Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 
 
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 59/**
 60 * sg_nents_for_len - return total count of entries in scatterlist
 61 *                    needed to satisfy the supplied length
 62 * @sg:		The scatterlist
 63 * @len:	The total required length
 64 *
 65 * Description:
 66 * Determines the number of entries in sg that are required to meet
 67 * the supplied length, taking into acount chaining as well
 68 *
 69 * Returns:
 70 *   the number of sg entries needed, negative error on failure
 71 *
 72 **/
 73int sg_nents_for_len(struct scatterlist *sg, u64 len)
 74{
 75	int nents;
 76	u64 total;
 77
 78	if (!len)
 79		return 0;
 80
 81	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
 82		nents++;
 83		total += sg->length;
 84		if (total >= len)
 85			return nents;
 86	}
 87
 88	return -EINVAL;
 89}
 90EXPORT_SYMBOL(sg_nents_for_len);
 91
 92/**
 93 * sg_last - return the last scatterlist entry in a list
 94 * @sgl:	First entry in the scatterlist
 95 * @nents:	Number of entries in the scatterlist
 96 *
 97 * Description:
 98 *   Should only be used casually, it (currently) scans the entire list
 99 *   to get the last entry.
100 *
101 *   Note that the @sgl@ pointer passed in need not be the first one,
102 *   the important bit is that @nents@ denotes the number of entries that
103 *   exist from @sgl@.
104 *
105 **/
106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107{
108	struct scatterlist *sg, *ret = NULL;
109	unsigned int i;
110
111	for_each_sg(sgl, sg, nents, i)
112		ret = sg;
113
114#ifdef CONFIG_DEBUG_SG
115	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
116	BUG_ON(!sg_is_last(ret));
117#endif
118	return ret;
119}
120EXPORT_SYMBOL(sg_last);
121
122/**
123 * sg_init_table - Initialize SG table
124 * @sgl:	   The SG table
125 * @nents:	   Number of entries in table
126 *
127 * Notes:
128 *   If this is part of a chained sg table, sg_mark_end() should be
129 *   used only on the last table part.
130 *
131 **/
132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
133{
134	memset(sgl, 0, sizeof(*sgl) * nents);
135#ifdef CONFIG_DEBUG_SG
136	{
137		unsigned int i;
138		for (i = 0; i < nents; i++)
139			sgl[i].sg_magic = SG_MAGIC;
140	}
141#endif
142	sg_mark_end(&sgl[nents - 1]);
143}
144EXPORT_SYMBOL(sg_init_table);
145
146/**
147 * sg_init_one - Initialize a single entry sg list
148 * @sg:		 SG entry
149 * @buf:	 Virtual address for IO
150 * @buflen:	 IO length
151 *
152 **/
153void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
154{
155	sg_init_table(sg, 1);
156	sg_set_buf(sg, buf, buflen);
157}
158EXPORT_SYMBOL(sg_init_one);
159
160/*
161 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
162 * helpers.
163 */
164static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
165{
166	if (nents == SG_MAX_SINGLE_ALLOC) {
167		/*
168		 * Kmemleak doesn't track page allocations as they are not
169		 * commonly used (in a raw form) for kernel data structures.
170		 * As we chain together a list of pages and then a normal
171		 * kmalloc (tracked by kmemleak), in order to for that last
172		 * allocation not to become decoupled (and thus a
173		 * false-positive) we need to inform kmemleak of all the
174		 * intermediate allocations.
175		 */
176		void *ptr = (void *) __get_free_page(gfp_mask);
177		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
178		return ptr;
179	} else
180		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 
181}
182
183static void sg_kfree(struct scatterlist *sg, unsigned int nents)
184{
185	if (nents == SG_MAX_SINGLE_ALLOC) {
186		kmemleak_free(sg);
187		free_page((unsigned long) sg);
188	} else
189		kfree(sg);
190}
191
192/**
193 * __sg_free_table - Free a previously mapped sg table
194 * @table:	The sg table header to use
195 * @max_ents:	The maximum number of entries per single scatterlist
196 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
 
197 * @free_fn:	Free function
 
198 *
199 *  Description:
200 *    Free an sg table previously allocated and setup with
201 *    __sg_alloc_table().  The @max_ents value must be identical to
202 *    that previously used with __sg_alloc_table().
203 *
204 **/
205void __sg_free_table(struct sg_table *table, unsigned int max_ents,
206		     bool skip_first_chunk, sg_free_fn *free_fn)
 
207{
208	struct scatterlist *sgl, *next;
 
209
210	if (unlikely(!table->sgl))
211		return;
212
213	sgl = table->sgl;
214	while (table->orig_nents) {
215		unsigned int alloc_size = table->orig_nents;
216		unsigned int sg_size;
217
218		/*
219		 * If we have more than max_ents segments left,
220		 * then assign 'next' to the sg table after the current one.
221		 * sg_size is then one less than alloc size, since the last
222		 * element is the chain pointer.
223		 */
224		if (alloc_size > max_ents) {
225			next = sg_chain_ptr(&sgl[max_ents - 1]);
226			alloc_size = max_ents;
227			sg_size = alloc_size - 1;
228		} else {
229			sg_size = alloc_size;
230			next = NULL;
231		}
232
233		table->orig_nents -= sg_size;
234		if (skip_first_chunk)
235			skip_first_chunk = false;
236		else
237			free_fn(sgl, alloc_size);
238		sgl = next;
 
239	}
240
241	table->sgl = NULL;
242}
243EXPORT_SYMBOL(__sg_free_table);
244
245/**
 
 
 
 
 
 
 
 
 
 
 
 
 
246 * sg_free_table - Free a previously allocated sg table
247 * @table:	The mapped sg table header
248 *
249 **/
250void sg_free_table(struct sg_table *table)
251{
252	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 
253}
254EXPORT_SYMBOL(sg_free_table);
255
256/**
257 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
258 * @table:	The sg table header to use
259 * @nents:	Number of entries in sg list
260 * @max_ents:	The maximum number of entries the allocator returns per call
 
 
 
261 * @gfp_mask:	GFP allocation mask
262 * @alloc_fn:	Allocator to use
263 *
264 * Description:
265 *   This function returns a @table @nents long. The allocator is
266 *   defined to return scatterlist chunks of maximum size @max_ents.
267 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
268 *   chained in units of @max_ents.
269 *
270 * Notes:
271 *   If this function returns non-0 (eg failure), the caller must call
272 *   __sg_free_table() to cleanup any leftover allocations.
273 *
274 **/
275int __sg_alloc_table(struct sg_table *table, unsigned int nents,
276		     unsigned int max_ents, struct scatterlist *first_chunk,
277		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
 
278{
279	struct scatterlist *sg, *prv;
280	unsigned int left;
 
 
281
282	memset(table, 0, sizeof(*table));
283
284	if (nents == 0)
285		return -EINVAL;
286#ifndef CONFIG_ARCH_HAS_SG_CHAIN
287	if (WARN_ON_ONCE(nents > max_ents))
288		return -EINVAL;
289#endif
290
291	left = nents;
292	prv = NULL;
293	do {
294		unsigned int sg_size, alloc_size = left;
295
296		if (alloc_size > max_ents) {
297			alloc_size = max_ents;
298			sg_size = alloc_size - 1;
299		} else
300			sg_size = alloc_size;
301
302		left -= sg_size;
303
304		if (first_chunk) {
305			sg = first_chunk;
306			first_chunk = NULL;
307		} else {
308			sg = alloc_fn(alloc_size, gfp_mask);
309		}
310		if (unlikely(!sg)) {
311			/*
312			 * Adjust entry count to reflect that the last
313			 * entry of the previous table won't be used for
314			 * linkage.  Without this, sg_kfree() may get
315			 * confused.
316			 */
317			if (prv)
318				table->nents = ++table->orig_nents;
319
320 			return -ENOMEM;
321		}
322
323		sg_init_table(sg, alloc_size);
324		table->nents = table->orig_nents += sg_size;
325
326		/*
327		 * If this is the first mapping, assign the sg table header.
328		 * If this is not the first mapping, chain previous part.
329		 */
330		if (prv)
331			sg_chain(prv, max_ents, sg);
332		else
333			table->sgl = sg;
334
335		/*
336		 * If no more entries after this one, mark the end
337		 */
338		if (!left)
339			sg_mark_end(&sg[sg_size - 1]);
340
341		prv = sg;
 
