Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34#include "qgroup.h"
 
 
 
 
 
  35
  36/*
  37 * backref_node, mapping_node and tree_block start with this
  38 */
  39struct tree_entry {
  40	struct rb_node rb_node;
  41	u64 bytenr;
  42};
  43
  44/*
  45 * present a tree block in the backref cache
  46 */
  47struct backref_node {
  48	struct rb_node rb_node;
  49	u64 bytenr;
  50
  51	u64 new_bytenr;
  52	/* objectid of tree block owner, can be not uptodate */
  53	u64 owner;
  54	/* link to pending, changed or detached list */
  55	struct list_head list;
  56	/* list of upper level blocks reference this block */
  57	struct list_head upper;
  58	/* list of child blocks in the cache */
  59	struct list_head lower;
  60	/* NULL if this node is not tree root */
  61	struct btrfs_root *root;
  62	/* extent buffer got by COW the block */
  63	struct extent_buffer *eb;
  64	/* level of tree block */
  65	unsigned int level:8;
  66	/* is the block in non-reference counted tree */
  67	unsigned int cowonly:1;
  68	/* 1 if no child node in the cache */
  69	unsigned int lowest:1;
  70	/* is the extent buffer locked */
  71	unsigned int locked:1;
  72	/* has the block been processed */
  73	unsigned int processed:1;
  74	/* have backrefs of this block been checked */
  75	unsigned int checked:1;
  76	/*
  77	 * 1 if corresponding block has been cowed but some upper
  78	 * level block pointers may not point to the new location
  79	 */
  80	unsigned int pending:1;
  81	/*
  82	 * 1 if the backref node isn't connected to any other
  83	 * backref node.
  84	 */
  85	unsigned int detached:1;
  86};
  87
  88/*
  89 * present a block pointer in the backref cache
  90 */
  91struct backref_edge {
  92	struct list_head list[2];
  93	struct backref_node *node[2];
  94};
  95
  96#define LOWER	0
  97#define UPPER	1
  98#define RELOCATION_RESERVED_NODES	256
  99
 100struct backref_cache {
 101	/* red black tree of all backref nodes in the cache */
 102	struct rb_root rb_root;
 103	/* for passing backref nodes to btrfs_reloc_cow_block */
 104	struct backref_node *path[BTRFS_MAX_LEVEL];
 105	/*
 106	 * list of blocks that have been cowed but some block
 107	 * pointers in upper level blocks may not reflect the
 108	 * new location
 109	 */
 110	struct list_head pending[BTRFS_MAX_LEVEL];
 111	/* list of backref nodes with no child node */
 112	struct list_head leaves;
 113	/* list of blocks that have been cowed in current transaction */
 114	struct list_head changed;
 115	/* list of detached backref node. */
 116	struct list_head detached;
 117
 118	u64 last_trans;
 119
 120	int nr_nodes;
 121	int nr_edges;
 122};
 123
 124/*
 125 * map address of tree root to tree
 126 */
 127struct mapping_node {
 128	struct rb_node rb_node;
 129	u64 bytenr;
 
 
 130	void *data;
 131};
 132
 133struct mapping_tree {
 134	struct rb_root rb_root;
 135	spinlock_t lock;
 136};
 137
 138/*
 139 * present a tree block to process
 140 */
 141struct tree_block {
 142	struct rb_node rb_node;
 143	u64 bytenr;
 
 
 144	struct btrfs_key key;
 145	unsigned int level:8;
 146	unsigned int key_ready:1;
 147};
 148
 149#define MAX_EXTENTS 128
 150
 151struct file_extent_cluster {
 152	u64 start;
 153	u64 end;
 154	u64 boundary[MAX_EXTENTS];
 155	unsigned int nr;
 156};
 157
 158struct reloc_control {
 159	/* block group to relocate */
 160	struct btrfs_block_group_cache *block_group;
 161	/* extent tree */
 162	struct btrfs_root *extent_root;
 163	/* inode for moving data */
 164	struct inode *data_inode;
 165
 166	struct btrfs_block_rsv *block_rsv;
 167
 168	struct backref_cache backref_cache;
 169
 170	struct file_extent_cluster cluster;
 171	/* tree blocks have been processed */
 172	struct extent_io_tree processed_blocks;
 173	/* map start of tree root to corresponding reloc tree */
 174	struct mapping_tree reloc_root_tree;
 175	/* list of reloc trees */
 176	struct list_head reloc_roots;
 
 
 177	/* size of metadata reservation for merging reloc trees */
 178	u64 merging_rsv_size;
 179	/* size of relocated tree nodes */
 180	u64 nodes_relocated;
 181	/* reserved size for block group relocation*/
 182	u64 reserved_bytes;
 183
 184	u64 search_start;
 185	u64 extents_found;
 186
 187	unsigned int stage:8;
 188	unsigned int create_reloc_tree:1;
 189	unsigned int merge_reloc_tree:1;
 190	unsigned int found_file_extent:1;
 191};
 192
 193/* stages of data relocation */
 194#define MOVE_DATA_EXTENTS	0
 195#define UPDATE_DATA_PTRS	1
 196
 197static void remove_backref_node(struct backref_cache *cache,
 198				struct backref_node *node);
 199static void __mark_block_processed(struct reloc_control *rc,
 200				   struct backref_node *node);
 201
 202static void mapping_tree_init(struct mapping_tree *tree)
 203{
 204	tree->rb_root = RB_ROOT;
 205	spin_lock_init(&tree->lock);
 206}
 207
 208static void backref_cache_init(struct backref_cache *cache)
 209{
 210	int i;
 211	cache->rb_root = RB_ROOT;
 212	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 213		INIT_LIST_HEAD(&cache->pending[i]);
 214	INIT_LIST_HEAD(&cache->changed);
 215	INIT_LIST_HEAD(&cache->detached);
 216	INIT_LIST_HEAD(&cache->leaves);
 217}
 218
 219static void backref_cache_cleanup(struct backref_cache *cache)
 220{
 221	struct backref_node *node;
 222	int i;
 223
 224	while (!list_empty(&cache->detached)) {
 225		node = list_entry(cache->detached.next,
 226				  struct backref_node, list);
 227		remove_backref_node(cache, node);
 228	}
 229
 230	while (!list_empty(&cache->leaves)) {
 231		node = list_entry(cache->leaves.next,
 232				  struct backref_node, lower);
 233		remove_backref_node(cache, node);
 234	}
 235
 236	cache->last_trans = 0;
 237
 238	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 239		ASSERT(list_empty(&cache->pending[i]));
 240	ASSERT(list_empty(&cache->changed));
 241	ASSERT(list_empty(&cache->detached));
 242	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 243	ASSERT(!cache->nr_nodes);
 244	ASSERT(!cache->nr_edges);
 245}
 246
 247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 248{
 249	struct backref_node *node;
 250
 251	node = kzalloc(sizeof(*node), GFP_NOFS);
 252	if (node) {
 253		INIT_LIST_HEAD(&node->list);
 254		INIT_LIST_HEAD(&node->upper);
 255		INIT_LIST_HEAD(&node->lower);
 256		RB_CLEAR_NODE(&node->rb_node);
 257		cache->nr_nodes++;
 258	}
 259	return node;
 260}
 261
 262static void free_backref_node(struct backref_cache *cache,
 263			      struct backref_node *node)
 264{
 265	if (node) {
 266		cache->nr_nodes--;
 267		kfree(node);
 268	}
 269}
 270
 271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 272{
 273	struct backref_edge *edge;
 274
 275	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 276	if (edge)
 277		cache->nr_edges++;
 278	return edge;
 279}
 280
 281static void free_backref_edge(struct backref_cache *cache,
 282			      struct backref_edge *edge)
 283{
 284	if (edge) {
 285		cache->nr_edges--;
 286		kfree(edge);
 287	}
 288}
 289
 290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 291				   struct rb_node *node)
 292{
 293	struct rb_node **p = &root->rb_node;
 294	struct rb_node *parent = NULL;
 295	struct tree_entry *entry;
 296
 297	while (*p) {
 298		parent = *p;
 299		entry = rb_entry(parent, struct tree_entry, rb_node);
 300
 301		if (bytenr < entry->bytenr)
 302			p = &(*p)->rb_left;
 303		else if (bytenr > entry->bytenr)
 304			p = &(*p)->rb_right;
 305		else
 306			return parent;
 307	}
 308
 309	rb_link_node(node, parent, p);
 310	rb_insert_color(node, root);
 311	return NULL;
 312}
 313
 314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 315{
 316	struct rb_node *n = root->rb_node;
 317	struct tree_entry *entry;
 318
 319	while (n) {
 320		entry = rb_entry(n, struct tree_entry, rb_node);
 321
 322		if (bytenr < entry->bytenr)
 323			n = n->rb_left;
 324		else if (bytenr > entry->bytenr)
 325			n = n->rb_right;
 326		else
 327			return n;
 328	}
 329	return NULL;
 330}
 331
 332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 333{
 334
 335	struct btrfs_fs_info *fs_info = NULL;
 336	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 337					      rb_node);
 338	if (bnode->root)
 339		fs_info = bnode->root->fs_info;
 340	btrfs_panic(fs_info, errno,
 341		    "Inconsistency in backref cache found at offset %llu",
 342		    bytenr);
 343}
 344
 345/*
 346 * walk up backref nodes until reach node presents tree root
 347 */
 348static struct backref_node *walk_up_backref(struct backref_node *node,
 349					    struct backref_edge *edges[],
 350					    int *index)
 351{
 352	struct backref_edge *edge;
 353	int idx = *index;
 354
 355	while (!list_empty(&node->upper)) {
 356		edge = list_entry(node->upper.next,
 357				  struct backref_edge, list[LOWER]);
 358		edges[idx++] = edge;
 359		node = edge->node[UPPER];
 360	}
 361	BUG_ON(node->detached);
 362	*index = idx;
 363	return node;
 364}
 365
 366/*
 367 * walk down backref nodes to find start of next reference path
 368 */
 369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 370					      int *index)
 371{
 372	struct backref_edge *edge;
 373	struct backref_node *lower;
 374	int idx = *index;
 375
 376	while (idx > 0) {
 377		edge = edges[idx - 1];
 378		lower = edge->node[LOWER];
 379		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 380			idx--;
 381			continue;
 382		}
 383		edge = list_entry(edge->list[LOWER].next,
 384				  struct backref_edge, list[LOWER]);
 385		edges[idx - 1] = edge;
 386		*index = idx;
 387		return edge->node[UPPER];
 388	}
 389	*index = 0;
 390	return NULL;
 391}
 392
 393static void unlock_node_buffer(struct backref_node *node)
 394{
 395	if (node->locked) {
 396		btrfs_tree_unlock(node->eb);
 397		node->locked = 0;
 398	}
 399}
 400
 401static void drop_node_buffer(struct backref_node *node)
 402{
 403	if (node->eb) {
 404		unlock_node_buffer(node);
 405		free_extent_buffer(node->eb);
 406		node->eb = NULL;
 407	}
 408}
 409
 410static void drop_backref_node(struct backref_cache *tree,
 411			      struct backref_node *node)
 412{
 413	BUG_ON(!list_empty(&node->upper));
 414
 415	drop_node_buffer(node);
 416	list_del(&node->list);
 417	list_del(&node->lower);
 418	if (!RB_EMPTY_NODE(&node->rb_node))
 419		rb_erase(&node->rb_node, &tree->rb_root);
 420	free_backref_node(tree, node);
 421}
 422
 423/*
 424 * remove a backref node from the backref cache
 425 */
 426static void remove_backref_node(struct backref_cache *cache,
 427				struct backref_node *node)
 428{
 429	struct backref_node *upper;
 430	struct backref_edge *edge;
 431
 432	if (!node)
 433		return;
 434
 435	BUG_ON(!node->lowest && !node->detached);
 436	while (!list_empty(&node->upper)) {
 437		edge = list_entry(node->upper.next, struct backref_edge,
 438				  list[LOWER]);
 439		upper = edge->node[UPPER];
 440		list_del(&edge->list[LOWER]);
 441		list_del(&edge->list[UPPER]);
 442		free_backref_edge(cache, edge);
 443
 444		if (RB_EMPTY_NODE(&upper->rb_node)) {
 445			BUG_ON(!list_empty(&node->upper));
 446			drop_backref_node(cache, node);
 447			node = upper;
 448			node->lowest = 1;
 449			continue;
 450		}
 451		/*
 452		 * add the node to leaf node list if no other
 453		 * child block cached.
 454		 */
 455		if (list_empty(&upper->lower)) {
 456			list_add_tail(&upper->lower, &cache->leaves);
 457			upper->lowest = 1;
 458		}
 459	}
 460
 461	drop_backref_node(cache, node);
 462}
 463
 464static void update_backref_node(struct backref_cache *cache,
 465				struct backref_node *node, u64 bytenr)
 466{
 467	struct rb_node *rb_node;
 468	rb_erase(&node->rb_node, &cache->rb_root);
 469	node->bytenr = bytenr;
 470	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 471	if (rb_node)
 472		backref_tree_panic(rb_node, -EEXIST, bytenr);
 473}
 474
 475/*
 476 * update backref cache after a transaction commit
 477 */
 478static int update_backref_cache(struct btrfs_trans_handle *trans,
 479				struct backref_cache *cache)
 480{
 481	struct backref_node *node;
 482	int level = 0;
 483
 484	if (cache->last_trans == 0) {
 485		cache->last_trans = trans->transid;
 486		return 0;
 487	}
 488
 489	if (cache->last_trans == trans->transid)
 490		return 0;
 491
 492	/*
 493	 * detached nodes are used to avoid unnecessary backref
 494	 * lookup. transaction commit changes the extent tree.
 495	 * so the detached nodes are no longer useful.
 496	 */
 497	while (!list_empty(&cache->detached)) {
 498		node = list_entry(cache->detached.next,
 499				  struct backref_node, list);
 500		remove_backref_node(cache, node);
 501	}
 502
 503	while (!list_empty(&cache->changed)) {
 504		node = list_entry(cache->changed.next,
 505				  struct backref_node, list);
 506		list_del_init(&node->list);
 507		BUG_ON(node->pending);
 508		update_backref_node(cache, node, node->new_bytenr);
 509	}
 510
 511	/*
 512	 * some nodes can be left in the pending list if there were
 513	 * errors during processing the pending nodes.
 514	 */
 515	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 516		list_for_each_entry(node, &cache->pending[level], list) {
 517			BUG_ON(!node->pending);
 518			if (node->bytenr == node->new_bytenr)
 519				continue;
 520			update_backref_node(cache, node, node->new_bytenr);
 521		}
 522	}
 523
 524	cache->last_trans = 0;
 525	return 1;
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529static int should_ignore_root(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530{
 531	struct btrfs_root *reloc_root;
 532
 533	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 534		return 0;
 535
 
 
 
 
 536	reloc_root = root->reloc_root;
 537	if (!reloc_root)
 538		return 0;
 539
 540	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 541	    root->fs_info->running_transaction->transid - 1)
 542		return 0;
 543	/*
 544	 * if there is reloc tree and it was created in previous
 545	 * transaction backref lookup can find the reloc tree,
 546	 * so backref node for the fs tree root is useless for
 547	 * relocation.
 548	 */
 549	return 1;
 550}
 
 551/*
 552 * find reloc tree by address of tree root
 553 */
 554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 555					  u64 bytenr)
 556{
 
 557	struct rb_node *rb_node;
 558	struct mapping_node *node;
 559	struct btrfs_root *root = NULL;
 560
 
 561	spin_lock(&rc->reloc_root_tree.lock);
 562	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 563	if (rb_node) {
 564		node = rb_entry(rb_node, struct mapping_node, rb_node);
 565		root = (struct btrfs_root *)node->data;
 566	}
 567	spin_unlock(&rc->reloc_root_tree.lock);
 568	return root;
 569}
 570
 571static int is_cowonly_root(u64 root_objectid)
 572{
 573	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 576	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 578	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 579	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 580	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 581	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 582		return 1;
 583	return 0;
 584}
 585
 586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 587					u64 root_objectid)
 588{
 589	struct btrfs_key key;
 
 
 590
 591	key.objectid = root_objectid;
 592	key.type = BTRFS_ROOT_ITEM_KEY;
 593	if (is_cowonly_root(root_objectid))
 594		key.offset = 0;
 595	else
 596		key.offset = (u64)-1;
 597
 598	return btrfs_get_fs_root(fs_info, &key, false);
 599}
 600
 601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 602static noinline_for_stack
 603struct btrfs_root *find_tree_root(struct reloc_control *rc,
 604				  struct extent_buffer *leaf,
 605				  struct btrfs_extent_ref_v0 *ref0)
 606{
 607	struct btrfs_root *root;
 608	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 609	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 610
 611	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 612
 613	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 614	BUG_ON(IS_ERR(root));
 615
 616	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 617	    generation != btrfs_root_generation(&root->root_item))
 618		return NULL;
 619
 620	return root;
 621}
 622#endif
 
 
 623
 624static noinline_for_stack
 625int find_inline_backref(struct extent_buffer *leaf, int slot,
 626			unsigned long *ptr, unsigned long *end)
 627{
 628	struct btrfs_key key;
 629	struct btrfs_extent_item *ei;
 630	struct btrfs_tree_block_info *bi;
 631	u32 item_size;
 632
 633	btrfs_item_key_to_cpu(leaf, &key, slot);
 
 
 
 
 
 634
 635	item_size = btrfs_item_size_nr(leaf, slot);
 636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 637	if (item_size < sizeof(*ei)) {
 638		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 639		return 1;
 640	}
 641#endif
 642	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 643	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 644		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 645
 646	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 647	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 648		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 649		return 1;
 650	}
 651	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 652	    item_size <= sizeof(*ei)) {
 653		WARN_ON(item_size < sizeof(*ei));
 654		return 1;
 655	}
 656
 657	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 658		bi = (struct btrfs_tree_block_info *)(ei + 1);
 659		*ptr = (unsigned long)(bi + 1);
 660	} else {
 661		*ptr = (unsigned long)(ei + 1);
 
 
 
 
 
 
 
 662	}
 663	*end = (unsigned long)ei + item_size;
 664	return 0;
 665}
 666
 667/*
 668 * build backref tree for a given tree block. root of the backref tree
 669 * corresponds the tree block, leaves of the backref tree correspond
 670 * roots of b-trees that reference the tree block.
 671 *
 672 * the basic idea of this function is check backrefs of a given block
 673 * to find upper level blocks that reference the block, and then check
 674 * backrefs of these upper level blocks recursively. the recursion stop
 675 * when tree root is reached or backrefs for the block is cached.
 676 *
 677 * NOTE: if we find backrefs for a block are cached, we know backrefs
 678 * for all upper level blocks that directly/indirectly reference the
 679 * block are also cached.
 680 */
 681static noinline_for_stack
 682struct backref_node *build_backref_tree(struct reloc_control *rc,
 683					struct btrfs_key *node_key,
 684					int level, u64 bytenr)
 685{
 686	struct backref_cache *cache = &rc->backref_cache;
 687	struct btrfs_path *path1;
 688	struct btrfs_path *path2;
 689	struct extent_buffer *eb;
 690	struct btrfs_root *root;
 691	struct backref_node *cur;
 692	struct backref_node *upper;
 693	struct backref_node *lower;
 694	struct backref_node *node = NULL;
 695	struct backref_node *exist = NULL;
 696	struct backref_edge *edge;
 697	struct rb_node *rb_node;
 698	struct btrfs_key key;
 699	unsigned long end;
 700	unsigned long ptr;
 701	LIST_HEAD(list);
 702	LIST_HEAD(useless);
 703	int cowonly;
 704	int ret;
 705	int err = 0;
 706	bool need_check = true;
 707
 708	path1 = btrfs_alloc_path();
 709	path2 = btrfs_alloc_path();
 710	if (!path1 || !path2) {
 
