Loading...
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <uapi/linux/limits.h>
77
78#include "audit.h"
79
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
85/* no execve audit message should be longer than this (userspace limits),
86 * see the note near the top of audit_log_execve_info() about this value */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
89/* max length to print of cmdline/proctitle value during audit */
90#define MAX_PROCTITLE_AUDIT_LEN 128
91
92/* number of audit rules */
93int audit_n_rules;
94
95/* determines whether we collect data for signals sent */
96int audit_signals;
97
98struct audit_aux_data {
99 struct audit_aux_data *next;
100 int type;
101};
102
103#define AUDIT_AUX_IPCPERM 0
104
105/* Number of target pids per aux struct. */
106#define AUDIT_AUX_PIDS 16
107
108struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117};
118
119struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125};
126
127struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130};
131
132static int audit_match_perm(struct audit_context *ctx, int mask)
133{
134 unsigned n;
135 if (unlikely(!ctx))
136 return 0;
137 n = ctx->major;
138
139 switch (audit_classify_syscall(ctx->arch, n)) {
140 case 0: /* native */
141 if ((mask & AUDIT_PERM_WRITE) &&
142 audit_match_class(AUDIT_CLASS_WRITE, n))
143 return 1;
144 if ((mask & AUDIT_PERM_READ) &&
145 audit_match_class(AUDIT_CLASS_READ, n))
146 return 1;
147 if ((mask & AUDIT_PERM_ATTR) &&
148 audit_match_class(AUDIT_CLASS_CHATTR, n))
149 return 1;
150 return 0;
151 case 1: /* 32bit on biarch */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE_32, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ_32, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
160 return 1;
161 return 0;
162 case 2: /* open */
163 return mask & ACC_MODE(ctx->argv[1]);
164 case 3: /* openat */
165 return mask & ACC_MODE(ctx->argv[2]);
166 case 4: /* socketcall */
167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
168 case 5: /* execve */
169 return mask & AUDIT_PERM_EXEC;
170 default:
171 return 0;
172 }
173}
174
175static int audit_match_filetype(struct audit_context *ctx, int val)
176{
177 struct audit_names *n;
178 umode_t mode = (umode_t)val;
179
180 if (unlikely(!ctx))
181 return 0;
182
183 list_for_each_entry(n, &ctx->names_list, list) {
184 if ((n->ino != AUDIT_INO_UNSET) &&
185 ((n->mode & S_IFMT) == mode))
186 return 1;
187 }
188
189 return 0;
190}
191
192/*
193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
194 * ->first_trees points to its beginning, ->trees - to the current end of data.
195 * ->tree_count is the number of free entries in array pointed to by ->trees.
196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
198 * it's going to remain 1-element for almost any setup) until we free context itself.
199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 */
201
202#ifdef CONFIG_AUDIT_TREE
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
247#endif
248
249static void unroll_tree_refs(struct audit_context *ctx,
250 struct audit_tree_refs *p, int count)
251{
252#ifdef CONFIG_AUDIT_TREE
253 struct audit_tree_refs *q;
254 int n;
255 if (!p) {
256 /* we started with empty chain */
257 p = ctx->first_trees;
258 count = 31;
259 /* if the very first allocation has failed, nothing to do */
260 if (!p)
261 return;
262 }
263 n = count;
264 for (q = p; q != ctx->trees; q = q->next, n = 31) {
265 while (n--) {
266 audit_put_chunk(q->c[n]);
267 q->c[n] = NULL;
268 }
269 }
270 while (n-- > ctx->tree_count) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
273 }
274 ctx->trees = p;
275 ctx->tree_count = count;
276#endif
277}
278
279static void free_tree_refs(struct audit_context *ctx)
280{
281 struct audit_tree_refs *p, *q;
282 for (p = ctx->first_trees; p; p = q) {
283 q = p->next;
284 kfree(p);
285 }
286}
287
288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
289{
290#ifdef CONFIG_AUDIT_TREE
291 struct audit_tree_refs *p;
292 int n;
293 if (!tree)
294 return 0;
295 /* full ones */
296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
297 for (n = 0; n < 31; n++)
298 if (audit_tree_match(p->c[n], tree))
299 return 1;
300 }
301 /* partial */
302 if (p) {
303 for (n = ctx->tree_count; n < 31; n++)
304 if (audit_tree_match(p->c[n], tree))
305 return 1;
306 }
307#endif
308 return 0;
309}
310
311static int audit_compare_uid(kuid_t uid,
312 struct audit_names *name,
313 struct audit_field *f,
314 struct audit_context *ctx)
315{
316 struct audit_names *n;
317 int rc;
318
319 if (name) {
320 rc = audit_uid_comparator(uid, f->op, name->uid);
321 if (rc)
322 return rc;
323 }
324
325 if (ctx) {
326 list_for_each_entry(n, &ctx->names_list, list) {
327 rc = audit_uid_comparator(uid, f->op, n->uid);
328 if (rc)
329 return rc;
330 }
331 }
332 return 0;
333}
334
335static int audit_compare_gid(kgid_t gid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339{
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_gid_comparator(gid, f->op, name->gid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_gid_comparator(gid, f->op, n->gid);
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357}
358
359static int audit_field_compare(struct task_struct *tsk,
360 const struct cred *cred,
361 struct audit_field *f,
362 struct audit_context *ctx,
363 struct audit_names *name)
364{
365 switch (f->val) {
366 /* process to file object comparisons */
367 case AUDIT_COMPARE_UID_TO_OBJ_UID:
368 return audit_compare_uid(cred->uid, name, f, ctx);
369 case AUDIT_COMPARE_GID_TO_OBJ_GID:
370 return audit_compare_gid(cred->gid, name, f, ctx);
371 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
372 return audit_compare_uid(cred->euid, name, f, ctx);
373 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
374 return audit_compare_gid(cred->egid, name, f, ctx);
375 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
376 return audit_compare_uid(tsk->loginuid, name, f, ctx);
377 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
378 return audit_compare_uid(cred->suid, name, f, ctx);
379 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
380 return audit_compare_gid(cred->sgid, name, f, ctx);
381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
382 return audit_compare_uid(cred->fsuid, name, f, ctx);
383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
384 return audit_compare_gid(cred->fsgid, name, f, ctx);
385 /* uid comparisons */
386 case AUDIT_COMPARE_UID_TO_AUID:
387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
388 case AUDIT_COMPARE_UID_TO_EUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->euid);
390 case AUDIT_COMPARE_UID_TO_SUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->suid);
392 case AUDIT_COMPARE_UID_TO_FSUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
394 /* auid comparisons */
395 case AUDIT_COMPARE_AUID_TO_EUID:
396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
397 case AUDIT_COMPARE_AUID_TO_SUID:
398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
399 case AUDIT_COMPARE_AUID_TO_FSUID:
400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
401 /* euid comparisons */
402 case AUDIT_COMPARE_EUID_TO_SUID:
403 return audit_uid_comparator(cred->euid, f->op, cred->suid);
404 case AUDIT_COMPARE_EUID_TO_FSUID:
405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
406 /* suid comparisons */
407 case AUDIT_COMPARE_SUID_TO_FSUID:
408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
409 /* gid comparisons */
410 case AUDIT_COMPARE_GID_TO_EGID:
411 return audit_gid_comparator(cred->gid, f->op, cred->egid);
412 case AUDIT_COMPARE_GID_TO_SGID:
413 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
414 case AUDIT_COMPARE_GID_TO_FSGID:
415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
416 /* egid comparisons */
417 case AUDIT_COMPARE_EGID_TO_SGID:
418 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
419 case AUDIT_COMPARE_EGID_TO_FSGID:
420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
421 /* sgid comparison */
422 case AUDIT_COMPARE_SGID_TO_FSGID:
423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
424 default:
425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
426 return 0;
427 }
428 return 0;
429}
430
431/* Determine if any context name data matches a rule's watch data */
432/* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise.
434 *
435 * If task_creation is true, this is an explicit indication that we are
436 * filtering a task rule at task creation time. This and tsk == current are
437 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 */
439static int audit_filter_rules(struct task_struct *tsk,
440 struct audit_krule *rule,
441 struct audit_context *ctx,
442 struct audit_names *name,
443 enum audit_state *state,
444 bool task_creation)
445{
446 const struct cred *cred;
447 int i, need_sid = 1;
448 u32 sid;
449 unsigned int sessionid;
450
451 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
452
453 for (i = 0; i < rule->field_count; i++) {
454 struct audit_field *f = &rule->fields[i];
455 struct audit_names *n;
456 int result = 0;
457 pid_t pid;
458
459 switch (f->type) {
460 case AUDIT_PID:
461 pid = task_tgid_nr(tsk);
462 result = audit_comparator(pid, f->op, f->val);
463 break;
464 case AUDIT_PPID:
465 if (ctx) {
466 if (!ctx->ppid)
467 ctx->ppid = task_ppid_nr(tsk);
468 result = audit_comparator(ctx->ppid, f->op, f->val);
469 }
470 break;
471 case AUDIT_EXE:
472 result = audit_exe_compare(tsk, rule->exe);
473 break;
474 case AUDIT_UID:
475 result = audit_uid_comparator(cred->uid, f->op, f->uid);
476 break;
477 case AUDIT_EUID:
478 result = audit_uid_comparator(cred->euid, f->op, f->uid);
479 break;
480 case AUDIT_SUID:
481 result = audit_uid_comparator(cred->suid, f->op, f->uid);
482 break;
483 case AUDIT_FSUID:
484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
485 break;
486 case AUDIT_GID:
487 result = audit_gid_comparator(cred->gid, f->op, f->gid);
488 if (f->op == Audit_equal) {
489 if (!result)
490 result = in_group_p(f->gid);
491 } else if (f->op == Audit_not_equal) {
492 if (result)
493 result = !in_group_p(f->gid);
494 }
495 break;
496 case AUDIT_EGID:
497 result = audit_gid_comparator(cred->egid, f->op, f->gid);
498 if (f->op == Audit_equal) {
499 if (!result)
500 result = in_egroup_p(f->gid);
501 } else if (f->op == Audit_not_equal) {
502 if (result)
503 result = !in_egroup_p(f->gid);
504 }
505 break;
506 case AUDIT_SGID:
507 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
508 break;
509 case AUDIT_FSGID:
510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
511 break;
512 case AUDIT_SESSIONID:
513 sessionid = audit_get_sessionid(current);
514 result = audit_comparator(sessionid, f->op, f->val);
515 break;
516 case AUDIT_PERS:
517 result = audit_comparator(tsk->personality, f->op, f->val);
518 break;
519 case AUDIT_ARCH:
520 if (ctx)
521 result = audit_comparator(ctx->arch, f->op, f->val);
522 break;
523
524 case AUDIT_EXIT:
525 if (ctx && ctx->return_valid)
526 result = audit_comparator(ctx->return_code, f->op, f->val);
527 break;
528 case AUDIT_SUCCESS:
529 if (ctx && ctx->return_valid) {
530 if (f->val)
531 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
532 else
533 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
534 }
535 break;
536 case AUDIT_DEVMAJOR:
537 if (name) {
538 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
539 audit_comparator(MAJOR(name->rdev), f->op, f->val))
540 ++result;
541 } else if (ctx) {
542 list_for_each_entry(n, &ctx->names_list, list) {
543 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
544 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
545 ++result;
546 break;
547 }
548 }
549 }
550 break;
551 case AUDIT_DEVMINOR:
552 if (name) {
553 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
554 audit_comparator(MINOR(name->rdev), f->op, f->val))
555 ++result;
556 } else if (ctx) {
557 list_for_each_entry(n, &ctx->names_list, list) {
558 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
559 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
560 ++result;
561 break;
562 }
563 }
564 }
565 break;
566 case AUDIT_INODE:
567 if (name)
568 result = audit_comparator(name->ino, f->op, f->val);
569 else if (ctx) {
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(n->ino, f->op, f->val)) {
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_OBJ_UID:
579 if (name) {
580 result = audit_uid_comparator(name->uid, f->op, f->uid);
581 } else if (ctx) {
582 list_for_each_entry(n, &ctx->names_list, list) {
583 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
584 ++result;
585 break;
586 }
587 }
588 }
589 break;
590 case AUDIT_OBJ_GID:
591 if (name) {
592 result = audit_gid_comparator(name->gid, f->op, f->gid);
593 } else if (ctx) {
594 list_for_each_entry(n, &ctx->names_list, list) {
595 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
596 ++result;
597 break;
598 }
599 }
600 }
601 break;
602 case AUDIT_WATCH:
603 if (name)
604 result = audit_watch_compare(rule->watch, name->ino, name->dev);
605 break;
606 case AUDIT_DIR:
607 if (ctx)
608 result = match_tree_refs(ctx, rule->tree);
609 break;
610 case AUDIT_LOGINUID:
611 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
612 break;
613 case AUDIT_LOGINUID_SET:
614 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
615 break;
616 case AUDIT_SUBJ_USER:
617 case AUDIT_SUBJ_ROLE:
618 case AUDIT_SUBJ_TYPE:
619 case AUDIT_SUBJ_SEN:
620 case AUDIT_SUBJ_CLR:
621 /* NOTE: this may return negative values indicating
622 a temporary error. We simply treat this as a
623 match for now to avoid losing information that
624 may be wanted. An error message will also be
625 logged upon error */
626 if (f->lsm_rule) {
627 if (need_sid) {
628 security_task_getsecid(tsk, &sid);
629 need_sid = 0;
630 }
631 result = security_audit_rule_match(sid, f->type,
632 f->op,
633 f->lsm_rule,
634 ctx);
635 }
636 break;
637 case AUDIT_OBJ_USER:
638 case AUDIT_OBJ_ROLE:
639 case AUDIT_OBJ_TYPE:
640 case AUDIT_OBJ_LEV_LOW:
641 case AUDIT_OBJ_LEV_HIGH:
642 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
643 also applies here */
644 if (f->lsm_rule) {
645 /* Find files that match */
646 if (name) {
647 result = security_audit_rule_match(
648 name->osid, f->type, f->op,
649 f->lsm_rule, ctx);
650 } else if (ctx) {
651 list_for_each_entry(n, &ctx->names_list, list) {
652 if (security_audit_rule_match(n->osid, f->type,
653 f->op, f->lsm_rule,
654 ctx)) {
655 ++result;
656 break;
657 }
658 }
659 }
660 /* Find ipc objects that match */
661 if (!ctx || ctx->type != AUDIT_IPC)
662 break;
663 if (security_audit_rule_match(ctx->ipc.osid,
664 f->type, f->op,
665 f->lsm_rule, ctx))
666 ++result;
667 }
668 break;
669 case AUDIT_ARG0:
670 case AUDIT_ARG1:
671 case AUDIT_ARG2:
672 case AUDIT_ARG3:
673 if (ctx)
674 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
675 break;
676 case AUDIT_FILTERKEY:
677 /* ignore this field for filtering */
678 result = 1;
679 break;
680 case AUDIT_PERM:
681 result = audit_match_perm(ctx, f->val);
682 break;
683 case AUDIT_FILETYPE:
684 result = audit_match_filetype(ctx, f->val);
685 break;
686 case AUDIT_FIELD_COMPARE:
687 result = audit_field_compare(tsk, cred, f, ctx, name);
688 break;
689 }
690 if (!result)
691 return 0;
692 }
693
694 if (ctx) {
695 if (rule->prio <= ctx->prio)
696 return 0;
697 if (rule->filterkey) {
698 kfree(ctx->filterkey);
699 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
700 }
701 ctx->prio = rule->prio;
702 }
703 switch (rule->action) {
704 case AUDIT_NEVER:
705 *state = AUDIT_DISABLED;
706 break;
707 case AUDIT_ALWAYS:
708 *state = AUDIT_RECORD_CONTEXT;
709 break;
710 }
711 return 1;
712}
713
714/* At process creation time, we can determine if system-call auditing is
715 * completely disabled for this task. Since we only have the task
716 * structure at this point, we can only check uid and gid.
717 */
718static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
719{
720 struct audit_entry *e;
721 enum audit_state state;
722
723 rcu_read_lock();
724 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
725 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
726 &state, true)) {
727 if (state == AUDIT_RECORD_CONTEXT)
728 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
729 rcu_read_unlock();
730 return state;
731 }
732 }
733 rcu_read_unlock();
734 return AUDIT_BUILD_CONTEXT;
735}
736
737static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
738{
739 int word, bit;
740
741 if (val > 0xffffffff)
742 return false;
743
744 word = AUDIT_WORD(val);
745 if (word >= AUDIT_BITMASK_SIZE)
746 return false;
747
748 bit = AUDIT_BIT(val);
749
750 return rule->mask[word] & bit;
751}
752
753/* At syscall entry and exit time, this filter is called if the
754 * audit_state is not low enough that auditing cannot take place, but is
755 * also not high enough that we already know we have to write an audit
756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
757 */
758static enum audit_state audit_filter_syscall(struct task_struct *tsk,
759 struct audit_context *ctx,
760 struct list_head *list)
761{
762 struct audit_entry *e;
763 enum audit_state state;
764
765 if (auditd_test_task(tsk))
766 return AUDIT_DISABLED;
767
768 rcu_read_lock();
769 if (!list_empty(list)) {
770 list_for_each_entry_rcu(e, list, list) {
771 if (audit_in_mask(&e->rule, ctx->major) &&
772 audit_filter_rules(tsk, &e->rule, ctx, NULL,
773 &state, false)) {
774 rcu_read_unlock();
775 ctx->current_state = state;
776 return state;
777 }
778 }
779 }
780 rcu_read_unlock();
781 return AUDIT_BUILD_CONTEXT;
782}
783
784/*
785 * Given an audit_name check the inode hash table to see if they match.
