Linux Audio

Check our new training course

Loading...
v4.10.11
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
 
  76#include <uapi/linux/limits.h>
 
  77
  78#include "audit.h"
  79
  80/* flags stating the success for a syscall */
  81#define AUDITSC_INVALID 0
  82#define AUDITSC_SUCCESS 1
  83#define AUDITSC_FAILURE 2
  84
  85/* no execve audit message should be longer than this (userspace limits),
  86 * see the note near the top of audit_log_execve_info() about this value */
  87#define MAX_EXECVE_AUDIT_LEN 7500
  88
  89/* max length to print of cmdline/proctitle value during audit */
  90#define MAX_PROCTITLE_AUDIT_LEN 128
  91
  92/* number of audit rules */
  93int audit_n_rules;
  94
  95/* determines whether we collect data for signals sent */
  96int audit_signals;
  97
  98struct audit_aux_data {
  99	struct audit_aux_data	*next;
 100	int			type;
 101};
 102
 103#define AUDIT_AUX_IPCPERM	0
 104
 105/* Number of target pids per aux struct. */
 106#define AUDIT_AUX_PIDS	16
 107
 108struct audit_aux_data_pids {
 109	struct audit_aux_data	d;
 110	pid_t			target_pid[AUDIT_AUX_PIDS];
 111	kuid_t			target_auid[AUDIT_AUX_PIDS];
 112	kuid_t			target_uid[AUDIT_AUX_PIDS];
 113	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 114	u32			target_sid[AUDIT_AUX_PIDS];
 115	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 116	int			pid_count;
 117};
 118
 119struct audit_aux_data_bprm_fcaps {
 120	struct audit_aux_data	d;
 121	struct audit_cap_data	fcap;
 122	unsigned int		fcap_ver;
 123	struct audit_cap_data	old_pcap;
 124	struct audit_cap_data	new_pcap;
 125};
 126
 127struct audit_tree_refs {
 128	struct audit_tree_refs *next;
 129	struct audit_chunk *c[31];
 130};
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132static int audit_match_perm(struct audit_context *ctx, int mask)
 133{
 134	unsigned n;
 135	if (unlikely(!ctx))
 136		return 0;
 137	n = ctx->major;
 138
 139	switch (audit_classify_syscall(ctx->arch, n)) {
 140	case 0:	/* native */
 141		if ((mask & AUDIT_PERM_WRITE) &&
 142		     audit_match_class(AUDIT_CLASS_WRITE, n))
 143			return 1;
 144		if ((mask & AUDIT_PERM_READ) &&
 145		     audit_match_class(AUDIT_CLASS_READ, n))
 146			return 1;
 147		if ((mask & AUDIT_PERM_ATTR) &&
 148		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 149			return 1;
 150		return 0;
 151	case 1: /* 32bit on biarch */
 152		if ((mask & AUDIT_PERM_WRITE) &&
 153		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 154			return 1;
 155		if ((mask & AUDIT_PERM_READ) &&
 156		     audit_match_class(AUDIT_CLASS_READ_32, n))
 157			return 1;
 158		if ((mask & AUDIT_PERM_ATTR) &&
 159		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 160			return 1;
 161		return 0;
 162	case 2: /* open */
 163		return mask & ACC_MODE(ctx->argv[1]);
 164	case 3: /* openat */
 165		return mask & ACC_MODE(ctx->argv[2]);
 166	case 4: /* socketcall */
 167		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 168	case 5: /* execve */
 169		return mask & AUDIT_PERM_EXEC;
 170	default:
 171		return 0;
 172	}
 173}
 174
 175static int audit_match_filetype(struct audit_context *ctx, int val)
 176{
 177	struct audit_names *n;
 178	umode_t mode = (umode_t)val;
 179
 180	if (unlikely(!ctx))
 181		return 0;
 182
 183	list_for_each_entry(n, &ctx->names_list, list) {
 184		if ((n->ino != AUDIT_INO_UNSET) &&
 185		    ((n->mode & S_IFMT) == mode))
 186			return 1;
 187	}
 188
 189	return 0;
 190}
 191
 192/*
 193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 194 * ->first_trees points to its beginning, ->trees - to the current end of data.
 195 * ->tree_count is the number of free entries in array pointed to by ->trees.
 196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 197 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 198 * it's going to remain 1-element for almost any setup) until we free context itself.
 199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 200 */
 201
 202#ifdef CONFIG_AUDIT_TREE
 203static void audit_set_auditable(struct audit_context *ctx)
 204{
 205	if (!ctx->prio) {
 206		ctx->prio = 1;
 207		ctx->current_state = AUDIT_RECORD_CONTEXT;
 208	}
 209}
 210
 211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 212{
 213	struct audit_tree_refs *p = ctx->trees;
 214	int left = ctx->tree_count;
 215	if (likely(left)) {
 216		p->c[--left] = chunk;
 217		ctx->tree_count = left;
 218		return 1;
 219	}
 220	if (!p)
 221		return 0;
 222	p = p->next;
 223	if (p) {
 224		p->c[30] = chunk;
 225		ctx->trees = p;
 226		ctx->tree_count = 30;
 227		return 1;
 228	}
 229	return 0;
 230}
 231
 232static int grow_tree_refs(struct audit_context *ctx)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 236	if (!ctx->trees) {
 237		ctx->trees = p;
 238		return 0;
 239	}
 240	if (p)
 241		p->next = ctx->trees;
 242	else
 243		ctx->first_trees = ctx->trees;
 244	ctx->tree_count = 31;
 245	return 1;
 246}
 247#endif
 248
 249static void unroll_tree_refs(struct audit_context *ctx,
 250		      struct audit_tree_refs *p, int count)
 251{
 252#ifdef CONFIG_AUDIT_TREE
 253	struct audit_tree_refs *q;
 254	int n;
 255	if (!p) {
 256		/* we started with empty chain */
 257		p = ctx->first_trees;
 258		count = 31;
 259		/* if the very first allocation has failed, nothing to do */
 260		if (!p)
 261			return;
 262	}
 263	n = count;
 264	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 265		while (n--) {
 266			audit_put_chunk(q->c[n]);
 267			q->c[n] = NULL;
 268		}
 269	}
 270	while (n-- > ctx->tree_count) {
 271		audit_put_chunk(q->c[n]);
 272		q->c[n] = NULL;
 273	}
 274	ctx->trees = p;
 275	ctx->tree_count = count;
 276#endif
 277}
 278
 279static void free_tree_refs(struct audit_context *ctx)
 280{
 281	struct audit_tree_refs *p, *q;
 282	for (p = ctx->first_trees; p; p = q) {
 283		q = p->next;
 284		kfree(p);
 285	}
 286}
 287
 288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 289{
 290#ifdef CONFIG_AUDIT_TREE
 291	struct audit_tree_refs *p;
 292	int n;
 293	if (!tree)
 294		return 0;
 295	/* full ones */
 296	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 297		for (n = 0; n < 31; n++)
 298			if (audit_tree_match(p->c[n], tree))
 299				return 1;
 300	}
 301	/* partial */
 302	if (p) {
 303		for (n = ctx->tree_count; n < 31; n++)
 304			if (audit_tree_match(p->c[n], tree))
 305				return 1;
 306	}
 307#endif
 308	return 0;
 309}
 310
 311static int audit_compare_uid(kuid_t uid,
 312			     struct audit_names *name,
 313			     struct audit_field *f,
 314			     struct audit_context *ctx)
 315{
 316	struct audit_names *n;
 317	int rc;
 318 
 319	if (name) {
 320		rc = audit_uid_comparator(uid, f->op, name->uid);
 321		if (rc)
 322			return rc;
 323	}
 324 
 325	if (ctx) {
 326		list_for_each_entry(n, &ctx->names_list, list) {
 327			rc = audit_uid_comparator(uid, f->op, n->uid);
 328			if (rc)
 329				return rc;
 330		}
 331	}
 332	return 0;
 333}
 334
 335static int audit_compare_gid(kgid_t gid,
 336			     struct audit_names *name,
 337			     struct audit_field *f,
 338			     struct audit_context *ctx)
 339{
 340	struct audit_names *n;
 341	int rc;
 342 
 343	if (name) {
 344		rc = audit_gid_comparator(gid, f->op, name->gid);
 345		if (rc)
 346			return rc;
 347	}
 348 
 349	if (ctx) {
 350		list_for_each_entry(n, &ctx->names_list, list) {
 351			rc = audit_gid_comparator(gid, f->op, n->gid);
 352			if (rc)
 353				return rc;
 354		}
 355	}
 356	return 0;
 357}
 358
 359static int audit_field_compare(struct task_struct *tsk,
 360			       const struct cred *cred,
 361			       struct audit_field *f,
 362			       struct audit_context *ctx,
 363			       struct audit_names *name)
 364{
 365	switch (f->val) {
 366	/* process to file object comparisons */
 367	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 368		return audit_compare_uid(cred->uid, name, f, ctx);
 369	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 370		return audit_compare_gid(cred->gid, name, f, ctx);
 371	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 372		return audit_compare_uid(cred->euid, name, f, ctx);
 373	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 374		return audit_compare_gid(cred->egid, name, f, ctx);
 375	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 376		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 377	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 378		return audit_compare_uid(cred->suid, name, f, ctx);
 379	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 380		return audit_compare_gid(cred->sgid, name, f, ctx);
 381	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 382		return audit_compare_uid(cred->fsuid, name, f, ctx);
 383	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 384		return audit_compare_gid(cred->fsgid, name, f, ctx);
 385	/* uid comparisons */
 386	case AUDIT_COMPARE_UID_TO_AUID:
 387		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 
 388	case AUDIT_COMPARE_UID_TO_EUID:
 389		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 390	case AUDIT_COMPARE_UID_TO_SUID:
 391		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 392	case AUDIT_COMPARE_UID_TO_FSUID:
 393		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 394	/* auid comparisons */
 395	case AUDIT_COMPARE_AUID_TO_EUID:
 396		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 
 397	case AUDIT_COMPARE_AUID_TO_SUID:
 398		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 
 399	case AUDIT_COMPARE_AUID_TO_FSUID:
 400		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 401	/* euid comparisons */
 402	case AUDIT_COMPARE_EUID_TO_SUID:
 403		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 404	case AUDIT_COMPARE_EUID_TO_FSUID:
 405		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 406	/* suid comparisons */
 407	case AUDIT_COMPARE_SUID_TO_FSUID:
 408		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 409	/* gid comparisons */
 410	case AUDIT_COMPARE_GID_TO_EGID:
 411		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 412	case AUDIT_COMPARE_GID_TO_SGID:
 413		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 414	case AUDIT_COMPARE_GID_TO_FSGID:
 415		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 416	/* egid comparisons */
 417	case AUDIT_COMPARE_EGID_TO_SGID:
 418		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 419	case AUDIT_COMPARE_EGID_TO_FSGID:
 420		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 421	/* sgid comparison */
 422	case AUDIT_COMPARE_SGID_TO_FSGID:
 423		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 424	default:
 425		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 426		return 0;
 427	}
 428	return 0;
 429}
 430
 431/* Determine if any context name data matches a rule's watch data */
 432/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 433 * otherwise.
 434 *
 435 * If task_creation is true, this is an explicit indication that we are
 436 * filtering a task rule at task creation time.  This and tsk == current are
 437 * the only situations where tsk->cred may be accessed without an rcu read lock.
 438 */
 439static int audit_filter_rules(struct task_struct *tsk,
 440			      struct audit_krule *rule,
 441			      struct audit_context *ctx,
 442			      struct audit_names *name,
 443			      enum audit_state *state,
 444			      bool task_creation)
 445{
 446	const struct cred *cred;
 447	int i, need_sid = 1;
 448	u32 sid;
 449	unsigned int sessionid;
 450
 451	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 452
 453	for (i = 0; i < rule->field_count; i++) {
 454		struct audit_field *f = &rule->fields[i];
 455		struct audit_names *n;
 456		int result = 0;
 457		pid_t pid;
 458
 459		switch (f->type) {
 460		case AUDIT_PID:
 461			pid = task_tgid_nr(tsk);
 462			result = audit_comparator(pid, f->op, f->val);
 463			break;
 464		case AUDIT_PPID:
 465			if (ctx) {
 466				if (!ctx->ppid)
 467					ctx->ppid = task_ppid_nr(tsk);
 468				result = audit_comparator(ctx->ppid, f->op, f->val);
 469			}
 470			break;
 471		case AUDIT_EXE:
 472			result = audit_exe_compare(tsk, rule->exe);
 
 
 473			break;
 474		case AUDIT_UID:
 475			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 476			break;
 477		case AUDIT_EUID:
 478			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 479			break;
 480		case AUDIT_SUID:
 481			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 482			break;
 483		case AUDIT_FSUID:
 484			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 485			break;
 486		case AUDIT_GID:
 487			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 488			if (f->op == Audit_equal) {
 489				if (!result)
 490					result = in_group_p(f->gid);
 491			} else if (f->op == Audit_not_equal) {
 492				if (result)
 493					result = !in_group_p(f->gid);
 494			}
 495			break;
 496		case AUDIT_EGID:
 497			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 498			if (f->op == Audit_equal) {
 499				if (!result)
 500					result = in_egroup_p(f->gid);
 501			} else if (f->op == Audit_not_equal) {
 502				if (result)
 503					result = !in_egroup_p(f->gid);
 504			}
 505			break;
 506		case AUDIT_SGID:
 507			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 508			break;
 509		case AUDIT_FSGID:
 510			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 511			break;
 512		case AUDIT_SESSIONID:
 513			sessionid = audit_get_sessionid(current);
 514			result = audit_comparator(sessionid, f->op, f->val);
 515			break;
 516		case AUDIT_PERS:
 517			result = audit_comparator(tsk->personality, f->op, f->val);
 518			break;
 519		case AUDIT_ARCH:
 520			if (ctx)
 521				result = audit_comparator(ctx->arch, f->op, f->val);
 522			break;
 523
 524		case AUDIT_EXIT:
 525			if (ctx && ctx->return_valid)
 526				result = audit_comparator(ctx->return_code, f->op, f->val);
 527			break;
 528		case AUDIT_SUCCESS:
 529			if (ctx && ctx->return_valid) {
 530				if (f->val)
 531					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 532				else
 533					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 534			}
 535			break;
 536		case AUDIT_DEVMAJOR:
 537			if (name) {
 538				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 539				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 540					++result;
 541			} else if (ctx) {
 542				list_for_each_entry(n, &ctx->names_list, list) {
 543					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 544					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 545						++result;
 546						break;
 547					}
 548				}
 549			}
 550			break;
 551		case AUDIT_DEVMINOR:
 552			if (name) {
 553				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 554				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 555					++result;
 556			} else if (ctx) {
 557				list_for_each_entry(n, &ctx->names_list, list) {
 558					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 559					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 560						++result;
 561						break;
 562					}
 563				}
 564			}
 565			break;
 566		case AUDIT_INODE:
 567			if (name)
 568				result = audit_comparator(name->ino, f->op, f->val);
 569			else if (ctx) {
 570				list_for_each_entry(n, &ctx->names_list, list) {
 571					if (audit_comparator(n->ino, f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_OBJ_UID:
 579			if (name) {
 580				result = audit_uid_comparator(name->uid, f->op, f->uid);
 581			} else if (ctx) {
 582				list_for_each_entry(n, &ctx->names_list, list) {
 583					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 584						++result;
 585						break;
 586					}
 587				}
 588			}
 589			break;
 590		case AUDIT_OBJ_GID:
 591			if (name) {
 592				result = audit_gid_comparator(name->gid, f->op, f->gid);
 593			} else if (ctx) {
 594				list_for_each_entry(n, &ctx->names_list, list) {
 595					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 596						++result;
 597						break;
 598					}
 599				}
 600			}
 601			break;
 602		case AUDIT_WATCH:
 603			if (name)
 604				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 605			break;
 606		case AUDIT_DIR:
 607			if (ctx)
 608				result = match_tree_refs(ctx, rule->tree);
 
 
 
 609			break;
 610		case AUDIT_LOGINUID:
 611			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 
 612			break;
 613		case AUDIT_LOGINUID_SET:
 614			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 615			break;
 
 
 
 
 
 616		case AUDIT_SUBJ_USER:
 617		case AUDIT_SUBJ_ROLE:
 618		case AUDIT_SUBJ_TYPE:
 619		case AUDIT_SUBJ_SEN:
 620		case AUDIT_SUBJ_CLR:
 621			/* NOTE: this may return negative values indicating
 622			   a temporary error.  We simply treat this as a
 623			   match for now to avoid losing information that
 624			   may be wanted.   An error message will also be
 625			   logged upon error */
 626			if (f->lsm_rule) {
 627				if (need_sid) {
 628					security_task_getsecid(tsk, &sid);
 629					need_sid = 0;
 630				}
 631				result = security_audit_rule_match(sid, f->type,
 632				                                  f->op,
 633				                                  f->lsm_rule,
 634				                                  ctx);
 635			}
 636			break;
 637		case AUDIT_OBJ_USER:
 638		case AUDIT_OBJ_ROLE:
 639		case AUDIT_OBJ_TYPE:
 640		case AUDIT_OBJ_LEV_LOW:
 641		case AUDIT_OBJ_LEV_HIGH:
 642			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 643			   also applies here */
 644			if (f->lsm_rule) {
 645				/* Find files that match */
 646				if (name) {
 647					result = security_audit_rule_match(
 648					           name->osid, f->type, f->op,
 649					           f->lsm_rule, ctx);
 
 
 650				} else if (ctx) {
 651					list_for_each_entry(n, &ctx->names_list, list) {
 652						if (security_audit_rule_match(n->osid, f->type,
 653									      f->op, f->lsm_rule,
 654									      ctx)) {
 
 
 655							++result;
 656							break;
 657						}
 658					}
 659				}
 660				/* Find ipc objects that match */
 661				if (!ctx || ctx->type != AUDIT_IPC)
 662					break;
 663				if (security_audit_rule_match(ctx->ipc.osid,
 664							      f->type, f->op,
 665							      f->lsm_rule, ctx))
 666					++result;
 667			}
 668			break;
 669		case AUDIT_ARG0:
 670		case AUDIT_ARG1:
 671		case AUDIT_ARG2:
 672		case AUDIT_ARG3:
 673			if (ctx)
 674				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 675			break;
 676		case AUDIT_FILTERKEY:
 677			/* ignore this field for filtering */
 678			result = 1;
 679			break;
 680		case AUDIT_PERM:
 681			result = audit_match_perm(ctx, f->val);
 