 
 711		err = -ENOMEM;
 712		goto out;
 713	}
 714	path1->reada = READA_FORWARD;
 715	path2->reada = READA_FORWARD;
 716
 717	node = alloc_backref_node(cache);
 718	if (!node) {
 719		err = -ENOMEM;
 720		goto out;
 721	}
 722
 723	node->bytenr = bytenr;
 724	node->level = level;
 725	node->lowest = 1;
 726	cur = node;
 727again:
 728	end = 0;
 729	ptr = 0;
 730	key.objectid = cur->bytenr;
 731	key.type = BTRFS_METADATA_ITEM_KEY;
 732	key.offset = (u64)-1;
 733
 734	path1->search_commit_root = 1;
 735	path1->skip_locking = 1;
 736	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 737				0, 0);
 738	if (ret < 0) {
 739		err = ret;
 740		goto out;
 741	}
 742	ASSERT(ret);
 743	ASSERT(path1->slots[0]);
 744
 745	path1->slots[0]--;
 746
 747	WARN_ON(cur->checked);
 748	if (!list_empty(&cur->upper)) {
 749		/*
 750		 * the backref was added previously when processing
 751		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 752		 */
 753		ASSERT(list_is_singular(&cur->upper));
 754		edge = list_entry(cur->upper.next, struct backref_edge,
 755				  list[LOWER]);
 756		ASSERT(list_empty(&edge->list[UPPER]));
 757		exist = edge->node[UPPER];
 758		/*
 759		 * add the upper level block to pending list if we need
 760		 * check its backrefs
 761		 */
 762		if (!exist->checked)
 763			list_add_tail(&edge->list[UPPER], &list);
 764	} else {
 765		exist = NULL;
 766	}
 767
 768	while (1) {
 769		cond_resched();
 770		eb = path1->nodes[0];
 771
 772		if (ptr >= end) {
 773			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 774				ret = btrfs_next_leaf(rc->extent_root, path1);
 775				if (ret < 0) {
 776					err = ret;
 777					goto out;
 778				}
 779				if (ret > 0)
 780					break;
 781				eb = path1->nodes[0];
 782			}
 783
 784			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 785			if (key.objectid != cur->bytenr) {
 786				WARN_ON(exist);
 787				break;
 788			}
 789
 790			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 791			    key.type == BTRFS_METADATA_ITEM_KEY) {
 792				ret = find_inline_backref(eb, path1->slots[0],
 793							  &ptr, &end);
 794				if (ret)
 795					goto next;
 796			}
 797		}
 798
 799		if (ptr < end) {
 800			/* update key for inline back ref */
 801			struct btrfs_extent_inline_ref *iref;
 802			iref = (struct btrfs_extent_inline_ref *)ptr;
 803			key.type = btrfs_extent_inline_ref_type(eb, iref);
 804			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 805			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 806				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 807		}
 808
 809		if (exist &&
 810		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 811		      exist->owner == key.offset) ||
 812		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 813		      exist->bytenr == key.offset))) {
 814			exist = NULL;
 815			goto next;
 816		}
 817
 818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 819		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 820		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 821			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 822				struct btrfs_extent_ref_v0 *ref0;
 823				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 824						struct btrfs_extent_ref_v0);
 825				if (key.objectid == key.offset) {
 826					root = find_tree_root(rc, eb, ref0);
 827					if (root && !should_ignore_root(root))
 828						cur->root = root;
 829					else
 830						list_add(&cur->list, &useless);
 831					break;
 832				}
 833				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 834								      ref0)))
 835					cur->cowonly = 1;
 836			}
 837#else
 838		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
 839		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 840#endif
 841			if (key.objectid == key.offset) {
 842				/*
 843				 * only root blocks of reloc trees use
 844				 * backref of this type.
 845				 */
 846				root = find_reloc_root(rc, cur->bytenr);
 847				ASSERT(root);
 848				cur->root = root;
 849				break;
 850			}
 851
 852			edge = alloc_backref_edge(cache);
 853			if (!edge) {
 854				err = -ENOMEM;
 855				goto out;
 856			}
 857			rb_node = tree_search(&cache->rb_root, key.offset);
 858			if (!rb_node) {
 859				upper = alloc_backref_node(cache);
 860				if (!upper) {
 861					free_backref_edge(cache, edge);
 862					err = -ENOMEM;
 863					goto out;
 864				}
 865				upper->bytenr = key.offset;
 866				upper->level = cur->level + 1;
 867				/*
 868				 *  backrefs for the upper level block isn't
 869				 *  cached, add the block to pending list
 870				 */
 871				list_add_tail(&edge->list[UPPER], &list);
 872			} else {
 873				upper = rb_entry(rb_node, struct backref_node,
 874						 rb_node);
 875				ASSERT(upper->checked);
 876				INIT_LIST_HEAD(&edge->list[UPPER]);
 877			}
 878			list_add_tail(&edge->list[LOWER], &cur->upper);
 879			edge->node[LOWER] = cur;
 880			edge->node[UPPER] = upper;
 881
 882			goto next;
 883		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 884			goto next;
 885		}
 886
 887		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 888		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 889		if (IS_ERR(root)) {
 890			err = PTR_ERR(root);
 891			goto out;
 892		}
 893
 894		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 895			cur->cowonly = 1;
 896
 897		if (btrfs_root_level(&root->root_item) == cur->level) {
 898			/* tree root */
 899			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 900			       cur->bytenr);
 901			if (should_ignore_root(root))
 902				list_add(&cur->list, &useless);
 903			else
 904				cur->root = root;
 905			break;
 906		}
 907
 908		level = cur->level + 1;
 909
 910		/*
 911		 * searching the tree to find upper level blocks
 912		 * reference the block.
 913		 */
 914		path2->search_commit_root = 1;
 915		path2->skip_locking = 1;
 916		path2->lowest_level = level;
 917		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 918		path2->lowest_level = 0;
 919		if (ret < 0) {
 920			err = ret;
 921			goto out;
 922		}
 923		if (ret > 0 && path2->slots[level] > 0)
 924			path2->slots[level]--;
 925
 926		eb = path2->nodes[level];
 927		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 928		    cur->bytenr) {
 929			btrfs_err(root->fs_info,
 930	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 931				  cur->bytenr, level - 1, root->objectid,
 932				  node_key->objectid, node_key->type,
 933				  node_key->offset);
 934			err = -ENOENT;
 935			goto out;
 936		}
 937		lower = cur;
 938		need_check = true;
 939		for (; level < BTRFS_MAX_LEVEL; level++) {
 940			if (!path2->nodes[level]) {
 941				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 942				       lower->bytenr);
 943				if (should_ignore_root(root))
 944					list_add(&lower->list, &useless);
 945				else
 946					lower->root = root;
 947				break;
 948			}
 949
 950			edge = alloc_backref_edge(cache);
 951			if (!edge) {
 952				err = -ENOMEM;
 953				goto out;
 954			}
 955
 956			eb = path2->nodes[level];
 957			rb_node = tree_search(&cache->rb_root, eb->start);
 958			if (!rb_node) {
 959				upper = alloc_backref_node(cache);
 960				if (!upper) {
 961					free_backref_edge(cache, edge);
 962					err = -ENOMEM;
 963					goto out;
 964				}
 965				upper->bytenr = eb->start;
 966				upper->owner = btrfs_header_owner(eb);
 967				upper->level = lower->level + 1;
 968				if (!test_bit(BTRFS_ROOT_REF_COWS,
 969					      &root->state))
 970					upper->cowonly = 1;
 971
 972				/*
 973				 * if we know the block isn't shared
 974				 * we can void checking its backrefs.
 975				 */
 976				if (btrfs_block_can_be_shared(root, eb))
 977					upper->checked = 0;
 978				else
 979					upper->checked = 1;
 980
 981				/*
 982				 * add the block to pending list if we
 983				 * need check its backrefs, we only do this once
 984				 * while walking up a tree as we will catch
 985				 * anything else later on.
 986				 */
 987				if (!upper->checked && need_check) {
 988					need_check = false;
 989					list_add_tail(&edge->list[UPPER],
 990						      &list);
 991				} else {
 992					if (upper->checked)
 993						need_check = true;
 994					INIT_LIST_HEAD(&edge->list[UPPER]);
 995				}
 996			} else {
 997				upper = rb_entry(rb_node, struct backref_node,
 998						 rb_node);
 999				ASSERT(upper->checked);
1000				INIT_LIST_HEAD(&edge->list[UPPER]);
1001				if (!upper->owner)
1002					upper->owner = btrfs_header_owner(eb);
1003			}
1004			list_add_tail(&edge->list[LOWER], &lower->upper);
1005			edge->node[LOWER] = lower;
1006			edge->node[UPPER] = upper;
1007
1008			if (rb_node)
1009				break;
1010			lower = upper;
1011			upper = NULL;
1012		}
1013		btrfs_release_path(path2);
1014next:
1015		if (ptr < end) {
1016			ptr += btrfs_extent_inline_ref_size(key.type);
1017			if (ptr >= end) {
1018				WARN_ON(ptr > end);
1019				ptr = 0;
1020				end = 0;
1021			}
1022		}
1023		if (ptr >= end)
1024			path1->slots[0]++;
1025	}
1026	btrfs_release_path(path1);
1027
1028	cur->checked = 1;
1029	WARN_ON(exist);
1030
1031	/* the pending list isn't empty, take the first block to process */
1032	if (!list_empty(&list)) {
1033		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034		list_del_init(&edge->list[UPPER]);
1035		cur = edge->node[UPPER];
1036		goto again;
1037	}
1038
1039	/*
1040	 * everything goes well, connect backref nodes and insert backref nodes
1041	 * into the cache.
1042	 */
1043	ASSERT(node->checked);
1044	cowonly = node->cowonly;
1045	if (!cowonly) {
1046		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047				      &node->rb_node);
1048		if (rb_node)
1049			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050		list_add_tail(&node->lower, &cache->leaves);
1051	}
1052
1053	list_for_each_entry(edge, &node->upper, list[LOWER])
1054		list_add_tail(&edge->list[UPPER], &list);
1055
1056	while (!list_empty(&list)) {
1057		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058		list_del_init(&edge->list[UPPER]);
1059		upper = edge->node[UPPER];
1060		if (upper->detached) {
1061			list_del(&edge->list[LOWER]);
1062			lower = edge->node[LOWER];
1063			free_backref_edge(cache, edge);
1064			if (list_empty(&lower->upper))
1065				list_add(&lower->list, &useless);
1066			continue;
1067		}
1068
1069		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070			if (upper->lowest) {
1071				list_del_init(&upper->lower);
1072				upper->lowest = 0;
1073			}
1074
1075			list_add_tail(&edge->list[UPPER], &upper->lower);
1076			continue;
1077		}
1078
1079		if (!upper->checked) {
1080			/*
1081			 * Still want to blow up for developers since this is a
1082			 * logic bug.
1083			 */
1084			ASSERT(0);
1085			err = -EINVAL;
1086			goto out;
1087		}
1088		if (cowonly != upper->cowonly) {
1089			ASSERT(0);
1090			err = -EINVAL;
1091			goto out;
1092		}
1093
1094		if (!cowonly) {
1095			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096					      &upper->rb_node);
1097			if (rb_node)
1098				backref_tree_panic(rb_node, -EEXIST,
1099						   upper->bytenr);
1100		}
 
1101
1102		list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104		list_for_each_entry(edge, &upper->upper, list[LOWER])
1105			list_add_tail(&edge->list[UPPER], &list);
 
1106	}
1107	/*
1108	 * process useless backref nodes. backref nodes for tree leaves
1109	 * are deleted from the cache. backref nodes for upper level
1110	 * tree blocks are left in the cache to avoid unnecessary backref
1111	 * lookup.
1112	 */
1113	while (!list_empty(&useless)) {
1114		upper = list_entry(useless.next, struct backref_node, list);
1115		list_del_init(&upper->list);
1116		ASSERT(list_empty(&upper->upper));
1117		if (upper == node)
1118			node = NULL;
1119		if (upper->lowest) {
1120			list_del_init(&upper->lower);
1121			upper->lowest = 0;
1122		}
1123		while (!list_empty(&upper->lower)) {
1124			edge = list_entry(upper->lower.next,
1125					  struct backref_edge, list[UPPER]);
1126			list_del(&edge->list[UPPER]);
1127			list_del(&edge->list[LOWER]);
1128			lower = edge->node[LOWER];
1129			free_backref_edge(cache, edge);
1130
1131			if (list_empty(&lower->upper))
1132				list_add(&lower->list, &useless);
1133		}
1134		__mark_block_processed(rc, upper);
1135		if (upper->level > 0) {
1136			list_add(&upper->list, &cache->detached);
1137			upper->detached = 1;
1138		} else {
1139			rb_erase(&upper->rb_node, &cache->rb_root);
1140			free_backref_node(cache, upper);
1141		}
1142	}
1143out:
1144	btrfs_free_path(path1);
1145	btrfs_free_path(path2);
1146	if (err) {
1147		while (!list_empty(&useless)) {
1148			lower = list_entry(useless.next,
1149					   struct backref_node, list);
1150			list_del_init(&lower->list);
1151		}
1152		while (!list_empty(&list)) {
1153			edge = list_first_entry(&list, struct backref_edge,
1154						list[UPPER]);
1155			list_del(&edge->list[UPPER]);
1156			list_del(&edge->list[LOWER]);
1157			lower = edge->node[LOWER];
1158			upper = edge->node[UPPER];
1159			free_backref_edge(cache, edge);
1160
1161			/*
1162			 * Lower is no longer linked to any upper backref nodes
1163			 * and isn't in the cache, we can free it ourselves.
1164			 */
1165			if (list_empty(&lower->upper) &&
1166			    RB_EMPTY_NODE(&lower->rb_node))
1167				list_add(&lower->list, &useless);
1168
1169			if (!RB_EMPTY_NODE(&upper->rb_node))
1170				continue;
1171
1172			/* Add this guy's upper edges to the list to process */
1173			list_for_each_entry(edge, &upper->upper, list[LOWER])
1174				list_add_tail(&edge->list[UPPER], &list);
1175			if (list_empty(&upper->upper))
1176				list_add(&upper->list, &useless);
1177		}
1178
1179		while (!list_empty(&useless)) {
1180			lower = list_entry(useless.next,
1181					   struct backref_node, list);
1182			list_del_init(&lower->list);
1183			if (lower == node)
1184				node = NULL;
1185			free_backref_node(cache, lower);
1186		}
1187
1188		free_backref_node(cache, node);
1189		return ERR_PTR(err);
1190	}
1191	ASSERT(!node || !node->detached);
 
 
1192	return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201			      struct reloc_control *rc,
1202			      struct btrfs_root *src,
1203			      struct btrfs_root *dest)
1204{
1205	struct btrfs_root *reloc_root = src->reloc_root;
1206	struct backref_cache *cache = &rc->backref_cache;
1207	struct backref_node *node = NULL;
1208	struct backref_node *new_node;
1209	struct backref_edge *edge;
1210	struct backref_edge *new_edge;
1211	struct rb_node *rb_node;
1212
1213	if (cache->last_trans > 0)
1214		update_backref_cache(trans, cache);
1215
1216	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217	if (rb_node) {
1218		node = rb_entry(rb_node, struct backref_node, rb_node);
1219		if (node->detached)
1220			node = NULL;
1221		else
1222			BUG_ON(node->new_bytenr != reloc_root->node->start);
1223	}
1224
1225	if (!node) {
1226		rb_node = tree_search(&cache->rb_root,
1227				      reloc_root->commit_root->start);
1228		if (rb_node) {
1229			node = rb_entry(rb_node, struct backref_node,
1230					rb_node);
1231			BUG_ON(node->detached);
1232		}
1233	}
1234
1235	if (!node)
1236		return 0;
1237
1238	new_node = alloc_backref_node(cache);
 
1239	if (!new_node)
1240		return -ENOMEM;
1241
1242	new_node->bytenr = dest->node->start;
1243	new_node->level = node->level;
1244	new_node->lowest = node->lowest;
1245	new_node->checked = 1;
1246	new_node->root = dest;
 
1247
1248	if (!node->lowest) {
1249		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250			new_edge = alloc_backref_edge(cache);
1251			if (!new_edge)
1252				goto fail;
1253
1254			new_edge->node[UPPER] = new_node;
1255			new_edge->node[LOWER] = edge->node[LOWER];
1256			list_add_tail(&new_edge->list[UPPER],
1257				      &new_node->lower);
1258		}
1259	} else {
1260		list_add_tail(&new_node->lower, &cache->leaves);
1261	}
1262
1263	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264			      &new_node->rb_node);
1265	if (rb_node)
1266		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268	if (!new_node->lowest) {
1269		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270			list_add_tail(&new_edge->list[LOWER],
1271				      &new_edge->node[LOWER]->upper);
1272		}
1273	}
1274	return 0;
1275fail:
1276	while (!list_empty(&new_node->lower)) {
1277		new_edge = list_entry(new_node->lower.next,
1278				      struct backref_edge, list[UPPER]);
1279		list_del(&new_edge->list[UPPER]);
1280		free_backref_edge(cache, new_edge);
1281	}
1282	free_backref_node(cache, new_node);
1283	return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291	struct btrfs_fs_info *fs_info = root->fs_info;
1292	struct rb_node *rb_node;
1293	struct mapping_node *node;
1294	struct reloc_control *rc = fs_info->reloc_ctl;
1295
1296	node = kmalloc(sizeof(*node), GFP_NOFS);
1297	if (!node)
1298		return -ENOMEM;
1299
1300	node->bytenr = root->node->start;
1301	node->data = root;
1302
1303	spin_lock(&rc->reloc_root_tree.lock);
1304	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1305			      node->bytenr, &node->rb_node);
1306	spin_unlock(&rc->reloc_root_tree.lock);
1307	if (rb_node) {
1308		btrfs_panic(fs_info, -EEXIST,
1309			    "Duplicate root found for start=%llu while inserting into relocation tree",
1310			    node->bytenr);
1311		kfree(node);
1312		return -EEXIST;
1313	}
1314
1315	list_add_tail(&root->root_list, &rc->reloc_roots);
1316	return 0;
1317}
1318
1319/*
1320 * helper to delete the 'address of tree root -> reloc tree'
1321 * mapping
1322 */
1323static void __del_reloc_root(struct btrfs_root *root)
1324{
1325	struct btrfs_fs_info *fs_info = root->fs_info;
1326	struct rb_node *rb_node;
1327	struct mapping_node *node = NULL;
1328	struct reloc_control *rc = fs_info->reloc_ctl;
 