 
342	} while (left);
343
344	return 0;
345}
346EXPORT_SYMBOL(__sg_alloc_table);
347
348/**
349 * sg_alloc_table - Allocate and initialize an sg table
350 * @table:	The sg table header to use
351 * @nents:	Number of entries in sg list
352 * @gfp_mask:	GFP allocation mask
353 *
354 *  Description:
355 *    Allocate and initialize an sg table. If @nents@ is larger than
356 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
357 *
358 **/
359int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
360{
361	int ret;
362
363	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
364			       NULL, gfp_mask, sg_kmalloc);
365	if (unlikely(ret))
366		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
367
368	return ret;
369}
370EXPORT_SYMBOL(sg_alloc_table);
371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372/**
373 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
374 *			       an array of pages
375 * @sgt:	The sg table header to use
376 * @pages:	Pointer to an array of page pointers
377 * @n_pages:	Number of pages in the pages array
378 * @offset:     Offset from start of the first page to the start of a buffer
379 * @size:       Number of valid bytes in the buffer (after offset)
380 * @gfp_mask:	GFP allocation mask
 
 
381 *
382 *  Description:
383 *    Allocate and initialize an sg table from a list of pages. Contiguous
384 *    ranges of the pages are squashed into a single scatterlist node. A user
385 *    may provide an offset at a start and a size of valid data in a buffer
386 *    specified by the page array. The returned sg table is released by
387 *    sg_free_table.
 
388 *
389 * Returns:
390 *   0 on success, negative error on failure
 
 
 
 
 
 
391 */
392int sg_alloc_table_from_pages(struct sg_table *sgt,
393	struct page **pages, unsigned int n_pages,
394	unsigned long offset, unsigned long size,
395	gfp_t gfp_mask)
396{
397	unsigned int chunks;
398	unsigned int i;
399	unsigned int cur_page;
400	int ret;
401	struct scatterlist *s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402
403	/* compute number of contiguous chunks */
404	chunks = 1;
405	for (i = 1; i < n_pages; ++i)
406		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
407			++chunks;
408
409	ret = sg_alloc_table(sgt, chunks, gfp_mask);
410	if (unlikely(ret))
411		return ret;
 
 
412
413	/* merging chunks and putting them into the scatterlist */
414	cur_page = 0;
415	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
416		unsigned long chunk_size;
417		unsigned int j;
418
419		/* look for the end of the current chunk */
420		for (j = cur_page + 1; j < n_pages; ++j)
421			if (page_to_pfn(pages[j]) !=
422			    page_to_pfn(pages[j - 1]) + 1)
 
 
423				break;
 
424
 
 
 
 
 
 
 
 
 
 
 
 
425		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
426		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 
 
427		size -= chunk_size;
428		offset = 0;
429		cur_page = j;
430	}
 
 
 
 
 
 
 
 
 
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432	return 0;
433}
434EXPORT_SYMBOL(sg_alloc_table_from_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435
436void __sg_page_iter_start(struct sg_page_iter *piter,
437			  struct scatterlist *sglist, unsigned int nents,
438			  unsigned long pgoffset)
439{
440	piter->__pg_advance = 0;
441	piter->__nents = nents;
442
443	piter->sg = sglist;
444	piter->sg_pgoffset = pgoffset;
445}
446EXPORT_SYMBOL(__sg_page_iter_start);
447
448static int sg_page_count(struct scatterlist *sg)
449{
450	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
451}
452
453bool __sg_page_iter_next(struct sg_page_iter *piter)
454{
455	if (!piter->__nents || !piter->sg)
456		return false;
457
458	piter->sg_pgoffset += piter->__pg_advance;
459	piter->__pg_advance = 1;
460
461	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
462		piter->sg_pgoffset -= sg_page_count(piter->sg);
463		piter->sg = sg_next(piter->sg);
464		if (!--piter->__nents || !piter->sg)
465			return false;
466	}
467
468	return true;
469}
470EXPORT_SYMBOL(__sg_page_iter_next);
471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472/**
473 * sg_miter_start - start mapping iteration over a sg list
474 * @miter: sg mapping iter to be started
475 * @sgl: sg list to iterate over
476 * @nents: number of sg entries
 
477 *
478 * Description:
479 *   Starts mapping iterator @miter.
480 *
481 * Context:
482 *   Don't care.
483 */
484void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
485		    unsigned int nents, unsigned int flags)
486{
487	memset(miter, 0, sizeof(struct sg_mapping_iter));
488
489	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
490	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
491	miter->__flags = flags;
492}
493EXPORT_SYMBOL(sg_miter_start);
494
495static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
496{
497	if (!miter->__remaining) {
498		struct scatterlist *sg;
499		unsigned long pgoffset;
500
501		if (!__sg_page_iter_next(&miter->piter))
502			return false;
503
504		sg = miter->piter.sg;
505		pgoffset = miter->piter.sg_pgoffset;
506
507		miter->__offset = pgoffset ? 0 : sg->offset;
 
 
508		miter->__remaining = sg->offset + sg->length -
509				(pgoffset << PAGE_SHIFT) - miter->__offset;
 
