Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
 
  76#include <uapi/linux/limits.h>
 
 
 
  77
  78#include "audit.h"
  79
  80/* flags stating the success for a syscall */
  81#define AUDITSC_INVALID 0
  82#define AUDITSC_SUCCESS 1
  83#define AUDITSC_FAILURE 2
  84
  85/* no execve audit message should be longer than this (userspace limits),
  86 * see the note near the top of audit_log_execve_info() about this value */
  87#define MAX_EXECVE_AUDIT_LEN 7500
  88
  89/* max length to print of cmdline/proctitle value during audit */
  90#define MAX_PROCTITLE_AUDIT_LEN 128
  91
  92/* number of audit rules */
  93int audit_n_rules;
  94
  95/* determines whether we collect data for signals sent */
  96int audit_signals;
  97
  98struct audit_aux_data {
  99	struct audit_aux_data	*next;
 100	int			type;
 101};
 102
 103#define AUDIT_AUX_IPCPERM	0
 104
 105/* Number of target pids per aux struct. */
 106#define AUDIT_AUX_PIDS	16
 107
 108struct audit_aux_data_pids {
 109	struct audit_aux_data	d;
 110	pid_t			target_pid[AUDIT_AUX_PIDS];
 111	kuid_t			target_auid[AUDIT_AUX_PIDS];
 112	kuid_t			target_uid[AUDIT_AUX_PIDS];
 113	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 114	u32			target_sid[AUDIT_AUX_PIDS];
 115	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 116	int			pid_count;
 117};
 118
 119struct audit_aux_data_bprm_fcaps {
 120	struct audit_aux_data	d;
 121	struct audit_cap_data	fcap;
 122	unsigned int		fcap_ver;
 123	struct audit_cap_data	old_pcap;
 124	struct audit_cap_data	new_pcap;
 125};
 126
 127struct audit_tree_refs {
 128	struct audit_tree_refs *next;
 129	struct audit_chunk *c[31];
 130};
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132static int audit_match_perm(struct audit_context *ctx, int mask)
 133{
 134	unsigned n;
 
 135	if (unlikely(!ctx))
 136		return 0;
 137	n = ctx->major;
 138
 139	switch (audit_classify_syscall(ctx->arch, n)) {
 140	case 0:	/* native */
 141		if ((mask & AUDIT_PERM_WRITE) &&
 142		     audit_match_class(AUDIT_CLASS_WRITE, n))
 143			return 1;
 144		if ((mask & AUDIT_PERM_READ) &&
 145		     audit_match_class(AUDIT_CLASS_READ, n))
 146			return 1;
 147		if ((mask & AUDIT_PERM_ATTR) &&
 148		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 149			return 1;
 150		return 0;
 151	case 1: /* 32bit on biarch */
 152		if ((mask & AUDIT_PERM_WRITE) &&
 153		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 154			return 1;
 155		if ((mask & AUDIT_PERM_READ) &&
 156		     audit_match_class(AUDIT_CLASS_READ_32, n))
 157			return 1;
 158		if ((mask & AUDIT_PERM_ATTR) &&
 159		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 160			return 1;
 161		return 0;
 162	case 2: /* open */
 163		return mask & ACC_MODE(ctx->argv[1]);
 164	case 3: /* openat */
 165		return mask & ACC_MODE(ctx->argv[2]);
 166	case 4: /* socketcall */
 167		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 168	case 5: /* execve */
 169		return mask & AUDIT_PERM_EXEC;
 
 
 170	default:
 171		return 0;
 172	}
 173}
 174
 175static int audit_match_filetype(struct audit_context *ctx, int val)
 176{
 177	struct audit_names *n;
 178	umode_t mode = (umode_t)val;
 179
 180	if (unlikely(!ctx))
 181		return 0;
 182
 183	list_for_each_entry(n, &ctx->names_list, list) {
 184		if ((n->ino != AUDIT_INO_UNSET) &&
 185		    ((n->mode & S_IFMT) == mode))
 186			return 1;
 187	}
 188
 189	return 0;
 190}
 191
 192/*
 193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 194 * ->first_trees points to its beginning, ->trees - to the current end of data.
 195 * ->tree_count is the number of free entries in array pointed to by ->trees.
 196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 197 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 198 * it's going to remain 1-element for almost any setup) until we free context itself.
 199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 200 */
 201
 202#ifdef CONFIG_AUDIT_TREE
 203static void audit_set_auditable(struct audit_context *ctx)
 204{
 205	if (!ctx->prio) {
 206		ctx->prio = 1;
 207		ctx->current_state = AUDIT_RECORD_CONTEXT;
 208	}
 209}
 210
 211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 212{
 213	struct audit_tree_refs *p = ctx->trees;
 214	int left = ctx->tree_count;
 
 215	if (likely(left)) {
 216		p->c[--left] = chunk;
 217		ctx->tree_count = left;
 218		return 1;
 219	}
 220	if (!p)
 221		return 0;
 222	p = p->next;
 223	if (p) {
 224		p->c[30] = chunk;
 225		ctx->trees = p;
 226		ctx->tree_count = 30;
 227		return 1;
 228	}
 229	return 0;
 230}
 231
 232static int grow_tree_refs(struct audit_context *ctx)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 
 235	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 236	if (!ctx->trees) {
 237		ctx->trees = p;
 238		return 0;
 239	}
 240	if (p)
 241		p->next = ctx->trees;
 242	else
 243		ctx->first_trees = ctx->trees;
 244	ctx->tree_count = 31;
 245	return 1;
 246}
 247#endif
 248
 249static void unroll_tree_refs(struct audit_context *ctx,
 250		      struct audit_tree_refs *p, int count)
 251{
 252#ifdef CONFIG_AUDIT_TREE
 253	struct audit_tree_refs *q;
 254	int n;
 
 255	if (!p) {
 256		/* we started with empty chain */
 257		p = ctx->first_trees;
 258		count = 31;
 259		/* if the very first allocation has failed, nothing to do */
 260		if (!p)
 261			return;
 262	}
 263	n = count;
 264	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 265		while (n--) {
 266			audit_put_chunk(q->c[n]);
 267			q->c[n] = NULL;
 268		}
 269	}
 270	while (n-- > ctx->tree_count) {
 271		audit_put_chunk(q->c[n]);
 272		q->c[n] = NULL;
 273	}
 274	ctx->trees = p;
 275	ctx->tree_count = count;
 276#endif
 277}
 278
 279static void free_tree_refs(struct audit_context *ctx)
 280{
 281	struct audit_tree_refs *p, *q;
 
 282	for (p = ctx->first_trees; p; p = q) {
 283		q = p->next;
 284		kfree(p);
 285	}
 286}
 287
 288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 289{
 290#ifdef CONFIG_AUDIT_TREE
 291	struct audit_tree_refs *p;
 292	int n;
 
 293	if (!tree)
 294		return 0;
 295	/* full ones */
 296	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 297		for (n = 0; n < 31; n++)
 298			if (audit_tree_match(p->c[n], tree))
 299				return 1;
 300	}
 301	/* partial */
 302	if (p) {
 303		for (n = ctx->tree_count; n < 31; n++)
 304			if (audit_tree_match(p->c[n], tree))
 305				return 1;
 306	}
 307#endif
 308	return 0;
 309}
 310
 311static int audit_compare_uid(kuid_t uid,
 312			     struct audit_names *name,
 313			     struct audit_field *f,
 314			     struct audit_context *ctx)
 315{
 316	struct audit_names *n;
 317	int rc;
 318 
 319	if (name) {
 320		rc = audit_uid_comparator(uid, f->op, name->uid);
 321		if (rc)
 322			return rc;
 323	}
 324 
 325	if (ctx) {
 326		list_for_each_entry(n, &ctx->names_list, list) {
 327			rc = audit_uid_comparator(uid, f->op, n->uid);
 328			if (rc)
 329				return rc;
 330		}
 331	}
 332	return 0;
 333}
 334
 335static int audit_compare_gid(kgid_t gid,
 336			     struct audit_names *name,
 337			     struct audit_field *f,
 338			     struct audit_context *ctx)
 339{
 340	struct audit_names *n;
 341	int rc;
 342 
 343	if (name) {
 344		rc = audit_gid_comparator(gid, f->op, name->gid);
 345		if (rc)
 346			return rc;
 347	}
 348 
 349	if (ctx) {
 350		list_for_each_entry(n, &ctx->names_list, list) {
 351			rc = audit_gid_comparator(gid, f->op, n->gid);
 352			if (rc)
 353				return rc;
 354		}
 355	}
 356	return 0;
 357}
 358
 359static int audit_field_compare(struct task_struct *tsk,
 360			       const struct cred *cred,
 361			       struct audit_field *f,
 362			       struct audit_context *ctx,
 363			       struct audit_names *name)
 364{
 365	switch (f->val) {
 366	/* process to file object comparisons */
 367	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 368		return audit_compare_uid(cred->uid, name, f, ctx);
 369	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 370		return audit_compare_gid(cred->gid, name, f, ctx);
 371	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 372		return audit_compare_uid(cred->euid, name, f, ctx);
 373	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 374		return audit_compare_gid(cred->egid, name, f, ctx);
 375	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 376		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 377	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 378		return audit_compare_uid(cred->suid, name, f, ctx);
 379	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 380		return audit_compare_gid(cred->sgid, name, f, ctx);
 381	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 382		return audit_compare_uid(cred->fsuid, name, f, ctx);
 383	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 384		return audit_compare_gid(cred->fsgid, name, f, ctx);
 385	/* uid comparisons */
 386	case AUDIT_COMPARE_UID_TO_AUID:
 387		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 
 388	case AUDIT_COMPARE_UID_TO_EUID:
 389		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 390	case AUDIT_COMPARE_UID_TO_SUID:
 391		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 392	case AUDIT_COMPARE_UID_TO_FSUID:
 393		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 394	/* auid comparisons */
 395	case AUDIT_COMPARE_AUID_TO_EUID:
 396		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 
 397	case AUDIT_COMPARE_AUID_TO_SUID:
 398		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 
 399	case AUDIT_COMPARE_AUID_TO_FSUID:
 400		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 401	/* euid comparisons */
 402	case AUDIT_COMPARE_EUID_TO_SUID:
 403		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 404	case AUDIT_COMPARE_EUID_TO_FSUID:
 405		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 406	/* suid comparisons */
 407	case AUDIT_COMPARE_SUID_TO_FSUID:
 408		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 409	/* gid comparisons */
 410	case AUDIT_COMPARE_GID_TO_EGID:
 411		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 412	case AUDIT_COMPARE_GID_TO_SGID:
 413		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 414	case AUDIT_COMPARE_GID_TO_FSGID:
 415		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 416	/* egid comparisons */
 417	case AUDIT_COMPARE_EGID_TO_SGID:
 418		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 419	case AUDIT_COMPARE_EGID_TO_FSGID:
 420		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 421	/* sgid comparison */
 422	case AUDIT_COMPARE_SGID_TO_FSGID:
 423		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 424	default:
 425		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 426		return 0;
 427	}
 428	return 0;
 429}
 430
 431/* Determine if any context name data matches a rule's watch data */
 432/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 433 * otherwise.
 434 *
 435 * If task_creation is true, this is an explicit indication that we are
 436 * filtering a task rule at task creation time.  This and tsk == current are
 437 * the only situations where tsk->cred may be accessed without an rcu read lock.
 438 */
 439static int audit_filter_rules(struct task_struct *tsk,
 440			      struct audit_krule *rule,
 441			      struct audit_context *ctx,
 442			      struct audit_names *name,
 443			      enum audit_state *state,
 444			      bool task_creation)
 445{
 446	const struct cred *cred;
 447	int i, need_sid = 1;
 448	u32 sid;
 449	unsigned int sessionid;
 450
 
 
 
 451	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 452
 453	for (i = 0; i < rule->field_count; i++) {
 454		struct audit_field *f = &rule->fields[i];
 455		struct audit_names *n;
 456		int result = 0;
 457		pid_t pid;
 458
 459		switch (f->type) {
 460		case AUDIT_PID:
 461			pid = task_tgid_nr(tsk);
 462			result = audit_comparator(pid, f->op, f->val);
 463			break;
 464		case AUDIT_PPID:
 465			if (ctx) {
 466				if (!ctx->ppid)
 467					ctx->ppid = task_ppid_nr(tsk);
 468				result = audit_comparator(ctx->ppid, f->op, f->val);
 469			}
 470			break;
 471		case AUDIT_EXE:
 472			result = audit_exe_compare(tsk, rule->exe);
 
 
 473			break;
 474		case AUDIT_UID:
 475			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 476			break;
 477		case AUDIT_EUID:
 478			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 479			break;
 480		case AUDIT_SUID:
 481			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 482			break;
 483		case AUDIT_FSUID:
 484			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 485			break;
 486		case AUDIT_GID:
 487			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 488			if (f->op == Audit_equal) {
 489				if (!result)
 490					result = in_group_p(f->gid);
 491			} else if (f->op == Audit_not_equal) {
 492				if (result)
 493					result = !in_group_p(f->gid);
 494			}
 495			break;
 496		case AUDIT_EGID:
 497			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 498			if (f->op == Audit_equal) {
 499				if (!result)
 500					result = in_egroup_p(f->gid);
 501			} else if (f->op == Audit_not_equal) {
 502				if (result)
 503					result = !in_egroup_p(f->gid);
 504			}
 505			break;
 506		case AUDIT_SGID:
 507			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 508			break;
 509		case AUDIT_FSGID:
 510			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 511			break;
 512		case AUDIT_SESSIONID:
 513			sessionid = audit_get_sessionid(current);
 514			result = audit_comparator(sessionid, f->op, f->val);
 515			break;
 516		case AUDIT_PERS:
 517			result = audit_comparator(tsk->personality, f->op, f->val);
 518			break;
 519		case AUDIT_ARCH:
 520			if (ctx)
 521				result = audit_comparator(ctx->arch, f->op, f->val);
 522			break;
 523
 524		case AUDIT_EXIT:
 525			if (ctx && ctx->return_valid)
 526				result = audit_comparator(ctx->return_code, f->op, f->val);
 527			break;
 528		case AUDIT_SUCCESS:
 529			if (ctx && ctx->return_valid) {
 530				if (f->val)
 531					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 532				else
 533					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 534			}
 535			break;
 536		case AUDIT_DEVMAJOR:
 537			if (name) {
 538				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 539				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 540					++result;
 541			} else if (ctx) {
 542				list_for_each_entry(n, &ctx->names_list, list) {
 543					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 544					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 545						++result;
 546						break;
 547					}
 548				}
 549			}
 550			break;
 551		case AUDIT_DEVMINOR:
 552			if (name) {
 553				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 554				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 555					++result;
 556			} else if (ctx) {
 557				list_for_each_entry(n, &ctx->names_list, list) {
 558					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 559					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 560						++result;
 561						break;
 562					}
 563				}
 564			}
 565			break;
 566		case AUDIT_INODE:
 567			if (name)
 568				result = audit_comparator(name->ino, f->op, f->val);
 569			else if (ctx) {
 570				list_for_each_entry(n, &ctx->names_list, list) {
 571					if (audit_comparator(n->ino, f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_OBJ_UID:
 579			if (name) {
 580				result = audit_uid_comparator(name->uid, f->op, f->uid);
 581			} else if (ctx) {
 582				list_for_each_entry(n, &ctx->names_list, list) {
 583					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 584						++result;
 585						break;
 586					}
 587				}
 588			}
 589			break;
 590		case AUDIT_OBJ_GID:
 591			if (name) {
 592				result = audit_gid_comparator(name->gid, f->op, f->gid);
 593			} else if (ctx) {
 594				list_for_each_entry(n, &ctx->names_list, list) {
 595					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 596						++result;
 597						break;
 598					}
 599				}
 600			}
 601			break;
 602		case AUDIT_WATCH:
 603			if (name)
 604				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 605			break;
 606		case AUDIT_DIR:
 607			if (ctx)
 608				result = match_tree_refs(ctx, rule->tree);
 
 
 
 609			break;
 610		case AUDIT_LOGINUID:
 611			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 
 612			break;
 613		case AUDIT_LOGINUID_SET:
 614			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 615			break;
 
 
 
 
 