1329
1330	spin_lock(&rc->reloc_root_tree.lock);
1331	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332			      root->node->start);
1333	if (rb_node) {
1334		node = rb_entry(rb_node, struct mapping_node, rb_node);
1335		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
 
 
 
 
 
 
1336	}
1337	spin_unlock(&rc->reloc_root_tree.lock);
1338
1339	if (!node)
1340		return;
1341	BUG_ON((struct btrfs_root *)node->data != root);
1342
 
 
 
 
 
 
 
 
1343	spin_lock(&fs_info->trans_lock);
1344	list_del_init(&root->root_list);
 
 
 
1345	spin_unlock(&fs_info->trans_lock);
 
 
1346	kfree(node);
1347}
1348
1349/*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
1353static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354{
1355	struct btrfs_fs_info *fs_info = root->fs_info;
1356	struct rb_node *rb_node;
1357	struct mapping_node *node = NULL;
1358	struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360	spin_lock(&rc->reloc_root_tree.lock);
1361	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362			      root->node->start);
1363	if (rb_node) {
1364		node = rb_entry(rb_node, struct mapping_node, rb_node);
1365		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366	}
1367	spin_unlock(&rc->reloc_root_tree.lock);
1368
1369	if (!node)
1370		return 0;
1371	BUG_ON((struct btrfs_root *)node->data != root);
1372
1373	spin_lock(&rc->reloc_root_tree.lock);
1374	node->bytenr = new_bytenr;
1375	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376			      node->bytenr, &node->rb_node);
1377	spin_unlock(&rc->reloc_root_tree.lock);
1378	if (rb_node)
1379		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380	return 0;
1381}
1382
1383static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384					struct btrfs_root *root, u64 objectid)
1385{
1386	struct btrfs_fs_info *fs_info = root->fs_info;
1387	struct btrfs_root *reloc_root;
1388	struct extent_buffer *eb;
1389	struct btrfs_root_item *root_item;
1390	struct btrfs_key root_key;
1391	int ret;
1392
1393	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394	BUG_ON(!root_item);
1395
1396	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397	root_key.type = BTRFS_ROOT_ITEM_KEY;
1398	root_key.offset = objectid;
1399
1400	if (root->root_key.objectid == objectid) {
1401		u64 commit_root_gen;
1402
1403		/* called by btrfs_init_reloc_root */
1404		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405				      BTRFS_TREE_RELOC_OBJECTID);
1406		BUG_ON(ret);
1407		/*
1408		 * Set the last_snapshot field to the generation of the commit
1409		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410		 * correctly (returns true) when the relocation root is created
1411		 * either inside the critical section of a transaction commit
1412		 * (through transaction.c:qgroup_account_snapshot()) and when
1413		 * it's created before the transaction commit is started.
1414		 */
1415		commit_root_gen = btrfs_header_generation(root->commit_root);
1416		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417	} else {
1418		/*
1419		 * called by btrfs_reloc_post_snapshot_hook.
1420		 * the source tree is a reloc tree, all tree blocks
1421		 * modified after it was created have RELOC flag
1422		 * set in their headers. so it's OK to not update
1423		 * the 'last_snapshot'.
1424		 */
1425		ret = btrfs_copy_root(trans, root, root->node, &eb,
1426				      BTRFS_TREE_RELOC_OBJECTID);
1427		BUG_ON(ret);
1428	}
1429
1430	memcpy(root_item, &root->root_item, sizeof(*root_item));
1431	btrfs_set_root_bytenr(root_item, eb->start);
1432	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433	btrfs_set_root_generation(root_item, trans->transid);
1434
1435	if (root->root_key.objectid == objectid) {
1436		btrfs_set_root_refs(root_item, 0);
1437		memset(&root_item->drop_progress, 0,
1438		       sizeof(struct btrfs_disk_key));
1439		root_item->drop_level = 0;
1440	}
1441
1442	btrfs_tree_unlock(eb);
1443	free_extent_buffer(eb);
1444
1445	ret = btrfs_insert_root(trans, fs_info->tree_root,
1446				&root_key, root_item);
1447	BUG_ON(ret);
1448	kfree(root_item);
1449
1450	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1451	BUG_ON(IS_ERR(reloc_root));
 
1452	reloc_root->last_trans = trans->transid;
1453	return reloc_root;
1454}
1455
1456/*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
 
 
 
1459 */
1460int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461			  struct btrfs_root *root)
1462{
1463	struct btrfs_fs_info *fs_info = root->fs_info;
1464	struct btrfs_root *reloc_root;
1465	struct reloc_control *rc = fs_info->reloc_ctl;
1466	struct btrfs_block_rsv *rsv;
1467	int clear_rsv = 0;
1468	int ret;
1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	if (root->reloc_root) {
1471		reloc_root = root->reloc_root;
1472		reloc_root->last_trans = trans->transid;
1473		return 0;
1474	}
1475
1476	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1477	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1478		return 0;
1479
1480	if (!trans->reloc_reserved) {
1481		rsv = trans->block_rsv;
1482		trans->block_rsv = rc->block_rsv;
1483		clear_rsv = 1;
1484	}
1485	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1486	if (clear_rsv)
1487		trans->block_rsv = rsv;
1488
1489	ret = __add_reloc_root(reloc_root);
1490	BUG_ON(ret < 0);
1491	root->reloc_root = reloc_root;
1492	return 0;
1493}
1494
1495/*
1496 * update root item of reloc tree
1497 */
1498int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1499			    struct btrfs_root *root)
1500{
1501	struct btrfs_fs_info *fs_info = root->fs_info;
1502	struct btrfs_root *reloc_root;
1503	struct btrfs_root_item *root_item;
1504	int ret;
1505
1506	if (!root->reloc_root)
1507		goto out;
1508
1509	reloc_root = root->reloc_root;
1510	root_item = &reloc_root->root_item;
1511
 
 
 
 
 
 
 
 
1512	if (fs_info->reloc_ctl->merge_reloc_tree &&
1513	    btrfs_root_refs(root_item) == 0) {
1514		root->reloc_root = NULL;
 
 
 
 
 
1515		__del_reloc_root(reloc_root);
1516	}
1517
1518	if (reloc_root->commit_root != reloc_root->node) {
 
1519		btrfs_set_root_node(root_item, reloc_root->node);
1520		free_extent_buffer(reloc_root->commit_root);
1521		reloc_root->commit_root = btrfs_root_node(reloc_root);
1522	}
1523
1524	ret = btrfs_update_root(trans, fs_info->tree_root,
1525				&reloc_root->root_key, root_item);
1526	BUG_ON(ret);
1527
1528out:
1529	return 0;
1530}
1531
1532/*
1533 * helper to find first cached inode with inode number >= objectid
1534 * in a subvolume
1535 */
1536static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1537{
1538	struct rb_node *node;
1539	struct rb_node *prev;
1540	struct btrfs_inode *entry;
1541	struct inode *inode;
1542
1543	spin_lock(&root->inode_lock);
1544again:
1545	node = root->inode_tree.rb_node;
1546	prev = NULL;
1547	while (node) {
1548		prev = node;
1549		entry = rb_entry(node, struct btrfs_inode, rb_node);
1550
1551		if (objectid < btrfs_ino(&entry->vfs_inode))
1552			node = node->rb_left;
1553		else if (objectid > btrfs_ino(&entry->vfs_inode))
1554			node = node->rb_right;
1555		else
1556			break;
1557	}
1558	if (!node) {
1559		while (prev) {
1560			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1561			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1562				node = prev;
1563				break;
1564			}
1565			prev = rb_next(prev);
1566		}
1567	}
1568	while (node) {
1569		entry = rb_entry(node, struct btrfs_inode, rb_node);
1570		inode = igrab(&entry->vfs_inode);
1571		if (inode) {
1572			spin_unlock(&root->inode_lock);
1573			return inode;
1574		}
1575
1576		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1577		if (cond_resched_lock(&root->inode_lock))
1578			goto again;
1579
1580		node = rb_next(node);
1581	}
1582	spin_unlock(&root->inode_lock);
1583	return NULL;
1584}
1585
1586static int in_block_group(u64 bytenr,
1587			  struct btrfs_block_group_cache *block_group)
1588{
1589	if (bytenr >= block_group->key.objectid &&
1590	    bytenr < block_group->key.objectid + block_group->key.offset)
1591		return 1;
1592	return 0;
1593}
1594
1595/*
1596 * get new location of data
1597 */
1598static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1599			    u64 bytenr, u64 num_bytes)
1600{
1601	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1602	struct btrfs_path *path;
1603	struct btrfs_file_extent_item *fi;
1604	struct extent_buffer *leaf;
1605	int ret;
1606
1607	path = btrfs_alloc_path();
1608	if (!path)
1609		return -ENOMEM;
1610
1611	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1612	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1613				       bytenr, 0);
1614	if (ret < 0)
1615		goto out;
1616	if (ret > 0) {
1617		ret = -ENOENT;
1618		goto out;
1619	}
1620
1621	leaf = path->nodes[0];
1622	fi = btrfs_item_ptr(leaf, path->slots[0],
1623			    struct btrfs_file_extent_item);
1624
1625	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1626	       btrfs_file_extent_compression(leaf, fi) ||
1627	       btrfs_file_extent_encryption(leaf, fi) ||
1628	       btrfs_file_extent_other_encoding(leaf, fi));
1629
1630	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1631		ret = -EINVAL;
1632		goto out;
1633	}
1634
1635	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1636	ret = 0;
1637out:
1638	btrfs_free_path(path);
1639	return ret;
1640}
1641
1642/*
1643 * update file extent items in the tree leaf to point to
1644 * the new locations.
1645 */
1646static noinline_for_stack
1647int replace_file_extents(struct btrfs_trans_handle *trans,
1648			 struct reloc_control *rc,
1649			 struct btrfs_root *root,
1650			 struct extent_buffer *leaf)
1651{
1652	struct btrfs_fs_info *fs_info = root->fs_info;
1653	struct btrfs_key key;
1654	struct btrfs_file_extent_item *fi;
1655	struct inode *inode = NULL;
1656	u64 parent;
1657	u64 bytenr;
1658	u64 new_bytenr = 0;
1659	u64 num_bytes;
1660	u64 end;
1661	u32 nritems;
1662	u32 i;
1663	int ret = 0;
1664	int first = 1;
1665	int dirty = 0;
1666
1667	if (rc->stage != UPDATE_DATA_PTRS)
1668		return 0;
1669
1670	/* reloc trees always use full backref */
1671	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1672		parent = leaf->start;
1673	else
1674		parent = 0;
1675
1676	nritems = btrfs_header_nritems(leaf);
1677	for (i = 0; i < nritems; i++) {
 
 
1678		cond_resched();
1679		btrfs_item_key_to_cpu(leaf, &key, i);
1680		if (key.type != BTRFS_EXTENT_DATA_KEY)
1681			continue;
1682		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1683		if (btrfs_file_extent_type(leaf, fi) ==
1684		    BTRFS_FILE_EXTENT_INLINE)
1685			continue;
1686		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1687		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1688		if (bytenr == 0)
1689			continue;
1690		if (!in_block_group(bytenr, rc->block_group))
 
1691			continue;
1692
1693		/*
1694		 * if we are modifying block in fs tree, wait for readpage
1695		 * to complete and drop the extent cache
1696		 */
1697		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1698			if (first) {
1699				inode = find_next_inode(root, key.objectid);
1700				first = 0;
1701			} else if (inode && btrfs_ino(inode) < key.objectid) {
1702				btrfs_add_delayed_iput(inode);
1703				inode = find_next_inode(root, key.objectid);
1704			}
1705			if (inode && btrfs_ino(inode) == key.objectid) {
1706				end = key.offset +
1707				      btrfs_file_extent_num_bytes(leaf, fi);
1708				WARN_ON(!IS_ALIGNED(key.offset,
1709						    fs_info->sectorsize));
1710				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1711				end--;
1712				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1713						      key.offset, end);
1714				if (!ret)
1715					continue;
1716
1717				btrfs_drop_extent_cache(inode, key.offset, end,
1718							1);
1719				unlock_extent(&BTRFS_I(inode)->io_tree,
1720					      key.offset, end);
1721			}
1722		}
1723
1724		ret = get_new_location(rc->data_inode, &new_bytenr,
1725				       bytenr, num_bytes);
1726		if (ret) {
1727			/*
1728			 * Don't have to abort since we've not changed anything
1729			 * in the file extent yet.
1730			 */
1731			break;
1732		}
1733
1734		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1735		dirty = 1;
1736
1737		key.offset -= btrfs_file_extent_offset(leaf, fi);
1738		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1739					   num_bytes, parent,
1740					   btrfs_header_owner(leaf),
1741					   key.objectid, key.offset);
 
 
1742		if (ret) {
1743			btrfs_abort_transaction(trans, ret);
1744			break;
1745		}
1746
1747		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1748					parent, btrfs_header_owner(leaf),
1749					key.objectid, key.offset);
 
 
 
1750		if (ret) {
1751			btrfs_abort_transaction(trans, ret);
1752			break;
1753		}
1754	}
1755	if (dirty)
1756		btrfs_mark_buffer_dirty(leaf);
1757	if (inode)
1758		btrfs_add_delayed_iput(inode);
1759	return ret;
1760}
1761
1762static noinline_for_stack
1763int memcmp_node_keys(struct extent_buffer *eb, int slot,
1764		     struct btrfs_path *path, int level)
1765{
1766	struct btrfs_disk_key key1;
1767	struct btrfs_disk_key key2;
1768	btrfs_node_key(eb, &key1, slot);
1769	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1770	return memcmp(&key1, &key2, sizeof(key1));
1771}
1772
1773/*
1774 * try to replace tree blocks in fs tree with the new blocks
1775 * in reloc tree. tree blocks haven't been modified since the
1776 * reloc tree was create can be replaced.
1777 *
1778 * if a block was replaced, level of the block + 1 is returned.
1779 * if no block got replaced, 0 is returned. if there are other
1780 * errors, a negative error number is returned.
1781 */
1782static noinline_for_stack
1783int replace_path(struct btrfs_trans_handle *trans,
1784		 struct btrfs_root *dest, struct btrfs_root *src,
1785		 struct btrfs_path *path, struct btrfs_key *next_key,
1786		 int lowest_level, int max_level)
1787{
1788	struct btrfs_fs_info *fs_info = dest->fs_info;
1789	struct extent_buffer *eb;
1790	struct extent_buffer *parent;
 
1791	struct btrfs_key key;
1792	u64 old_bytenr;
1793	u64 new_bytenr;
1794	u64 old_ptr_gen;
1795	u64 new_ptr_gen;
1796	u64 last_snapshot;
1797	u32 blocksize;
1798	int cow = 0;
1799	int level;
1800	int ret;
1801	int slot;
1802
1803	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807again:
1808	slot = path->slots[lowest_level];
1809	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811	eb = btrfs_lock_root_node(dest);
1812	btrfs_set_lock_blocking(eb);
1813	level = btrfs_header_level(eb);
1814
1815	if (level < lowest_level) {
1816		btrfs_tree_unlock(eb);
1817		free_extent_buffer(eb);
1818		return 0;
1819	}
1820
1821	if (cow) {
1822		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823		BUG_ON(ret);
1824	}
1825	btrfs_set_lock_blocking(eb);
1826
1827	if (next_key) {
1828		next_key->objectid = (u64)-1;
1829		next_key->type = (u8)-1;
1830		next_key->offset = (u64)-1;
1831	}
1832
1833	parent = eb;
1834	while (1) {
 
 
1835		level = btrfs_header_level(parent);
1836		BUG_ON(level < lowest_level);
1837
1838		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1839		if (ret && slot > 0)
1840			slot--;
1841
1842		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845		old_bytenr = btrfs_node_blockptr(parent, slot);
1846		blocksize = fs_info->nodesize;
1847		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
 
1848
1849		if (level <= max_level) {
1850			eb = path->nodes[level];
1851			new_bytenr = btrfs_node_blockptr(eb,
1852							path->slots[level]);
1853			new_ptr_gen = btrfs_node_ptr_generation(eb,
1854							path->slots[level]);
1855		} else {
1856			new_bytenr = 0;
1857			new_ptr_gen = 0;
1858		}
1859
1860		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1861			ret = level;
1862			break;
1863		}
1864
1865		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866		    memcmp_node_keys(parent, slot, path, level)) {
1867			if (level <= lowest_level) {
1868				ret = 0;
1869				break;
1870			}
1871
1872			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
 
1873			if (IS_ERR(eb)) {
1874				ret = PTR_ERR(eb);
1875				break;
1876			} else if (!extent_buffer_uptodate(eb)) {
1877				ret = -EIO;
1878				free_extent_buffer(eb);
1879				break;
1880			}
1881			btrfs_tree_lock(eb);
1882			if (cow) {
1883				ret = btrfs_cow_block(trans, dest, eb, parent,
1884						      slot, &eb);
1885				BUG_ON(ret);
1886			}
1887			btrfs_set_lock_blocking(eb);
1888
1889			btrfs_tree_unlock(parent);
1890			free_extent_buffer(parent);
1891
1892			parent = eb;
1893			continue;
1894		}
1895
1896		if (!cow) {
1897			btrfs_tree_unlock(parent);
1898			free_extent_buffer(parent);
1899			cow = 1;
1900			goto again;
1901		}
1902
1903		btrfs_node_key_to_cpu(path->nodes[level], &key,
1904				      path->slots[level]);
1905		btrfs_release_path(path);
1906
1907		path->lowest_level = level;
1908		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909		path->lowest_level = 0;
1910		BUG_ON(ret);
1911
1912		/*
1913		 * Info qgroup to trace both subtrees.
1914		 *
1915		 * We must trace both trees.
1916		 * 1) Tree reloc subtree
1917		 *    If not traced, we will leak data numbers
1918		 * 2) Fs subtree
1919		 *    If not traced, we will double count old data
1920		 *    and tree block numbers, if current trans doesn't free
1921		 *    data reloc tree inode.
 