 
 682			break;
 683		case AUDIT_FILETYPE:
 684			result = audit_match_filetype(ctx, f->val);
 
 
 685			break;
 686		case AUDIT_FIELD_COMPARE:
 687			result = audit_field_compare(tsk, cred, f, ctx, name);
 688			break;
 689		}
 690		if (!result)
 691			return 0;
 692	}
 693
 694	if (ctx) {
 695		if (rule->prio <= ctx->prio)
 696			return 0;
 697		if (rule->filterkey) {
 698			kfree(ctx->filterkey);
 699			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 700		}
 701		ctx->prio = rule->prio;
 702	}
 703	switch (rule->action) {
 704	case AUDIT_NEVER:
 705		*state = AUDIT_DISABLED;
 706		break;
 707	case AUDIT_ALWAYS:
 708		*state = AUDIT_RECORD_CONTEXT;
 709		break;
 710	}
 711	return 1;
 712}
 713
 714/* At process creation time, we can determine if system-call auditing is
 715 * completely disabled for this task.  Since we only have the task
 716 * structure at this point, we can only check uid and gid.
 717 */
 718static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 719{
 720	struct audit_entry *e;
 721	enum audit_state   state;
 722
 723	rcu_read_lock();
 724	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 725		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 726				       &state, true)) {
 727			if (state == AUDIT_RECORD_CONTEXT)
 728				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 729			rcu_read_unlock();
 730			return state;
 731		}
 732	}
 733	rcu_read_unlock();
 734	return AUDIT_BUILD_CONTEXT;
 735}
 736
 737static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 738{
 739	int word, bit;
 740
 741	if (val > 0xffffffff)
 742		return false;
 743
 744	word = AUDIT_WORD(val);
 745	if (word >= AUDIT_BITMASK_SIZE)
 746		return false;
 747
 748	bit = AUDIT_BIT(val);
 749
 750	return rule->mask[word] & bit;
 751}
 752
 753/* At syscall entry and exit time, this filter is called if the
 754 * audit_state is not low enough that auditing cannot take place, but is
 755 * also not high enough that we already know we have to write an audit
 756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 757 */
 758static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 759					     struct audit_context *ctx,
 760					     struct list_head *list)
 761{
 762	struct audit_entry *e;
 763	enum audit_state state;
 764
 765	if (auditd_test_task(tsk))
 766		return AUDIT_DISABLED;
 767
 768	rcu_read_lock();
 769	if (!list_empty(list)) {
 770		list_for_each_entry_rcu(e, list, list) {
 771			if (audit_in_mask(&e->rule, ctx->major) &&
 772			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 773					       &state, false)) {
 774				rcu_read_unlock();
 775				ctx->current_state = state;
 776				return state;
 777			}
 778		}
 779	}
 780	rcu_read_unlock();
 781	return AUDIT_BUILD_CONTEXT;
 782}
 783
 784/*
 785 * Given an audit_name check the inode hash table to see if they match.
 786 * Called holding the rcu read lock to protect the use of audit_inode_hash
 787 */
 788static int audit_filter_inode_name(struct task_struct *tsk,
 789				   struct audit_names *n,
 790				   struct audit_context *ctx) {
 791	int h = audit_hash_ino((u32)n->ino);
 792	struct list_head *list = &audit_inode_hash[h];
 793	struct audit_entry *e;
 794	enum audit_state state;
 795
 796	if (list_empty(list))
 797		return 0;
 798
 799	list_for_each_entry_rcu(e, list, list) {
 800		if (audit_in_mask(&e->rule, ctx->major) &&
 801		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 802			ctx->current_state = state;
 803			return 1;
 804		}
 805	}
 806
 807	return 0;
 808}
 809
 810/* At syscall exit time, this filter is called if any audit_names have been
 811 * collected during syscall processing.  We only check rules in sublists at hash
 812 * buckets applicable to the inode numbers in audit_names.
 813 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 814 */
 815void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 816{
 817	struct audit_names *n;
 818
 819	if (auditd_test_task(tsk))
 820		return;
 821
 822	rcu_read_lock();
 823
 824	list_for_each_entry(n, &ctx->names_list, list) {
 825		if (audit_filter_inode_name(tsk, n, ctx))
 826			break;
 827	}
 828	rcu_read_unlock();
 829}
 830
 831/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 832static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 833						      int return_valid,
 834						      long return_code)
 835{
 836	struct audit_context *context = tsk->audit_context;
 837
 838	if (!context)
 839		return NULL;
 840	context->return_valid = return_valid;
 841
 842	/*
 843	 * we need to fix up the return code in the audit logs if the actual
 844	 * return codes are later going to be fixed up by the arch specific
 845	 * signal handlers
 846	 *
 847	 * This is actually a test for:
 848	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 849	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 850	 *
 851	 * but is faster than a bunch of ||
 852	 */
 853	if (unlikely(return_code <= -ERESTARTSYS) &&
 854	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 855	    (return_code != -ENOIOCTLCMD))
 856		context->return_code = -EINTR;
 857	else
 858		context->return_code  = return_code;
 859
 860	if (context->in_syscall && !context->dummy) {
 861		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 862		audit_filter_inodes(tsk, context);
 863	}
 864
 865	tsk->audit_context = NULL;
 866	return context;
 867}
 868
 869static inline void audit_proctitle_free(struct audit_context *context)
 870{
 871	kfree(context->proctitle.value);
 872	context->proctitle.value = NULL;
 873	context->proctitle.len = 0;
 874}
 875
 
 
 
 
 
 
 
 876static inline void audit_free_names(struct audit_context *context)
 877{
 878	struct audit_names *n, *next;
 879
 880	list_for_each_entry_safe(n, next, &context->names_list, list) {
 881		list_del(&n->list);
 882		if (n->name)
 883			putname(n->name);
 884		if (n->should_free)
 885			kfree(n);
 886	}
 887	context->name_count = 0;
 888	path_put(&context->pwd);
 889	context->pwd.dentry = NULL;
 890	context->pwd.mnt = NULL;
 891}
 892
 893static inline void audit_free_aux(struct audit_context *context)
 894{
 895	struct audit_aux_data *aux;
 896
 897	while ((aux = context->aux)) {
 898		context->aux = aux->next;
 899		kfree(aux);
 900	}
 901	while ((aux = context->aux_pids)) {
 902		context->aux_pids = aux->next;
 903		kfree(aux);
 904	}
 905}
 906
 907static inline struct audit_context *audit_alloc_context(enum audit_state state)
 908{
 909	struct audit_context *context;
 910
 911	context = kzalloc(sizeof(*context), GFP_KERNEL);
 912	if (!context)
 913		return NULL;
 914	context->state = state;
 915	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 916	INIT_LIST_HEAD(&context->killed_trees);
 917	INIT_LIST_HEAD(&context->names_list);
 918	return context;
 919}
 920
 921/**
 922 * audit_alloc - allocate an audit context block for a task
 923 * @tsk: task
 924 *
 925 * Filter on the task information and allocate a per-task audit context
 926 * if necessary.  Doing so turns on system call auditing for the
 927 * specified task.  This is called from copy_process, so no lock is
 928 * needed.
 929 */
 930int audit_alloc(struct task_struct *tsk)
 931{
 932	struct audit_context *context;
 933	enum audit_state     state;
 934	char *key = NULL;
 935
 936	if (likely(!audit_ever_enabled))
 937		return 0; /* Return if not auditing. */
 938
 939	state = audit_filter_task(tsk, &key);
 940	if (state == AUDIT_DISABLED) {
 941		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 942		return 0;
 943	}
 944
 945	if (!(context = audit_alloc_context(state))) {
 946		kfree(key);
 947		audit_log_lost("out of memory in audit_alloc");
 948		return -ENOMEM;
 949	}
 950	context->filterkey = key;
 951
 952	tsk->audit_context  = context;
 953	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 954	return 0;
 955}
 956
 957static inline void audit_free_context(struct audit_context *context)
 958{
 
 959	audit_free_names(context);
 960	unroll_tree_refs(context, NULL, 0);
 961	free_tree_refs(context);
 962	audit_free_aux(context);
 963	kfree(context->filterkey);
 964	kfree(context->sockaddr);
 965	audit_proctitle_free(context);
 966	kfree(context);
 967}
 968
 969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 970				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 971				 u32 sid, char *comm)
 972{
 973	struct audit_buffer *ab;
 974	char *ctx = NULL;
 975	u32 len;
 976	int rc = 0;
 977
 978	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 979	if (!ab)
 980		return rc;
 981
 982	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 983			 from_kuid(&init_user_ns, auid),
 984			 from_kuid(&init_user_ns, uid), sessionid);
 985	if (sid) {
 986		if (security_secid_to_secctx(sid, &ctx, &len)) {
 987			audit_log_format(ab, " obj=(none)");
 988			rc = 1;
 989		} else {
 990			audit_log_format(ab, " obj=%s", ctx);
 991			security_release_secctx(ctx, len);
 992		}
 993	}
 994	audit_log_format(ab, " ocomm=");
 995	audit_log_untrustedstring(ab, comm);
 996	audit_log_end(ab);
 997
 998	return rc;
 999}
1000
1001static void audit_log_execve_info(struct audit_context *context,
1002				  struct audit_buffer **ab)
1003{
1004	long len_max;
1005	long len_rem;
1006	long len_full;
1007	long len_buf;
1008	long len_abuf = 0;
1009	long len_tmp;
1010	bool require_data;
1011	bool encode;
1012	unsigned int iter;
1013	unsigned int arg;
1014	char *buf_head;
1015	char *buf;
1016	const char __user *p = (const char __user *)current->mm->arg_start;
1017
1018	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1019	 *       data we put in the audit record for this argument (see the
1020	 *       code below) ... at this point in time 96 is plenty */
1021	char abuf[96];
1022
1023	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1024	 *       current value of 7500 is not as important as the fact that it
1025	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1026	 *       room if we go over a little bit in the logging below */
1027	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1028	len_max = MAX_EXECVE_AUDIT_LEN;
1029
1030	/* scratch buffer to hold the userspace args */
1031	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1032	if (!buf_head) {
1033		audit_panic("out of memory for argv string");
1034		return;
1035	}
1036	buf = buf_head;
1037
1038	audit_log_format(*ab, "argc=%d", context->execve.argc);
1039
1040	len_rem = len_max;
1041	len_buf = 0;
1042	len_full = 0;
1043	require_data = true;
1044	encode = false;
1045	iter = 0;
1046	arg = 0;
1047	do {
1048		/* NOTE: we don't ever want to trust this value for anything
1049		 *       serious, but the audit record format insists we
1050		 *       provide an argument length for really long arguments,
1051		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1052		 *       to use strncpy_from_user() to obtain this value for
1053		 *       recording in the log, although we don't use it
1054		 *       anywhere here to avoid a double-fetch problem */
1055		if (len_full == 0)
1056			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1057
1058		/* read more data from userspace */
1059		if (require_data) {
1060			/* can we make more room in the buffer? */
1061			if (buf != buf_head) {
1062				memmove(buf_head, buf, len_buf);
1063				buf = buf_head;
1064			}
1065
1066			/* fetch as much as we can of the argument */
1067			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1068						    len_max - len_buf);
1069			if (len_tmp == -EFAULT) {
1070				/* unable to copy from userspace */
1071				send_sig(SIGKILL, current, 0);
1072				goto out;
1073			} else if (len_tmp == (len_max - len_buf)) {
1074				/* buffer is not large enough */
1075				require_data = true;
1076				/* NOTE: if we are going to span multiple
1077				 *       buffers force the encoding so we stand
1078				 *       a chance at a sane len_full value and
1079				 *       consistent record encoding */
1080				encode = true;
1081				len_full = len_full * 2;
1082				p += len_tmp;
1083			} else {
1084				require_data = false;
1085				if (!encode)
1086					encode = audit_string_contains_control(
1087								buf, len_tmp);
1088				/* try to use a trusted value for len_full */
1089				if (len_full < len_max)
1090					len_full = (encode ?
1091						    len_tmp * 2 : len_tmp);
1092				p += len_tmp + 1;
1093			}
1094			len_buf += len_tmp;
1095			buf_head[len_buf] = '\0';
1096
1097			/* length of the buffer in the audit record? */
1098			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1099		}
1100
1101		/* write as much as we can to the audit log */
1102		if (len_buf > 0) {
1103			/* NOTE: some magic numbers here - basically if we
1104			 *       can't fit a reasonable amount of data into the
1105			 *       existing audit buffer, flush it and start with
1106			 *       a new buffer */
1107			if ((sizeof(abuf) + 8) > len_rem) {
1108				len_rem = len_max;
1109				audit_log_end(*ab);
1110				*ab = audit_log_start(context,
1111						      GFP_KERNEL, AUDIT_EXECVE);
1112				if (!*ab)
1113					goto out;
1114			}
1115
1116			/* create the non-arg portion of the arg record */
1117			len_tmp = 0;
1118			if (require_data || (iter > 0) ||
1119			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1120				if (iter == 0) {
1121					len_tmp += snprintf(&abuf[len_tmp],
1122							sizeof(abuf) - len_tmp,
1123							" a%d_len=%lu",
1124							arg, len_full);
1125				}
1126				len_tmp += snprintf(&abuf[len_tmp],
1127						    sizeof(abuf) - len_tmp,
1128						    " a%d[%d]=", arg, iter++);
1129			} else
1130				len_tmp += snprintf(&abuf[len_tmp],
1131						    sizeof(abuf) - len_tmp,
1132						    " a%d=", arg);
1133			WARN_ON(len_tmp >= sizeof(abuf));
1134			abuf[sizeof(abuf) - 1] = '\0';
1135
1136			/* log the arg in the audit record */
1137			audit_log_format(*ab, "%s", abuf);
1138			len_rem -= len_tmp;
1139			len_tmp = len_buf;
1140			if (encode) {
1141				if (len_abuf > len_rem)
1142					len_tmp = len_rem / 2; /* encoding */
1143				audit_log_n_hex(*ab, buf, len_tmp);
1144				len_rem -= len_tmp * 2;
1145				len_abuf -= len_tmp * 2;
1146			} else {
1147				if (len_abuf > len_rem)
1148					len_tmp = len_rem - 2; /* quotes */
1149				audit_log_n_string(*ab, buf, len_tmp);
1150				len_rem -= len_tmp + 2;
1151				/* don't subtract the "2" because we still need
1152				 * to add quotes to the remaining string */
1153				len_abuf -= len_tmp;
1154			}
1155			len_buf -= len_tmp;
1156			buf += len_tmp;
1157		}
1158
1159		/* ready to move to the next argument? */
1160		if ((len_buf == 0) && !require_data) {
1161			arg++;
1162			iter = 0;
1163			len_full = 0;
1164			require_data = true;
1165			encode = false;
1166		}
1167	} while (arg < context->execve.argc);
1168
1169	/* NOTE: the caller handles the final audit_log_end() call */
1170
1171out:
1172	kfree(buf_head);
1173}
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175static void show_special(struct audit_context *context, int *call_panic)
1176{
1177	struct audit_buffer *ab;
1178	int i;
1179
1180	ab = audit_log_start(context, GFP_KERNEL, context->type);
1181	if (!ab)
1182		return;
1183
1184	switch (context->type) {
1185	case AUDIT_SOCKETCALL: {
1186		int nargs = context->socketcall.nargs;
1187		audit_log_format(ab, "nargs=%d", nargs);
1188		for (i = 0; i < nargs; i++)
1189			audit_log_format(ab, " a%d=%lx", i,
1190				context->socketcall.args[i]);
1191		break; }
1192	case AUDIT_IPC: {
1193		u32 osid = context->ipc.osid;
1194
1195		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1196				 from_kuid(&init_user_ns, context->ipc.uid),
1197				 from_kgid(&init_user_ns, context->ipc.gid),
1198				 context->ipc.mode);
1199		if (osid) {
1200			char *ctx = NULL;
1201			u32 len;
1202			if (security_secid_to_secctx(osid, &ctx, &len)) {
1203				audit_log_format(ab, " osid=%u", osid);
1204				*call_panic = 1;
1205			} else {
1206				audit_log_format(ab, " obj=%s", ctx);
1207				security_release_secctx(ctx, len);
1208			}
1209		}
1210		if (context->ipc.has_perm) {
1211			audit_log_end(ab);
1212			ab = audit_log_start(context, GFP_KERNEL,
1213					     AUDIT_IPC_SET_PERM);
1214			if (unlikely(!ab))
1215				return;
1216			audit_log_format(ab,
1217				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1218				context->ipc.qbytes,
1219				context->ipc.perm_uid,
1220				context->ipc.perm_gid,
1221				context->ipc.perm_mode);
1222		}
1223		break; }
1224	case AUDIT_MQ_OPEN: {
1225		audit_log_format(ab,
1226			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1227			"mq_msgsize=%ld mq_curmsgs=%ld",
1228			context->mq_open.oflag, context->mq_open.mode,
1229			context->mq_open.attr.mq_flags,
1230			context->mq_open.attr.mq_maxmsg,
1231			context->mq_open.attr.mq_msgsize,
1232			context->mq_open.attr.mq_curmsgs);
1233		break; }
1234	case AUDIT_MQ_SENDRECV: {
1235		audit_log_format(ab,
1236			"mqdes=%d msg_len=%zd msg_prio=%u "
1237			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238			context->mq_sendrecv.mqdes,
1239			context->mq_sendrecv.msg_len,
1240			context->mq_sendrecv.msg_prio,
1241			context->mq_sendrecv.abs_timeout.tv_sec,
1242			context->mq_sendrecv.abs_timeout.tv_nsec);
1243		break; }
1244	case AUDIT_MQ_NOTIFY: {
1245		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246				context->mq_notify.mqdes,
1247				context->mq_notify.sigev_signo);
1248		break; }
1249	case AUDIT_MQ_GETSETATTR: {
1250		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1251		audit_log_format(ab,
1252			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253			"mq_curmsgs=%ld ",
1254			context->mq_getsetattr.mqdes,
1255			attr->mq_flags, attr->mq_maxmsg,
1256			attr->mq_msgsize, attr->mq_curmsgs);
1257		break; }
1258	case AUDIT_CAPSET: {
1259		audit_log_format(ab, "pid=%d", context->capset.pid);
1260		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263		break; }
1264	case AUDIT_MMAP: {
 
