Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 59/**
 60 * sg_nents_for_len - return total count of entries in scatterlist
 61 *                    needed to satisfy the supplied length
 62 * @sg:		The scatterlist
 63 * @len:	The total required length
 64 *
 65 * Description:
 66 * Determines the number of entries in sg that are required to meet
 67 * the supplied length, taking into acount chaining as well
 68 *
 69 * Returns:
 70 *   the number of sg entries needed, negative error on failure
 71 *
 72 **/
 73int sg_nents_for_len(struct scatterlist *sg, u64 len)
 74{
 75	int nents;
 76	u64 total;
 77
 78	if (!len)
 79		return 0;
 80
 81	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
 82		nents++;
 83		total += sg->length;
 84		if (total >= len)
 85			return nents;
 86	}
 87
 88	return -EINVAL;
 89}
 90EXPORT_SYMBOL(sg_nents_for_len);
 91
 92/**
 93 * sg_last - return the last scatterlist entry in a list
 94 * @sgl:	First entry in the scatterlist
 95 * @nents:	Number of entries in the scatterlist
 96 *
 97 * Description:
 98 *   Should only be used casually, it (currently) scans the entire list
 99 *   to get the last entry.
100 *
101 *   Note that the @sgl@ pointer passed in need not be the first one,
102 *   the important bit is that @nents@ denotes the number of entries that
103 *   exist from @sgl@.
104 *
105 **/
106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107{
108	struct scatterlist *sg, *ret = NULL;
109	unsigned int i;
110
111	for_each_sg(sgl, sg, nents, i)
112		ret = sg;
113
114#ifdef CONFIG_DEBUG_SG
115	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
116	BUG_ON(!sg_is_last(ret));
117#endif
118	return ret;
119}
120EXPORT_SYMBOL(sg_last);
121
122/**
123 * sg_init_table - Initialize SG table
124 * @sgl:	   The SG table
125 * @nents:	   Number of entries in table
126 *
127 * Notes:
128 *   If this is part of a chained sg table, sg_mark_end() should be
129 *   used only on the last table part.
130 *
131 **/
132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
133{
134	memset(sgl, 0, sizeof(*sgl) * nents);
135#ifdef CONFIG_DEBUG_SG
136	{
137		unsigned int i;
138		for (i = 0; i < nents; i++)
139			sgl[i].sg_magic = SG_MAGIC;
140	}
141#endif
142	sg_mark_end(&sgl[nents - 1]);
143}
144EXPORT_SYMBOL(sg_init_table);
145
146/**
147 * sg_init_one - Initialize a single entry sg list
148 * @sg:		 SG entry
149 * @buf:	 Virtual address for IO
150 * @buflen:	 IO length
151 *
152 **/
153void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
154{
155	sg_init_table(sg, 1);
156	sg_set_buf(sg, buf, buflen);
157}
158EXPORT_SYMBOL(sg_init_one);
159
160/*
161 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
162 * helpers.
163 */
164static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
165{
166	if (nents == SG_MAX_SINGLE_ALLOC) {
167		/*
168		 * Kmemleak doesn't track page allocations as they are not
169		 * commonly used (in a raw form) for kernel data structures.
170		 * As we chain together a list of pages and then a normal
171		 * kmalloc (tracked by kmemleak), in order to for that last
172		 * allocation not to become decoupled (and thus a
173		 * false-positive) we need to inform kmemleak of all the
174		 * intermediate allocations.
175		 */
176		void *ptr = (void *) __get_free_page(gfp_mask);
177		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
178		return ptr;
179	} else
180		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
181}
182
183static void sg_kfree(struct scatterlist *sg, unsigned int nents)
184{
185	if (nents == SG_MAX_SINGLE_ALLOC) {
186		kmemleak_free(sg);
187		free_page((unsigned long) sg);
188	} else
189		kfree(sg);
190}
191
192/**
193 * __sg_free_table - Free a previously mapped sg table
194 * @table:	The sg table header to use
195 * @max_ents:	The maximum number of entries per single scatterlist
196 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
197 * @free_fn:	Free function
198 *
199 *  Description:
200 *    Free an sg table previously allocated and setup with
201 *    __sg_alloc_table().  The @max_ents value must be identical to
202 *    that previously used with __sg_alloc_table().
203 *
204 **/
205void __sg_free_table(struct sg_table *table, unsigned int max_ents,
206		     bool skip_first_chunk, sg_free_fn *free_fn)
207{
208	struct scatterlist *sgl, *next;
209
210	if (unlikely(!table->sgl))
211		return;
212
213	sgl = table->sgl;
214	while (table->orig_nents) {
215		unsigned int alloc_size = table->orig_nents;
216		unsigned int sg_size;
217
218		/*
219		 * If we have more than max_ents segments left,
220		 * then assign 'next' to the sg table after the current one.
221		 * sg_size is then one less than alloc size, since the last
222		 * element is the chain pointer.
223		 */
224		if (alloc_size > max_ents) {
225			next = sg_chain_ptr(&sgl[max_ents - 1]);
226			alloc_size = max_ents;
227			sg_size = alloc_size - 1;
228		} else {
229			sg_size = alloc_size;
230			next = NULL;
231		}
232
233		table->orig_nents -= sg_size;
234		if (skip_first_chunk)
235			skip_first_chunk = false;
236		else
237			free_fn(sgl, alloc_size);
238		sgl = next;
239	}
240
241	table->sgl = NULL;
242}
243EXPORT_SYMBOL(__sg_free_table);
244
245/**
246 * sg_free_table - Free a previously allocated sg table
247 * @table:	The mapped sg table header
248 *
249 **/
250void sg_free_table(struct sg_table *table)
251{
252	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
253}
254EXPORT_SYMBOL(sg_free_table);
255
256/**
257 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
258 * @table:	The sg table header to use
259 * @nents:	Number of entries in sg list
260 * @max_ents:	The maximum number of entries the allocator returns per call
261 * @gfp_mask:	GFP allocation mask
262 * @alloc_fn:	Allocator to use
263 *
264 * Description:
265 *   This function returns a @table @nents long. The allocator is
266 *   defined to return scatterlist chunks of maximum size @max_ents.