510		miter->__remaining = min_t(unsigned long, miter->__remaining,
511					   PAGE_SIZE - miter->__offset);
512	}
513
514	return true;
515}
516
517/**
518 * sg_miter_skip - reposition mapping iterator
519 * @miter: sg mapping iter to be skipped
520 * @offset: number of bytes to plus the current location
521 *
522 * Description:
523 *   Sets the offset of @miter to its current location plus @offset bytes.
524 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
525 *   stops @miter.
526 *
527 * Context:
528 *   Don't care if @miter is stopped, or not proceeded yet.
529 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
530 *
531 * Returns:
532 *   true if @miter contains the valid mapping.  false if end of sg
533 *   list is reached.
534 */
535bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
536{
537	sg_miter_stop(miter);
538
539	while (offset) {
540		off_t consumed;
541
542		if (!sg_miter_get_next_page(miter))
543			return false;
544
545		consumed = min_t(off_t, offset, miter->__remaining);
546		miter->__offset += consumed;
547		miter->__remaining -= consumed;
548		offset -= consumed;
549	}
550
551	return true;
552}
553EXPORT_SYMBOL(sg_miter_skip);
554
555/**
556 * sg_miter_next - proceed mapping iterator to the next mapping
557 * @miter: sg mapping iter to proceed
558 *
559 * Description:
560 *   Proceeds @miter to the next mapping.  @miter should have been started
561 *   using sg_miter_start().  On successful return, @miter->page,
562 *   @miter->addr and @miter->length point to the current mapping.
563 *
564 * Context:
565 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
566 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
567 *
568 * Returns:
569 *   true if @miter contains the next mapping.  false if end of sg
570 *   list is reached.
571 */
572bool sg_miter_next(struct sg_mapping_iter *miter)
573{
574	sg_miter_stop(miter);
575
576	/*
577	 * Get to the next page if necessary.
578	 * __remaining, __offset is adjusted by sg_miter_stop
579	 */
580	if (!sg_miter_get_next_page(miter))
581		return false;
582
583	miter->page = sg_page_iter_page(&miter->piter);
584	miter->consumed = miter->length = miter->__remaining;
585
586	if (miter->__flags & SG_MITER_ATOMIC)
587		miter->addr = kmap_atomic(miter->page) + miter->__offset;
588	else
589		miter->addr = kmap(miter->page) + miter->__offset;
590
591	return true;
592}
593EXPORT_SYMBOL(sg_miter_next);
594
595/**
596 * sg_miter_stop - stop mapping iteration
597 * @miter: sg mapping iter to be stopped
598 *
599 * Description:
600 *   Stops mapping iterator @miter.  @miter should have been started
601 *   using sg_miter_start().  A stopped iteration can be resumed by
602 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
603 *   need to be released during iteration.
604 *
605 * Context:
606 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
607 *   otherwise.
608 */
609void sg_miter_stop(struct sg_mapping_iter *miter)
610{
611	WARN_ON(miter->consumed > miter->length);
612
613	/* drop resources from the last iteration */
614	if (miter->addr) {
615		miter->__offset += miter->consumed;
616		miter->__remaining -= miter->consumed;
617
618		if ((miter->__flags & SG_MITER_TO_SG) &&
619		    !PageSlab(miter->page))
620			flush_kernel_dcache_page(miter->page);
621
622		if (miter->__flags & SG_MITER_ATOMIC) {
623			WARN_ON_ONCE(preemptible());
624			kunmap_atomic(miter->addr);
625		} else
626			kunmap(miter->page);
627
628		miter->page = NULL;
629		miter->addr = NULL;
630		miter->length = 0;
631		miter->consumed = 0;
632	}
633}
634EXPORT_SYMBOL(sg_miter_stop);
635
636/**
637 * sg_copy_buffer - Copy data between a linear buffer and an SG list
638 * @sgl:		 The SG list
639 * @nents:		 Number of SG entries
640 * @buf:		 Where to copy from
641 * @buflen:		 The number of bytes to copy
642 * @skip:		 Number of bytes to skip before copying
643 * @to_buffer:		 transfer direction (true == from an sg list to a
644 *			 buffer, false == from a buffer to an sg list
645 *
646 * Returns the number of copied bytes.
647 *
648 **/
649size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
650		      size_t buflen, off_t skip, bool to_buffer)
651{
652	unsigned int offset = 0;
653	struct sg_mapping_iter miter;
654	unsigned long flags;
655	unsigned int sg_flags = SG_MITER_ATOMIC;
656
657	if (to_buffer)
658		sg_flags |= SG_MITER_FROM_SG;
659	else
660		sg_flags |= SG_MITER_TO_SG;
661
662	sg_miter_start(&miter, sgl, nents, sg_flags);
663
664	if (!sg_miter_skip(&miter, skip))
665		return false;
666
667	local_irq_save(flags);
668
669	while (sg_miter_next(&miter) && offset < buflen) {
670		unsigned int len;
671
672		len = min(miter.length, buflen - offset);
673
674		if (to_buffer)
675			memcpy(buf + offset, miter.addr, len);
676		else
677			memcpy(miter.addr, buf + offset, len);
678
679		offset += len;
680	}
681
682	sg_miter_stop(&miter);
683
684	local_irq_restore(flags);
685	return offset;
686}
687EXPORT_SYMBOL(sg_copy_buffer);
688
689/**
690 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
691 * @sgl:		 The SG list
692 * @nents:		 Number of SG entries
693 * @buf:		 Where to copy from
694 * @buflen:		 The number of bytes to copy
695 *
696 * Returns the number of copied bytes.
697 *
698 **/
699size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
700			   const void *buf, size_t buflen)
701{
702	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
703}
704EXPORT_SYMBOL(sg_copy_from_buffer);
705
706/**
707 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
708 * @sgl:		 The SG list
709 * @nents:		 Number of SG entries
710 * @buf:		 Where to copy to
711 * @buflen:		 The number of bytes to copy
712 *
713 * Returns the number of copied bytes.
714 *
715 **/
716size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
717			 void *buf, size_t buflen)
718{
719	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
720}
721EXPORT_SYMBOL(sg_copy_to_buffer);
722
723/**
724 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
725 * @sgl:		 The SG list
726 * @nents:		 Number of SG entries
727 * @buf:		 Where to copy from
728 * @buflen:		 The number of bytes to copy
729 * @skip:		 Number of bytes to skip before copying
730 *
731 * Returns the number of copied bytes.
732 *
733 **/
734size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
735			    const void *buf, size_t buflen, off_t skip)
736{
737	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
738}
739EXPORT_SYMBOL(sg_pcopy_from_buffer);
740
741/**
742 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
743 * @sgl:		 The SG list
744 * @nents:		 Number of SG entries
745 * @buf:		 Where to copy to
746 * @buflen:		 The number of bytes to copy
747 * @skip:		 Number of bytes to skip before copying
748 *
749 * Returns the number of copied bytes.
750 *
751 **/
752size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
753			  void *buf, size_t buflen, off_t skip)
754{
755	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
756}
757EXPORT_SYMBOL(sg_pcopy_to_buffer);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
 
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12#include <linux/bvec.h>
  13#include <linux/uio.h>
  14
  15/**
  16 * sg_next - return the next scatterlist entry in a list
  17 * @sg:		The current sg entry
  18 *
  19 * Description:
  20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  21 *   of a chained scatterlist, it could jump to the start of a new
  22 *   scatterlist array.
  23 *
  24 **/
  25struct scatterlist *sg_next(struct scatterlist *sg)
  26{
 
 
 
  27	if (sg_is_last(sg))
  28		return NULL;
  29
  30	sg++;
  31	if (unlikely(sg_is_chain(sg)))
  32		sg = sg_chain_ptr(sg);
  33
  34	return sg;
  35}
  36EXPORT_SYMBOL(sg_next);
  37
  38/**
  39 * sg_nents - return total count of entries in scatterlist
  40 * @sg:		The scatterlist
  41 *
  42 * Description:
  43 * Allows to know how many entries are in sg, taking into account
  44 * chaining as well
  45 *
  46 **/
  47int sg_nents(struct scatterlist *sg)
  48{
  49	int nents;
  50	for (nents = 0; sg; sg = sg_next(sg))
  51		nents++;
  52	return nents;
  53}
  54EXPORT_SYMBOL(sg_nents);
  55
  56/**
  57 * sg_nents_for_len - return total count of entries in scatterlist
  58 *                    needed to satisfy the supplied length
  59 * @sg:		The scatterlist
  60 * @len:	The total required length
  61 *
  62 * Description:
  63 * Determines the number of entries in sg that are required to meet
  64 * the supplied length, taking into account chaining as well
  65 *
  66 * Returns:
  67 *   the number of sg entries needed, negative error on failure
  68 *
  69 **/
  70int sg_nents_for_len(struct scatterlist *sg, u64 len)
  71{
  72	int nents;
  73	u64 total;
  74
  75	if (!len)
  76		return 0;
  77
  78	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  79		nents++;
  80		total += sg->length;
  81		if (total >= len)
  82			return nents;
  83	}
  84
  85	return -EINVAL;
  86}
  87EXPORT_SYMBOL(sg_nents_for_len);
  88
  89/**
  90 * sg_last - return the last scatterlist entry in a list
  91 * @sgl:	First entry in the scatterlist
  92 * @nents:	Number of entries in the scatterlist
  93 *
  94 * Description:
  95 *   Should only be used casually, it (currently) scans the entire list
  96 *   to get the last entry.
  97 *
  98 *   Note that the @sgl@ pointer passed in need not be the first one,
  99 *   the important bit is that @nents@ denotes the number of entries that
 100 *   exist from @sgl@.
 101 *
 102 **/
 103struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 104{
 105	struct scatterlist *sg, *ret = NULL;
 106	unsigned int i;
 107
 108	for_each_sg(sgl, sg, nents, i)
 109		ret = sg;
 110
 