1265		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266				 context->mmap.flags);
1267		break; }
1268	case AUDIT_EXECVE: {
1269		audit_log_execve_info(context, &ab);
1270		break; }
 
 
 
 
 
 
 
 
1271	}
1272	audit_log_end(ab);
1273}
1274
1275static inline int audit_proctitle_rtrim(char *proctitle, int len)
1276{
1277	char *end = proctitle + len - 1;
1278	while (end > proctitle && !isprint(*end))
1279		end--;
1280
1281	/* catch the case where proctitle is only 1 non-print character */
1282	len = end - proctitle + 1;
1283	len -= isprint(proctitle[len-1]) == 0;
1284	return len;
1285}
1286
1287static void audit_log_proctitle(struct task_struct *tsk,
1288			 struct audit_context *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289{
1290	int res;
1291	char *buf;
1292	char *msg = "(null)";
1293	int len = strlen(msg);
 
1294	struct audit_buffer *ab;
1295
 
 
 
1296	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1297	if (!ab)
1298		return;	/* audit_panic or being filtered */
1299
1300	audit_log_format(ab, "proctitle=");
1301
1302	/* Not  cached */
1303	if (!context->proctitle.value) {
1304		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1305		if (!buf)
1306			goto out;
1307		/* Historically called this from procfs naming */
1308		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1309		if (res == 0) {
1310			kfree(buf);
1311			goto out;
1312		}
1313		res = audit_proctitle_rtrim(buf, res);
1314		if (res == 0) {
1315			kfree(buf);
1316			goto out;
1317		}
1318		context->proctitle.value = buf;
1319		context->proctitle.len = res;
1320	}
1321	msg = context->proctitle.value;
1322	len = context->proctitle.len;
1323out:
1324	audit_log_n_untrustedstring(ab, msg, len);
1325	audit_log_end(ab);
1326}
1327
1328static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1329{
1330	int i, call_panic = 0;
 
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	struct audit_names *n;
1334
1335	/* tsk == current */
1336	context->personality = tsk->personality;
1337
1338	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1339	if (!ab)
1340		return;		/* audit_panic has been called */
1341	audit_log_format(ab, "arch=%x syscall=%d",
1342			 context->arch, context->major);
1343	if (context->personality != PER_LINUX)
1344		audit_log_format(ab, " per=%lx", context->personality);
1345	if (context->return_valid)
1346		audit_log_format(ab, " success=%s exit=%ld",
1347				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1348				 context->return_code);
1349
1350	audit_log_format(ab,
1351			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352			 context->argv[0],
1353			 context->argv[1],
1354			 context->argv[2],
1355			 context->argv[3],
1356			 context->name_count);
1357
1358	audit_log_task_info(ab, tsk);
1359	audit_log_key(ab, context->filterkey);
1360	audit_log_end(ab);
1361
1362	for (aux = context->aux; aux; aux = aux->next) {
1363
1364		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1365		if (!ab)
1366			continue; /* audit_panic has been called */
1367
1368		switch (aux->type) {
1369
1370		case AUDIT_BPRM_FCAPS: {
1371			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1372			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1373			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1374			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1375			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1376			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1377			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1378			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1379			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1380			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1381			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1382			break; }
1383
1384		}
1385		audit_log_end(ab);
1386	}
1387
1388	if (context->type)
1389		show_special(context, &call_panic);
1390
1391	if (context->fds[0] >= 0) {
1392		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1393		if (ab) {
1394			audit_log_format(ab, "fd0=%d fd1=%d",
1395					context->fds[0], context->fds[1]);
1396			audit_log_end(ab);
1397		}
1398	}
1399
1400	if (context->sockaddr_len) {
1401		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1402		if (ab) {
1403			audit_log_format(ab, "saddr=");
1404			audit_log_n_hex(ab, (void *)context->sockaddr,
1405					context->sockaddr_len);
1406			audit_log_end(ab);
1407		}
1408	}
1409
1410	for (aux = context->aux_pids; aux; aux = aux->next) {
1411		struct audit_aux_data_pids *axs = (void *)aux;
1412
1413		for (i = 0; i < axs->pid_count; i++)
1414			if (audit_log_pid_context(context, axs->target_pid[i],
1415						  axs->target_auid[i],
1416						  axs->target_uid[i],
1417						  axs->target_sessionid[i],
1418						  axs->target_sid[i],
1419						  axs->target_comm[i]))
1420				call_panic = 1;
1421	}
1422
1423	if (context->target_pid &&
1424	    audit_log_pid_context(context, context->target_pid,
1425				  context->target_auid, context->target_uid,
1426				  context->target_sessionid,
1427				  context->target_sid, context->target_comm))
1428			call_panic = 1;
1429
1430	if (context->pwd.dentry && context->pwd.mnt) {
1431		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1432		if (ab) {
1433			audit_log_d_path(ab, "cwd=", &context->pwd);
1434			audit_log_end(ab);
1435		}
1436	}
1437
1438	i = 0;
1439	list_for_each_entry(n, &context->names_list, list) {
1440		if (n->hidden)
1441			continue;
1442		audit_log_name(context, n, NULL, i++, &call_panic);
1443	}
1444
1445	audit_log_proctitle(tsk, context);
1446
1447	/* Send end of event record to help user space know we are finished */
1448	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1449	if (ab)
1450		audit_log_end(ab);
1451	if (call_panic)
1452		audit_panic("error converting sid to string");
1453}
1454
1455/**
1456 * audit_free - free a per-task audit context
1457 * @tsk: task whose audit context block to free
1458 *
1459 * Called from copy_process and do_exit
1460 */
1461void __audit_free(struct task_struct *tsk)
1462{
1463	struct audit_context *context;
1464
1465	context = audit_take_context(tsk, 0, 0);
1466	if (!context)
1467		return;
1468
1469	/* Check for system calls that do not go through the exit
1470	 * function (e.g., exit_group), then free context block.
1471	 * We use GFP_ATOMIC here because we might be doing this
1472	 * in the context of the idle thread */
1473	/* that can happen only if we are called from do_exit() */
1474	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1475		audit_log_exit(context, tsk);
1476	if (!list_empty(&context->killed_trees))
1477		audit_kill_trees(&context->killed_trees);
1478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479	audit_free_context(context);
1480}
1481
1482/**
1483 * audit_syscall_entry - fill in an audit record at syscall entry
1484 * @major: major syscall type (function)
1485 * @a1: additional syscall register 1
1486 * @a2: additional syscall register 2
1487 * @a3: additional syscall register 3
1488 * @a4: additional syscall register 4
1489 *
1490 * Fill in audit context at syscall entry.  This only happens if the
1491 * audit context was created when the task was created and the state or
1492 * filters demand the audit context be built.  If the state from the
1493 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1494 * then the record will be written at syscall exit time (otherwise, it
1495 * will only be written if another part of the kernel requests that it
1496 * be written).
1497 */
1498void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1499			   unsigned long a3, unsigned long a4)
1500{
1501	struct task_struct *tsk = current;
1502	struct audit_context *context = tsk->audit_context;
1503	enum audit_state     state;
1504
1505	if (!context)
1506		return;
1507
1508	BUG_ON(context->in_syscall || context->name_count);
1509
1510	if (!audit_enabled)
 
1511		return;
1512
1513	context->arch	    = syscall_get_arch();
1514	context->major      = major;
1515	context->argv[0]    = a1;
1516	context->argv[1]    = a2;
1517	context->argv[2]    = a3;
1518	context->argv[3]    = a4;
1519
1520	state = context->state;
1521	context->dummy = !audit_n_rules;
1522	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1523		context->prio = 0;
1524		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
 
1525	}
1526	if (state == AUDIT_DISABLED)
1527		return;
1528
 
 
 
 
 
 
1529	context->serial     = 0;
1530	context->ctime      = CURRENT_TIME;
1531	context->in_syscall = 1;
1532	context->current_state  = state;
1533	context->ppid       = 0;
 
1534}
1535
1536/**
1537 * audit_syscall_exit - deallocate audit context after a system call
1538 * @success: success value of the syscall
1539 * @return_code: return value of the syscall
1540 *
1541 * Tear down after system call.  If the audit context has been marked as
1542 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1543 * filtering, or because some other part of the kernel wrote an audit
1544 * message), then write out the syscall information.  In call cases,
1545 * free the names stored from getname().
1546 */
1547void __audit_syscall_exit(int success, long return_code)
1548{
1549	struct task_struct *tsk = current;
1550	struct audit_context *context;
1551
1552	if (success)
1553		success = AUDITSC_SUCCESS;
1554	else
1555		success = AUDITSC_FAILURE;
1556
1557	context = audit_take_context(tsk, success, return_code);
1558	if (!context)
1559		return;
1560
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563
1564	context->in_syscall = 0;
1565	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1566
1567	if (!list_empty(&context->killed_trees))
1568		audit_kill_trees(&context->killed_trees);
1569
1570	audit_free_names(context);
1571	unroll_tree_refs(context, NULL, 0);
1572	audit_free_aux(context);
1573	context->aux = NULL;
1574	context->aux_pids = NULL;
1575	context->target_pid = 0;
1576	context->target_sid = 0;
1577	context->sockaddr_len = 0;
1578	context->type = 0;
1579	context->fds[0] = -1;
1580	if (context->state != AUDIT_RECORD_CONTEXT) {
1581		kfree(context->filterkey);
1582		context->filterkey = NULL;
1583	}
1584	tsk->audit_context = context;
1585}
1586
1587static inline void handle_one(const struct inode *inode)
1588{
1589#ifdef CONFIG_AUDIT_TREE
1590	struct audit_context *context;
1591	struct audit_tree_refs *p;
1592	struct audit_chunk *chunk;
1593	int count;
1594	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1595		return;
1596	context = current->audit_context;
1597	p = context->trees;
1598	count = context->tree_count;
1599	rcu_read_lock();
1600	chunk = audit_tree_lookup(inode);
1601	rcu_read_unlock();
1602	if (!chunk)
1603		return;
1604	if (likely(put_tree_ref(context, chunk)))
1605		return;
1606	if (unlikely(!grow_tree_refs(context))) {
1607		pr_warn("out of memory, audit has lost a tree reference\n");
1608		audit_set_auditable(context);
1609		audit_put_chunk(chunk);
1610		unroll_tree_refs(context, p, count);
1611		return;
1612	}
1613	put_tree_ref(context, chunk);
1614#endif
1615}
1616
1617static void handle_path(const struct dentry *dentry)
1618{
1619#ifdef CONFIG_AUDIT_TREE
1620	struct audit_context *context;
1621	struct audit_tree_refs *p;
1622	const struct dentry *d, *parent;
1623	struct audit_chunk *drop;
1624	unsigned long seq;
1625	int count;
1626
1627	context = current->audit_context;
1628	p = context->trees;
1629	count = context->tree_count;
1630retry:
1631	drop = NULL;
1632	d = dentry;
1633	rcu_read_lock();
1634	seq = read_seqbegin(&rename_lock);
1635	for(;;) {
1636		struct inode *inode = d_backing_inode(d);
1637		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1638			struct audit_chunk *chunk;
1639			chunk = audit_tree_lookup(inode);
1640			if (chunk) {
1641				if (unlikely(!put_tree_ref(context, chunk))) {
1642					drop = chunk;
1643					break;
1644				}
1645			}
1646		}
1647		parent = d->d_parent;
1648		if (parent == d)
1649			break;
1650		d = parent;
1651	}
1652	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1653		rcu_read_unlock();
1654		if (!drop) {
1655			/* just a race with rename */
1656			unroll_tree_refs(context, p, count);
1657			goto retry;
1658		}
1659		audit_put_chunk(drop);
1660		if (grow_tree_refs(context)) {
1661			/* OK, got more space */
1662			unroll_tree_refs(context, p, count);
1663			goto retry;
1664		}
1665		/* too bad */
1666		pr_warn("out of memory, audit has lost a tree reference\n");
1667		unroll_tree_refs(context, p, count);
1668		audit_set_auditable(context);
1669		return;
1670	}
1671	rcu_read_unlock();
1672#endif
1673}
1674
1675static struct audit_names *audit_alloc_name(struct audit_context *context,
1676						unsigned char type)
1677{
1678	struct audit_names *aname;
1679
1680	if (context->name_count < AUDIT_NAMES) {
1681		aname = &context->preallocated_names[context->name_count];
1682		memset(aname, 0, sizeof(*aname));
1683	} else {
1684		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1685		if (!aname)
1686			return NULL;
1687		aname->should_free = true;
1688	}
1689
1690	aname->ino = AUDIT_INO_UNSET;
1691	aname->type = type;
1692	list_add_tail(&aname->list, &context->names_list);
1693
1694	context->name_count++;
1695	return aname;
1696}
1697
1698/**
1699 * audit_reusename - fill out filename with info from existing entry
1700 * @uptr: userland ptr to pathname
1701 *
1702 * Search the audit_names list for the current audit context. If there is an
1703 * existing entry with a matching "uptr" then return the filename
1704 * associated with that audit_name. If not, return NULL.
1705 */
1706struct filename *
1707__audit_reusename(const __user char *uptr)
1708{
1709	struct audit_context *context = current->audit_context;
1710	struct audit_names *n;
1711
1712	list_for_each_entry(n, &context->names_list, list) {
1713		if (!n->name)
1714			continue;
1715		if (n->name->uptr == uptr) {
1716			n->name->refcnt++;
1717			return n->name;
1718		}
1719	}
1720	return NULL;
1721}
1722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723/**
1724 * audit_getname - add a name to the list
1725 * @name: name to add
1726 *
1727 * Add a name to the list of audit names for this context.
1728 * Called from fs/namei.c:getname().
1729 */
1730void __audit_getname(struct filename *name)
1731{
1732	struct audit_context *context = current->audit_context;
1733	struct audit_names *n;
1734
1735	if (!context->in_syscall)
1736		return;
1737
1738	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1739	if (!n)
1740		return;
1741
1742	n->name = name;
1743	n->name_len = AUDIT_NAME_FULL;
1744	name->aname = n;
1745	name->refcnt++;
1746
1747	if (!context->pwd.dentry)
1748		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749}
1750
1751/**
1752 * __audit_inode - store the inode and device from a lookup
1753 * @name: name being audited
1754 * @dentry: dentry being audited
1755 * @flags: attributes for this particular entry
1756 */
1757void __audit_inode(struct filename *name, const struct dentry *dentry,
1758		   unsigned int flags)
1759{
1760	struct audit_context *context = current->audit_context;
1761	struct inode *inode = d_backing_inode(dentry);
1762	struct audit_names *n;
1763	bool parent = flags & AUDIT_INODE_PARENT;
 
 
 
1764
1765	if (!context->in_syscall)
1766		return;
1767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768	if (!name)
1769		goto out_alloc;
1770
1771	/*
1772	 * If we have a pointer to an audit_names entry already, then we can
1773	 * just use it directly if the type is correct.
1774	 */
1775	n = name->aname;
1776	if (n) {
1777		if (parent) {
1778			if (n->type == AUDIT_TYPE_PARENT ||
1779			    n->type == AUDIT_TYPE_UNKNOWN)
1780				goto out;
1781		} else {
1782			if (n->type != AUDIT_TYPE_PARENT)
1783				goto out;
1784		}
1785	}
1786
1787	list_for_each_entry_reverse(n, &context->names_list, list) {
1788		if (n->ino) {
1789			/* valid inode number, use that for the comparison */
1790			if (n->ino != inode->i_ino ||
1791			    n->dev != inode->i_sb->s_dev)
1792				continue;
1793		} else if (n->name) {
1794			/* inode number has not been set, check the name */
1795			if (strcmp(n->name->name, name->name))
1796				continue;
1797		} else
1798			/* no inode and no name (?!) ... this is odd ... */
1799			continue;
1800
1801		/* match the correct record type */
1802		if (parent) {
1803			if (n->type == AUDIT_TYPE_PARENT ||
1804			    n->type == AUDIT_TYPE_UNKNOWN)
1805				goto out;
1806		} else {
1807			if (n->type != AUDIT_TYPE_PARENT)
1808				goto out;
1809		}
1810	}
1811
1812out_alloc:
1813	/* unable to find an entry with both a matching name and type */
1814	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1815	if (!n)
1816		return;
1817	if (name) {
1818		n->name = name;
1819		name->refcnt++;
1820	}
1821
1822out:
1823	if (parent) {
1824		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1825		n->type = AUDIT_TYPE_PARENT;
1826		if (flags & AUDIT_INODE_HIDDEN)
1827			n->hidden = true;
1828	} else {
1829		n->name_len = AUDIT_NAME_FULL;
1830		n->type = AUDIT_TYPE_NORMAL;
1831	}
1832	handle_path(dentry);
1833	audit_copy_inode(n, dentry, inode);
1834}
1835
1836void __audit_file(const struct file *file)
1837{
1838	__audit_inode(NULL, file->f_path.dentry, 0);
1839}
1840
1841/**
1842 * __audit_inode_child - collect inode info for created/removed objects
1843 * @parent: inode of dentry parent
1844 * @dentry: dentry being audited
1845 * @type:   AUDIT_TYPE_* value that we're looking for
1846 *
1847 * For syscalls that create or remove filesystem objects, audit_inode
1848 * can only collect information for the filesystem object's parent.
1849 * This call updates the audit context with the child's information.
1850 * Syscalls that create a new filesystem object must be hooked after
1851 * the object is created.  Syscalls that remove a filesystem object
1852 * must be hooked prior, in order to capture the target inode during
1853 * unsuccessful attempts.
1854 */
1855void __audit_inode_child(struct inode *parent,
1856			 const struct dentry *dentry,
1857			 const unsigned char type)
1858{
1859	struct audit_context *context = current->audit_context;
1860	struct inode *inode = d_backing_inode(dentry);
1861	const char *dname = dentry->d_name.name;
1862	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
 
 
 