 
 
1922		 */
1923		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1924				btrfs_header_generation(parent),
1925				btrfs_header_level(parent));
1926		if (ret < 0)
1927			break;
1928		ret = btrfs_qgroup_trace_subtree(trans, dest,
1929				path->nodes[level],
1930				btrfs_header_generation(path->nodes[level]),
1931				btrfs_header_level(path->nodes[level]));
1932		if (ret < 0)
1933			break;
1934
1935		/*
1936		 * swap blocks in fs tree and reloc tree.
1937		 */
1938		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1939		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1940		btrfs_mark_buffer_dirty(parent);
1941
1942		btrfs_set_node_blockptr(path->nodes[level],
1943					path->slots[level], old_bytenr);
1944		btrfs_set_node_ptr_generation(path->nodes[level],
1945					      path->slots[level], old_ptr_gen);
1946		btrfs_mark_buffer_dirty(path->nodes[level]);
1947
1948		ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1949					blocksize, path->nodes[level]->start,
1950					src->root_key.objectid, level - 1, 0);
 
 
1951		BUG_ON(ret);
1952		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1953					blocksize, 0, dest->root_key.objectid,
1954					level - 1, 0);
 
 
1955		BUG_ON(ret);
1956
1957		ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1958					path->nodes[level]->start,
1959					src->root_key.objectid, level - 1, 0);
 
 
1960		BUG_ON(ret);
1961
1962		ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1963					0, dest->root_key.objectid, level - 1,
1964					0);
 
 
1965		BUG_ON(ret);
1966
1967		btrfs_unlock_up_safe(path, 0);
1968
1969		ret = level;
1970		break;
1971	}
1972	btrfs_tree_unlock(parent);
1973	free_extent_buffer(parent);
1974	return ret;
1975}
1976
1977/*
1978 * helper to find next relocated block in reloc tree
1979 */
1980static noinline_for_stack
1981int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1982		       int *level)
1983{
1984	struct extent_buffer *eb;
1985	int i;
1986	u64 last_snapshot;
1987	u32 nritems;
1988
1989	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1990
1991	for (i = 0; i < *level; i++) {
1992		free_extent_buffer(path->nodes[i]);
1993		path->nodes[i] = NULL;
1994	}
1995
1996	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1997		eb = path->nodes[i];
1998		nritems = btrfs_header_nritems(eb);
1999		while (path->slots[i] + 1 < nritems) {
2000			path->slots[i]++;
2001			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2002			    last_snapshot)
2003				continue;
2004
2005			*level = i;
2006			return 0;
2007		}
2008		free_extent_buffer(path->nodes[i]);
2009		path->nodes[i] = NULL;
2010	}
2011	return 1;
2012}
2013
2014/*
2015 * walk down reloc tree to find relocated block of lowest level
2016 */
2017static noinline_for_stack
2018int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2019			 int *level)
2020{
2021	struct btrfs_fs_info *fs_info = root->fs_info;
2022	struct extent_buffer *eb = NULL;
2023	int i;
2024	u64 bytenr;
2025	u64 ptr_gen = 0;
2026	u64 last_snapshot;
2027	u32 nritems;
2028
2029	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2030
2031	for (i = *level; i > 0; i--) {
 
 
2032		eb = path->nodes[i];
2033		nritems = btrfs_header_nritems(eb);
2034		while (path->slots[i] < nritems) {
2035			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036			if (ptr_gen > last_snapshot)
2037				break;
2038			path->slots[i]++;
2039		}
2040		if (path->slots[i] >= nritems) {
2041			if (i == *level)
2042				break;
2043			*level = i + 1;
2044			return 0;
2045		}
2046		if (i == 1) {
2047			*level = i;
2048			return 0;
2049		}
2050
2051		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052		eb = read_tree_block(fs_info, bytenr, ptr_gen);
 
 
2053		if (IS_ERR(eb)) {
2054			return PTR_ERR(eb);
2055		} else if (!extent_buffer_uptodate(eb)) {
2056			free_extent_buffer(eb);
2057			return -EIO;
2058		}
2059		BUG_ON(btrfs_header_level(eb) != i - 1);
2060		path->nodes[i - 1] = eb;
2061		path->slots[i - 1] = 0;
2062	}
2063	return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071				   struct btrfs_key *min_key,
2072				   struct btrfs_key *max_key)
2073{
2074	struct btrfs_fs_info *fs_info = root->fs_info;
2075	struct inode *inode = NULL;
2076	u64 objectid;
2077	u64 start, end;
2078	u64 ino;
2079
2080	objectid = min_key->objectid;
2081	while (1) {
2082		cond_resched();
2083		iput(inode);
2084
2085		if (objectid > max_key->objectid)
2086			break;
2087
2088		inode = find_next_inode(root, objectid);
2089		if (!inode)
2090			break;
2091		ino = btrfs_ino(inode);
2092
2093		if (ino > max_key->objectid) {
2094			iput(inode);
2095			break;
2096		}
2097
2098		objectid = ino + 1;
2099		if (!S_ISREG(inode->i_mode))
2100			continue;
2101
2102		if (unlikely(min_key->objectid == ino)) {
2103			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104				continue;
2105			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106				start = 0;
2107			else {
2108				start = min_key->offset;
2109				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110			}
2111		} else {
2112			start = 0;
2113		}
2114
2115		if (unlikely(max_key->objectid == ino)) {
2116			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117				continue;
2118			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119				end = (u64)-1;
2120			} else {
2121				if (max_key->offset == 0)
2122					continue;
2123				end = max_key->offset;
2124				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125				end--;
2126			}
2127		} else {
2128			end = (u64)-1;
2129		}
2130
2131		/* the lock_extent waits for readpage to complete */
2132		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133		btrfs_drop_extent_cache(inode, start, end, 1);
2134		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135	}
2136	return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140			 struct btrfs_key *key)
2141
2142{
2143	while (level < BTRFS_MAX_LEVEL) {
2144		if (!path->nodes[level])
2145			break;
2146		if (path->slots[level] + 1 <
2147		    btrfs_header_nritems(path->nodes[level])) {
2148			btrfs_node_key_to_cpu(path->nodes[level], key,
2149					      path->slots[level] + 1);
2150			return 0;
2151		}
2152		level++;
2153	}
2154	return 1;
2155}
2156
2157/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158 * merge the relocated tree blocks in reloc tree with corresponding
2159 * fs tree.
2160 */
2161static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2162					       struct btrfs_root *root)
2163{
2164	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2165	LIST_HEAD(inode_list);
2166	struct btrfs_key key;
2167	struct btrfs_key next_key;
2168	struct btrfs_trans_handle *trans = NULL;
2169	struct btrfs_root *reloc_root;
2170	struct btrfs_root_item *root_item;
2171	struct btrfs_path *path;
2172	struct extent_buffer *leaf;
2173	int level;
2174	int max_level;
2175	int replaced = 0;
2176	int ret;
2177	int err = 0;
2178	u32 min_reserved;
2179
2180	path = btrfs_alloc_path();
2181	if (!path)
2182		return -ENOMEM;
2183	path->reada = READA_FORWARD;
2184
2185	reloc_root = root->reloc_root;
2186	root_item = &reloc_root->root_item;
2187
2188	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2189		level = btrfs_root_level(root_item);
2190		extent_buffer_get(reloc_root->node);
2191		path->nodes[level] = reloc_root->node;
2192		path->slots[level] = 0;
2193	} else {
2194		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2195
2196		level = root_item->drop_level;
2197		BUG_ON(level == 0);
2198		path->lowest_level = level;
2199		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2200		path->lowest_level = 0;
2201		if (ret < 0) {
2202			btrfs_free_path(path);
2203			return ret;
2204		}
2205
2206		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2207				      path->slots[level]);
2208		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2209
2210		btrfs_unlock_up_safe(path, 0);
2211	}
2212
2213	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
2214	memset(&next_key, 0, sizeof(next_key));
2215
2216	while (1) {
2217		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2218					     BTRFS_RESERVE_FLUSH_ALL);
2219		if (ret) {
2220			err = ret;
2221			goto out;
2222		}
2223		trans = btrfs_start_transaction(root, 0);
2224		if (IS_ERR(trans)) {
2225			err = PTR_ERR(trans);
2226			trans = NULL;
2227			goto out;
2228		}
 
 
 
 
 
 
 
 
 
 
 
 
2229		trans->block_rsv = rc->block_rsv;
2230
2231		replaced = 0;
2232		max_level = level;
2233
2234		ret = walk_down_reloc_tree(reloc_root, path, &level);
2235		if (ret < 0) {
2236			err = ret;
2237			goto out;
2238		}
2239		if (ret > 0)
2240			break;
2241
2242		if (!find_next_key(path, level, &key) &&
2243		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2244			ret = 0;
2245		} else {
2246			ret = replace_path(trans, root, reloc_root, path,
2247					   &next_key, level, max_level);
2248		}
2249		if (ret < 0) {
2250			err = ret;
2251			goto out;
2252		}
2253
2254		if (ret > 0) {
2255			level = ret;
2256			btrfs_node_key_to_cpu(path->nodes[level], &key,
2257					      path->slots[level]);
2258			replaced = 1;
2259		}
2260
2261		ret = walk_up_reloc_tree(reloc_root, path, &level);
2262		if (ret > 0)
2263			break;
2264
2265		BUG_ON(level == 0);
2266		/*
2267		 * save the merging progress in the drop_progress.
2268		 * this is OK since root refs == 1 in this case.
2269		 */
2270		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2271			       path->slots[level]);
2272		root_item->drop_level = level;
2273
2274		btrfs_end_transaction_throttle(trans);
2275		trans = NULL;
2276
2277		btrfs_btree_balance_dirty(fs_info);
2278
2279		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2280			invalidate_extent_cache(root, &key, &next_key);
2281	}
2282
2283	/*
2284	 * handle the case only one block in the fs tree need to be
2285	 * relocated and the block is tree root.
2286	 */
2287	leaf = btrfs_lock_root_node(root);
2288	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2289	btrfs_tree_unlock(leaf);
2290	free_extent_buffer(leaf);
2291	if (ret < 0)
2292		err = ret;
2293out:
2294	btrfs_free_path(path);
2295
2296	if (err == 0) {
2297		memset(&root_item->drop_progress, 0,
2298		       sizeof(root_item->drop_progress));
2299		root_item->drop_level = 0;
2300		btrfs_set_root_refs(root_item, 0);
2301		btrfs_update_reloc_root(trans, root);
2302	}
2303
2304	if (trans)
2305		btrfs_end_transaction_throttle(trans);
2306
2307	btrfs_btree_balance_dirty(fs_info);
2308
2309	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2310		invalidate_extent_cache(root, &key, &next_key);
2311
2312	return err;
2313}
2314
2315static noinline_for_stack
2316int prepare_to_merge(struct reloc_control *rc, int err)
2317{
2318	struct btrfs_root *root = rc->extent_root;
2319	struct btrfs_fs_info *fs_info = root->fs_info;
2320	struct btrfs_root *reloc_root;
2321	struct btrfs_trans_handle *trans;
2322	LIST_HEAD(reloc_roots);
2323	u64 num_bytes = 0;
2324	int ret;
2325
2326	mutex_lock(&fs_info->reloc_mutex);
2327	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2328	rc->merging_rsv_size += rc->nodes_relocated * 2;
2329	mutex_unlock(&fs_info->reloc_mutex);
2330
2331again:
2332	if (!err) {
2333		num_bytes = rc->merging_rsv_size;
2334		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2335					  BTRFS_RESERVE_FLUSH_ALL);
2336		if (ret)
2337			err = ret;
2338	}
2339
2340	trans = btrfs_join_transaction(rc->extent_root);
2341	if (IS_ERR(trans)) {
2342		if (!err)
2343			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2344						num_bytes);
2345		return PTR_ERR(trans);
2346	}
2347
2348	if (!err) {
2349		if (num_bytes != rc->merging_rsv_size) {
2350			btrfs_end_transaction(trans);
2351			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2352						num_bytes);
2353			goto again;
2354		}
2355	}
2356
2357	rc->merge_reloc_tree = 1;
2358
2359	while (!list_empty(&rc->reloc_roots)) {
2360		reloc_root = list_entry(rc->reloc_roots.next,
2361					struct btrfs_root, root_list);
2362		list_del_init(&reloc_root->root_list);
2363
2364		root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
2365		BUG_ON(IS_ERR(root));
2366		BUG_ON(root->reloc_root != reloc_root);
2367
2368		/*
2369		 * set reference count to 1, so btrfs_recover_relocation
2370		 * knows it should resumes merging
2371		 */
2372		if (!err)
2373			btrfs_set_root_refs(&reloc_root->root_item, 1);
2374		btrfs_update_reloc_root(trans, root);
2375
2376		list_add(&reloc_root->root_list, &reloc_roots);
 
2377	}
2378
2379	list_splice(&reloc_roots, &rc->reloc_roots);
2380
2381	if (!err)
2382		btrfs_commit_transaction(trans);
2383	else
2384		btrfs_end_transaction(trans);
2385	return err;
2386}
2387
2388static noinline_for_stack
2389void free_reloc_roots(struct list_head *list)
2390{
2391	struct btrfs_root *reloc_root;
2392
2393	while (!list_empty(list)) {
2394		reloc_root = list_entry(list->next, struct btrfs_root,
2395					root_list);
2396		free_extent_buffer(reloc_root->node);
2397		free_extent_buffer(reloc_root->commit_root);
2398		reloc_root->node = NULL;
2399		reloc_root->commit_root = NULL;
2400		__del_reloc_root(reloc_root);
2401	}
2402}
2403
2404static noinline_for_stack
2405void merge_reloc_roots(struct reloc_control *rc)
2406{
2407	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2408	struct btrfs_root *root;
2409	struct btrfs_root *reloc_root;
2410	LIST_HEAD(reloc_roots);
2411	int found = 0;
2412	int ret = 0;
2413again:
2414	root = rc->extent_root;
2415
2416	/*
2417	 * this serializes us with btrfs_record_root_in_transaction,
2418	 * we have to make sure nobody is in the middle of
2419	 * adding their roots to the list while we are
2420	 * doing this splice
2421	 */
2422	mutex_lock(&fs_info->reloc_mutex);
2423	list_splice_init(&rc->reloc_roots, &reloc_roots);
2424	mutex_unlock(&fs_info->reloc_mutex);
2425
2426	while (!list_empty(&reloc_roots)) {
2427		found = 1;
2428		reloc_root = list_entry(reloc_roots.next,
2429					struct btrfs_root, root_list);
2430
 
 
2431		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2432			root = read_fs_root(fs_info,
2433					    reloc_root->root_key.offset);
2434			BUG_ON(IS_ERR(root));
2435			BUG_ON(root->reloc_root != reloc_root);
2436
2437			ret = merge_reloc_root(rc, root);
 
2438			if (ret) {
2439				if (list_empty(&reloc_root->root_list))
2440					list_add_tail(&reloc_root->root_list,
2441						      &reloc_roots);
2442				goto out;
2443			}
2444		} else {
2445			list_del_init(&reloc_root->root_list);
2446		}
 
 
 
 
 
 
 
2447
2448		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2449		if (ret < 0) {
2450			if (list_empty(&reloc_root->root_list))
2451				list_add_tail(&reloc_root->root_list,
2452					      &reloc_roots);
2453			goto out;
2454		}
2455	}
2456
2457	if (found) {
2458		found = 0;
2459		goto again;
2460	}
2461out:
2462	if (ret) {
2463		btrfs_handle_fs_error(fs_info, ret, NULL);
2464		if (!list_empty(&reloc_roots))
2465			free_reloc_roots(&reloc_roots);
2466
2467		/* new reloc root may be added */
2468		mutex_lock(&fs_info->reloc_mutex);
2469		list_splice_init(&rc->reloc_roots, &reloc_roots);
2470		mutex_unlock(&fs_info->reloc_mutex);
2471		if (!list_empty(&reloc_roots))
2472			free_reloc_roots(&reloc_roots);
2473	}
2474
2475	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476}
2477
2478static void free_block_list(struct rb_root *blocks)
2479{
2480	struct tree_block *block;
2481	struct rb_node *rb_node;
2482	while ((rb_node = rb_first(blocks))) {
2483		block = rb_entry(rb_node, struct tree_block, rb_node);
2484		rb_erase(rb_node, blocks);
2485		kfree(block);
2486	}
2487}
2488
2489static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2490				      struct btrfs_root *reloc_root)
2491{
2492	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2493	struct btrfs_root *root;
 
2494
2495	if (reloc_root->last_trans == trans->transid)
2496		return 0;
2497
2498	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2499	BUG_ON(IS_ERR(root));
2500	BUG_ON(root->reloc_root != reloc_root);
 
 
2501
2502	return btrfs_record_root_in_trans(trans, root);
2503}
2504
2505static noinline_for_stack
2506struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2507				     struct reloc_control *rc,
2508				     struct backref_node *node,
2509				     struct backref_edge *edges[])
2510{
2511	struct backref_node *next;
2512	struct btrfs_root *root;
2513	int index = 0;
2514
2515	next = node;
2516	while (1) {
2517		cond_resched();
2518		next = walk_up_backref(next, edges, &index);
2519		root = next->root;
2520		BUG_ON(!root);
2521		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2522
2523		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2524			record_reloc_root_in_trans(trans, root);
2525			break;
2526		}
2527
2528		btrfs_record_root_in_trans(trans, root);
2529		root = root->reloc_root;
2530
2531		if (next->new_bytenr != root->node->start) {
2532			BUG_ON(next->new_bytenr);
2533			BUG_ON(!list_empty(&next->list));
2534			next->new_bytenr = root->node->start;
2535			next->root = root;
 