267 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
268 *   chained in units of @max_ents.
269 *
270 * Notes:
271 *   If this function returns non-0 (eg failure), the caller must call
272 *   __sg_free_table() to cleanup any leftover allocations.
273 *
274 **/
275int __sg_alloc_table(struct sg_table *table, unsigned int nents,
276		     unsigned int max_ents, struct scatterlist *first_chunk,
277		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
278{
279	struct scatterlist *sg, *prv;
280	unsigned int left;
281
282	memset(table, 0, sizeof(*table));
283
284	if (nents == 0)
285		return -EINVAL;
286#ifndef CONFIG_ARCH_HAS_SG_CHAIN
287	if (WARN_ON_ONCE(nents > max_ents))
288		return -EINVAL;
289#endif
290
291	left = nents;
292	prv = NULL;
293	do {
294		unsigned int sg_size, alloc_size = left;
295
296		if (alloc_size > max_ents) {
297			alloc_size = max_ents;
298			sg_size = alloc_size - 1;
299		} else
300			sg_size = alloc_size;
301
302		left -= sg_size;
303
304		if (first_chunk) {
305			sg = first_chunk;
306			first_chunk = NULL;
307		} else {
308			sg = alloc_fn(alloc_size, gfp_mask);
309		}
310		if (unlikely(!sg)) {
311			/*
312			 * Adjust entry count to reflect that the last
313			 * entry of the previous table won't be used for
314			 * linkage.  Without this, sg_kfree() may get
315			 * confused.
316			 */
317			if (prv)
318				table->nents = ++table->orig_nents;
319
320 			return -ENOMEM;
321		}
322
323		sg_init_table(sg, alloc_size);
324		table->nents = table->orig_nents += sg_size;
325
326		/*
327		 * If this is the first mapping, assign the sg table header.
328		 * If this is not the first mapping, chain previous part.
329		 */
330		if (prv)
331			sg_chain(prv, max_ents, sg);
332		else
333			table->sgl = sg;
334
335		/*
336		 * If no more entries after this one, mark the end
337		 */
338		if (!left)
339			sg_mark_end(&sg[sg_size - 1]);
340
341		prv = sg;
342	} while (left);
343
344	return 0;
345}
346EXPORT_SYMBOL(__sg_alloc_table);
347
348/**
349 * sg_alloc_table - Allocate and initialize an sg table
350 * @table:	The sg table header to use
351 * @nents:	Number of entries in sg list
352 * @gfp_mask:	GFP allocation mask
353 *
354 *  Description:
355 *    Allocate and initialize an sg table. If @nents@ is larger than
356 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
357 *
358 **/
359int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
360{
361	int ret;
362
363	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
364			       NULL, gfp_mask, sg_kmalloc);
365	if (unlikely(ret))
366		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
367
368	return ret;
369}
370EXPORT_SYMBOL(sg_alloc_table);
371
372/**
373 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
374 *			       an array of pages
375 * @sgt:	The sg table header to use
376 * @pages:	Pointer to an array of page pointers
377 * @n_pages:	Number of pages in the pages array
378 * @offset:     Offset from start of the first page to the start of a buffer
379 * @size:       Number of valid bytes in the buffer (after offset)
380 * @gfp_mask:	GFP allocation mask
 
381 *
382 *  Description:
383 *    Allocate and initialize an sg table from a list of pages. Contiguous
384 *    ranges of the pages are squashed into a single scatterlist node. A user
385 *    may provide an offset at a start and a size of valid data in a buffer
386 *    specified by the page array. The returned sg table is released by
387 *    sg_free_table.
388 *
389 * Returns:
390 *   0 on success, negative error on failure
391 */
392int sg_alloc_table_from_pages(struct sg_table *sgt,
393	struct page **pages, unsigned int n_pages,
394	unsigned long offset, unsigned long size,
395	gfp_t gfp_mask)
396{
397	unsigned int chunks;
398	unsigned int i;
399	unsigned int cur_page;
400	int ret;
401	struct scatterlist *s;
402
 
 
 
403	/* compute number of contiguous chunks */
404	chunks = 1;
405	for (i = 1; i < n_pages; ++i)
406		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
407			++chunks;
 
 
 
 
 
 
408
409	ret = sg_alloc_table(sgt, chunks, gfp_mask);
410	if (unlikely(ret))
411		return ret;
412
413	/* merging chunks and putting them into the scatterlist */
414	cur_page = 0;
415	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
416		unsigned long chunk_size;
417		unsigned int j;
418
419		/* look for the end of the current chunk */
420		for (j = cur_page + 1; j < n_pages; ++j)
421			if (page_to_pfn(pages[j]) !=
 
 
 
422			    page_to_pfn(pages[j - 1]) + 1)
423				break;
 
424
425		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
426		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 
427		size -= chunk_size;
428		offset = 0;
429		cur_page = j;
430	}
431
432	return 0;
433}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434EXPORT_SYMBOL(sg_alloc_table_from_pages);
435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436void __sg_page_iter_start(struct sg_page_iter *piter,
437			  struct scatterlist *sglist, unsigned int nents,
438			  unsigned long pgoffset)
439{
440	piter->__pg_advance = 0;
441	piter->__nents = nents;
442
443	piter->sg = sglist;
444	piter->sg_pgoffset = pgoffset;
445}
446EXPORT_SYMBOL(__sg_page_iter_start);
447
448static int sg_page_count(struct scatterlist *sg)
449{
450	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
451}
452
453bool __sg_page_iter_next(struct sg_page_iter *piter)
454{
455	if (!piter->__nents || !piter->sg)
456		return false;
457
458	piter->sg_pgoffset += piter->__pg_advance;
459	piter->__pg_advance = 1;
460
461	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
462		piter->sg_pgoffset -= sg_page_count(piter->sg);
463		piter->sg = sg_next(piter->sg);
464		if (!--piter->__nents || !piter->sg)
465			return false;
466	}
467
468	return true;
469}
470EXPORT_SYMBOL(__sg_page_iter_next);
471
472/**
473 * sg_miter_start - start mapping iteration over a sg list
474 * @miter: sg mapping iter to be started
475 * @sgl: sg list to iterate over
476 * @nents: number of sg entries
477 *
478 * Description:
479 *   Starts mapping iterator @miter.