1863
1864	if (!context->in_syscall)
1865		return;
1866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867	if (inode)
1868		handle_one(inode);
1869
1870	/* look for a parent entry first */
1871	list_for_each_entry(n, &context->names_list, list) {
1872		if (!n->name ||
1873		    (n->type != AUDIT_TYPE_PARENT &&
1874		     n->type != AUDIT_TYPE_UNKNOWN))
1875			continue;
1876
1877		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1878		    !audit_compare_dname_path(dname,
1879					      n->name->name, n->name_len)) {
1880			if (n->type == AUDIT_TYPE_UNKNOWN)
1881				n->type = AUDIT_TYPE_PARENT;
1882			found_parent = n;
1883			break;
1884		}
1885	}
1886
1887	/* is there a matching child entry? */
1888	list_for_each_entry(n, &context->names_list, list) {
1889		/* can only match entries that have a name */
1890		if (!n->name ||
1891		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1892			continue;
1893
1894		if (!strcmp(dname, n->name->name) ||
1895		    !audit_compare_dname_path(dname, n->name->name,
1896						found_parent ?
1897						found_parent->name_len :
1898						AUDIT_NAME_FULL)) {
1899			if (n->type == AUDIT_TYPE_UNKNOWN)
1900				n->type = type;
1901			found_child = n;
1902			break;
1903		}
1904	}
1905
1906	if (!found_parent) {
1907		/* create a new, "anonymous" parent record */
1908		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1909		if (!n)
1910			return;
1911		audit_copy_inode(n, NULL, parent);
1912	}
1913
1914	if (!found_child) {
1915		found_child = audit_alloc_name(context, type);
1916		if (!found_child)
1917			return;
1918
1919		/* Re-use the name belonging to the slot for a matching parent
1920		 * directory. All names for this context are relinquished in
1921		 * audit_free_names() */
1922		if (found_parent) {
1923			found_child->name = found_parent->name;
1924			found_child->name_len = AUDIT_NAME_FULL;
1925			found_child->name->refcnt++;
1926		}
1927	}
1928
1929	if (inode)
1930		audit_copy_inode(found_child, dentry, inode);
1931	else
1932		found_child->ino = AUDIT_INO_UNSET;
1933}
1934EXPORT_SYMBOL_GPL(__audit_inode_child);
1935
1936/**
1937 * auditsc_get_stamp - get local copies of audit_context values
1938 * @ctx: audit_context for the task
1939 * @t: timespec to store time recorded in the audit_context
1940 * @serial: serial value that is recorded in the audit_context
1941 *
1942 * Also sets the context as auditable.
1943 */
1944int auditsc_get_stamp(struct audit_context *ctx,
1945		       struct timespec *t, unsigned int *serial)
1946{
1947	if (!ctx->in_syscall)
1948		return 0;
1949	if (!ctx->serial)
1950		ctx->serial = audit_serial();
1951	t->tv_sec  = ctx->ctime.tv_sec;
1952	t->tv_nsec = ctx->ctime.tv_nsec;
1953	*serial    = ctx->serial;
1954	if (!ctx->prio) {
1955		ctx->prio = 1;
1956		ctx->current_state = AUDIT_RECORD_CONTEXT;
1957	}
1958	return 1;
1959}
1960
1961/* global counter which is incremented every time something logs in */
1962static atomic_t session_id = ATOMIC_INIT(0);
1963
1964static int audit_set_loginuid_perm(kuid_t loginuid)
1965{
1966	/* if we are unset, we don't need privs */
1967	if (!audit_loginuid_set(current))
1968		return 0;
1969	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1970	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1971		return -EPERM;
1972	/* it is set, you need permission */
1973	if (!capable(CAP_AUDIT_CONTROL))
1974		return -EPERM;
1975	/* reject if this is not an unset and we don't allow that */
1976	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1977		return -EPERM;
1978	return 0;
1979}
1980
1981static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1982				   unsigned int oldsessionid, unsigned int sessionid,
1983				   int rc)
1984{
1985	struct audit_buffer *ab;
1986	uid_t uid, oldloginuid, loginuid;
1987	struct tty_struct *tty;
1988
1989	if (!audit_enabled)
1990		return;
1991
1992	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1993	if (!ab)
1994		return;
1995
1996	uid = from_kuid(&init_user_ns, task_uid(current));
1997	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1998	loginuid = from_kuid(&init_user_ns, kloginuid),
1999	tty = audit_get_tty(current);
2000
2001	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2002	audit_log_task_context(ab);
2003	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2004			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2005			 oldsessionid, sessionid, !rc);
2006	audit_put_tty(tty);
2007	audit_log_end(ab);
2008}
2009
2010/**
2011 * audit_set_loginuid - set current task's audit_context loginuid
2012 * @loginuid: loginuid value
2013 *
2014 * Returns 0.
2015 *
2016 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2017 */
2018int audit_set_loginuid(kuid_t loginuid)
2019{
2020	struct task_struct *task = current;
2021	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2022	kuid_t oldloginuid;
2023	int rc;
2024
2025	oldloginuid = audit_get_loginuid(current);
2026	oldsessionid = audit_get_sessionid(current);
2027
2028	rc = audit_set_loginuid_perm(loginuid);
2029	if (rc)
2030		goto out;
2031
2032	/* are we setting or clearing? */
2033	if (uid_valid(loginuid)) {
2034		sessionid = (unsigned int)atomic_inc_return(&session_id);
2035		if (unlikely(sessionid == (unsigned int)-1))
2036			sessionid = (unsigned int)atomic_inc_return(&session_id);
2037	}
2038
2039	task->sessionid = sessionid;
2040	task->loginuid = loginuid;
2041out:
2042	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2043	return rc;
2044}
2045
2046/**
2047 * __audit_mq_open - record audit data for a POSIX MQ open
2048 * @oflag: open flag
2049 * @mode: mode bits
2050 * @attr: queue attributes
2051 *
2052 */
2053void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2054{
2055	struct audit_context *context = current->audit_context;
2056
2057	if (attr)
2058		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2059	else
2060		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2061
2062	context->mq_open.oflag = oflag;
2063	context->mq_open.mode = mode;
2064
2065	context->type = AUDIT_MQ_OPEN;
2066}
2067
2068/**
2069 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
2072 * @msg_prio: Message priority
2073 * @abs_timeout: Message timeout in absolute time
2074 *
2075 */
2076void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2077			const struct timespec *abs_timeout)
2078{
2079	struct audit_context *context = current->audit_context;
2080	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2081
2082	if (abs_timeout)
2083		memcpy(p, abs_timeout, sizeof(struct timespec));
2084	else
2085		memset(p, 0, sizeof(struct timespec));
2086
2087	context->mq_sendrecv.mqdes = mqdes;
2088	context->mq_sendrecv.msg_len = msg_len;
2089	context->mq_sendrecv.msg_prio = msg_prio;
2090
2091	context->type = AUDIT_MQ_SENDRECV;
2092}
2093
2094/**
2095 * __audit_mq_notify - record audit data for a POSIX MQ notify
2096 * @mqdes: MQ descriptor
2097 * @notification: Notification event
2098 *
2099 */
2100
2101void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2102{
2103	struct audit_context *context = current->audit_context;
2104
2105	if (notification)
2106		context->mq_notify.sigev_signo = notification->sigev_signo;
2107	else
2108		context->mq_notify.sigev_signo = 0;
2109
2110	context->mq_notify.mqdes = mqdes;
2111	context->type = AUDIT_MQ_NOTIFY;
2112}
2113
2114/**
2115 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2116 * @mqdes: MQ descriptor
2117 * @mqstat: MQ flags
2118 *
2119 */
2120void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2121{
2122	struct audit_context *context = current->audit_context;
2123	context->mq_getsetattr.mqdes = mqdes;
2124	context->mq_getsetattr.mqstat = *mqstat;
2125	context->type = AUDIT_MQ_GETSETATTR;
2126}
2127
2128/**
2129 * audit_ipc_obj - record audit data for ipc object
2130 * @ipcp: ipc permissions
2131 *
2132 */
2133void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2134{
2135	struct audit_context *context = current->audit_context;
2136	context->ipc.uid = ipcp->uid;
2137	context->ipc.gid = ipcp->gid;
2138	context->ipc.mode = ipcp->mode;
2139	context->ipc.has_perm = 0;
2140	security_ipc_getsecid(ipcp, &context->ipc.osid);
2141	context->type = AUDIT_IPC;
2142}
2143
2144/**
2145 * audit_ipc_set_perm - record audit data for new ipc permissions
2146 * @qbytes: msgq bytes
2147 * @uid: msgq user id
2148 * @gid: msgq group id
2149 * @mode: msgq mode (permissions)
2150 *
2151 * Called only after audit_ipc_obj().
2152 */
2153void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2154{
2155	struct audit_context *context = current->audit_context;
2156
2157	context->ipc.qbytes = qbytes;
2158	context->ipc.perm_uid = uid;
2159	context->ipc.perm_gid = gid;
2160	context->ipc.perm_mode = mode;
2161	context->ipc.has_perm = 1;
2162}
2163
2164void __audit_bprm(struct linux_binprm *bprm)
2165{
2166	struct audit_context *context = current->audit_context;
2167
2168	context->type = AUDIT_EXECVE;
2169	context->execve.argc = bprm->argc;
2170}
2171
2172
2173/**
2174 * audit_socketcall - record audit data for sys_socketcall
2175 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2176 * @args: args array
2177 *
2178 */
2179int __audit_socketcall(int nargs, unsigned long *args)
2180{
2181	struct audit_context *context = current->audit_context;
2182
2183	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2184		return -EINVAL;
2185	context->type = AUDIT_SOCKETCALL;
2186	context->socketcall.nargs = nargs;
2187	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2188	return 0;
2189}
2190
2191/**
2192 * __audit_fd_pair - record audit data for pipe and socketpair
2193 * @fd1: the first file descriptor
2194 * @fd2: the second file descriptor
2195 *
2196 */
2197void __audit_fd_pair(int fd1, int fd2)
2198{
2199	struct audit_context *context = current->audit_context;
2200	context->fds[0] = fd1;
2201	context->fds[1] = fd2;
2202}
2203
2204/**
2205 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2206 * @len: data length in user space
2207 * @a: data address in kernel space
2208 *
2209 * Returns 0 for success or NULL context or < 0 on error.
2210 */
2211int __audit_sockaddr(int len, void *a)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (!context->sockaddr) {
2216		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2217		if (!p)
2218			return -ENOMEM;
2219		context->sockaddr = p;
2220	}
2221
2222	context->sockaddr_len = len;
2223	memcpy(context->sockaddr, a, len);
2224	return 0;
2225}
2226
2227void __audit_ptrace(struct task_struct *t)
2228{
2229	struct audit_context *context = current->audit_context;
2230
2231	context->target_pid = task_tgid_nr(t);
2232	context->target_auid = audit_get_loginuid(t);
2233	context->target_uid = task_uid(t);
2234	context->target_sessionid = audit_get_sessionid(t);
2235	security_task_getsecid(t, &context->target_sid);
2236	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2237}
2238
2239/**
2240 * audit_signal_info - record signal info for shutting down audit subsystem
2241 * @sig: signal value
2242 * @t: task being signaled
2243 *
2244 * If the audit subsystem is being terminated, record the task (pid)
2245 * and uid that is doing that.
2246 */
2247int __audit_signal_info(int sig, struct task_struct *t)
2248{
2249	struct audit_aux_data_pids *axp;
2250	struct task_struct *tsk = current;
2251	struct audit_context *ctx = tsk->audit_context;
2252	kuid_t uid = current_uid(), t_uid = task_uid(t);
2253
2254	if (auditd_test_task(t)) {
2255		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2256			audit_sig_pid = task_tgid_nr(tsk);
2257			if (uid_valid(tsk->loginuid))
2258				audit_sig_uid = tsk->loginuid;
2259			else
2260				audit_sig_uid = uid;
2261			security_task_getsecid(tsk, &audit_sig_sid);
2262		}
2263		if (!audit_signals || audit_dummy_context())
2264			return 0;
2265	}
2266
2267	/* optimize the common case by putting first signal recipient directly
2268	 * in audit_context */
2269	if (!ctx->target_pid) {
2270		ctx->target_pid = task_tgid_nr(t);
2271		ctx->target_auid = audit_get_loginuid(t);
2272		ctx->target_uid = t_uid;
2273		ctx->target_sessionid = audit_get_sessionid(t);
2274		security_task_getsecid(t, &ctx->target_sid);
2275		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2276		return 0;
2277	}
2278
2279	axp = (void *)ctx->aux_pids;
2280	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2281		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2282		if (!axp)
2283			return -ENOMEM;
2284
2285		axp->d.type = AUDIT_OBJ_PID;
2286		axp->d.next = ctx->aux_pids;
2287		ctx->aux_pids = (void *)axp;
2288	}
2289	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2290
2291	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2292	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2293	axp->target_uid[axp->pid_count] = t_uid;
2294	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2295	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2296	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2297	axp->pid_count++;
2298
2299	return 0;
2300}
2301
2302/**
2303 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2304 * @bprm: pointer to the bprm being processed
2305 * @new: the proposed new credentials
2306 * @old: the old credentials
2307 *
2308 * Simply check if the proc already has the caps given by the file and if not
2309 * store the priv escalation info for later auditing at the end of the syscall
2310 *
2311 * -Eric
2312 */
2313int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2314			   const struct cred *new, const struct cred *old)
2315{
2316	struct audit_aux_data_bprm_fcaps *ax;
2317	struct audit_context *context = current->audit_context;
2318	struct cpu_vfs_cap_data vcaps;
2319
2320	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2321	if (!ax)
2322		return -ENOMEM;
2323
2324	ax->d.type = AUDIT_BPRM_FCAPS;
2325	ax->d.next = context->aux;
2326	context->aux = (void *)ax;
2327
2328	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2329
2330	ax->fcap.permitted = vcaps.permitted;
2331	ax->fcap.inheritable = vcaps.inheritable;
2332	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2333	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2334
2335	ax->old_pcap.permitted   = old->cap_permitted;
2336	ax->old_pcap.inheritable = old->cap_inheritable;
2337	ax->old_pcap.effective   = old->cap_effective;
 
2338
2339	ax->new_pcap.permitted   = new->cap_permitted;
2340	ax->new_pcap.inheritable = new->cap_inheritable;
2341	ax->new_pcap.effective   = new->cap_effective;
 
2342	return 0;
2343}
2344
2345/**
2346 * __audit_log_capset - store information about the arguments to the capset syscall
2347 * @new: the new credentials
2348 * @old: the old (current) credentials
2349 *
2350 * Record the arguments userspace sent to sys_capset for later printing by the
2351 * audit system if applicable
2352 */
2353void __audit_log_capset(const struct cred *new, const struct cred *old)
2354{
2355	struct audit_context *context = current->audit_context;
2356	context->capset.pid = task_tgid_nr(current);
2357	context->capset.cap.effective   = new->cap_effective;
2358	context->capset.cap.inheritable = new->cap_effective;
2359	context->capset.cap.permitted   = new->cap_permitted;
 
2360	context->type = AUDIT_CAPSET;
2361}
2362
2363void __audit_mmap_fd(int fd, int flags)
2364{
2365	struct audit_context *context = current->audit_context;
2366	context->mmap.fd = fd;
2367	context->mmap.flags = flags;
2368	context->type = AUDIT_MMAP;
2369}
2370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371static void audit_log_task(struct audit_buffer *ab)
2372{
2373	kuid_t auid, uid;
2374	kgid_t gid;
2375	unsigned int sessionid;
2376	char comm[sizeof(current->comm)];
2377
2378	auid = audit_get_loginuid(current);
2379	sessionid = audit_get_sessionid(current);
2380	current_uid_gid(&uid, &gid);
2381
2382	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2383			 from_kuid(&init_user_ns, auid),
2384			 from_kuid(&init_user_ns, uid),
2385			 from_kgid(&init_user_ns, gid),
2386			 sessionid);
2387	audit_log_task_context(ab);
2388	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2389	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2390	audit_log_d_path_exe(ab, current->mm);
2391}
2392
2393/**
2394 * audit_core_dumps - record information about processes that end abnormally
2395 * @signr: signal value
2396 *
2397 * If a process ends with a core dump, something fishy is going on and we
2398 * should record the event for investigation.
2399 */
2400void audit_core_dumps(long signr)
2401{
2402	struct audit_buffer *ab;
2403
2404	if (!audit_enabled)
2405		return;
2406
2407	if (signr == SIGQUIT)	/* don't care for those */
2408		return;
2409
2410	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2411	if (unlikely(!ab))
2412		return;
2413	audit_log_task(ab);
2414	audit_log_format(ab, " sig=%ld", signr);
2415	audit_log_end(ab);
2416}
2417
2418void __audit_seccomp(unsigned long syscall, long signr, int code)
 
 
 
 
 
 
 
 
 
 
 