786 * Called holding the rcu read lock to protect the use of audit_inode_hash
787 */
788static int audit_filter_inode_name(struct task_struct *tsk,
789 struct audit_names *n,
790 struct audit_context *ctx) {
791 int h = audit_hash_ino((u32)n->ino);
792 struct list_head *list = &audit_inode_hash[h];
793 struct audit_entry *e;
794 enum audit_state state;
795
796 if (list_empty(list))
797 return 0;
798
799 list_for_each_entry_rcu(e, list, list) {
800 if (audit_in_mask(&e->rule, ctx->major) &&
801 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
802 ctx->current_state = state;
803 return 1;
804 }
805 }
806
807 return 0;
808}
809
810/* At syscall exit time, this filter is called if any audit_names have been
811 * collected during syscall processing. We only check rules in sublists at hash
812 * buckets applicable to the inode numbers in audit_names.
813 * Regarding audit_state, same rules apply as for audit_filter_syscall().
814 */
815void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
816{
817 struct audit_names *n;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823
824 list_for_each_entry(n, &ctx->names_list, list) {
825 if (audit_filter_inode_name(tsk, n, ctx))
826 break;
827 }
828 rcu_read_unlock();
829}
830
831/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
832static inline struct audit_context *audit_take_context(struct task_struct *tsk,
833 int return_valid,
834 long return_code)
835{
836 struct audit_context *context = tsk->audit_context;
837
838 if (!context)
839 return NULL;
840 context->return_valid = return_valid;
841
842 /*
843 * we need to fix up the return code in the audit logs if the actual
844 * return codes are later going to be fixed up by the arch specific
845 * signal handlers
846 *
847 * This is actually a test for:
848 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
849 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
850 *
851 * but is faster than a bunch of ||
852 */
853 if (unlikely(return_code <= -ERESTARTSYS) &&
854 (return_code >= -ERESTART_RESTARTBLOCK) &&
855 (return_code != -ENOIOCTLCMD))
856 context->return_code = -EINTR;
857 else
858 context->return_code = return_code;
859
860 if (context->in_syscall && !context->dummy) {
861 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
862 audit_filter_inodes(tsk, context);
863 }
864
865 tsk->audit_context = NULL;
866 return context;
867}
868
869static inline void audit_proctitle_free(struct audit_context *context)
870{
871 kfree(context->proctitle.value);
872 context->proctitle.value = NULL;
873 context->proctitle.len = 0;
874}
875
876static inline void audit_free_names(struct audit_context *context)
877{
878 struct audit_names *n, *next;
879
880 list_for_each_entry_safe(n, next, &context->names_list, list) {
881 list_del(&n->list);
882 if (n->name)
883 putname(n->name);
884 if (n->should_free)
885 kfree(n);
886 }
887 context->name_count = 0;
888 path_put(&context->pwd);
889 context->pwd.dentry = NULL;
890 context->pwd.mnt = NULL;
891}
892
893static inline void audit_free_aux(struct audit_context *context)
894{
895 struct audit_aux_data *aux;
896
897 while ((aux = context->aux)) {
898 context->aux = aux->next;
899 kfree(aux);
900 }
901 while ((aux = context->aux_pids)) {
902 context->aux_pids = aux->next;
903 kfree(aux);
904 }
905}
906
907static inline struct audit_context *audit_alloc_context(enum audit_state state)
908{
909 struct audit_context *context;
910
911 context = kzalloc(sizeof(*context), GFP_KERNEL);
912 if (!context)
913 return NULL;
914 context->state = state;
915 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916 INIT_LIST_HEAD(&context->killed_trees);
917 INIT_LIST_HEAD(&context->names_list);
918 return context;
919}
920
921/**
922 * audit_alloc - allocate an audit context block for a task
923 * @tsk: task
924 *
925 * Filter on the task information and allocate a per-task audit context
926 * if necessary. Doing so turns on system call auditing for the
927 * specified task. This is called from copy_process, so no lock is
928 * needed.
929 */
930int audit_alloc(struct task_struct *tsk)
931{
932 struct audit_context *context;
933 enum audit_state state;
934 char *key = NULL;
935
936 if (likely(!audit_ever_enabled))
937 return 0; /* Return if not auditing. */
938
939 state = audit_filter_task(tsk, &key);
940 if (state == AUDIT_DISABLED) {
941 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
942 return 0;
943 }
944
945 if (!(context = audit_alloc_context(state))) {
946 kfree(key);
947 audit_log_lost("out of memory in audit_alloc");
948 return -ENOMEM;
949 }
950 context->filterkey = key;
951
952 tsk->audit_context = context;
953 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
954 return 0;
955}
956
957static inline void audit_free_context(struct audit_context *context)
958{
959 audit_free_names(context);
960 unroll_tree_refs(context, NULL, 0);
961 free_tree_refs(context);
962 audit_free_aux(context);
963 kfree(context->filterkey);
964 kfree(context->sockaddr);
965 audit_proctitle_free(context);
966 kfree(context);
967}
968
969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
970 kuid_t auid, kuid_t uid, unsigned int sessionid,
971 u32 sid, char *comm)
972{
973 struct audit_buffer *ab;
974 char *ctx = NULL;
975 u32 len;
976 int rc = 0;
977
978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
979 if (!ab)
980 return rc;
981
982 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
983 from_kuid(&init_user_ns, auid),
984 from_kuid(&init_user_ns, uid), sessionid);
985 if (sid) {
986 if (security_secid_to_secctx(sid, &ctx, &len)) {
987 audit_log_format(ab, " obj=(none)");
988 rc = 1;
989 } else {
990 audit_log_format(ab, " obj=%s", ctx);
991 security_release_secctx(ctx, len);
992 }
993 }
994 audit_log_format(ab, " ocomm=");
995 audit_log_untrustedstring(ab, comm);
996 audit_log_end(ab);
997
998 return rc;
999}
1000
1001static void audit_log_execve_info(struct audit_context *context,
1002 struct audit_buffer **ab)
1003{
1004 long len_max;
1005 long len_rem;
1006 long len_full;
1007 long len_buf;
1008 long len_abuf = 0;
1009 long len_tmp;
1010 bool require_data;
1011 bool encode;
1012 unsigned int iter;
1013 unsigned int arg;
1014 char *buf_head;
1015 char *buf;
1016 const char __user *p = (const char __user *)current->mm->arg_start;
1017
1018 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1019 * data we put in the audit record for this argument (see the
1020 * code below) ... at this point in time 96 is plenty */
1021 char abuf[96];
1022
1023 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1024 * current value of 7500 is not as important as the fact that it
1025 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1026 * room if we go over a little bit in the logging below */
1027 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1028 len_max = MAX_EXECVE_AUDIT_LEN;
1029
1030 /* scratch buffer to hold the userspace args */
1031 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1032 if (!buf_head) {
1033 audit_panic("out of memory for argv string");
1034 return;
1035 }
1036 buf = buf_head;
1037
1038 audit_log_format(*ab, "argc=%d", context->execve.argc);
1039
1040 len_rem = len_max;
1041 len_buf = 0;
1042 len_full = 0;
1043 require_data = true;
1044 encode = false;
1045 iter = 0;
1046 arg = 0;
1047 do {
1048 /* NOTE: we don't ever want to trust this value for anything
1049 * serious, but the audit record format insists we
1050 * provide an argument length for really long arguments,
1051 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1052 * to use strncpy_from_user() to obtain this value for
1053 * recording in the log, although we don't use it
1054 * anywhere here to avoid a double-fetch problem */
1055 if (len_full == 0)
1056 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1057
1058 /* read more data from userspace */
1059 if (require_data) {
1060 /* can we make more room in the buffer? */
1061 if (buf != buf_head) {
1062 memmove(buf_head, buf, len_buf);
1063 buf = buf_head;
1064 }
1065
1066 /* fetch as much as we can of the argument */
1067 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1068 len_max - len_buf);
1069 if (len_tmp == -EFAULT) {
1070 /* unable to copy from userspace */
1071 send_sig(SIGKILL, current, 0);
1072 goto out;
1073 } else if (len_tmp == (len_max - len_buf)) {
1074 /* buffer is not large enough */
1075 require_data = true;
1076 /* NOTE: if we are going to span multiple
1077 * buffers force the encoding so we stand
1078 * a chance at a sane len_full value and
1079 * consistent record encoding */
1080 encode = true;
1081 len_full = len_full * 2;
1082 p += len_tmp;
1083 } else {
1084 require_data = false;
1085 if (!encode)
1086 encode = audit_string_contains_control(
1087 buf, len_tmp);
1088 /* try to use a trusted value for len_full */
1089 if (len_full < len_max)
1090 len_full = (encode ?
1091 len_tmp * 2 : len_tmp);
1092 p += len_tmp + 1;
1093 }
1094 len_buf += len_tmp;
1095 buf_head[len_buf] = '\0';
1096
1097 /* length of the buffer in the audit record? */
1098 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1099 }
1100
1101 /* write as much as we can to the audit log */
1102 if (len_buf > 0) {
1103 /* NOTE: some magic numbers here - basically if we
1104 * can't fit a reasonable amount of data into the
1105 * existing audit buffer, flush it and start with
1106 * a new buffer */
1107 if ((sizeof(abuf) + 8) > len_rem) {
1108 len_rem = len_max;
1109 audit_log_end(*ab);
1110 *ab = audit_log_start(context,
1111 GFP_KERNEL, AUDIT_EXECVE);
1112 if (!*ab)
1113 goto out;
1114 }
1115
1116 /* create the non-arg portion of the arg record */
1117 len_tmp = 0;
1118 if (require_data || (iter > 0) ||
1119 ((len_abuf + sizeof(abuf)) > len_rem)) {
1120 if (iter == 0) {
1121 len_tmp += snprintf(&abuf[len_tmp],
1122 sizeof(abuf) - len_tmp,
1123 " a%d_len=%lu",
1124 arg, len_full);
1125 }
1126 len_tmp += snprintf(&abuf[len_tmp],
1127 sizeof(abuf) - len_tmp,
1128 " a%d[%d]=", arg, iter++);
1129 } else
1130 len_tmp += snprintf(&abuf[len_tmp],
1131 sizeof(abuf) - len_tmp,
1132 " a%d=", arg);
1133 WARN_ON(len_tmp >= sizeof(abuf));
1134 abuf[sizeof(abuf) - 1] = '\0';
1135
1136 /* log the arg in the audit record */
1137 audit_log_format(*ab, "%s", abuf);
1138 len_rem -= len_tmp;
1139 len_tmp = len_buf;
1140 if (encode) {
1141 if (len_abuf > len_rem)
1142 len_tmp = len_rem / 2; /* encoding */
1143 audit_log_n_hex(*ab, buf, len_tmp);
1144 len_rem -= len_tmp * 2;
1145 len_abuf -= len_tmp * 2;
1146 } else {
1147 if (len_abuf > len_rem)
1148 len_tmp = len_rem - 2; /* quotes */
1149 audit_log_n_string(*ab, buf, len_tmp);
1150 len_rem -= len_tmp + 2;
1151 /* don't subtract the "2" because we still need
1152 * to add quotes to the remaining string */
1153 len_abuf -= len_tmp;
1154 }
1155 len_buf -= len_tmp;
1156 buf += len_tmp;
1157 }
1158
1159 /* ready to move to the next argument? */
1160 if ((len_buf == 0) && !require_data) {
1161 arg++;
1162 iter = 0;
1163 len_full = 0;
1164 require_data = true;
1165 encode = false;
1166 }
1167 } while (arg < context->execve.argc);
1168
1169 /* NOTE: the caller handles the final audit_log_end() call */
1170
1171out:
1172 kfree(buf_head);
1173}
1174
1175static void show_special(struct audit_context *context, int *call_panic)
1176{
1177 struct audit_buffer *ab;
1178 int i;
1179
1180 ab = audit_log_start(context, GFP_KERNEL, context->type);
1181 if (!ab)
1182 return;
1183
1184 switch (context->type) {
1185 case AUDIT_SOCKETCALL: {
1186 int nargs = context->socketcall.nargs;
1187 audit_log_format(ab, "nargs=%d", nargs);
1188 for (i = 0; i < nargs; i++)
1189 audit_log_format(ab, " a%d=%lx", i,
1190 context->socketcall.args[i]);
1191 break; }
1192 case AUDIT_IPC: {
1193 u32 osid = context->ipc.osid;
1194
1195 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1196 from_kuid(&init_user_ns, context->ipc.uid),
1197 from_kgid(&init_user_ns, context->ipc.gid),
1198 context->ipc.mode);
1199 if (osid) {
1200 char *ctx = NULL;
1201 u32 len;
1202 if (security_secid_to_secctx(osid, &ctx, &len)) {
1203 audit_log_format(ab, " osid=%u", osid);
1204 *call_panic = 1;
1205 } else {
1206 audit_log_format(ab, " obj=%s", ctx);
1207 security_release_secctx(ctx, len);
1208 }
1209 }
1210 if (context->ipc.has_perm) {
1211 audit_log_end(ab);
1212 ab = audit_log_start(context, GFP_KERNEL,
1213 AUDIT_IPC_SET_PERM);
1214 if (unlikely(!ab))
1215 return;
1216 audit_log_format(ab,
1217 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1218 context->ipc.qbytes,
1219 context->ipc.perm_uid,
1220 context->ipc.perm_gid,
1221 context->ipc.perm_mode);
1222 }
1223 break; }
1224 case AUDIT_MQ_OPEN: {
1225 audit_log_format(ab,
1226 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1227 "mq_msgsize=%ld mq_curmsgs=%ld",
1228 context->mq_open.oflag, context->mq_open.mode,
1229 context->mq_open.attr.mq_flags,
1230 context->mq_open.attr.mq_maxmsg,
1231 context->mq_open.attr.mq_msgsize,
1232 context->mq_open.attr.mq_curmsgs);
1233 break; }
1234 case AUDIT_MQ_SENDRECV: {
1235 audit_log_format(ab,
1236 "mqdes=%d msg_len=%zd msg_prio=%u "
1237 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238 context->mq_sendrecv.mqdes,
1239 context->mq_sendrecv.msg_len,
1240 context->mq_sendrecv.msg_prio,
1241 context->mq_sendrecv.abs_timeout.tv_sec,
1242 context->mq_sendrecv.abs_timeout.tv_nsec);
1243 break; }
1244 case AUDIT_MQ_NOTIFY: {
1245 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246 context->mq_notify.mqdes,
1247 context->mq_notify.sigev_signo);
1248 break; }
1249 case AUDIT_MQ_GETSETATTR: {
1250 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1251 audit_log_format(ab,
1252 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253 "mq_curmsgs=%ld ",
1254 context->mq_getsetattr.mqdes,
1255 attr->mq_flags, attr->mq_maxmsg,
1256 attr->mq_msgsize, attr->mq_curmsgs);
1257 break; }
1258 case AUDIT_CAPSET: {
1259 audit_log_format(ab, "pid=%d", context->capset.pid);
1260 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263 break; }
1264 case AUDIT_MMAP: {
1265 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266 context->mmap.flags);
1267 break; }
1268 case AUDIT_EXECVE: {
1269 audit_log_execve_info(context, &ab);
1270 break; }
1271 }
1272 audit_log_end(ab);
1273}
1274
1275static inline int audit_proctitle_rtrim(char *proctitle, int len)
1276{
1277 char *end = proctitle + len - 1;
1278 while (end > proctitle && !isprint(*end))
1279 end--;
1280
1281 /* catch the case where proctitle is only 1 non-print character */
1282 len = end - proctitle + 1;
1283 len -= isprint(proctitle[len-1]) == 0;
1284 return len;
1285}
1286
1287static void audit_log_proctitle(struct task_struct *tsk,
1288 struct audit_context *context)
1289{
1290 int res;
1291 char *buf;
1292 char *msg = "(null)";
1293 int len = strlen(msg);
1294 struct audit_buffer *ab;
1295
1296 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1297 if (!ab)
1298 return; /* audit_panic or being filtered */
1299
1300 audit_log_format(ab, "proctitle=");
1301
1302 /* Not cached */
1303 if (!context->proctitle.value) {
1304 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1305 if (!buf)
1306 goto out;
1307 /* Historically called this from procfs naming */
1308 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1309 if (res == 0) {
1310 kfree(buf);
1311 goto out;
1312 }
1313 res = audit_proctitle_rtrim(buf, res);
1314 if (res == 0) {
1315 kfree(buf);
1316 goto out;
1317 }
1318 context->proctitle.value = buf;
1319 context->proctitle.len = res;
1320 }
1321 msg = context->proctitle.value;
1322 len = context->proctitle.len;
1323out:
1324 audit_log_n_untrustedstring(ab, msg, len);
1325 audit_log_end(ab);
1326}
1327
1328static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1329{
1330 int i, call_panic = 0;
1331 struct audit_buffer *ab;
1332 struct audit_aux_data *aux;
1333 struct audit_names *n;
1334
1335 /* tsk == current */
1336 context->personality = tsk->personality;
1337
1338 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1339 if (!ab)
1340 return; /* audit_panic has been called */
1341 audit_log_format(ab, "arch=%x syscall=%d",
1342 context->arch, context->major);
1343 if (context->personality != PER_LINUX)
1344 audit_log_format(ab, " per=%lx", context->personality);
1345 if (context->return_valid)
1346 audit_log_format(ab, " success=%s exit=%ld",
1347 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1348 context->return_code);
1349
1350 audit_log_format(ab,
1351 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352 context->argv[0],
1353 context->argv[1],
1354 context->argv[2],
1355 context->argv[3],
1356 context->name_count);
1357
1358 audit_log_task_info(ab, tsk);
1359 audit_log_key(ab, context->filterkey);
1360 audit_log_end(ab);
1361
1362 for (aux = context->aux; aux; aux = aux->next) {
1363
1364 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1365 if (!ab)
1366 continue; /* audit_panic has been called */
1367
1368 switch (aux->type) {
1369
1370 case AUDIT_BPRM_FCAPS: {
1371 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1372 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1373 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1374 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1375 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1376 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1377 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1378 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1379 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1380 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1381 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1382 break; }
1383
1384 }
1385 audit_log_end(ab);
1386 }
1387
1388 if (context->type)
1389 show_special(context, &call_panic);
1390
1391 if (context->fds[0] >= 0) {
1392 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1393 if (ab) {
1394 audit_log_format(ab, "fd0=%d fd1=%d",
1395 context->fds[0], context->fds[1]);
1396 audit_log_end(ab);
1397 }
1398 }
1399
1400 if (context->sockaddr_len) {
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1402 if (ab) {
1403 audit_log_format(ab, "saddr=");
1404 audit_log_n_hex(ab, (void *)context->sockaddr,
1405 context->sockaddr_len);
1406 audit_log_end(ab);
1407 }
1408 }
1409
1410 for (aux = context->aux_pids; aux; aux = aux->next) {
1411 struct audit_aux_data_pids *axs = (void *)aux;
1412
1413 for (i = 0; i < axs->pid_count; i++)
1414 if (audit_log_pid_context(context, axs->target_pid[i],
1415 axs->target_auid[i],
1416 axs->target_uid[i],
1417 axs->target_sessionid[i],
1418 axs->target_sid[i],
1419 axs->target_comm[i]))
1420 call_panic = 1;
1421 }
1422
1423 if (context->target_pid &&
1424 audit_log_pid_context(context, context->target_pid,
1425 context->target_auid, context->target_uid,
1426 context->target_sessionid,
1427 context->target_sid, context->target_comm))
1428 call_panic = 1;
1429
1430 if (context->pwd.dentry && context->pwd.mnt) {
1431 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1432 if (ab) {
1433 audit_log_d_path(ab, "cwd=", &context->pwd);
1434 audit_log_end(ab);
1435 }
1436 }
1437
1438 i = 0;
1439 list_for_each_entry(n, &context->names_list, list) {
1440 if (n->hidden)
1441 continue;
1442 audit_log_name(context, n, NULL, i++, &call_panic);
1443 }
1444
1445 audit_log_proctitle(tsk, context);
1446
1447 /* Send end of event record to help user space know we are finished */
1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1449 if (ab)
1450 audit_log_end(ab);
1451 if (call_panic)
1452 audit_panic("error converting sid to string");
1453}
1454
1455/**
1456 * audit_free - free a per-task audit context
1457 * @tsk: task whose audit context block to free
1458 *
1459 * Called from copy_process and do_exit
1460 */
1461void __audit_free(struct task_struct *tsk)
1462{
1463 struct audit_context *context;
1464
1465 context = audit_take_context(tsk, 0, 0);
1466 if (!context)
1467 return;
1468
1469 /* Check for system calls that do not go through the exit
1470 * function (e.g., exit_group), then free context block.
