOL(__sg_free_table);
233
234/**
235 * sg_free_table - Free a previously allocated sg table
236 * @table:	The mapped sg table header
237 *
238 **/
239void sg_free_table(struct sg_table *table)
240{
241	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
242}
243EXPORT_SYMBOL(sg_free_table);
244
245/**
246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
247 * @table:	The sg table header to use
248 * @nents:	Number of entries in sg list
249 * @max_ents:	The maximum number of entries the allocator returns per call
250 * @nents_first_chunk: Number of entries int the (preallocated) first
251 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
252 * @gfp_mask:	GFP allocation mask
253 * @alloc_fn:	Allocator to use
254 *
255 * Description:
256 *   This function returns a @table @nents long. The allocator is
257 *   defined to return scatterlist chunks of maximum size @max_ents.
258 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
259 *   chained in units of @max_ents.
260 *
261 * Notes:
262 *   If this function returns non-0 (eg failure), the caller must call
263 *   __sg_free_table() to cleanup any leftover allocations.
264 *
265 **/
266int __sg_alloc_table(struct sg_table *table, unsigned int nents,
267		     unsigned int max_ents, struct scatterlist *first_chunk,
268		     unsigned int nents_first_chunk, gfp_t gfp_mask,
269		     sg_alloc_fn *alloc_fn)
270{
271	struct scatterlist *sg, *prv;
272	unsigned int left;
273	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
274	unsigned prv_max_ents;
275
276	memset(table, 0, sizeof(*table));
277
278	if (nents == 0)
279		return -EINVAL;
280#ifdef CONFIG_ARCH_NO_SG_CHAIN
281	if (WARN_ON_ONCE(nents > max_ents))
282		return -EINVAL;
283#endif
284
285	left = nents;
286	prv = NULL;
287	do {
288		unsigned int sg_size, alloc_size = left;
289
290		if (alloc_size > curr_max_ents) {
291			alloc_size = curr_max_ents;
292			sg_size = alloc_size - 1;
293		} else
294			sg_size = alloc_size;
295
296		left -= sg_size;
297
298		if (first_chunk) {
299			sg = first_chunk;
300			first_chunk = NULL;
301		} else {
302			sg = alloc_fn(alloc_size, gfp_mask);
303		}
304		if (unlikely(!sg)) {
305			/*
306			 * Adjust entry count to reflect that the last
307			 * entry of the previous table won't be used for
308			 * linkage.  Without this, sg_kfree() may get
309			 * confused.
310			 */
311			if (prv)
312				table->nents = ++table->orig_nents;
313
314			return -ENOMEM;
315		}
316
317		sg_init_table(sg, alloc_size);
318		table->nents = table->orig_nents += sg_size;
319
320		/*
321		 * If this is the first mapping, assign the sg table header.
322		 * If this is not the first mapping, chain previous part.
323		 */
324		if (prv)
325			sg_chain(prv, prv_max_ents, sg);
326		else
327			table->sgl = sg;
328
329		/*
330		 * If no more entries after this one, mark the end
331		 */
332		if (!left)
333			sg_mark_end(&sg[sg_size - 1]);
334
335		prv = sg;
336		prv_max_ents = curr_max_ents;
337		curr_max_ents = max_ents;
338	} while (left);
339
340	return 0;
341}
342EXPORT_SYMBOL(__sg_alloc_table);
343
344/**
345 * sg_alloc_table - Allocate and initialize an sg table
346 * @table:	The sg table header to use
347 * @nents:	Number of entries in sg list
348 * @gfp_mask:	GFP allocation mask
349 *
350 *  Description:
351 *    Allocate and initialize an sg table. If @nents@ is larger than
352 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
353 *
354 **/
355int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
356{
357	int ret;
358
359	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
360			       NULL, 0, gfp_mask, sg_kmalloc);
361	if (unlikely(ret))
362		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
363
364	return ret;
365}
366EXPORT_SYMBOL(sg_alloc_table);
367
368/**
369 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
370 *			         an array of pages
371 * @sgt:	 The sg table header to use
372 * @pages:	 Pointer to an array of page pointers
373 * @n_pages:	 Number of pages in the pages array
374 * @offset:      Offset from start of the first page to the start of a buffer
375 * @size:        Number of valid bytes in the buffer (after offset)
376 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
377 * @gfp_mask:	 GFP allocation mask
378 *
379 *  Description:
380 *    Allocate and initialize an sg table from a list of pages. Contiguous
381 *    ranges of the pages are squashed into a single scatterlist node up to the
382 *    maximum size specified in @max_segment. An user may provide an offset at a
383 *    start and a size of valid data in a buffer specified by the page array.