 
2419{
2420	struct audit_buffer *ab;
2421
2422	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2423	if (unlikely(!ab))
2424		return;
2425	audit_log_task(ab);
2426	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2427			 signr, syscall_get_arch(), syscall,
2428			 in_compat_syscall(), KSTK_EIP(current), code);
2429	audit_log_end(ab);
2430}
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432struct list_head *audit_killed_trees(void)
2433{
2434	struct audit_context *ctx = current->audit_context;
2435	if (likely(!ctx || !ctx->in_syscall))
2436		return NULL;
2437	return &ctx->killed_trees;
2438}
v5.9
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78#include <uapi/linux/netfilter/nf_tables.h>
  79
  80#include "audit.h"
  81
  82/* flags stating the success for a syscall */
  83#define AUDITSC_INVALID 0
  84#define AUDITSC_SUCCESS 1
  85#define AUDITSC_FAILURE 2
  86
  87/* no execve audit message should be longer than this (userspace limits),
  88 * see the note near the top of audit_log_execve_info() about this value */
  89#define MAX_EXECVE_AUDIT_LEN 7500
  90
  91/* max length to print of cmdline/proctitle value during audit */
  92#define MAX_PROCTITLE_AUDIT_LEN 128
  93
  94/* number of audit rules */
  95int audit_n_rules;
  96
  97/* determines whether we collect data for signals sent */
  98int audit_signals;
  99
 100struct audit_aux_data {
 101	struct audit_aux_data	*next;
 102	int			type;
 103};
 104
 105#define AUDIT_AUX_IPCPERM	0
 106
 107/* Number of target pids per aux struct. */
 108#define AUDIT_AUX_PIDS	16
 109
 110struct audit_aux_data_pids {
 111	struct audit_aux_data	d;
 112	pid_t			target_pid[AUDIT_AUX_PIDS];
 113	kuid_t			target_auid[AUDIT_AUX_PIDS];
 114	kuid_t			target_uid[AUDIT_AUX_PIDS];
 115	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 116	u32			target_sid[AUDIT_AUX_PIDS];
 117	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 118	int			pid_count;
 119};
 120
 121struct audit_aux_data_bprm_fcaps {
 122	struct audit_aux_data	d;
 123	struct audit_cap_data	fcap;
 124	unsigned int		fcap_ver;
 125	struct audit_cap_data	old_pcap;
 126	struct audit_cap_data	new_pcap;
 127};
 128
 129struct audit_tree_refs {
 130	struct audit_tree_refs *next;
 131	struct audit_chunk *c[31];
 132};
 133
 134struct audit_nfcfgop_tab {
 135	enum audit_nfcfgop	op;
 136	const char		*s;
 137};
 138
 139static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 140	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 141	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 142	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 143	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 144	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 145	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 146	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 147	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 148	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 149	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 150	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 151	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 152	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 153	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 154	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 155	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 156	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 157	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 158	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 159	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 160};
 161
 162static int audit_match_perm(struct audit_context *ctx, int mask)
 163{
 164	unsigned n;
 165	if (unlikely(!ctx))
 166		return 0;
 167	n = ctx->major;
 168
 169	switch (audit_classify_syscall(ctx->arch, n)) {
 170	case 0:	/* native */
 171		if ((mask & AUDIT_PERM_WRITE) &&
 172		     audit_match_class(AUDIT_CLASS_WRITE, n))
 173			return 1;
 174		if ((mask & AUDIT_PERM_READ) &&
 175		     audit_match_class(AUDIT_CLASS_READ, n))
 176			return 1;
 177		if ((mask & AUDIT_PERM_ATTR) &&
 178		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 179			return 1;
 180		return 0;
 181	case 1: /* 32bit on biarch */
 182		if ((mask & AUDIT_PERM_WRITE) &&
 183		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 184			return 1;
 185		if ((mask & AUDIT_PERM_READ) &&
 186		     audit_match_class(AUDIT_CLASS_READ_32, n))
 187			return 1;
 188		if ((mask & AUDIT_PERM_ATTR) &&
 189		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 190			return 1;
 191		return 0;
 192	case 2: /* open */
 193		return mask & ACC_MODE(ctx->argv[1]);
 194	case 3: /* openat */
 195		return mask & ACC_MODE(ctx->argv[2]);
 196	case 4: /* socketcall */
 197		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 198	case 5: /* execve */
 199		return mask & AUDIT_PERM_EXEC;
 200	default:
 201		return 0;
 202	}
 203}
 204
 205static int audit_match_filetype(struct audit_context *ctx, int val)
 206{
 207	struct audit_names *n;
 208	umode_t mode = (umode_t)val;
 209
 210	if (unlikely(!ctx))
 211		return 0;
 212
 213	list_for_each_entry(n, &ctx->names_list, list) {
 214		if ((n->ino != AUDIT_INO_UNSET) &&
 215		    ((n->mode & S_IFMT) == mode))
 216			return 1;
 217	}
 218
 219	return 0;
 220}
 221
 222/*
 223 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 224 * ->first_trees points to its beginning, ->trees - to the current end of data.
 225 * ->tree_count is the number of free entries in array pointed to by ->trees.
 226 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 227 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 228 * it's going to remain 1-element for almost any setup) until we free context itself.
 229 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 230 */
 231
 
 232static void audit_set_auditable(struct audit_context *ctx)
 233{
 234	if (!ctx->prio) {
 235		ctx->prio = 1;
 236		ctx->current_state = AUDIT_RECORD_CONTEXT;
 237	}
 238}
 239
 240static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 241{
 242	struct audit_tree_refs *p = ctx->trees;
 243	int left = ctx->tree_count;
 244	if (likely(left)) {
 245		p->c[--left] = chunk;
 246		ctx->tree_count = left;
 247		return 1;
 248	}
 249	if (!p)
 250		return 0;
 251	p = p->next;
 252	if (p) {
 253		p->c[30] = chunk;
 254		ctx->trees = p;
 255		ctx->tree_count = 30;
 256		return 1;
 257	}
 258	return 0;
 259}
 260
 261static int grow_tree_refs(struct audit_context *ctx)
 262{
 263	struct audit_tree_refs *p = ctx->trees;
 264	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 265	if (!ctx->trees) {
 266		ctx->trees = p;
 267		return 0;
 268	}
 269	if (p)
 270		p->next = ctx->trees;
 271	else
 272		ctx->first_trees = ctx->trees;
 273	ctx->tree_count = 31;
 274	return 1;
 275}
 
 276
 277static void unroll_tree_refs(struct audit_context *ctx,
 278		      struct audit_tree_refs *p, int count)
 279{
 
 280	struct audit_tree_refs *q;
 281	int n;
 282	if (!p) {
 283		/* we started with empty chain */
 284		p = ctx->first_trees;
 285		count = 31;
 286		/* if the very first allocation has failed, nothing to do */
 287		if (!p)
 288			return;
 289	}
 290	n = count;
 291	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 292		while (n--) {
 293			audit_put_chunk(q->c[n]);
 294			q->c[n] = NULL;
 295		}
 296	}
 297	while (n-- > ctx->tree_count) {
 298		audit_put_chunk(q->c[n]);
 299		q->c[n] = NULL;
 300	}
 301	ctx->trees = p;
 302	ctx->tree_count = count;
 
 303}
 304
 305static void free_tree_refs(struct audit_context *ctx)
 306{
 307	struct audit_tree_refs *p, *q;
 308	for (p = ctx->first_trees; p; p = q) {
 309		q = p->next;
 310		kfree(p);
 311	}
 312}
 313
 314static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 315{
 
 316	struct audit_tree_refs *p;
 317	int n;
 318	if (!tree)
 319		return 0;
 320	/* full ones */
 321	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 322		for (n = 0; n < 31; n++)
 323			if (audit_tree_match(p->c[n], tree))
 324				return 1;
 325	}
 326	/* partial */
 327	if (p) {
 328		for (n = ctx->tree_count; n < 31; n++)
 329			if (audit_tree_match(p->c[n], tree))
 330				return 1;
 331	}
 
 332	return 0;
 333}
 334
 335static int audit_compare_uid(kuid_t uid,
 336			     struct audit_names *name,
 337			     struct audit_field *f,
 338			     struct audit_context *ctx)
 339{
 340	struct audit_names *n;
 341	int rc;
 342 
 343	if (name) {
 344		rc = audit_uid_comparator(uid, f->op, name->uid);
 345		if (rc)
 346			return rc;
 347	}
 348 
 349	if (ctx) {
 350		list_for_each_entry(n, &ctx->names_list, list) {
 351			rc = audit_uid_comparator(uid, f->op, n->uid);
 352			if (rc)
 353				return rc;
 354		}
 355	}
 356	return 0;
 357}
 358
 359static int audit_compare_gid(kgid_t gid,
 360			     struct audit_names *name,
 361			     struct audit_field *f,
 362			     struct audit_context *ctx)
 363{
 364	struct audit_names *n;
 365	int rc;
 366 
 367	if (name) {
 368		rc = audit_gid_comparator(gid, f->op, name->gid);
 369		if (rc)
 370			return rc;
 371	}
 372 
 373	if (ctx) {
 374		list_for_each_entry(n, &ctx->names_list, list) {
 375			rc = audit_gid_comparator(gid, f->op, n->gid);
 376			if (rc)
 377				return rc;
 378		}
 379	}
 380	return 0;
 381}
 382
 383static int audit_field_compare(struct task_struct *tsk,
 384			       const struct cred *cred,
 385			       struct audit_field *f,
 386			       struct audit_context *ctx,
 387			       struct audit_names *name)
 388{
 389	switch (f->val) {
 390	/* process to file object comparisons */
 391	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 392		return audit_compare_uid(cred->uid, name, f, ctx);
 393	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 394		return audit_compare_gid(cred->gid, name, f, ctx);
 395	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->euid, name, f, ctx);
 397	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->egid, name, f, ctx);
 399	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 400		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 401	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 402		return audit_compare_uid(cred->suid, name, f, ctx);
 403	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 404		return audit_compare_gid(cred->sgid, name, f, ctx);
 405	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 406		return audit_compare_uid(cred->fsuid, name, f, ctx);
 407	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 408		return audit_compare_gid(cred->fsgid, name, f, ctx);
 409	/* uid comparisons */
 410	case AUDIT_COMPARE_UID_TO_AUID:
 411		return audit_uid_comparator(cred->uid, f->op,
 412					    audit_get_loginuid(tsk));
 413	case AUDIT_COMPARE_UID_TO_EUID:
 414		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 415	case AUDIT_COMPARE_UID_TO_SUID:
 416		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 417	case AUDIT_COMPARE_UID_TO_FSUID:
 418		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 419	/* auid comparisons */
 420	case AUDIT_COMPARE_AUID_TO_EUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->euid);
 423	case AUDIT_COMPARE_AUID_TO_SUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->suid);
 426	case AUDIT_COMPARE_AUID_TO_FSUID:
 427		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 428					    cred->fsuid);
 429	/* euid comparisons */
 430	case AUDIT_COMPARE_EUID_TO_SUID:
 431		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 432	case AUDIT_COMPARE_EUID_TO_FSUID:
 433		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 434	/* suid comparisons */
 435	case AUDIT_COMPARE_SUID_TO_FSUID:
 436		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 437	/* gid comparisons */
 438	case AUDIT_COMPARE_GID_TO_EGID:
 439		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 440	case AUDIT_COMPARE_GID_TO_SGID:
 441		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 442	case AUDIT_COMPARE_GID_TO_FSGID:
 443		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 444	/* egid comparisons */
 445	case AUDIT_COMPARE_EGID_TO_SGID:
 446		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 447	case AUDIT_COMPARE_EGID_TO_FSGID:
 448		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 449	/* sgid comparison */
 450	case AUDIT_COMPARE_SGID_TO_FSGID:
 451		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 452	default:
 453		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 454		return 0;
 455	}
 456	return 0;
 457}
 458
 459/* Determine if any context name data matches a rule's watch data */
 460/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 461 * otherwise.
 462 *
 463 * If task_creation is true, this is an explicit indication that we are
 464 * filtering a task rule at task creation time.  This and tsk == current are
 465 * the only situations where tsk->cred may be accessed without an rcu read lock.
 466 */
 467static int audit_filter_rules(struct task_struct *tsk,
 468			      struct audit_krule *rule,
 469			      struct audit_context *ctx,
 470			      struct audit_names *name,
 471			      enum audit_state *state,
 472			      bool task_creation)
 473{
 474	const struct cred *cred;
 475	int i, need_sid = 1;
 476	u32 sid;
 477	unsigned int sessionid;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					security_task_getsecid(tsk, &sid);
 673					need_sid = 0;
 674				}
 675				result = security_audit_rule_match(sid, f->type,
 676								   f->op,
 677								   f->lsm_rule);
 
 678			}
 679			break;
 680		case AUDIT_OBJ_USER:
 681		case AUDIT_OBJ_ROLE:
 682		case AUDIT_OBJ_TYPE:
 683		case AUDIT_OBJ_LEV_LOW:
 684		case AUDIT_OBJ_LEV_HIGH:
 685			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 686			   also applies here */
 687			if (f->lsm_rule) {
 688				/* Find files that match */
 689				if (name) {
 690					result = security_audit_rule_match(
 691								name->osid,
 692								f->type,
 693								f->op,
 694								f->lsm_rule);
 695				} else if (ctx) {
 696					list_for_each_entry(n, &ctx->names_list, list) {
 697						if (security_audit_rule_match(
 698								n->osid,
 699								f->type,
 700								f->op,
 701								f->lsm_rule)) {
 702							++result;
 703							break;
 704						}
 705					}
 706				}
 707				/* Find ipc objects that match */
 708				if (!ctx || ctx->type != AUDIT_IPC)
 709					break;
 710				if (security_audit_rule_match(ctx->ipc.osid,
 711							      f->type, f->op,
 712							      f->lsm_rule))
 713					++result;
 714			}
 715			break;
 716		case AUDIT_ARG0:
 717		case AUDIT_ARG1:
 718		case AUDIT_ARG2:
 719		case AUDIT_ARG3:
 720			if (ctx)
 721				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 722			break;
 723		case AUDIT_FILTERKEY:
 724			/* ignore this field for filtering */
 725			result = 1;
 726			break;
 727		case AUDIT_PERM:
 728			result = audit_match_perm(ctx, f->val);
 729			if (f->op == Audit_not_equal)
 730				result = !result;
 731			break;
 732		case AUDIT_FILETYPE:
 733			result = audit_match_filetype(ctx, f->val);
 734			if (f->op == Audit_not_equal)
 735				result = !result;
 736			break;
 737		case AUDIT_FIELD_COMPARE:
 738			result = audit_field_compare(tsk, cred, f, ctx, name);
 739			break;
 740		}
 741		if (!result)
 742			return 0;
 743	}
 744
 745	if (ctx) {
 746		if (rule->prio <= ctx->prio)
 747			return 0;
 748		if (rule->filterkey) {
 749			kfree(ctx->filterkey);
 750			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 751		}
 752		ctx->prio = rule->prio;
 753	}
 754	switch (rule->action) {
 755	case AUDIT_NEVER:
 756		*state = AUDIT_DISABLED;
 757		break;
 758	case AUDIT_ALWAYS:
 759		*state = AUDIT_RECORD_CONTEXT;
 760		break;
 761	}
 762	return 1;
 763}
 764
 765/* At process creation time, we can determine if system-call auditing is
 766 * completely disabled for this task.  Since we only have the task
 767 * structure at this point, we can only check uid and gid.
 768 */
 769static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 770{
 771	struct audit_entry *e;
 772	enum audit_state   state;
 773
 774	rcu_read_lock();
 775	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 776		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 777				       &state, true)) {
 778			if (state == AUDIT_RECORD_CONTEXT)
 779				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 780			rcu_read_unlock();
 781			return state;
 782		}
 783	}
 784	rcu_read_unlock();
 785	return AUDIT_BUILD_CONTEXT;
 786}
 787
 788static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 789{
 790	int word, bit;
 791
 792	if (val > 0xffffffff)
 793		return false;
 794
 795	word = AUDIT_WORD(val);
 796	if (word >= AUDIT_BITMASK_SIZE)
 797		return false;
 798
 799	bit = AUDIT_BIT(val);
 800
 801	return rule->mask[word] & bit;
 802}
 803
 804/* At syscall entry and exit time, this filter is called if the
 805 * audit_state is not low enough that auditing cannot take place, but is
 806 * also not high enough that we already know we have to write an audit
 807 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 808 */
 809static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 810					     struct audit_context *ctx,
 811					     struct list_head *list)
 812{
 813	struct audit_entry *e;
 814	enum audit_state state;
 815
 816	if (auditd_test_task(tsk))
 817		return AUDIT_DISABLED;
 818
 819	rcu_read_lock();
 820	list_for_each_entry_rcu(e, list, list) {
 821		if (audit_in_mask(&e->rule, ctx->major) &&
 822		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 823				       &state, false)) {
 824			rcu_read_unlock();
 825			ctx->current_state = state;
 826			return state;
 
 
 827		}
 828	}
 829	rcu_read_unlock();
 830	return AUDIT_BUILD_CONTEXT;
 831}
 832
 833/*
 834 * Given an audit_name check the inode hash table to see if they match.
 835 * Called holding the rcu read lock to protect the use of audit_inode_hash
 836 */
 837static int audit_filter_inode_name(struct task_struct *tsk,
 838				   struct audit_names *n,
 839				   struct audit_context *ctx) {
 840	int h = audit_hash_ino((u32)n->ino);
 841	struct list_head *list = &audit_inode_hash[h];
 842	struct audit_entry *e;
 843	enum audit_state state;
 844
 
 
 
 845	list_for_each_entry_rcu(e, list, list) {
 846		if (audit_in_mask(&e->rule, ctx->major) &&
 847		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 848			ctx->current_state = state;
 849			return 1;
 850		}
 851	}
 