1471 * We use GFP_ATOMIC here because we might be doing this
1472 * in the context of the idle thread */
1473 /* that can happen only if we are called from do_exit() */
1474 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1475 audit_log_exit(context, tsk);
1476 if (!list_empty(&context->killed_trees))
1477 audit_kill_trees(&context->killed_trees);
1478
1479 audit_free_context(context);
1480}
1481
1482/**
1483 * audit_syscall_entry - fill in an audit record at syscall entry
1484 * @major: major syscall type (function)
1485 * @a1: additional syscall register 1
1486 * @a2: additional syscall register 2
1487 * @a3: additional syscall register 3
1488 * @a4: additional syscall register 4
1489 *
1490 * Fill in audit context at syscall entry. This only happens if the
1491 * audit context was created when the task was created and the state or
1492 * filters demand the audit context be built. If the state from the
1493 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1494 * then the record will be written at syscall exit time (otherwise, it
1495 * will only be written if another part of the kernel requests that it
1496 * be written).
1497 */
1498void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1499 unsigned long a3, unsigned long a4)
1500{
1501 struct task_struct *tsk = current;
1502 struct audit_context *context = tsk->audit_context;
1503 enum audit_state state;
1504
1505 if (!context)
1506 return;
1507
1508 BUG_ON(context->in_syscall || context->name_count);
1509
1510 if (!audit_enabled)
1511 return;
1512
1513 context->arch = syscall_get_arch();
1514 context->major = major;
1515 context->argv[0] = a1;
1516 context->argv[1] = a2;
1517 context->argv[2] = a3;
1518 context->argv[3] = a4;
1519
1520 state = context->state;
1521 context->dummy = !audit_n_rules;
1522 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1523 context->prio = 0;
1524 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1525 }
1526 if (state == AUDIT_DISABLED)
1527 return;
1528
1529 context->serial = 0;
1530 context->ctime = CURRENT_TIME;
1531 context->in_syscall = 1;
1532 context->current_state = state;
1533 context->ppid = 0;
1534}
1535
1536/**
1537 * audit_syscall_exit - deallocate audit context after a system call
1538 * @success: success value of the syscall
1539 * @return_code: return value of the syscall
1540 *
1541 * Tear down after system call. If the audit context has been marked as
1542 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1543 * filtering, or because some other part of the kernel wrote an audit
1544 * message), then write out the syscall information. In call cases,
1545 * free the names stored from getname().
1546 */
1547void __audit_syscall_exit(int success, long return_code)
1548{
1549 struct task_struct *tsk = current;
1550 struct audit_context *context;
1551
1552 if (success)
1553 success = AUDITSC_SUCCESS;
1554 else
1555 success = AUDITSC_FAILURE;
1556
1557 context = audit_take_context(tsk, success, return_code);
1558 if (!context)
1559 return;
1560
1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562 audit_log_exit(context, tsk);
1563
1564 context->in_syscall = 0;
1565 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1566
1567 if (!list_empty(&context->killed_trees))
1568 audit_kill_trees(&context->killed_trees);
1569
1570 audit_free_names(context);
1571 unroll_tree_refs(context, NULL, 0);
1572 audit_free_aux(context);
1573 context->aux = NULL;
1574 context->aux_pids = NULL;
1575 context->target_pid = 0;
1576 context->target_sid = 0;
1577 context->sockaddr_len = 0;
1578 context->type = 0;
1579 context->fds[0] = -1;
1580 if (context->state != AUDIT_RECORD_CONTEXT) {
1581 kfree(context->filterkey);
1582 context->filterkey = NULL;
1583 }
1584 tsk->audit_context = context;
1585}
1586
1587static inline void handle_one(const struct inode *inode)
1588{
1589#ifdef CONFIG_AUDIT_TREE
1590 struct audit_context *context;
1591 struct audit_tree_refs *p;
1592 struct audit_chunk *chunk;
1593 int count;
1594 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1595 return;
1596 context = current->audit_context;
1597 p = context->trees;
1598 count = context->tree_count;
1599 rcu_read_lock();
1600 chunk = audit_tree_lookup(inode);
1601 rcu_read_unlock();
1602 if (!chunk)
1603 return;
1604 if (likely(put_tree_ref(context, chunk)))
1605 return;
1606 if (unlikely(!grow_tree_refs(context))) {
1607 pr_warn("out of memory, audit has lost a tree reference\n");
1608 audit_set_auditable(context);
1609 audit_put_chunk(chunk);
1610 unroll_tree_refs(context, p, count);
1611 return;
1612 }
1613 put_tree_ref(context, chunk);
1614#endif
1615}
1616
1617static void handle_path(const struct dentry *dentry)
1618{
1619#ifdef CONFIG_AUDIT_TREE
1620 struct audit_context *context;
1621 struct audit_tree_refs *p;
1622 const struct dentry *d, *parent;
1623 struct audit_chunk *drop;
1624 unsigned long seq;
1625 int count;
1626
1627 context = current->audit_context;
1628 p = context->trees;
1629 count = context->tree_count;
1630retry:
1631 drop = NULL;
1632 d = dentry;
1633 rcu_read_lock();
1634 seq = read_seqbegin(&rename_lock);
1635 for(;;) {
1636 struct inode *inode = d_backing_inode(d);
1637 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1638 struct audit_chunk *chunk;
1639 chunk = audit_tree_lookup(inode);
1640 if (chunk) {
1641 if (unlikely(!put_tree_ref(context, chunk))) {
1642 drop = chunk;
1643 break;
1644 }
1645 }
1646 }
1647 parent = d->d_parent;
1648 if (parent == d)
1649 break;
1650 d = parent;
1651 }
1652 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1653 rcu_read_unlock();
1654 if (!drop) {
1655 /* just a race with rename */
1656 unroll_tree_refs(context, p, count);
1657 goto retry;
1658 }
1659 audit_put_chunk(drop);
1660 if (grow_tree_refs(context)) {
1661 /* OK, got more space */
1662 unroll_tree_refs(context, p, count);
1663 goto retry;
1664 }
1665 /* too bad */
1666 pr_warn("out of memory, audit has lost a tree reference\n");
1667 unroll_tree_refs(context, p, count);
1668 audit_set_auditable(context);
1669 return;
1670 }
1671 rcu_read_unlock();
1672#endif
1673}
1674
1675static struct audit_names *audit_alloc_name(struct audit_context *context,
1676 unsigned char type)
1677{
1678 struct audit_names *aname;
1679
1680 if (context->name_count < AUDIT_NAMES) {
1681 aname = &context->preallocated_names[context->name_count];
1682 memset(aname, 0, sizeof(*aname));
1683 } else {
1684 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1685 if (!aname)
1686 return NULL;
1687 aname->should_free = true;
1688 }
1689
1690 aname->ino = AUDIT_INO_UNSET;
1691 aname->type = type;
1692 list_add_tail(&aname->list, &context->names_list);
1693
1694 context->name_count++;
1695 return aname;
1696}
1697
1698/**
1699 * audit_reusename - fill out filename with info from existing entry
1700 * @uptr: userland ptr to pathname
1701 *
1702 * Search the audit_names list for the current audit context. If there is an
1703 * existing entry with a matching "uptr" then return the filename
1704 * associated with that audit_name. If not, return NULL.
1705 */
1706struct filename *
1707__audit_reusename(const __user char *uptr)
1708{
1709 struct audit_context *context = current->audit_context;
1710 struct audit_names *n;
1711
1712 list_for_each_entry(n, &context->names_list, list) {
1713 if (!n->name)
1714 continue;
1715 if (n->name->uptr == uptr) {
1716 n->name->refcnt++;
1717 return n->name;
1718 }
1719 }
1720 return NULL;
1721}
1722
1723/**
1724 * audit_getname - add a name to the list
1725 * @name: name to add
1726 *
1727 * Add a name to the list of audit names for this context.
1728 * Called from fs/namei.c:getname().
1729 */
1730void __audit_getname(struct filename *name)
1731{
1732 struct audit_context *context = current->audit_context;
1733 struct audit_names *n;
1734
1735 if (!context->in_syscall)
1736 return;
1737
1738 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1739 if (!n)
1740 return;
1741
1742 n->name = name;
1743 n->name_len = AUDIT_NAME_FULL;
1744 name->aname = n;
1745 name->refcnt++;
1746
1747 if (!context->pwd.dentry)
1748 get_fs_pwd(current->fs, &context->pwd);
1749}
1750
1751/**
1752 * __audit_inode - store the inode and device from a lookup
1753 * @name: name being audited
1754 * @dentry: dentry being audited
1755 * @flags: attributes for this particular entry
1756 */
1757void __audit_inode(struct filename *name, const struct dentry *dentry,
1758 unsigned int flags)
1759{
1760 struct audit_context *context = current->audit_context;
1761 struct inode *inode = d_backing_inode(dentry);
1762 struct audit_names *n;
1763 bool parent = flags & AUDIT_INODE_PARENT;
1764
1765 if (!context->in_syscall)
1766 return;
1767
1768 if (!name)
1769 goto out_alloc;
1770
1771 /*
1772 * If we have a pointer to an audit_names entry already, then we can
1773 * just use it directly if the type is correct.
1774 */
1775 n = name->aname;
1776 if (n) {
1777 if (parent) {
1778 if (n->type == AUDIT_TYPE_PARENT ||
1779 n->type == AUDIT_TYPE_UNKNOWN)
1780 goto out;
1781 } else {
1782 if (n->type != AUDIT_TYPE_PARENT)
1783 goto out;
1784 }
1785 }
1786
1787 list_for_each_entry_reverse(n, &context->names_list, list) {
1788 if (n->ino) {
1789 /* valid inode number, use that for the comparison */
1790 if (n->ino != inode->i_ino ||
1791 n->dev != inode->i_sb->s_dev)
1792 continue;
1793 } else if (n->name) {
1794 /* inode number has not been set, check the name */
1795 if (strcmp(n->name->name, name->name))
1796 continue;
1797 } else
1798 /* no inode and no name (?!) ... this is odd ... */
1799 continue;
1800
1801 /* match the correct record type */
1802 if (parent) {
1803 if (n->type == AUDIT_TYPE_PARENT ||
1804 n->type == AUDIT_TYPE_UNKNOWN)
1805 goto out;
1806 } else {
1807 if (n->type != AUDIT_TYPE_PARENT)
1808 goto out;
1809 }
1810 }
1811
1812out_alloc:
1813 /* unable to find an entry with both a matching name and type */
1814 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1815 if (!n)
1816 return;
1817 if (name) {
1818 n->name = name;
1819 name->refcnt++;
1820 }
1821
1822out:
1823 if (parent) {
1824 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1825 n->type = AUDIT_TYPE_PARENT;
1826 if (flags & AUDIT_INODE_HIDDEN)
1827 n->hidden = true;
1828 } else {
1829 n->name_len = AUDIT_NAME_FULL;
1830 n->type = AUDIT_TYPE_NORMAL;
1831 }
1832 handle_path(dentry);
1833 audit_copy_inode(n, dentry, inode);
1834}
1835
1836void __audit_file(const struct file *file)
1837{
1838 __audit_inode(NULL, file->f_path.dentry, 0);
1839}
1840
1841/**
1842 * __audit_inode_child - collect inode info for created/removed objects
1843 * @parent: inode of dentry parent
1844 * @dentry: dentry being audited
1845 * @type: AUDIT_TYPE_* value that we're looking for
1846 *
1847 * For syscalls that create or remove filesystem objects, audit_inode
1848 * can only collect information for the filesystem object's parent.
1849 * This call updates the audit context with the child's information.
1850 * Syscalls that create a new filesystem object must be hooked after
1851 * the object is created. Syscalls that remove a filesystem object
1852 * must be hooked prior, in order to capture the target inode during
1853 * unsuccessful attempts.
1854 */
1855void __audit_inode_child(struct inode *parent,
1856 const struct dentry *dentry,
1857 const unsigned char type)
1858{
1859 struct audit_context *context = current->audit_context;
1860 struct inode *inode = d_backing_inode(dentry);
1861 const char *dname = dentry->d_name.name;
1862 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1863
1864 if (!context->in_syscall)
1865 return;
1866
1867 if (inode)
1868 handle_one(inode);
1869
1870 /* look for a parent entry first */
1871 list_for_each_entry(n, &context->names_list, list) {
1872 if (!n->name ||
1873 (n->type != AUDIT_TYPE_PARENT &&
1874 n->type != AUDIT_TYPE_UNKNOWN))
1875 continue;
1876
1877 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1878 !audit_compare_dname_path(dname,
1879 n->name->name, n->name_len)) {
1880 if (n->type == AUDIT_TYPE_UNKNOWN)
1881 n->type = AUDIT_TYPE_PARENT;
1882 found_parent = n;
1883 break;
1884 }
1885 }
1886
1887 /* is there a matching child entry? */
1888 list_for_each_entry(n, &context->names_list, list) {
1889 /* can only match entries that have a name */
1890 if (!n->name ||
1891 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1892 continue;
1893
1894 if (!strcmp(dname, n->name->name) ||
1895 !audit_compare_dname_path(dname, n->name->name,
1896 found_parent ?
1897 found_parent->name_len :
1898 AUDIT_NAME_FULL)) {
1899 if (n->type == AUDIT_TYPE_UNKNOWN)
1900 n->type = type;
1901 found_child = n;
1902 break;
1903 }
1904 }
1905
1906 if (!found_parent) {
1907 /* create a new, "anonymous" parent record */
1908 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1909 if (!n)
1910 return;
1911 audit_copy_inode(n, NULL, parent);
1912 }
1913
1914 if (!found_child) {
1915 found_child = audit_alloc_name(context, type);
1916 if (!found_child)
1917 return;
1918
1919 /* Re-use the name belonging to the slot for a matching parent
1920 * directory. All names for this context are relinquished in
1921 * audit_free_names() */
1922 if (found_parent) {
1923 found_child->name = found_parent->name;
1924 found_child->name_len = AUDIT_NAME_FULL;
1925 found_child->name->refcnt++;
1926 }
1927 }
1928
1929 if (inode)
1930 audit_copy_inode(found_child, dentry, inode);
1931 else
1932 found_child->ino = AUDIT_INO_UNSET;
1933}
1934EXPORT_SYMBOL_GPL(__audit_inode_child);
1935
1936/**
1937 * auditsc_get_stamp - get local copies of audit_context values
1938 * @ctx: audit_context for the task
1939 * @t: timespec to store time recorded in the audit_context
1940 * @serial: serial value that is recorded in the audit_context
1941 *
1942 * Also sets the context as auditable.