 616		case AUDIT_SUBJ_USER:
 617		case AUDIT_SUBJ_ROLE:
 618		case AUDIT_SUBJ_TYPE:
 619		case AUDIT_SUBJ_SEN:
 620		case AUDIT_SUBJ_CLR:
 621			/* NOTE: this may return negative values indicating
 622			   a temporary error.  We simply treat this as a
 623			   match for now to avoid losing information that
 624			   may be wanted.   An error message will also be
 625			   logged upon error */
 626			if (f->lsm_rule) {
 627				if (need_sid) {
 628					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 
 629					need_sid = 0;
 630				}
 631				result = security_audit_rule_match(sid, f->type,
 632				                                  f->op,
 633				                                  f->lsm_rule,
 634				                                  ctx);
 635			}
 636			break;
 637		case AUDIT_OBJ_USER:
 638		case AUDIT_OBJ_ROLE:
 639		case AUDIT_OBJ_TYPE:
 640		case AUDIT_OBJ_LEV_LOW:
 641		case AUDIT_OBJ_LEV_HIGH:
 642			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 643			   also applies here */
 644			if (f->lsm_rule) {
 645				/* Find files that match */
 646				if (name) {
 647					result = security_audit_rule_match(
 648					           name->osid, f->type, f->op,
 649					           f->lsm_rule, ctx);
 
 
 650				} else if (ctx) {
 651					list_for_each_entry(n, &ctx->names_list, list) {
 652						if (security_audit_rule_match(n->osid, f->type,
 653									      f->op, f->lsm_rule,
 654									      ctx)) {
 
 
 655							++result;
 656							break;
 657						}
 658					}
 659				}
 660				/* Find ipc objects that match */
 661				if (!ctx || ctx->type != AUDIT_IPC)
 662					break;
 663				if (security_audit_rule_match(ctx->ipc.osid,
 664							      f->type, f->op,
 665							      f->lsm_rule, ctx))
 666					++result;
 667			}
 668			break;
 669		case AUDIT_ARG0:
 670		case AUDIT_ARG1:
 671		case AUDIT_ARG2:
 672		case AUDIT_ARG3:
 673			if (ctx)
 674				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 675			break;
 676		case AUDIT_FILTERKEY:
 677			/* ignore this field for filtering */
 678			result = 1;
 679			break;
 680		case AUDIT_PERM:
 681			result = audit_match_perm(ctx, f->val);
 
 
 682			break;
 683		case AUDIT_FILETYPE:
 684			result = audit_match_filetype(ctx, f->val);
 
 
 685			break;
 686		case AUDIT_FIELD_COMPARE:
 687			result = audit_field_compare(tsk, cred, f, ctx, name);
 688			break;
 689		}
 690		if (!result)
 691			return 0;
 692	}
 693
 694	if (ctx) {
 695		if (rule->prio <= ctx->prio)
 696			return 0;
 697		if (rule->filterkey) {
 698			kfree(ctx->filterkey);
 699			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 700		}
 701		ctx->prio = rule->prio;
 702	}
 703	switch (rule->action) {
 704	case AUDIT_NEVER:
 705		*state = AUDIT_DISABLED;
 706		break;
 707	case AUDIT_ALWAYS:
 708		*state = AUDIT_RECORD_CONTEXT;
 709		break;
 710	}
 711	return 1;
 712}
 713
 714/* At process creation time, we can determine if system-call auditing is
 715 * completely disabled for this task.  Since we only have the task
 716 * structure at this point, we can only check uid and gid.
 717 */
 718static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 719{
 720	struct audit_entry *e;
 721	enum audit_state   state;
 722
 723	rcu_read_lock();
 724	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 725		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 726				       &state, true)) {
 727			if (state == AUDIT_RECORD_CONTEXT)
 728				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 729			rcu_read_unlock();
 730			return state;
 731		}
 732	}
 733	rcu_read_unlock();
 734	return AUDIT_BUILD_CONTEXT;
 735}
 736
 737static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 738{
 739	int word, bit;
 740
 741	if (val > 0xffffffff)
 742		return false;
 743
 744	word = AUDIT_WORD(val);
 745	if (word >= AUDIT_BITMASK_SIZE)
 746		return false;
 747
 748	bit = AUDIT_BIT(val);
 749
 750	return rule->mask[word] & bit;
 751}
 752
 753/* At syscall entry and exit time, this filter is called if the
 754 * audit_state is not low enough that auditing cannot take place, but is
 755 * also not high enough that we already know we have to write an audit
 756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 757 */
 758static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 759					     struct audit_context *ctx,
 760					     struct list_head *list)
 
 
 
 
 
 
 
 
 
 
 
 761{
 762	struct audit_entry *e;
 763	enum audit_state state;
 764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765	if (auditd_test_task(tsk))
 766		return AUDIT_DISABLED;
 767
 768	rcu_read_lock();
 769	if (!list_empty(list)) {
 770		list_for_each_entry_rcu(e, list, list) {
 771			if (audit_in_mask(&e->rule, ctx->major) &&
 772			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 773					       &state, false)) {
 774				rcu_read_unlock();
 775				ctx->current_state = state;
 776				return state;
 777			}
 778		}
 779	}
 
 
 
 
 
 
 
 
 780	rcu_read_unlock();
 781	return AUDIT_BUILD_CONTEXT;
 782}
 783
 784/*
 785 * Given an audit_name check the inode hash table to see if they match.
 786 * Called holding the rcu read lock to protect the use of audit_inode_hash
 787 */
 788static int audit_filter_inode_name(struct task_struct *tsk,
 789				   struct audit_names *n,
 790				   struct audit_context *ctx) {
 
 791	int h = audit_hash_ino((u32)n->ino);
 792	struct list_head *list = &audit_inode_hash[h];
 793	struct audit_entry *e;
 794	enum audit_state state;
 795
 796	if (list_empty(list))
 797		return 0;
 798
 799	list_for_each_entry_rcu(e, list, list) {
 800		if (audit_in_mask(&e->rule, ctx->major) &&
 801		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 802			ctx->current_state = state;
 803			return 1;
 804		}
 805	}
 806
 807	return 0;
 808}
 809
 810/* At syscall exit time, this filter is called if any audit_names have been
 811 * collected during syscall processing.  We only check rules in sublists at hash
 812 * buckets applicable to the inode numbers in audit_names.
 813 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 814 */
 815void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 816{
 817	struct audit_names *n;
 818
 819	if (auditd_test_task(tsk))
 820		return;
 821
 822	rcu_read_lock();
 823
 824	list_for_each_entry(n, &ctx->names_list, list) {
 825		if (audit_filter_inode_name(tsk, n, ctx))
 826			break;
 827	}
 828	rcu_read_unlock();
 829}
 830
 831/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 832static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 833						      int return_valid,
 834						      long return_code)
 835{
 836	struct audit_context *context = tsk->audit_context;
 837
 838	if (!context)
 839		return NULL;
 840	context->return_valid = return_valid;
 841
 842	/*
 843	 * we need to fix up the return code in the audit logs if the actual
 844	 * return codes are later going to be fixed up by the arch specific
 845	 * signal handlers
 846	 *
 847	 * This is actually a test for:
 848	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 849	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 850	 *
 851	 * but is faster than a bunch of ||
 852	 */
 853	if (unlikely(return_code <= -ERESTARTSYS) &&
 854	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 855	    (return_code != -ENOIOCTLCMD))
 856		context->return_code = -EINTR;
 857	else
 858		context->return_code  = return_code;
 859
 860	if (context->in_syscall && !context->dummy) {
 861		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 862		audit_filter_inodes(tsk, context);
 863	}
 864
 865	tsk->audit_context = NULL;
 866	return context;
 867}
 868
 869static inline void audit_proctitle_free(struct audit_context *context)
 870{
 871	kfree(context->proctitle.value);
 872	context->proctitle.value = NULL;
 873	context->proctitle.len = 0;
 874}
 875
 
 
 
 
 
 
 
 876static inline void audit_free_names(struct audit_context *context)
 877{
 878	struct audit_names *n, *next;
 879
 880	list_for_each_entry_safe(n, next, &context->names_list, list) {
 881		list_del(&n->list);
 882		if (n->name)
 883			putname(n->name);
 884		if (n->should_free)
 885			kfree(n);
 886	}
 887	context->name_count = 0;
 888	path_put(&context->pwd);
 889	context->pwd.dentry = NULL;
 890	context->pwd.mnt = NULL;
 891}
 892
 893static inline void audit_free_aux(struct audit_context *context)
 894{
 895	struct audit_aux_data *aux;
 896
 897	while ((aux = context->aux)) {
 898		context->aux = aux->next;
 899		kfree(aux);
 900	}
 
 901	while ((aux = context->aux_pids)) {
 902		context->aux_pids = aux->next;
 903		kfree(aux);
 904	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905}
 906
 907static inline struct audit_context *audit_alloc_context(enum audit_state state)
 908{
 909	struct audit_context *context;
 910
 911	context = kzalloc(sizeof(*context), GFP_KERNEL);
 912	if (!context)
 913		return NULL;
 
 914	context->state = state;
 915	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 916	INIT_LIST_HEAD(&context->killed_trees);
 917	INIT_LIST_HEAD(&context->names_list);
 
 
 918	return context;
 919}
 920
 921/**
 922 * audit_alloc - allocate an audit context block for a task
 923 * @tsk: task
 924 *
 925 * Filter on the task information and allocate a per-task audit context
 926 * if necessary.  Doing so turns on system call auditing for the
 927 * specified task.  This is called from copy_process, so no lock is
 928 * needed.
 929 */
 930int audit_alloc(struct task_struct *tsk)
 931{
 932	struct audit_context *context;
 933	enum audit_state     state;
 934	char *key = NULL;
 935
 936	if (likely(!audit_ever_enabled))
 937		return 0; /* Return if not auditing. */
 938
 939	state = audit_filter_task(tsk, &key);
 940	if (state == AUDIT_DISABLED) {
 941		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 942		return 0;
 943	}
 944
 945	if (!(context = audit_alloc_context(state))) {
 
 946		kfree(key);
 947		audit_log_lost("out of memory in audit_alloc");
 948		return -ENOMEM;
 949	}
 950	context->filterkey = key;
 951
 952	tsk->audit_context  = context;
 953	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 954	return 0;
 955}
 956
 957static inline void audit_free_context(struct audit_context *context)
 958{
 959	audit_free_names(context);
 960	unroll_tree_refs(context, NULL, 0);
 
 961	free_tree_refs(context);
 962	audit_free_aux(context);
 963	kfree(context->filterkey);
 964	kfree(context->sockaddr);
 965	audit_proctitle_free(context);
 966	kfree(context);
 967}
 968
 969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 970				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 971				 u32 sid, char *comm)
 
 972{
 973	struct audit_buffer *ab;
 974	char *ctx = NULL;
 975	u32 len;
 976	int rc = 0;
 977
 978	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 979	if (!ab)
 980		return rc;
 981
 982	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 983			 from_kuid(&init_user_ns, auid),
 984			 from_kuid(&init_user_ns, uid), sessionid);
 985	if (sid) {
 986		if (security_secid_to_secctx(sid, &ctx, &len)) {
 987			audit_log_format(ab, " obj=(none)");
 988			rc = 1;
 989		} else {
 990			audit_log_format(ab, " obj=%s", ctx);
 991			security_release_secctx(ctx, len);
 992		}
 993	}
 994	audit_log_format(ab, " ocomm=");
 995	audit_log_untrustedstring(ab, comm);
 996	audit_log_end(ab);
 997
 998	return rc;
 999}
1000
1001static void audit_log_execve_info(struct audit_context *context,
1002				  struct audit_buffer **ab)
1003{
1004	long len_max;
1005	long len_rem;
1006	long len_full;
1007	long len_buf;
1008	long len_abuf = 0;
1009	long len_tmp;
1010	bool require_data;
1011	bool encode;
1012	unsigned int iter;
1013	unsigned int arg;
1014	char *buf_head;
1015	char *buf;
1016	const char __user *p = (const char __user *)current->mm->arg_start;
1017
1018	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1019	 *       data we put in the audit record for this argument (see the
1020	 *       code below) ... at this point in time 96 is plenty */
1021	char abuf[96];
1022
1023	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1024	 *       current value of 7500 is not as important as the fact that it
1025	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1026	 *       room if we go over a little bit in the logging below */
1027	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1028	len_max = MAX_EXECVE_AUDIT_LEN;
1029
1030	/* scratch buffer to hold the userspace args */
1031	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1032	if (!buf_head) {
1033		audit_panic("out of memory for argv string");
1034		return;
1035	}
1036	buf = buf_head;
1037
1038	audit_log_format(*ab, "argc=%d", context->execve.argc);
1039
1040	len_rem = len_max;
1041	len_buf = 0;
1042	len_full = 0;
1043	require_data = true;
1044	encode = false;
1045	iter = 0;
1046	arg = 0;
1047	do {
1048		/* NOTE: we don't ever want to trust this value for anything
1049		 *       serious, but the audit record format insists we
1050		 *       provide an argument length for really long arguments,
1051		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1052		 *       to use strncpy_from_user() to obtain this value for
1053		 *       recording in the log, although we don't use it
1054		 *       anywhere here to avoid a double-fetch problem */
1055		if (len_full == 0)
1056			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1057
1058		/* read more data from userspace */
1059		if (require_data) {
1060			/* can we make more room in the buffer? */
1061			if (buf != buf_head) {
1062				memmove(buf_head, buf, len_buf);
1063				buf = buf_head;
1064			}
1065
1066			/* fetch as much as we can of the argument */
1067			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1068						    len_max - len_buf);
1069			if (len_tmp == -EFAULT) {
1070				/* unable to copy from userspace */
1071				send_sig(SIGKILL, current, 0);
1072				goto out;
1073			} else if (len_tmp == (len_max - len_buf)) {
1074				/* buffer is not large enough */
1075				require_data = true;
1076				/* NOTE: if we are going to span multiple
1077				 *       buffers force the encoding so we stand
1078				 *       a chance at a sane len_full value and
1079				 *       consistent record encoding */
1080				encode = true;
1081				len_full = len_full * 2;
1082				p += len_tmp;
1083			} else {
1084				require_data = false;
1085				if (!encode)
1086					encode = audit_string_contains_control(
1087								buf, len_tmp);
1088				/* try to use a trusted value for len_full */
1089				if (len_full < len_max)
1090					len_full = (encode ?
1091						    len_tmp * 2 : len_tmp);
1092				p += len_tmp + 1;
1093			}
1094			len_buf += len_tmp;
1095			buf_head[len_buf] = '\0';
1096
1097			/* length of the buffer in the audit record? */
1098			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1099		}
1100
1101		/* write as much as we can to the audit log */
1102		if (len_buf > 0) {
1103			/* NOTE: some magic numbers here - basically if we
1104			 *       can't fit a reasonable amount of data into the
1105			 *       existing audit buffer, flush it and start with
1106			 *       a new buffer */
1107			if ((sizeof(abuf) + 8) > len_rem) {
1108				len_rem = len_max;
1109				audit_log_end(*ab);
1110				*ab = audit_log_start(context,
1111						      GFP_KERNEL, AUDIT_EXECVE);
1112				if (!*ab)
1113					goto out;
1114			}
1115
1116			/* create the non-arg portion of the arg record */
1117			len_tmp = 0;
1118			if (require_data || (iter > 0) ||
1119			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1120				if (iter == 0) {
1121					len_tmp += snprintf(&abuf[len_tmp],
1122							sizeof(abuf) - len_tmp,
1123							" a%d_len=%lu",
1124							arg, len_full);
1125				}
1126				len_tmp += snprintf(&abuf[len_tmp],
1127						    sizeof(abuf) - len_tmp,
1128						    " a%d[%d]=", arg, iter++);
1129			} else
1130				len_tmp += snprintf(&abuf[len_tmp],
1131						    sizeof(abuf) - len_tmp,
1132						    " a%d=", arg);
1133			WARN_ON(len_tmp >= sizeof(abuf));
1134			abuf[sizeof(abuf) - 1] = '\0';
1135
1136			/* log the arg in the audit record */
1137			audit_log_format(*ab, "%s", abuf);
1138			len_rem -= len_tmp;
1139			len_tmp = len_buf;
1140			if (encode) {
1141				if (len_abuf > len_rem)
1142					len_tmp = len_rem / 2; /* encoding */
1143				audit_log_n_hex(*ab, buf, len_tmp);
1144				len_rem -= len_tmp * 2;
1145				len_abuf -= len_tmp * 2;
1146			} else {
1147				if (len_abuf > len_rem)
1148					len_tmp = len_rem - 2; /* quotes */
1149				audit_log_n_string(*ab, buf, len_tmp);
1150				len_rem -= len_tmp + 2;
1151				/* don't subtract the "2" because we still need
1152				 * to add quotes to the remaining string */
1153				len_abuf -= len_tmp;
1154			}
1155			len_buf -= len_tmp;
1156			buf += len_tmp;
1157		}
1158
1159		/* ready to move to the next argument? */
1160		if ((len_buf == 0) && !require_data) {
1161			arg++;
1162			iter = 0;
1163			len_full = 0;
1164			require_data = true;
1165			encode = false;
1166		}
1167	} while (arg < context->execve.argc);
1168
1169	/* NOTE: the caller handles the final audit_log_end() call */
1170
1171out:
1172	kfree(buf_head);
1173}
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175static void show_special(struct audit_context *context, int *call_panic)
1176{
1177	struct audit_buffer *ab;
1178	int i;
1179
1180	ab = audit_log_start(context, GFP_KERNEL, context->type);
1181	if (!ab)
1182		return;
1183
1184	switch (context->type) {
1185	case AUDIT_SOCKETCALL: {
1186		int nargs = context->socketcall.nargs;
 