 
2536			list_add_tail(&next->list,
2537				      &rc->backref_cache.changed);
2538			__mark_block_processed(rc, next);
2539			break;
2540		}
2541
2542		WARN_ON(1);
2543		root = NULL;
2544		next = walk_down_backref(edges, &index);
2545		if (!next || next->level <= node->level)
2546			break;
2547	}
2548	if (!root)
2549		return NULL;
2550
2551	next = node;
2552	/* setup backref node path for btrfs_reloc_cow_block */
2553	while (1) {
2554		rc->backref_cache.path[next->level] = next;
2555		if (--index < 0)
2556			break;
2557		next = edges[index]->node[UPPER];
2558	}
2559	return root;
2560}
2561
2562/*
2563 * select a tree root for relocation. return NULL if the block
2564 * is reference counted. we should use do_relocation() in this
2565 * case. return a tree root pointer if the block isn't reference
2566 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2567 */
2568static noinline_for_stack
2569struct btrfs_root *select_one_root(struct backref_node *node)
2570{
2571	struct backref_node *next;
2572	struct btrfs_root *root;
2573	struct btrfs_root *fs_root = NULL;
2574	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575	int index = 0;
2576
2577	next = node;
2578	while (1) {
2579		cond_resched();
2580		next = walk_up_backref(next, edges, &index);
2581		root = next->root;
2582		BUG_ON(!root);
2583
2584		/* no other choice for non-references counted tree */
2585		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2586			return root;
2587
2588		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2589			fs_root = root;
2590
2591		if (next != node)
2592			return NULL;
2593
2594		next = walk_down_backref(edges, &index);
2595		if (!next || next->level <= node->level)
2596			break;
2597	}
2598
2599	if (!fs_root)
2600		return ERR_PTR(-ENOENT);
2601	return fs_root;
2602}
2603
2604static noinline_for_stack
2605u64 calcu_metadata_size(struct reloc_control *rc,
2606			struct backref_node *node, int reserve)
2607{
2608	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2609	struct backref_node *next = node;
2610	struct backref_edge *edge;
2611	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2612	u64 num_bytes = 0;
2613	int index = 0;
2614
2615	BUG_ON(reserve && node->processed);
2616
2617	while (next) {
2618		cond_resched();
2619		while (1) {
2620			if (next->processed && (reserve || next != node))
2621				break;
2622
2623			num_bytes += fs_info->nodesize;
2624
2625			if (list_empty(&next->upper))
2626				break;
2627
2628			edge = list_entry(next->upper.next,
2629					  struct backref_edge, list[LOWER]);
2630			edges[index++] = edge;
2631			next = edge->node[UPPER];
2632		}
2633		next = walk_down_backref(edges, &index);
2634	}
2635	return num_bytes;
2636}
2637
2638static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2639				  struct reloc_control *rc,
2640				  struct backref_node *node)
2641{
2642	struct btrfs_root *root = rc->extent_root;
2643	struct btrfs_fs_info *fs_info = root->fs_info;
2644	u64 num_bytes;
2645	int ret;
2646	u64 tmp;
2647
2648	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2649
2650	trans->block_rsv = rc->block_rsv;
2651	rc->reserved_bytes += num_bytes;
2652
2653	/*
2654	 * We are under a transaction here so we can only do limited flushing.
2655	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2656	 * transaction and try to refill when we can flush all the things.
2657	 */
2658	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2659				BTRFS_RESERVE_FLUSH_LIMIT);
2660	if (ret) {
2661		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2662		while (tmp <= rc->reserved_bytes)
2663			tmp <<= 1;
2664		/*
2665		 * only one thread can access block_rsv at this point,
2666		 * so we don't need hold lock to protect block_rsv.
2667		 * we expand more reservation size here to allow enough
2668		 * space for relocation and we will return eailer in
2669		 * enospc case.
2670		 */
2671		rc->block_rsv->size = tmp + fs_info->nodesize *
2672				      RELOCATION_RESERVED_NODES;
2673		return -EAGAIN;
2674	}
2675
2676	return 0;
2677}
2678
2679/*
2680 * relocate a block tree, and then update pointers in upper level
2681 * blocks that reference the block to point to the new location.
2682 *
2683 * if called by link_to_upper, the block has already been relocated.
2684 * in that case this function just updates pointers.
2685 */
2686static int do_relocation(struct btrfs_trans_handle *trans,
2687			 struct reloc_control *rc,
2688			 struct backref_node *node,
2689			 struct btrfs_key *key,
2690			 struct btrfs_path *path, int lowest)
2691{
2692	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693	struct backref_node *upper;
2694	struct backref_edge *edge;
2695	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2696	struct btrfs_root *root;
2697	struct extent_buffer *eb;
2698	u32 blocksize;
2699	u64 bytenr;
2700	u64 generation;
2701	int slot;
2702	int ret;
2703	int err = 0;
2704
2705	BUG_ON(lowest && node->eb);
2706
2707	path->lowest_level = node->level + 1;
2708	rc->backref_cache.path[node->level] = node;
2709	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
 
2710		cond_resched();
2711
2712		upper = edge->node[UPPER];
2713		root = select_reloc_root(trans, rc, upper, edges);
2714		BUG_ON(!root);
2715
2716		if (upper->eb && !upper->locked) {
2717			if (!lowest) {
2718				ret = btrfs_bin_search(upper->eb, key,
2719						       upper->level, &slot);
 
 
 
2720				BUG_ON(ret);
2721				bytenr = btrfs_node_blockptr(upper->eb, slot);
2722				if (node->eb->start == bytenr)
2723					goto next;
2724			}
2725			drop_node_buffer(upper);
2726		}
2727
2728		if (!upper->eb) {
2729			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2730			if (ret) {
2731				if (ret < 0)
2732					err = ret;
2733				else
2734					err = -ENOENT;
2735
2736				btrfs_release_path(path);
2737				break;
2738			}
2739
2740			if (!upper->eb) {
2741				upper->eb = path->nodes[upper->level];
2742				path->nodes[upper->level] = NULL;
2743			} else {
2744				BUG_ON(upper->eb != path->nodes[upper->level]);
2745			}
2746
2747			upper->locked = 1;
2748			path->locks[upper->level] = 0;
2749
2750			slot = path->slots[upper->level];
2751			btrfs_release_path(path);
2752		} else {
2753			ret = btrfs_bin_search(upper->eb, key, upper->level,
2754					       &slot);
 
 
 
2755			BUG_ON(ret);
2756		}
2757
2758		bytenr = btrfs_node_blockptr(upper->eb, slot);
2759		if (lowest) {
2760			if (bytenr != node->bytenr) {
2761				btrfs_err(root->fs_info,
2762		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2763					  bytenr, node->bytenr, slot,
2764					  upper->eb->start);
2765				err = -EIO;
2766				goto next;
2767			}
2768		} else {
2769			if (node->eb->start == bytenr)
2770				goto next;
2771		}
2772
2773		blocksize = root->fs_info->nodesize;
2774		generation = btrfs_node_ptr_generation(upper->eb, slot);
2775		eb = read_tree_block(fs_info, bytenr, generation);
 
 
2776		if (IS_ERR(eb)) {
2777			err = PTR_ERR(eb);
2778			goto next;
2779		} else if (!extent_buffer_uptodate(eb)) {
2780			free_extent_buffer(eb);
2781			err = -EIO;
2782			goto next;
2783		}
2784		btrfs_tree_lock(eb);
2785		btrfs_set_lock_blocking(eb);
2786
2787		if (!node->eb) {
2788			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2789					      slot, &eb);
2790			btrfs_tree_unlock(eb);
2791			free_extent_buffer(eb);
2792			if (ret < 0) {
2793				err = ret;
2794				goto next;
2795			}
2796			BUG_ON(node->eb != eb);
2797		} else {
2798			btrfs_set_node_blockptr(upper->eb, slot,
2799						node->eb->start);
2800			btrfs_set_node_ptr_generation(upper->eb, slot,
2801						      trans->transid);
2802			btrfs_mark_buffer_dirty(upper->eb);
2803
2804			ret = btrfs_inc_extent_ref(trans, root->fs_info,
2805						node->eb->start, blocksize,
2806						upper->eb->start,
2807						btrfs_header_owner(upper->eb),
2808						node->level, 0);
 
 
2809			BUG_ON(ret);
2810
2811			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2812			BUG_ON(ret);
2813		}
2814next:
2815		if (!upper->pending)
2816			drop_node_buffer(upper);
2817		else
2818			unlock_node_buffer(upper);
2819		if (err)
2820			break;
2821	}
2822
2823	if (!err && node->pending) {
2824		drop_node_buffer(node);
2825		list_move_tail(&node->list, &rc->backref_cache.changed);
2826		node->pending = 0;
2827	}
2828
2829	path->lowest_level = 0;
2830	BUG_ON(err == -ENOSPC);
2831	return err;
2832}
2833
2834static int link_to_upper(struct btrfs_trans_handle *trans,
2835			 struct reloc_control *rc,
2836			 struct backref_node *node,
2837			 struct btrfs_path *path)
2838{
2839	struct btrfs_key key;
2840
2841	btrfs_node_key_to_cpu(node->eb, &key, 0);
2842	return do_relocation(trans, rc, node, &key, path, 0);
2843}
2844
2845static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2846				struct reloc_control *rc,
2847				struct btrfs_path *path, int err)
2848{
2849	LIST_HEAD(list);
2850	struct backref_cache *cache = &rc->backref_cache;
2851	struct backref_node *node;
2852	int level;
2853	int ret;
2854
2855	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2856		while (!list_empty(&cache->pending[level])) {
2857			node = list_entry(cache->pending[level].next,
2858					  struct backref_node, list);
2859			list_move_tail(&node->list, &list);
2860			BUG_ON(!node->pending);
2861
2862			if (!err) {
2863				ret = link_to_upper(trans, rc, node, path);
2864				if (ret < 0)
2865					err = ret;
2866			}
2867		}
2868		list_splice_init(&list, &cache->pending[level]);
2869	}
2870	return err;
2871}
2872
2873static void mark_block_processed(struct reloc_control *rc,
2874				 u64 bytenr, u32 blocksize)
2875{
2876	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2877			EXTENT_DIRTY);
2878}
2879
2880static void __mark_block_processed(struct reloc_control *rc,
2881				   struct backref_node *node)
2882{
2883	u32 blocksize;
2884	if (node->level == 0 ||
2885	    in_block_group(node->bytenr, rc->block_group)) {
2886		blocksize = rc->extent_root->fs_info->nodesize;
2887		mark_block_processed(rc, node->bytenr, blocksize);
2888	}
2889	node->processed = 1;
2890}
2891
2892/*
2893 * mark a block and all blocks directly/indirectly reference the block
2894 * as processed.
2895 */
2896static void update_processed_blocks(struct reloc_control *rc,
2897				    struct backref_node *node)
2898{
2899	struct backref_node *next = node;
2900	struct backref_edge *edge;
2901	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2902	int index = 0;
2903
2904	while (next) {
2905		cond_resched();
2906		while (1) {
2907			if (next->processed)
2908				break;
2909
2910			__mark_block_processed(rc, next);
2911
2912			if (list_empty(&next->upper))
2913				break;
2914
2915			edge = list_entry(next->upper.next,
2916					  struct backref_edge, list[LOWER]);
2917			edges[index++] = edge;
2918			next = edge->node[UPPER];
2919		}
2920		next = walk_down_backref(edges, &index);
2921	}
2922}
2923
2924static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2925{
2926	u32 blocksize = rc->extent_root->fs_info->nodesize;
2927
2928	if (test_range_bit(&rc->processed_blocks, bytenr,
2929			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2930		return 1;
2931	return 0;
2932}
2933
2934static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2935			      struct tree_block *block)
2936{
2937	struct extent_buffer *eb;
2938
2939	BUG_ON(block->key_ready);
2940	eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2941	if (IS_ERR(eb)) {
2942		return PTR_ERR(eb);
2943	} else if (!extent_buffer_uptodate(eb)) {
2944		free_extent_buffer(eb);
2945		return -EIO;
2946	}
2947	WARN_ON(btrfs_header_level(eb) != block->level);
2948	if (block->level == 0)
2949		btrfs_item_key_to_cpu(eb, &block->key, 0);
2950	else
2951		btrfs_node_key_to_cpu(eb, &block->key, 0);
2952	free_extent_buffer(eb);
2953	block->key_ready = 1;
2954	return 0;
2955}
2956
2957/*
2958 * helper function to relocate a tree block
2959 */
2960static int relocate_tree_block(struct btrfs_trans_handle *trans,
2961				struct reloc_control *rc,
2962				struct backref_node *node,
2963				struct btrfs_key *key,
2964				struct btrfs_path *path)
2965{
2966	struct btrfs_root *root;
2967	int ret = 0;
2968
2969	if (!node)
2970		return 0;
2971
 
 
 
 
 
 
 
 
2972	BUG_ON(node->processed);
2973	root = select_one_root(node);
2974	if (root == ERR_PTR(-ENOENT)) {
2975		update_processed_blocks(rc, node);
2976		goto out;
2977	}
2978
2979	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2980		ret = reserve_metadata_space(trans, rc, node);
2981		if (ret)
2982			goto out;
2983	}
2984
2985	if (root) {
2986		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987			BUG_ON(node->new_bytenr);
2988			BUG_ON(!list_empty(&node->list));
2989			btrfs_record_root_in_trans(trans, root);
2990			root = root->reloc_root;
2991			node->new_bytenr = root->node->start;
2992			node->root = root;
 
 
2993			list_add_tail(&node->list, &rc->backref_cache.changed);
2994		} else {
2995			path->lowest_level = node->level;
2996			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2997			btrfs_release_path(path);
2998			if (ret > 0)
2999				ret = 0;
3000		}
3001		if (!ret)
3002			update_processed_blocks(rc, node);
3003	} else {
3004		ret = do_relocation(trans, rc, node, key, path, 1);
3005	}
3006out:
3007	if (ret || node->level == 0 || node->cowonly)
3008		remove_backref_node(&rc->backref_cache, node);
3009	return ret;
3010}
3011
3012/*
3013 * relocate a list of blocks
3014 */
3015static noinline_for_stack
3016int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3017			 struct reloc_control *rc, struct rb_root *blocks)
3018{
3019	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3020	struct backref_node *node;
3021	struct btrfs_path *path;
3022	struct tree_block *block;
3023	struct rb_node *rb_node;
3024	int ret;
3025	int err = 0;
3026
3027	path = btrfs_alloc_path();
3028	if (!path) {
3029		err = -ENOMEM;
3030		goto out_free_blocks;
3031	}
3032
3033	rb_node = rb_first(blocks);
3034	while (rb_node) {
3035		block = rb_entry(rb_node, struct tree_block, rb_node);
3036		if (!block->key_ready)
3037			readahead_tree_block(fs_info, block->bytenr);
3038		rb_node = rb_next(rb_node);
3039	}
3040
3041	rb_node = rb_first(blocks);
3042	while (rb_node) {
3043		block = rb_entry(rb_node, struct tree_block, rb_node);
3044		if (!block->key_ready) {
3045			err = get_tree_block_key(fs_info, block);
3046			if (err)
3047				goto out_free_path;
3048		}
3049		rb_node = rb_next(rb_node);
3050	}
3051
3052	rb_node = rb_first(blocks);
3053	while (rb_node) {
3054		block = rb_entry(rb_node, struct tree_block, rb_node);
3055
3056		node = build_backref_tree(rc, &block->key,
3057					  block->level, block->bytenr);
3058		if (IS_ERR(node)) {
3059			err = PTR_ERR(node);
3060			goto out;
3061		}
3062
3063		ret = relocate_tree_block(trans, rc, node, &block->key,
3064					  path);
3065		if (ret < 0) {
3066			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3067				err = ret;
3068			goto out;
3069		}
3070		rb_node = rb_next(rb_node);
3071	}
3072out:
3073	err = finish_pending_nodes(trans, rc, path, err);
3074
3075out_free_path:
3076	btrfs_free_path(path);
3077out_free_blocks:
3078	free_block_list(blocks);
3079	return err;
3080}
3081
3082static noinline_for_stack
3083int prealloc_file_extent_cluster(struct inode *inode,
3084				 struct file_extent_cluster *cluster)
3085{
3086	u64 alloc_hint = 0;
3087	u64 start;
3088	u64 end;
3089	u64 offset = BTRFS_I(inode)->index_cnt;
3090	u64 num_bytes;
3091	int nr = 0;
3092	int ret = 0;
3093	u64 prealloc_start = cluster->start - offset;
3094	u64 prealloc_end = cluster->end - offset;
3095	u64 cur_offset;
3096
3097	BUG_ON(cluster->start != cluster->boundary[0]);
3098	inode_lock(inode);
3099
3100	ret = btrfs_check_data_free_space(inode, prealloc_start,
3101					  prealloc_end + 1 - prealloc_start);
3102	if (ret)
3103		goto out;
3104
3105	cur_offset = prealloc_start;
3106	while (nr < cluster->nr) {
3107		start = cluster->boundary[nr] - offset;
3108		if (nr + 1 < cluster->nr)
3109			end = cluster->boundary[nr + 1] - 1 - offset;
3110		else
3111			end = cluster->end - offset;
3112
3113		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3114		num_bytes = end + 1 - start;
3115		if (cur_offset < start)
3116			btrfs_free_reserved_data_space(inode, cur_offset,
3117					start - cur_offset);
3118		ret = btrfs_prealloc_file_range(inode, 0, start,
3119						num_bytes, num_bytes,
3120						end + 1, &alloc_hint);
3121		cur_offset = end + 1;
3122		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3123		if (ret)
3124			break;
3125		nr++;
3126	}
 
 
3127	if (cur_offset < prealloc_end)
3128		btrfs_free_reserved_data_space(inode, cur_offset,
3129				       prealloc_end + 1 - cur_offset);
3130out:
3131	inode_unlock(inode);
3132	return ret;
3133}
3134
3135static noinline_for_stack
3136int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3137			 u64 block_start)
3138{
3139	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3140	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3141	struct extent_map *em;
3142	int ret = 0;
3143
3144	em = alloc_extent_map();
3145	if (!em)
3146		return -ENOMEM;
3147
3148	em->start = start;
3149	em->len = end + 1 - start;
3150	em->block_len = em->len;
3151	em->block_start = block_start;
3152	em->bdev = fs_info->fs_devices->latest_bdev;
3153	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3154
3155	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3156	while (1) {
3157		write_lock(&em_tree->lock);
3158		ret = add_extent_mapping(em_tree, em, 0);
3159		write_unlock(&em_tree->lock);
3160		if (ret != -EEXIST) {
3161			free_extent_map(em);
3162			break;
3163		}
3164		btrfs_drop_extent_cache(inode, start, end, 0);
3165	}
3166	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3167	return ret;
3168}
3169
 
 
 
 
 
 
 
 
 
 
3170static int relocate_file_extent_cluster(struct inode *inode,
3171					struct file_extent_cluster *cluster)
3172{
3173	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3174	u64 page_start;
3175	u64 page_end;
3176	u64 offset = BTRFS_I(inode)->index_cnt;
3177	unsigned long index;
3178	unsigned long last_index;
3179	struct page *page;
3180	struct file_ra_state *ra;
3181	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3182	int nr = 0;
3183	int ret = 0;
3184
3185	if (!cluster->nr)
3186		return 0;
3187
3188	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3189	if (!ra)
3190		return -ENOMEM;
3191
3192	ret = prealloc_file_extent_cluster(inode, cluster);
3193	if (ret)
3194		goto out;
3195
3196	file_ra_state_init(ra, inode->i_mapping);
3197
3198	ret = setup_extent_mapping(inode, cluster->start - offset,
3199				   cluster->end - offset, cluster->start);
3200	if (ret)
3201		goto out;
3202
3203	index = (cluster->start - offset) >> PAGE_SHIFT;
3204	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3205	while (index <= last_index) {
3206		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
 
3207		if (ret)
3208			goto out;
3209
3210		page = find_lock_page(inode->i_mapping, index);
3211		if (!page) {
3212			page_cache_sync_readahead(inode->i_mapping,
3213						  ra, NULL, index,
3214						  last_index + 1 - index);
3215			page = find_or_create_page(inode->i_mapping, index,
3216						   mask);
3217			if (!page) {
3218				btrfs_delalloc_release_metadata(inode,
 
 
3219							PAGE_SIZE);
3220				ret = -ENOMEM;
3221				goto out;
3222			}
3223		}
3224
3225		if (PageReadahead(page)) {
3226			page_cache_async_readahead(inode->i_mapping,
3227						   ra, NULL, page, index,
3228						   last_index + 1 - index);
3229		}
3230
3231		if (!PageUptodate(page)) {
3232			btrfs_readpage(NULL, page);
3233			lock_page(page);
3234			if (!PageUptodate(page)) {
3235				unlock_page(page);
3236				put_page(page);
3237				btrfs_delalloc_release_metadata(inode,
3238							PAGE_SIZE);
 