480 *
481 * Context:
482 *   Don't care.
483 */
484void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
485		    unsigned int nents, unsigned int flags)
486{
487	memset(miter, 0, sizeof(struct sg_mapping_iter));
488
489	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
490	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
491	miter->__flags = flags;
492}
493EXPORT_SYMBOL(sg_miter_start);
494
495static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
496{
497	if (!miter->__remaining) {
498		struct scatterlist *sg;
499		unsigned long pgoffset;
500
501		if (!__sg_page_iter_next(&miter->piter))
502			return false;
503
504		sg = miter->piter.sg;
505		pgoffset = miter->piter.sg_pgoffset;
506
507		miter->__offset = pgoffset ? 0 : sg->offset;
508		miter->__remaining = sg->offset + sg->length -
509				(pgoffset << PAGE_SHIFT) - miter->__offset;
510		miter->__remaining = min_t(unsigned long, miter->__remaining,
511					   PAGE_SIZE - miter->__offset);
512	}
513
514	return true;
515}
516
517/**
518 * sg_miter_skip - reposition mapping iterator
519 * @miter: sg mapping iter to be skipped
520 * @offset: number of bytes to plus the current location
521 *
522 * Description:
523 *   Sets the offset of @miter to its current location plus @offset bytes.
524 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
525 *   stops @miter.
526 *
527 * Context:
528 *   Don't care if @miter is stopped, or not proceeded yet.
529 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
530 *
531 * Returns:
532 *   true if @miter contains the valid mapping.  false if end of sg
533 *   list is reached.
534 */
535bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
536{
537	sg_miter_stop(miter);
538
539	while (offset) {
540		off_t consumed;
541
542		if (!sg_miter_get_next_page(miter))
543			return false;
544
545		consumed = min_t(off_t, offset, miter->__remaining);
546		miter->__offset += consumed;
547		miter->__remaining -= consumed;
548		offset -= consumed;
549	}
550
551	return true;
552}
553EXPORT_SYMBOL(sg_miter_skip);
554
555/**
556 * sg_miter_next - proceed mapping iterator to the next mapping
557 * @miter: sg mapping iter to proceed
558 *
559 * Description:
560 *   Proceeds @miter to the next mapping.  @miter should have been started
561 *   using sg_miter_start().  On successful return, @miter->page,
562 *   @miter->addr and @miter->length point to the current mapping.
563 *
564 * Context:
565 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
566 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
567 *
568 * Returns:
569 *   true if @miter contains the next mapping.  false if end of sg
570 *   list is reached.
571 */
572bool sg_miter_next(struct sg_mapping_iter *miter)
573{
574	sg_miter_stop(miter);
575
576	/*
577	 * Get to the next page if necessary.
578	 * __remaining, __offset is adjusted by sg_miter_stop
579	 */
580	if (!sg_miter_get_next_page(miter))
581		return false;
582
583	miter->page = sg_page_iter_page(&miter->piter);
584	miter->consumed = miter->length = miter->__remaining;
585
586	if (miter->__flags & SG_MITER_ATOMIC)
587		miter->addr = kmap_atomic(miter->page) + miter->__offset;
588	else
589		miter->addr = kmap(miter->page) + miter->__offset;
590
591	return true;
592}
593EXPORT_SYMBOL(sg_miter_next);
594
595/**
596 * sg_miter_stop - stop mapping iteration
597 * @miter: sg mapping iter to be stopped
598 *
599 * Description:
600 *   Stops mapping iterator @miter.  @miter should have been started
601 *   using sg_miter_start().  A stopped iteration can be resumed by
602 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
603 *   need to be released during iteration.
604 *
605 * Context:
606 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
607 *   otherwise.
608 */
609void sg_miter_stop(struct sg_mapping_iter *miter)
610{
611	WARN_ON(miter->consumed > miter->length);
612
613	/* drop resources from the last iteration */
614	if (miter->addr) {
615		miter->__offset += miter->consumed;
616		miter->__remaining -= miter->consumed;
617
618		if ((miter->__flags & SG_MITER_TO_SG) &&
619		    !PageSlab(miter->page))
620			flush_kernel_dcache_page(miter->page);
621
622		if (miter->__flags & SG_MITER_ATOMIC) {
623			WARN_ON_ONCE(preemptible());
624			kunmap_atomic(miter->addr);
625		} else
626			kunmap(miter->page);
627
628		miter->page = NULL;
629		miter->addr = NULL;
630		miter->length = 0;
631		miter->consumed = 0;
632	}
633}
634EXPORT_SYMBOL(sg_miter_stop);
635
636/**
637 * sg_copy_buffer - Copy data between a linear buffer and an SG list
638 * @sgl:		 The SG list
639 * @nents:		 Number of SG entries
640 * @buf:		 Where to copy from
641 * @buflen:		 The number of bytes to copy
642 * @skip:		 Number of bytes to skip before copying
643 * @to_buffer:		 transfer direction (true == from an sg list to a
644 *			 buffer, false == from a buffer to an sg list
645 *
646 * Returns the number of copied bytes.