1943 */
1944int auditsc_get_stamp(struct audit_context *ctx,
1945 struct timespec *t, unsigned int *serial)
1946{
1947 if (!ctx->in_syscall)
1948 return 0;
1949 if (!ctx->serial)
1950 ctx->serial = audit_serial();
1951 t->tv_sec = ctx->ctime.tv_sec;
1952 t->tv_nsec = ctx->ctime.tv_nsec;
1953 *serial = ctx->serial;
1954 if (!ctx->prio) {
1955 ctx->prio = 1;
1956 ctx->current_state = AUDIT_RECORD_CONTEXT;
1957 }
1958 return 1;
1959}
1960
1961/* global counter which is incremented every time something logs in */
1962static atomic_t session_id = ATOMIC_INIT(0);
1963
1964static int audit_set_loginuid_perm(kuid_t loginuid)
1965{
1966 /* if we are unset, we don't need privs */
1967 if (!audit_loginuid_set(current))
1968 return 0;
1969 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1970 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1971 return -EPERM;
1972 /* it is set, you need permission */
1973 if (!capable(CAP_AUDIT_CONTROL))
1974 return -EPERM;
1975 /* reject if this is not an unset and we don't allow that */
1976 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1977 return -EPERM;
1978 return 0;
1979}
1980
1981static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1982 unsigned int oldsessionid, unsigned int sessionid,
1983 int rc)
1984{
1985 struct audit_buffer *ab;
1986 uid_t uid, oldloginuid, loginuid;
1987 struct tty_struct *tty;
1988
1989 if (!audit_enabled)
1990 return;
1991
1992 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1993 if (!ab)
1994 return;
1995
1996 uid = from_kuid(&init_user_ns, task_uid(current));
1997 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1998 loginuid = from_kuid(&init_user_ns, kloginuid),
1999 tty = audit_get_tty(current);
2000
2001 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2002 audit_log_task_context(ab);
2003 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2004 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2005 oldsessionid, sessionid, !rc);
2006 audit_put_tty(tty);
2007 audit_log_end(ab);
2008}
2009
2010/**
2011 * audit_set_loginuid - set current task's audit_context loginuid
2012 * @loginuid: loginuid value
2013 *
2014 * Returns 0.
2015 *
2016 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2017 */
2018int audit_set_loginuid(kuid_t loginuid)
2019{
2020 struct task_struct *task = current;
2021 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2022 kuid_t oldloginuid;
2023 int rc;
2024
2025 oldloginuid = audit_get_loginuid(current);
2026 oldsessionid = audit_get_sessionid(current);
2027
2028 rc = audit_set_loginuid_perm(loginuid);
2029 if (rc)
2030 goto out;
2031
2032 /* are we setting or clearing? */
2033 if (uid_valid(loginuid)) {
2034 sessionid = (unsigned int)atomic_inc_return(&session_id);
2035 if (unlikely(sessionid == (unsigned int)-1))
2036 sessionid = (unsigned int)atomic_inc_return(&session_id);
2037 }
2038
2039 task->sessionid = sessionid;
2040 task->loginuid = loginuid;
2041out:
2042 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2043 return rc;
2044}
2045
2046/**
2047 * __audit_mq_open - record audit data for a POSIX MQ open
2048 * @oflag: open flag
2049 * @mode: mode bits
2050 * @attr: queue attributes
2051 *
2052 */
2053void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2054{
2055 struct audit_context *context = current->audit_context;
2056
2057 if (attr)
2058 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2059 else
2060 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2061
2062 context->mq_open.oflag = oflag;
2063 context->mq_open.mode = mode;
2064
2065 context->type = AUDIT_MQ_OPEN;
2066}
2067
2068/**
2069 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
2072 * @msg_prio: Message priority
2073 * @abs_timeout: Message timeout in absolute time
2074 *
2075 */
2076void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2077 const struct timespec *abs_timeout)
2078{
2079 struct audit_context *context = current->audit_context;
2080 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2081
2082 if (abs_timeout)
2083 memcpy(p, abs_timeout, sizeof(struct timespec));
2084 else
2085 memset(p, 0, sizeof(struct timespec));
2086
2087 context->mq_sendrecv.mqdes = mqdes;
2088 context->mq_sendrecv.msg_len = msg_len;
2089 context->mq_sendrecv.msg_prio = msg_prio;
2090
2091 context->type = AUDIT_MQ_SENDRECV;
2092}
2093
2094/**
2095 * __audit_mq_notify - record audit data for a POSIX MQ notify
2096 * @mqdes: MQ descriptor
2097 * @notification: Notification event
2098 *
2099 */
2100
2101void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2102{
2103 struct audit_context *context = current->audit_context;
2104
2105 if (notification)
2106 context->mq_notify.sigev_signo = notification->sigev_signo;
2107 else
2108 context->mq_notify.sigev_signo = 0;
2109
2110 context->mq_notify.mqdes = mqdes;
2111 context->type = AUDIT_MQ_NOTIFY;
2112}
2113
2114/**
2115 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2116 * @mqdes: MQ descriptor
2117 * @mqstat: MQ flags
2118 *
2119 */
2120void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2121{
2122 struct audit_context *context = current->audit_context;
2123 context->mq_getsetattr.mqdes = mqdes;
2124 context->mq_getsetattr.mqstat = *mqstat;
2125 context->type = AUDIT_MQ_GETSETATTR;
2126}
2127
2128/**
2129 * audit_ipc_obj - record audit data for ipc object
2130 * @ipcp: ipc permissions
2131 *
2132 */
2133void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2134{
2135 struct audit_context *context = current->audit_context;
2136 context->ipc.uid = ipcp->uid;
2137 context->ipc.gid = ipcp->gid;
2138 context->ipc.mode = ipcp->mode;
2139 context->ipc.has_perm = 0;
2140 security_ipc_getsecid(ipcp, &context->ipc.osid);
2141 context->type = AUDIT_IPC;
2142}
2143
2144/**
2145 * audit_ipc_set_perm - record audit data for new ipc permissions
2146 * @qbytes: msgq bytes
2147 * @uid: msgq user id
2148 * @gid: msgq group id
2149 * @mode: msgq mode (permissions)
2150 *
2151 * Called only after audit_ipc_obj().
2152 */
2153void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2154{
2155 struct audit_context *context = current->audit_context;
2156
2157 context->ipc.qbytes = qbytes;
2158 context->ipc.perm_uid = uid;
2159 context->ipc.perm_gid = gid;
2160 context->ipc.perm_mode = mode;
2161 context->ipc.has_perm = 1;
2162}
2163
2164void __audit_bprm(struct linux_binprm *bprm)
2165{
2166 struct audit_context *context = current->audit_context;
2167
2168 context->type = AUDIT_EXECVE;
2169 context->execve.argc = bprm->argc;
2170}
2171
2172
2173/**
2174 * audit_socketcall - record audit data for sys_socketcall
2175 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2176 * @args: args array
2177 *
2178 */
2179int __audit_socketcall(int nargs, unsigned long *args)
2180{
2181 struct audit_context *context = current->audit_context;
2182
2183 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2184 return -EINVAL;
2185 context->type = AUDIT_SOCKETCALL;
2186 context->socketcall.nargs = nargs;
2187 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2188 return 0;
2189}
2190
2191/**
2192 * __audit_fd_pair - record audit data for pipe and socketpair
2193 * @fd1: the first file descriptor
2194 * @fd2: the second file descriptor
2195 *
2196 */
2197void __audit_fd_pair(int fd1, int fd2)
2198{
2199 struct audit_context *context = current->audit_context;
2200 context->fds[0] = fd1;
2201 context->fds[1] = fd2;
2202}
2203
2204/**
2205 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2206 * @len: data length in user space
2207 * @a: data address in kernel space
2208 *
2209 * Returns 0 for success or NULL context or < 0 on error.
2210 */
2211int __audit_sockaddr(int len, void *a)
2212{
2213 struct audit_context *context = current->audit_context;
2214
2215 if (!context->sockaddr) {
2216 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2217 if (!p)
2218 return -ENOMEM;
2219 context->sockaddr = p;
2220 }
2221
2222 context->sockaddr_len = len;
2223 memcpy(context->sockaddr, a, len);
2224 return 0;
2225}
2226
2227void __audit_ptrace(struct task_struct *t)
2228{
2229 struct audit_context *context = current->audit_context;
2230
2231 context->target_pid = task_tgid_nr(t);
2232 context->target_auid = audit_get_loginuid(t);
2233 context->target_uid = task_uid(t);
2234 context->target_sessionid = audit_get_sessionid(t);
2235 security_task_getsecid(t, &context->target_sid);
2236 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2237}
2238
2239/**
2240 * audit_signal_info - record signal info for shutting down audit subsystem
2241 * @sig: signal value
2242 * @t: task being signaled
2243 *
2244 * If the audit subsystem is being terminated, record the task (pid)
2245 * and uid that is doing that.
2246 */
2247int __audit_signal_info(int sig, struct task_struct *t)
2248{
2249 struct audit_aux_data_pids *axp;
2250 struct task_struct *tsk = current;
2251 struct audit_context *ctx = tsk->audit_context;
2252 kuid_t uid = current_uid(), t_uid = task_uid(t);
2253
2254 if (auditd_test_task(t)) {
2255 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2256 audit_sig_pid = task_tgid_nr(tsk);
2257 if (uid_valid(tsk->loginuid))
2258 audit_sig_uid = tsk->loginuid;
2259 else
2260 audit_sig_uid = uid;
2261 security_task_getsecid(tsk, &audit_sig_sid);
2262 }
2263 if (!audit_signals || audit_dummy_context())
2264 return 0;
2265 }
2266
2267 /* optimize the common case by putting first signal recipient directly
2268 * in audit_context */
2269 if (!ctx->target_pid) {
2270 ctx->target_pid = task_tgid_nr(t);
2271 ctx->target_auid = audit_get_loginuid(t);
2272 ctx->target_uid = t_uid;
2273 ctx->target_sessionid = audit_get_sessionid(t);
2274 security_task_getsecid(t, &ctx->target_sid);
2275 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2276 return 0;
2277 }
2278
2279 axp = (void *)ctx->aux_pids;
2280 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2281 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2282 if (!axp)
2283 return -ENOMEM;
2284
2285 axp->d.type = AUDIT_OBJ_PID;
2286 axp->d.next = ctx->aux_pids;
2287 ctx->aux_pids = (void *)axp;
2288 }
2289 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2290
2291 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2292 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2293 axp->target_uid[axp->pid_count] = t_uid;
2294 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2295 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2296 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2297 axp->pid_count++;
2298
2299 return 0;
2300}
2301
2302/**
2303 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2304 * @bprm: pointer to the bprm being processed
2305 * @new: the proposed new credentials
2306 * @old: the old credentials
2307 *
2308 * Simply check if the proc already has the caps given by the file and if not
2309 * store the priv escalation info for later auditing at the end of the syscall
2310 *
2311 * -Eric
2312 */
2313int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2314 const struct cred *new, const struct cred *old)
2315{
2316 struct audit_aux_data_bprm_fcaps *ax;
2317 struct audit_context *context = current->audit_context;
2318 struct cpu_vfs_cap_data vcaps;
2319
2320 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2321 if (!ax)
2322 return -ENOMEM;
2323
2324 ax->d.type = AUDIT_BPRM_FCAPS;
2325 ax->d.next = context->aux;
2326 context->aux = (void *)ax;
2327
2328 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2329
2330 ax->fcap.permitted = vcaps.permitted;
2331 ax->fcap.inheritable = vcaps.inheritable;
2332 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2333 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2334
2335 ax->old_pcap.permitted = old->cap_permitted;
2336 ax->old_pcap.inheritable = old->cap_inheritable;
2337 ax->old_pcap.effective = old->cap_effective;
2338
2339 ax->new_pcap.permitted = new->cap_permitted;
2340 ax->new_pcap.inheritable = new->cap_inheritable;
2341 ax->new_pcap.effective = new->cap_effective;
2342 return 0;
2343}
2344
2345/**
2346 * __audit_log_capset - store information about the arguments to the capset syscall
2347 * @new: the new credentials
2348 * @old: the old (current) credentials
2349 *
2350 * Record the arguments userspace sent to sys_capset for later printing by the
2351 * audit system if applicable
2352 */
2353void __audit_log_capset(const struct cred *new, const struct cred *old)
2354{
2355 struct audit_context *context = current->audit_context;
2356 context->capset.pid = task_tgid_nr(current);
2357 context->capset.cap.effective = new->cap_effective;
2358 context->capset.cap.inheritable = new->cap_effective;
2359 context->capset.cap.permitted = new->cap_permitted;
2360 context->type = AUDIT_CAPSET;
2361}
2362
2363void __audit_mmap_fd(int fd, int flags)
2364{
2365 struct audit_context *context = current->audit_context;
2366 context->mmap.fd = fd;
2367 context->mmap.flags = flags;
2368 context->type = AUDIT_MMAP;
2369}
2370
2371static void audit_log_task(struct audit_buffer *ab)
2372{
2373 kuid_t auid, uid;
2374 kgid_t gid;
2375 unsigned int sessionid;
2376 char comm[sizeof(current->comm)];
2377
2378 auid = audit_get_loginuid(current);
2379 sessionid = audit_get_sessionid(current);
2380 current_uid_gid(&uid, &gid);
2381
2382 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2383 from_kuid(&init_user_ns, auid),
2384 from_kuid(&init_user_ns, uid),
2385 from_kgid(&init_user_ns, gid),
2386 sessionid);
2387 audit_log_task_context(ab);
2388 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2389 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2390 audit_log_d_path_exe(ab, current->mm);
2391}
2392
2393/**
2394 * audit_core_dumps - record information about processes that end abnormally
2395 * @signr: signal value
2396 *
2397 * If a process ends with a core dump, something fishy is going on and we
2398 * should record the event for investigation.
2399 */
2400void audit_core_dumps(long signr)
2401{
2402 struct audit_buffer *ab;
2403
2404 if (!audit_enabled)
2405 return;
2406
2407 if (signr == SIGQUIT) /* don't care for those */
2408 return;
2409
2410 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2411 if (unlikely(!ab))
2412 return;
2413 audit_log_task(ab);
2414 audit_log_format(ab, " sig=%ld", signr);
2415 audit_log_end(ab);
2416}
2417
2418void __audit_seccomp(unsigned long syscall, long signr, int code)
2419{
2420 struct audit_buffer *ab;
2421
2422 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2423 if (unlikely(!ab))
2424 return;
2425 audit_log_task(ab);
2426 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2427 signr, syscall_get_arch(), syscall,
2428 in_compat_syscall(), KSTK_EIP(current), code);
2429 audit_log_end(ab);
2430}
2431
2432struct list_head *audit_killed_trees(void)
2433{
2434 struct audit_context *ctx = current->audit_context;
2435 if (likely(!ctx || !ctx->in_syscall))
2436 return NULL;
2437 return &ctx->killed_trees;
2438}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <linux/fsnotify_backend.h>
77#include <uapi/linux/limits.h>
78#include <uapi/linux/netfilter/nf_tables.h>
79
80#include "audit.h"
81
82/* flags stating the success for a syscall */
83#define AUDITSC_INVALID 0
84#define AUDITSC_SUCCESS 1
85#define AUDITSC_FAILURE 2
86
87/* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89#define MAX_EXECVE_AUDIT_LEN 7500
90
91/* max length to print of cmdline/proctitle value during audit */
92#define MAX_PROCTITLE_AUDIT_LEN 128
93
94/* number of audit rules */
95int audit_n_rules;
96
97/* determines whether we collect data for signals sent */
98int audit_signals;
99
100struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103};
104
105/* Number of target pids per aux struct. */
106#define AUDIT_AUX_PIDS 16
107
108struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117};
118
119struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125};
126
127struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130};
131
132struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
134 const char *s;
135};
136
137static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
158};
159
160static int audit_match_perm(struct audit_context *ctx, int mask)
161{
162 unsigned n;
163
164 if (unlikely(!ctx))
165 return 0;
166 n = ctx->major;
167
168 switch (audit_classify_syscall(ctx->arch, n)) {
169 case 0: /* native */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE, n))
172 return 1;
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ, n))
175 return 1;
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR, n))
178 return 1;
179 return 0;
180 case 1: /* 32bit on biarch */
181 if ((mask & AUDIT_PERM_WRITE) &&
182 audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 return 1;
184 if ((mask & AUDIT_PERM_READ) &&
185 audit_match_class(AUDIT_CLASS_READ_32, n))
186 return 1;
187 if ((mask & AUDIT_PERM_ATTR) &&
188 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
189 return 1;
190 return 0;
191 case 2: /* open */
192 return mask & ACC_MODE(ctx->argv[1]);
193 case 3: /* openat */
194 return mask & ACC_MODE(ctx->argv[2]);
195 case 4: /* socketcall */
196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 case 5: /* execve */
198 return mask & AUDIT_PERM_EXEC;
199 default:
200 return 0;
201 }
202}
203
204static int audit_match_filetype(struct audit_context *ctx, int val)
205{
206 struct audit_names *n;
207 umode_t mode = (umode_t)val;
208
209 if (unlikely(!ctx))
210 return 0;
211
212 list_for_each_entry(n, &ctx->names_list, list) {
213 if ((n->ino != AUDIT_INO_UNSET) &&
214 ((n->mode & S_IFMT) == mode))
215 return 1;
216 }
217
218 return 0;
219}
220
221/*
222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223 * ->first_trees points to its beginning, ->trees - to the current end of data.
224 * ->tree_count is the number of free entries in array pointed to by ->trees.
225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
227 * it's going to remain 1-element for almost any setup) until we free context itself.