 
3239				ret = -EIO;
3240				goto out;
3241			}
3242		}
3243
3244		page_start = page_offset(page);
3245		page_end = page_start + PAGE_SIZE - 1;
3246
3247		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3248
3249		set_page_extent_mapped(page);
3250
3251		if (nr < cluster->nr &&
3252		    page_start + offset == cluster->boundary[nr]) {
3253			set_extent_bits(&BTRFS_I(inode)->io_tree,
3254					page_start, page_end,
3255					EXTENT_BOUNDARY);
3256			nr++;
3257		}
3258
3259		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260		set_page_dirty(page);
3261
3262		unlock_extent(&BTRFS_I(inode)->io_tree,
3263			      page_start, page_end);
3264		unlock_page(page);
3265		put_page(page);
3266
3267		index++;
 
3268		balance_dirty_pages_ratelimited(inode->i_mapping);
3269		btrfs_throttle(fs_info);
 
 
 
 
3270	}
3271	WARN_ON(nr != cluster->nr);
3272out:
3273	kfree(ra);
3274	return ret;
3275}
3276
3277static noinline_for_stack
3278int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3279			 struct file_extent_cluster *cluster)
3280{
3281	int ret;
3282
3283	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3284		ret = relocate_file_extent_cluster(inode, cluster);
3285		if (ret)
3286			return ret;
3287		cluster->nr = 0;
3288	}
3289
3290	if (!cluster->nr)
3291		cluster->start = extent_key->objectid;
3292	else
3293		BUG_ON(cluster->nr >= MAX_EXTENTS);
3294	cluster->end = extent_key->objectid + extent_key->offset - 1;
3295	cluster->boundary[cluster->nr] = extent_key->objectid;
3296	cluster->nr++;
3297
3298	if (cluster->nr >= MAX_EXTENTS) {
3299		ret = relocate_file_extent_cluster(inode, cluster);
3300		if (ret)
3301			return ret;
3302		cluster->nr = 0;
3303	}
3304	return 0;
3305}
3306
3307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3308static int get_ref_objectid_v0(struct reloc_control *rc,
3309			       struct btrfs_path *path,
3310			       struct btrfs_key *extent_key,
3311			       u64 *ref_objectid, int *path_change)
3312{
3313	struct btrfs_key key;
3314	struct extent_buffer *leaf;
3315	struct btrfs_extent_ref_v0 *ref0;
3316	int ret;
3317	int slot;
3318
3319	leaf = path->nodes[0];
3320	slot = path->slots[0];
3321	while (1) {
3322		if (slot >= btrfs_header_nritems(leaf)) {
3323			ret = btrfs_next_leaf(rc->extent_root, path);
3324			if (ret < 0)
3325				return ret;
3326			BUG_ON(ret > 0);
3327			leaf = path->nodes[0];
3328			slot = path->slots[0];
3329			if (path_change)
3330				*path_change = 1;
3331		}
3332		btrfs_item_key_to_cpu(leaf, &key, slot);
3333		if (key.objectid != extent_key->objectid)
3334			return -ENOENT;
3335
3336		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3337			slot++;
3338			continue;
3339		}
3340		ref0 = btrfs_item_ptr(leaf, slot,
3341				struct btrfs_extent_ref_v0);
3342		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3343		break;
3344	}
3345	return 0;
3346}
3347#endif
3348
3349/*
3350 * helper to add a tree block to the list.
3351 * the major work is getting the generation and level of the block
3352 */
3353static int add_tree_block(struct reloc_control *rc,
3354			  struct btrfs_key *extent_key,
3355			  struct btrfs_path *path,
3356			  struct rb_root *blocks)
3357{
3358	struct extent_buffer *eb;
3359	struct btrfs_extent_item *ei;
3360	struct btrfs_tree_block_info *bi;
3361	struct tree_block *block;
3362	struct rb_node *rb_node;
3363	u32 item_size;
3364	int level = -1;
3365	u64 generation;
3366
3367	eb =  path->nodes[0];
3368	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3369
3370	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3371	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3372		ei = btrfs_item_ptr(eb, path->slots[0],
3373				struct btrfs_extent_item);
3374		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3375			bi = (struct btrfs_tree_block_info *)(ei + 1);
3376			level = btrfs_tree_block_level(eb, bi);
3377		} else {
3378			level = (int)extent_key->offset;
3379		}
3380		generation = btrfs_extent_generation(eb, ei);
 
 
 
 
3381	} else {
3382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3383		u64 ref_owner;
3384		int ret;
3385
3386		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3387		ret = get_ref_objectid_v0(rc, path, extent_key,
3388					  &ref_owner, NULL);
3389		if (ret < 0)
3390			return ret;
3391		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3392		level = (int)ref_owner;
3393		/* FIXME: get real generation */
3394		generation = 0;
3395#else
3396		BUG();
3397#endif
3398	}
3399
3400	btrfs_release_path(path);
3401
3402	BUG_ON(level == -1);
3403
3404	block = kmalloc(sizeof(*block), GFP_NOFS);
3405	if (!block)
3406		return -ENOMEM;
3407
3408	block->bytenr = extent_key->objectid;
3409	block->key.objectid = rc->extent_root->fs_info->nodesize;
3410	block->key.offset = generation;
3411	block->level = level;
3412	block->key_ready = 0;
3413
3414	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3415	if (rb_node)
3416		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3417
3418	return 0;
3419}
3420
3421/*
3422 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3423 */
3424static int __add_tree_block(struct reloc_control *rc,
3425			    u64 bytenr, u32 blocksize,
3426			    struct rb_root *blocks)
3427{
3428	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3429	struct btrfs_path *path;
3430	struct btrfs_key key;
3431	int ret;
3432	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3433
3434	if (tree_block_processed(bytenr, rc))
3435		return 0;
3436
3437	if (tree_search(blocks, bytenr))
3438		return 0;
3439
3440	path = btrfs_alloc_path();
3441	if (!path)
3442		return -ENOMEM;
3443again:
3444	key.objectid = bytenr;
3445	if (skinny) {
3446		key.type = BTRFS_METADATA_ITEM_KEY;
3447		key.offset = (u64)-1;
3448	} else {
3449		key.type = BTRFS_EXTENT_ITEM_KEY;
3450		key.offset = blocksize;
3451	}
3452
3453	path->search_commit_root = 1;
3454	path->skip_locking = 1;
3455	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3456	if (ret < 0)
3457		goto out;
3458
3459	if (ret > 0 && skinny) {
3460		if (path->slots[0]) {
3461			path->slots[0]--;
3462			btrfs_item_key_to_cpu(path->nodes[0], &key,
3463					      path->slots[0]);
3464			if (key.objectid == bytenr &&
3465			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3466			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3467			      key.offset == blocksize)))
3468				ret = 0;
3469		}
3470
3471		if (ret) {
3472			skinny = false;
3473			btrfs_release_path(path);
3474			goto again;
3475		}
3476	}
3477	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
3478
3479	ret = add_tree_block(rc, &key, path, blocks);
3480out:
3481	btrfs_free_path(path);
3482	return ret;
3483}
3484
3485/*
3486 * helper to check if the block use full backrefs for pointers in it
3487 */
3488static int block_use_full_backref(struct reloc_control *rc,
3489				  struct extent_buffer *eb)
3490{
3491	u64 flags;
3492	int ret;
3493
3494	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3495	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3496		return 1;
3497
3498	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3499				       eb->start, btrfs_header_level(eb), 1,
3500				       NULL, &flags);
3501	BUG_ON(ret);
3502
3503	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3504		ret = 1;
3505	else
3506		ret = 0;
3507	return ret;
3508}
3509
3510static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3511				    struct btrfs_block_group_cache *block_group,
3512				    struct inode *inode,
3513				    u64 ino)
3514{
3515	struct btrfs_key key;
3516	struct btrfs_root *root = fs_info->tree_root;
3517	struct btrfs_trans_handle *trans;
3518	int ret = 0;
3519
3520	if (inode)
3521		goto truncate;
3522
3523	key.objectid = ino;
3524	key.type = BTRFS_INODE_ITEM_KEY;
3525	key.offset = 0;
3526
3527	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3528	if (IS_ERR(inode) || is_bad_inode(inode)) {
3529		if (!IS_ERR(inode))
3530			iput(inode);
3531		return -ENOENT;
3532	}
3533
3534truncate:
3535	ret = btrfs_check_trunc_cache_free_space(fs_info,
3536						 &fs_info->global_block_rsv);
3537	if (ret)
3538		goto out;
3539
3540	trans = btrfs_join_transaction(root);
3541	if (IS_ERR(trans)) {
3542		ret = PTR_ERR(trans);
3543		goto out;
3544	}
3545
3546	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3547
3548	btrfs_end_transaction(trans);
3549	btrfs_btree_balance_dirty(fs_info);
3550out:
3551	iput(inode);
3552	return ret;
3553}
3554
3555/*
3556 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3557 * this function scans fs tree to find blocks reference the data extent
3558 */
3559static int find_data_references(struct reloc_control *rc,
3560				struct btrfs_key *extent_key,
3561				struct extent_buffer *leaf,
3562				struct btrfs_extent_data_ref *ref,
3563				struct rb_root *blocks)
3564{
3565	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566	struct btrfs_path *path;
3567	struct tree_block *block;
3568	struct btrfs_root *root;
3569	struct btrfs_file_extent_item *fi;
3570	struct rb_node *rb_node;
3571	struct btrfs_key key;
3572	u64 ref_root;
3573	u64 ref_objectid;
3574	u64 ref_offset;
3575	u32 ref_count;
3576	u32 nritems;
3577	int err = 0;
3578	int added = 0;
3579	int counted;
3580	int ret;
3581
3582	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3583	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3584	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3585	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3586
3587	/*
3588	 * This is an extent belonging to the free space cache, lets just delete
3589	 * it and redo the search.
3590	 */
3591	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3592		ret = delete_block_group_cache(fs_info, rc->block_group,
3593					       NULL, ref_objectid);
3594		if (ret != -ENOENT)
3595			return ret;
3596		ret = 0;
3597	}
3598
3599	path = btrfs_alloc_path();
3600	if (!path)
3601		return -ENOMEM;
3602	path->reada = READA_FORWARD;
3603
3604	root = read_fs_root(fs_info, ref_root);
3605	if (IS_ERR(root)) {
3606		err = PTR_ERR(root);
3607		goto out;
3608	}
3609
3610	key.objectid = ref_objectid;
3611	key.type = BTRFS_EXTENT_DATA_KEY;
3612	if (ref_offset > ((u64)-1 << 32))
3613		key.offset = 0;
3614	else
3615		key.offset = ref_offset;
3616
3617	path->search_commit_root = 1;
3618	path->skip_locking = 1;
3619	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620	if (ret < 0) {
3621		err = ret;
3622		goto out;
3623	}
3624
3625	leaf = path->nodes[0];
3626	nritems = btrfs_header_nritems(leaf);
3627	/*
3628	 * the references in tree blocks that use full backrefs
3629	 * are not counted in
3630	 */
3631	if (block_use_full_backref(rc, leaf))
3632		counted = 0;
3633	else
3634		counted = 1;
3635	rb_node = tree_search(blocks, leaf->start);
3636	if (rb_node) {
3637		if (counted)
3638			added = 1;
3639		else
3640			path->slots[0] = nritems;
3641	}
3642
3643	while (ref_count > 0) {
3644		while (path->slots[0] >= nritems) {
3645			ret = btrfs_next_leaf(root, path);
3646			if (ret < 0) {
3647				err = ret;
3648				goto out;
3649			}
3650			if (WARN_ON(ret > 0))
3651				goto out;
3652
3653			leaf = path->nodes[0];
3654			nritems = btrfs_header_nritems(leaf);
3655			added = 0;
3656
3657			if (block_use_full_backref(rc, leaf))
3658				counted = 0;
3659			else
3660				counted = 1;
3661			rb_node = tree_search(blocks, leaf->start);
3662			if (rb_node) {
3663				if (counted)
3664					added = 1;
3665				else
3666					path->slots[0] = nritems;
3667			}
3668		}
3669
3670		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3671		if (WARN_ON(key.objectid != ref_objectid ||
3672		    key.type != BTRFS_EXTENT_DATA_KEY))
 
 
 
 
 
 
3673			break;
3674
3675		fi = btrfs_item_ptr(leaf, path->slots[0],
3676				    struct btrfs_file_extent_item);
3677
3678		if (btrfs_file_extent_type(leaf, fi) ==
3679		    BTRFS_FILE_EXTENT_INLINE)
3680			goto next;
3681
3682		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3683		    extent_key->objectid)
3684			goto next;
3685
3686		key.offset -= btrfs_file_extent_offset(leaf, fi);
3687		if (key.offset != ref_offset)
3688			goto next;
3689
3690		if (counted)
3691			ref_count--;
3692		if (added)
3693			goto next;
3694
3695		if (!tree_block_processed(leaf->start, rc)) {
3696			block = kmalloc(sizeof(*block), GFP_NOFS);
3697			if (!block) {
3698				err = -ENOMEM;
3699				break;
3700			}
3701			block->bytenr = leaf->start;
3702			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3703			block->level = 0;
3704			block->key_ready = 1;
3705			rb_node = tree_insert(blocks, block->bytenr,
3706					      &block->rb_node);
3707			if (rb_node)
3708				backref_tree_panic(rb_node, -EEXIST,
3709						   block->bytenr);
3710		}
3711		if (counted)
3712			added = 1;
3713		else
3714			path->slots[0] = nritems;
3715next:
3716		path->slots[0]++;
3717
3718	}
3719out:
3720	btrfs_free_path(path);
3721	return err;
 
 
3722}
3723
3724/*
3725 * helper to find all tree blocks that reference a given data extent
3726 */
3727static noinline_for_stack
3728int add_data_references(struct reloc_control *rc,
3729			struct btrfs_key *extent_key,
3730			struct btrfs_path *path,
3731			struct rb_root *blocks)
3732{
3733	struct btrfs_key key;
3734	struct extent_buffer *eb;
3735	struct btrfs_extent_data_ref *dref;
3736	struct btrfs_extent_inline_ref *iref;
3737	unsigned long ptr;
3738	unsigned long end;
3739	u32 blocksize = rc->extent_root->fs_info->nodesize;
3740	int ret = 0;
3741	int err = 0;
3742
3743	eb = path->nodes[0];
3744	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3745	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3746#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3747	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3748		ptr = end;
3749	else
3750#endif
3751		ptr += sizeof(struct btrfs_extent_item);
3752
3753	while (ptr < end) {
3754		iref = (struct btrfs_extent_inline_ref *)ptr;
3755		key.type = btrfs_extent_inline_ref_type(eb, iref);
3756		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3757			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3758			ret = __add_tree_block(rc, key.offset, blocksize,
3759					       blocks);
3760		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3761			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3762			ret = find_data_references(rc, extent_key,
3763						   eb, dref, blocks);
3764		} else {
3765			BUG();
3766		}
3767		if (ret) {
3768			err = ret;
3769			goto out;
3770		}
3771		ptr += btrfs_extent_inline_ref_size(key.type);
3772	}
3773	WARN_ON(ptr > end);
3774
3775	while (1) {
3776		cond_resched();
3777		eb = path->nodes[0];
3778		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3779			ret = btrfs_next_leaf(rc->extent_root, path);
3780			if (ret < 0) {
3781				err = ret;
3782				break;
3783			}
3784			if (ret > 0)
3785				break;
3786			eb = path->nodes[0];
3787		}
3788
3789		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3790		if (key.objectid != extent_key->objectid)
 
3791			break;
3792
3793#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3794		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3795		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3796#else
3797		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3798		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3799#endif
3800			ret = __add_tree_block(rc, key.offset, blocksize,
3801					       blocks);
3802		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3803			dref = btrfs_item_ptr(eb, path->slots[0],
3804					      struct btrfs_extent_data_ref);
3805			ret = find_data_references(rc, extent_key,
3806						   eb, dref, blocks);
3807		} else {
3808			ret = 0;
3809		}
3810		if (ret) {
3811			err = ret;
 
 
 
 
 
3812			break;
3813		}
3814		path->slots[0]++;
3815	}
3816out:
3817	btrfs_release_path(path);
3818	if (err)
3819		free_block_list(blocks);
3820	return err;
 
3821}
3822
3823/*
3824 * helper to find next unprocessed extent
3825 */
3826static noinline_for_stack
3827int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3828		     struct btrfs_key *extent_key)
3829{
3830	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3831	struct btrfs_key key;
3832	struct extent_buffer *leaf;
3833	u64 start, end, last;
3834	int ret;
3835
3836	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3837	while (1) {
3838		cond_resched();
3839		if (rc->search_start >= last) {
3840			ret = 1;
3841			break;
3842		}
3843
3844		key.objectid = rc->search_start;
3845		key.type = BTRFS_EXTENT_ITEM_KEY;
3846		key.offset = 0;
3847
3848		path->search_commit_root = 1;
3849		path->skip_locking = 1;
3850		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3851					0, 0);
3852		if (ret < 0)
3853			break;
3854next:
3855		leaf = path->nodes[0];
3856		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3857			ret = btrfs_next_leaf(rc->extent_root, path);
3858			if (ret != 0)
3859				break;
3860			leaf = path->nodes[0];
3861		}
3862
3863		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864		if (key.objectid >= last) {
3865			ret = 1;
3866			break;
3867		}
3868
3869		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3870		    key.type != BTRFS_METADATA_ITEM_KEY) {
3871			path->slots[0]++;
3872			goto next;
3873		}
3874
3875		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3876		    key.objectid + key.offset <= rc->search_start) {
3877			path->slots[0]++;
3878			goto next;
3879		}
3880
3881		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3882		    key.objectid + fs_info->nodesize <=
3883		    rc->search_start) {
3884			path->slots[0]++;
3885			goto next;
3886		}
3887
3888		ret = find_first_extent_bit(&rc->processed_blocks,
3889					    key.objectid, &start, &end,
3890					    EXTENT_DIRTY, NULL);
3891
3892		if (ret == 0 && start <= key.objectid) {
3893			btrfs_release_path(path);
3894			rc->search_start = end + 1;
3895		} else {
3896			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3897				rc->search_start = key.objectid + key.offset;
3898			else
3899				rc->search_start = key.objectid +
3900					fs_info->nodesize;
3901			memcpy(extent_key, &key, sizeof(key));
3902			return 0;
3903		}
3904	}
3905	btrfs_release_path(path);
3906	return ret;
3907}
3908
3909static void set_reloc_control(struct reloc_control *rc)
3910{
3911	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3912
3913	mutex_lock(&fs_info->reloc_mutex);
3914	fs_info->reloc_ctl = rc;
3915	mutex_unlock(&fs_info->reloc_mutex);
3916}
3917
3918static void unset_reloc_control(struct reloc_control *rc)
3919{
3920	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921
3922	mutex_lock(&fs_info->reloc_mutex);
3923	fs_info->reloc_ctl = NULL;
3924	mutex_unlock(&fs_info->reloc_mutex);
3925}
3926
3927static int check_extent_flags(u64 flags)
3928{
3929	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3930	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3931		return 1;
3932	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3933	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3934		return 1;
3935	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3936	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3937		return 1;
3938	return 0;
3939}
3940
3941static noinline_for_stack
3942int prepare_to_relocate(struct reloc_control *rc)
3943{
3944	struct btrfs_trans_handle *trans;
3945	int ret;
3946
3947	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3948					      BTRFS_BLOCK_RSV_TEMP);
3949	if (!rc->block_rsv)
3950		return -ENOMEM;
3951
3952	memset(&rc->cluster, 0, sizeof(rc->cluster));
3953	rc->search_start = rc->block_group->key.objectid;
3954	rc->extents_found = 0;
3955	rc->nodes_relocated = 0;
3956	rc->merging_rsv_size = 0;
3957	rc->reserved_bytes = 0;
3958	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3959			      RELOCATION_RESERVED_NODES;
3960	ret = btrfs_block_rsv_refill(rc->extent_root,
3961				     rc->block_rsv, rc->block_rsv->size,
3962				     BTRFS_RESERVE_FLUSH_ALL);
3963	if (ret)
3964		return ret;
3965
3966	rc->create_reloc_tree = 1;
3967	set_reloc_control(rc);
3968
3969	trans = btrfs_join_transaction(rc->extent_root);
3970	if (IS_ERR(trans)) {
3971		unset_reloc_control(rc);
3972		/*
3973		 * extent tree is not a ref_cow tree and has no reloc_root to
3974		 * cleanup.  And callers are responsible to free the above
3975		 * block rsv.
3976		 */
3977		return PTR_ERR(trans);
3978	}
3979	btrfs_commit_transaction(trans);
3980	return 0;
3981}
3982
3983static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3984{
3985	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3986	struct rb_root blocks = RB_ROOT;
3987	struct btrfs_key key;
3988	struct btrfs_trans_handle *trans = NULL;
3989	struct btrfs_path *path;
3990	struct btrfs_extent_item *ei;
3991	u64 flags;
3992	u32 item_size;
3993	int ret;
3994	int err = 0;
3995	int progress = 0;
3996
3997	path = btrfs_alloc_path();
3998	if (!path)
3999		return -ENOMEM;
4000	path->reada = READA_FORWARD;
4001
4002	ret = prepare_to_relocate(rc);
4003	if (ret) {
4004		err = ret;
4005		goto out_free;
4006	}
4007
4008	while (1) {
4009		rc->reserved_bytes = 0;
4010		ret = btrfs_block_rsv_refill(rc->extent_root,
4011					rc->block_rsv, rc->block_rsv->size,
4012					BTRFS_RESERVE_FLUSH_ALL);
4013		if (ret) {
4014			err = ret;
4015			break;
4016		}
4017		progress++;
4018		trans = btrfs_start_transaction(rc->extent_root, 0);
4019		if (IS_ERR(trans)) {
4020			err = PTR_ERR(trans);
4021			trans = NULL;
4022			break;
4023		}
4024restart:
4025		if (update_backref_cache(trans, &rc->backref_cache)) {
4026			btrfs_end_transaction(trans);
 