 852	return 0;
 853}
 854
 855/* At syscall exit time, this filter is called if any audit_names have been
 856 * collected during syscall processing.  We only check rules in sublists at hash
 857 * buckets applicable to the inode numbers in audit_names.
 858 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 859 */
 860void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 861{
 862	struct audit_names *n;
 863
 864	if (auditd_test_task(tsk))
 865		return;
 866
 867	rcu_read_lock();
 868
 869	list_for_each_entry(n, &ctx->names_list, list) {
 870		if (audit_filter_inode_name(tsk, n, ctx))
 871			break;
 872	}
 873	rcu_read_unlock();
 874}
 875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876static inline void audit_proctitle_free(struct audit_context *context)
 877{
 878	kfree(context->proctitle.value);
 879	context->proctitle.value = NULL;
 880	context->proctitle.len = 0;
 881}
 882
 883static inline void audit_free_module(struct audit_context *context)
 884{
 885	if (context->type == AUDIT_KERN_MODULE) {
 886		kfree(context->module.name);
 887		context->module.name = NULL;
 888	}
 889}
 890static inline void audit_free_names(struct audit_context *context)
 891{
 892	struct audit_names *n, *next;
 893
 894	list_for_each_entry_safe(n, next, &context->names_list, list) {
 895		list_del(&n->list);
 896		if (n->name)
 897			putname(n->name);
 898		if (n->should_free)
 899			kfree(n);
 900	}
 901	context->name_count = 0;
 902	path_put(&context->pwd);
 903	context->pwd.dentry = NULL;
 904	context->pwd.mnt = NULL;
 905}
 906
 907static inline void audit_free_aux(struct audit_context *context)
 908{
 909	struct audit_aux_data *aux;
 910
 911	while ((aux = context->aux)) {
 912		context->aux = aux->next;
 913		kfree(aux);
 914	}
 915	while ((aux = context->aux_pids)) {
 916		context->aux_pids = aux->next;
 917		kfree(aux);
 918	}
 919}
 920
 921static inline struct audit_context *audit_alloc_context(enum audit_state state)
 922{
 923	struct audit_context *context;
 924
 925	context = kzalloc(sizeof(*context), GFP_KERNEL);
 926	if (!context)
 927		return NULL;
 928	context->state = state;
 929	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 930	INIT_LIST_HEAD(&context->killed_trees);
 931	INIT_LIST_HEAD(&context->names_list);
 932	return context;
 933}
 934
 935/**
 936 * audit_alloc - allocate an audit context block for a task
 937 * @tsk: task
 938 *
 939 * Filter on the task information and allocate a per-task audit context
 940 * if necessary.  Doing so turns on system call auditing for the
 941 * specified task.  This is called from copy_process, so no lock is
 942 * needed.
 943 */
 944int audit_alloc(struct task_struct *tsk)
 945{
 946	struct audit_context *context;
 947	enum audit_state     state;
 948	char *key = NULL;
 949
 950	if (likely(!audit_ever_enabled))
 951		return 0; /* Return if not auditing. */
 952
 953	state = audit_filter_task(tsk, &key);
 954	if (state == AUDIT_DISABLED) {
 955		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 956		return 0;
 957	}
 958
 959	if (!(context = audit_alloc_context(state))) {
 960		kfree(key);
 961		audit_log_lost("out of memory in audit_alloc");
 962		return -ENOMEM;
 963	}
 964	context->filterkey = key;
 965
 966	audit_set_context(tsk, context);
 967	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 968	return 0;
 969}
 970
 971static inline void audit_free_context(struct audit_context *context)
 972{
 973	audit_free_module(context);
 974	audit_free_names(context);
 975	unroll_tree_refs(context, NULL, 0);
 976	free_tree_refs(context);
 977	audit_free_aux(context);
 978	kfree(context->filterkey);
 979	kfree(context->sockaddr);
 980	audit_proctitle_free(context);
 981	kfree(context);
 982}
 983
 984static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 985				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 986				 u32 sid, char *comm)
 987{
 988	struct audit_buffer *ab;
 989	char *ctx = NULL;
 990	u32 len;
 991	int rc = 0;
 992
 993	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 994	if (!ab)
 995		return rc;
 996
 997	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 998			 from_kuid(&init_user_ns, auid),
 999			 from_kuid(&init_user_ns, uid), sessionid);
1000	if (sid) {
1001		if (security_secid_to_secctx(sid, &ctx, &len)) {
1002			audit_log_format(ab, " obj=(none)");
1003			rc = 1;
1004		} else {
1005			audit_log_format(ab, " obj=%s", ctx);
1006			security_release_secctx(ctx, len);
1007		}
1008	}
1009	audit_log_format(ab, " ocomm=");
1010	audit_log_untrustedstring(ab, comm);
1011	audit_log_end(ab);
1012
1013	return rc;
1014}
1015
1016static void audit_log_execve_info(struct audit_context *context,
1017				  struct audit_buffer **ab)
1018{
1019	long len_max;
1020	long len_rem;
1021	long len_full;
1022	long len_buf;
1023	long len_abuf = 0;
1024	long len_tmp;
1025	bool require_data;
1026	bool encode;
1027	unsigned int iter;
1028	unsigned int arg;
1029	char *buf_head;
1030	char *buf;
1031	const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1034	 *       data we put in the audit record for this argument (see the
1035	 *       code below) ... at this point in time 96 is plenty */
1036	char abuf[96];
1037
1038	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039	 *       current value of 7500 is not as important as the fact that it
1040	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1041	 *       room if we go over a little bit in the logging below */
1042	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043	len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045	/* scratch buffer to hold the userspace args */
1046	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047	if (!buf_head) {
1048		audit_panic("out of memory for argv string");
1049		return;
1050	}
1051	buf = buf_head;
1052
1053	audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055	len_rem = len_max;
1056	len_buf = 0;
1057	len_full = 0;
1058	require_data = true;
1059	encode = false;
1060	iter = 0;
1061	arg = 0;
1062	do {
1063		/* NOTE: we don't ever want to trust this value for anything
1064		 *       serious, but the audit record format insists we
1065		 *       provide an argument length for really long arguments,
1066		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067		 *       to use strncpy_from_user() to obtain this value for
1068		 *       recording in the log, although we don't use it
1069		 *       anywhere here to avoid a double-fetch problem */
1070		if (len_full == 0)
1071			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073		/* read more data from userspace */
1074		if (require_data) {
1075			/* can we make more room in the buffer? */
1076			if (buf != buf_head) {
1077				memmove(buf_head, buf, len_buf);
1078				buf = buf_head;
1079			}
1080
1081			/* fetch as much as we can of the argument */
1082			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083						    len_max - len_buf);
1084			if (len_tmp == -EFAULT) {
1085				/* unable to copy from userspace */
1086				send_sig(SIGKILL, current, 0);
1087				goto out;
1088			} else if (len_tmp == (len_max - len_buf)) {
1089				/* buffer is not large enough */
1090				require_data = true;
1091				/* NOTE: if we are going to span multiple
1092				 *       buffers force the encoding so we stand
1093				 *       a chance at a sane len_full value and
1094				 *       consistent record encoding */
1095				encode = true;
1096				len_full = len_full * 2;
1097				p += len_tmp;
1098			} else {
1099				require_data = false;
1100				if (!encode)
1101					encode = audit_string_contains_control(
1102								buf, len_tmp);
1103				/* try to use a trusted value for len_full */
1104				if (len_full < len_max)
1105					len_full = (encode ?
1106						    len_tmp * 2 : len_tmp);
1107				p += len_tmp + 1;
1108			}
1109			len_buf += len_tmp;
1110			buf_head[len_buf] = '\0';
1111
1112			/* length of the buffer in the audit record? */
1113			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114		}
1115
1116		/* write as much as we can to the audit log */
1117		if (len_buf >= 0) {
1118			/* NOTE: some magic numbers here - basically if we
1119			 *       can't fit a reasonable amount of data into the
1120			 *       existing audit buffer, flush it and start with
1121			 *       a new buffer */
1122			if ((sizeof(abuf) + 8) > len_rem) {
1123				len_rem = len_max;
1124				audit_log_end(*ab);
1125				*ab = audit_log_start(context,
1126						      GFP_KERNEL, AUDIT_EXECVE);
1127				if (!*ab)
1128					goto out;
1129			}
1130
1131			/* create the non-arg portion of the arg record */
1132			len_tmp = 0;
1133			if (require_data || (iter > 0) ||
1134			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1135				if (iter == 0) {
1136					len_tmp += snprintf(&abuf[len_tmp],
1137							sizeof(abuf) - len_tmp,
1138							" a%d_len=%lu",
1139							arg, len_full);
1140				}
1141				len_tmp += snprintf(&abuf[len_tmp],
1142						    sizeof(abuf) - len_tmp,
1143						    " a%d[%d]=", arg, iter++);
1144			} else
1145				len_tmp += snprintf(&abuf[len_tmp],
1146						    sizeof(abuf) - len_tmp,
1147						    " a%d=", arg);
1148			WARN_ON(len_tmp >= sizeof(abuf));
1149			abuf[sizeof(abuf) - 1] = '\0';
1150
1151			/* log the arg in the audit record */
1152			audit_log_format(*ab, "%s", abuf);
1153			len_rem -= len_tmp;
1154			len_tmp = len_buf;
1155			if (encode) {
1156				if (len_abuf > len_rem)
1157					len_tmp = len_rem / 2; /* encoding */
1158				audit_log_n_hex(*ab, buf, len_tmp);
1159				len_rem -= len_tmp * 2;
1160				len_abuf -= len_tmp * 2;
1161			} else {
1162				if (len_abuf > len_rem)
1163					len_tmp = len_rem - 2; /* quotes */
1164				audit_log_n_string(*ab, buf, len_tmp);
1165				len_rem -= len_tmp + 2;
1166				/* don't subtract the "2" because we still need
1167				 * to add quotes to the remaining string */
1168				len_abuf -= len_tmp;
1169			}
1170			len_buf -= len_tmp;
1171			buf += len_tmp;
1172		}
1173
1174		/* ready to move to the next argument? */
1175		if ((len_buf == 0) && !require_data) {
1176			arg++;
1177			iter = 0;
1178			len_full = 0;
1179			require_data = true;
1180			encode = false;
1181		}
1182	} while (arg < context->execve.argc);
1183
1184	/* NOTE: the caller handles the final audit_log_end() call */
1185
1186out:
1187	kfree(buf_head);
1188}
1189
1190static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191			  kernel_cap_t *cap)
1192{
1193	int i;
1194
1195	if (cap_isclear(*cap)) {
1196		audit_log_format(ab, " %s=0", prefix);
1197		return;
1198	}
1199	audit_log_format(ab, " %s=", prefix);
1200	CAP_FOR_EACH_U32(i)
1201		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206	if (name->fcap_ver == -1) {
1207		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208		return;
1209	}
1210	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213			 name->fcap.fE, name->fcap_ver,
1214			 from_kuid(&init_user_ns, name->fcap.rootid));
1215}
1216
1217static void show_special(struct audit_context *context, int *call_panic)
1218{
1219	struct audit_buffer *ab;
1220	int i;
1221
1222	ab = audit_log_start(context, GFP_KERNEL, context->type);
1223	if (!ab)
1224		return;
1225
1226	switch (context->type) {
1227	case AUDIT_SOCKETCALL: {
1228		int nargs = context->socketcall.nargs;
1229		audit_log_format(ab, "nargs=%d", nargs);
1230		for (i = 0; i < nargs; i++)
1231			audit_log_format(ab, " a%d=%lx", i,
1232				context->socketcall.args[i]);
1233		break; }
1234	case AUDIT_IPC: {
1235		u32 osid = context->ipc.osid;
1236
1237		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238				 from_kuid(&init_user_ns, context->ipc.uid),
1239				 from_kgid(&init_user_ns, context->ipc.gid),
1240				 context->ipc.mode);
1241		if (osid) {
1242			char *ctx = NULL;
1243			u32 len;
1244			if (security_secid_to_secctx(osid, &ctx, &len)) {
1245				audit_log_format(ab, " osid=%u", osid);
1246				*call_panic = 1;
1247			} else {
1248				audit_log_format(ab, " obj=%s", ctx);
1249				security_release_secctx(ctx, len);
1250			}
1251		}
1252		if (context->ipc.has_perm) {
1253			audit_log_end(ab);
1254			ab = audit_log_start(context, GFP_KERNEL,
1255					     AUDIT_IPC_SET_PERM);
1256			if (unlikely(!ab))
1257				return;
1258			audit_log_format(ab,
1259				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260				context->ipc.qbytes,
1261				context->ipc.perm_uid,
1262				context->ipc.perm_gid,
1263				context->ipc.perm_mode);
1264		}
1265		break; }
1266	case AUDIT_MQ_OPEN:
1267		audit_log_format(ab,
1268			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269			"mq_msgsize=%ld mq_curmsgs=%ld",
1270			context->mq_open.oflag, context->mq_open.mode,
1271			context->mq_open.attr.mq_flags,
1272			context->mq_open.attr.mq_maxmsg,
1273			context->mq_open.attr.mq_msgsize,
1274			context->mq_open.attr.mq_curmsgs);
1275		break;
1276	case AUDIT_MQ_SENDRECV:
1277		audit_log_format(ab,
1278			"mqdes=%d msg_len=%zd msg_prio=%u "
1279			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280			context->mq_sendrecv.mqdes,
1281			context->mq_sendrecv.msg_len,
1282			context->mq_sendrecv.msg_prio,
1283			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284			context->mq_sendrecv.abs_timeout.tv_nsec);
1285		break;
1286	case AUDIT_MQ_NOTIFY:
1287		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288				context->mq_notify.mqdes,
1289				context->mq_notify.sigev_signo);
1290		break;
1291	case AUDIT_MQ_GETSETATTR: {
1292		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293		audit_log_format(ab,
1294			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295			"mq_curmsgs=%ld ",
1296			context->mq_getsetattr.mqdes,
1297			attr->mq_flags, attr->mq_maxmsg,
1298			attr->mq_msgsize, attr->mq_curmsgs);
1299		break; }
1300	case AUDIT_CAPSET:
1301		audit_log_format(ab, "pid=%d", context->capset.pid);
1302		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306		break;
1307	case AUDIT_MMAP:
1308		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309				 context->mmap.flags);
1310		break;
1311	case AUDIT_EXECVE:
1312		audit_log_execve_info(context, &ab);
1313		break;
1314	case AUDIT_KERN_MODULE:
1315		audit_log_format(ab, "name=");
1316		if (context->module.name) {
1317			audit_log_untrustedstring(ab, context->module.name);
1318		} else
1319			audit_log_format(ab, "(null)");
1320
1321		break;
1322	}
1323	audit_log_end(ab);
1324}
1325
1326static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327{
1328	char *end = proctitle + len - 1;
1329	while (end > proctitle && !isprint(*end))
1330		end--;
1331
1332	/* catch the case where proctitle is only 1 non-print character */
1333	len = end - proctitle + 1;
1334	len -= isprint(proctitle[len-1]) == 0;
1335	return len;
1336}
1337
1338/*
1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340 * @context: audit_context for the task
1341 * @n: audit_names structure with reportable details
1342 * @path: optional path to report instead of audit_names->name
1343 * @record_num: record number to report when handling a list of names
1344 * @call_panic: optional pointer to int that will be updated if secid fails
1345 */
1346static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347		    const struct path *path, int record_num, int *call_panic)
1348{
1349	struct audit_buffer *ab;
1350
1351	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352	if (!ab)
1353		return;
1354
1355	audit_log_format(ab, "item=%d", record_num);
1356
1357	if (path)
1358		audit_log_d_path(ab, " name=", path);
1359	else if (n->name) {
1360		switch (n->name_len) {
1361		case AUDIT_NAME_FULL:
1362			/* log the full path */
1363			audit_log_format(ab, " name=");
1364			audit_log_untrustedstring(ab, n->name->name);
1365			break;
1366		case 0:
1367			/* name was specified as a relative path and the
1368			 * directory component is the cwd
1369			 */
1370			audit_log_d_path(ab, " name=", &context->pwd);
1371			break;
1372		default:
1373			/* log the name's directory component */
1374			audit_log_format(ab, " name=");
1375			audit_log_n_untrustedstring(ab, n->name->name,
1376						    n->name_len);
1377		}
1378	} else
1379		audit_log_format(ab, " name=(null)");
1380
1381	if (n->ino != AUDIT_INO_UNSET)
1382		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1383				 n->ino,
1384				 MAJOR(n->dev),
1385				 MINOR(n->dev),
1386				 n->mode,
1387				 from_kuid(&init_user_ns, n->uid),
1388				 from_kgid(&init_user_ns, n->gid),
1389				 MAJOR(n->rdev),
1390				 MINOR(n->rdev));
1391	if (n->osid != 0) {
1392		char *ctx = NULL;
1393		u32 len;
1394
1395		if (security_secid_to_secctx(
1396			n->osid, &ctx, &len)) {
1397			audit_log_format(ab, " osid=%u", n->osid);
1398			if (call_panic)
1399				*call_panic = 2;
1400		} else {
1401			audit_log_format(ab, " obj=%s", ctx);
1402			security_release_secctx(ctx, len);
1403		}
1404	}
1405
1406	/* log the audit_names record type */
1407	switch (n->type) {
1408	case AUDIT_TYPE_NORMAL:
1409		audit_log_format(ab, " nametype=NORMAL");
1410		break;
1411	case AUDIT_TYPE_PARENT:
1412		audit_log_format(ab, " nametype=PARENT");
1413		break;
1414	case AUDIT_TYPE_CHILD_DELETE:
1415		audit_log_format(ab, " nametype=DELETE");
1416		break;
1417	case AUDIT_TYPE_CHILD_CREATE:
1418		audit_log_format(ab, " nametype=CREATE");
1419		break;
1420	default:
1421		audit_log_format(ab, " nametype=UNKNOWN");
1422		break;
1423	}
1424
1425	audit_log_fcaps(ab, n);
1426	audit_log_end(ab);
1427}
1428
1429static void audit_log_proctitle(void)
1430{
1431	int res;
1432	char *buf;
1433	char *msg = "(null)";
1434	int len = strlen(msg);
1435	struct audit_context *context = audit_context();
1436	struct audit_buffer *ab;
1437
1438	if (!context || context->dummy)
1439		return;
1440
1441	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442	if (!ab)
1443		return;	/* audit_panic or being filtered */
1444
1445	audit_log_format(ab, "proctitle=");
1446
1447	/* Not  cached */
1448	if (!context->proctitle.value) {
1449		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450		if (!buf)
1451			goto out;
1452		/* Historically called this from procfs naming */
1453		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454		if (res == 0) {
1455			kfree(buf);
1456			goto out;
1457		}
1458		res = audit_proctitle_rtrim(buf, res);
1459		if (res == 0) {
1460			kfree(buf);
1461			goto out;
1462		}
1463		context->proctitle.value = buf;
1464		context->proctitle.len = res;
1465	}
1466	msg = context->proctitle.value;
1467	len = context->proctitle.len;
1468out:
1469	audit_log_n_untrustedstring(ab, msg, len);
1470	audit_log_end(ab);
1471}
1472
1473static void audit_log_exit(void)
1474{
1475	int i, call_panic = 0;
1476	struct audit_context *context = audit_context();
1477	struct audit_buffer *ab;
1478	struct audit_aux_data *aux;
1479	struct audit_names *n;
1480
1481	context->personality = current->personality;
 