 
 111	BUG_ON(!sg_is_last(ret));
 
 112	return ret;
 113}
 114EXPORT_SYMBOL(sg_last);
 115
 116/**
 117 * sg_init_table - Initialize SG table
 118 * @sgl:	   The SG table
 119 * @nents:	   Number of entries in table
 120 *
 121 * Notes:
 122 *   If this is part of a chained sg table, sg_mark_end() should be
 123 *   used only on the last table part.
 124 *
 125 **/
 126void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 127{
 128	memset(sgl, 0, sizeof(*sgl) * nents);
 129	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
 130}
 131EXPORT_SYMBOL(sg_init_table);
 132
 133/**
 134 * sg_init_one - Initialize a single entry sg list
 135 * @sg:		 SG entry
 136 * @buf:	 Virtual address for IO
 137 * @buflen:	 IO length
 138 *
 139 **/
 140void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 141{
 142	sg_init_table(sg, 1);
 143	sg_set_buf(sg, buf, buflen);
 144}
 145EXPORT_SYMBOL(sg_init_one);
 146
 147/*
 148 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 149 * helpers.
 150 */
 151static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 152{
 153	if (nents == SG_MAX_SINGLE_ALLOC) {
 154		/*
 155		 * Kmemleak doesn't track page allocations as they are not
 156		 * commonly used (in a raw form) for kernel data structures.
 157		 * As we chain together a list of pages and then a normal
 158		 * kmalloc (tracked by kmemleak), in order to for that last
 159		 * allocation not to become decoupled (and thus a
 160		 * false-positive) we need to inform kmemleak of all the
 161		 * intermediate allocations.
 162		 */
 163		void *ptr = (void *) __get_free_page(gfp_mask);
 164		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 165		return ptr;
 166	} else
 167		return kmalloc_array(nents, sizeof(struct scatterlist),
 168				     gfp_mask);
 169}
 170
 171static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 172{
 173	if (nents == SG_MAX_SINGLE_ALLOC) {
 174		kmemleak_free(sg);
 175		free_page((unsigned long) sg);
 176	} else
 177		kfree(sg);
 178}
 179
 180/**
 181 * __sg_free_table - Free a previously mapped sg table
 182 * @table:	The sg table header to use
 183 * @max_ents:	The maximum number of entries per single scatterlist
 184 * @nents_first_chunk: Number of entries int the (preallocated) first
 185 * 	scatterlist chunk, 0 means no such preallocated first chunk
 186 * @free_fn:	Free function
 187 * @num_ents:	Number of entries in the table
 188 *
 189 *  Description:
 190 *    Free an sg table previously allocated and setup with
 191 *    __sg_alloc_table().  The @max_ents value must be identical to
 192 *    that previously used with __sg_alloc_table().
 193 *
 194 **/
 195void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 196		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
 197		     unsigned int num_ents)
 198{
 199	struct scatterlist *sgl, *next;
 200	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 201
 202	if (unlikely(!table->sgl))
 203		return;
 204
 205	sgl = table->sgl;
 206	while (num_ents) {
 207		unsigned int alloc_size = num_ents;
 208		unsigned int sg_size;
 209
 210		/*
 211		 * If we have more than max_ents segments left,
 212		 * then assign 'next' to the sg table after the current one.
 213		 * sg_size is then one less than alloc size, since the last
 214		 * element is the chain pointer.
 215		 */
 216		if (alloc_size > curr_max_ents) {
 217			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 218			alloc_size = curr_max_ents;
 219			sg_size = alloc_size - 1;
 220		} else {
 221			sg_size = alloc_size;
 222			next = NULL;
 223		}
 224
 225		num_ents -= sg_size;
 226		if (nents_first_chunk)
 227			nents_first_chunk = 0;
 228		else
 229			free_fn(sgl, alloc_size);
 230		sgl = next;
 231		curr_max_ents = max_ents;
 232	}
 233
 234	table->sgl = NULL;
 235}
 236EXPORT_SYMBOL(__sg_free_table);
 237
 238/**
 239 * sg_free_append_table - Free a previously allocated append sg table.
 240 * @table:	 The mapped sg append table header
 241 *
 242 **/
 243void sg_free_append_table(struct sg_append_table *table)
 244{
 245	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 246			table->total_nents);
 247}
 248EXPORT_SYMBOL(sg_free_append_table);
 249
 250
 251/**
 252 * sg_free_table - Free a previously allocated sg table
 253 * @table:	The mapped sg table header
 254 *
 255 **/
 256void sg_free_table(struct sg_table *table)
 257{
 258	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 259			table->orig_nents);
 260}
 261EXPORT_SYMBOL(sg_free_table);
 262
 263/**
 264 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 265 * @table:	The sg table header to use
 266 * @nents:	Number of entries in sg list
 267 * @max_ents:	The maximum number of entries the allocator returns per call
 268 * @first_chunk: first SGL if preallocated (may be %NULL)
 269 * @nents_first_chunk: Number of entries in the (preallocated) first
 270 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 271 * @gfp_mask:	GFP allocation mask
 272 * @alloc_fn:	Allocator to use
 273 *
 274 * Description:
 275 *   This function returns a @table @nents long. The allocator is
 276 *   defined to return scatterlist chunks of maximum size @max_ents.
 277 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 278 *   chained in units of @max_ents.
 279 *
 280 * Notes:
 281 *   If this function returns non-0 (eg failure), the caller must call
 282 *   __sg_free_table() to cleanup any leftover allocations.
 283 *
 284 **/
 285int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 286		     unsigned int max_ents, struct scatterlist *first_chunk,
 287		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 288		     sg_alloc_fn *alloc_fn)
 289{
 290	struct scatterlist *sg, *prv;
 291	unsigned int left;
 292	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 293	unsigned prv_max_ents;
 294
 295	memset(table, 0, sizeof(*table));
 296
 297	if (nents == 0)
 298		return -EINVAL;
 299#ifdef CONFIG_ARCH_NO_SG_CHAIN
 300	if (WARN_ON_ONCE(nents > max_ents))
 301		return -EINVAL;
 302#endif
 303
 304	left = nents;
 305	prv = NULL;
 306	do {
 307		unsigned int sg_size, alloc_size = left;
 308
 309		if (alloc_size > curr_max_ents) {
 310			alloc_size = curr_max_ents;
 311			sg_size = alloc_size - 1;
 312		} else
 313			sg_size = alloc_size;
 314
 315		left -= sg_size;
 316
 317		if (first_chunk) {
 318			sg = first_chunk;
 319			first_chunk = NULL;
 320		} else {
 321			sg = alloc_fn(alloc_size, gfp_mask);
 322		}
 323		if (unlikely(!sg)) {
 324			/*
 325			 * Adjust entry count to reflect that the last
 326			 * entry of the previous table won't be used for
 327			 * linkage.  Without this, sg_kfree() may get
 328			 * confused.
 329			 */
 330			if (prv)
 331				table->nents = ++table->orig_nents;
 332
 333			return -ENOMEM;
 334		}
 335
 336		sg_init_table(sg, alloc_size);
 337		table->nents = table->orig_nents += sg_size;
 338
 339		/*
 340		 * If this is the first mapping, assign the sg table header.
 341		 * If this is not the first mapping, chain previous part.
 342		 */
 343		if (prv)
 344			sg_chain(prv, prv_max_ents, sg);
 345		else
 346			table->sgl = sg;
 347
 348		/*
 349		 * If no more entries after this one, mark the end
 350		 */
 351		if (!left)
 352			sg_mark_end(&sg[sg_size - 1]);
 353
 354		prv = sg;
 355		prv_max_ents = curr_max_ents;
 356		curr_max_ents = max_ents;
 357	} while (left);
 358
 359	return 0;
 360}
 361EXPORT_SYMBOL(__sg_alloc_table);
 362
 363/**
 364 * sg_alloc_table - Allocate and initialize an sg table
 365 * @table:	The sg table header to use
 366 * @nents:	Number of entries in sg list
 367 * @gfp_mask:	GFP allocation mask
 368 *
 369 *  Description:
 370 *    Allocate and initialize an sg table. If @nents@ is larger than
 371 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 372 *
 373 **/
 374int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 375{
 376	int ret;
 377
 378	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 379			       NULL, 0, gfp_mask, sg_kmalloc);
 380	if (unlikely(ret))
 381		sg_free_table(table);
 