1187		audit_log_format(ab, "nargs=%d", nargs);
1188		for (i = 0; i < nargs; i++)
1189			audit_log_format(ab, " a%d=%lx", i,
1190				context->socketcall.args[i]);
1191		break; }
1192	case AUDIT_IPC: {
1193		u32 osid = context->ipc.osid;
1194
1195		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1196				 from_kuid(&init_user_ns, context->ipc.uid),
1197				 from_kgid(&init_user_ns, context->ipc.gid),
1198				 context->ipc.mode);
1199		if (osid) {
1200			char *ctx = NULL;
1201			u32 len;
1202			if (security_secid_to_secctx(osid, &ctx, &len)) {
1203				audit_log_format(ab, " osid=%u", osid);
 
1204				*call_panic = 1;
1205			} else {
1206				audit_log_format(ab, " obj=%s", ctx);
1207				security_release_secctx(ctx, len);
1208			}
1209		}
1210		if (context->ipc.has_perm) {
1211			audit_log_end(ab);
1212			ab = audit_log_start(context, GFP_KERNEL,
1213					     AUDIT_IPC_SET_PERM);
1214			if (unlikely(!ab))
1215				return;
1216			audit_log_format(ab,
1217				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1218				context->ipc.qbytes,
1219				context->ipc.perm_uid,
1220				context->ipc.perm_gid,
1221				context->ipc.perm_mode);
1222		}
1223		break; }
1224	case AUDIT_MQ_OPEN: {
1225		audit_log_format(ab,
1226			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1227			"mq_msgsize=%ld mq_curmsgs=%ld",
1228			context->mq_open.oflag, context->mq_open.mode,
1229			context->mq_open.attr.mq_flags,
1230			context->mq_open.attr.mq_maxmsg,
1231			context->mq_open.attr.mq_msgsize,
1232			context->mq_open.attr.mq_curmsgs);
1233		break; }
1234	case AUDIT_MQ_SENDRECV: {
1235		audit_log_format(ab,
1236			"mqdes=%d msg_len=%zd msg_prio=%u "
1237			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238			context->mq_sendrecv.mqdes,
1239			context->mq_sendrecv.msg_len,
1240			context->mq_sendrecv.msg_prio,
1241			context->mq_sendrecv.abs_timeout.tv_sec,
1242			context->mq_sendrecv.abs_timeout.tv_nsec);
1243		break; }
1244	case AUDIT_MQ_NOTIFY: {
1245		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246				context->mq_notify.mqdes,
1247				context->mq_notify.sigev_signo);
1248		break; }
1249	case AUDIT_MQ_GETSETATTR: {
1250		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1251		audit_log_format(ab,
1252			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253			"mq_curmsgs=%ld ",
1254			context->mq_getsetattr.mqdes,
1255			attr->mq_flags, attr->mq_maxmsg,
1256			attr->mq_msgsize, attr->mq_curmsgs);
1257		break; }
1258	case AUDIT_CAPSET: {
1259		audit_log_format(ab, "pid=%d", context->capset.pid);
1260		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263		break; }
1264	case AUDIT_MMAP: {
 
1265		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266				 context->mmap.flags);
1267		break; }
1268	case AUDIT_EXECVE: {
 
 
 
 
 
 
1269		audit_log_execve_info(context, &ab);
1270		break; }
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	}
1272	audit_log_end(ab);
1273}
1274
1275static inline int audit_proctitle_rtrim(char *proctitle, int len)
1276{
1277	char *end = proctitle + len - 1;
 
1278	while (end > proctitle && !isprint(*end))
1279		end--;
1280
1281	/* catch the case where proctitle is only 1 non-print character */
1282	len = end - proctitle + 1;
1283	len -= isprint(proctitle[len-1]) == 0;
1284	return len;
1285}
1286
1287static void audit_log_proctitle(struct task_struct *tsk,
1288			 struct audit_context *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289{
1290	int res;
1291	char *buf;
1292	char *msg = "(null)";
1293	int len = strlen(msg);
 
1294	struct audit_buffer *ab;
1295
1296	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1297	if (!ab)
1298		return;	/* audit_panic or being filtered */
1299
1300	audit_log_format(ab, "proctitle=");
1301
1302	/* Not  cached */
1303	if (!context->proctitle.value) {
1304		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1305		if (!buf)
1306			goto out;
1307		/* Historically called this from procfs naming */
1308		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1309		if (res == 0) {
1310			kfree(buf);
1311			goto out;
1312		}
1313		res = audit_proctitle_rtrim(buf, res);
1314		if (res == 0) {
1315			kfree(buf);
1316			goto out;
1317		}
1318		context->proctitle.value = buf;
1319		context->proctitle.len = res;
1320	}
1321	msg = context->proctitle.value;
1322	len = context->proctitle.len;
1323out:
1324	audit_log_n_untrustedstring(ab, msg, len);
1325	audit_log_end(ab);
1326}
1327
1328static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
1329{
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	struct audit_names *n;
1334
1335	/* tsk == current */
1336	context->personality = tsk->personality;
1337
1338	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1339	if (!ab)
1340		return;		/* audit_panic has been called */
1341	audit_log_format(ab, "arch=%x syscall=%d",
1342			 context->arch, context->major);
1343	if (context->personality != PER_LINUX)
1344		audit_log_format(ab, " per=%lx", context->personality);
1345	if (context->return_valid)
1346		audit_log_format(ab, " success=%s exit=%ld",
1347				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1348				 context->return_code);
1349
1350	audit_log_format(ab,
1351			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352			 context->argv[0],
1353			 context->argv[1],
1354			 context->argv[2],
1355			 context->argv[3],
1356			 context->name_count);
1357
1358	audit_log_task_info(ab, tsk);
1359	audit_log_key(ab, context->filterkey);
 
 
 
 
 
 
1360	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	for (aux = context->aux; aux; aux = aux->next) {
1363
1364		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1365		if (!ab)
1366			continue; /* audit_panic has been called */
1367
1368		switch (aux->type) {
1369
1370		case AUDIT_BPRM_FCAPS: {
1371			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1372			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1373			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1374			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1375			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1376			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1377			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1378			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1379			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1380			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1381			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1382			break; }
1383
1384		}
1385		audit_log_end(ab);
1386	}
1387
1388	if (context->type)
1389		show_special(context, &call_panic);
1390
1391	if (context->fds[0] >= 0) {
1392		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1393		if (ab) {
1394			audit_log_format(ab, "fd0=%d fd1=%d",
1395					context->fds[0], context->fds[1]);
1396			audit_log_end(ab);
1397		}
1398	}
1399
1400	if (context->sockaddr_len) {
1401		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1402		if (ab) {
1403			audit_log_format(ab, "saddr=");
1404			audit_log_n_hex(ab, (void *)context->sockaddr,
1405					context->sockaddr_len);
1406			audit_log_end(ab);
1407		}
1408	}
1409
1410	for (aux = context->aux_pids; aux; aux = aux->next) {
1411		struct audit_aux_data_pids *axs = (void *)aux;
1412
1413		for (i = 0; i < axs->pid_count; i++)
1414			if (audit_log_pid_context(context, axs->target_pid[i],
1415						  axs->target_auid[i],
1416						  axs->target_uid[i],
1417						  axs->target_sessionid[i],
1418						  axs->target_sid[i],
1419						  axs->target_comm[i]))
1420				call_panic = 1;
1421	}
1422
1423	if (context->target_pid &&
1424	    audit_log_pid_context(context, context->target_pid,
1425				  context->target_auid, context->target_uid,
1426				  context->target_sessionid,
1427				  context->target_sid, context->target_comm))
1428			call_panic = 1;
1429
1430	if (context->pwd.dentry && context->pwd.mnt) {
1431		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1432		if (ab) {
1433			audit_log_d_path(ab, "cwd=", &context->pwd);
1434			audit_log_end(ab);
1435		}
1436	}
1437
1438	i = 0;
1439	list_for_each_entry(n, &context->names_list, list) {
1440		if (n->hidden)
1441			continue;
1442		audit_log_name(context, n, NULL, i++, &call_panic);
1443	}
1444
1445	audit_log_proctitle(tsk, context);
 
1446
1447	/* Send end of event record to help user space know we are finished */
1448	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1449	if (ab)
1450		audit_log_end(ab);
1451	if (call_panic)
1452		audit_panic("error converting sid to string");
1453}
1454
1455/**
1456 * audit_free - free a per-task audit context
1457 * @tsk: task whose audit context block to free
1458 *
1459 * Called from copy_process and do_exit
1460 */
1461void __audit_free(struct task_struct *tsk)
1462{
1463	struct audit_context *context;
1464
1465	context = audit_take_context(tsk, 0, 0);
1466	if (!context)
1467		return;
1468
1469	/* Check for system calls that do not go through the exit
1470	 * function (e.g., exit_group), then free context block.
1471	 * We use GFP_ATOMIC here because we might be doing this
1472	 * in the context of the idle thread */
1473	/* that can happen only if we are called from do_exit() */
1474	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1475		audit_log_exit(context, tsk);
1476	if (!list_empty(&context->killed_trees))
1477		audit_kill_trees(&context->killed_trees);
1478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479	audit_free_context(context);
1480}
1481
1482/**
1483 * audit_syscall_entry - fill in an audit record at syscall entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484 * @major: major syscall type (function)
1485 * @a1: additional syscall register 1
1486 * @a2: additional syscall register 2
1487 * @a3: additional syscall register 3
1488 * @a4: additional syscall register 4
1489 *
1490 * Fill in audit context at syscall entry.  This only happens if the
1491 * audit context was created when the task was created and the state or
1492 * filters demand the audit context be built.  If the state from the
1493 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1494 * then the record will be written at syscall exit time (otherwise, it
1495 * will only be written if another part of the kernel requests that it
1496 * be written).
1497 */
1498void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1499			   unsigned long a3, unsigned long a4)
1500{
1501	struct task_struct *tsk = current;
1502	struct audit_context *context = tsk->audit_context;
1503	enum audit_state     state;
1504
1505	if (!context)
1506		return;
1507
1508	BUG_ON(context->in_syscall || context->name_count);
 
 
 
 
 
1509
1510	if (!audit_enabled)
 
1511		return;
1512
1513	context->arch	    = syscall_get_arch();
 
 
 
 
 
 
 
1514	context->major      = major;
1515	context->argv[0]    = a1;
1516	context->argv[1]    = a2;
1517	context->argv[2]    = a3;
1518	context->argv[3]    = a4;
1519
1520	state = context->state;
1521	context->dummy = !audit_n_rules;
1522	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1523		context->prio = 0;
1524		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1525	}
1526	if (state == AUDIT_DISABLED)
1527		return;
1528
1529	context->serial     = 0;
1530	context->ctime      = CURRENT_TIME;
1531	context->in_syscall = 1;
1532	context->current_state  = state;
1533	context->ppid       = 0;
1534}
1535
1536/**
1537 * audit_syscall_exit - deallocate audit context after a system call
1538 * @success: success value of the syscall
1539 * @return_code: return value of the syscall
1540 *
1541 * Tear down after system call.  If the audit context has been marked as
1542 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1543 * filtering, or because some other part of the kernel wrote an audit
1544 * message), then write out the syscall information.  In call cases,
1545 * free the names stored from getname().
1546 */
1547void __audit_syscall_exit(int success, long return_code)
1548{
1549	struct task_struct *tsk = current;
1550	struct audit_context *context;
1551
1552	if (success)
1553		success = AUDITSC_SUCCESS;
1554	else
1555		success = AUDITSC_FAILURE;
1556
1557	context = audit_take_context(tsk, success, return_code);
1558	if (!context)
1559		return;
1560
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
 
1563
1564	context->in_syscall = 0;
1565	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
 
1566
1567	if (!list_empty(&context->killed_trees))
1568		audit_kill_trees(&context->killed_trees);
1569
1570	audit_free_names(context);
1571	unroll_tree_refs(context, NULL, 0);
1572	audit_free_aux(context);
1573	context->aux = NULL;
1574	context->aux_pids = NULL;
1575	context->target_pid = 0;
1576	context->target_sid = 0;
1577	context->sockaddr_len = 0;
1578	context->type = 0;
1579	context->fds[0] = -1;
1580	if (context->state != AUDIT_RECORD_CONTEXT) {
1581		kfree(context->filterkey);
1582		context->filterkey = NULL;
1583	}
1584	tsk->audit_context = context;
1585}
1586
1587static inline void handle_one(const struct inode *inode)
1588{
1589#ifdef CONFIG_AUDIT_TREE
1590	struct audit_context *context;
1591	struct audit_tree_refs *p;
1592	struct audit_chunk *chunk;
1593	int count;
1594	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 
1595		return;
1596	context = current->audit_context;
1597	p = context->trees;
1598	count = context->tree_count;
1599	rcu_read_lock();
1600	chunk = audit_tree_lookup(inode);
1601	rcu_read_unlock();
1602	if (!chunk)
1603		return;
1604	if (likely(put_tree_ref(context, chunk)))
1605		return;
1606	if (unlikely(!grow_tree_refs(context))) {
1607		pr_warn("out of memory, audit has lost a tree reference\n");
1608		audit_set_auditable(context);
1609		audit_put_chunk(chunk);
1610		unroll_tree_refs(context, p, count);
1611		return;
1612	}
1613	put_tree_ref(context, chunk);
1614#endif
1615}
1616
1617static void handle_path(const struct dentry *dentry)
1618{
1619#ifdef CONFIG_AUDIT_TREE
1620	struct audit_context *context;
1621	struct audit_tree_refs *p;
1622	const struct dentry *d, *parent;
1623	struct audit_chunk *drop;
1624	unsigned long seq;
1625	int count;
1626
1627	context = current->audit_context;
1628	p = context->trees;
1629	count = context->tree_count;
1630retry:
1631	drop = NULL;
1632	d = dentry;
1633	rcu_read_lock();
1634	seq = read_seqbegin(&rename_lock);
1635	for(;;) {
1636		struct inode *inode = d_backing_inode(d);
1637		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 
1638			struct audit_chunk *chunk;
 
1639			chunk = audit_tree_lookup(inode);
1640			if (chunk) {
1641				if (unlikely(!put_tree_ref(context, chunk))) {
1642					drop = chunk;
1643					break;
1644				}
1645			}
1646		}
1647		parent = d->d_parent;
1648		if (parent == d)
1649			break;
1650		d = parent;
1651	}
1652	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1653		rcu_read_unlock();
1654		if (!drop) {
1655			/* just a race with rename */
1656			unroll_tree_refs(context, p, count);
1657			goto retry;
1658		}
1659		audit_put_chunk(drop);
1660		if (grow_tree_refs(context)) {
1661			/* OK, got more space */
1662			unroll_tree_refs(context, p, count);
1663			goto retry;
1664		}
1665		/* too bad */
1666		pr_warn("out of memory, audit has lost a tree reference\n");
1667		unroll_tree_refs(context, p, count);
1668		audit_set_auditable(context);
1669		return;
1670	}
1671	rcu_read_unlock();
1672#endif
1673}
1674
1675static struct audit_names *audit_alloc_name(struct audit_context *context,
1676						unsigned char type)
1677{
1678	struct audit_names *aname;
1679
1680	if (context->name_count < AUDIT_NAMES) {
1681		aname = &context->preallocated_names[context->name_count];
1682		memset(aname, 0, sizeof(*aname));
1683	} else {
1684		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1685		if (!aname)
1686			return NULL;
1687		aname->should_free = true;
1688	}
1689
1690	aname->ino = AUDIT_INO_UNSET;
1691	aname->type = type;
1692	list_add_tail(&aname->list, &context->names_list);
1693
1694	context->name_count++;
 