1482
1483	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484	if (!ab)
1485		return;		/* audit_panic has been called */
1486	audit_log_format(ab, "arch=%x syscall=%d",
1487			 context->arch, context->major);
1488	if (context->personality != PER_LINUX)
1489		audit_log_format(ab, " per=%lx", context->personality);
1490	if (context->return_valid)
1491		audit_log_format(ab, " success=%s exit=%ld",
1492				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493				 context->return_code);
1494
1495	audit_log_format(ab,
1496			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497			 context->argv[0],
1498			 context->argv[1],
1499			 context->argv[2],
1500			 context->argv[3],
1501			 context->name_count);
1502
1503	audit_log_task_info(ab);
1504	audit_log_key(ab, context->filterkey);
1505	audit_log_end(ab);
1506
1507	for (aux = context->aux; aux; aux = aux->next) {
1508
1509		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510		if (!ab)
1511			continue; /* audit_panic has been called */
1512
1513		switch (aux->type) {
1514
1515		case AUDIT_BPRM_FCAPS: {
1516			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529			audit_log_format(ab, " frootid=%d",
1530					 from_kuid(&init_user_ns,
1531						   axs->fcap.rootid));
1532			break; }
1533
1534		}
1535		audit_log_end(ab);
1536	}
1537
1538	if (context->type)
1539		show_special(context, &call_panic);
1540
1541	if (context->fds[0] >= 0) {
1542		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543		if (ab) {
1544			audit_log_format(ab, "fd0=%d fd1=%d",
1545					context->fds[0], context->fds[1]);
1546			audit_log_end(ab);
1547		}
1548	}
1549
1550	if (context->sockaddr_len) {
1551		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552		if (ab) {
1553			audit_log_format(ab, "saddr=");
1554			audit_log_n_hex(ab, (void *)context->sockaddr,
1555					context->sockaddr_len);
1556			audit_log_end(ab);
1557		}
1558	}
1559
1560	for (aux = context->aux_pids; aux; aux = aux->next) {
1561		struct audit_aux_data_pids *axs = (void *)aux;
1562
1563		for (i = 0; i < axs->pid_count; i++)
1564			if (audit_log_pid_context(context, axs->target_pid[i],
1565						  axs->target_auid[i],
1566						  axs->target_uid[i],
1567						  axs->target_sessionid[i],
1568						  axs->target_sid[i],
1569						  axs->target_comm[i]))
1570				call_panic = 1;
1571	}
1572
1573	if (context->target_pid &&
1574	    audit_log_pid_context(context, context->target_pid,
1575				  context->target_auid, context->target_uid,
1576				  context->target_sessionid,
1577				  context->target_sid, context->target_comm))
1578			call_panic = 1;
1579
1580	if (context->pwd.dentry && context->pwd.mnt) {
1581		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582		if (ab) {
1583			audit_log_d_path(ab, "cwd=", &context->pwd);
1584			audit_log_end(ab);
1585		}
1586	}
1587
1588	i = 0;
1589	list_for_each_entry(n, &context->names_list, list) {
1590		if (n->hidden)
1591			continue;
1592		audit_log_name(context, n, NULL, i++, &call_panic);
1593	}
1594
1595	audit_log_proctitle();
1596
1597	/* Send end of event record to help user space know we are finished */
1598	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599	if (ab)
1600		audit_log_end(ab);
1601	if (call_panic)
1602		audit_panic("error converting sid to string");
1603}
1604
1605/**
1606 * __audit_free - free a per-task audit context
1607 * @tsk: task whose audit context block to free
1608 *
1609 * Called from copy_process and do_exit
1610 */
1611void __audit_free(struct task_struct *tsk)
1612{
1613	struct audit_context *context = tsk->audit_context;
1614
 
1615	if (!context)
1616		return;
1617
 
 
 
 
 
 
 
1618	if (!list_empty(&context->killed_trees))
1619		audit_kill_trees(context);
1620
1621	/* We are called either by do_exit() or the fork() error handling code;
1622	 * in the former case tsk == current and in the latter tsk is a
1623	 * random task_struct that doesn't doesn't have any meaningful data we
1624	 * need to log via audit_log_exit().
1625	 */
1626	if (tsk == current && !context->dummy && context->in_syscall) {
1627		context->return_valid = 0;
1628		context->return_code = 0;
1629
1630		audit_filter_syscall(tsk, context,
1631				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1632		audit_filter_inodes(tsk, context);
1633		if (context->current_state == AUDIT_RECORD_CONTEXT)
1634			audit_log_exit();
1635	}
1636
1637	audit_set_context(tsk, NULL);
1638	audit_free_context(context);
1639}
1640
1641/**
1642 * __audit_syscall_entry - fill in an audit record at syscall entry
1643 * @major: major syscall type (function)
1644 * @a1: additional syscall register 1
1645 * @a2: additional syscall register 2
1646 * @a3: additional syscall register 3
1647 * @a4: additional syscall register 4
1648 *
1649 * Fill in audit context at syscall entry.  This only happens if the
1650 * audit context was created when the task was created and the state or
1651 * filters demand the audit context be built.  If the state from the
1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653 * then the record will be written at syscall exit time (otherwise, it
1654 * will only be written if another part of the kernel requests that it
1655 * be written).
1656 */
1657void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658			   unsigned long a3, unsigned long a4)
1659{
1660	struct audit_context *context = audit_context();
 
1661	enum audit_state     state;
1662
1663	if (!audit_enabled || !context)
1664		return;
1665
1666	BUG_ON(context->in_syscall || context->name_count);
1667
1668	state = context->state;
1669	if (state == AUDIT_DISABLED)
1670		return;
1671
 
 
 
 
 
 
 
 
1672	context->dummy = !audit_n_rules;
1673	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674		context->prio = 0;
1675		if (auditd_test_task(current))
1676			return;
1677	}
 
 
1678
1679	context->arch	    = syscall_get_arch(current);
1680	context->major      = major;
1681	context->argv[0]    = a1;
1682	context->argv[1]    = a2;
1683	context->argv[2]    = a3;
1684	context->argv[3]    = a4;
1685	context->serial     = 0;
 
1686	context->in_syscall = 1;
1687	context->current_state  = state;
1688	context->ppid       = 0;
1689	ktime_get_coarse_real_ts64(&context->ctime);
1690}
1691
1692/**
1693 * __audit_syscall_exit - deallocate audit context after a system call
1694 * @success: success value of the syscall
1695 * @return_code: return value of the syscall
1696 *
1697 * Tear down after system call.  If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel wrote an audit
1700 * message), then write out the syscall information.  In call cases,
1701 * free the names stored from getname().
1702 */
1703void __audit_syscall_exit(int success, long return_code)
1704{
 
1705	struct audit_context *context;
1706
1707	context = audit_context();
 
 
 
 
 
1708	if (!context)
1709		return;
1710
1711	if (!list_empty(&context->killed_trees))
1712		audit_kill_trees(context);
1713
1714	if (!context->dummy && context->in_syscall) {
1715		if (success)
1716			context->return_valid = AUDITSC_SUCCESS;
1717		else
1718			context->return_valid = AUDITSC_FAILURE;
1719
1720		/*
1721		 * we need to fix up the return code in the audit logs if the
1722		 * actual return codes are later going to be fixed up by the
1723		 * arch specific signal handlers
1724		 *
1725		 * This is actually a test for:
1726		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728		 *
1729		 * but is faster than a bunch of ||
1730		 */
1731		if (unlikely(return_code <= -ERESTARTSYS) &&
1732		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1733		    (return_code != -ENOIOCTLCMD))
1734			context->return_code = -EINTR;
1735		else
1736			context->return_code  = return_code;
1737
1738		audit_filter_syscall(current, context,
1739				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1740		audit_filter_inodes(current, context);
1741		if (context->current_state == AUDIT_RECORD_CONTEXT)
1742			audit_log_exit();
1743	}
1744
1745	context->in_syscall = 0;
1746	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747
1748	audit_free_module(context);
 
 
1749	audit_free_names(context);
1750	unroll_tree_refs(context, NULL, 0);
1751	audit_free_aux(context);
1752	context->aux = NULL;
1753	context->aux_pids = NULL;
1754	context->target_pid = 0;
1755	context->target_sid = 0;
1756	context->sockaddr_len = 0;
1757	context->type = 0;
1758	context->fds[0] = -1;
1759	if (context->state != AUDIT_RECORD_CONTEXT) {
1760		kfree(context->filterkey);
1761		context->filterkey = NULL;
1762	}
 
1763}
1764
1765static inline void handle_one(const struct inode *inode)
1766{
 
1767	struct audit_context *context;
1768	struct audit_tree_refs *p;
1769	struct audit_chunk *chunk;
1770	int count;
1771	if (likely(!inode->i_fsnotify_marks))
1772		return;
1773	context = audit_context();
1774	p = context->trees;
1775	count = context->tree_count;
1776	rcu_read_lock();
1777	chunk = audit_tree_lookup(inode);
1778	rcu_read_unlock();
1779	if (!chunk)
1780		return;
1781	if (likely(put_tree_ref(context, chunk)))
1782		return;
1783	if (unlikely(!grow_tree_refs(context))) {
1784		pr_warn("out of memory, audit has lost a tree reference\n");
1785		audit_set_auditable(context);
1786		audit_put_chunk(chunk);
1787		unroll_tree_refs(context, p, count);
1788		return;
1789	}
1790	put_tree_ref(context, chunk);
 
1791}
1792
1793static void handle_path(const struct dentry *dentry)
1794{
 
1795	struct audit_context *context;
1796	struct audit_tree_refs *p;
1797	const struct dentry *d, *parent;
1798	struct audit_chunk *drop;
1799	unsigned long seq;
1800	int count;
1801
1802	context = audit_context();
1803	p = context->trees;
1804	count = context->tree_count;
1805retry:
1806	drop = NULL;
1807	d = dentry;
1808	rcu_read_lock();
1809	seq = read_seqbegin(&rename_lock);
1810	for(;;) {
1811		struct inode *inode = d_backing_inode(d);
1812		if (inode && unlikely(inode->i_fsnotify_marks)) {
1813			struct audit_chunk *chunk;
1814			chunk = audit_tree_lookup(inode);
1815			if (chunk) {
1816				if (unlikely(!put_tree_ref(context, chunk))) {
1817					drop = chunk;
1818					break;
1819				}
1820			}
1821		}
1822		parent = d->d_parent;
1823		if (parent == d)
1824			break;
1825		d = parent;
1826	}
1827	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1828		rcu_read_unlock();
1829		if (!drop) {
1830			/* just a race with rename */
1831			unroll_tree_refs(context, p, count);
1832			goto retry;
1833		}
1834		audit_put_chunk(drop);
1835		if (grow_tree_refs(context)) {
1836			/* OK, got more space */
1837			unroll_tree_refs(context, p, count);
1838			goto retry;
1839		}
1840		/* too bad */
1841		pr_warn("out of memory, audit has lost a tree reference\n");
1842		unroll_tree_refs(context, p, count);
1843		audit_set_auditable(context);
1844		return;
1845	}
1846	rcu_read_unlock();
 