 382	return ret;
 383}
 384EXPORT_SYMBOL(sg_alloc_table);
 385
 386static struct scatterlist *get_next_sg(struct sg_append_table *table,
 387				       struct scatterlist *cur,
 388				       unsigned long needed_sges,
 389				       gfp_t gfp_mask)
 390{
 391	struct scatterlist *new_sg, *next_sg;
 392	unsigned int alloc_size;
 393
 394	if (cur) {
 395		next_sg = sg_next(cur);
 396		/* Check if last entry should be keeped for chainning */
 397		if (!sg_is_last(next_sg) || needed_sges == 1)
 398			return next_sg;
 399	}
 400
 401	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 402	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 403	if (!new_sg)
 404		return ERR_PTR(-ENOMEM);
 405	sg_init_table(new_sg, alloc_size);
 406	if (cur) {
 407		table->total_nents += alloc_size - 1;
 408		__sg_chain(next_sg, new_sg);
 409	} else {
 410		table->sgt.sgl = new_sg;
 411		table->total_nents = alloc_size;
 412	}
 413	return new_sg;
 414}
 415
 416static bool pages_are_mergeable(struct page *a, struct page *b)
 417{
 418	if (page_to_pfn(a) != page_to_pfn(b) + 1)
 419		return false;
 420	if (!zone_device_pages_have_same_pgmap(a, b))
 421		return false;
 422	return true;
 423}
 424
 425/**
 426 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
 427 *                                    table from an array of pages
 428 * @sgt_append:  The sg append table to use
 429 * @pages:       Pointer to an array of page pointers
 430 * @n_pages:     Number of pages in the pages array
 431 * @offset:      Offset from start of the first page to the start of a buffer
 432 * @size:        Number of valid bytes in the buffer (after offset)
 433 * @max_segment: Maximum size of a scatterlist element in bytes
 434 * @left_pages:  Left pages caller have to set after this call
 435 * @gfp_mask:	 GFP allocation mask
 436 *
 437 * Description:
 438 *    In the first call it allocate and initialize an sg table from a list of
 439 *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
 440 *    the pages are squashed into a single scatterlist entry up to the maximum
 441 *    size specified in @max_segment.  A user may provide an offset at a start
 442 *    and a size of valid data in a buffer specified by the page array. The
 443 *    returned sg table is released by sg_free_append_table
 444 *
 445 * Returns:
 446 *   0 on success, negative error on failure
 447 *
 448 * Notes:
 449 *   If this function returns non-0 (eg failure), the caller must call
 450 *   sg_free_append_table() to cleanup any leftover allocations.
 451 *
 452 *   In the fist call, sgt_append must by initialized.
 453 */
 454int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
 455		struct page **pages, unsigned int n_pages, unsigned int offset,
 456		unsigned long size, unsigned int max_segment,
 457		unsigned int left_pages, gfp_t gfp_mask)
 458{
 459	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 460	unsigned int added_nents = 0;
 461	struct scatterlist *s = sgt_append->prv;
 462	struct page *last_pg;
 463
 464	/*
 465	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 466	 * otherwise it can overshoot.
 467	 */
 468	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 469	if (WARN_ON(max_segment < PAGE_SIZE))
 470		return -EINVAL;
 471
 472	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
 473		return -EOPNOTSUPP;
 474
 475	if (sgt_append->prv) {
 476		unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) +
 477			sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE;
 478
 479		if (WARN_ON(offset))
 480			return -EINVAL;
 481
 482		/* Merge contiguous pages into the last SG */
 483		prv_len = sgt_append->prv->length;
 484		if (page_to_pfn(pages[0]) == next_pfn) {
 485			last_pg = pfn_to_page(next_pfn - 1);
 486			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
 487				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
 488					break;
 489				sgt_append->prv->length += PAGE_SIZE;
 490				last_pg = pages[0];
 491				pages++;
 492				n_pages--;
 493			}
 494			if (!n_pages)
 495				goto out;
 496		}
 497	}
 498
 499	/* compute number of contiguous chunks */
 500	chunks = 1;
 501	seg_len = 0;
 502	for (i = 1; i < n_pages; i++) {
 503		seg_len += PAGE_SIZE;
 504		if (seg_len >= max_segment ||
 505		    !pages_are_mergeable(pages[i], pages[i - 1])) {
 506			chunks++;
 507			seg_len = 0;
 508		}
 509	}
 510
 511	/* merging chunks and putting them into the scatterlist */
 512	cur_page = 0;
 513	for (i = 0; i < chunks; i++) {
 514		unsigned int j, chunk_size;
 