 
1695	return aname;
1696}
1697
1698/**
1699 * audit_reusename - fill out filename with info from existing entry
1700 * @uptr: userland ptr to pathname
1701 *
1702 * Search the audit_names list for the current audit context. If there is an
1703 * existing entry with a matching "uptr" then return the filename
1704 * associated with that audit_name. If not, return NULL.
1705 */
1706struct filename *
1707__audit_reusename(const __user char *uptr)
1708{
1709	struct audit_context *context = current->audit_context;
1710	struct audit_names *n;
1711
1712	list_for_each_entry(n, &context->names_list, list) {
1713		if (!n->name)
1714			continue;
1715		if (n->name->uptr == uptr) {
1716			n->name->refcnt++;
1717			return n->name;
1718		}
1719	}
1720	return NULL;
1721}
1722
1723/**
1724 * audit_getname - add a name to the list
1725 * @name: name to add
1726 *
1727 * Add a name to the list of audit names for this context.
1728 * Called from fs/namei.c:getname().
1729 */
1730void __audit_getname(struct filename *name)
1731{
1732	struct audit_context *context = current->audit_context;
1733	struct audit_names *n;
1734
1735	if (!context->in_syscall)
1736		return;
1737
1738	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1739	if (!n)
1740		return;
1741
1742	n->name = name;
1743	n->name_len = AUDIT_NAME_FULL;
1744	name->aname = n;
1745	name->refcnt++;
 
1746
1747	if (!context->pwd.dentry)
1748		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749}
1750
1751/**
1752 * __audit_inode - store the inode and device from a lookup
1753 * @name: name being audited
1754 * @dentry: dentry being audited
1755 * @flags: attributes for this particular entry
1756 */
1757void __audit_inode(struct filename *name, const struct dentry *dentry,
1758		   unsigned int flags)
1759{
1760	struct audit_context *context = current->audit_context;
1761	struct inode *inode = d_backing_inode(dentry);
1762	struct audit_names *n;
1763	bool parent = flags & AUDIT_INODE_PARENT;
 
 
 
1764
1765	if (!context->in_syscall)
1766		return;
1767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768	if (!name)
1769		goto out_alloc;
1770
1771	/*
1772	 * If we have a pointer to an audit_names entry already, then we can
1773	 * just use it directly if the type is correct.
1774	 */
1775	n = name->aname;
1776	if (n) {
1777		if (parent) {
1778			if (n->type == AUDIT_TYPE_PARENT ||
1779			    n->type == AUDIT_TYPE_UNKNOWN)
1780				goto out;
1781		} else {
1782			if (n->type != AUDIT_TYPE_PARENT)
1783				goto out;
1784		}
1785	}
1786
1787	list_for_each_entry_reverse(n, &context->names_list, list) {
1788		if (n->ino) {
1789			/* valid inode number, use that for the comparison */
1790			if (n->ino != inode->i_ino ||
1791			    n->dev != inode->i_sb->s_dev)
1792				continue;
1793		} else if (n->name) {
1794			/* inode number has not been set, check the name */
1795			if (strcmp(n->name->name, name->name))
1796				continue;
1797		} else
1798			/* no inode and no name (?!) ... this is odd ... */
1799			continue;
1800
1801		/* match the correct record type */
1802		if (parent) {
1803			if (n->type == AUDIT_TYPE_PARENT ||
1804			    n->type == AUDIT_TYPE_UNKNOWN)
1805				goto out;
1806		} else {
1807			if (n->type != AUDIT_TYPE_PARENT)
1808				goto out;
1809		}
1810	}
1811
1812out_alloc:
1813	/* unable to find an entry with both a matching name and type */
1814	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1815	if (!n)
1816		return;
1817	if (name) {
1818		n->name = name;
1819		name->refcnt++;
1820	}
1821
1822out:
1823	if (parent) {
1824		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1825		n->type = AUDIT_TYPE_PARENT;
1826		if (flags & AUDIT_INODE_HIDDEN)
1827			n->hidden = true;
1828	} else {
1829		n->name_len = AUDIT_NAME_FULL;
1830		n->type = AUDIT_TYPE_NORMAL;
1831	}
1832	handle_path(dentry);
1833	audit_copy_inode(n, dentry, inode);
1834}
1835
1836void __audit_file(const struct file *file)
1837{
1838	__audit_inode(NULL, file->f_path.dentry, 0);
1839}
1840
1841/**
1842 * __audit_inode_child - collect inode info for created/removed objects
1843 * @parent: inode of dentry parent
1844 * @dentry: dentry being audited
1845 * @type:   AUDIT_TYPE_* value that we're looking for
1846 *
1847 * For syscalls that create or remove filesystem objects, audit_inode
1848 * can only collect information for the filesystem object's parent.
1849 * This call updates the audit context with the child's information.
1850 * Syscalls that create a new filesystem object must be hooked after
1851 * the object is created.  Syscalls that remove a filesystem object
1852 * must be hooked prior, in order to capture the target inode during
1853 * unsuccessful attempts.
1854 */
1855void __audit_inode_child(struct inode *parent,
1856			 const struct dentry *dentry,
1857			 const unsigned char type)
1858{
1859	struct audit_context *context = current->audit_context;
1860	struct inode *inode = d_backing_inode(dentry);
1861	const char *dname = dentry->d_name.name;
1862	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
 
 
 
1863
1864	if (!context->in_syscall)
1865		return;
1866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867	if (inode)
1868		handle_one(inode);
1869
1870	/* look for a parent entry first */
1871	list_for_each_entry(n, &context->names_list, list) {
1872		if (!n->name ||
1873		    (n->type != AUDIT_TYPE_PARENT &&
1874		     n->type != AUDIT_TYPE_UNKNOWN))
1875			continue;
1876
1877		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1878		    !audit_compare_dname_path(dname,
1879					      n->name->name, n->name_len)) {
1880			if (n->type == AUDIT_TYPE_UNKNOWN)
1881				n->type = AUDIT_TYPE_PARENT;
1882			found_parent = n;
1883			break;
1884		}
1885	}
1886
 
 
1887	/* is there a matching child entry? */
1888	list_for_each_entry(n, &context->names_list, list) {
1889		/* can only match entries that have a name */
1890		if (!n->name ||
1891		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1892			continue;
1893
1894		if (!strcmp(dname, n->name->name) ||
1895		    !audit_compare_dname_path(dname, n->name->name,
1896						found_parent ?
1897						found_parent->name_len :
1898						AUDIT_NAME_FULL)) {
1899			if (n->type == AUDIT_TYPE_UNKNOWN)
1900				n->type = type;
1901			found_child = n;
1902			break;
1903		}
1904	}
1905
1906	if (!found_parent) {
1907		/* create a new, "anonymous" parent record */
1908		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1909		if (!n)
1910			return;
1911		audit_copy_inode(n, NULL, parent);
1912	}
1913
1914	if (!found_child) {
1915		found_child = audit_alloc_name(context, type);
1916		if (!found_child)
1917			return;
1918
1919		/* Re-use the name belonging to the slot for a matching parent
1920		 * directory. All names for this context are relinquished in
1921		 * audit_free_names() */
1922		if (found_parent) {
1923			found_child->name = found_parent->name;
1924			found_child->name_len = AUDIT_NAME_FULL;
1925			found_child->name->refcnt++;
1926		}
1927	}
1928
1929	if (inode)
1930		audit_copy_inode(found_child, dentry, inode);
1931	else
1932		found_child->ino = AUDIT_INO_UNSET;
1933}
1934EXPORT_SYMBOL_GPL(__audit_inode_child);
1935
1936/**
1937 * auditsc_get_stamp - get local copies of audit_context values
1938 * @ctx: audit_context for the task
1939 * @t: timespec to store time recorded in the audit_context
1940 * @serial: serial value that is recorded in the audit_context
1941 *
1942 * Also sets the context as auditable.
1943 */
1944int auditsc_get_stamp(struct audit_context *ctx,
1945		       struct timespec *t, unsigned int *serial)
1946{
1947	if (!ctx->in_syscall)
1948		return 0;
1949	if (!ctx->serial)
1950		ctx->serial = audit_serial();
1951	t->tv_sec  = ctx->ctime.tv_sec;
1952	t->tv_nsec = ctx->ctime.tv_nsec;
1953	*serial    = ctx->serial;
1954	if (!ctx->prio) {
1955		ctx->prio = 1;
1956		ctx->current_state = AUDIT_RECORD_CONTEXT;
1957	}
1958	return 1;
1959}
1960
1961/* global counter which is incremented every time something logs in */
1962static atomic_t session_id = ATOMIC_INIT(0);
1963
1964static int audit_set_loginuid_perm(kuid_t loginuid)
1965{
1966	/* if we are unset, we don't need privs */
1967	if (!audit_loginuid_set(current))
1968		return 0;
1969	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1970	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1971		return -EPERM;
1972	/* it is set, you need permission */
1973	if (!capable(CAP_AUDIT_CONTROL))
1974		return -EPERM;
1975	/* reject if this is not an unset and we don't allow that */
1976	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1977		return -EPERM;
1978	return 0;
1979}
1980
1981static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1982				   unsigned int oldsessionid, unsigned int sessionid,
1983				   int rc)
1984{
1985	struct audit_buffer *ab;
1986	uid_t uid, oldloginuid, loginuid;
1987	struct tty_struct *tty;
1988
1989	if (!audit_enabled)
1990		return;
1991
1992	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1993	if (!ab)
1994		return;
1995
1996	uid = from_kuid(&init_user_ns, task_uid(current));
1997	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1998	loginuid = from_kuid(&init_user_ns, kloginuid),
1999	tty = audit_get_tty(current);
2000
2001	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2002	audit_log_task_context(ab);
2003	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2004			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2005			 oldsessionid, sessionid, !rc);
2006	audit_put_tty(tty);
2007	audit_log_end(ab);
2008}
2009
2010/**
2011 * audit_set_loginuid - set current task's audit_context loginuid
2012 * @loginuid: loginuid value
2013 *
2014 * Returns 0.
2015 *
2016 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2017 */
2018int audit_set_loginuid(kuid_t loginuid)
2019{
2020	struct task_struct *task = current;
2021	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2022	kuid_t oldloginuid;
2023	int rc;
2024
2025	oldloginuid = audit_get_loginuid(current);
2026	oldsessionid = audit_get_sessionid(current);
2027
2028	rc = audit_set_loginuid_perm(loginuid);
2029	if (rc)
2030		goto out;
2031
2032	/* are we setting or clearing? */
2033	if (uid_valid(loginuid)) {
2034		sessionid = (unsigned int)atomic_inc_return(&session_id);
2035		if (unlikely(sessionid == (unsigned int)-1))
2036			sessionid = (unsigned int)atomic_inc_return(&session_id);
2037	}
2038
2039	task->sessionid = sessionid;
2040	task->loginuid = loginuid;
2041out:
2042	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2043	return rc;
2044}
2045
2046/**
2047 * __audit_mq_open - record audit data for a POSIX MQ open
2048 * @oflag: open flag
2049 * @mode: mode bits
2050 * @attr: queue attributes
2051 *
2052 */
2053void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2054{
2055	struct audit_context *context = current->audit_context;
2056
2057	if (attr)
2058		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2059	else
2060		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2061
2062	context->mq_open.oflag = oflag;
2063	context->mq_open.mode = mode;
2064
2065	context->type = AUDIT_MQ_OPEN;
2066}
2067
2068/**
2069 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
2072 * @msg_prio: Message priority
2073 * @abs_timeout: Message timeout in absolute time
2074 *
2075 */
2076void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2077			const struct timespec *abs_timeout)
2078{
2079	struct audit_context *context = current->audit_context;
2080	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2081
2082	if (abs_timeout)
2083		memcpy(p, abs_timeout, sizeof(struct timespec));
2084	else
2085		memset(p, 0, sizeof(struct timespec));
2086
2087	context->mq_sendrecv.mqdes = mqdes;
2088	context->mq_sendrecv.msg_len = msg_len;
2089	context->mq_sendrecv.msg_prio = msg_prio;
2090
2091	context->type = AUDIT_MQ_SENDRECV;
2092}
2093
2094/**
2095 * __audit_mq_notify - record audit data for a POSIX MQ notify
2096 * @mqdes: MQ descriptor
2097 * @notification: Notification event
2098 *
2099 */
2100
2101void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2102{
2103	struct audit_context *context = current->audit_context;
2104
2105	if (notification)
2106		context->mq_notify.sigev_signo = notification->sigev_signo;
2107	else
2108		context->mq_notify.sigev_signo = 0;
2109
2110	context->mq_notify.mqdes = mqdes;
2111	context->type = AUDIT_MQ_NOTIFY;
2112}
2113
2114/**
2115 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2116 * @mqdes: MQ descriptor
2117 * @mqstat: MQ flags
2118 *
2119 */
2120void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2121{
2122	struct audit_context *context = current->audit_context;
 
2123	context->mq_getsetattr.mqdes = mqdes;
2124	context->mq_getsetattr.mqstat = *mqstat;
2125	context->type = AUDIT_MQ_GETSETATTR;
2126}
2127
2128/**
2129 * audit_ipc_obj - record audit data for ipc object
2130 * @ipcp: ipc permissions
2131 *
2132 */
2133void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2134{
2135	struct audit_context *context = current->audit_context;
 
2136	context->ipc.uid = ipcp->uid;
2137	context->ipc.gid = ipcp->gid;
2138	context->ipc.mode = ipcp->mode;
2139	context->ipc.has_perm = 0;
2140	security_ipc_getsecid(ipcp, &context->ipc.osid);
2141	context->type = AUDIT_IPC;
2142}
2143
2144/**
2145 * audit_ipc_set_perm - record audit data for new ipc permissions
2146 * @qbytes: msgq bytes
2147 * @uid: msgq user id
2148 * @gid: msgq group id
2149 * @mode: msgq mode (permissions)
2150 *
2151 * Called only after audit_ipc_obj().
2152 */
2153void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2154{
2155	struct audit_context *context = current->audit_context;
2156
2157	context->ipc.qbytes = qbytes;
2158	context->ipc.perm_uid = uid;
2159	context->ipc.perm_gid = gid;
2160	context->ipc.perm_mode = mode;
2161	context->ipc.has_perm = 1;
2162}
2163
2164void __audit_bprm(struct linux_binprm *bprm)
2165{
2166	struct audit_context *context = current->audit_context;
2167
2168	context->type = AUDIT_EXECVE;
2169	context->execve.argc = bprm->argc;
2170}
2171
2172
2173/**
2174 * audit_socketcall - record audit data for sys_socketcall
2175 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2176 * @args: args array
2177 *
2178 */
2179int __audit_socketcall(int nargs, unsigned long *args)
2180{
2181	struct audit_context *context = current->audit_context;
2182
2183	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2184		return -EINVAL;
2185	context->type = AUDIT_SOCKETCALL;
2186	context->socketcall.nargs = nargs;
2187	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2188	return 0;
2189}
2190
2191/**
2192 * __audit_fd_pair - record audit data for pipe and socketpair
2193 * @fd1: the first file descriptor
2194 * @fd2: the second file descriptor
2195 *
2196 */
2197void __audit_fd_pair(int fd1, int fd2)
2198{
2199	struct audit_context *context = current->audit_context;
 