228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
229 */
230
231static void audit_set_auditable(struct audit_context *ctx)
232{
233 if (!ctx->prio) {
234 ctx->prio = 1;
235 ctx->current_state = AUDIT_STATE_RECORD;
236 }
237}
238
239static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240{
241 struct audit_tree_refs *p = ctx->trees;
242 int left = ctx->tree_count;
243
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259}
260
261static int grow_tree_refs(struct audit_context *ctx)
262{
263 struct audit_tree_refs *p = ctx->trees;
264
265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
266 if (!ctx->trees) {
267 ctx->trees = p;
268 return 0;
269 }
270 if (p)
271 p->next = ctx->trees;
272 else
273 ctx->first_trees = ctx->trees;
274 ctx->tree_count = 31;
275 return 1;
276}
277
278static void unroll_tree_refs(struct audit_context *ctx,
279 struct audit_tree_refs *p, int count)
280{
281 struct audit_tree_refs *q;
282 int n;
283
284 if (!p) {
285 /* we started with empty chain */
286 p = ctx->first_trees;
287 count = 31;
288 /* if the very first allocation has failed, nothing to do */
289 if (!p)
290 return;
291 }
292 n = count;
293 for (q = p; q != ctx->trees; q = q->next, n = 31) {
294 while (n--) {
295 audit_put_chunk(q->c[n]);
296 q->c[n] = NULL;
297 }
298 }
299 while (n-- > ctx->tree_count) {
300 audit_put_chunk(q->c[n]);
301 q->c[n] = NULL;
302 }
303 ctx->trees = p;
304 ctx->tree_count = count;
305}
306
307static void free_tree_refs(struct audit_context *ctx)
308{
309 struct audit_tree_refs *p, *q;
310
311 for (p = ctx->first_trees; p; p = q) {
312 q = p->next;
313 kfree(p);
314 }
315}
316
317static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
318{
319 struct audit_tree_refs *p;
320 int n;
321
322 if (!tree)
323 return 0;
324 /* full ones */
325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 for (n = 0; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
328 return 1;
329 }
330 /* partial */
331 if (p) {
332 for (n = ctx->tree_count; n < 31; n++)
333 if (audit_tree_match(p->c[n], tree))
334 return 1;
335 }
336 return 0;
337}
338
339static int audit_compare_uid(kuid_t uid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343{
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_uid_comparator(uid, f->op, name->uid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_uid_comparator(uid, f->op, n->uid);
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361}
362
363static int audit_compare_gid(kgid_t gid,
364 struct audit_names *name,
365 struct audit_field *f,
366 struct audit_context *ctx)
367{
368 struct audit_names *n;
369 int rc;
370
371 if (name) {
372 rc = audit_gid_comparator(gid, f->op, name->gid);
373 if (rc)
374 return rc;
375 }
376
377 if (ctx) {
378 list_for_each_entry(n, &ctx->names_list, list) {
379 rc = audit_gid_comparator(gid, f->op, n->gid);
380 if (rc)
381 return rc;
382 }
383 }
384 return 0;
385}
386
387static int audit_field_compare(struct task_struct *tsk,
388 const struct cred *cred,
389 struct audit_field *f,
390 struct audit_context *ctx,
391 struct audit_names *name)
392{
393 switch (f->val) {
394 /* process to file object comparisons */
395 case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 return audit_compare_uid(cred->uid, name, f, ctx);
397 case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 return audit_compare_gid(cred->gid, name, f, ctx);
399 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->euid, name, f, ctx);
401 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->egid, name, f, ctx);
403 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->suid, name, f, ctx);
407 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->sgid, name, f, ctx);
409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 return audit_compare_uid(cred->fsuid, name, f, ctx);
411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 return audit_compare_gid(cred->fsgid, name, f, ctx);
413 /* uid comparisons */
414 case AUDIT_COMPARE_UID_TO_AUID:
415 return audit_uid_comparator(cred->uid, f->op,
416 audit_get_loginuid(tsk));
417 case AUDIT_COMPARE_UID_TO_EUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 case AUDIT_COMPARE_UID_TO_SUID:
420 return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 case AUDIT_COMPARE_UID_TO_FSUID:
422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 /* auid comparisons */
424 case AUDIT_COMPARE_AUID_TO_EUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 cred->euid);
427 case AUDIT_COMPARE_AUID_TO_SUID:
428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
429 cred->suid);
430 case AUDIT_COMPARE_AUID_TO_FSUID:
431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
432 cred->fsuid);
433 /* euid comparisons */
434 case AUDIT_COMPARE_EUID_TO_SUID:
435 return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 case AUDIT_COMPARE_EUID_TO_FSUID:
437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 /* suid comparisons */
439 case AUDIT_COMPARE_SUID_TO_FSUID:
440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 /* gid comparisons */
442 case AUDIT_COMPARE_GID_TO_EGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 case AUDIT_COMPARE_GID_TO_SGID:
445 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 case AUDIT_COMPARE_GID_TO_FSGID:
447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 /* egid comparisons */
449 case AUDIT_COMPARE_EGID_TO_SGID:
450 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 case AUDIT_COMPARE_EGID_TO_FSGID:
452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 /* sgid comparison */
454 case AUDIT_COMPARE_SGID_TO_FSGID:
455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
456 default:
457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
458 return 0;
459 }
460 return 0;
461}
462
463/* Determine if any context name data matches a rule's watch data */
464/* Compare a task_struct with an audit_rule. Return 1 on match, 0
465 * otherwise.
466 *
467 * If task_creation is true, this is an explicit indication that we are
468 * filtering a task rule at task creation time. This and tsk == current are
469 * the only situations where tsk->cred may be accessed without an rcu read lock.
470 */
471static int audit_filter_rules(struct task_struct *tsk,
472 struct audit_krule *rule,
473 struct audit_context *ctx,
474 struct audit_names *name,
475 enum audit_state *state,
476 bool task_creation)
477{
478 const struct cred *cred;
479 int i, need_sid = 1;
480 u32 sid;
481 unsigned int sessionid;
482
483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
484
485 for (i = 0; i < rule->field_count; i++) {
486 struct audit_field *f = &rule->fields[i];
487 struct audit_names *n;
488 int result = 0;
489 pid_t pid;
490
491 switch (f->type) {
492 case AUDIT_PID:
493 pid = task_tgid_nr(tsk);
494 result = audit_comparator(pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = task_ppid_nr(tsk);
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_EXE:
504 result = audit_exe_compare(tsk, rule->exe);
505 if (f->op == Audit_not_equal)
506 result = !result;
507 break;
508 case AUDIT_UID:
509 result = audit_uid_comparator(cred->uid, f->op, f->uid);
510 break;
511 case AUDIT_EUID:
512 result = audit_uid_comparator(cred->euid, f->op, f->uid);
513 break;
514 case AUDIT_SUID:
515 result = audit_uid_comparator(cred->suid, f->op, f->uid);
516 break;
517 case AUDIT_FSUID:
518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
519 break;
520 case AUDIT_GID:
521 result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 if (f->op == Audit_equal) {
523 if (!result)
524 result = groups_search(cred->group_info, f->gid);
525 } else if (f->op == Audit_not_equal) {
526 if (result)
527 result = !groups_search(cred->group_info, f->gid);
528 }
529 break;
530 case AUDIT_EGID:
531 result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 if (f->op == Audit_equal) {
533 if (!result)
534 result = groups_search(cred->group_info, f->gid);
535 } else if (f->op == Audit_not_equal) {
536 if (result)
537 result = !groups_search(cred->group_info, f->gid);
538 }
539 break;
540 case AUDIT_SGID:
541 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
542 break;
543 case AUDIT_FSGID:
544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
545 break;
546 case AUDIT_SESSIONID:
547 sessionid = audit_get_sessionid(tsk);
548 result = audit_comparator(sessionid, f->op, f->val);
549 break;
550 case AUDIT_PERS:
551 result = audit_comparator(tsk->personality, f->op, f->val);
552 break;
553 case AUDIT_ARCH:
554 if (ctx)
555 result = audit_comparator(ctx->arch, f->op, f->val);
556 break;
557
558 case AUDIT_EXIT:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 result = audit_comparator(ctx->return_code, f->op, f->val);
561 break;
562 case AUDIT_SUCCESS:
563 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
564 if (f->val)
565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
566 else
567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 }
569 break;
570 case AUDIT_DEVMAJOR:
571 if (name) {
572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(name->rdev), f->op, f->val))
574 ++result;
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
579 ++result;
580 break;
581 }
582 }
583 }
584 break;
585 case AUDIT_DEVMINOR:
586 if (name) {
587 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 audit_comparator(MINOR(name->rdev), f->op, f->val))
589 ++result;
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
594 ++result;
595 break;
596 }
597 }
598 }
599 break;
600 case AUDIT_INODE:
601 if (name)
602 result = audit_comparator(name->ino, f->op, f->val);
603 else if (ctx) {
604 list_for_each_entry(n, &ctx->names_list, list) {
605 if (audit_comparator(n->ino, f->op, f->val)) {
606 ++result;
607 break;
608 }
609 }
610 }
611 break;
612 case AUDIT_OBJ_UID:
613 if (name) {
614 result = audit_uid_comparator(name->uid, f->op, f->uid);
615 } else if (ctx) {
616 list_for_each_entry(n, &ctx->names_list, list) {
617 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 break;
624 case AUDIT_OBJ_GID:
625 if (name) {
626 result = audit_gid_comparator(name->gid, f->op, f->gid);
627 } else if (ctx) {
628 list_for_each_entry(n, &ctx->names_list, list) {
629 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
630 ++result;
631 break;
632 }
633 }
634 }
635 break;
636 case AUDIT_WATCH:
637 if (name) {
638 result = audit_watch_compare(rule->watch,
639 name->ino,
640 name->dev);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_DIR:
646 if (ctx) {
647 result = match_tree_refs(ctx, rule->tree);
648 if (f->op == Audit_not_equal)
649 result = !result;
650 }
651 break;
652 case AUDIT_LOGINUID:
653 result = audit_uid_comparator(audit_get_loginuid(tsk),
654 f->op, f->uid);
655 break;
656 case AUDIT_LOGINUID_SET:
657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
658 break;
659 case AUDIT_SADDR_FAM:
660 if (ctx && ctx->sockaddr)
661 result = audit_comparator(ctx->sockaddr->ss_family,
662 f->op, f->val);
663 break;
664 case AUDIT_SUBJ_USER:
665 case AUDIT_SUBJ_ROLE:
666 case AUDIT_SUBJ_TYPE:
667 case AUDIT_SUBJ_SEN:
668 case AUDIT_SUBJ_CLR:
669 /* NOTE: this may return negative values indicating
670 a temporary error. We simply treat this as a
671 match for now to avoid losing information that
672 may be wanted. An error message will also be
673 logged upon error */
674 if (f->lsm_rule) {
675 if (need_sid) {
676 security_task_getsecid_subj(tsk, &sid);
677 need_sid = 0;
678 }
679 result = security_audit_rule_match(sid, f->type,
680 f->op,
681 f->lsm_rule);
682 }
683 break;
684 case AUDIT_OBJ_USER:
685 case AUDIT_OBJ_ROLE:
686 case AUDIT_OBJ_TYPE:
687 case AUDIT_OBJ_LEV_LOW:
688 case AUDIT_OBJ_LEV_HIGH:
689 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
690 also applies here */
691 if (f->lsm_rule) {
692 /* Find files that match */
693 if (name) {
694 result = security_audit_rule_match(
695 name->osid,
696 f->type,
697 f->op,
698 f->lsm_rule);
699 } else if (ctx) {
700 list_for_each_entry(n, &ctx->names_list, list) {
701 if (security_audit_rule_match(
702 n->osid,
703 f->type,
704 f->op,
705 f->lsm_rule)) {
706 ++result;
707 break;
708 }
709 }
710 }
711 /* Find ipc objects that match */
712 if (!ctx || ctx->type != AUDIT_IPC)
713 break;
714 if (security_audit_rule_match(ctx->ipc.osid,
715 f->type, f->op,
716 f->lsm_rule))
717 ++result;
718 }
719 break;
720 case AUDIT_ARG0:
721 case AUDIT_ARG1:
722 case AUDIT_ARG2:
723 case AUDIT_ARG3:
724 if (ctx)
725 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
726 break;
727 case AUDIT_FILTERKEY:
728 /* ignore this field for filtering */
729 result = 1;
730 break;
731 case AUDIT_PERM:
732 result = audit_match_perm(ctx, f->val);
733 if (f->op == Audit_not_equal)
734 result = !result;
735 break;
736 case AUDIT_FILETYPE:
737 result = audit_match_filetype(ctx, f->val);
738 if (f->op == Audit_not_equal)
739 result = !result;
740 break;
741 case AUDIT_FIELD_COMPARE:
742 result = audit_field_compare(tsk, cred, f, ctx, name);
743 break;
744 }
745 if (!result)
746 return 0;
747 }
748
749 if (ctx) {
750 if (rule->prio <= ctx->prio)
751 return 0;
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
758 switch (rule->action) {
759 case AUDIT_NEVER:
760 *state = AUDIT_STATE_DISABLED;
761 break;
762 case AUDIT_ALWAYS:
763 *state = AUDIT_STATE_RECORD;
764 break;
765 }
766 return 1;
767}
768
769/* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
774{
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
789 return AUDIT_STATE_BUILD;
790}
791
792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793{
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806}
807
808/* At syscall exit time, this filter is called if the audit_state is
809 * not low enough that auditing cannot take place, but is also not
810 * high enough that we already know we have to write an audit record
811 * (i.e., the state is AUDIT_STATE_BUILD).
812 */
813static void audit_filter_syscall(struct task_struct *tsk,
814 struct audit_context *ctx)
815{
816 struct audit_entry *e;
817 enum audit_state state;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
824 if (audit_in_mask(&e->rule, ctx->major) &&
825 audit_filter_rules(tsk, &e->rule, ctx, NULL,
826 &state, false)) {
827 rcu_read_unlock();
828 ctx->current_state = state;
829 return;
830 }
831 }
832 rcu_read_unlock();
833 return;
834}
835
836/*
837 * Given an audit_name check the inode hash table to see if they match.
838 * Called holding the rcu read lock to protect the use of audit_inode_hash
839 */
840static int audit_filter_inode_name(struct task_struct *tsk,
841 struct audit_names *n,
842 struct audit_context *ctx) {
843 int h = audit_hash_ino((u32)n->ino);
844 struct list_head *list = &audit_inode_hash[h];
845 struct audit_entry *e;
846 enum audit_state state;
847
848 list_for_each_entry_rcu(e, list, list) {
849 if (audit_in_mask(&e->rule, ctx->major) &&
850 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
851 ctx->current_state = state;
852 return 1;
853 }
854 }
855 return 0;
856}
857
858/* At syscall exit time, this filter is called if any audit_names have been
859 * collected during syscall processing. We only check rules in sublists at hash
860 * buckets applicable to the inode numbers in audit_names.
861 * Regarding audit_state, same rules apply as for audit_filter_syscall().
862 */
863void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
864{
865 struct audit_names *n;
866
867 if (auditd_test_task(tsk))
868 return;
869
870 rcu_read_lock();
871
872 list_for_each_entry(n, &ctx->names_list, list) {
873 if (audit_filter_inode_name(tsk, n, ctx))
874 break;
875 }
876 rcu_read_unlock();
877}
878
879static inline void audit_proctitle_free(struct audit_context *context)
880{
881 kfree(context->proctitle.value);
882 context->proctitle.value = NULL;
883 context->proctitle.len = 0;
884}
885
886static inline void audit_free_module(struct audit_context *context)
887{
888 if (context->type == AUDIT_KERN_MODULE) {
889 kfree(context->module.name);
890 context->module.name = NULL;
891 }
892}
893static inline void audit_free_names(struct audit_context *context)
894{
895 struct audit_names *n, *next;
896
897 list_for_each_entry_safe(n, next, &context->names_list, list) {
898 list_del(&n->list);
899 if (n->name)
900 putname(n->name);
901 if (n->should_free)
902 kfree(n);
903 }
904 context->name_count = 0;
905 path_put(&context->pwd);
906 context->pwd.dentry = NULL;
907 context->pwd.mnt = NULL;
908}
909
910static inline void audit_free_aux(struct audit_context *context)
911{
912 struct audit_aux_data *aux;
913
914 while ((aux = context->aux)) {
915 context->aux = aux->next;
916 kfree(aux);
917 }
918 while ((aux = context->aux_pids)) {
919 context->aux_pids = aux->next;
920 kfree(aux);
921 }
922}
923
924static inline struct audit_context *audit_alloc_context(enum audit_state state)
925{
926 struct audit_context *context;
927
928 context = kzalloc(sizeof(*context), GFP_KERNEL);
929 if (!context)
930 return NULL;
931 context->state = state;
932 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
933 INIT_LIST_HEAD(&context->killed_trees);
934 INIT_LIST_HEAD(&context->names_list);
935 context->fds[0] = -1;
936 context->return_valid = AUDITSC_INVALID;
937 return context;
938}
939
940/**
941 * audit_alloc - allocate an audit context block for a task
942 * @tsk: task
943 *
944 * Filter on the task information and allocate a per-task audit context
945 * if necessary. Doing so turns on system call auditing for the
946 * specified task. This is called from copy_process, so no lock is
947 * needed.