 515
 516		/* look for the end of the current chunk */
 517		seg_len = 0;
 518		for (j = cur_page + 1; j < n_pages; j++) {
 519			seg_len += PAGE_SIZE;
 520			if (seg_len >= max_segment ||
 521			    !pages_are_mergeable(pages[j], pages[j - 1]))
 522				break;
 523		}
 524
 525		/* Pass how many chunks might be left */
 526		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
 527				gfp_mask);
 528		if (IS_ERR(s)) {
 529			/*
 530			 * Adjust entry length to be as before function was
 531			 * called.
 532			 */
 533			if (sgt_append->prv)
 534				sgt_append->prv->length = prv_len;
 535			return PTR_ERR(s);
 536		}
 537		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 538		sg_set_page(s, pages[cur_page],
 539			    min_t(unsigned long, size, chunk_size), offset);
 540		added_nents++;
 541		size -= chunk_size;
 542		offset = 0;
 543		cur_page = j;
 544	}
 545	sgt_append->sgt.nents += added_nents;
 546	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
 547	sgt_append->prv = s;
 548out:
 549	if (!left_pages)
 550		sg_mark_end(s);
 551	return 0;
 552}
 553EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
 554
 555/**
 556 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
 557 *                                     an array of pages and given maximum
 558 *                                     segment.
 559 * @sgt:	 The sg table header to use
 560 * @pages:	 Pointer to an array of page pointers
 561 * @n_pages:	 Number of pages in the pages array
 562 * @offset:      Offset from start of the first page to the start of a buffer
 563 * @size:        Number of valid bytes in the buffer (after offset)
 564 * @max_segment: Maximum size of a scatterlist element in bytes
 565 * @gfp_mask:	 GFP allocation mask
 566 *
 567 *  Description:
 568 *    Allocate and initialize an sg table from a list of pages. Contiguous
 569 *    ranges of the pages are squashed into a single scatterlist node up to the
 570 *    maximum size specified in @max_segment. A user may provide an offset at a
 571 *    start and a size of valid data in a buffer specified by the page array.
 572 *
 573 *    The returned sg table is released by sg_free_table.
 574 *
 575 *  Returns:
 576 *   0 on success, negative error on failure
 577 */
 578int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
 579				unsigned int n_pages, unsigned int offset,
 580				unsigned long size, unsigned int max_segment,
 581				gfp_t gfp_mask)
 582{
 583	struct sg_append_table append = {};
 584	int err;
 585
 586	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
 587					       size, max_segment, 0, gfp_mask);
 588	if (err) {
 589		sg_free_append_table(&append);
 590		return err;
 591	}
 592	memcpy(sgt, &append.sgt, sizeof(*sgt));
 593	WARN_ON(append.total_nents != sgt->orig_nents);
 594	return 0;
 595}
 596EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
 597
 598#ifdef CONFIG_SGL_ALLOC
 599
 600/**
 601 * sgl_alloc_order - allocate a scatterlist and its pages
 602 * @length: Length in bytes of the scatterlist. Must be at least one
 603 * @order: Second argument for alloc_pages()
 604 * @chainable: Whether or not to allocate an extra element in the scatterlist
 605 *	for scatterlist chaining purposes
 606 * @gfp: Memory allocation flags
 607 * @nent_p: [out] Number of entries in the scatterlist that have pages
 608 *
 609 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 610 */
 611struct scatterlist *sgl_alloc_order(unsigned long long length,
 612				    unsigned int order, bool chainable,
 613				    gfp_t gfp, unsigned int *nent_p)
 614{
 615	struct scatterlist *sgl, *sg;
 616	struct page *page;
 617	unsigned int nent, nalloc;
 618	u32 elem_len;
 619
 620	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 621	/* Check for integer overflow */
 622	if (length > (nent << (PAGE_SHIFT + order)))
 623		return NULL;
 624	nalloc = nent;
 625	if (chainable) {
 626		/* Check for integer overflow */
 627		if (nalloc + 1 < nalloc)
 628			return NULL;
 629		nalloc++;
 630	}
 631	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 632			    gfp & ~GFP_DMA);
 633	if (!sgl)
 634		return NULL;
 635
 636	sg_init_table(sgl, nalloc);
 637	sg = sgl;
 638	while (length) {
 639		elem_len = min_t(u64, length, PAGE_SIZE << order);
 640		page = alloc_pages(gfp, order);
 641		if (!page) {
 642			sgl_free_order(sgl, order);
 643			return NULL;
 644		}
 645
 646		sg_set_page(sg, page, elem_len, 0);
 647		length -= elem_len;
 648		sg = sg_next(sg);
 649	}
 650	WARN_ONCE(length, "length = %lld\n", length);
 651	if (nent_p)
 652		*nent_p = nent;
 653	return sgl;
 654}
 655EXPORT_SYMBOL(sgl_alloc_order);
 656
 657/**
 658 * sgl_alloc - allocate a scatterlist and its pages
 659 * @length: Length in bytes of the scatterlist
 660 * @gfp: Memory allocation flags
 661 * @nent_p: [out] Number of entries in the scatterlist
 662 *
 663 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 664 */
 665struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 666			      unsigned int *nent_p)
 667{
 668	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 669}
 670EXPORT_SYMBOL(sgl_alloc);
 671
 672/**
 673 * sgl_free_n_order - free a scatterlist and its pages
 674 * @sgl: Scatterlist with one or more elements
 675 * @nents: Maximum number of elements to free
 676 * @order: Second argument for __free_pages()
 677 *
 678 * Notes:
 679 * - If several scatterlists have been chained and each chain element is
 680 *   freed separately then it's essential to set nents correctly to avoid that a
 681 *   page would get freed twice.
 682 * - All pages in a chained scatterlist can be freed at once by setting @nents
 683 *   to a high number.
 684 */
 685void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 686{
 687	struct scatterlist *sg;
 688	struct page *page;
 689	int i;
 690
 691	for_each_sg(sgl, sg, nents, i) {
 692		if (!sg)
 693			break;
 694		page = sg_page(sg);
 695		if (page)
 696			__free_pages(page, order);
 697	}
 698	kfree(sgl);
 699}
 700EXPORT_SYMBOL(sgl_free_n_order);
 701
 702/**
 703 * sgl_free_order - free a scatterlist and its pages
 704 * @sgl: Scatterlist with one or more elements
 705 * @order: Second argument for __free_pages()
 706 */
 707void sgl_free_order(struct scatterlist *sgl, int order)
 708{
 709	sgl_free_n_order(sgl, INT_MAX, order);
 710}
 711EXPORT_SYMBOL(sgl_free_order);
 712
 713/**
 714 * sgl_free - free a scatterlist and its pages
 715 * @sgl: Scatterlist with one or more elements
 716 */
 717void sgl_free(struct scatterlist *sgl)
 718{
 719	sgl_free_order(sgl, 0);
 720}
 721EXPORT_SYMBOL(sgl_free);
 722
 723#endif /* CONFIG_SGL_ALLOC */
 724
 725void __sg_page_iter_start(struct sg_page_iter *piter,
 726			  struct scatterlist *sglist, unsigned int nents,
 727			  unsigned long pgoffset)
 728{
 729	piter->__pg_advance = 0;
 730	piter->__nents = nents;
 731
 732	piter->sg = sglist;
 733	piter->sg_pgoffset = pgoffset;
 734}
 735EXPORT_SYMBOL(__sg_page_iter_start);
 736
 737static int sg_page_count(struct scatterlist *sg)
 738{
 739	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 740}
 741
 742bool __sg_page_iter_next(struct sg_page_iter *piter)
 743{
 744	if (!piter->__nents || !piter->sg)
 745		return false;
 746
 747	piter->sg_pgoffset += piter->__pg_advance;
 748	piter->__pg_advance = 1;
 749
 750	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 751		piter->sg_pgoffset -= sg_page_count(piter->sg);
 752		piter->sg = sg_next(piter->sg);
 753		if (!--piter->__nents || !piter->sg)
 754			return false;
 755	}
 756
 757	return true;
 758}
 759EXPORT_SYMBOL(__sg_page_iter_next);
 760
 761static int sg_dma_page_count(struct scatterlist *sg)
 762{
 763	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 764}
 765
 766bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 767{
 768	struct sg_page_iter *piter = &dma_iter->base;
 769
 770	if (!piter->__nents || !piter->sg)
 771		return false;
 772
 773	piter->sg_pgoffset += piter->__pg_advance;
 774	piter->__pg_advance = 1;
 775
 776	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 777		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 778		piter->sg = sg_next(piter->sg);
 779		if (!--piter->__nents || !piter->sg)
 780			return false;
 781	}
 782
 783	return true;
 784}
 785EXPORT_SYMBOL(__sg_page_iter_dma_next);
 786
 787/**
 788 * sg_miter_start - start mapping iteration over a sg list
 789 * @miter: sg mapping iter to be started
 790 * @sgl: sg list to iterate over
 791 * @nents: number of sg entries
 792 * @flags: sg iterator flags
 793 *
 794 * Description:
 795 *   Starts mapping iterator @miter.
 796 *
 797 * Context:
 798 *   Don't care.
 799 */
 800void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 801		    unsigned int nents, unsigned int flags)
 802{
 803	memset(miter, 0, sizeof(struct sg_mapping_iter));
 804
 805	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 806	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 807	miter->__flags = flags;
 808}
 809EXPORT_SYMBOL(sg_miter_start);
 810
 811static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 812{
 813	if (!miter->__remaining) {
 814		struct scatterlist *sg;
 
 815
 816		if (!__sg_page_iter_next(&miter->piter))
 817			return false;
 818
 819		sg = miter->piter.sg;
 
 820
 821		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 822		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 823		miter->__offset &= PAGE_SIZE - 1;
 824		miter->__remaining = sg->offset + sg->length -
 825				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 826				     miter->__offset;
 827		miter->__remaining = min_t(unsigned long, miter->__remaining,
 828					   PAGE_SIZE - miter->__offset);
 829	}
 830
 831	return true;
 832}
 833
 834/**
 835 * sg_miter_skip - reposition mapping iterator
 836 * @miter: sg mapping iter to be skipped
 837 * @offset: number of bytes to plus the current location
 838 *
 839 * Description:
 840 *   Sets the offset of @miter to its current location plus @offset bytes.
 841 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 842 *   stops @miter.
 843 *
 844 * Context:
 845 *   Don't care.
 