384 *    The returned sg table is released by sg_free_table.
385 *
386 * Returns:
387 *   0 on success, negative error on failure
388 */
389int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
390				unsigned int n_pages, unsigned int offset,
391				unsigned long size, unsigned int max_segment,
392				gfp_t gfp_mask)
393{
394	unsigned int chunks, cur_page, seg_len, i;
 
 
395	int ret;
396	struct scatterlist *s;
397
398	if (WARN_ON(!max_segment || offset_in_page(max_segment)))
399		return -EINVAL;
400
401	/* compute number of contiguous chunks */
402	chunks = 1;
403	seg_len = 0;
404	for (i = 1; i < n_pages; i++) {
405		seg_len += PAGE_SIZE;
406		if (seg_len >= max_segment ||
407		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
408			chunks++;
409			seg_len = 0;
410		}
411	}
412
413	ret = sg_alloc_table(sgt, chunks, gfp_mask);
414	if (unlikely(ret))
415		return ret;
416
417	/* merging chunks and putting them into the scatterlist */
418	cur_page = 0;
419	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
420		unsigned int j, chunk_size;
 
421
422		/* look for the end of the current chunk */
423		seg_len = 0;
424		for (j = cur_page + 1; j < n_pages; j++) {
425			seg_len += PAGE_SIZE;
426			if (seg_len >= max_segment ||
427			    page_to_pfn(pages[j]) !=
428			    page_to_pfn(pages[j - 1]) + 1)
429				break;
430		}
431
432		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
433		sg_set_page(s, pages[cur_page],
434			    min_t(unsigned long, size, chunk_size), offset);
435		size -= chunk_size;
436		offset = 0;
437		cur_page = j;
438	}
439
440	return 0;
441}
442EXPORT_SYMBOL(__sg_alloc_table_from_pages);
443
444/**
445 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
446 *			       an array of pages
447 * @sgt:	 The sg table header to use
448 * @pages:	 Pointer to an array of page pointers
449 * @n_pages:	 Number of pages in the pages array
450 * @offset:      Offset from start of the first page to the start of a buffer
451 * @size:        Number of valid bytes in the buffer (after offset)
452 * @gfp_mask:	 GFP allocation mask
453 *
454 *  Description:
455 *    Allocate and initialize an sg table from a list of pages. Contiguous
456 *    ranges of the pages are squashed into a single scatterlist node. A user
457 *    may provide an offset at a start and a size of valid data in a buffer
458 *    specified by the page array. The returned sg table is released by
459 *    sg_free_table.
460 *
461 * Returns:
462 *   0 on success, negative error on failure
463 */
464int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
465			      unsigned int n_pages, unsigned int offset,
466			      unsigned long size, gfp_t gfp_mask)
467{
468	return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
469					   SCATTERLIST_MAX_SEGMENT, gfp_mask);
470}
471EXPORT_SYMBOL(sg_alloc_table_from_pages);
472
473#ifdef CONFIG_SGL_ALLOC
474
475/**
476 * sgl_alloc_order - allocate a scatterlist and its pages
477 * @length: Length in bytes of the scatterlist. Must be at least one
478 * @order: Second argument for alloc_pages()
479 * @chainable: Whether or not to allocate an extra element in the scatterlist
480 *	for scatterlist chaining purposes
481 * @gfp: Memory allocation flags
482 * @nent_p: [out] Number of entries in the scatterlist that have pages
483 *
484 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
485 */
486struct scatterlist *sgl_alloc_order(unsigned long long length,
487				    unsigned int order, bool chainable,
488				    gfp_t gfp, unsigned int *nent_p)
489{
490	struct scatterlist *sgl, *sg;
491	struct page *page;
492	unsigned int nent, nalloc;
493	u32 elem_len;
494
495	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
496	/* Check for integer overflow */
497	if (length > (nent << (PAGE_SHIFT + order)))
498		return NULL;
499	nalloc = nent;
500	if (chainable) {
501		/* Check for integer overflow */
502		if (nalloc + 1 < nalloc)
503			return NULL;
504		nalloc++;
505	}
506	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
507			    (gfp & ~GFP_DMA) | __GFP_ZERO);
508	if (!sgl)
509		return NULL;
510
511	sg_init_table(sgl, nalloc);
512	sg = sgl;
513	while (length) {