948 */
949int audit_alloc(struct task_struct *tsk)
950{
951 struct audit_context *context;
952 enum audit_state state;
953 char *key = NULL;
954
955 if (likely(!audit_ever_enabled))
956 return 0; /* Return if not auditing. */
957
958 state = audit_filter_task(tsk, &key);
959 if (state == AUDIT_STATE_DISABLED) {
960 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
961 return 0;
962 }
963
964 if (!(context = audit_alloc_context(state))) {
965 kfree(key);
966 audit_log_lost("out of memory in audit_alloc");
967 return -ENOMEM;
968 }
969 context->filterkey = key;
970
971 audit_set_context(tsk, context);
972 set_task_syscall_work(tsk, SYSCALL_AUDIT);
973 return 0;
974}
975
976static inline void audit_free_context(struct audit_context *context)
977{
978 audit_free_module(context);
979 audit_free_names(context);
980 unroll_tree_refs(context, NULL, 0);
981 free_tree_refs(context);
982 audit_free_aux(context);
983 kfree(context->filterkey);
984 kfree(context->sockaddr);
985 audit_proctitle_free(context);
986 kfree(context);
987}
988
989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 kuid_t auid, kuid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992{
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1003 from_kuid(&init_user_ns, auid),
1004 from_kuid(&init_user_ns, uid), sessionid);
1005 if (sid) {
1006 if (security_secid_to_secctx(sid, &ctx, &len)) {
1007 audit_log_format(ab, " obj=(none)");
1008 rc = 1;
1009 } else {
1010 audit_log_format(ab, " obj=%s", ctx);
1011 security_release_secctx(ctx, len);
1012 }
1013 }
1014 audit_log_format(ab, " ocomm=");
1015 audit_log_untrustedstring(ab, comm);
1016 audit_log_end(ab);
1017
1018 return rc;
1019}
1020
1021static void audit_log_execve_info(struct audit_context *context,
1022 struct audit_buffer **ab)
1023{
1024 long len_max;
1025 long len_rem;
1026 long len_full;
1027 long len_buf;
1028 long len_abuf = 0;
1029 long len_tmp;
1030 bool require_data;
1031 bool encode;
1032 unsigned int iter;
1033 unsigned int arg;
1034 char *buf_head;
1035 char *buf;
1036 const char __user *p = (const char __user *)current->mm->arg_start;
1037
1038 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1039 * data we put in the audit record for this argument (see the
1040 * code below) ... at this point in time 96 is plenty */
1041 char abuf[96];
1042
1043 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1044 * current value of 7500 is not as important as the fact that it
1045 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1046 * room if we go over a little bit in the logging below */
1047 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1048 len_max = MAX_EXECVE_AUDIT_LEN;
1049
1050 /* scratch buffer to hold the userspace args */
1051 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1052 if (!buf_head) {
1053 audit_panic("out of memory for argv string");
1054 return;
1055 }
1056 buf = buf_head;
1057
1058 audit_log_format(*ab, "argc=%d", context->execve.argc);
1059
1060 len_rem = len_max;
1061 len_buf = 0;
1062 len_full = 0;
1063 require_data = true;
1064 encode = false;
1065 iter = 0;
1066 arg = 0;
1067 do {
1068 /* NOTE: we don't ever want to trust this value for anything
1069 * serious, but the audit record format insists we
1070 * provide an argument length for really long arguments,
1071 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1072 * to use strncpy_from_user() to obtain this value for
1073 * recording in the log, although we don't use it
1074 * anywhere here to avoid a double-fetch problem */
1075 if (len_full == 0)
1076 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1077
1078 /* read more data from userspace */
1079 if (require_data) {
1080 /* can we make more room in the buffer? */
1081 if (buf != buf_head) {
1082 memmove(buf_head, buf, len_buf);
1083 buf = buf_head;
1084 }
1085
1086 /* fetch as much as we can of the argument */
1087 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1088 len_max - len_buf);
1089 if (len_tmp == -EFAULT) {
1090 /* unable to copy from userspace */
1091 send_sig(SIGKILL, current, 0);
1092 goto out;
1093 } else if (len_tmp == (len_max - len_buf)) {
1094 /* buffer is not large enough */
1095 require_data = true;
1096 /* NOTE: if we are going to span multiple
1097 * buffers force the encoding so we stand
1098 * a chance at a sane len_full value and
1099 * consistent record encoding */
1100 encode = true;
1101 len_full = len_full * 2;
1102 p += len_tmp;
1103 } else {
1104 require_data = false;
1105 if (!encode)
1106 encode = audit_string_contains_control(
1107 buf, len_tmp);
1108 /* try to use a trusted value for len_full */
1109 if (len_full < len_max)
1110 len_full = (encode ?
1111 len_tmp * 2 : len_tmp);
1112 p += len_tmp + 1;
1113 }
1114 len_buf += len_tmp;
1115 buf_head[len_buf] = '\0';
1116
1117 /* length of the buffer in the audit record? */
1118 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1119 }
1120
1121 /* write as much as we can to the audit log */
1122 if (len_buf >= 0) {
1123 /* NOTE: some magic numbers here - basically if we
1124 * can't fit a reasonable amount of data into the
1125 * existing audit buffer, flush it and start with
1126 * a new buffer */
1127 if ((sizeof(abuf) + 8) > len_rem) {
1128 len_rem = len_max;
1129 audit_log_end(*ab);
1130 *ab = audit_log_start(context,
1131 GFP_KERNEL, AUDIT_EXECVE);
1132 if (!*ab)
1133 goto out;
1134 }
1135
1136 /* create the non-arg portion of the arg record */
1137 len_tmp = 0;
1138 if (require_data || (iter > 0) ||
1139 ((len_abuf + sizeof(abuf)) > len_rem)) {
1140 if (iter == 0) {
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d_len=%lu",
1144 arg, len_full);
1145 }
1146 len_tmp += snprintf(&abuf[len_tmp],
1147 sizeof(abuf) - len_tmp,
1148 " a%d[%d]=", arg, iter++);
1149 } else
1150 len_tmp += snprintf(&abuf[len_tmp],
1151 sizeof(abuf) - len_tmp,
1152 " a%d=", arg);
1153 WARN_ON(len_tmp >= sizeof(abuf));
1154 abuf[sizeof(abuf) - 1] = '\0';
1155
1156 /* log the arg in the audit record */
1157 audit_log_format(*ab, "%s", abuf);
1158 len_rem -= len_tmp;
1159 len_tmp = len_buf;
1160 if (encode) {
1161 if (len_abuf > len_rem)
1162 len_tmp = len_rem / 2; /* encoding */
1163 audit_log_n_hex(*ab, buf, len_tmp);
1164 len_rem -= len_tmp * 2;
1165 len_abuf -= len_tmp * 2;
1166 } else {
1167 if (len_abuf > len_rem)
1168 len_tmp = len_rem - 2; /* quotes */
1169 audit_log_n_string(*ab, buf, len_tmp);
1170 len_rem -= len_tmp + 2;
1171 /* don't subtract the "2" because we still need
1172 * to add quotes to the remaining string */
1173 len_abuf -= len_tmp;
1174 }
1175 len_buf -= len_tmp;
1176 buf += len_tmp;
1177 }
1178
1179 /* ready to move to the next argument? */
1180 if ((len_buf == 0) && !require_data) {
1181 arg++;
1182 iter = 0;
1183 len_full = 0;
1184 require_data = true;
1185 encode = false;
1186 }
1187 } while (arg < context->execve.argc);
1188
1189 /* NOTE: the caller handles the final audit_log_end() call */
1190
1191out:
1192 kfree(buf_head);
1193}
1194
1195static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1196 kernel_cap_t *cap)
1197{
1198 int i;
1199
1200 if (cap_isclear(*cap)) {
1201 audit_log_format(ab, " %s=0", prefix);
1202 return;
1203 }
1204 audit_log_format(ab, " %s=", prefix);
1205 CAP_FOR_EACH_U32(i)
1206 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1207}
1208
1209static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1210{
1211 if (name->fcap_ver == -1) {
1212 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1213 return;
1214 }
1215 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1216 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1217 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1218 name->fcap.fE, name->fcap_ver,
1219 from_kuid(&init_user_ns, name->fcap.rootid));
1220}
1221
1222static void show_special(struct audit_context *context, int *call_panic)
1223{
1224 struct audit_buffer *ab;
1225 int i;
1226
1227 ab = audit_log_start(context, GFP_KERNEL, context->type);
1228 if (!ab)
1229 return;
1230
1231 switch (context->type) {
1232 case AUDIT_SOCKETCALL: {
1233 int nargs = context->socketcall.nargs;
1234
1235 audit_log_format(ab, "nargs=%d", nargs);
1236 for (i = 0; i < nargs; i++)
1237 audit_log_format(ab, " a%d=%lx", i,
1238 context->socketcall.args[i]);
1239 break; }
1240 case AUDIT_IPC: {
1241 u32 osid = context->ipc.osid;
1242
1243 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1244 from_kuid(&init_user_ns, context->ipc.uid),
1245 from_kgid(&init_user_ns, context->ipc.gid),
1246 context->ipc.mode);
1247 if (osid) {
1248 char *ctx = NULL;
1249 u32 len;
1250
1251 if (security_secid_to_secctx(osid, &ctx, &len)) {
1252 audit_log_format(ab, " osid=%u", osid);
1253 *call_panic = 1;
1254 } else {
1255 audit_log_format(ab, " obj=%s", ctx);
1256 security_release_secctx(ctx, len);
1257 }
1258 }
1259 if (context->ipc.has_perm) {
1260 audit_log_end(ab);
1261 ab = audit_log_start(context, GFP_KERNEL,
1262 AUDIT_IPC_SET_PERM);
1263 if (unlikely(!ab))
1264 return;
1265 audit_log_format(ab,
1266 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1267 context->ipc.qbytes,
1268 context->ipc.perm_uid,
1269 context->ipc.perm_gid,
1270 context->ipc.perm_mode);
1271 }
1272 break; }
1273 case AUDIT_MQ_OPEN:
1274 audit_log_format(ab,
1275 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1276 "mq_msgsize=%ld mq_curmsgs=%ld",
1277 context->mq_open.oflag, context->mq_open.mode,
1278 context->mq_open.attr.mq_flags,
1279 context->mq_open.attr.mq_maxmsg,
1280 context->mq_open.attr.mq_msgsize,
1281 context->mq_open.attr.mq_curmsgs);
1282 break;
1283 case AUDIT_MQ_SENDRECV:
1284 audit_log_format(ab,
1285 "mqdes=%d msg_len=%zd msg_prio=%u "
1286 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1287 context->mq_sendrecv.mqdes,
1288 context->mq_sendrecv.msg_len,
1289 context->mq_sendrecv.msg_prio,
1290 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1291 context->mq_sendrecv.abs_timeout.tv_nsec);
1292 break;
1293 case AUDIT_MQ_NOTIFY:
1294 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1295 context->mq_notify.mqdes,
1296 context->mq_notify.sigev_signo);
1297 break;
1298 case AUDIT_MQ_GETSETATTR: {
1299 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1300
1301 audit_log_format(ab,
1302 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1303 "mq_curmsgs=%ld ",
1304 context->mq_getsetattr.mqdes,
1305 attr->mq_flags, attr->mq_maxmsg,
1306 attr->mq_msgsize, attr->mq_curmsgs);
1307 break; }
1308 case AUDIT_CAPSET:
1309 audit_log_format(ab, "pid=%d", context->capset.pid);
1310 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1311 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1312 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1313 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1314 break;
1315 case AUDIT_MMAP:
1316 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1317 context->mmap.flags);
1318 break;
1319 case AUDIT_EXECVE:
1320 audit_log_execve_info(context, &ab);
1321 break;
1322 case AUDIT_KERN_MODULE:
1323 audit_log_format(ab, "name=");
1324 if (context->module.name) {
1325 audit_log_untrustedstring(ab, context->module.name);
1326 } else
1327 audit_log_format(ab, "(null)");
1328
1329 break;
1330 }
1331 audit_log_end(ab);
1332}
1333
1334static inline int audit_proctitle_rtrim(char *proctitle, int len)
1335{
1336 char *end = proctitle + len - 1;
1337
1338 while (end > proctitle && !isprint(*end))
1339 end--;
1340
1341 /* catch the case where proctitle is only 1 non-print character */
1342 len = end - proctitle + 1;
1343 len -= isprint(proctitle[len-1]) == 0;
1344 return len;
1345}
1346
1347/*
1348 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1349 * @context: audit_context for the task
1350 * @n: audit_names structure with reportable details
1351 * @path: optional path to report instead of audit_names->name
1352 * @record_num: record number to report when handling a list of names
1353 * @call_panic: optional pointer to int that will be updated if secid fails
1354 */
1355static void audit_log_name(struct audit_context *context, struct audit_names *n,
1356 const struct path *path, int record_num, int *call_panic)
1357{
1358 struct audit_buffer *ab;
1359
1360 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1361 if (!ab)
1362 return;
1363
1364 audit_log_format(ab, "item=%d", record_num);
1365
1366 if (path)
1367 audit_log_d_path(ab, " name=", path);
1368 else if (n->name) {
1369 switch (n->name_len) {
1370 case AUDIT_NAME_FULL:
1371 /* log the full path */
1372 audit_log_format(ab, " name=");
1373 audit_log_untrustedstring(ab, n->name->name);
1374 break;
1375 case 0:
1376 /* name was specified as a relative path and the
1377 * directory component is the cwd
1378 */
1379 if (context->pwd.dentry && context->pwd.mnt)
1380 audit_log_d_path(ab, " name=", &context->pwd);
1381 else
1382 audit_log_format(ab, " name=(null)");
1383 break;
1384 default:
1385 /* log the name's directory component */
1386 audit_log_format(ab, " name=");
1387 audit_log_n_untrustedstring(ab, n->name->name,
1388 n->name_len);
1389 }
1390 } else
1391 audit_log_format(ab, " name=(null)");
1392
1393 if (n->ino != AUDIT_INO_UNSET)
1394 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1395 n->ino,
1396 MAJOR(n->dev),
1397 MINOR(n->dev),
1398 n->mode,
1399 from_kuid(&init_user_ns, n->uid),
1400 from_kgid(&init_user_ns, n->gid),
1401 MAJOR(n->rdev),
1402 MINOR(n->rdev));
1403 if (n->osid != 0) {
1404 char *ctx = NULL;
1405 u32 len;
1406
1407 if (security_secid_to_secctx(
1408 n->osid, &ctx, &len)) {
1409 audit_log_format(ab, " osid=%u", n->osid);
1410 if (call_panic)
1411 *call_panic = 2;
1412 } else {
1413 audit_log_format(ab, " obj=%s", ctx);
1414 security_release_secctx(ctx, len);
1415 }
1416 }
1417
1418 /* log the audit_names record type */
1419 switch (n->type) {
1420 case AUDIT_TYPE_NORMAL:
1421 audit_log_format(ab, " nametype=NORMAL");
1422 break;
1423 case AUDIT_TYPE_PARENT:
1424 audit_log_format(ab, " nametype=PARENT");
1425 break;
1426 case AUDIT_TYPE_CHILD_DELETE:
1427 audit_log_format(ab, " nametype=DELETE");
1428 break;
1429 case AUDIT_TYPE_CHILD_CREATE:
1430 audit_log_format(ab, " nametype=CREATE");
1431 break;
1432 default:
1433 audit_log_format(ab, " nametype=UNKNOWN");
1434 break;
1435 }
1436
1437 audit_log_fcaps(ab, n);
1438 audit_log_end(ab);
1439}
1440
1441static void audit_log_proctitle(void)
1442{
1443 int res;
1444 char *buf;
1445 char *msg = "(null)";
1446 int len = strlen(msg);
1447 struct audit_context *context = audit_context();
1448 struct audit_buffer *ab;
1449
1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1451 if (!ab)
1452 return; /* audit_panic or being filtered */
1453
1454 audit_log_format(ab, "proctitle=");
1455
1456 /* Not cached */
1457 if (!context->proctitle.value) {
1458 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1459 if (!buf)
1460 goto out;
1461 /* Historically called this from procfs naming */
1462 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1463 if (res == 0) {
1464 kfree(buf);
1465 goto out;
1466 }
1467 res = audit_proctitle_rtrim(buf, res);
1468 if (res == 0) {
1469 kfree(buf);
1470 goto out;
1471 }
1472 context->proctitle.value = buf;
1473 context->proctitle.len = res;
1474 }
1475 msg = context->proctitle.value;
1476 len = context->proctitle.len;
1477out:
1478 audit_log_n_untrustedstring(ab, msg, len);
1479 audit_log_end(ab);
1480}
1481
1482static void audit_log_exit(void)
1483{
1484 int i, call_panic = 0;
1485 struct audit_context *context = audit_context();
1486 struct audit_buffer *ab;
1487 struct audit_aux_data *aux;
1488 struct audit_names *n;
1489
1490 context->personality = current->personality;
1491
1492 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1493 if (!ab)
1494 return; /* audit_panic has been called */
1495 audit_log_format(ab, "arch=%x syscall=%d",
1496 context->arch, context->major);
1497 if (context->personality != PER_LINUX)
1498 audit_log_format(ab, " per=%lx", context->personality);
1499 if (context->return_valid != AUDITSC_INVALID)
1500 audit_log_format(ab, " success=%s exit=%ld",
1501 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1502 context->return_code);
1503
1504 audit_log_format(ab,
1505 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1506 context->argv[0],
1507 context->argv[1],
1508 context->argv[2],
1509 context->argv[3],
1510 context->name_count);
1511
1512 audit_log_task_info(ab);
1513 audit_log_key(ab, context->filterkey);
1514 audit_log_end(ab);
1515
1516 for (aux = context->aux; aux; aux = aux->next) {
1517
1518 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1519 if (!ab)
1520 continue; /* audit_panic has been called */
1521
1522 switch (aux->type) {
1523
1524 case AUDIT_BPRM_FCAPS: {
1525 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1526
1527 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1528 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1529 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1530 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1531 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1532 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1533 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1534 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1535 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1536 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1537 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1538 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1539 audit_log_format(ab, " frootid=%d",
1540 from_kuid(&init_user_ns,
1541 axs->fcap.rootid));
1542 break; }
1543
1544 }
1545 audit_log_end(ab);
1546 }
1547
1548 if (context->type)
1549 show_special(context, &call_panic);
1550
1551 if (context->fds[0] >= 0) {
1552 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1553 if (ab) {
1554 audit_log_format(ab, "fd0=%d fd1=%d",
1555 context->fds[0], context->fds[1]);
1556 audit_log_end(ab);
1557 }
1558 }
1559
1560 if (context->sockaddr_len) {
1561 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1562 if (ab) {
1563 audit_log_format(ab, "saddr=");
1564 audit_log_n_hex(ab, (void *)context->sockaddr,
1565 context->sockaddr_len);
1566 audit_log_end(ab);
1567 }
1568 }
1569
1570 for (aux = context->aux_pids; aux; aux = aux->next) {
1571 struct audit_aux_data_pids *axs = (void *)aux;
1572
1573 for (i = 0; i < axs->pid_count; i++)
1574 if (audit_log_pid_context(context, axs->target_pid[i],
1575 axs->target_auid[i],
1576 axs->target_uid[i],
1577 axs->target_sessionid[i],
1578 axs->target_sid[i],
1579 axs->target_comm[i]))
1580 call_panic = 1;
1581 }
1582
1583 if (context->target_pid &&
1584 audit_log_pid_context(context, context->target_pid,
1585 context->target_auid, context->target_uid,
1586 context->target_sessionid,
1587 context->target_sid, context->target_comm))
1588 call_panic = 1;
1589
1590 if (context->pwd.dentry && context->pwd.mnt) {
1591 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1592 if (ab) {
1593 audit_log_d_path(ab, "cwd=", &context->pwd);
1594 audit_log_end(ab);
1595 }
1596 }
1597
1598 i = 0;
1599 list_for_each_entry(n, &context->names_list, list) {
1600 if (n->hidden)
1601 continue;
1602 audit_log_name(context, n, NULL, i++, &call_panic);
1603 }
1604
1605 audit_log_proctitle();
1606
1607 /* Send end of event record to help user space know we are finished */
1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609 if (ab)
1610 audit_log_end(ab);
1611 if (call_panic)
1612 audit_panic("error converting sid to string");
1613}
1614
1615/**
1616 * __audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1618 *
1619 * Called from copy_process and do_exit
1620 */
1621void __audit_free(struct task_struct *tsk)
1622{
1623 struct audit_context *context = tsk->audit_context;
1624
1625 if (!context)
1626 return;
1627
1628 if (!list_empty(&context->killed_trees))
1629 audit_kill_trees(context);
1630
1631 /* We are called either by do_exit() or the fork() error handling code;
1632 * in the former case tsk == current and in the latter tsk is a
1633 * random task_struct that doesn't doesn't have any meaningful data we
1634 * need to log via audit_log_exit().