 846 *
 847 * Returns:
 848 *   true if @miter contains the valid mapping.  false if end of sg
 849 *   list is reached.
 850 */
 851bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 852{
 853	sg_miter_stop(miter);
 854
 855	while (offset) {
 856		off_t consumed;
 857
 858		if (!sg_miter_get_next_page(miter))
 859			return false;
 860
 861		consumed = min_t(off_t, offset, miter->__remaining);
 862		miter->__offset += consumed;
 863		miter->__remaining -= consumed;
 864		offset -= consumed;
 865	}
 866
 867	return true;
 868}
 869EXPORT_SYMBOL(sg_miter_skip);
 870
 871/**
 872 * sg_miter_next - proceed mapping iterator to the next mapping
 873 * @miter: sg mapping iter to proceed
 874 *
 875 * Description:
 876 *   Proceeds @miter to the next mapping.  @miter should have been started
 877 *   using sg_miter_start().  On successful return, @miter->page,
 878 *   @miter->addr and @miter->length point to the current mapping.
 879 *
 880 * Context:
 881 *   May sleep if !SG_MITER_ATOMIC.
 
 882 *
 883 * Returns:
 884 *   true if @miter contains the next mapping.  false if end of sg
 885 *   list is reached.
 886 */
 887bool sg_miter_next(struct sg_mapping_iter *miter)
 888{
 889	sg_miter_stop(miter);
 890
 891	/*
 892	 * Get to the next page if necessary.
 893	 * __remaining, __offset is adjusted by sg_miter_stop
 894	 */
 895	if (!sg_miter_get_next_page(miter))
 896		return false;
 897
 898	miter->page = sg_page_iter_page(&miter->piter);
 899	miter->consumed = miter->length = miter->__remaining;
 900
 901	if (miter->__flags & SG_MITER_ATOMIC)
 902		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 903	else
 904		miter->addr = kmap(miter->page) + miter->__offset;
 905
 906	return true;
 907}
 908EXPORT_SYMBOL(sg_miter_next);
 909
 910/**
 911 * sg_miter_stop - stop mapping iteration
 912 * @miter: sg mapping iter to be stopped
 913 *
 914 * Description:
 915 *   Stops mapping iterator @miter.  @miter should have been started
 916 *   using sg_miter_start().  A stopped iteration can be resumed by
 917 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 918 *   need to be released during iteration.
 919 *
 920 * Context:
 921 *   Don't care otherwise.
 
 922 */
 923void sg_miter_stop(struct sg_mapping_iter *miter)
 924{
 925	WARN_ON(miter->consumed > miter->length);
 926
 927	/* drop resources from the last iteration */
 928	if (miter->addr) {
 929		miter->__offset += miter->consumed;
 930		miter->__remaining -= miter->consumed;
 931
 932		if (miter->__flags & SG_MITER_TO_SG)
 933			flush_dcache_page(miter->page);
 
 934
 935		if (miter->__flags & SG_MITER_ATOMIC) {
 936			WARN_ON_ONCE(!pagefault_disabled());
 937			kunmap_atomic(miter->addr);
 938		} else
 939			kunmap(miter->page);
 940
 941		miter->page = NULL;
 942		miter->addr = NULL;
 943		miter->length = 0;
 944		miter->consumed = 0;
 945	}
 946}
 947EXPORT_SYMBOL(sg_miter_stop);
 948
 949/**
 950 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 951 * @sgl:		 The SG list
 952 * @nents:		 Number of SG entries
 953 * @buf:		 Where to copy from
 954 * @buflen:		 The number of bytes to copy
 955 * @skip:		 Number of bytes to skip before copying
 956 * @to_buffer:		 transfer direction (true == from an sg list to a
 957 *			 buffer, false == from a buffer to an sg list)
 958 *
 959 * Returns the number of copied bytes.
 960 *
 961 **/
 962size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 963		      size_t buflen, off_t skip, bool to_buffer)
 964{
 965	unsigned int offset = 0;
 966	struct sg_mapping_iter miter;
 
 967	unsigned int sg_flags = SG_MITER_ATOMIC;
 968
 969	if (to_buffer)
 970		sg_flags |= SG_MITER_FROM_SG;
 971	else
 972		sg_flags |= SG_MITER_TO_SG;
 973
 974	sg_miter_start(&miter, sgl, nents, sg_flags);
 975
 976	if (!sg_miter_skip(&miter, skip))
 977		return 0;
 
 
 978
 979	while ((offset < buflen) && sg_miter_next(&miter)) {
 980		unsigned int len;
 981
 982		len = min(miter.length, buflen - offset);
 983
 984		if (to_buffer)
 985			memcpy(buf + offset, miter.addr, len);
 986		else
 987			memcpy(miter.addr, buf + offset, len);
 988
 989		offset += len;
 990	}
 991
 992	sg_miter_stop(&miter);
 993
 