514		elem_len = min_t(u64, length, PAGE_SIZE << order);
515		page = alloc_pages(gfp, order);
516		if (!page) {
517			sgl_free(sgl);
518			return NULL;
519		}
520
521		sg_set_page(sg, page, elem_len, 0);
522		length -= elem_len;
523		sg = sg_next(sg);
524	}
525	WARN_ONCE(length, "length = %lld\n", length);
526	if (nent_p)
527		*nent_p = nent;
528	return sgl;
529}
530EXPORT_SYMBOL(sgl_alloc_order);
531
532/**
533 * sgl_alloc - allocate a scatterlist and its pages
534 * @length: Length in bytes of the scatterlist
535 * @gfp: Memory allocation flags
536 * @nent_p: [out] Number of entries in the scatterlist
537 *
538 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
539 */
540struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
541			      unsigned int *nent_p)
542{
543	return sgl_alloc_order(length, 0, false, gfp, nent_p);
544}
545EXPORT_SYMBOL(sgl_alloc);
546
547/**
548 * sgl_free_n_order - free a scatterlist and its pages
549 * @sgl: Scatterlist with one or more elements
550 * @nents: Maximum number of elements to free
551 * @order: Second argument for __free_pages()
552 *
553 * Notes:
554 * - If several scatterlists have been chained and each chain element is
555 *   freed separately then it's essential to set nents correctly to avoid that a
556 *   page would get freed twice.
557 * - All pages in a chained scatterlist can be freed at once by setting @nents
558 *   to a high number.
559 */
560void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
561{
562	struct scatterlist *sg;
563	struct page *page;
564	int i;
565
566	for_each_sg(sgl, sg, nents, i) {
567		if (!sg)
568			break;
569		page = sg_page(sg);
570		if (page)
571			__free_pages(page, order);
572	}
573	kfree(sgl);
574}
575EXPORT_SYMBOL(sgl_free_n_order);
576
577/**
578 * sgl_free_order - free a scatterlist and its pages
579 * @sgl: Scatterlist with one or more elements
580 * @order: Second argument for __free_pages()
581 */
582void sgl_free_order(struct scatterlist *sgl, int order)
583{
584	sgl_free_n_order(sgl, INT_MAX, order);
585}
586EXPORT_SYMBOL(sgl_free_order);
587
588/**
589 * sgl_free - free a scatterlist and its pages
590 * @sgl: Scatterlist with one or more elements
591 */
592void sgl_free(struct scatterlist *sgl)
593{
594	sgl_free_order(sgl, 0);
595}
596EXPORT_SYMBOL(sgl_free);
597
598#endif /* CONFIG_SGL_ALLOC */
599
600void __sg_page_iter_start(struct sg_page_iter *piter,
601			  struct scatterlist *sglist, unsigned int nents,
602			  unsigned long pgoffset)
603{
604	piter->__pg_advance = 0;
605	piter->__nents = nents;
606
607	piter->sg = sglist;
608	piter->sg_pgoffset = pgoffset;
609}
610EXPORT_SYMBOL(__sg_page_iter_start);
611
612static int sg_page_count(struct scatterlist *sg)
613{
614	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
615}
616
617bool __sg_page_iter_next(struct sg_page_iter *piter)
618{
619	if (!piter->__nents || !piter->sg)
620		return false;
621
622	piter->sg_pgoffset += piter->__pg_advance;
623	piter->__pg_advance = 1;
624
625	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
626		piter->sg_pgoffset -= sg_page_count(piter->sg);
627		piter->sg = sg_next(piter->sg);
628		if (!--piter->__nents || !piter->sg)
629			return false;
630	}
631
632	return true;
633}
634EXPORT_SYMBOL(__sg_page_iter_next);
635
636static int sg_dma_page_count(struct scatterlist *sg)
637{
638	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
639}
640
641bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
642{
643	struct sg_page_iter *piter = &dma_iter->base;
644
645	if (!piter->__nents || !piter->sg)
646		return false;
647
648	piter->sg_pgoffset += piter->__pg_advance;
649	piter->__pg_advance = 1;
650
651	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
652		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
653		piter->sg = sg_next(piter->sg);
654		if (!--piter->__nents || !piter->sg)
655			return false;
656	}
657
658	return true;
659}
660EXPORT_SYMBOL(__sg_page_iter_dma_next);
661
662/**
663 * sg_miter_start - start mapping iteration over a sg list
664 * @miter: sg mapping iter to be started
665 * @sgl: sg list to iterate over
666 * @nents: number of sg entries
667 *
668 * Description:
669 *   Starts mapping iterator @miter.