647 *
648 **/
649size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
650		      size_t buflen, off_t skip, bool to_buffer)
651{
652	unsigned int offset = 0;
653	struct sg_mapping_iter miter;
654	unsigned long flags;
655	unsigned int sg_flags = SG_MITER_ATOMIC;
656
657	if (to_buffer)
658		sg_flags |= SG_MITER_FROM_SG;
659	else
660		sg_flags |= SG_MITER_TO_SG;
661
662	sg_miter_start(&miter, sgl, nents, sg_flags);
663
664	if (!sg_miter_skip(&miter, skip))
665		return false;
666
667	local_irq_save(flags);
668
669	while (sg_miter_next(&miter) && offset < buflen) {
670		unsigned int len;
671
672		len = min(miter.length, buflen - offset);
673
674		if (to_buffer)
675			memcpy(buf + offset, miter.addr, len);
676		else
677			memcpy(miter.addr, buf + offset, len);
678
679		offset += len;
680	}
681
682	sg_miter_stop(&miter);
683
684	local_irq_restore(flags);
685	return offset;
686}
687EXPORT_SYMBOL(sg_copy_buffer);
688
689/**
690 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
691 * @sgl:		 The SG list
692 * @nents:		 Number of SG entries
693 * @buf:		 Where to copy from
694 * @buflen:		 The number of bytes to copy
695 *
696 * Returns the number of copied bytes.
697 *
698 **/
699size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
700			   const void *buf, size_t buflen)
701{
702	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
703}
704EXPORT_SYMBOL(sg_copy_from_buffer);
705
706/**
707 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
708 * @sgl:		 The SG list
709 * @nents:		 Number of SG entries
710 * @buf:		 Where to copy to
711 * @buflen:		 The number of bytes to copy
712 *
713 * Returns the number of copied bytes.
714 *
715 **/
716size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
717			 void *buf, size_t buflen)
718{
719	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
720}
721EXPORT_SYMBOL(sg_copy_to_buffer);
722
723/**
724 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
725 * @sgl:		 The SG list
726 * @nents:		 Number of SG entries
727 * @buf:		 Where to copy from
728 * @buflen:		 The number of bytes to copy
729 * @skip:		 Number of bytes to skip before copying
730 *
731 * Returns the number of copied bytes.
732 *
733 **/
734size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
735			    const void *buf, size_t buflen, off_t skip)
736{
737	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
738}
739EXPORT_SYMBOL(sg_pcopy_from_buffer);
740
741/**
742 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
743 * @sgl:		 The SG list
744 * @nents:		 Number of SG entries
745 * @buf:		 Where to copy to
746 * @buflen:		 The number of bytes to copy
747 * @skip:		 Number of bytes to skip before copying
748 *
749 * Returns the number of copied bytes.
750 *
751 **/
752size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
753			  void *buf, size_t buflen, off_t skip)
754{
755	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
756}
757EXPORT_SYMBOL(sg_pcopy_to_buffer);
v4.17
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 59/**
 60 * sg_nents_for_len - return total count of entries in scatterlist
 61 *                    needed to satisfy the supplied length
 62 * @sg:		The scatterlist
 63 * @len:	The total required length
 64 *
 65 * Description:
 66 * Determines the number of entries in sg that are required to meet
 67 * the supplied length, taking into acount chaining as well
 68 *
 69 * Returns:
 70 *   the number of sg entries needed, negative error on failure
 71 *
 72 **/
 73int sg_nents_for_len(struct scatterlist *sg, u64 len)
 74{
 75	int nents;
 76	u64 total;
 77
 78	if (!len)
 79		return 0;
 80
 81	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
 82		nents++;
 83		total += sg->length;
 84		if (total >= len)
 85			return nents;
 86	}
 87
 88	return -EINVAL;
 89}
 90EXPORT_SYMBOL(sg_nents_for_len);
 91
 92/**
 93 * sg_last - return the last scatterlist entry in a list
 94 * @sgl:	First entry in the scatterlist
 95 * @nents:	Number of entries in the scatterlist
 96 *
 97 * Description:
 98 *   Should only be used casually, it (currently) scans the entire list
 99 *   to get the last entry.
100 *
101 *   Note that the @sgl@ pointer passed in need not be the first one,
102 *   the important bit is that @nents@ denotes the number of entries that
103 *   exist from @sgl@.
104 *
105 **/
106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107{
108	struct scatterlist *sg, *ret = NULL;
109	unsigned int i;
110
111	for_each_sg(sgl, sg, nents, i)
112		ret = sg;
113
114#ifdef CONFIG_DEBUG_SG
115	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
116	BUG_ON(!sg_is_last(ret));
117#endif
118	return ret;
119}
120EXPORT_SYMBOL(sg_last);
121
122/**
123 * sg_init_table - Initialize SG table
124 * @sgl:	   The SG table
125 * @nents:	   Number of entries in table
126 *
127 * Notes:
128 *   If this is part of a chained sg table, sg_mark_end() should be
129 *   used only on the last table part.
130 *
131 **/
132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
133{
134	memset(sgl, 0, sizeof(*sgl) * nents);
135	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
136}
137EXPORT_SYMBOL(sg_init_table);
138
139/**
140 * sg_init_one - Initialize a single entry sg list
141 * @sg:		 SG entry
142 * @buf:	 Virtual address for IO
143 * @buflen:	 IO length
144 *
145 **/
146void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
147{
148	sg_init_table(sg, 1);
149	sg_set_buf(sg, buf, buflen);
150}
151EXPORT_SYMBOL(sg_init_one);
152
153/*
154 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
155 * helpers.
156 */
157static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
158{
159	if (nents == SG_MAX_SINGLE_ALLOC) {
160		/*
161		 * Kmemleak doesn't track page allocations as they are not
162		 * commonly used (in a raw form) for kernel data structures.
163		 * As we chain together a list of pages and then a normal
164		 * kmalloc (tracked by kmemleak), in order to for that last
165		 * allocation not to become decoupled (and thus a
166		 * false-positive) we need to inform kmemleak of all the
167		 * intermediate allocations.