4027			continue;
4028		}
4029
4030		ret = find_next_extent(rc, path, &key);
4031		if (ret < 0)
4032			err = ret;
4033		if (ret != 0)
4034			break;
4035
4036		rc->extents_found++;
4037
4038		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039				    struct btrfs_extent_item);
4040		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4041		if (item_size >= sizeof(*ei)) {
4042			flags = btrfs_extent_flags(path->nodes[0], ei);
4043			ret = check_extent_flags(flags);
4044			BUG_ON(ret);
4045
 
 
 
 
4046		} else {
4047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4048			u64 ref_owner;
4049			int path_change = 0;
4050
4051			BUG_ON(item_size !=
4052			       sizeof(struct btrfs_extent_item_v0));
4053			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4054						  &path_change);
4055			if (ret < 0) {
4056				err = ret;
4057				break;
4058			}
4059			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4060				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4061			else
4062				flags = BTRFS_EXTENT_FLAG_DATA;
4063
4064			if (path_change) {
4065				btrfs_release_path(path);
4066
4067				path->search_commit_root = 1;
4068				path->skip_locking = 1;
4069				ret = btrfs_search_slot(NULL, rc->extent_root,
4070							&key, path, 0, 0);
4071				if (ret < 0) {
4072					err = ret;
4073					break;
4074				}
4075				BUG_ON(ret > 0);
4076			}
4077#else
4078			BUG();
4079#endif
4080		}
4081
4082		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4083			ret = add_tree_block(rc, &key, path, &blocks);
4084		} else if (rc->stage == UPDATE_DATA_PTRS &&
4085			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4086			ret = add_data_references(rc, &key, path, &blocks);
4087		} else {
4088			btrfs_release_path(path);
4089			ret = 0;
4090		}
4091		if (ret < 0) {
4092			err = ret;
4093			break;
4094		}
4095
4096		if (!RB_EMPTY_ROOT(&blocks)) {
4097			ret = relocate_tree_blocks(trans, rc, &blocks);
4098			if (ret < 0) {
4099				/*
4100				 * if we fail to relocate tree blocks, force to update
4101				 * backref cache when committing transaction.
4102				 */
4103				rc->backref_cache.last_trans = trans->transid - 1;
4104
4105				if (ret != -EAGAIN) {
4106					err = ret;
4107					break;
4108				}
4109				rc->extents_found--;
4110				rc->search_start = key.objectid;
4111			}
4112		}
4113
4114		btrfs_end_transaction_throttle(trans);
4115		btrfs_btree_balance_dirty(fs_info);
4116		trans = NULL;
4117
4118		if (rc->stage == MOVE_DATA_EXTENTS &&
4119		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4120			rc->found_file_extent = 1;
4121			ret = relocate_data_extent(rc->data_inode,
4122						   &key, &rc->cluster);
4123			if (ret < 0) {
4124				err = ret;
4125				break;
4126			}
4127		}
 
 
 
 
4128	}
4129	if (trans && progress && err == -ENOSPC) {
4130		ret = btrfs_force_chunk_alloc(trans, fs_info,
4131					      rc->block_group->flags);
4132		if (ret == 1) {
4133			err = 0;
4134			progress = 0;
4135			goto restart;
4136		}
4137	}
4138
4139	btrfs_release_path(path);
4140	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4141
4142	if (trans) {
4143		btrfs_end_transaction_throttle(trans);
4144		btrfs_btree_balance_dirty(fs_info);
4145	}
4146
4147	if (!err) {
4148		ret = relocate_file_extent_cluster(rc->data_inode,
4149						   &rc->cluster);
4150		if (ret < 0)
4151			err = ret;
4152	}
4153
4154	rc->create_reloc_tree = 0;
4155	set_reloc_control(rc);
4156
4157	backref_cache_cleanup(&rc->backref_cache);
4158	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159
 
 
 
 
 
 
 
 
4160	err = prepare_to_merge(rc, err);
4161
4162	merge_reloc_roots(rc);
4163
4164	rc->merge_reloc_tree = 0;
4165	unset_reloc_control(rc);
4166	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4167
4168	/* get rid of pinned extents */
4169	trans = btrfs_join_transaction(rc->extent_root);
4170	if (IS_ERR(trans)) {
4171		err = PTR_ERR(trans);
4172		goto out_free;
4173	}
4174	btrfs_commit_transaction(trans);
4175out_free:
 
 
 
4176	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4177	btrfs_free_path(path);
4178	return err;
4179}
4180
4181static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4182				 struct btrfs_root *root, u64 objectid)
4183{
4184	struct btrfs_path *path;
4185	struct btrfs_inode_item *item;
4186	struct extent_buffer *leaf;
4187	int ret;
4188
4189	path = btrfs_alloc_path();
4190	if (!path)
4191		return -ENOMEM;
4192
4193	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4194	if (ret)
4195		goto out;
4196
4197	leaf = path->nodes[0];
4198	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4199	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4200	btrfs_set_inode_generation(leaf, item, 1);
4201	btrfs_set_inode_size(leaf, item, 0);
4202	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4203	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4204					  BTRFS_INODE_PREALLOC);
4205	btrfs_mark_buffer_dirty(leaf);
4206out:
4207	btrfs_free_path(path);
4208	return ret;
4209}
4210
4211/*
4212 * helper to create inode for data relocation.
4213 * the inode is in data relocation tree and its link count is 0
4214 */
4215static noinline_for_stack
4216struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4217				 struct btrfs_block_group_cache *group)
4218{
4219	struct inode *inode = NULL;
4220	struct btrfs_trans_handle *trans;
4221	struct btrfs_root *root;
4222	struct btrfs_key key;
4223	u64 objectid;
4224	int err = 0;
4225
4226	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4227	if (IS_ERR(root))
4228		return ERR_CAST(root);
4229
4230	trans = btrfs_start_transaction(root, 6);
4231	if (IS_ERR(trans))
 
4232		return ERR_CAST(trans);
 
4233
4234	err = btrfs_find_free_objectid(root, &objectid);
4235	if (err)
4236		goto out;
4237
4238	err = __insert_orphan_inode(trans, root, objectid);
4239	BUG_ON(err);
4240
4241	key.objectid = objectid;
4242	key.type = BTRFS_INODE_ITEM_KEY;
4243	key.offset = 0;
4244	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4245	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4246	BTRFS_I(inode)->index_cnt = group->key.objectid;
4247
4248	err = btrfs_orphan_add(trans, inode);
4249out:
 
4250	btrfs_end_transaction(trans);
4251	btrfs_btree_balance_dirty(fs_info);
4252	if (err) {
4253		if (inode)
4254			iput(inode);
4255		inode = ERR_PTR(err);
4256	}
4257	return inode;
4258}
4259
4260static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4261{
4262	struct reloc_control *rc;
4263
4264	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4265	if (!rc)
4266		return NULL;
4267
4268	INIT_LIST_HEAD(&rc->reloc_roots);
4269	backref_cache_init(&rc->backref_cache);
 
4270	mapping_tree_init(&rc->reloc_root_tree);
4271	extent_io_tree_init(&rc->processed_blocks,
4272			    fs_info->btree_inode->i_mapping);
4273	return rc;
4274}
4275
 
 
 
 
 
 
 
 
 
 
 
 
4276/*
4277 * Print the block group being relocated
4278 */
4279static void describe_relocation(struct btrfs_fs_info *fs_info,
4280				struct btrfs_block_group_cache *block_group)
4281{
4282	char buf[128];		/* prefixed by a '|' that'll be dropped */
4283	u64 flags = block_group->flags;
4284
4285	/* Shouldn't happen */
4286	if (!flags) {
4287		strcpy(buf, "|NONE");
4288	} else {
4289		char *bp = buf;
4290
4291#define DESCRIBE_FLAG(f, d) \
4292		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4293			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4294			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4295		}
4296		DESCRIBE_FLAG(DATA,     "data");
4297		DESCRIBE_FLAG(SYSTEM,   "system");
4298		DESCRIBE_FLAG(METADATA, "metadata");
4299		DESCRIBE_FLAG(RAID0,    "raid0");
4300		DESCRIBE_FLAG(RAID1,    "raid1");
4301		DESCRIBE_FLAG(DUP,      "dup");
4302		DESCRIBE_FLAG(RAID10,   "raid10");
4303		DESCRIBE_FLAG(RAID5,    "raid5");
4304		DESCRIBE_FLAG(RAID6,    "raid6");
4305		if (flags)
4306			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4307#undef DESCRIBE_FLAG
4308	}
4309
4310	btrfs_info(fs_info,
4311		   "relocating block group %llu flags %s",
4312		   block_group->key.objectid, buf + 1);
 
 
 
 
 
 
 
 
 
4313}
4314
4315/*
4316 * function to relocate all extents in a block group.
4317 */
4318int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4319{
 
4320	struct btrfs_root *extent_root = fs_info->extent_root;
4321	struct reloc_control *rc;
4322	struct inode *inode;
4323	struct btrfs_path *path;
4324	int ret;
4325	int rw = 0;
4326	int err = 0;
4327
 
 
 
 
 
 
 
 
 
4328	rc = alloc_reloc_control(fs_info);
4329	if (!rc)
 
4330		return -ENOMEM;
 
4331
4332	rc->extent_root = extent_root;
 
4333
4334	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4335	BUG_ON(!rc->block_group);
4336
4337	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4338	if (ret) {
4339		err = ret;
4340		goto out;
4341	}
4342	rw = 1;
4343
4344	path = btrfs_alloc_path();
4345	if (!path) {
4346		err = -ENOMEM;
4347		goto out;
4348	}
4349
4350	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4351					path);
4352	btrfs_free_path(path);
4353
4354	if (!IS_ERR(inode))
4355		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4356	else
4357		ret = PTR_ERR(inode);
4358
4359	if (ret && ret != -ENOENT) {
4360		err = ret;
4361		goto out;
4362	}
4363
4364	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4365	if (IS_ERR(rc->data_inode)) {
4366		err = PTR_ERR(rc->data_inode);
4367		rc->data_inode = NULL;
4368		goto out;
4369	}
4370
4371	describe_relocation(fs_info, rc->block_group);
4372
4373	btrfs_wait_block_group_reservations(rc->block_group);
4374	btrfs_wait_nocow_writers(rc->block_group);
4375	btrfs_wait_ordered_roots(fs_info, -1,
4376				 rc->block_group->key.objectid,
4377				 rc->block_group->key.offset);
4378
4379	while (1) {
 
 
4380		mutex_lock(&fs_info->cleaner_mutex);
4381		ret = relocate_block_group(rc);
4382		mutex_unlock(&fs_info->cleaner_mutex);
4383		if (ret < 0) {
4384			err = ret;
4385			goto out;
4386		}
4387
4388		if (rc->extents_found == 0)
4389			break;
4390
4391		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4392
 
 
 
 
 
 
 
 
 
 
4393		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4394			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4395						       (u64)-1);
4396			if (ret) {
4397				err = ret;
4398				goto out;
4399			}
4400			invalidate_mapping_pages(rc->data_inode->i_mapping,
4401						 0, -1);
4402			rc->stage = UPDATE_DATA_PTRS;
4403		}
 
 
 
 
 
 
 
 
 
4404	}
4405
4406	WARN_ON(rc->block_group->pinned > 0);
4407	WARN_ON(rc->block_group->reserved > 0);
4408	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410	if (err && rw)
4411		btrfs_dec_block_group_ro(rc->block_group);
4412	iput(rc->data_inode);
4413	btrfs_put_block_group(rc->block_group);
4414	kfree(rc);
4415	return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420	struct btrfs_fs_info *fs_info = root->fs_info;
4421	struct btrfs_trans_handle *trans;
4422	int ret, err;
4423
4424	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425	if (IS_ERR(trans))
4426		return PTR_ERR(trans);
4427
4428	memset(&root->root_item.drop_progress, 0,
4429		sizeof(root->root_item.drop_progress));
4430	root->root_item.drop_level = 0;
4431	btrfs_set_root_refs(&root->root_item, 0);
4432	ret = btrfs_update_root(trans, fs_info->tree_root,
4433				&root->root_key, &root->root_item);
4434
4435	err = btrfs_end_transaction(trans);
4436	if (err)
4437		return err;
4438	return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449	struct btrfs_fs_info *fs_info = root->fs_info;
4450	LIST_HEAD(reloc_roots);
4451	struct btrfs_key key;
4452	struct btrfs_root *fs_root;
4453	struct btrfs_root *reloc_root;
4454	struct btrfs_path *path;
4455	struct extent_buffer *leaf;
4456	struct reloc_control *rc = NULL;
4457	struct btrfs_trans_handle *trans;
4458	int ret;
4459	int err = 0;
4460
4461	path = btrfs_alloc_path();
4462	if (!path)
4463		return -ENOMEM;
4464	path->reada = READA_BACK;
4465
4466	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467	key.type = BTRFS_ROOT_ITEM_KEY;
4468	key.offset = (u64)-1;
4469
4470	while (1) {
4471		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472					path, 0, 0);
4473		if (ret < 0) {
4474			err = ret;
4475			goto out;
4476		}
4477		if (ret > 0) {
4478			if (path->slots[0] == 0)
4479				break;
4480			path->slots[0]--;
4481		}
4482		leaf = path->nodes[0];
4483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484		btrfs_release_path(path);
4485
4486		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487		    key.type != BTRFS_ROOT_ITEM_KEY)
4488			break;
4489
4490		reloc_root = btrfs_read_fs_root(root, &key);
4491		if (IS_ERR(reloc_root)) {
4492			err = PTR_ERR(reloc_root);
4493			goto out;
4494		}
4495
 
4496		list_add(&reloc_root->root_list, &reloc_roots);
4497
4498		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499			fs_root = read_fs_root(fs_info,
4500					       reloc_root->root_key.offset);
4501			if (IS_ERR(fs_root)) {
4502				ret = PTR_ERR(fs_root);
4503				if (ret != -ENOENT) {
4504					err = ret;
4505					goto out;
4506				}
4507				ret = mark_garbage_root(reloc_root);
4508				if (ret < 0) {
4509					err = ret;
4510					goto out;
4511				}
 
 
4512			}
4513		}
4514
4515		if (key.offset == 0)
4516			break;
4517
4518		key.offset--;
4519	}
4520	btrfs_release_path(path);
4521
4522	if (list_empty(&reloc_roots))
4523		goto out;
4524
4525	rc = alloc_reloc_control(fs_info);
4526	if (!rc) {
4527		err = -ENOMEM;
4528		goto out;
4529	}
4530
4531	rc->extent_root = fs_info->extent_root;
4532
4533	set_reloc_control(rc);
4534
4535	trans = btrfs_join_transaction(rc->extent_root);
4536	if (IS_ERR(trans)) {
4537		unset_reloc_control(rc);
4538		err = PTR_ERR(trans);
4539		goto out_free;
4540	}
4541
4542	rc->merge_reloc_tree = 1;
4543
4544	while (!list_empty(&reloc_roots)) {
4545		reloc_root = list_entry(reloc_roots.next,
4546					struct btrfs_root, root_list);
4547		list_del(&reloc_root->root_list);
4548
4549		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550			list_add_tail(&reloc_root->root_list,
4551				      &rc->reloc_roots);
4552			continue;
4553		}
4554
4555		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
4556		if (IS_ERR(fs_root)) {
4557			err = PTR_ERR(fs_root);
4558			goto out_free;
 
 
4559		}
4560
4561		err = __add_reloc_root(reloc_root);
4562		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563		fs_root->reloc_root = reloc_root;
 
4564	}
4565
4566	err = btrfs_commit_transaction(trans);
4567	if (err)
4568		goto out_free;
4569
4570	merge_reloc_roots(rc);
4571
4572	unset_reloc_control(rc);
4573
4574	trans = btrfs_join_transaction(rc->extent_root);
4575	if (IS_ERR(trans)) {
4576		err = PTR_ERR(trans);
4577		goto out_free;
4578	}
4579	err = btrfs_commit_transaction(trans);
4580out_free:
4581	kfree(rc);
 
 
 
 
 