2200	context->fds[0] = fd1;
2201	context->fds[1] = fd2;
2202}
2203
2204/**
2205 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2206 * @len: data length in user space
2207 * @a: data address in kernel space
2208 *
2209 * Returns 0 for success or NULL context or < 0 on error.
2210 */
2211int __audit_sockaddr(int len, void *a)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (!context->sockaddr) {
2216		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2217		if (!p)
2218			return -ENOMEM;
2219		context->sockaddr = p;
2220	}
2221
2222	context->sockaddr_len = len;
2223	memcpy(context->sockaddr, a, len);
2224	return 0;
2225}
2226
2227void __audit_ptrace(struct task_struct *t)
2228{
2229	struct audit_context *context = current->audit_context;
2230
2231	context->target_pid = task_tgid_nr(t);
2232	context->target_auid = audit_get_loginuid(t);
2233	context->target_uid = task_uid(t);
2234	context->target_sessionid = audit_get_sessionid(t);
2235	security_task_getsecid(t, &context->target_sid);
2236	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2237}
2238
2239/**
2240 * audit_signal_info - record signal info for shutting down audit subsystem
2241 * @sig: signal value
2242 * @t: task being signaled
2243 *
2244 * If the audit subsystem is being terminated, record the task (pid)
2245 * and uid that is doing that.
2246 */
2247int __audit_signal_info(int sig, struct task_struct *t)
2248{
2249	struct audit_aux_data_pids *axp;
2250	struct task_struct *tsk = current;
2251	struct audit_context *ctx = tsk->audit_context;
2252	kuid_t uid = current_uid(), t_uid = task_uid(t);
2253
2254	if (auditd_test_task(t)) {
2255		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2256			audit_sig_pid = task_tgid_nr(tsk);
2257			if (uid_valid(tsk->loginuid))
2258				audit_sig_uid = tsk->loginuid;
2259			else
2260				audit_sig_uid = uid;
2261			security_task_getsecid(tsk, &audit_sig_sid);
2262		}
2263		if (!audit_signals || audit_dummy_context())
2264			return 0;
2265	}
2266
2267	/* optimize the common case by putting first signal recipient directly
2268	 * in audit_context */
2269	if (!ctx->target_pid) {
2270		ctx->target_pid = task_tgid_nr(t);
2271		ctx->target_auid = audit_get_loginuid(t);
2272		ctx->target_uid = t_uid;
2273		ctx->target_sessionid = audit_get_sessionid(t);
2274		security_task_getsecid(t, &ctx->target_sid);
2275		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2276		return 0;
2277	}
2278
2279	axp = (void *)ctx->aux_pids;
2280	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2281		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2282		if (!axp)
2283			return -ENOMEM;
2284
2285		axp->d.type = AUDIT_OBJ_PID;
2286		axp->d.next = ctx->aux_pids;
2287		ctx->aux_pids = (void *)axp;
2288	}
2289	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2290
2291	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2292	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2293	axp->target_uid[axp->pid_count] = t_uid;
2294	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2295	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2296	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2297	axp->pid_count++;
2298
2299	return 0;
2300}
2301
2302/**
2303 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2304 * @bprm: pointer to the bprm being processed
2305 * @new: the proposed new credentials
2306 * @old: the old credentials
2307 *
2308 * Simply check if the proc already has the caps given by the file and if not
2309 * store the priv escalation info for later auditing at the end of the syscall
2310 *
2311 * -Eric
2312 */
2313int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2314			   const struct cred *new, const struct cred *old)
2315{
2316	struct audit_aux_data_bprm_fcaps *ax;
2317	struct audit_context *context = current->audit_context;
2318	struct cpu_vfs_cap_data vcaps;
2319
2320	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2321	if (!ax)
2322		return -ENOMEM;
2323
2324	ax->d.type = AUDIT_BPRM_FCAPS;
2325	ax->d.next = context->aux;
2326	context->aux = (void *)ax;
2327
2328	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 
2329
2330	ax->fcap.permitted = vcaps.permitted;
2331	ax->fcap.inheritable = vcaps.inheritable;
2332	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2333	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2334
2335	ax->old_pcap.permitted   = old->cap_permitted;
2336	ax->old_pcap.inheritable = old->cap_inheritable;
2337	ax->old_pcap.effective   = old->cap_effective;
 
2338
2339	ax->new_pcap.permitted   = new->cap_permitted;
2340	ax->new_pcap.inheritable = new->cap_inheritable;
2341	ax->new_pcap.effective   = new->cap_effective;
 
2342	return 0;
2343}
2344
2345/**
2346 * __audit_log_capset - store information about the arguments to the capset syscall
2347 * @new: the new credentials
2348 * @old: the old (current) credentials
2349 *
2350 * Record the arguments userspace sent to sys_capset for later printing by the
2351 * audit system if applicable
2352 */
2353void __audit_log_capset(const struct cred *new, const struct cred *old)
2354{
2355	struct audit_context *context = current->audit_context;
 
2356	context->capset.pid = task_tgid_nr(current);
2357	context->capset.cap.effective   = new->cap_effective;
2358	context->capset.cap.inheritable = new->cap_effective;
2359	context->capset.cap.permitted   = new->cap_permitted;
 
2360	context->type = AUDIT_CAPSET;
2361}
2362
2363void __audit_mmap_fd(int fd, int flags)
2364{
2365	struct audit_context *context = current->audit_context;
 
2366	context->mmap.fd = fd;
2367	context->mmap.flags = flags;
2368	context->type = AUDIT_MMAP;
2369}
2370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371static void audit_log_task(struct audit_buffer *ab)
2372{
2373	kuid_t auid, uid;
2374	kgid_t gid;
2375	unsigned int sessionid;
2376	char comm[sizeof(current->comm)];
2377
2378	auid = audit_get_loginuid(current);
2379	sessionid = audit_get_sessionid(current);
2380	current_uid_gid(&uid, &gid);
2381
2382	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2383			 from_kuid(&init_user_ns, auid),
2384			 from_kuid(&init_user_ns, uid),
2385			 from_kgid(&init_user_ns, gid),
2386			 sessionid);
2387	audit_log_task_context(ab);
2388	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2389	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2390	audit_log_d_path_exe(ab, current->mm);
2391}
2392
2393/**
2394 * audit_core_dumps - record information about processes that end abnormally
2395 * @signr: signal value
2396 *
2397 * If a process ends with a core dump, something fishy is going on and we
2398 * should record the event for investigation.
2399 */
2400void audit_core_dumps(long signr)
2401{
2402	struct audit_buffer *ab;
2403
2404	if (!audit_enabled)
2405		return;
2406
2407	if (signr == SIGQUIT)	/* don't care for those */
2408		return;
2409
2410	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2411	if (unlikely(!ab))
2412		return;
2413	audit_log_task(ab);
2414	audit_log_format(ab, " sig=%ld", signr);
2415	audit_log_end(ab);
2416}
2417
2418void __audit_seccomp(unsigned long syscall, long signr, int code)
 
 
 
 
 
 
 
 
 
 
 
 
2419{
2420	struct audit_buffer *ab;
2421
2422	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2423	if (unlikely(!ab))
2424		return;
2425	audit_log_task(ab);
2426	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2427			 signr, syscall_get_arch(), syscall,
2428			 in_compat_syscall(), KSTK_EIP(current), code);
2429	audit_log_end(ab);
2430}
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432struct list_head *audit_killed_trees(void)
2433{
2434	struct audit_context *ctx = current->audit_context;
2435	if (likely(!ctx || !ctx->in_syscall))
2436		return NULL;
2437	return &ctx->killed_trees;
2438}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67#include <uapi/linux/fanotify.h>
  68
  69#include "audit.h"
  70
  71/* flags stating the success for a syscall */
  72#define AUDITSC_INVALID 0
  73#define AUDITSC_SUCCESS 1
  74#define AUDITSC_FAILURE 2
  75
  76/* no execve audit message should be longer than this (userspace limits),
  77 * see the note near the top of audit_log_execve_info() about this value */
  78#define MAX_EXECVE_AUDIT_LEN 7500
  79
  80/* max length to print of cmdline/proctitle value during audit */
  81#define MAX_PROCTITLE_AUDIT_LEN 128
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_aux_data {
  90	struct audit_aux_data	*next;
  91	int			type;
  92};
  93
 
 
  94/* Number of target pids per aux struct. */
  95#define AUDIT_AUX_PIDS	16
  96
  97struct audit_aux_data_pids {
  98	struct audit_aux_data	d;
  99	pid_t			target_pid[AUDIT_AUX_PIDS];
 100	kuid_t			target_auid[AUDIT_AUX_PIDS];
 101	kuid_t			target_uid[AUDIT_AUX_PIDS];
 102	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 103	struct lsm_prop		target_ref[AUDIT_AUX_PIDS];
 104	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 105	int			pid_count;
 106};
 107
 108struct audit_aux_data_bprm_fcaps {
 109	struct audit_aux_data	d;
 110	struct audit_cap_data	fcap;
 111	unsigned int		fcap_ver;
 112	struct audit_cap_data	old_pcap;
 113	struct audit_cap_data	new_pcap;
 114};
 115
 116struct audit_tree_refs {
 117	struct audit_tree_refs *next;
 118	struct audit_chunk *c[31];
 119};
 120
 121struct audit_nfcfgop_tab {
 122	enum audit_nfcfgop	op;
 123	const char		*s;
 124};
 125
 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 127	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 128	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 129	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 130	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 131	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 132	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 133	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 134	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 135	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 136	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 137	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 138	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 139	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 140	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 141	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 143	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 145	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 146	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
 147	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
 148	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 149};
 150
 151static int audit_match_perm(struct audit_context *ctx, int mask)
 152{
 153	unsigned n;
 154
 155	if (unlikely(!ctx))
 156		return 0;
 157	n = ctx->major;
 158
 159	switch (audit_classify_syscall(ctx->arch, n)) {
 160	case AUDITSC_NATIVE:
 161		if ((mask & AUDIT_PERM_WRITE) &&
 162		     audit_match_class(AUDIT_CLASS_WRITE, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_READ) &&
 165		     audit_match_class(AUDIT_CLASS_READ, n))
 166			return 1;
 167		if ((mask & AUDIT_PERM_ATTR) &&
 168		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 169			return 1;
 170		return 0;
 171	case AUDITSC_COMPAT: /* 32bit on biarch */
 172		if ((mask & AUDIT_PERM_WRITE) &&
 173		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_READ) &&
 176		     audit_match_class(AUDIT_CLASS_READ_32, n))
 177			return 1;
 178		if ((mask & AUDIT_PERM_ATTR) &&
 179		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 180			return 1;
 181		return 0;
 182	case AUDITSC_OPEN:
 183		return mask & ACC_MODE(ctx->argv[1]);
 184	case AUDITSC_OPENAT:
 185		return mask & ACC_MODE(ctx->argv[2]);
 186	case AUDITSC_SOCKETCALL:
 187		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 188	case AUDITSC_EXECVE:
 189		return mask & AUDIT_PERM_EXEC;
 190	case AUDITSC_OPENAT2:
 191		return mask & ACC_MODE((u32)ctx->openat2.flags);
 192	default:
 193		return 0;
 194	}
 195}
 196
 197static int audit_match_filetype(struct audit_context *ctx, int val)
 198{
 199	struct audit_names *n;
 200	umode_t mode = (umode_t)val;
 201
 202	if (unlikely(!ctx))
 203		return 0;
 204
 205	list_for_each_entry(n, &ctx->names_list, list) {
 206		if ((n->ino != AUDIT_INO_UNSET) &&
 207		    ((n->mode & S_IFMT) == mode))
 208			return 1;
 209	}
 210
 211	return 0;
 212}
 213
 214/*
 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 216 * ->first_trees points to its beginning, ->trees - to the current end of data.
 217 * ->tree_count is the number of free entries in array pointed to by ->trees.
 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 219 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 220 * it's going to remain 1-element for almost any setup) until we free context itself.
 221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 222 */
 223
 
 224static void audit_set_auditable(struct audit_context *ctx)
 225{
 226	if (!ctx->prio) {
 227		ctx->prio = 1;
 228		ctx->current_state = AUDIT_STATE_RECORD;
 229	}
 230}
 231
 232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	int left = ctx->tree_count;
 236
 237	if (likely(left)) {
 238		p->c[--left] = chunk;
 239		ctx->tree_count = left;
 240		return 1;
 241	}
 242	if (!p)
 243		return 0;
 244	p = p->next;
 245	if (p) {
 246		p->c[30] = chunk;
 247		ctx->trees = p;
 248		ctx->tree_count = 30;
 249		return 1;
 250	}
 251	return 0;
 252}
 253
 254static int grow_tree_refs(struct audit_context *ctx)
 255{
 256	struct audit_tree_refs *p = ctx->trees;
 257
 258	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 259	if (!ctx->trees) {
 260		ctx->trees = p;
 261		return 0;
 262	}
 263	if (p)
 264		p->next = ctx->trees;
 265	else
 266		ctx->first_trees = ctx->trees;
 267	ctx->tree_count = 31;
 268	return 1;
 269}
 
 270
 271static void unroll_tree_refs(struct audit_context *ctx,
 272		      struct audit_tree_refs *p, int count)
 273{
 
 274	struct audit_tree_refs *q;
 275	int n;
 276
 277	if (!p) {
 278		/* we started with empty chain */
 279		p = ctx->first_trees;
 280		count = 31;
 281		/* if the very first allocation has failed, nothing to do */
 282		if (!p)
 283			return;
 284	}
 285	n = count;
 286	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 287		while (n--) {
 288			audit_put_chunk(q->c[n]);
 289			q->c[n] = NULL;
 290		}
 291	}
 292	while (n-- > ctx->tree_count) {
 293		audit_put_chunk(q->c[n]);
 294		q->c[n] = NULL;
 295	}
 296	ctx->trees = p;
 297	ctx->tree_count = count;
 
 298}
 299
 300static void free_tree_refs(struct audit_context *ctx)
 301{
 302	struct audit_tree_refs *p, *q;
 303
 304	for (p = ctx->first_trees; p; p = q) {
 305		q = p->next;
 306		kfree(p);
 307	}
 308}
 309
 310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 311{
 
 312	struct audit_tree_refs *p;
 313	int n;
 314
 315	if (!tree)
 316		return 0;
 317	/* full ones */
 318	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 319		for (n = 0; n < 31; n++)
 320			if (audit_tree_match(p->c[n], tree))
 321				return 1;
 322	}
 323	/* partial */
 324	if (p) {
 325		for (n = ctx->tree_count; n < 31; n++)
 326			if (audit_tree_match(p->c[n], tree))
 327				return 1;
 328	}
 