1847}
1848
1849static struct audit_names *audit_alloc_name(struct audit_context *context,
1850						unsigned char type)
1851{
1852	struct audit_names *aname;
1853
1854	if (context->name_count < AUDIT_NAMES) {
1855		aname = &context->preallocated_names[context->name_count];
1856		memset(aname, 0, sizeof(*aname));
1857	} else {
1858		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859		if (!aname)
1860			return NULL;
1861		aname->should_free = true;
1862	}
1863
1864	aname->ino = AUDIT_INO_UNSET;
1865	aname->type = type;
1866	list_add_tail(&aname->list, &context->names_list);
1867
1868	context->name_count++;
1869	return aname;
1870}
1871
1872/**
1873 * __audit_reusename - fill out filename with info from existing entry
1874 * @uptr: userland ptr to pathname
1875 *
1876 * Search the audit_names list for the current audit context. If there is an
1877 * existing entry with a matching "uptr" then return the filename
1878 * associated with that audit_name. If not, return NULL.
1879 */
1880struct filename *
1881__audit_reusename(const __user char *uptr)
1882{
1883	struct audit_context *context = audit_context();
1884	struct audit_names *n;
1885
1886	list_for_each_entry(n, &context->names_list, list) {
1887		if (!n->name)
1888			continue;
1889		if (n->name->uptr == uptr) {
1890			n->name->refcnt++;
1891			return n->name;
1892		}
1893	}
1894	return NULL;
1895}
1896
1897inline void _audit_getcwd(struct audit_context *context)
1898{
1899	if (!context->pwd.dentry)
1900		get_fs_pwd(current->fs, &context->pwd);
1901}
1902
1903void __audit_getcwd(void)
1904{
1905	struct audit_context *context = audit_context();
1906
1907	if (context->in_syscall)
1908		_audit_getcwd(context);
1909}
1910
1911/**
1912 * __audit_getname - add a name to the list
1913 * @name: name to add
1914 *
1915 * Add a name to the list of audit names for this context.
1916 * Called from fs/namei.c:getname().
1917 */
1918void __audit_getname(struct filename *name)
1919{
1920	struct audit_context *context = audit_context();
1921	struct audit_names *n;
1922
1923	if (!context->in_syscall)
1924		return;
1925
1926	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1927	if (!n)
1928		return;
1929
1930	n->name = name;
1931	n->name_len = AUDIT_NAME_FULL;
1932	name->aname = n;
1933	name->refcnt++;
1934
1935	_audit_getcwd(context);
1936}
1937
1938static inline int audit_copy_fcaps(struct audit_names *name,
1939				   const struct dentry *dentry)
1940{
1941	struct cpu_vfs_cap_data caps;
1942	int rc;
1943
1944	if (!dentry)
1945		return 0;
1946
1947	rc = get_vfs_caps_from_disk(dentry, &caps);
1948	if (rc)
1949		return rc;
1950
1951	name->fcap.permitted = caps.permitted;
1952	name->fcap.inheritable = caps.inheritable;
1953	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1954	name->fcap.rootid = caps.rootid;
1955	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1956				VFS_CAP_REVISION_SHIFT;
1957
1958	return 0;
1959}
1960
1961/* Copy inode data into an audit_names. */
1962static void audit_copy_inode(struct audit_names *name,
1963			     const struct dentry *dentry,
1964			     struct inode *inode, unsigned int flags)
1965{
1966	name->ino   = inode->i_ino;
1967	name->dev   = inode->i_sb->s_dev;
1968	name->mode  = inode->i_mode;
1969	name->uid   = inode->i_uid;
1970	name->gid   = inode->i_gid;
1971	name->rdev  = inode->i_rdev;
1972	security_inode_getsecid(inode, &name->osid);
1973	if (flags & AUDIT_INODE_NOEVAL) {
1974		name->fcap_ver = -1;
1975		return;
1976	}
1977	audit_copy_fcaps(name, dentry);
1978}
1979
1980/**
1981 * __audit_inode - store the inode and device from a lookup
1982 * @name: name being audited
1983 * @dentry: dentry being audited
1984 * @flags: attributes for this particular entry
1985 */
1986void __audit_inode(struct filename *name, const struct dentry *dentry,
1987		   unsigned int flags)
1988{
1989	struct audit_context *context = audit_context();
1990	struct inode *inode = d_backing_inode(dentry);
1991	struct audit_names *n;
1992	bool parent = flags & AUDIT_INODE_PARENT;
1993	struct audit_entry *e;
1994	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1995	int i;
1996
1997	if (!context->in_syscall)
1998		return;
1999
2000	rcu_read_lock();
2001	list_for_each_entry_rcu(e, list, list) {
2002		for (i = 0; i < e->rule.field_count; i++) {
2003			struct audit_field *f = &e->rule.fields[i];
2004
2005			if (f->type == AUDIT_FSTYPE
2006			    && audit_comparator(inode->i_sb->s_magic,
2007						f->op, f->val)
2008			    && e->rule.action == AUDIT_NEVER) {
2009				rcu_read_unlock();
2010				return;
2011			}
2012		}
2013	}
2014	rcu_read_unlock();
2015
2016	if (!name)
2017		goto out_alloc;
2018
2019	/*
2020	 * If we have a pointer to an audit_names entry already, then we can
2021	 * just use it directly if the type is correct.
2022	 */
2023	n = name->aname;
2024	if (n) {
2025		if (parent) {
2026			if (n->type == AUDIT_TYPE_PARENT ||
2027			    n->type == AUDIT_TYPE_UNKNOWN)
2028				goto out;
2029		} else {
2030			if (n->type != AUDIT_TYPE_PARENT)
2031				goto out;
2032		}
2033	}
2034
2035	list_for_each_entry_reverse(n, &context->names_list, list) {
2036		if (n->ino) {
2037			/* valid inode number, use that for the comparison */
2038			if (n->ino != inode->i_ino ||
2039			    n->dev != inode->i_sb->s_dev)
2040				continue;
2041		} else if (n->name) {
2042			/* inode number has not been set, check the name */
2043			if (strcmp(n->name->name, name->name))
2044				continue;
2045		} else
2046			/* no inode and no name (?!) ... this is odd ... */
2047			continue;
2048
2049		/* match the correct record type */
2050		if (parent) {
2051			if (n->type == AUDIT_TYPE_PARENT ||
2052			    n->type == AUDIT_TYPE_UNKNOWN)
2053				goto out;
2054		} else {
2055			if (n->type != AUDIT_TYPE_PARENT)
2056				goto out;
2057		}
2058	}
2059
2060out_alloc:
2061	/* unable to find an entry with both a matching name and type */
2062	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2063	if (!n)
2064		return;
2065	if (name) {
2066		n->name = name;
2067		name->refcnt++;
2068	}
2069
2070out:
2071	if (parent) {
2072		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2073		n->type = AUDIT_TYPE_PARENT;
2074		if (flags & AUDIT_INODE_HIDDEN)
2075			n->hidden = true;
2076	} else {
2077		n->name_len = AUDIT_NAME_FULL;
2078		n->type = AUDIT_TYPE_NORMAL;
2079	}
2080	handle_path(dentry);
2081	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2082}
2083
2084void __audit_file(const struct file *file)
2085{
2086	__audit_inode(NULL, file->f_path.dentry, 0);
2087}
2088
2089/**
2090 * __audit_inode_child - collect inode info for created/removed objects
2091 * @parent: inode of dentry parent
2092 * @dentry: dentry being audited
2093 * @type:   AUDIT_TYPE_* value that we're looking for
2094 *
2095 * For syscalls that create or remove filesystem objects, audit_inode
2096 * can only collect information for the filesystem object's parent.
2097 * This call updates the audit context with the child's information.
2098 * Syscalls that create a new filesystem object must be hooked after
2099 * the object is created.  Syscalls that remove a filesystem object
2100 * must be hooked prior, in order to capture the target inode during
2101 * unsuccessful attempts.
2102 */
2103void __audit_inode_child(struct inode *parent,
2104			 const struct dentry *dentry,
2105			 const unsigned char type)
2106{
2107	struct audit_context *context = audit_context();
2108	struct inode *inode = d_backing_inode(dentry);
2109	const struct qstr *dname = &dentry->d_name;
2110	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2111	struct audit_entry *e;
2112	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2113	int i;
2114
2115	if (!context->in_syscall)
2116		return;
2117
2118	rcu_read_lock();
2119	list_for_each_entry_rcu(e, list, list) {
2120		for (i = 0; i < e->rule.field_count; i++) {
2121			struct audit_field *f = &e->rule.fields[i];
2122
2123			if (f->type == AUDIT_FSTYPE
2124			    && audit_comparator(parent->i_sb->s_magic,
2125						f->op, f->val)
2126			    && e->rule.action == AUDIT_NEVER) {
2127				rcu_read_unlock();
2128				return;
2129			}
2130		}
2131	}
2132	rcu_read_unlock();
2133
2134	if (inode)
2135		handle_one(inode);
2136
2137	/* look for a parent entry first */
2138	list_for_each_entry(n, &context->names_list, list) {
2139		if (!n->name ||
2140		    (n->type != AUDIT_TYPE_PARENT &&
2141		     n->type != AUDIT_TYPE_UNKNOWN))
2142			continue;
2143
2144		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2145		    !audit_compare_dname_path(dname,
2146					      n->name->name, n->name_len)) {
2147			if (n->type == AUDIT_TYPE_UNKNOWN)
2148				n->type = AUDIT_TYPE_PARENT;
2149			found_parent = n;
2150			break;
2151		}
2152	}
2153
2154	/* is there a matching child entry? */
2155	list_for_each_entry(n, &context->names_list, list) {
2156		/* can only match entries that have a name */
2157		if (!n->name ||
2158		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2159			continue;
2160
2161		if (!strcmp(dname->name, n->name->name) ||
2162		    !audit_compare_dname_path(dname, n->name->name,
2163						found_parent ?
2164						found_parent->name_len :
2165						AUDIT_NAME_FULL)) {
2166			if (n->type == AUDIT_TYPE_UNKNOWN)
2167				n->type = type;
2168			found_child = n;
2169			break;
2170		}
2171	}
2172
2173	if (!found_parent) {
2174		/* create a new, "anonymous" parent record */
2175		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2176		if (!n)
2177			return;
2178		audit_copy_inode(n, NULL, parent, 0);
2179	}
2180
2181	if (!found_child) {
2182		found_child = audit_alloc_name(context, type);
2183		if (!found_child)
2184			return;
2185
2186		/* Re-use the name belonging to the slot for a matching parent
2187		 * directory. All names for this context are relinquished in
2188		 * audit_free_names() */
2189		if (found_parent) {
2190			found_child->name = found_parent->name;
2191			found_child->name_len = AUDIT_NAME_FULL;
2192			found_child->name->refcnt++;
2193		}
2194	}
2195
2196	if (inode)
2197		audit_copy_inode(found_child, dentry, inode, 0);
2198	else
2199		found_child->ino = AUDIT_INO_UNSET;
2200}
2201EXPORT_SYMBOL_GPL(__audit_inode_child);
2202
2203/**
2204 * auditsc_get_stamp - get local copies of audit_context values
2205 * @ctx: audit_context for the task
2206 * @t: timespec64 to store time recorded in the audit_context
2207 * @serial: serial value that is recorded in the audit_context
2208 *
2209 * Also sets the context as auditable.
2210 */
2211int auditsc_get_stamp(struct audit_context *ctx,
2212		       struct timespec64 *t, unsigned int *serial)
2213{
2214	if (!ctx->in_syscall)
2215		return 0;
2216	if (!ctx->serial)
2217		ctx->serial = audit_serial();
2218	t->tv_sec  = ctx->ctime.tv_sec;
2219	t->tv_nsec = ctx->ctime.tv_nsec;
2220	*serial    = ctx->serial;
2221	if (!ctx->prio) {
2222		ctx->prio = 1;
2223		ctx->current_state = AUDIT_RECORD_CONTEXT;
2224	}
2225	return 1;
2226}
2227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228/**
2229 * __audit_mq_open - record audit data for a POSIX MQ open
2230 * @oflag: open flag
2231 * @mode: mode bits
2232 * @attr: queue attributes
2233 *
2234 */
2235void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2236{
2237	struct audit_context *context = audit_context();
2238
2239	if (attr)
2240		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2241	else
2242		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2243
2244	context->mq_open.oflag = oflag;
2245	context->mq_open.mode = mode;
2246
2247	context->type = AUDIT_MQ_OPEN;
2248}
2249
2250/**
2251 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2252 * @mqdes: MQ descriptor
2253 * @msg_len: Message length
2254 * @msg_prio: Message priority
2255 * @abs_timeout: Message timeout in absolute time
2256 *
2257 */
2258void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2259			const struct timespec64 *abs_timeout)
2260{
2261	struct audit_context *context = audit_context();
2262	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2263
2264	if (abs_timeout)
2265		memcpy(p, abs_timeout, sizeof(*p));
2266	else
2267		memset(p, 0, sizeof(*p));
2268
2269	context->mq_sendrecv.mqdes = mqdes;
2270	context->mq_sendrecv.msg_len = msg_len;
2271	context->mq_sendrecv.msg_prio = msg_prio;
2272
2273	context->type = AUDIT_MQ_SENDRECV;
2274}
2275
2276/**
2277 * __audit_mq_notify - record audit data for a POSIX MQ notify
2278 * @mqdes: MQ descriptor
2279 * @notification: Notification event
2280 *
2281 */
2282
2283void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2284{
2285	struct audit_context *context = audit_context();
2286
2287	if (notification)
2288		context->mq_notify.sigev_signo = notification->sigev_signo;
2289	else
2290		context->mq_notify.sigev_signo = 0;
2291
2292	context->mq_notify.mqdes = mqdes;
2293	context->type = AUDIT_MQ_NOTIFY;
2294}
2295
2296/**
2297 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2298 * @mqdes: MQ descriptor
2299 * @mqstat: MQ flags
2300 *
2301 */
2302void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2303{
2304	struct audit_context *context = audit_context();
2305	context->mq_getsetattr.mqdes = mqdes;
2306	context->mq_getsetattr.mqstat = *mqstat;
2307	context->type = AUDIT_MQ_GETSETATTR;
2308}
2309
2310/**
2311 * __audit_ipc_obj - record audit data for ipc object
2312 * @ipcp: ipc permissions
2313 *
2314 */
2315void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2316{
2317	struct audit_context *context = audit_context();
2318	context->ipc.uid = ipcp->uid;
2319	context->ipc.gid = ipcp->gid;
2320	context->ipc.mode = ipcp->mode;
2321	context->ipc.has_perm = 0;
2322	security_ipc_getsecid(ipcp, &context->ipc.osid);
2323	context->type = AUDIT_IPC;
2324}
2325
2326/**
2327 * __audit_ipc_set_perm - record audit data for new ipc permissions
2328 * @qbytes: msgq bytes
2329 * @uid: msgq user id
2330 * @gid: msgq group id
2331 * @mode: msgq mode (permissions)
2332 *
2333 * Called only after audit_ipc_obj().
2334 */
2335void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336{
2337	struct audit_context *context = audit_context();
2338
2339	context->ipc.qbytes = qbytes;
2340	context->ipc.perm_uid = uid;
2341	context->ipc.perm_gid = gid;
2342	context->ipc.perm_mode = mode;
2343	context->ipc.has_perm = 1;
2344}
2345
2346void __audit_bprm(struct linux_binprm *bprm)
2347{
2348	struct audit_context *context = audit_context();
2349
2350	context->type = AUDIT_EXECVE;
2351	context->execve.argc = bprm->argc;
2352}
2353
2354
2355/**
2356 * __audit_socketcall - record audit data for sys_socketcall
2357 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2358 * @args: args array
2359 *
2360 */
2361int __audit_socketcall(int nargs, unsigned long *args)
2362{
2363	struct audit_context *context = audit_context();
2364
2365	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366		return -EINVAL;
2367	context->type = AUDIT_SOCKETCALL;
2368	context->socketcall.nargs = nargs;
2369	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2370	return 0;
2371}
2372
2373/**
2374 * __audit_fd_pair - record audit data for pipe and socketpair
2375 * @fd1: the first file descriptor
2376 * @fd2: the second file descriptor
2377 *
2378 */
2379void __audit_fd_pair(int fd1, int fd2)
2380{
2381	struct audit_context *context = audit_context();
2382	context->fds[0] = fd1;
2383	context->fds[1] = fd2;
2384}
2385
2386/**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393int __audit_sockaddr(int len, void *a)
2394{
2395	struct audit_context *context = audit_context();
2396
2397	if (!context->sockaddr) {
2398		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399		if (!p)
2400			return -ENOMEM;
2401		context->sockaddr = p;
2402	}
2403
2404	context->sockaddr_len = len;
2405	memcpy(context->sockaddr, a, len);
2406	return 0;
2407}
2408
2409void __audit_ptrace(struct task_struct *t)
2410{
2411	struct audit_context *context = audit_context();
2412
2413	context->target_pid = task_tgid_nr(t);
2414	context->target_auid = audit_get_loginuid(t);
2415	context->target_uid = task_uid(t);
2416	context->target_sessionid = audit_get_sessionid(t);
2417	security_task_getsecid(t, &context->target_sid);
2418	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2419}
2420
2421/**
2422 * audit_signal_info_syscall - record signal info for syscalls
 
2423 * @t: task being signaled
2424 *
2425 * If the audit subsystem is being terminated, record the task (pid)
2426 * and uid that is doing that.
2427 */
2428int audit_signal_info_syscall(struct task_struct *t)
2429{
2430	struct audit_aux_data_pids *axp;
2431	struct audit_context *ctx = audit_context();
2432	kuid_t t_uid = task_uid(t);
2433
2434	if (!audit_signals || audit_dummy_context())
2435		return 0;
 
 
 
 
 
 
 
 
 
 
 
2436
2437	/* optimize the common case by putting first signal recipient directly
2438	 * in audit_context */
2439	if (!ctx->target_pid) {
2440		ctx->target_pid = task_tgid_nr(t);
2441		ctx->target_auid = audit_get_loginuid(t);
2442		ctx->target_uid = t_uid;
2443		ctx->target_sessionid = audit_get_sessionid(t);
2444		security_task_getsecid(t, &ctx->target_sid);
2445		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2446		return 0;
2447	}
2448
2449	axp = (void *)ctx->aux_pids;
2450	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2451		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2452		if (!axp)
2453			return -ENOMEM;
2454
2455		axp->d.type = AUDIT_OBJ_PID;
2456		axp->d.next = ctx->aux_pids;
2457		ctx->aux_pids = (void *)axp;
2458	}
2459	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2460
2461	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2462	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2463	axp->target_uid[axp->pid_count] = t_uid;
2464	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2465	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2466	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2467	axp->pid_count++;
2468
2469	return 0;
2470}
2471
2472/**
2473 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2474 * @bprm: pointer to the bprm being processed
2475 * @new: the proposed new credentials
2476 * @old: the old credentials
2477 *
2478 * Simply check if the proc already has the caps given by the file and if not
2479 * store the priv escalation info for later auditing at the end of the syscall
2480 *
2481 * -Eric
2482 */
2483int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2484			   const struct cred *new, const struct cred *old)
2485{
2486	struct audit_aux_data_bprm_fcaps *ax;
2487	struct audit_context *context = audit_context();
2488	struct cpu_vfs_cap_data vcaps;
2489
2490	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2491	if (!ax)
2492		return -ENOMEM;
2493
2494	ax->d.type = AUDIT_BPRM_FCAPS;
2495	ax->d.next = context->aux;
2496	context->aux = (void *)ax;
2497
2498	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2499
2500	ax->fcap.permitted = vcaps.permitted;
2501	ax->fcap.inheritable = vcaps.inheritable;
2502	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2503	ax->fcap.rootid = vcaps.rootid;
2504	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2505
2506	ax->old_pcap.permitted   = old->cap_permitted;
2507	ax->old_pcap.inheritable = old->cap_inheritable;
2508	ax->old_pcap.effective   = old->cap_effective;
2509	ax->old_pcap.ambient     = old->cap_ambient;
2510
2511	ax->new_pcap.permitted   = new->cap_permitted;
2512	ax->new_pcap.inheritable = new->cap_inheritable;
2513	ax->new_pcap.effective   = new->cap_effective;
2514	ax->new_pcap.ambient     = new->cap_ambient;
2515	return 0;
2516}
2517
2518/**
2519 * __audit_log_capset - store information about the arguments to the capset syscall
2520 * @new: the new credentials
2521 * @old: the old (current) credentials
2522 *
2523 * Record the arguments userspace sent to sys_capset for later printing by the
2524 * audit system if applicable
2525 */
2526void __audit_log_capset(const struct cred *new, const struct cred *old)
2527{
2528	struct audit_context *context = audit_context();
2529	context->capset.pid = task_tgid_nr(current);
2530	context->capset.cap.effective   = new->cap_effective;
2531	context->capset.cap.inheritable = new->cap_effective;
2532	context->capset.cap.permitted   = new->cap_permitted;
2533	context->capset.cap.ambient     = new->cap_ambient;
2534	context->type = AUDIT_CAPSET;
2535}
2536
2537void __audit_mmap_fd(int fd, int flags)
2538{
2539	struct audit_context *context = audit_context();
2540	context->mmap.fd = fd;
2541	context->mmap.flags = flags;
2542	context->type = AUDIT_MMAP;
2543}
2544
2545void __audit_log_kern_module(char *name)
2546{
2547	struct audit_context *context = audit_context();
2548
2549	context->module.name = kstrdup(name, GFP_KERNEL);
2550	if (!context->module.name)
2551		audit_log_lost("out of memory in __audit_log_kern_module");
2552	context->type = AUDIT_KERN_MODULE;
2553}
2554
2555void __audit_fanotify(unsigned int response)
2556{
2557	audit_log(audit_context(), GFP_KERNEL,
2558		AUDIT_FANOTIFY,	"resp=%u", response);
2559}
2560
2561void __audit_tk_injoffset(struct timespec64 offset)
2562{
2563	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2564		  "sec=%lli nsec=%li",
2565		  (long long)offset.tv_sec, offset.tv_nsec);
2566}
2567
2568static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2569			      const char *op, enum audit_ntp_type type)
2570{
2571	const struct audit_ntp_val *val = &ad->vals[type];
2572
2573	if (val->newval == val->oldval)
2574		return;
2575
2576	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2577		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2578}
2579
2580void __audit_ntp_log(const struct audit_ntp_data *ad)
2581{
2582	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2583	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2584	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2585	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2586	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2587	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2588}
2589
2590void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2591		       enum audit_nfcfgop op, gfp_t gfp)
2592{
2593	struct audit_buffer *ab;
2594	char comm[sizeof(current->comm)];
2595
2596	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2597	if (!ab)
2598		return;
2599	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2600			 name, af, nentries, audit_nfcfgs[op].s);
2601
2602	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2603	audit_log_task_context(ab); /* subj= */
2604	audit_log_format(ab, " comm=");
2605	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2606	audit_log_end(ab);
2607}
2608EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2609
2610static void audit_log_task(struct audit_buffer *ab)
2611{
2612	kuid_t auid, uid;
2613	kgid_t gid;
2614	unsigned int sessionid;
2615	char comm[sizeof(current->comm)];
2616
2617	auid = audit_get_loginuid(current);
2618	sessionid = audit_get_sessionid(current);
2619	current_uid_gid(&uid, &gid);
2620
2621	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2622			 from_kuid(&init_user_ns, auid),
2623			 from_kuid(&init_user_ns, uid),
2624			 from_kgid(&init_user_ns, gid),
2625			 sessionid);
2626	audit_log_task_context(ab);
2627	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2628	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2629	audit_log_d_path_exe(ab, current->mm);
2630}
2631
2632/**
2633 * audit_core_dumps - record information about processes that end abnormally
2634 * @signr: signal value
2635 *
2636 * If a process ends with a core dump, something fishy is going on and we
2637 * should record the event for investigation.
2638 */
2639void audit_core_dumps(long signr)
2640{
2641	struct audit_buffer *ab;
2642
2643	if (!audit_enabled)
2644		return;
2645
2646	if (signr == SIGQUIT)	/* don't care for those */
2647		return;
2648
2649	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2650	if (unlikely(!ab))
2651		return;
2652	audit_log_task(ab);
2653	audit_log_format(ab, " sig=%ld res=1", signr);
2654	audit_log_end(ab);
2655}
2656
2657/**
2658 * audit_seccomp - record information about a seccomp action
2659 * @syscall: syscall number
2660 * @signr: signal value
2661 * @code: the seccomp action
2662 *
2663 * Record the information associated with a seccomp action. Event filtering for
2664 * seccomp actions that are not to be logged is done in seccomp_log().
2665 * Therefore, this function forces auditing independent of the audit_enabled
2666 * and dummy context state because seccomp actions should be logged even when
2667 * audit is not in use.
2668 */
2669void audit_seccomp(unsigned long syscall, long signr, int code)
2670{
2671	struct audit_buffer *ab;
2672
2673	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2674	if (unlikely(!ab))
2675		return;
2676	audit_log_task(ab);
2677	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2678			 signr, syscall_get_arch(current), syscall,
2679			 in_compat_syscall(), KSTK_EIP(current), code);
2680	audit_log_end(ab);
2681}
2682
2683void audit_seccomp_actions_logged(const char *names, const char *old_names,
2684				  int res)
2685{
2686	struct audit_buffer *ab;
2687
2688	if (!audit_enabled)
2689		return;
2690
2691	ab = audit_log_start(audit_context(), GFP_KERNEL,
2692			     AUDIT_CONFIG_CHANGE);
2693	if (unlikely(!ab))
2694		return;
2695
2696	audit_log_format(ab,
2697			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2698			 names, old_names, res);
2699	audit_log_end(ab);
2700}
2701
2702struct list_head *audit_killed_trees(void)
2703{
2704	struct audit_context *ctx = audit_context();
2705	if (likely(!ctx || !ctx->in_syscall))
2706		return NULL;
2707	return &ctx->killed_trees;
2708}