 994	return offset;
 995}
 996EXPORT_SYMBOL(sg_copy_buffer);
 997
 998/**
 999 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
1000 * @sgl:		 The SG list
1001 * @nents:		 Number of SG entries
1002 * @buf:		 Where to copy from
1003 * @buflen:		 The number of bytes to copy
1004 *
1005 * Returns the number of copied bytes.
1006 *
1007 **/
1008size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1009			   const void *buf, size_t buflen)
1010{
1011	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1012}
1013EXPORT_SYMBOL(sg_copy_from_buffer);
1014
1015/**
1016 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1017 * @sgl:		 The SG list
1018 * @nents:		 Number of SG entries
1019 * @buf:		 Where to copy to
1020 * @buflen:		 The number of bytes to copy
1021 *
1022 * Returns the number of copied bytes.
1023 *
1024 **/
1025size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1026			 void *buf, size_t buflen)
1027{
1028	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1029}
1030EXPORT_SYMBOL(sg_copy_to_buffer);
1031
1032/**
1033 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1034 * @sgl:		 The SG list
1035 * @nents:		 Number of SG entries
1036 * @buf:		 Where to copy from
1037 * @buflen:		 The number of bytes to copy
1038 * @skip:		 Number of bytes to skip before copying
1039 *
1040 * Returns the number of copied bytes.
1041 *
1042 **/
1043size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1044			    const void *buf, size_t buflen, off_t skip)
1045{
1046	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1047}
1048EXPORT_SYMBOL(sg_pcopy_from_buffer);
1049
1050/**
1051 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1052 * @sgl:		 The SG list
1053 * @nents:		 Number of SG entries
1054 * @buf:		 Where to copy to
1055 * @buflen:		 The number of bytes to copy
1056 * @skip:		 Number of bytes to skip before copying
1057 *
1058 * Returns the number of copied bytes.
1059 *
1060 **/
1061size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1062			  void *buf, size_t buflen, off_t skip)
1063{
1064	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1065}
1066EXPORT_SYMBOL(sg_pcopy_to_buffer);
1067
1068/**
1069 * sg_zero_buffer - Zero-out a part of a SG list
1070 * @sgl:		 The SG list
1071 * @nents:		 Number of SG entries
1072 * @buflen:		 The number of bytes to zero out
1073 * @skip:		 Number of bytes to skip before zeroing
1074 *
1075 * Returns the number of bytes zeroed.
1076 **/
1077size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1078		       size_t buflen, off_t skip)
1079{
1080	unsigned int offset = 0;
1081	struct sg_mapping_iter miter;
1082	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1083
1084	sg_miter_start(&miter, sgl, nents, sg_flags);
1085
1086	if (!sg_miter_skip(&miter, skip))
1087		return false;
1088
1089	while (offset < buflen && sg_miter_next(&miter)) {
1090		unsigned int len;
1091
1092		len = min(miter.length, buflen - offset);
1093		memset(miter.addr, 0, len);
1094
1095		offset += len;
1096	}
1097
1098	sg_miter_stop(&miter);
1099	return offset;
1100}
1101EXPORT_SYMBOL(sg_zero_buffer);
1102
1103/*
1104 * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1105 * iterators, and add them to the scatterlist.
1106 */
1107static ssize_t extract_user_to_sg(struct iov_iter *iter,
1108				  ssize_t maxsize,
1109				  struct sg_table *sgtable,
1110				  unsigned int sg_max,
1111				  iov_iter_extraction_t extraction_flags)
1112{
1113	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1114	struct page **pages;
1115	unsigned int npages;
1116	ssize_t ret = 0, res;
1117	size_t len, off;
1118
1119	/* We decant the page list into the tail of the scatterlist */
1120	pages = (void *)sgtable->sgl +
1121		array_size(sg_max, sizeof(struct scatterlist));
1122	pages -= sg_max;
1123
1124	do {
1125		res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1126					     extraction_flags, &off);
1127		if (res < 0)
1128			goto failed;
1129
1130		len = res;
1131		maxsize -= len;
1132		ret += len;
1133		npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1134		sg_max -= npages;
1135
1136		for (; npages > 0; npages--) {
1137			struct page *page = *pages;
1138			size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1139
1140			*pages++ = NULL;
1141			sg_set_page(sg, page, seg, off);
1142			sgtable->nents++;
1143			sg++;
1144			len -= seg;
1145			off = 0;
1146		}
1147	} while (maxsize > 0 && sg_max > 0);
1148
1149	return ret;
1150
1151failed:
1152	while (sgtable->nents > sgtable->orig_nents)
1153		unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1154	return res;
1155}
1156
1157/*
1158 * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1159 * scatterlist.  The pages are not pinned.
1160 */
1161static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1162				  ssize_t maxsize,
1163				  struct sg_table *sgtable,
1164				  unsigned int sg_max,
1165				  iov_iter_extraction_t extraction_flags)
1166{
1167	const struct bio_vec *bv = iter->bvec;
1168	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1169	unsigned long start = iter->iov_offset;
1170	unsigned int i;
1171	ssize_t ret = 0;
1172
1173	for (i = 0; i < iter->nr_segs; i++) {
1174		size_t off, len;
1175
1176		len = bv[i].bv_len;
1177		if (start >= len) {
1178			start -= len;
1179			continue;
1180		}
1181
1182		len = min_t(size_t, maxsize, len - start);
1183		off = bv[i].bv_offset + start;
1184
1185		sg_set_page(sg, bv[i].bv_page, len, off);
1186		sgtable->nents++;
1187		sg++;
1188		sg_max--;
1189
1190		ret += len;
1191		maxsize -= len;
1192		if (maxsize <= 0 || sg_max == 0)
1193			break;
1194		start = 0;
1195	}
1196
1197	if (ret > 0)
1198		iov_iter_advance(iter, ret);
1199	return ret;
1200}
1201
1202/*
1203 * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1204 * scatterlist.  This can deal with vmalloc'd buffers as well as kmalloc'd or
1205 * static buffers.  The pages are not pinned.
1206 */
1207static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1208				  ssize_t maxsize,
1209				  struct sg_table *sgtable,
1210				  unsigned int sg_max,
1211				  iov_iter_extraction_t extraction_flags)
1212{
1213	const struct kvec *kv = iter->kvec;
1214	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1215	unsigned long start = iter->iov_offset;
1216	unsigned int i;
1217	ssize_t ret = 0;
1218
1219	for (i = 0; i < iter->nr_segs; i++) {
1220		struct page *page;
1221		unsigned long kaddr;
1222		size_t off, len, seg;
1223
1224		len = kv[i].iov_len;
1225		if (start >= len) {
1226			start -= len;
1227			continue;
1228		}
1229
1230		kaddr = (unsigned long)kv[i].iov_base + start;
1231		off = kaddr & ~PAGE_MASK;
1232		len = min_t(size_t, maxsize, len - start);
1233		kaddr &= PAGE_MASK;
1234
1235		maxsize -= len;
1236		ret += len;
1237		do {
1238			seg = min_t(size_t, len, PAGE_SIZE - off);
1239			if (is_vmalloc_or_module_addr((void *)kaddr))
1240				page = vmalloc_to_page((void *)kaddr);
1241			else
1242				page = virt_to_page((void *)kaddr);
1243
1244			sg_set_page(sg, page, len, off);
1245			sgtable->nents++;
1246			sg++;
1247			sg_max--;
1248
1249			len -= seg;
1250			kaddr += PAGE_SIZE;
1251			off = 0;
1252		} while (len > 0 && sg_max > 0);
1253
1254		if (maxsize <= 0 || sg_max == 0)
1255			break;
1256		start = 0;
1257	}
1258
1259	if (ret > 0)
1260		iov_iter_advance(iter, ret);
1261	return ret;
1262}
1263
1264/*
1265 * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1266 * the scatterlist.  The pages are not pinned.
1267 */
1268static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1269				    ssize_t maxsize,
1270				    struct sg_table *sgtable,
1271				    unsigned int sg_max,
1272				    iov_iter_extraction_t extraction_flags)
1273{
1274	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1275	struct xarray *xa = iter->xarray;
1276	struct folio *folio;
1277	loff_t start = iter->xarray_start + iter->iov_offset;
1278	pgoff_t index = start / PAGE_SIZE;
1279	ssize_t ret = 0;
1280	size_t offset, len;
1281	XA_STATE(xas, xa, index);
1282
1283	rcu_read_lock();
1284
1285	xas_for_each(&xas, folio, ULONG_MAX) {
1286		if (xas_retry(&xas, folio))
1287			continue;
1288		if (WARN_ON(xa_is_value(folio)))
1289			break;
1290		if (WARN_ON(folio_test_hugetlb(folio)))
1291			break;
1292
1293		offset = offset_in_folio(folio, start);
1294		len = min_t(size_t, maxsize, folio_size(folio) - offset);
1295
1296		sg_set_page(sg, folio_page(folio, 0), len, offset);
1297		sgtable->nents++;
1298		sg++;
1299		sg_max--;
1300
1301		maxsize -= len;
1302		ret += len;
1303		if (maxsize <= 0 || sg_max == 0)
1304			break;
1305	}
1306
1307	rcu_read_unlock();
1308	if (ret > 0)
1309		iov_iter_advance(iter, ret);
1310	return ret;
1311}
1312
1313/**
1314 * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1315 * @iter: The iterator to extract from
1316 * @maxsize: The amount of iterator to copy
1317 * @sgtable: The scatterlist table to fill in
1318 * @sg_max: Maximum number of elements in @sgtable that may be filled
1319 * @extraction_flags: Flags to qualify the request
1320 *
1321 * Extract the page fragments from the given amount of the source iterator and
1322 * add them to a scatterlist that refers to all of those bits, to a maximum
1323 * addition of @sg_max elements.
1324 *
1325 * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1326 * pinned; BVEC-, KVEC- and XARRAY-type are extracted but aren't pinned; PIPE-
1327 * and DISCARD-type are not supported.
1328 *
1329 * No end mark is placed on the scatterlist; that's left to the caller.
1330 *
1331 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1332 * be allowed on the pages extracted.
1333 *
1334 * If successful, @sgtable->nents is updated to include the number of elements
1335 * added and the number of bytes added is returned.  @sgtable->orig_nents is
1336 * left unaltered.
1337 *
1338 * The iov_iter_extract_mode() function should be used to query how cleanup
1339 * should be performed.
1340 */
1341ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1342			   struct sg_table *sgtable, unsigned int sg_max,
1343			   iov_iter_extraction_t extraction_flags)
1344{
1345	if (maxsize == 0)
1346		return 0;
1347
1348	switch (iov_iter_type(iter)) {
1349	case ITER_UBUF:
1350	case ITER_IOVEC:
1351		return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1352					  extraction_flags);
1353	case ITER_BVEC:
1354		return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1355					  extraction_flags);
1356	case ITER_KVEC:
1357		return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1358					  extraction_flags);
1359	case ITER_XARRAY:
1360		return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1361					    extraction_flags);
1362	default:
1363		pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1364		WARN_ON_ONCE(1);
1365		return -EIO;
1366	}
1367}
1368EXPORT_SYMBOL_GPL(extract_iter_to_sg);