1635 */
1636 if (tsk == current && !context->dummy && context->in_syscall) {
1637 context->return_valid = AUDITSC_INVALID;
1638 context->return_code = 0;
1639
1640 audit_filter_syscall(tsk, context);
1641 audit_filter_inodes(tsk, context);
1642 if (context->current_state == AUDIT_STATE_RECORD)
1643 audit_log_exit();
1644 }
1645
1646 audit_set_context(tsk, NULL);
1647 audit_free_context(context);
1648}
1649
1650/**
1651 * __audit_syscall_entry - fill in an audit record at syscall entry
1652 * @major: major syscall type (function)
1653 * @a1: additional syscall register 1
1654 * @a2: additional syscall register 2
1655 * @a3: additional syscall register 3
1656 * @a4: additional syscall register 4
1657 *
1658 * Fill in audit context at syscall entry. This only happens if the
1659 * audit context was created when the task was created and the state or
1660 * filters demand the audit context be built. If the state from the
1661 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1662 * then the record will be written at syscall exit time (otherwise, it
1663 * will only be written if another part of the kernel requests that it
1664 * be written).
1665 */
1666void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1667 unsigned long a3, unsigned long a4)
1668{
1669 struct audit_context *context = audit_context();
1670 enum audit_state state;
1671
1672 if (!audit_enabled || !context)
1673 return;
1674
1675 BUG_ON(context->in_syscall || context->name_count);
1676
1677 state = context->state;
1678 if (state == AUDIT_STATE_DISABLED)
1679 return;
1680
1681 context->dummy = !audit_n_rules;
1682 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1683 context->prio = 0;
1684 if (auditd_test_task(current))
1685 return;
1686 }
1687
1688 context->arch = syscall_get_arch(current);
1689 context->major = major;
1690 context->argv[0] = a1;
1691 context->argv[1] = a2;
1692 context->argv[2] = a3;
1693 context->argv[3] = a4;
1694 context->serial = 0;
1695 context->in_syscall = 1;
1696 context->current_state = state;
1697 context->ppid = 0;
1698 ktime_get_coarse_real_ts64(&context->ctime);
1699}
1700
1701/**
1702 * __audit_syscall_exit - deallocate audit context after a system call
1703 * @success: success value of the syscall
1704 * @return_code: return value of the syscall
1705 *
1706 * Tear down after system call. If the audit context has been marked as
1707 * auditable (either because of the AUDIT_STATE_RECORD state from
1708 * filtering, or because some other part of the kernel wrote an audit
1709 * message), then write out the syscall information. In call cases,
1710 * free the names stored from getname().
1711 */
1712void __audit_syscall_exit(int success, long return_code)
1713{
1714 struct audit_context *context;
1715
1716 context = audit_context();
1717 if (!context)
1718 return;
1719
1720 if (!list_empty(&context->killed_trees))
1721 audit_kill_trees(context);
1722
1723 if (!context->dummy && context->in_syscall) {
1724 if (success)
1725 context->return_valid = AUDITSC_SUCCESS;
1726 else
1727 context->return_valid = AUDITSC_FAILURE;
1728
1729 /*
1730 * we need to fix up the return code in the audit logs if the
1731 * actual return codes are later going to be fixed up by the
1732 * arch specific signal handlers
1733 *
1734 * This is actually a test for:
1735 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1736 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1737 *
1738 * but is faster than a bunch of ||
1739 */
1740 if (unlikely(return_code <= -ERESTARTSYS) &&
1741 (return_code >= -ERESTART_RESTARTBLOCK) &&
1742 (return_code != -ENOIOCTLCMD))
1743 context->return_code = -EINTR;
1744 else
1745 context->return_code = return_code;
1746
1747 audit_filter_syscall(current, context);
1748 audit_filter_inodes(current, context);
1749 if (context->current_state == AUDIT_STATE_RECORD)
1750 audit_log_exit();
1751 }
1752
1753 context->in_syscall = 0;
1754 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1755
1756 audit_free_module(context);
1757 audit_free_names(context);
1758 unroll_tree_refs(context, NULL, 0);
1759 audit_free_aux(context);
1760 context->aux = NULL;
1761 context->aux_pids = NULL;
1762 context->target_pid = 0;
1763 context->target_sid = 0;
1764 context->sockaddr_len = 0;
1765 context->type = 0;
1766 context->fds[0] = -1;
1767 if (context->state != AUDIT_STATE_RECORD) {
1768 kfree(context->filterkey);
1769 context->filterkey = NULL;
1770 }
1771}
1772
1773static inline void handle_one(const struct inode *inode)
1774{
1775 struct audit_context *context;
1776 struct audit_tree_refs *p;
1777 struct audit_chunk *chunk;
1778 int count;
1779
1780 if (likely(!inode->i_fsnotify_marks))
1781 return;
1782 context = audit_context();
1783 p = context->trees;
1784 count = context->tree_count;
1785 rcu_read_lock();
1786 chunk = audit_tree_lookup(inode);
1787 rcu_read_unlock();
1788 if (!chunk)
1789 return;
1790 if (likely(put_tree_ref(context, chunk)))
1791 return;
1792 if (unlikely(!grow_tree_refs(context))) {
1793 pr_warn("out of memory, audit has lost a tree reference\n");
1794 audit_set_auditable(context);
1795 audit_put_chunk(chunk);
1796 unroll_tree_refs(context, p, count);
1797 return;
1798 }
1799 put_tree_ref(context, chunk);
1800}
1801
1802static void handle_path(const struct dentry *dentry)
1803{
1804 struct audit_context *context;
1805 struct audit_tree_refs *p;
1806 const struct dentry *d, *parent;
1807 struct audit_chunk *drop;
1808 unsigned long seq;
1809 int count;
1810
1811 context = audit_context();
1812 p = context->trees;
1813 count = context->tree_count;
1814retry:
1815 drop = NULL;
1816 d = dentry;
1817 rcu_read_lock();
1818 seq = read_seqbegin(&rename_lock);
1819 for(;;) {
1820 struct inode *inode = d_backing_inode(d);
1821
1822 if (inode && unlikely(inode->i_fsnotify_marks)) {
1823 struct audit_chunk *chunk;
1824
1825 chunk = audit_tree_lookup(inode);
1826 if (chunk) {
1827 if (unlikely(!put_tree_ref(context, chunk))) {
1828 drop = chunk;
1829 break;
1830 }
1831 }
1832 }
1833 parent = d->d_parent;
1834 if (parent == d)
1835 break;
1836 d = parent;
1837 }
1838 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1839 rcu_read_unlock();
1840 if (!drop) {
1841 /* just a race with rename */
1842 unroll_tree_refs(context, p, count);
1843 goto retry;
1844 }
1845 audit_put_chunk(drop);
1846 if (grow_tree_refs(context)) {
1847 /* OK, got more space */
1848 unroll_tree_refs(context, p, count);
1849 goto retry;
1850 }
1851 /* too bad */
1852 pr_warn("out of memory, audit has lost a tree reference\n");
1853 unroll_tree_refs(context, p, count);
1854 audit_set_auditable(context);
1855 return;
1856 }
1857 rcu_read_unlock();
1858}
1859
1860static struct audit_names *audit_alloc_name(struct audit_context *context,
1861 unsigned char type)
1862{
1863 struct audit_names *aname;
1864
1865 if (context->name_count < AUDIT_NAMES) {
1866 aname = &context->preallocated_names[context->name_count];
1867 memset(aname, 0, sizeof(*aname));
1868 } else {
1869 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1870 if (!aname)
1871 return NULL;
1872 aname->should_free = true;
1873 }
1874
1875 aname->ino = AUDIT_INO_UNSET;
1876 aname->type = type;
1877 list_add_tail(&aname->list, &context->names_list);
1878
1879 context->name_count++;
1880 if (!context->pwd.dentry)
1881 get_fs_pwd(current->fs, &context->pwd);
1882 return aname;
1883}
1884
1885/**
1886 * __audit_reusename - fill out filename with info from existing entry
1887 * @uptr: userland ptr to pathname
1888 *
1889 * Search the audit_names list for the current audit context. If there is an
1890 * existing entry with a matching "uptr" then return the filename
1891 * associated with that audit_name. If not, return NULL.
1892 */
1893struct filename *
1894__audit_reusename(const __user char *uptr)
1895{
1896 struct audit_context *context = audit_context();
1897 struct audit_names *n;
1898
1899 list_for_each_entry(n, &context->names_list, list) {
1900 if (!n->name)
1901 continue;
1902 if (n->name->uptr == uptr) {
1903 n->name->refcnt++;
1904 return n->name;
1905 }
1906 }
1907 return NULL;
1908}
1909
1910/**
1911 * __audit_getname - add a name to the list
1912 * @name: name to add
1913 *
1914 * Add a name to the list of audit names for this context.
1915 * Called from fs/namei.c:getname().
1916 */
1917void __audit_getname(struct filename *name)
1918{
1919 struct audit_context *context = audit_context();
1920 struct audit_names *n;
1921
1922 if (!context->in_syscall)
1923 return;
1924
1925 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1926 if (!n)
1927 return;
1928
1929 n->name = name;
1930 n->name_len = AUDIT_NAME_FULL;
1931 name->aname = n;
1932 name->refcnt++;
1933}
1934
1935static inline int audit_copy_fcaps(struct audit_names *name,
1936 const struct dentry *dentry)
1937{
1938 struct cpu_vfs_cap_data caps;
1939 int rc;
1940
1941 if (!dentry)
1942 return 0;
1943
1944 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1945 if (rc)
1946 return rc;
1947
1948 name->fcap.permitted = caps.permitted;
1949 name->fcap.inheritable = caps.inheritable;
1950 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1951 name->fcap.rootid = caps.rootid;
1952 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1953 VFS_CAP_REVISION_SHIFT;
1954
1955 return 0;
1956}
1957
1958/* Copy inode data into an audit_names. */
1959static void audit_copy_inode(struct audit_names *name,
1960 const struct dentry *dentry,
1961 struct inode *inode, unsigned int flags)
1962{
1963 name->ino = inode->i_ino;
1964 name->dev = inode->i_sb->s_dev;
1965 name->mode = inode->i_mode;
1966 name->uid = inode->i_uid;
1967 name->gid = inode->i_gid;
1968 name->rdev = inode->i_rdev;
1969 security_inode_getsecid(inode, &name->osid);
1970 if (flags & AUDIT_INODE_NOEVAL) {
1971 name->fcap_ver = -1;
1972 return;
1973 }
1974 audit_copy_fcaps(name, dentry);
1975}
1976
1977/**
1978 * __audit_inode - store the inode and device from a lookup
1979 * @name: name being audited
1980 * @dentry: dentry being audited
1981 * @flags: attributes for this particular entry
1982 */
1983void __audit_inode(struct filename *name, const struct dentry *dentry,
1984 unsigned int flags)
1985{
1986 struct audit_context *context = audit_context();
1987 struct inode *inode = d_backing_inode(dentry);
1988 struct audit_names *n;
1989 bool parent = flags & AUDIT_INODE_PARENT;
1990 struct audit_entry *e;
1991 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1992 int i;
1993
1994 if (!context->in_syscall)
1995 return;
1996
1997 rcu_read_lock();
1998 list_for_each_entry_rcu(e, list, list) {
1999 for (i = 0; i < e->rule.field_count; i++) {
2000 struct audit_field *f = &e->rule.fields[i];
2001
2002 if (f->type == AUDIT_FSTYPE
2003 && audit_comparator(inode->i_sb->s_magic,
2004 f->op, f->val)
2005 && e->rule.action == AUDIT_NEVER) {
2006 rcu_read_unlock();
2007 return;
2008 }
2009 }
2010 }
2011 rcu_read_unlock();
2012
2013 if (!name)
2014 goto out_alloc;
2015
2016 /*
2017 * If we have a pointer to an audit_names entry already, then we can
2018 * just use it directly if the type is correct.
2019 */
2020 n = name->aname;
2021 if (n) {
2022 if (parent) {
2023 if (n->type == AUDIT_TYPE_PARENT ||
2024 n->type == AUDIT_TYPE_UNKNOWN)
2025 goto out;
2026 } else {
2027 if (n->type != AUDIT_TYPE_PARENT)
2028 goto out;
2029 }
2030 }
2031
2032 list_for_each_entry_reverse(n, &context->names_list, list) {
2033 if (n->ino) {
2034 /* valid inode number, use that for the comparison */
2035 if (n->ino != inode->i_ino ||
2036 n->dev != inode->i_sb->s_dev)
2037 continue;
2038 } else if (n->name) {
2039 /* inode number has not been set, check the name */
2040 if (strcmp(n->name->name, name->name))
2041 continue;
2042 } else
2043 /* no inode and no name (?!) ... this is odd ... */
2044 continue;
2045
2046 /* match the correct record type */
2047 if (parent) {
2048 if (n->type == AUDIT_TYPE_PARENT ||
2049 n->type == AUDIT_TYPE_UNKNOWN)
2050 goto out;
2051 } else {
2052 if (n->type != AUDIT_TYPE_PARENT)
2053 goto out;
2054 }
2055 }
2056
2057out_alloc:
2058 /* unable to find an entry with both a matching name and type */
2059 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2060 if (!n)
2061 return;
2062 if (name) {
2063 n->name = name;
2064 name->refcnt++;
2065 }
2066
2067out:
2068 if (parent) {
2069 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2070 n->type = AUDIT_TYPE_PARENT;
2071 if (flags & AUDIT_INODE_HIDDEN)
2072 n->hidden = true;
2073 } else {
2074 n->name_len = AUDIT_NAME_FULL;
2075 n->type = AUDIT_TYPE_NORMAL;
2076 }
2077 handle_path(dentry);
2078 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2079}
2080
2081void __audit_file(const struct file *file)
2082{
2083 __audit_inode(NULL, file->f_path.dentry, 0);
2084}
2085
2086/**
2087 * __audit_inode_child - collect inode info for created/removed objects
2088 * @parent: inode of dentry parent
2089 * @dentry: dentry being audited
2090 * @type: AUDIT_TYPE_* value that we're looking for
2091 *
2092 * For syscalls that create or remove filesystem objects, audit_inode
2093 * can only collect information for the filesystem object's parent.
2094 * This call updates the audit context with the child's information.
2095 * Syscalls that create a new filesystem object must be hooked after
2096 * the object is created. Syscalls that remove a filesystem object
2097 * must be hooked prior, in order to capture the target inode during
2098 * unsuccessful attempts.