 329	return 0;
 330}
 331
 332static int audit_compare_uid(kuid_t uid,
 333			     struct audit_names *name,
 334			     struct audit_field *f,
 335			     struct audit_context *ctx)
 336{
 337	struct audit_names *n;
 338	int rc;
 339
 340	if (name) {
 341		rc = audit_uid_comparator(uid, f->op, name->uid);
 342		if (rc)
 343			return rc;
 344	}
 345
 346	if (ctx) {
 347		list_for_each_entry(n, &ctx->names_list, list) {
 348			rc = audit_uid_comparator(uid, f->op, n->uid);
 349			if (rc)
 350				return rc;
 351		}
 352	}
 353	return 0;
 354}
 355
 356static int audit_compare_gid(kgid_t gid,
 357			     struct audit_names *name,
 358			     struct audit_field *f,
 359			     struct audit_context *ctx)
 360{
 361	struct audit_names *n;
 362	int rc;
 363
 364	if (name) {
 365		rc = audit_gid_comparator(gid, f->op, name->gid);
 366		if (rc)
 367			return rc;
 368	}
 369
 370	if (ctx) {
 371		list_for_each_entry(n, &ctx->names_list, list) {
 372			rc = audit_gid_comparator(gid, f->op, n->gid);
 373			if (rc)
 374				return rc;
 375		}
 376	}
 377	return 0;
 378}
 379
 380static int audit_field_compare(struct task_struct *tsk,
 381			       const struct cred *cred,
 382			       struct audit_field *f,
 383			       struct audit_context *ctx,
 384			       struct audit_names *name)
 385{
 386	switch (f->val) {
 387	/* process to file object comparisons */
 388	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 389		return audit_compare_uid(cred->uid, name, f, ctx);
 390	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 391		return audit_compare_gid(cred->gid, name, f, ctx);
 392	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 393		return audit_compare_uid(cred->euid, name, f, ctx);
 394	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 395		return audit_compare_gid(cred->egid, name, f, ctx);
 396	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 397		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 398	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 399		return audit_compare_uid(cred->suid, name, f, ctx);
 400	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 401		return audit_compare_gid(cred->sgid, name, f, ctx);
 402	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 403		return audit_compare_uid(cred->fsuid, name, f, ctx);
 404	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 405		return audit_compare_gid(cred->fsgid, name, f, ctx);
 406	/* uid comparisons */
 407	case AUDIT_COMPARE_UID_TO_AUID:
 408		return audit_uid_comparator(cred->uid, f->op,
 409					    audit_get_loginuid(tsk));
 410	case AUDIT_COMPARE_UID_TO_EUID:
 411		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 412	case AUDIT_COMPARE_UID_TO_SUID:
 413		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 414	case AUDIT_COMPARE_UID_TO_FSUID:
 415		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 416	/* auid comparisons */
 417	case AUDIT_COMPARE_AUID_TO_EUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->euid);
 420	case AUDIT_COMPARE_AUID_TO_SUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->suid);
 423	case AUDIT_COMPARE_AUID_TO_FSUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->fsuid);
 426	/* euid comparisons */
 427	case AUDIT_COMPARE_EUID_TO_SUID:
 428		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 429	case AUDIT_COMPARE_EUID_TO_FSUID:
 430		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 431	/* suid comparisons */
 432	case AUDIT_COMPARE_SUID_TO_FSUID:
 433		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 434	/* gid comparisons */
 435	case AUDIT_COMPARE_GID_TO_EGID:
 436		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 437	case AUDIT_COMPARE_GID_TO_SGID:
 438		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 439	case AUDIT_COMPARE_GID_TO_FSGID:
 440		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 441	/* egid comparisons */
 442	case AUDIT_COMPARE_EGID_TO_SGID:
 443		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 444	case AUDIT_COMPARE_EGID_TO_FSGID:
 445		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 446	/* sgid comparison */
 447	case AUDIT_COMPARE_SGID_TO_FSGID:
 448		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 449	default:
 450		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 451		return 0;
 452	}
 453	return 0;
 454}
 455
 456/* Determine if any context name data matches a rule's watch data */
 457/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 458 * otherwise.
 459 *
 460 * If task_creation is true, this is an explicit indication that we are
 461 * filtering a task rule at task creation time.  This and tsk == current are
 462 * the only situations where tsk->cred may be accessed without an rcu read lock.
 463 */
 464static int audit_filter_rules(struct task_struct *tsk,
 465			      struct audit_krule *rule,
 466			      struct audit_context *ctx,
 467			      struct audit_names *name,
 468			      enum audit_state *state,
 469			      bool task_creation)
 470{
 471	const struct cred *cred;
 472	int i, need_sid = 1;
 473	struct lsm_prop prop = { };
 474	unsigned int sessionid;
 475
 476	if (ctx && rule->prio <= ctx->prio)
 477		return 0;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx && ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					/* @tsk should always be equal to
 673					 * @current with the exception of
 674					 * fork()/copy_process() in which case
 675					 * the new @tsk creds are still a dup
 676					 * of @current's creds so we can still
 677					 * use
 678					 * security_current_getlsmprop_subj()
 679					 * here even though it always refs
 680					 * @current's creds
 681					 */
 682					security_current_getlsmprop_subj(&prop);
 683					need_sid = 0;
 684				}
 685				result = security_audit_rule_match(&prop,
 686								   f->type,
 687								   f->op,
 688								   f->lsm_rule);
 689			}
 690			break;
 691		case AUDIT_OBJ_USER:
 692		case AUDIT_OBJ_ROLE:
 693		case AUDIT_OBJ_TYPE:
 694		case AUDIT_OBJ_LEV_LOW:
 695		case AUDIT_OBJ_LEV_HIGH:
 696			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 697			   also applies here */
 698			if (f->lsm_rule) {
 699				/* Find files that match */
 700				if (name) {
 701					result = security_audit_rule_match(
 702								&name->oprop,
 703								f->type,
 704								f->op,
 705								f->lsm_rule);
 706				} else if (ctx) {
 707					list_for_each_entry(n, &ctx->names_list, list) {
 708						if (security_audit_rule_match(
 709								&n->oprop,
 710								f->type,
 711								f->op,
 712								f->lsm_rule)) {
 713							++result;
 714							break;
 715						}
 716					}
 717				}
 718				/* Find ipc objects that match */
 719				if (!ctx || ctx->type != AUDIT_IPC)
 720					break;
 721				if (security_audit_rule_match(&ctx->ipc.oprop,
 722							      f->type, f->op,
 723							      f->lsm_rule))
 724					++result;
 725			}
 726			break;
 727		case AUDIT_ARG0:
 728		case AUDIT_ARG1:
 729		case AUDIT_ARG2:
 730		case AUDIT_ARG3:
 731			if (ctx)
 732				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 733			break;
 734		case AUDIT_FILTERKEY:
 735			/* ignore this field for filtering */
 736			result = 1;
 737			break;
 738		case AUDIT_PERM:
 739			result = audit_match_perm(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FILETYPE:
 744			result = audit_match_filetype(ctx, f->val);
 745			if (f->op == Audit_not_equal)
 746				result = !result;
 747			break;
 748		case AUDIT_FIELD_COMPARE:
 749			result = audit_field_compare(tsk, cred, f, ctx, name);
 750			break;
 751		}
 752		if (!result)
 753			return 0;
 754	}
 755
 756	if (ctx) {
 
 
 757		if (rule->filterkey) {
 758			kfree(ctx->filterkey);
 759			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 760		}
 761		ctx->prio = rule->prio;
 762	}
 763	switch (rule->action) {
 764	case AUDIT_NEVER:
 765		*state = AUDIT_STATE_DISABLED;
 766		break;
 767	case AUDIT_ALWAYS:
 768		*state = AUDIT_STATE_RECORD;
 769		break;
 770	}
 771	return 1;
 772}
 773
 774/* At process creation time, we can determine if system-call auditing is
 775 * completely disabled for this task.  Since we only have the task
 776 * structure at this point, we can only check uid and gid.
 777 */
 778static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 779{
 780	struct audit_entry *e;
 781	enum audit_state   state;
 782
 783	rcu_read_lock();
 784	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 785		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 786				       &state, true)) {
 787			if (state == AUDIT_STATE_RECORD)
 788				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 789			rcu_read_unlock();
 790			return state;
 791		}
 792	}
 793	rcu_read_unlock();
 794	return AUDIT_STATE_BUILD;
 795}
 796
 797static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 798{
 799	int word, bit;
 800
 801	if (val > 0xffffffff)
 802		return false;
 803
 804	word = AUDIT_WORD(val);
 805	if (word >= AUDIT_BITMASK_SIZE)
 806		return false;
 807
 808	bit = AUDIT_BIT(val);
 809
 810	return rule->mask[word] & bit;
 811}
 812
 813/**
 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 815 * @tsk: associated task
 816 * @ctx: audit context
 817 * @list: audit filter list
 818 * @name: audit_name (can be NULL)
 819 * @op: current syscall/uring_op
 820 *
 821 * Run the udit filters specified in @list against @tsk using @ctx,
 822 * @name, and @op, as necessary; the caller is responsible for ensuring
 823 * that the call is made while the RCU read lock is held. The @name
 824 * parameter can be NULL, but all others must be specified.
 825 * Returns 1/true if the filter finds a match, 0/false if none are found.
 826 */
 827static int __audit_filter_op(struct task_struct *tsk,
 828			   struct audit_context *ctx,
 829			   struct list_head *list,
 830			   struct audit_names *name,
 831			   unsigned long op)
 832{
 833	struct audit_entry *e;
 834	enum audit_state state;
 835
 836	list_for_each_entry_rcu(e, list, list) {
 837		if (audit_in_mask(&e->rule, op) &&
 838		    audit_filter_rules(tsk, &e->rule, ctx, name,
 839				       &state, false)) {
 840			ctx->current_state = state;
 841			return 1;
 842		}
 843	}
 844	return 0;
 845}
 846
 847/**
 848 * audit_filter_uring - apply filters to an io_uring operation
 849 * @tsk: associated task
 850 * @ctx: audit context
 851 */
 852static void audit_filter_uring(struct task_struct *tsk,
 853			       struct audit_context *ctx)
 854{
 855	if (auditd_test_task(tsk))
 856		return;
 857
 858	rcu_read_lock();
 859	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 860			NULL, ctx->uring_op);
 861	rcu_read_unlock();
 862}
 863
 864/* At syscall exit time, this filter is called if the audit_state is
 865 * not low enough that auditing cannot take place, but is also not
 866 * high enough that we already know we have to write an audit record
 867 * (i.e., the state is AUDIT_STATE_BUILD).
 868 */
 869static void audit_filter_syscall(struct task_struct *tsk,
 870				 struct audit_context *ctx)
 871{
 872	if (auditd_test_task(tsk))
 873		return;
 874
 875	rcu_read_lock();
 876	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 877			NULL, ctx->major);
 878	rcu_read_unlock();
 
 879}
 880
 881/*
 882 * Given an audit_name check the inode hash table to see if they match.
 883 * Called holding the rcu read lock to protect the use of audit_inode_hash
 884 */
 885static int audit_filter_inode_name(struct task_struct *tsk,
 886				   struct audit_names *n,
 887				   struct audit_context *ctx)
 888{
 889	int h = audit_hash_ino((u32)n->ino);
 890	struct list_head *list = &audit_inode_hash[h];
 
 
 
 
 
 
 
 
 
 
 
 
 
 891
 892	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 893}
 894
 895/* At syscall exit time, this filter is called if any audit_names have been
 896 * collected during syscall processing.  We only check rules in sublists at hash
 897 * buckets applicable to the inode numbers in audit_names.
 898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 899 */
 900void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 901{
 902	struct audit_names *n;
 903
 904	if (auditd_test_task(tsk))
 905		return;
 906
 907	rcu_read_lock();
 908
 909	list_for_each_entry(n, &ctx->names_list, list) {
 910		if (audit_filter_inode_name(tsk, n, ctx))
 911			break;
 912	}
 913	rcu_read_unlock();
 914}
 915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916static inline void audit_proctitle_free(struct audit_context *context)
 917{
 918	kfree(context->proctitle.value);
 919	context->proctitle.value = NULL;
 920	context->proctitle.len = 0;
 921}
 922
 923static inline void audit_free_module(struct audit_context *context)
 924{
 925	if (context->type == AUDIT_KERN_MODULE) {
 926		kfree(context->module.name);
 927		context->module.name = NULL;
 928	}
 929}
 930static inline void audit_free_names(struct audit_context *context)
 931{
 932	struct audit_names *n, *next;
 933
 934	list_for_each_entry_safe(n, next, &context->names_list, list) {
 935		list_del(&n->list);
 936		if (n->name)
 937			putname(n->name);
 938		if (n->should_free)
 939			kfree(n);
 940	}
 941	context->name_count = 0;
 942	path_put(&context->pwd);
 943	context->pwd.dentry = NULL;
 944	context->pwd.mnt = NULL;
 945}
 946
 947static inline void audit_free_aux(struct audit_context *context)
 948{
 949	struct audit_aux_data *aux;
 950
 951	while ((aux = context->aux)) {
 952		context->aux = aux->next;
 953		kfree(aux);
 954	}
 955	context->aux = NULL;
 956	while ((aux = context->aux_pids)) {
 957		context->aux_pids = aux->next;
 958		kfree(aux);
 959	}
 960	context->aux_pids = NULL;
 961}
 962
 963/**
 964 * audit_reset_context - reset a audit_context structure
 965 * @ctx: the audit_context to reset
 966 *
 967 * All fields in the audit_context will be reset to an initial state, all
 968 * references held by fields will be dropped, and private memory will be
 969 * released.  When this function returns the audit_context will be suitable
 970 * for reuse, so long as the passed context is not NULL or a dummy context.
 971 */
 972static void audit_reset_context(struct audit_context *ctx)
 973{
 974	if (!ctx)
 975		return;
 976
 977	/* if ctx is non-null, reset the "ctx->context" regardless */
 978	ctx->context = AUDIT_CTX_UNUSED;
 979	if (ctx->dummy)
 980		return;
 981
 982	/*
 983	 * NOTE: It shouldn't matter in what order we release the fields, so
 984	 *       release them in the order in which they appear in the struct;
 985	 *       this gives us some hope of quickly making sure we are
 986	 *       resetting the audit_context properly.
 987	 *
 988	 *       Other things worth mentioning:
 989	 *       - we don't reset "dummy"
 990	 *       - we don't reset "state", we do reset "current_state"
 991	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 992	 *       - much of this is likely overkill, but play it safe for now
 993	 *       - we really need to work on improving the audit_context struct
 994	 */
 995
 996	ctx->current_state = ctx->state;
 997	ctx->serial = 0;
 998	ctx->major = 0;
 999	ctx->uring_op = 0;
1000	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001	memset(ctx->argv, 0, sizeof(ctx->argv));
1002	ctx->return_code = 0;
1003	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004	ctx->return_valid = AUDITSC_INVALID;
1005	audit_free_names(ctx);
1006	if (ctx->state != AUDIT_STATE_RECORD) {
1007		kfree(ctx->filterkey);
1008		ctx->filterkey = NULL;
1009	}
1010	audit_free_aux(ctx);
1011	kfree(ctx->sockaddr);
1012	ctx->sockaddr = NULL;
1013	ctx->sockaddr_len = 0;
1014	ctx->ppid = 0;
1015	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017	ctx->personality = 0;
1018	ctx->arch = 0;
1019	ctx->target_pid = 0;
1020	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021	ctx->target_sessionid = 0;
1022	lsmprop_init(&ctx->target_ref);
1023	ctx->target_comm[0] = '\0';
1024	unroll_tree_refs(ctx, NULL, 0);
1025	WARN_ON(!list_empty(&ctx->killed_trees));
1026	audit_free_module(ctx);
1027	ctx->fds[0] = -1;
1028	ctx->type = 0; /* reset last for audit_free_*() */
1029}
1030
1031static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032{
1033	struct audit_context *context;
1034
1035	context = kzalloc(sizeof(*context), GFP_KERNEL);
1036	if (!context)
1037		return NULL;
1038	context->context = AUDIT_CTX_UNUSED;
1039	context->state = state;
1040	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041	INIT_LIST_HEAD(&context->killed_trees);
1042	INIT_LIST_HEAD(&context->names_list);
1043	context->fds[0] = -1;
1044	context->return_valid = AUDITSC_INVALID;
1045	return context;
1046}
1047
1048/**
1049 * audit_alloc - allocate an audit context block for a task
1050 * @tsk: task
1051 *
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary.  Doing so turns on system call auditing for the
1054 * specified task.  This is called from copy_process, so no lock is
1055 * needed.
1056 */
1057int audit_alloc(struct task_struct *tsk)
1058{
1059	struct audit_context *context;
1060	enum audit_state     state;
1061	char *key = NULL;
1062
1063	if (likely(!audit_ever_enabled))
1064		return 0;
1065
1066	state = audit_filter_task(tsk, &key);
1067	if (state == AUDIT_STATE_DISABLED) {
1068		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069		return 0;
1070	}
1071
1072	context = audit_alloc_context(state);
1073	if (!context) {
1074		kfree(key);
1075		audit_log_lost("out of memory in audit_alloc");
1076		return -ENOMEM;
1077	}
1078	context->filterkey = key;
1079
1080	audit_set_context(tsk, context);
1081	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082	return 0;
1083}
1084
1085static inline void audit_free_context(struct audit_context *context)
1086{
1087	/* resetting is extra work, but it is likely just noise */
1088	audit_reset_context(context);
1089	audit_proctitle_free(context);
1090	free_tree_refs(context);
 
1091	kfree(context->filterkey);
 