168		 */
169		void *ptr = (void *) __get_free_page(gfp_mask);
170		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
171		return ptr;
172	} else
173		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
174}
175
176static void sg_kfree(struct scatterlist *sg, unsigned int nents)
177{
178	if (nents == SG_MAX_SINGLE_ALLOC) {
179		kmemleak_free(sg);
180		free_page((unsigned long) sg);
181	} else
182		kfree(sg);
183}
184
185/**
186 * __sg_free_table - Free a previously mapped sg table
187 * @table:	The sg table header to use
188 * @max_ents:	The maximum number of entries per single scatterlist
189 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
190 * @free_fn:	Free function
191 *
192 *  Description:
193 *    Free an sg table previously allocated and setup with
194 *    __sg_alloc_table().  The @max_ents value must be identical to
195 *    that previously used with __sg_alloc_table().
196 *
197 **/
198void __sg_free_table(struct sg_table *table, unsigned int max_ents,
199		     bool skip_first_chunk, sg_free_fn *free_fn)
200{
201	struct scatterlist *sgl, *next;
202
203	if (unlikely(!table->sgl))
204		return;
205
206	sgl = table->sgl;
207	while (table->orig_nents) {
208		unsigned int alloc_size = table->orig_nents;
209		unsigned int sg_size;
210
211		/*
212		 * If we have more than max_ents segments left,
213		 * then assign 'next' to the sg table after the current one.
214		 * sg_size is then one less than alloc size, since the last
215		 * element is the chain pointer.
216		 */
217		if (alloc_size > max_ents) {
218			next = sg_chain_ptr(&sgl[max_ents - 1]);
219			alloc_size = max_ents;
220			sg_size = alloc_size - 1;
221		} else {
222			sg_size = alloc_size;
223			next = NULL;
224		}
225
226		table->orig_nents -= sg_size;
227		if (skip_first_chunk)
228			skip_first_chunk = false;
229		else
230			free_fn(sgl, alloc_size);
231		sgl = next;
232	}
233
234	table->sgl = NULL;
235}
236EXPORT_SYMBOL(__sg_free_table);
237
238/**
239 * sg_free_table - Free a previously allocated sg table
240 * @table:	The mapped sg table header
241 *
242 **/
243void sg_free_table(struct sg_table *table)
244{
245	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
246}
247EXPORT_SYMBOL(sg_free_table);
248
249/**
250 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
251 * @table:	The sg table header to use
252 * @nents:	Number of entries in sg list
253 * @max_ents:	The maximum number of entries the allocator returns per call
254 * @gfp_mask:	GFP allocation mask
255 * @alloc_fn:	Allocator to use
256 *
257 * Description:
258 *   This function returns a @table @nents long. The allocator is
259 *   defined to return scatterlist chunks of maximum size @max_ents.
260 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
261 *   chained in units of @max_ents.
262 *
263 * Notes:
264 *   If this function returns non-0 (eg failure), the caller must call
265 *   __sg_free_table() to cleanup any leftover allocations.
266 *
267 **/
268int __sg_alloc_table(struct sg_table *table, unsigned int nents,
269		     unsigned int max_ents, struct scatterlist *first_chunk,
270		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
271{
272	struct scatterlist *sg, *prv;
273	unsigned int left;
274
275	memset(table, 0, sizeof(*table));
276
277	if (nents == 0)
278		return -EINVAL;
279#ifndef CONFIG_ARCH_HAS_SG_CHAIN
280	if (WARN_ON_ONCE(nents > max_ents))
281		return -EINVAL;
282#endif
283
284	left = nents;
285	prv = NULL;
286	do {
287		unsigned int sg_size, alloc_size = left;
288
289		if (alloc_size > max_ents) {
290			alloc_size = max_ents;
291			sg_size = alloc_size - 1;
292		} else
293			sg_size = alloc_size;
294
295		left -= sg_size;
296
297		if (first_chunk) {
298			sg = first_chunk;
299			first_chunk = NULL;
300		} else {
301			sg = alloc_fn(alloc_size, gfp_mask);
302		}
303		if (unlikely(!sg)) {
304			/*
305			 * Adjust entry count to reflect that the last
306			 * entry of the previous table won't be used for
307			 * linkage.  Without this, sg_kfree() may get
308			 * confused.
309			 */
310			if (prv)
311				table->nents = ++table->orig_nents;
312
313 			return -ENOMEM;
314		}
315
316		sg_init_table(sg, alloc_size);
317		table->nents = table->orig_nents += sg_size;
318
319		/*
320		 * If this is the first mapping, assign the sg table header.
321		 * If this is not the first mapping, chain previous part.
322		 */
323		if (prv)
324			sg_chain(prv, max_ents, sg);
325		else
326			table->sgl = sg;
327
328		/*
329		 * If no more entries after this one, mark the end
330		 */
331		if (!left)
332			sg_mark_end(&sg[sg_size - 1]);
333
334		prv = sg;
335	} while (left);
336
337	return 0;
338}
339EXPORT_SYMBOL(__sg_alloc_table);
340
341/**
342 * sg_alloc_table - Allocate and initialize an sg table
343 * @table:	The sg table header to use
344 * @nents:	Number of entries in sg list
345 * @gfp_mask:	GFP allocation mask
346 *
347 *  Description:
348 *    Allocate and initialize an sg table. If @nents@ is larger than
349 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
350 *
351 **/
352int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
353{
354	int ret;
355
356	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
357			       NULL, gfp_mask, sg_kmalloc);
358	if (unlikely(ret))
359		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
360
361	return ret;
362}
363EXPORT_SYMBOL(sg_alloc_table);
364
365/**
366 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
367 *			         an array of pages
368 * @sgt:	 The sg table header to use
369 * @pages:	 Pointer to an array of page pointers
370 * @n_pages:	 Number of pages in the pages array
371 * @offset:      Offset from start of the first page to the start of a buffer
372 * @size:        Number of valid bytes in the buffer (after offset)
373 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
374 * @gfp_mask:	 GFP allocation mask
375 *
376 *  Description:
377 *    Allocate and initialize an sg table from a list of pages. Contiguous
378 *    ranges of the pages are squashed into a single scatterlist node up to the
379 *    maximum size specified in @max_segment. An user may provide an offset at a
380 *    start and a size of valid data in a buffer specified by the page array.