2099 */
2100void __audit_inode_child(struct inode *parent,
2101 const struct dentry *dentry,
2102 const unsigned char type)
2103{
2104 struct audit_context *context = audit_context();
2105 struct inode *inode = d_backing_inode(dentry);
2106 const struct qstr *dname = &dentry->d_name;
2107 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2108 struct audit_entry *e;
2109 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2110 int i;
2111
2112 if (!context->in_syscall)
2113 return;
2114
2115 rcu_read_lock();
2116 list_for_each_entry_rcu(e, list, list) {
2117 for (i = 0; i < e->rule.field_count; i++) {
2118 struct audit_field *f = &e->rule.fields[i];
2119
2120 if (f->type == AUDIT_FSTYPE
2121 && audit_comparator(parent->i_sb->s_magic,
2122 f->op, f->val)
2123 && e->rule.action == AUDIT_NEVER) {
2124 rcu_read_unlock();
2125 return;
2126 }
2127 }
2128 }
2129 rcu_read_unlock();
2130
2131 if (inode)
2132 handle_one(inode);
2133
2134 /* look for a parent entry first */
2135 list_for_each_entry(n, &context->names_list, list) {
2136 if (!n->name ||
2137 (n->type != AUDIT_TYPE_PARENT &&
2138 n->type != AUDIT_TYPE_UNKNOWN))
2139 continue;
2140
2141 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2142 !audit_compare_dname_path(dname,
2143 n->name->name, n->name_len)) {
2144 if (n->type == AUDIT_TYPE_UNKNOWN)
2145 n->type = AUDIT_TYPE_PARENT;
2146 found_parent = n;
2147 break;
2148 }
2149 }
2150
2151 /* is there a matching child entry? */
2152 list_for_each_entry(n, &context->names_list, list) {
2153 /* can only match entries that have a name */
2154 if (!n->name ||
2155 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2156 continue;
2157
2158 if (!strcmp(dname->name, n->name->name) ||
2159 !audit_compare_dname_path(dname, n->name->name,
2160 found_parent ?
2161 found_parent->name_len :
2162 AUDIT_NAME_FULL)) {
2163 if (n->type == AUDIT_TYPE_UNKNOWN)
2164 n->type = type;
2165 found_child = n;
2166 break;
2167 }
2168 }
2169
2170 if (!found_parent) {
2171 /* create a new, "anonymous" parent record */
2172 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2173 if (!n)
2174 return;
2175 audit_copy_inode(n, NULL, parent, 0);
2176 }
2177
2178 if (!found_child) {
2179 found_child = audit_alloc_name(context, type);
2180 if (!found_child)
2181 return;
2182
2183 /* Re-use the name belonging to the slot for a matching parent
2184 * directory. All names for this context are relinquished in
2185 * audit_free_names() */
2186 if (found_parent) {
2187 found_child->name = found_parent->name;
2188 found_child->name_len = AUDIT_NAME_FULL;
2189 found_child->name->refcnt++;
2190 }
2191 }
2192
2193 if (inode)
2194 audit_copy_inode(found_child, dentry, inode, 0);
2195 else
2196 found_child->ino = AUDIT_INO_UNSET;
2197}
2198EXPORT_SYMBOL_GPL(__audit_inode_child);
2199
2200/**
2201 * auditsc_get_stamp - get local copies of audit_context values
2202 * @ctx: audit_context for the task
2203 * @t: timespec64 to store time recorded in the audit_context
2204 * @serial: serial value that is recorded in the audit_context
2205 *
2206 * Also sets the context as auditable.
2207 */
2208int auditsc_get_stamp(struct audit_context *ctx,
2209 struct timespec64 *t, unsigned int *serial)
2210{
2211 if (!ctx->in_syscall)
2212 return 0;
2213 if (!ctx->serial)
2214 ctx->serial = audit_serial();
2215 t->tv_sec = ctx->ctime.tv_sec;
2216 t->tv_nsec = ctx->ctime.tv_nsec;
2217 *serial = ctx->serial;
2218 if (!ctx->prio) {
2219 ctx->prio = 1;
2220 ctx->current_state = AUDIT_STATE_RECORD;
2221 }
2222 return 1;
2223}
2224
2225/**
2226 * __audit_mq_open - record audit data for a POSIX MQ open
2227 * @oflag: open flag
2228 * @mode: mode bits
2229 * @attr: queue attributes
2230 *
2231 */
2232void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2233{
2234 struct audit_context *context = audit_context();
2235
2236 if (attr)
2237 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2238 else
2239 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2240
2241 context->mq_open.oflag = oflag;
2242 context->mq_open.mode = mode;
2243
2244 context->type = AUDIT_MQ_OPEN;
2245}
2246
2247/**
2248 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2249 * @mqdes: MQ descriptor
2250 * @msg_len: Message length
2251 * @msg_prio: Message priority
2252 * @abs_timeout: Message timeout in absolute time
2253 *
2254 */
2255void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2256 const struct timespec64 *abs_timeout)
2257{
2258 struct audit_context *context = audit_context();
2259 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2260
2261 if (abs_timeout)
2262 memcpy(p, abs_timeout, sizeof(*p));
2263 else
2264 memset(p, 0, sizeof(*p));
2265
2266 context->mq_sendrecv.mqdes = mqdes;
2267 context->mq_sendrecv.msg_len = msg_len;
2268 context->mq_sendrecv.msg_prio = msg_prio;
2269
2270 context->type = AUDIT_MQ_SENDRECV;
2271}
2272
2273/**
2274 * __audit_mq_notify - record audit data for a POSIX MQ notify
2275 * @mqdes: MQ descriptor
2276 * @notification: Notification event
2277 *
2278 */
2279
2280void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2281{
2282 struct audit_context *context = audit_context();
2283
2284 if (notification)
2285 context->mq_notify.sigev_signo = notification->sigev_signo;
2286 else
2287 context->mq_notify.sigev_signo = 0;
2288
2289 context->mq_notify.mqdes = mqdes;
2290 context->type = AUDIT_MQ_NOTIFY;
2291}
2292
2293/**
2294 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2295 * @mqdes: MQ descriptor
2296 * @mqstat: MQ flags
2297 *
2298 */
2299void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2300{
2301 struct audit_context *context = audit_context();
2302
2303 context->mq_getsetattr.mqdes = mqdes;
2304 context->mq_getsetattr.mqstat = *mqstat;
2305 context->type = AUDIT_MQ_GETSETATTR;
2306}
2307
2308/**
2309 * __audit_ipc_obj - record audit data for ipc object
2310 * @ipcp: ipc permissions
2311 *
2312 */
2313void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2314{
2315 struct audit_context *context = audit_context();
2316
2317 context->ipc.uid = ipcp->uid;
2318 context->ipc.gid = ipcp->gid;
2319 context->ipc.mode = ipcp->mode;
2320 context->ipc.has_perm = 0;
2321 security_ipc_getsecid(ipcp, &context->ipc.osid);
2322 context->type = AUDIT_IPC;
2323}
2324
2325/**
2326 * __audit_ipc_set_perm - record audit data for new ipc permissions
2327 * @qbytes: msgq bytes
2328 * @uid: msgq user id
2329 * @gid: msgq group id
2330 * @mode: msgq mode (permissions)
2331 *
2332 * Called only after audit_ipc_obj().
2333 */
2334void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2335{
2336 struct audit_context *context = audit_context();
2337
2338 context->ipc.qbytes = qbytes;
2339 context->ipc.perm_uid = uid;
2340 context->ipc.perm_gid = gid;
2341 context->ipc.perm_mode = mode;
2342 context->ipc.has_perm = 1;
2343}
2344
2345void __audit_bprm(struct linux_binprm *bprm)
2346{
2347 struct audit_context *context = audit_context();
2348
2349 context->type = AUDIT_EXECVE;
2350 context->execve.argc = bprm->argc;
2351}
2352
2353
2354/**
2355 * __audit_socketcall - record audit data for sys_socketcall
2356 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2357 * @args: args array
2358 *
2359 */
2360int __audit_socketcall(int nargs, unsigned long *args)
2361{
2362 struct audit_context *context = audit_context();
2363
2364 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2365 return -EINVAL;
2366 context->type = AUDIT_SOCKETCALL;
2367 context->socketcall.nargs = nargs;
2368 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2369 return 0;
2370}
2371
2372/**
2373 * __audit_fd_pair - record audit data for pipe and socketpair
2374 * @fd1: the first file descriptor
2375 * @fd2: the second file descriptor
2376 *
2377 */
2378void __audit_fd_pair(int fd1, int fd2)
2379{
2380 struct audit_context *context = audit_context();
2381
2382 context->fds[0] = fd1;
2383 context->fds[1] = fd2;
2384}
2385
2386/**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393int __audit_sockaddr(int len, void *a)
2394{
2395 struct audit_context *context = audit_context();
2396
2397 if (!context->sockaddr) {
2398 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399
2400 if (!p)
2401 return -ENOMEM;
2402 context->sockaddr = p;
2403 }
2404
2405 context->sockaddr_len = len;
2406 memcpy(context->sockaddr, a, len);
2407 return 0;
2408}
2409
2410void __audit_ptrace(struct task_struct *t)
2411{
2412 struct audit_context *context = audit_context();
2413
2414 context->target_pid = task_tgid_nr(t);
2415 context->target_auid = audit_get_loginuid(t);
2416 context->target_uid = task_uid(t);
2417 context->target_sessionid = audit_get_sessionid(t);
2418 security_task_getsecid_obj(t, &context->target_sid);
2419 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2420}
2421
2422/**
2423 * audit_signal_info_syscall - record signal info for syscalls
2424 * @t: task being signaled
2425 *
2426 * If the audit subsystem is being terminated, record the task (pid)
2427 * and uid that is doing that.
2428 */
2429int audit_signal_info_syscall(struct task_struct *t)
2430{
2431 struct audit_aux_data_pids *axp;
2432 struct audit_context *ctx = audit_context();
2433 kuid_t t_uid = task_uid(t);
2434
2435 if (!audit_signals || audit_dummy_context())
2436 return 0;
2437
2438 /* optimize the common case by putting first signal recipient directly
2439 * in audit_context */
2440 if (!ctx->target_pid) {
2441 ctx->target_pid = task_tgid_nr(t);
2442 ctx->target_auid = audit_get_loginuid(t);
2443 ctx->target_uid = t_uid;
2444 ctx->target_sessionid = audit_get_sessionid(t);
2445 security_task_getsecid_obj(t, &ctx->target_sid);
2446 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2447 return 0;
2448 }
2449
2450 axp = (void *)ctx->aux_pids;
2451 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2452 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2453 if (!axp)
2454 return -ENOMEM;
2455
2456 axp->d.type = AUDIT_OBJ_PID;
2457 axp->d.next = ctx->aux_pids;
2458 ctx->aux_pids = (void *)axp;
2459 }
2460 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2461
2462 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2463 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2464 axp->target_uid[axp->pid_count] = t_uid;
2465 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2466 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2467 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2468 axp->pid_count++;
2469
2470 return 0;
2471}
2472
2473/**
2474 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2475 * @bprm: pointer to the bprm being processed
2476 * @new: the proposed new credentials
2477 * @old: the old credentials
2478 *
2479 * Simply check if the proc already has the caps given by the file and if not
2480 * store the priv escalation info for later auditing at the end of the syscall
2481 *
2482 * -Eric
2483 */
2484int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2485 const struct cred *new, const struct cred *old)
2486{
2487 struct audit_aux_data_bprm_fcaps *ax;
2488 struct audit_context *context = audit_context();
2489 struct cpu_vfs_cap_data vcaps;
2490
2491 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2492 if (!ax)
2493 return -ENOMEM;
2494
2495 ax->d.type = AUDIT_BPRM_FCAPS;
2496 ax->d.next = context->aux;
2497 context->aux = (void *)ax;
2498
2499 get_vfs_caps_from_disk(&init_user_ns,
2500 bprm->file->f_path.dentry, &vcaps);
2501
2502 ax->fcap.permitted = vcaps.permitted;
2503 ax->fcap.inheritable = vcaps.inheritable;
2504 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2505 ax->fcap.rootid = vcaps.rootid;
2506 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2507
2508 ax->old_pcap.permitted = old->cap_permitted;
2509 ax->old_pcap.inheritable = old->cap_inheritable;
2510 ax->old_pcap.effective = old->cap_effective;
2511 ax->old_pcap.ambient = old->cap_ambient;
2512
2513 ax->new_pcap.permitted = new->cap_permitted;
2514 ax->new_pcap.inheritable = new->cap_inheritable;
2515 ax->new_pcap.effective = new->cap_effective;
2516 ax->new_pcap.ambient = new->cap_ambient;
2517 return 0;
2518}
2519
2520/**
2521 * __audit_log_capset - store information about the arguments to the capset syscall
2522 * @new: the new credentials
2523 * @old: the old (current) credentials
2524 *
2525 * Record the arguments userspace sent to sys_capset for later printing by the
2526 * audit system if applicable
2527 */
2528void __audit_log_capset(const struct cred *new, const struct cred *old)
2529{
2530 struct audit_context *context = audit_context();
2531
2532 context->capset.pid = task_tgid_nr(current);
2533 context->capset.cap.effective = new->cap_effective;
2534 context->capset.cap.inheritable = new->cap_effective;
2535 context->capset.cap.permitted = new->cap_permitted;
2536 context->capset.cap.ambient = new->cap_ambient;
2537 context->type = AUDIT_CAPSET;
2538}
2539
2540void __audit_mmap_fd(int fd, int flags)
2541{
2542 struct audit_context *context = audit_context();
2543
2544 context->mmap.fd = fd;
2545 context->mmap.flags = flags;
2546 context->type = AUDIT_MMAP;
2547}
2548
2549void __audit_log_kern_module(char *name)
2550{
2551 struct audit_context *context = audit_context();
2552
2553 context->module.name = kstrdup(name, GFP_KERNEL);
2554 if (!context->module.name)
2555 audit_log_lost("out of memory in __audit_log_kern_module");
2556 context->type = AUDIT_KERN_MODULE;
2557}
2558
2559void __audit_fanotify(unsigned int response)
2560{
2561 audit_log(audit_context(), GFP_KERNEL,
2562 AUDIT_FANOTIFY, "resp=%u", response);
2563}
2564
2565void __audit_tk_injoffset(struct timespec64 offset)
2566{
2567 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2568 "sec=%lli nsec=%li",
2569 (long long)offset.tv_sec, offset.tv_nsec);
2570}
2571
2572static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2573 const char *op, enum audit_ntp_type type)
2574{
2575 const struct audit_ntp_val *val = &ad->vals[type];
2576
2577 if (val->newval == val->oldval)
2578 return;
2579
2580 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2581 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2582}
2583
2584void __audit_ntp_log(const struct audit_ntp_data *ad)
2585{
2586 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2587 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2588 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2589 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2590 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2591 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2592}
2593
2594void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2595 enum audit_nfcfgop op, gfp_t gfp)
2596{
2597 struct audit_buffer *ab;
2598 char comm[sizeof(current->comm)];
2599
2600 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2601 if (!ab)
2602 return;
2603 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2604 name, af, nentries, audit_nfcfgs[op].s);
2605
2606 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2607 audit_log_task_context(ab); /* subj= */
2608 audit_log_format(ab, " comm=");
2609 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2610 audit_log_end(ab);
2611}
2612EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2613
2614static void audit_log_task(struct audit_buffer *ab)
2615{
2616 kuid_t auid, uid;
2617 kgid_t gid;
2618 unsigned int sessionid;
2619 char comm[sizeof(current->comm)];
2620
2621 auid = audit_get_loginuid(current);
2622 sessionid = audit_get_sessionid(current);
2623 current_uid_gid(&uid, &gid);
2624
2625 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2626 from_kuid(&init_user_ns, auid),
2627 from_kuid(&init_user_ns, uid),
2628 from_kgid(&init_user_ns, gid),
2629 sessionid);
2630 audit_log_task_context(ab);
2631 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2632 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633 audit_log_d_path_exe(ab, current->mm);
2634}
2635
2636/**
2637 * audit_core_dumps - record information about processes that end abnormally
2638 * @signr: signal value
2639 *
2640 * If a process ends with a core dump, something fishy is going on and we
2641 * should record the event for investigation.
2642 */
2643void audit_core_dumps(long signr)
2644{
2645 struct audit_buffer *ab;
2646
2647 if (!audit_enabled)
2648 return;
2649
2650 if (signr == SIGQUIT) /* don't care for those */
2651 return;
2652
2653 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2654 if (unlikely(!ab))
2655 return;
2656 audit_log_task(ab);
2657 audit_log_format(ab, " sig=%ld res=1", signr);
2658 audit_log_end(ab);
2659}
2660
2661/**
2662 * audit_seccomp - record information about a seccomp action
2663 * @syscall: syscall number
2664 * @signr: signal value
2665 * @code: the seccomp action
2666 *
2667 * Record the information associated with a seccomp action. Event filtering for
2668 * seccomp actions that are not to be logged is done in seccomp_log().
2669 * Therefore, this function forces auditing independent of the audit_enabled
2670 * and dummy context state because seccomp actions should be logged even when
2671 * audit is not in use.
2672 */
2673void audit_seccomp(unsigned long syscall, long signr, int code)
2674{
2675 struct audit_buffer *ab;
2676
2677 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2678 if (unlikely(!ab))
2679 return;
2680 audit_log_task(ab);
2681 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2682 signr, syscall_get_arch(current), syscall,
2683 in_compat_syscall(), KSTK_EIP(current), code);
2684 audit_log_end(ab);
2685}
2686
2687void audit_seccomp_actions_logged(const char *names, const char *old_names,
2688 int res)
2689{
2690 struct audit_buffer *ab;
2691
2692 if (!audit_enabled)
2693 return;
2694
2695 ab = audit_log_start(audit_context(), GFP_KERNEL,
2696 AUDIT_CONFIG_CHANGE);
2697 if (unlikely(!ab))
2698 return;
2699
2700 audit_log_format(ab,
2701 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2702 names, old_names, res);
2703 audit_log_end(ab);
2704}
2705
2706struct list_head *audit_killed_trees(void)
2707{
2708 struct audit_context *ctx = audit_context();
2709
2710 if (likely(!ctx || !ctx->in_syscall))
2711 return NULL;
2712 return &ctx->killed_trees;
2713}