670 *
671 * Context:
672 *   Don't care.
673 */
674void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
675		    unsigned int nents, unsigned int flags)
676{
677	memset(miter, 0, sizeof(struct sg_mapping_iter));
678
679	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
680	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
681	miter->__flags = flags;
682}
683EXPORT_SYMBOL(sg_miter_start);
684
685static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
686{
687	if (!miter->__remaining) {
688		struct scatterlist *sg;
 
689
690		if (!__sg_page_iter_next(&miter->piter))
691			return false;
692
693		sg = miter->piter.sg;
 
694
695		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
696		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
697		miter->__offset &= PAGE_SIZE - 1;
698		miter->__remaining = sg->offset + sg->length -
699				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
700				     miter->__offset;
701		miter->__remaining = min_t(unsigned long, miter->__remaining,
702					   PAGE_SIZE - miter->__offset);
703	}
704
705	return true;
706}
707
708/**
709 * sg_miter_skip - reposition mapping iterator
710 * @miter: sg mapping iter to be skipped
711 * @offset: number of bytes to plus the current location
712 *
713 * Description:
714 *   Sets the offset of @miter to its current location plus @offset bytes.
715 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
716 *   stops @miter.
717 *
718 * Context:
719 *   Don't care if @miter is stopped, or not proceeded yet.
720 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
721 *
722 * Returns:
723 *   true if @miter contains the valid mapping.  false if end of sg
724 *   list is reached.
725 */
726bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
727{
728	sg_miter_stop(miter);
729
730	while (offset) {
731		off_t consumed;
732
733		if (!sg_miter_get_next_page(miter))
734			return false;
735
736		consumed = min_t(off_t, offset, miter->__remaining);
737		miter->__offset += consumed;
738		miter->__remaining -= consumed;
739		offset -= consumed;
740	}
741
742	return true;
743}
744EXPORT_SYMBOL(sg_miter_skip);
745
746/**
747 * sg_miter_next - proceed mapping iterator to the next mapping
748 * @miter: sg mapping iter to proceed
749 *
750 * Description:
751 *   Proceeds @miter to the next mapping.  @miter should have been started
752 *   using sg_miter_start().  On successful return, @miter->page,
753 *   @miter->addr and @miter->length point to the current mapping.
754 *
755 * Context:
756 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
757 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
758 *
759 * Returns:
760 *   true if @miter contains the next mapping.  false if end of sg
761 *   list is reached.
762 */
763bool sg_miter_next(struct sg_mapping_iter *miter)
764{
765	sg_miter_stop(miter);
766
767	/*
768	 * Get to the next page if necessary.
769	 * __remaining, __offset is adjusted by sg_miter_stop
770	 */
771	if (!sg_miter_get_next_page(miter))
772		return false;
773
774	miter->page = sg_page_iter_page(&miter->piter);
775	miter->consumed = miter->length = miter->__remaining;
776
777	if (miter->__flags & SG_MITER_ATOMIC)
778		miter->addr = kmap_atomic(miter->page) + miter->__offset;
779	else
780		miter->addr = kmap(miter->page) + miter->__offset;
781
782	return true;
783}
784EXPORT_SYMBOL(sg_miter_next);
785
786/**
787 * sg_miter_stop - stop mapping iteration
788 * @miter: sg mapping iter to be stopped
789 *
790 * Description:
791 *   Stops mapping iterator @miter.  @miter should have been started
792 *   using sg_miter_start().  A stopped iteration can be resumed by
793 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
794 *   need to be released during iteration.
795 *
796 * Context:
797 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
798 *   otherwise.
799 */
800void sg_miter_stop(struct sg_mapping_iter *miter)
801{
802	WARN_ON(miter->consumed > miter->length);
803
804	/* drop resources from the last iteration */
805	if (miter->addr) {
806		miter->__offset += miter->consumed;
807		miter->__remaining -= miter->consumed;
808
809		if ((miter->__flags & SG_MITER_TO_SG) &&
810		    !PageSlab(miter->page))
811			flush_kernel_dcache_page(miter->page);
812
813		if (miter->__flags & SG_MITER_ATOMIC) {
814			WARN_ON_ONCE(preemptible());
815			kunmap_atomic(miter->addr);
816		} else
817			kunmap(miter->page);
818
819		miter->page = NULL;
820		miter->addr = NULL;
821		miter->length = 0;
822		miter->consumed = 0;
823	}
824}
825EXPORT_SYMBOL(sg_miter_stop);
826
827/**
828 * sg_copy_buffer - Copy data between a linear buffer and an SG list
829 * @sgl:		 The SG list
830 * @nents:		 Number of SG entries
831 * @buf:		 Where to copy from
832 * @buflen:		 The number of bytes to copy
833 * @skip:		 Number of bytes to skip before copying
834 * @to_buffer:		 transfer direction (true == from an sg list to a
835 *			 buffer, false == from a buffer to an sg list)
836 *
837 * Returns the number of copied bytes.