381 *    The returned sg table is released by sg_free_table.
382 *
383 * Returns:
384 *   0 on success, negative error on failure
385 */
386int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
387				unsigned int n_pages, unsigned int offset,
388				unsigned long size, unsigned int max_segment,
389				gfp_t gfp_mask)
390{
391	unsigned int chunks, cur_page, seg_len, i;
 
 
392	int ret;
393	struct scatterlist *s;
394
395	if (WARN_ON(!max_segment || offset_in_page(max_segment)))
396		return -EINVAL;
397
398	/* compute number of contiguous chunks */
399	chunks = 1;
400	seg_len = 0;
401	for (i = 1; i < n_pages; i++) {
402		seg_len += PAGE_SIZE;
403		if (seg_len >= max_segment ||
404		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
405			chunks++;
406			seg_len = 0;
407		}
408	}
409
410	ret = sg_alloc_table(sgt, chunks, gfp_mask);
411	if (unlikely(ret))
412		return ret;
413
414	/* merging chunks and putting them into the scatterlist */
415	cur_page = 0;
416	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
417		unsigned int j, chunk_size;
 
418
419		/* look for the end of the current chunk */
420		seg_len = 0;
421		for (j = cur_page + 1; j < n_pages; j++) {
422			seg_len += PAGE_SIZE;
423			if (seg_len >= max_segment ||
424			    page_to_pfn(pages[j]) !=
425			    page_to_pfn(pages[j - 1]) + 1)
426				break;
427		}
428
429		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
430		sg_set_page(s, pages[cur_page],
431			    min_t(unsigned long, size, chunk_size), offset);
432		size -= chunk_size;
433		offset = 0;
434		cur_page = j;
435	}
436
437	return 0;
438}
439EXPORT_SYMBOL(__sg_alloc_table_from_pages);
440
441/**
442 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
443 *			       an array of pages
444 * @sgt:	 The sg table header to use
445 * @pages:	 Pointer to an array of page pointers
446 * @n_pages:	 Number of pages in the pages array
447 * @offset:      Offset from start of the first page to the start of a buffer
448 * @size:        Number of valid bytes in the buffer (after offset)
449 * @gfp_mask:	 GFP allocation mask
450 *
451 *  Description:
452 *    Allocate and initialize an sg table from a list of pages. Contiguous
453 *    ranges of the pages are squashed into a single scatterlist node. A user
454 *    may provide an offset at a start and a size of valid data in a buffer
455 *    specified by the page array. The returned sg table is released by
456 *    sg_free_table.
457 *
458 * Returns:
459 *   0 on success, negative error on failure
460 */
461int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
462			      unsigned int n_pages, unsigned int offset,
463			      unsigned long size, gfp_t gfp_mask)
464{
465	return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
466					   SCATTERLIST_MAX_SEGMENT, gfp_mask);
467}
468EXPORT_SYMBOL(sg_alloc_table_from_pages);
469
470#ifdef CONFIG_SGL_ALLOC
471
472/**
473 * sgl_alloc_order - allocate a scatterlist and its pages
474 * @length: Length in bytes of the scatterlist. Must be at least one
475 * @order: Second argument for alloc_pages()
476 * @chainable: Whether or not to allocate an extra element in the scatterlist
477 *	for scatterlist chaining purposes
478 * @gfp: Memory allocation flags
479 * @nent_p: [out] Number of entries in the scatterlist that have pages
480 *
481 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
482 */
483struct scatterlist *sgl_alloc_order(unsigned long long length,
484				    unsigned int order, bool chainable,
485				    gfp_t gfp, unsigned int *nent_p)
486{
487	struct scatterlist *sgl, *sg;
488	struct page *page;
489	unsigned int nent, nalloc;
490	u32 elem_len;
491
492	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
493	/* Check for integer overflow */
494	if (length > (nent << (PAGE_SHIFT + order)))
495		return NULL;
496	nalloc = nent;
497	if (chainable) {
498		/* Check for integer overflow */
499		if (nalloc + 1 < nalloc)
500			return NULL;
501		nalloc++;
502	}
503	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
504			    (gfp & ~GFP_DMA) | __GFP_ZERO);
505	if (!sgl)
506		return NULL;
507
508	sg_init_table(sgl, nalloc);
509	sg = sgl;
510	while (length) {
511		elem_len = min_t(u64, length, PAGE_SIZE << order);
512		page = alloc_pages(gfp, order);
513		if (!page) {
514			sgl_free(sgl);
515			return NULL;
516		}
517
518		sg_set_page(sg, page, elem_len, 0);
519		length -= elem_len;
520		sg = sg_next(sg);
521	}
522	WARN_ONCE(length, "length = %lld\n", length);
523	if (nent_p)
524		*nent_p = nent;
525	return sgl;
526}
527EXPORT_SYMBOL(sgl_alloc_order);
528
529/**
530 * sgl_alloc - allocate a scatterlist and its pages
531 * @length: Length in bytes of the scatterlist
532 * @gfp: Memory allocation flags
533 * @nent_p: [out] Number of entries in the scatterlist
534 *
535 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
536 */
537struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
538			      unsigned int *nent_p)
539{
540	return sgl_alloc_order(length, 0, false, gfp, nent_p);
541}
542EXPORT_SYMBOL(sgl_alloc);
543
544/**
545 * sgl_free_n_order - free a scatterlist and its pages
546 * @sgl: Scatterlist with one or more elements
547 * @nents: Maximum number of elements to free
548 * @order: Second argument for __free_pages()
549 *
550 * Notes:
551 * - If several scatterlists have been chained and each chain element is
552 *   freed separately then it's essential to set nents correctly to avoid that a
553 *   page would get freed twice.