 
1092	kfree(context);
1093}
1094
1095static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096				 kuid_t auid, kuid_t uid,
1097				 unsigned int sessionid, struct lsm_prop *prop,
1098				 char *comm)
1099{
1100	struct audit_buffer *ab;
1101	char *ctx = NULL;
1102	u32 len;
1103	int rc = 0;
1104
1105	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1106	if (!ab)
1107		return rc;
1108
1109	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1110			 from_kuid(&init_user_ns, auid),
1111			 from_kuid(&init_user_ns, uid), sessionid);
1112	if (lsmprop_is_set(prop)) {
1113		if (security_lsmprop_to_secctx(prop, &ctx, &len)) {
1114			audit_log_format(ab, " obj=(none)");
1115			rc = 1;
1116		} else {
1117			audit_log_format(ab, " obj=%s", ctx);
1118			security_release_secctx(ctx, len);
1119		}
1120	}
1121	audit_log_format(ab, " ocomm=");
1122	audit_log_untrustedstring(ab, comm);
1123	audit_log_end(ab);
1124
1125	return rc;
1126}
1127
1128static void audit_log_execve_info(struct audit_context *context,
1129				  struct audit_buffer **ab)
1130{
1131	long len_max;
1132	long len_rem;
1133	long len_full;
1134	long len_buf;
1135	long len_abuf = 0;
1136	long len_tmp;
1137	bool require_data;
1138	bool encode;
1139	unsigned int iter;
1140	unsigned int arg;
1141	char *buf_head;
1142	char *buf;
1143	const char __user *p = (const char __user *)current->mm->arg_start;
1144
1145	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1146	 *       data we put in the audit record for this argument (see the
1147	 *       code below) ... at this point in time 96 is plenty */
1148	char abuf[96];
1149
1150	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1151	 *       current value of 7500 is not as important as the fact that it
1152	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1153	 *       room if we go over a little bit in the logging below */
1154	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1155	len_max = MAX_EXECVE_AUDIT_LEN;
1156
1157	/* scratch buffer to hold the userspace args */
1158	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159	if (!buf_head) {
1160		audit_panic("out of memory for argv string");
1161		return;
1162	}
1163	buf = buf_head;
1164
1165	audit_log_format(*ab, "argc=%d", context->execve.argc);
1166
1167	len_rem = len_max;
1168	len_buf = 0;
1169	len_full = 0;
1170	require_data = true;
1171	encode = false;
1172	iter = 0;
1173	arg = 0;
1174	do {
1175		/* NOTE: we don't ever want to trust this value for anything
1176		 *       serious, but the audit record format insists we
1177		 *       provide an argument length for really long arguments,
1178		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1179		 *       to use strncpy_from_user() to obtain this value for
1180		 *       recording in the log, although we don't use it
1181		 *       anywhere here to avoid a double-fetch problem */
1182		if (len_full == 0)
1183			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1184
1185		/* read more data from userspace */
1186		if (require_data) {
1187			/* can we make more room in the buffer? */
1188			if (buf != buf_head) {
1189				memmove(buf_head, buf, len_buf);
1190				buf = buf_head;
1191			}
1192
1193			/* fetch as much as we can of the argument */
1194			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1195						    len_max - len_buf);
1196			if (len_tmp == -EFAULT) {
1197				/* unable to copy from userspace */
1198				send_sig(SIGKILL, current, 0);
1199				goto out;
1200			} else if (len_tmp == (len_max - len_buf)) {
1201				/* buffer is not large enough */
1202				require_data = true;
1203				/* NOTE: if we are going to span multiple
1204				 *       buffers force the encoding so we stand
1205				 *       a chance at a sane len_full value and
1206				 *       consistent record encoding */
1207				encode = true;
1208				len_full = len_full * 2;
1209				p += len_tmp;
1210			} else {
1211				require_data = false;
1212				if (!encode)
1213					encode = audit_string_contains_control(
1214								buf, len_tmp);
1215				/* try to use a trusted value for len_full */
1216				if (len_full < len_max)
1217					len_full = (encode ?
1218						    len_tmp * 2 : len_tmp);
1219				p += len_tmp + 1;
1220			}
1221			len_buf += len_tmp;
1222			buf_head[len_buf] = '\0';
1223
1224			/* length of the buffer in the audit record? */
1225			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1226		}
1227
1228		/* write as much as we can to the audit log */
1229		if (len_buf >= 0) {
1230			/* NOTE: some magic numbers here - basically if we
1231			 *       can't fit a reasonable amount of data into the
1232			 *       existing audit buffer, flush it and start with
1233			 *       a new buffer */
1234			if ((sizeof(abuf) + 8) > len_rem) {
1235				len_rem = len_max;
1236				audit_log_end(*ab);
1237				*ab = audit_log_start(context,
1238						      GFP_KERNEL, AUDIT_EXECVE);
1239				if (!*ab)
1240					goto out;
1241			}
1242
1243			/* create the non-arg portion of the arg record */
1244			len_tmp = 0;
1245			if (require_data || (iter > 0) ||
1246			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1247				if (iter == 0) {
1248					len_tmp += snprintf(&abuf[len_tmp],
1249							sizeof(abuf) - len_tmp,
1250							" a%d_len=%lu",
1251							arg, len_full);
1252				}
1253				len_tmp += snprintf(&abuf[len_tmp],
1254						    sizeof(abuf) - len_tmp,
1255						    " a%d[%d]=", arg, iter++);
1256			} else
1257				len_tmp += snprintf(&abuf[len_tmp],
1258						    sizeof(abuf) - len_tmp,
1259						    " a%d=", arg);
1260			WARN_ON(len_tmp >= sizeof(abuf));
1261			abuf[sizeof(abuf) - 1] = '\0';
1262
1263			/* log the arg in the audit record */
1264			audit_log_format(*ab, "%s", abuf);
1265			len_rem -= len_tmp;
1266			len_tmp = len_buf;
1267			if (encode) {
1268				if (len_abuf > len_rem)
1269					len_tmp = len_rem / 2; /* encoding */
1270				audit_log_n_hex(*ab, buf, len_tmp);
1271				len_rem -= len_tmp * 2;
1272				len_abuf -= len_tmp * 2;
1273			} else {
1274				if (len_abuf > len_rem)
1275					len_tmp = len_rem - 2; /* quotes */
1276				audit_log_n_string(*ab, buf, len_tmp);
1277				len_rem -= len_tmp + 2;
1278				/* don't subtract the "2" because we still need
1279				 * to add quotes to the remaining string */
1280				len_abuf -= len_tmp;
1281			}
1282			len_buf -= len_tmp;
1283			buf += len_tmp;
1284		}
1285
1286		/* ready to move to the next argument? */
1287		if ((len_buf == 0) && !require_data) {
1288			arg++;
1289			iter = 0;
1290			len_full = 0;
1291			require_data = true;
1292			encode = false;
1293		}
1294	} while (arg < context->execve.argc);
1295
1296	/* NOTE: the caller handles the final audit_log_end() call */
1297
1298out:
1299	kfree(buf_head);
1300}
1301
1302static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1303			  kernel_cap_t *cap)
1304{
1305	if (cap_isclear(*cap)) {
1306		audit_log_format(ab, " %s=0", prefix);
1307		return;
1308	}
1309	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1310}
1311
1312static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1313{
1314	if (name->fcap_ver == -1) {
1315		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1316		return;
1317	}
1318	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1319	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1320	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1321			 name->fcap.fE, name->fcap_ver,
1322			 from_kuid(&init_user_ns, name->fcap.rootid));
1323}
1324
1325static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1326{
1327	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1328	const struct timespec64 *tk = &context->time.tk_injoffset;
1329	static const char * const ntp_name[] = {
1330		"offset",
1331		"freq",
1332		"status",
1333		"tai",
1334		"tick",
1335		"adjust",
1336	};
1337	int type;
1338
1339	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1340		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1341			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1342				if (!*ab) {
1343					*ab = audit_log_start(context,
1344							GFP_KERNEL,
1345							AUDIT_TIME_ADJNTPVAL);
1346					if (!*ab)
1347						return;
1348				}
1349				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1350						 ntp_name[type],
1351						 ntp->vals[type].oldval,
1352						 ntp->vals[type].newval);
1353				audit_log_end(*ab);
1354				*ab = NULL;
1355			}
1356		}
1357	}
1358	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1359		if (!*ab) {
1360			*ab = audit_log_start(context, GFP_KERNEL,
1361					      AUDIT_TIME_INJOFFSET);
1362			if (!*ab)
1363				return;
1364		}
1365		audit_log_format(*ab, "sec=%lli nsec=%li",
1366				 (long long)tk->tv_sec, tk->tv_nsec);
1367		audit_log_end(*ab);
1368		*ab = NULL;
1369	}
1370}
1371
1372static void show_special(struct audit_context *context, int *call_panic)
1373{
1374	struct audit_buffer *ab;
1375	int i;
1376
1377	ab = audit_log_start(context, GFP_KERNEL, context->type);
1378	if (!ab)
1379		return;
1380
1381	switch (context->type) {
1382	case AUDIT_SOCKETCALL: {
1383		int nargs = context->socketcall.nargs;
1384
1385		audit_log_format(ab, "nargs=%d", nargs);
1386		for (i = 0; i < nargs; i++)
1387			audit_log_format(ab, " a%d=%lx", i,
1388				context->socketcall.args[i]);
1389		break; }
1390	case AUDIT_IPC:
 
 
1391		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1392				 from_kuid(&init_user_ns, context->ipc.uid),
1393				 from_kgid(&init_user_ns, context->ipc.gid),
1394				 context->ipc.mode);
1395		if (lsmprop_is_set(&context->ipc.oprop)) {
1396			char *ctx = NULL;
1397			u32 len;
1398
1399			if (security_lsmprop_to_secctx(&context->ipc.oprop,
1400						       &ctx, &len)) {
1401				*call_panic = 1;
1402			} else {
1403				audit_log_format(ab, " obj=%s", ctx);
1404				security_release_secctx(ctx, len);
1405			}
1406		}
1407		if (context->ipc.has_perm) {
1408			audit_log_end(ab);
1409			ab = audit_log_start(context, GFP_KERNEL,
1410					     AUDIT_IPC_SET_PERM);
1411			if (unlikely(!ab))
1412				return;
1413			audit_log_format(ab,
1414				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1415				context->ipc.qbytes,
1416				context->ipc.perm_uid,
1417				context->ipc.perm_gid,
1418				context->ipc.perm_mode);
1419		}
1420		break;
1421	case AUDIT_MQ_OPEN:
1422		audit_log_format(ab,
1423			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1424			"mq_msgsize=%ld mq_curmsgs=%ld",
1425			context->mq_open.oflag, context->mq_open.mode,
1426			context->mq_open.attr.mq_flags,
1427			context->mq_open.attr.mq_maxmsg,
1428			context->mq_open.attr.mq_msgsize,
1429			context->mq_open.attr.mq_curmsgs);
1430		break;
1431	case AUDIT_MQ_SENDRECV:
1432		audit_log_format(ab,
1433			"mqdes=%d msg_len=%zd msg_prio=%u "
1434			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1435			context->mq_sendrecv.mqdes,
1436			context->mq_sendrecv.msg_len,
1437			context->mq_sendrecv.msg_prio,
1438			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1439			context->mq_sendrecv.abs_timeout.tv_nsec);
1440		break;
1441	case AUDIT_MQ_NOTIFY:
1442		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1443				context->mq_notify.mqdes,
1444				context->mq_notify.sigev_signo);
1445		break;
1446	case AUDIT_MQ_GETSETATTR: {
1447		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1448
1449		audit_log_format(ab,
1450			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1451			"mq_curmsgs=%ld ",
1452			context->mq_getsetattr.mqdes,
1453			attr->mq_flags, attr->mq_maxmsg,
1454			attr->mq_msgsize, attr->mq_curmsgs);
1455		break; }
1456	case AUDIT_CAPSET:
1457		audit_log_format(ab, "pid=%d", context->capset.pid);
1458		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1459		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1460		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1461		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1462		break;
1463	case AUDIT_MMAP:
1464		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1465				 context->mmap.flags);
1466		break;
1467	case AUDIT_OPENAT2:
1468		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1469				 context->openat2.flags,
1470				 context->openat2.mode,
1471				 context->openat2.resolve);
1472		break;
1473	case AUDIT_EXECVE:
1474		audit_log_execve_info(context, &ab);
1475		break;
1476	case AUDIT_KERN_MODULE:
1477		audit_log_format(ab, "name=");
1478		if (context->module.name) {
1479			audit_log_untrustedstring(ab, context->module.name);
1480		} else
1481			audit_log_format(ab, "(null)");
1482
1483		break;
1484	case AUDIT_TIME_ADJNTPVAL:
1485	case AUDIT_TIME_INJOFFSET:
1486		/* this call deviates from the rest, eating the buffer */
1487		audit_log_time(context, &ab);
1488		break;
1489	}
1490	audit_log_end(ab);
1491}
1492
1493static inline int audit_proctitle_rtrim(char *proctitle, int len)
1494{
1495	char *end = proctitle + len - 1;
1496
1497	while (end > proctitle && !isprint(*end))
1498		end--;
1499
1500	/* catch the case where proctitle is only 1 non-print character */
1501	len = end - proctitle + 1;
1502	len -= isprint(proctitle[len-1]) == 0;
1503	return len;
1504}
1505
1506/*
1507 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1508 * @context: audit_context for the task
1509 * @n: audit_names structure with reportable details
1510 * @path: optional path to report instead of audit_names->name
1511 * @record_num: record number to report when handling a list of names
1512 * @call_panic: optional pointer to int that will be updated if secid fails
1513 */
1514static void audit_log_name(struct audit_context *context, struct audit_names *n,
1515		    const struct path *path, int record_num, int *call_panic)
1516{
1517	struct audit_buffer *ab;
1518
1519	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1520	if (!ab)
1521		return;
1522
1523	audit_log_format(ab, "item=%d", record_num);
1524
1525	if (path)
1526		audit_log_d_path(ab, " name=", path);
1527	else if (n->name) {
1528		switch (n->name_len) {
1529		case AUDIT_NAME_FULL:
1530			/* log the full path */
1531			audit_log_format(ab, " name=");
1532			audit_log_untrustedstring(ab, n->name->name);
1533			break;
1534		case 0:
1535			/* name was specified as a relative path and the
1536			 * directory component is the cwd
1537			 */
1538			if (context->pwd.dentry && context->pwd.mnt)
1539				audit_log_d_path(ab, " name=", &context->pwd);
1540			else
1541				audit_log_format(ab, " name=(null)");
1542			break;
1543		default:
1544			/* log the name's directory component */
1545			audit_log_format(ab, " name=");
1546			audit_log_n_untrustedstring(ab, n->name->name,
1547						    n->name_len);
1548		}
1549	} else
1550		audit_log_format(ab, " name=(null)");
1551
1552	if (n->ino != AUDIT_INO_UNSET)
1553		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1554				 n->ino,
1555				 MAJOR(n->dev),
1556				 MINOR(n->dev),
1557				 n->mode,
1558				 from_kuid(&init_user_ns, n->uid),
1559				 from_kgid(&init_user_ns, n->gid),
1560				 MAJOR(n->rdev),
1561				 MINOR(n->rdev));
1562	if (lsmprop_is_set(&n->oprop)) {
1563		char *ctx = NULL;
1564		u32 len;
1565
1566		if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) {
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
 
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
 
 
 
 
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
 
 
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 str_yes_no(ctx->return_valid ==
1656					    AUDITSC_SUCCESS),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 str_yes_no(context->return_valid ==
1699						    AUDITSC_SUCCESS),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  &axs->target_ref[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  &context->target_ref, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
 
1830	if (!context)
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
2012{
2013	struct audit_context *context = audit_context();
 
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
2024	}
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
2044	context->current_state  = state;
2045	ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
 
 
 
 
 
 
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
 
2079
2080out:
2081	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
 
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
 
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
 
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for (;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
 