838 *
839 **/
840size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
841		      size_t buflen, off_t skip, bool to_buffer)
842{
843	unsigned int offset = 0;
844	struct sg_mapping_iter miter;
 
845	unsigned int sg_flags = SG_MITER_ATOMIC;
846
847	if (to_buffer)
848		sg_flags |= SG_MITER_FROM_SG;
849	else
850		sg_flags |= SG_MITER_TO_SG;
851
852	sg_miter_start(&miter, sgl, nents, sg_flags);
853
854	if (!sg_miter_skip(&miter, skip))
855		return false;
856
857	while ((offset < buflen) && sg_miter_next(&miter)) {
 
 
858		unsigned int len;
859
860		len = min(miter.length, buflen - offset);
861
862		if (to_buffer)
863			memcpy(buf + offset, miter.addr, len);
864		else
865			memcpy(miter.addr, buf + offset, len);
866
867		offset += len;
868	}
869
870	sg_miter_stop(&miter);
871
 
872	return offset;
873}
874EXPORT_SYMBOL(sg_copy_buffer);
875
876/**
877 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
878 * @sgl:		 The SG list
879 * @nents:		 Number of SG entries
880 * @buf:		 Where to copy from
881 * @buflen:		 The number of bytes to copy
882 *
883 * Returns the number of copied bytes.
884 *
885 **/
886size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
887			   const void *buf, size_t buflen)
888{
889	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
890}
891EXPORT_SYMBOL(sg_copy_from_buffer);
892
893/**
894 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
895 * @sgl:		 The SG list
896 * @nents:		 Number of SG entries
897 * @buf:		 Where to copy to
898 * @buflen:		 The number of bytes to copy
899 *
900 * Returns the number of copied bytes.
901 *
902 **/
903size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
904			 void *buf, size_t buflen)
905{
906	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
907}
908EXPORT_SYMBOL(sg_copy_to_buffer);
909
910/**
911 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
912 * @sgl:		 The SG list
913 * @nents:		 Number of SG entries
914 * @buf:		 Where to copy from
915 * @buflen:		 The number of bytes to copy
916 * @skip:		 Number of bytes to skip before copying
917 *
918 * Returns the number of copied bytes.
919 *
920 **/
921size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
922			    const void *buf, size_t buflen, off_t skip)
923{
924	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
925}
926EXPORT_SYMBOL(sg_pcopy_from_buffer);
927
928/**
929 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
930 * @sgl:		 The SG list
931 * @nents:		 Number of SG entries
932 * @buf:		 Where to copy to
933 * @buflen:		 The number of bytes to copy
934 * @skip:		 Number of bytes to skip before copying
935 *
936 * Returns the number of copied bytes.
937 *
938 **/
939size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
940			  void *buf, size_t buflen, off_t skip)
941{
942	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
943}
944EXPORT_SYMBOL(sg_pcopy_to_buffer);
945
946/**
947 * sg_zero_buffer - Zero-out a part of a SG list
948 * @sgl:		 The SG list
949 * @nents:		 Number of SG entries
950 * @buflen:		 The number of bytes to zero out
951 * @skip:		 Number of bytes to skip before zeroing
952 *
953 * Returns the number of bytes zeroed.
954 **/
955size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
956		       size_t buflen, off_t skip)
957{
958	unsigned int offset = 0;
959	struct sg_mapping_iter miter;
960	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
961
962	sg_miter_start(&miter, sgl, nents, sg_flags);
963
964	if (!sg_miter_skip(&miter, skip))
965		return false;
966
967	while (offset < buflen && sg_miter_next(&miter)) {
968		unsigned int len;
969
970		len = min(miter.length, buflen - offset);
971		memset(miter.addr, 0, len);
972
973		offset += len;
974	}
975
976	sg_miter_stop(&miter);
977	return offset;
978}
979EXPORT_SYMBOL(sg_zero_buffer);