554 * - All pages in a chained scatterlist can be freed at once by setting @nents
555 *   to a high number.
556 */
557void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
558{
559	struct scatterlist *sg;
560	struct page *page;
561	int i;
562
563	for_each_sg(sgl, sg, nents, i) {
564		if (!sg)
565			break;
566		page = sg_page(sg);
567		if (page)
568			__free_pages(page, order);
569	}
570	kfree(sgl);
571}
572EXPORT_SYMBOL(sgl_free_n_order);
573
574/**
575 * sgl_free_order - free a scatterlist and its pages
576 * @sgl: Scatterlist with one or more elements
577 * @order: Second argument for __free_pages()
578 */
579void sgl_free_order(struct scatterlist *sgl, int order)
580{
581	sgl_free_n_order(sgl, INT_MAX, order);
582}
583EXPORT_SYMBOL(sgl_free_order);
584
585/**
586 * sgl_free - free a scatterlist and its pages
587 * @sgl: Scatterlist with one or more elements
588 */
589void sgl_free(struct scatterlist *sgl)
590{
591	sgl_free_order(sgl, 0);
592}
593EXPORT_SYMBOL(sgl_free);
594
595#endif /* CONFIG_SGL_ALLOC */
596
597void __sg_page_iter_start(struct sg_page_iter *piter,
598			  struct scatterlist *sglist, unsigned int nents,
599			  unsigned long pgoffset)
600{
601	piter->__pg_advance = 0;
602	piter->__nents = nents;
603
604	piter->sg = sglist;
605	piter->sg_pgoffset = pgoffset;
606}
607EXPORT_SYMBOL(__sg_page_iter_start);
608
609static int sg_page_count(struct scatterlist *sg)
610{
611	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
612}
613
614bool __sg_page_iter_next(struct sg_page_iter *piter)
615{
616	if (!piter->__nents || !piter->sg)
617		return false;
618
619	piter->sg_pgoffset += piter->__pg_advance;
620	piter->__pg_advance = 1;
621
622	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
623		piter->sg_pgoffset -= sg_page_count(piter->sg);
624		piter->sg = sg_next(piter->sg);
625		if (!--piter->__nents || !piter->sg)
626			return false;
627	}
628
629	return true;
630}
631EXPORT_SYMBOL(__sg_page_iter_next);
632
633/**
634 * sg_miter_start - start mapping iteration over a sg list
635 * @miter: sg mapping iter to be started
636 * @sgl: sg list to iterate over
637 * @nents: number of sg entries
638 *
639 * Description:
640 *   Starts mapping iterator @miter.
641 *
642 * Context:
643 *   Don't care.
644 */
645void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
646		    unsigned int nents, unsigned int flags)
647{
648	memset(miter, 0, sizeof(struct sg_mapping_iter));
649
650	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
651	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
652	miter->__flags = flags;
653}
654EXPORT_SYMBOL(sg_miter_start);
655
656static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
657{
658	if (!miter->__remaining) {
659		struct scatterlist *sg;
660		unsigned long pgoffset;
661
662		if (!__sg_page_iter_next(&miter->piter))
663			return false;
664
665		sg = miter->piter.sg;
666		pgoffset = miter->piter.sg_pgoffset;
667
668		miter->__offset = pgoffset ? 0 : sg->offset;
669		miter->__remaining = sg->offset + sg->length -
670				(pgoffset << PAGE_SHIFT) - miter->__offset;
671		miter->__remaining = min_t(unsigned long, miter->__remaining,
672					   PAGE_SIZE - miter->__offset);
673	}
674
675	return true;
676}
677
678/**
679 * sg_miter_skip - reposition mapping iterator
680 * @miter: sg mapping iter to be skipped
681 * @offset: number of bytes to plus the current location
682 *
683 * Description:
684 *   Sets the offset of @miter to its current location plus @offset bytes.
685 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
686 *   stops @miter.
687 *
688 * Context:
689 *   Don't care if @miter is stopped, or not proceeded yet.
690 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
691 *
692 * Returns:
693 *   true if @miter contains the valid mapping.  false if end of sg
694 *   list is reached.
695 */
696bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
697{
698	sg_miter_stop(miter);
699
700	while (offset) {
701		off_t consumed;
702
703		if (!sg_miter_get_next_page(miter))
704			return false;
705
706		consumed = min_t(off_t, offset, miter->__remaining);
707		miter->__offset += consumed;
708		miter->__remaining -= consumed;
709		offset -= consumed;
710	}
711
712	return true;
713}
714EXPORT_SYMBOL(sg_miter_skip);
715
716/**
717 * sg_miter_next - proceed mapping iterator to the next mapping
718 * @miter: sg mapping iter to proceed
719 *
720 * Description:
721 *   Proceeds @miter to the next mapping.  @miter should have been started
722 *   using sg_miter_start().  On successful return, @miter->page,
723 *   @miter->addr and @miter->length point to the current mapping.
724 *
725 * Context:
726 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
727 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
728 *
729 * Returns:
730 *   true if @miter contains the next mapping.  false if end of sg
731 *   list is reached.
732 */
733bool sg_miter_next(struct sg_mapping_iter *miter)
734{
735	sg_miter_stop(miter);
736
737	/*
738	 * Get to the next page if necessary.