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			atomic_inc(&n->name->refcnt);
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
2234		return;
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
2238		return;
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	atomic_inc(&name->refcnt);
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getlsmprop(inode, &name->oprop);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		atomic_inc(&name->refcnt);
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
2462	cond_resched();
2463
2464	/* is there a matching child entry? */
2465	list_for_each_entry(n, &context->names_list, list) {
2466		/* can only match entries that have a name */
2467		if (!n->name ||
2468		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2469			continue;
2470
2471		if (!strcmp(dname->name, n->name->name) ||
2472		    !audit_compare_dname_path(dname, n->name->name,
2473						found_parent ?
2474						found_parent->name_len :
2475						AUDIT_NAME_FULL)) {
2476			if (n->type == AUDIT_TYPE_UNKNOWN)
2477				n->type = type;
2478			found_child = n;
2479			break;
2480		}
2481	}
2482
2483	if (!found_parent) {
2484		/* create a new, "anonymous" parent record */
2485		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2486		if (!n)
2487			return;
2488		audit_copy_inode(n, NULL, parent, 0);
2489	}
2490
2491	if (!found_child) {
2492		found_child = audit_alloc_name(context, type);
2493		if (!found_child)
2494			return;
2495
2496		/* Re-use the name belonging to the slot for a matching parent
2497		 * directory. All names for this context are relinquished in
2498		 * audit_free_names() */
2499		if (found_parent) {
2500			found_child->name = found_parent->name;
2501			found_child->name_len = AUDIT_NAME_FULL;
2502			atomic_inc(&found_child->name->refcnt);
2503		}
2504	}
2505
2506	if (inode)
2507		audit_copy_inode(found_child, dentry, inode, 0);
2508	else
2509		found_child->ino = AUDIT_INO_UNSET;
2510}
2511EXPORT_SYMBOL_GPL(__audit_inode_child);
2512
2513/**
2514 * auditsc_get_stamp - get local copies of audit_context values
2515 * @ctx: audit_context for the task
2516 * @t: timespec64 to store time recorded in the audit_context
2517 * @serial: serial value that is recorded in the audit_context
2518 *
2519 * Also sets the context as auditable.
2520 */
2521int auditsc_get_stamp(struct audit_context *ctx,
2522		       struct timespec64 *t, unsigned int *serial)
2523{
2524	if (ctx->context == AUDIT_CTX_UNUSED)
2525		return 0;
2526	if (!ctx->serial)
2527		ctx->serial = audit_serial();
2528	t->tv_sec  = ctx->ctime.tv_sec;
2529	t->tv_nsec = ctx->ctime.tv_nsec;
2530	*serial    = ctx->serial;
2531	if (!ctx->prio) {
2532		ctx->prio = 1;
2533		ctx->current_state = AUDIT_STATE_RECORD;
2534	}
2535	return 1;
2536}
2537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538/**
2539 * __audit_mq_open - record audit data for a POSIX MQ open
2540 * @oflag: open flag
2541 * @mode: mode bits
2542 * @attr: queue attributes
2543 *
2544 */
2545void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2546{
2547	struct audit_context *context = audit_context();
2548
2549	if (attr)
2550		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2551	else
2552		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2553
2554	context->mq_open.oflag = oflag;
2555	context->mq_open.mode = mode;
2556
2557	context->type = AUDIT_MQ_OPEN;
2558}
2559
2560/**
2561 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2562 * @mqdes: MQ descriptor
2563 * @msg_len: Message length
2564 * @msg_prio: Message priority
2565 * @abs_timeout: Message timeout in absolute time
2566 *
2567 */
2568void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2569			const struct timespec64 *abs_timeout)
2570{
2571	struct audit_context *context = audit_context();
2572	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2573
2574	if (abs_timeout)
2575		memcpy(p, abs_timeout, sizeof(*p));
2576	else
2577		memset(p, 0, sizeof(*p));
2578
2579	context->mq_sendrecv.mqdes = mqdes;
2580	context->mq_sendrecv.msg_len = msg_len;
2581	context->mq_sendrecv.msg_prio = msg_prio;
2582
2583	context->type = AUDIT_MQ_SENDRECV;
2584}
2585
2586/**
2587 * __audit_mq_notify - record audit data for a POSIX MQ notify
2588 * @mqdes: MQ descriptor
2589 * @notification: Notification event
2590 *
2591 */
2592
2593void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2594{
2595	struct audit_context *context = audit_context();
2596
2597	if (notification)
2598		context->mq_notify.sigev_signo = notification->sigev_signo;
2599	else
2600		context->mq_notify.sigev_signo = 0;
2601
2602	context->mq_notify.mqdes = mqdes;
2603	context->type = AUDIT_MQ_NOTIFY;
2604}
2605
2606/**
2607 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2608 * @mqdes: MQ descriptor
2609 * @mqstat: MQ flags
2610 *
2611 */
2612void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2613{
2614	struct audit_context *context = audit_context();
2615
2616	context->mq_getsetattr.mqdes = mqdes;
2617	context->mq_getsetattr.mqstat = *mqstat;
2618	context->type = AUDIT_MQ_GETSETATTR;
2619}
2620
2621/**
2622 * __audit_ipc_obj - record audit data for ipc object
2623 * @ipcp: ipc permissions
2624 *
2625 */
2626void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2627{
2628	struct audit_context *context = audit_context();
2629
2630	context->ipc.uid = ipcp->uid;
2631	context->ipc.gid = ipcp->gid;
2632	context->ipc.mode = ipcp->mode;
2633	context->ipc.has_perm = 0;
2634	security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2635	context->type = AUDIT_IPC;
2636}
2637
2638/**
2639 * __audit_ipc_set_perm - record audit data for new ipc permissions
2640 * @qbytes: msgq bytes
2641 * @uid: msgq user id
2642 * @gid: msgq group id
2643 * @mode: msgq mode (permissions)
2644 *
2645 * Called only after audit_ipc_obj().
2646 */
2647void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2648{
2649	struct audit_context *context = audit_context();
2650
2651	context->ipc.qbytes = qbytes;
2652	context->ipc.perm_uid = uid;
2653	context->ipc.perm_gid = gid;
2654	context->ipc.perm_mode = mode;
2655	context->ipc.has_perm = 1;
2656}
2657
2658void __audit_bprm(struct linux_binprm *bprm)
2659{
2660	struct audit_context *context = audit_context();
2661
2662	context->type = AUDIT_EXECVE;
2663	context->execve.argc = bprm->argc;
2664}
2665
2666
2667/**
2668 * __audit_socketcall - record audit data for sys_socketcall
2669 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2670 * @args: args array
2671 *
2672 */
2673int __audit_socketcall(int nargs, unsigned long *args)
2674{
2675	struct audit_context *context = audit_context();
2676
2677	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2678		return -EINVAL;
2679	context->type = AUDIT_SOCKETCALL;
2680	context->socketcall.nargs = nargs;
2681	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2682	return 0;
2683}
2684
2685/**
2686 * __audit_fd_pair - record audit data for pipe and socketpair
2687 * @fd1: the first file descriptor
2688 * @fd2: the second file descriptor
2689 *
2690 */
2691void __audit_fd_pair(int fd1, int fd2)
2692{
2693	struct audit_context *context = audit_context();
2694
2695	context->fds[0] = fd1;
2696	context->fds[1] = fd2;
2697}
2698
2699/**
2700 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2701 * @len: data length in user space
2702 * @a: data address in kernel space
2703 *
2704 * Returns 0 for success or NULL context or < 0 on error.
2705 */
2706int __audit_sockaddr(int len, void *a)
2707{
2708	struct audit_context *context = audit_context();
2709
2710	if (!context->sockaddr) {
2711		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2712
2713		if (!p)
2714			return -ENOMEM;
2715		context->sockaddr = p;
2716	}
2717
2718	context->sockaddr_len = len;
2719	memcpy(context->sockaddr, a, len);
2720	return 0;
2721}
2722
2723void __audit_ptrace(struct task_struct *t)
2724{
2725	struct audit_context *context = audit_context();
2726
2727	context->target_pid = task_tgid_nr(t);
2728	context->target_auid = audit_get_loginuid(t);
2729	context->target_uid = task_uid(t);
2730	context->target_sessionid = audit_get_sessionid(t);
2731	strscpy(context->target_comm, t->comm);
2732	security_task_getlsmprop_obj(t, &context->target_ref);
2733}
2734
2735/**
2736 * audit_signal_info_syscall - record signal info for syscalls
 
2737 * @t: task being signaled
2738 *
2739 * If the audit subsystem is being terminated, record the task (pid)
2740 * and uid that is doing that.
2741 */
2742int audit_signal_info_syscall(struct task_struct *t)
2743{
2744	struct audit_aux_data_pids *axp;
2745	struct audit_context *ctx = audit_context();
2746	kuid_t t_uid = task_uid(t);
2747
2748	if (!audit_signals || audit_dummy_context())
2749		return 0;
 
 
 
 
 
 
 
 
 
 
 
2750
2751	/* optimize the common case by putting first signal recipient directly
2752	 * in audit_context */
2753	if (!ctx->target_pid) {
2754		ctx->target_pid = task_tgid_nr(t);
2755		ctx->target_auid = audit_get_loginuid(t);
2756		ctx->target_uid = t_uid;
2757		ctx->target_sessionid = audit_get_sessionid(t);
2758		strscpy(ctx->target_comm, t->comm);
2759		security_task_getlsmprop_obj(t, &ctx->target_ref);
2760		return 0;
2761	}
2762
2763	axp = (void *)ctx->aux_pids;
2764	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2765		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2766		if (!axp)
2767			return -ENOMEM;
2768
2769		axp->d.type = AUDIT_OBJ_PID;
2770		axp->d.next = ctx->aux_pids;
2771		ctx->aux_pids = (void *)axp;
2772	}
2773	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2774
2775	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2776	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2777	axp->target_uid[axp->pid_count] = t_uid;
2778	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2779	security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2780	strscpy(axp->target_comm[axp->pid_count], t->comm);
2781	axp->pid_count++;
2782
2783	return 0;
2784}
2785
2786/**
2787 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2788 * @bprm: pointer to the bprm being processed
2789 * @new: the proposed new credentials
2790 * @old: the old credentials
2791 *
2792 * Simply check if the proc already has the caps given by the file and if not
2793 * store the priv escalation info for later auditing at the end of the syscall
2794 *
2795 * -Eric
2796 */
2797int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2798			   const struct cred *new, const struct cred *old)
2799{
2800	struct audit_aux_data_bprm_fcaps *ax;
2801	struct audit_context *context = audit_context();
2802	struct cpu_vfs_cap_data vcaps;
2803
2804	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2805	if (!ax)
2806		return -ENOMEM;
2807
2808	ax->d.type = AUDIT_BPRM_FCAPS;
2809	ax->d.next = context->aux;
2810	context->aux = (void *)ax;
2811
2812	get_vfs_caps_from_disk(&nop_mnt_idmap,
2813			       bprm->file->f_path.dentry, &vcaps);
2814
2815	ax->fcap.permitted = vcaps.permitted;
2816	ax->fcap.inheritable = vcaps.inheritable;
2817	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2818	ax->fcap.rootid = vcaps.rootid;
2819	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2820
2821	ax->old_pcap.permitted   = old->cap_permitted;
2822	ax->old_pcap.inheritable = old->cap_inheritable;
2823	ax->old_pcap.effective   = old->cap_effective;
2824	ax->old_pcap.ambient     = old->cap_ambient;
2825
2826	ax->new_pcap.permitted   = new->cap_permitted;
2827	ax->new_pcap.inheritable = new->cap_inheritable;
2828	ax->new_pcap.effective   = new->cap_effective;
2829	ax->new_pcap.ambient     = new->cap_ambient;
2830	return 0;
2831}
2832
2833/**
2834 * __audit_log_capset - store information about the arguments to the capset syscall
2835 * @new: the new credentials
2836 * @old: the old (current) credentials
2837 *
2838 * Record the arguments userspace sent to sys_capset for later printing by the
2839 * audit system if applicable
2840 */
2841void __audit_log_capset(const struct cred *new, const struct cred *old)
2842{
2843	struct audit_context *context = audit_context();
2844
2845	context->capset.pid = task_tgid_nr(current);
2846	context->capset.cap.effective   = new->cap_effective;
2847	context->capset.cap.inheritable = new->cap_effective;
2848	context->capset.cap.permitted   = new->cap_permitted;
2849	context->capset.cap.ambient     = new->cap_ambient;
2850	context->type = AUDIT_CAPSET;
2851}
2852
2853void __audit_mmap_fd(int fd, int flags)
2854{
2855	struct audit_context *context = audit_context();
2856
2857	context->mmap.fd = fd;
2858	context->mmap.flags = flags;
2859	context->type = AUDIT_MMAP;
2860}
2861
2862void __audit_openat2_how(struct open_how *how)
2863{
2864	struct audit_context *context = audit_context();
2865
2866	context->openat2.flags = how->flags;
2867	context->openat2.mode = how->mode;
2868	context->openat2.resolve = how->resolve;
2869	context->type = AUDIT_OPENAT2;
2870}
2871
2872void __audit_log_kern_module(char *name)
2873{
2874	struct audit_context *context = audit_context();
2875
2876	context->module.name = kstrdup(name, GFP_KERNEL);
2877	if (!context->module.name)
2878		audit_log_lost("out of memory in __audit_log_kern_module");
2879	context->type = AUDIT_KERN_MODULE;
2880}
2881
2882void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2883{
2884	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2885	switch (friar->hdr.type) {
2886	case FAN_RESPONSE_INFO_NONE:
2887		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2889			  response, FAN_RESPONSE_INFO_NONE);
2890		break;
2891	case FAN_RESPONSE_INFO_AUDIT_RULE:
2892		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2893			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2894			  response, friar->hdr.type, friar->rule_number,
2895			  friar->subj_trust, friar->obj_trust);
2896	}
2897}
2898
2899void __audit_tk_injoffset(struct timespec64 offset)
2900{
2901	struct audit_context *context = audit_context();
2902
2903	/* only set type if not already set by NTP */
2904	if (!context->type)
2905		context->type = AUDIT_TIME_INJOFFSET;
2906	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2907}
2908
2909void __audit_ntp_log(const struct audit_ntp_data *ad)
2910{
2911	struct audit_context *context = audit_context();
2912	int type;
2913
2914	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2915		if (ad->vals[type].newval != ad->vals[type].oldval) {
2916			/* unconditionally set type, overwriting TK */
2917			context->type = AUDIT_TIME_ADJNTPVAL;
2918			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2919			break;
2920		}
2921}
2922
2923void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2924		       enum audit_nfcfgop op, gfp_t gfp)
2925{
2926	struct audit_buffer *ab;
2927	char comm[sizeof(current->comm)];
2928
2929	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2930	if (!ab)
2931		return;
2932	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2933			 name, af, nentries, audit_nfcfgs[op].s);
2934
2935	audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2936	audit_log_task_context(ab); /* subj= */
2937	audit_log_format(ab, " comm=");
2938	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2939	audit_log_end(ab);
2940}
2941EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2942
2943static void audit_log_task(struct audit_buffer *ab)
2944{
2945	kuid_t auid, uid;
2946	kgid_t gid;
2947	unsigned int sessionid;
2948	char comm[sizeof(current->comm)];
2949
2950	auid = audit_get_loginuid(current);
2951	sessionid = audit_get_sessionid(current);
2952	current_uid_gid(&uid, &gid);
2953
2954	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2955			 from_kuid(&init_user_ns, auid),
2956			 from_kuid(&init_user_ns, uid),
2957			 from_kgid(&init_user_ns, gid),
2958			 sessionid);
2959	audit_log_task_context(ab);
2960	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2961	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2962	audit_log_d_path_exe(ab, current->mm);
2963}
2964
2965/**
2966 * audit_core_dumps - record information about processes that end abnormally
2967 * @signr: signal value
2968 *
2969 * If a process ends with a core dump, something fishy is going on and we
2970 * should record the event for investigation.
2971 */
2972void audit_core_dumps(long signr)
2973{
2974	struct audit_buffer *ab;
2975
2976	if (!audit_enabled)
2977		return;
2978
2979	if (signr == SIGQUIT)	/* don't care for those */
2980		return;
2981
2982	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2983	if (unlikely(!ab))
2984		return;
2985	audit_log_task(ab);
2986	audit_log_format(ab, " sig=%ld res=1", signr);
2987	audit_log_end(ab);
2988}
2989
2990/**
2991 * audit_seccomp - record information about a seccomp action
2992 * @syscall: syscall number
2993 * @signr: signal value
2994 * @code: the seccomp action
2995 *
2996 * Record the information associated with a seccomp action. Event filtering for
2997 * seccomp actions that are not to be logged is done in seccomp_log().
2998 * Therefore, this function forces auditing independent of the audit_enabled
2999 * and dummy context state because seccomp actions should be logged even when
3000 * audit is not in use.
3001 */
3002void audit_seccomp(unsigned long syscall, long signr, int code)
3003{
3004	struct audit_buffer *ab;
3005
3006	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3007	if (unlikely(!ab))
3008		return;
3009	audit_log_task(ab);
3010	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3011			 signr, syscall_get_arch(current), syscall,
3012			 in_compat_syscall(), KSTK_EIP(current), code);
3013	audit_log_end(ab);
3014}
3015
3016void audit_seccomp_actions_logged(const char *names, const char *old_names,
3017				  int res)
3018{
3019	struct audit_buffer *ab;
3020
3021	if (!audit_enabled)
3022		return;
3023
3024	ab = audit_log_start(audit_context(), GFP_KERNEL,
3025			     AUDIT_CONFIG_CHANGE);
3026	if (unlikely(!ab))
3027		return;
3028
3029	audit_log_format(ab,
3030			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3031			 names, old_names, res);
3032	audit_log_end(ab);
3033}
3034
3035struct list_head *audit_killed_trees(void)
3036{
3037	struct audit_context *ctx = audit_context();
3038	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3039		return NULL;
3040	return &ctx->killed_trees;
3041}