739	 * __remaining, __offset is adjusted by sg_miter_stop
740	 */
741	if (!sg_miter_get_next_page(miter))
742		return false;
743
744	miter->page = sg_page_iter_page(&miter->piter);
745	miter->consumed = miter->length = miter->__remaining;
746
747	if (miter->__flags & SG_MITER_ATOMIC)
748		miter->addr = kmap_atomic(miter->page) + miter->__offset;
749	else
750		miter->addr = kmap(miter->page) + miter->__offset;
751
752	return true;
753}
754EXPORT_SYMBOL(sg_miter_next);
755
756/**
757 * sg_miter_stop - stop mapping iteration
758 * @miter: sg mapping iter to be stopped
759 *
760 * Description:
761 *   Stops mapping iterator @miter.  @miter should have been started
762 *   using sg_miter_start().  A stopped iteration can be resumed by
763 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
764 *   need to be released during iteration.
765 *
766 * Context:
767 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
768 *   otherwise.
769 */
770void sg_miter_stop(struct sg_mapping_iter *miter)
771{
772	WARN_ON(miter->consumed > miter->length);
773
774	/* drop resources from the last iteration */
775	if (miter->addr) {
776		miter->__offset += miter->consumed;
777		miter->__remaining -= miter->consumed;
778
779		if ((miter->__flags & SG_MITER_TO_SG) &&
780		    !PageSlab(miter->page))
781			flush_kernel_dcache_page(miter->page);
782
783		if (miter->__flags & SG_MITER_ATOMIC) {
784			WARN_ON_ONCE(preemptible());
785			kunmap_atomic(miter->addr);
786		} else
787			kunmap(miter->page);
788
789		miter->page = NULL;
790		miter->addr = NULL;
791		miter->length = 0;
792		miter->consumed = 0;
793	}
794}
795EXPORT_SYMBOL(sg_miter_stop);
796
797/**
798 * sg_copy_buffer - Copy data between a linear buffer and an SG list
799 * @sgl:		 The SG list
800 * @nents:		 Number of SG entries
801 * @buf:		 Where to copy from
802 * @buflen:		 The number of bytes to copy
803 * @skip:		 Number of bytes to skip before copying
804 * @to_buffer:		 transfer direction (true == from an sg list to a
805 *			 buffer, false == from a buffer to an sg list
806 *
807 * Returns the number of copied bytes.
808 *
809 **/
810size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
811		      size_t buflen, off_t skip, bool to_buffer)
812{
813	unsigned int offset = 0;
814	struct sg_mapping_iter miter;
 
815	unsigned int sg_flags = SG_MITER_ATOMIC;
816
817	if (to_buffer)
818		sg_flags |= SG_MITER_FROM_SG;
819	else
820		sg_flags |= SG_MITER_TO_SG;
821
822	sg_miter_start(&miter, sgl, nents, sg_flags);
823
824	if (!sg_miter_skip(&miter, skip))
825		return false;
826
827	while ((offset < buflen) && sg_miter_next(&miter)) {
 
 
828		unsigned int len;
829
830		len = min(miter.length, buflen - offset);
831
832		if (to_buffer)
833			memcpy(buf + offset, miter.addr, len);
834		else
835			memcpy(miter.addr, buf + offset, len);
836
837		offset += len;
838	}
839
840	sg_miter_stop(&miter);
841
 
842	return offset;
843}
844EXPORT_SYMBOL(sg_copy_buffer);
845
846/**
847 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
848 * @sgl:		 The SG list
849 * @nents:		 Number of SG entries
850 * @buf:		 Where to copy from
851 * @buflen:		 The number of bytes to copy
852 *
853 * Returns the number of copied bytes.
854 *
855 **/
856size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
857			   const void *buf, size_t buflen)
858{
859	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
860}
861EXPORT_SYMBOL(sg_copy_from_buffer);
862
863/**
864 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
865 * @sgl:		 The SG list
866 * @nents:		 Number of SG entries
867 * @buf:		 Where to copy to
868 * @buflen:		 The number of bytes to copy
869 *
870 * Returns the number of copied bytes.
871 *
872 **/
873size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
874			 void *buf, size_t buflen)
875{
876	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
877}
878EXPORT_SYMBOL(sg_copy_to_buffer);
879
880/**
881 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
882 * @sgl:		 The SG list
883 * @nents:		 Number of SG entries
884 * @buf:		 Where to copy from
885 * @buflen:		 The number of bytes to copy
886 * @skip:		 Number of bytes to skip before copying
887 *
888 * Returns the number of copied bytes.
889 *
890 **/
891size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
892			    const void *buf, size_t buflen, off_t skip)
893{
894	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
895}
896EXPORT_SYMBOL(sg_pcopy_from_buffer);
897
898/**
899 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
900 * @sgl:		 The SG list
901 * @nents:		 Number of SG entries
902 * @buf:		 Where to copy to
903 * @buflen:		 The number of bytes to copy
904 * @skip:		 Number of bytes to skip before copying
905 *
906 * Returns the number of copied bytes.
907 *
908 **/
909size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
910			  void *buf, size_t buflen, off_t skip)
911{
912	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
913}
914EXPORT_SYMBOL(sg_pcopy_to_buffer);
915
916/**
917 * sg_zero_buffer - Zero-out a part of a SG list
918 * @sgl:		 The SG list
919 * @nents:		 Number of SG entries
920 * @buflen:		 The number of bytes to zero out
921 * @skip:		 Number of bytes to skip before zeroing
922 *
923 * Returns the number of bytes zeroed.
924 **/
925size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
926		       size_t buflen, off_t skip)
927{
928	unsigned int offset = 0;
929	struct sg_mapping_iter miter;
930	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
931
932	sg_miter_start(&miter, sgl, nents, sg_flags);
933
934	if (!sg_miter_skip(&miter, skip))
935		return false;
936
937	while (offset < buflen && sg_miter_next(&miter)) {
938		unsigned int len;
939
940		len = min(miter.length, buflen - offset);
941		memset(miter.addr, 0, len);
942
943		offset += len;
944	}
945
946	sg_miter_stop(&miter);
947	return offset;
948}
949EXPORT_SYMBOL(sg_zero_buffer);