4582out:
4583	if (!list_empty(&reloc_roots))
4584		free_reloc_roots(&reloc_roots);
4585
4586	btrfs_free_path(path);
4587
4588	if (err == 0) {
4589		/* cleanup orphan inode in data relocation tree */
4590		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4591		if (IS_ERR(fs_root))
4592			err = PTR_ERR(fs_root);
4593		else
4594			err = btrfs_orphan_cleanup(fs_root);
4595	}
4596	return err;
4597}
4598
4599/*
4600 * helper to add ordered checksum for data relocation.
4601 *
4602 * cloning checksum properly handles the nodatasum extents.
4603 * it also saves CPU time to re-calculate the checksum.
4604 */
4605int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4606{
4607	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4608	struct btrfs_ordered_sum *sums;
4609	struct btrfs_ordered_extent *ordered;
4610	int ret;
4611	u64 disk_bytenr;
4612	u64 new_bytenr;
4613	LIST_HEAD(list);
4614
4615	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4616	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4617
4618	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4619	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4620				       disk_bytenr + len - 1, &list, 0);
4621	if (ret)
4622		goto out;
4623
4624	while (!list_empty(&list)) {
4625		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4626		list_del_init(&sums->list);
4627
4628		/*
4629		 * We need to offset the new_bytenr based on where the csum is.
4630		 * We need to do this because we will read in entire prealloc
4631		 * extents but we may have written to say the middle of the
4632		 * prealloc extent, so we need to make sure the csum goes with
4633		 * the right disk offset.
4634		 *
4635		 * We can do this because the data reloc inode refers strictly
4636		 * to the on disk bytes, so we don't have to worry about
4637		 * disk_len vs real len like with real inodes since it's all
4638		 * disk length.
4639		 */
4640		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4641		sums->bytenr = new_bytenr;
4642
4643		btrfs_add_ordered_sum(inode, ordered, sums);
4644	}
4645out:
4646	btrfs_put_ordered_extent(ordered);
4647	return ret;
4648}
4649
4650int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4651			  struct btrfs_root *root, struct extent_buffer *buf,
4652			  struct extent_buffer *cow)
4653{
4654	struct btrfs_fs_info *fs_info = root->fs_info;
4655	struct reloc_control *rc;
4656	struct backref_node *node;
4657	int first_cow = 0;
4658	int level;
4659	int ret = 0;
4660
4661	rc = fs_info->reloc_ctl;
4662	if (!rc)
4663		return 0;
4664
4665	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4666	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4667
4668	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4669		if (buf == root->node)
4670			__update_reloc_root(root, cow->start);
4671	}
4672
4673	level = btrfs_header_level(buf);
4674	if (btrfs_header_generation(buf) <=
4675	    btrfs_root_last_snapshot(&root->root_item))
4676		first_cow = 1;
4677
4678	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4679	    rc->create_reloc_tree) {
4680		WARN_ON(!first_cow && level == 0);
4681
4682		node = rc->backref_cache.path[level];
4683		BUG_ON(node->bytenr != buf->start &&
4684		       node->new_bytenr != buf->start);
4685
4686		drop_node_buffer(node);
4687		extent_buffer_get(cow);
4688		node->eb = cow;
4689		node->new_bytenr = cow->start;
4690
4691		if (!node->pending) {
4692			list_move_tail(&node->list,
4693				       &rc->backref_cache.pending[level]);
4694			node->pending = 1;
4695		}
4696
4697		if (first_cow)
4698			__mark_block_processed(rc, node);
4699
4700		if (first_cow && level > 0)
4701			rc->nodes_relocated += buf->len;
4702	}
4703
4704	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4705		ret = replace_file_extents(trans, rc, root, cow);
4706	return ret;
4707}
4708
4709/*
4710 * called before creating snapshot. it calculates metadata reservation
4711 * required for relocating tree blocks in the snapshot
4712 */
4713void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4714			      u64 *bytes_to_reserve)
4715{
4716	struct btrfs_root *root;
4717	struct reloc_control *rc;
4718
4719	root = pending->root;
4720	if (!root->reloc_root)
4721		return;
4722
4723	rc = root->fs_info->reloc_ctl;
4724	if (!rc->merge_reloc_tree)
4725		return;
4726
4727	root = root->reloc_root;
4728	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4729	/*
4730	 * relocation is in the stage of merging trees. the space
4731	 * used by merging a reloc tree is twice the size of
4732	 * relocated tree nodes in the worst case. half for cowing
4733	 * the reloc tree, half for cowing the fs tree. the space
4734	 * used by cowing the reloc tree will be freed after the
4735	 * tree is dropped. if we create snapshot, cowing the fs
4736	 * tree may use more space than it frees. so we need
4737	 * reserve extra space.
4738	 */
4739	*bytes_to_reserve += rc->nodes_relocated;
4740}
4741
4742/*
4743 * called after snapshot is created. migrate block reservation
4744 * and create reloc root for the newly created snapshot
 
 
 
 
4745 */
4746int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4747			       struct btrfs_pending_snapshot *pending)
4748{
4749	struct btrfs_root *root = pending->root;
4750	struct btrfs_root *reloc_root;
4751	struct btrfs_root *new_root;
4752	struct reloc_control *rc;
4753	int ret;
4754
4755	if (!root->reloc_root)
4756		return 0;
4757
4758	rc = root->fs_info->reloc_ctl;
4759	rc->merging_rsv_size += rc->nodes_relocated;
4760
4761	if (rc->merge_reloc_tree) {
4762		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4763					      rc->block_rsv,
4764					      rc->nodes_relocated, 1);
4765		if (ret)
4766			return ret;
4767	}
4768
4769	new_root = pending->snap;
4770	reloc_root = create_reloc_root(trans, root->reloc_root,
4771				       new_root->root_key.objectid);
4772	if (IS_ERR(reloc_root))
4773		return PTR_ERR(reloc_root);
4774
4775	ret = __add_reloc_root(reloc_root);
4776	BUG_ON(ret < 0);
4777	new_root->reloc_root = reloc_root;
4778
4779	if (rc->create_reloc_tree)
4780		ret = clone_backref_node(trans, rc, root, reloc_root);
4781	return ret;
4782}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "inode-map.h"
  22#include "qgroup.h"
  23#include "print-tree.h"
  24#include "delalloc-space.h"
  25#include "block-group.h"
  26#include "backref.h"
  27#include "misc.h"
  28
  29/*
  30 * Relocation overview
  31 *
  32 * [What does relocation do]
  33 *
  34 * The objective of relocation is to relocate all extents of the target block
  35 * group to other block groups.
  36 * This is utilized by resize (shrink only), profile converting, compacting
  37 * space, or balance routine to spread chunks over devices.
  38 *
  39 * 		Before		|		After
  40 * ------------------------------------------------------------------
  41 *  BG A: 10 data extents	| BG A: deleted
  42 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  43 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  44 *
  45 * [How does relocation work]
  46 *
  47 * 1.   Mark the target block group read-only
  48 *      New extents won't be allocated from the target block group.
  49 *
  50 * 2.1  Record each extent in the target block group
  51 *      To build a proper map of extents to be relocated.
  52 *
  53 * 2.2  Build data reloc tree and reloc trees
  54 *      Data reloc tree will contain an inode, recording all newly relocated
  55 *      data extents.
  56 *      There will be only one data reloc tree for one data block group.
  57 *
  58 *      Reloc tree will be a special snapshot of its source tree, containing
  59 *      relocated tree blocks.
  60 *      Each tree referring to a tree block in target block group will get its
  61 *      reloc tree built.
  62 *
  63 * 2.3  Swap source tree with its corresponding reloc tree
  64 *      Each involved tree only refers to new extents after swap.
  65 *
  66 * 3.   Cleanup reloc trees and data reloc tree.
  67 *      As old extents in the target block group are still referenced by reloc
  68 *      trees, we need to clean them up before really freeing the target block
  69 *      group.
  70 *
  71 * The main complexity is in steps 2.2 and 2.3.
  72 *
  73 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  74 */
 
 
 
 
  75
 
 
  76#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77/*
  78 * map address of tree root to tree
  79 */
  80struct mapping_node {
  81	struct {
  82		struct rb_node rb_node;
  83		u64 bytenr;
  84	}; /* Use rb_simle_node for search/insert */
  85	void *data;
  86};
  87
  88struct mapping_tree {
  89	struct rb_root rb_root;
  90	spinlock_t lock;
  91};
  92
  93/*
  94 * present a tree block to process
  95 */
  96struct tree_block {
  97	struct {
  98		struct rb_node rb_node;
  99		u64 bytenr;
 100	}; /* Use rb_simple_node for search/insert */
 101	struct btrfs_key key;
 102	unsigned int level:8;
 103	unsigned int key_ready:1;
 104};
 105
 106#define MAX_EXTENTS 128
 107
 108struct file_extent_cluster {
 109	u64 start;
 110	u64 end;
 111	u64 boundary[MAX_EXTENTS];
 112	unsigned int nr;
 113};
 114
 115struct reloc_control {
 116	/* block group to relocate */
 117	struct btrfs_block_group *block_group;
 118	/* extent tree */
 119	struct btrfs_root *extent_root;
 120	/* inode for moving data */
 121	struct inode *data_inode;
 122
 123	struct btrfs_block_rsv *block_rsv;
 124
 125	struct btrfs_backref_cache backref_cache;
 126
 127	struct file_extent_cluster cluster;
 128	/* tree blocks have been processed */
 129	struct extent_io_tree processed_blocks;
 130	/* map start of tree root to corresponding reloc tree */
 131	struct mapping_tree reloc_root_tree;
 132	/* list of reloc trees */
 133	struct list_head reloc_roots;
 134	/* list of subvolume trees that get relocated */
 135	struct list_head dirty_subvol_roots;
 136	/* size of metadata reservation for merging reloc trees */
 137	u64 merging_rsv_size;
 138	/* size of relocated tree nodes */
 139	u64 nodes_relocated;
 140	/* reserved size for block group relocation*/
 141	u64 reserved_bytes;
 142
 143	u64 search_start;
 144	u64 extents_found;
 145
 146	unsigned int stage:8;
 147	unsigned int create_reloc_tree:1;
 148	unsigned int merge_reloc_tree:1;
 149	unsigned int found_file_extent:1;
 150};
 151
 152/* stages of data relocation */
 153#define MOVE_DATA_EXTENTS	0
 154#define UPDATE_DATA_PTRS	1
 155
 156static void mark_block_processed(struct reloc_control *rc,
 157				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158{
 159	u32 blocksize;
 
 
 
 
 
 
 160
 161	if (node->level == 0 ||
 162	    in_range(node->bytenr, rc->block_group->start,
 163		     rc->block_group->length)) {
 164		blocksize = rc->extent_root->fs_info->nodesize;
 165		set_extent_bits(&rc->processed_blocks, node->bytenr,
 166				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 167	}
 168	node->processed = 1;
 
 
 
 169}
 170
 
 
 
 
 
 
 
 171
 172static void mapping_tree_init(struct mapping_tree *tree)
 
 
 
 
 
 
 
 
 
 
 173{
 174	tree->rb_root = RB_ROOT;
 175	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * walk up backref nodes until reach node presents tree root
 180 */
 181static struct btrfs_backref_node *walk_up_backref(
 182		struct btrfs_backref_node *node,
 183		struct btrfs_backref_edge *edges[], int *index)
 184{
 185	struct btrfs_backref_edge *edge;
 186	int idx = *index;
 187
 188	while (!list_empty(&node->upper)) {
 189		edge = list_entry(node->upper.next,
 190				  struct btrfs_backref_edge, list[LOWER]);
 191		edges[idx++] = edge;
 192		node = edge->node[UPPER];
 193	}
 194	BUG_ON(node->detached);
 195	*index = idx;
 196	return node;
 197}
 198
 199/*
 200 * walk down backref nodes to find start of next reference path
 201 */
 202static struct btrfs_backref_node *walk_down_backref(
 203		struct btrfs_backref_edge *edges[], int *index)
 204{
 205	struct btrfs_backref_edge *edge;
 206	struct btrfs_backref_node *lower;
 207	int idx = *index;
 208
 209	while (idx > 0) {
 210		edge = edges[idx - 1];
 211		lower = edge->node[LOWER];
 212		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 213			idx--;
 214			continue;
 215		}
 216		edge = list_entry(edge->list[LOWER].next,
 217				  struct btrfs_backref_edge, list[LOWER]);
 218		edges[idx - 1] = edge;
 219		*index = idx;
 220		return edge->node[UPPER];
 221	}
 222	*index = 0;
 223	return NULL;
 224}
 225
 226static void update_backref_node(struct btrfs_backref_cache *cache,
 227				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct rb_node *rb_node;
 230	rb_erase(&node->rb_node, &cache->rb_root);
 231	node->bytenr = bytenr;
 232	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 233	if (rb_node)
 234		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 235}
 236
 237/*
 238 * update backref cache after a transaction commit
 239 */
 240static int update_backref_cache(struct btrfs_trans_handle *trans,
 241				struct btrfs_backref_cache *cache)
 242{
 243	struct btrfs_backref_node *node;
 244	int level = 0;
 245
 246	if (cache->last_trans == 0) {
 247		cache->last_trans = trans->transid;
 248		return 0;
 249	}
 250
 251	if (cache->last_trans == trans->transid)
 252		return 0;
 253
 254	/*
 255	 * detached nodes are used to avoid unnecessary backref
 256	 * lookup. transaction commit changes the extent tree.
 257	 * so the detached nodes are no longer useful.
 258	 */
 259	while (!list_empty(&cache->detached)) {
 260		node = list_entry(cache->detached.next,
 261				  struct btrfs_backref_node, list);
 262		btrfs_backref_cleanup_node(cache, node);
 263	}
 264
 265	while (!list_empty(&cache->changed)) {
 266		node = list_entry(cache->changed.next,
 267				  struct btrfs_backref_node, list);
 268		list_del_init(&node->list);
 269		BUG_ON(node->pending);
 270		update_backref_node(cache, node, node->new_bytenr);
 271	}
 272
 273	/*
 274	 * some nodes can be left in the pending list if there were
 275	 * errors during processing the pending nodes.
 276	 */
 277	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 278		list_for_each_entry(node, &cache->pending[level], list) {
 279			BUG_ON(!node->pending);
 280			if (node->bytenr == node->new_bytenr)
 281				continue;
 282			update_backref_node(cache, node, node->new_bytenr);
 283		}
 284	}
 285
 286	cache->last_trans = 0;
 287	return 1;
 288}
 289
 290static bool reloc_root_is_dead(struct btrfs_root *root)
 291{
 292	/*
 293	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 294	 * btrfs_update_reloc_root. We need to see the updated bit before
 295	 * trying to access reloc_root
 296	 */
 297	smp_rmb();
 298	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 299		return true;
 300	return false;
 301}
 302
 303/*
 304 * Check if this subvolume tree has valid reloc tree.
 305 *
 306 * Reloc tree after swap is considered dead, thus not considered as valid.
 307 * This is enough for most callers, as they don't distinguish dead reloc root
 308 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 309 * special case.
 310 */
 311static bool have_reloc_root(struct btrfs_root *root)
 312{
 313	if (reloc_root_is_dead(root))
 314		return false;
 315	if (!root->reloc_root)
 316		return false;
 317	return true;
 318}
 319
 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 321{
 322	struct btrfs_root *reloc_root;
 323
 324	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 325		return 0;
 326
 327	/* This root has been merged with its reloc tree, we can ignore it */
 328	if (reloc_root_is_dead(root))
 329		return 1;
 330
 331	reloc_root = root->reloc_root;
 332	if (!reloc_root)
 333		return 0;
 334
 335	if (btrfs_header_generation(reloc_root->commit_root) ==
 336	    root->fs_info->running_transaction->transid)
 337		return 0;
 338	/*
 339	 * if there is reloc tree and it was created in previous
 340	 * transaction backref lookup can find the reloc tree,
 341	 * so backref node for the fs tree root is useless for
 342	 * relocation.
 343	 */
 344	return 1;
 345}
 346
 347/*
 348 * find reloc tree by address of tree root
 349 */
 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 351{
 352	struct reloc_control *rc = fs_info->reloc_ctl;
 353	struct rb_node *rb_node;
 354	struct mapping_node *node;
 355	struct btrfs_root *root = NULL;
 356
 357	ASSERT(rc);
 358	spin_lock(&rc->reloc_root_tree.lock);
 359	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 360	if (rb_node) {
 361		node = rb_entry(rb_node, struct mapping_node, rb_node);
 362		root = (struct btrfs_root *)node->data;
 363	}
 364	spin_unlock(&rc->reloc_root_tree.lock);
 365	return btrfs_grab_root(root);
 366}
 367
 368/*
 369 * For useless nodes, do two major clean ups:
 370 *
 371 * - Cleanup the children edges and nodes
 372 *   If child node is also orphan (no parent) during cleanup, then the child
 373 *   node will also be cleaned up.
 374 *
 375 * - Freeing up leaves (level 0), keeps nodes detached
 376 *   For nodes, the node is still cached as "detached"
 377 *
 378 * Return false if @node is not in the @useless_nodes list.
 379 * Return true if @node is in the @useless_nodes list.
 380 */
 381static bool handle_useless_nodes(struct reloc_control *rc,
 382				 struct btrfs_backref_node *node)
 
 
 383{
 384	struct btrfs_backref_cache *cache = &rc->backref_cache;
 385	struct list_head *useless_node = &cache->useless_node;
 386	bool ret = false;
 387
 388	while (!list_empty(useless_node)) {
 389		struct btrfs_backref_node *cur;
 
 
 
 
 390
 391		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 392				 list);
 393		list_del_init(&cur->list);
 
 
 
 
 
 
 
 
 
 
 
 394
 395		/* Only tree root nodes can be added to @useless_nodes */
 396		ASSERT(list_empty(&cur->upper));
 397
 398		if (cur == node)
 399			ret = true;
 
 400
 401		/* The node is the lowest node */
 402		if (cur->lowest) {
 403			list_del_init(&cur->lower);
 404			cur->lowest = 0;
 405		}
 406
 407		/* Cleanup the lower edges */
 408		while (!list_empty(&cur->lower)) {
 409			struct btrfs_backref_edge *edge;
 410			struct btrfs_backref_node *lower;
 
 
 
 
 411
 412			edge = list_entry(cur->lower.next,
 413					struct btrfs_backref_edge, list[UPPER]);
 414			list_del(&edge->list[UPPER]);
 415			list_del(&edge->list[LOWER]);
 416			lower = edge->node[LOWER];
 417			btrfs_backref_free_edge(cache, edge);
 418
 419			/* Child node is also orphan, queue for cleanup */
 420			if (list_empty(&lower->upper))
 421				list_add(&lower->list, useless_node);
 422		}
 423		/* Mark this block processed for relocation */
 424		mark_block_processed(rc, cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425
 426		/*
 427		 * Backref nodes for tree leaves are deleted from the cache.
 428		 * Backref nodes for upper level tree blocks are left in the
 429		 * cache to avoid unnecessary backref lookup.
 430		 */
 431		if (cur->level > 0) {
 432			list_add(&cur->list, &cache->detached);
 433			cur->detached = 1;
 434		} else {
 435			rb_erase(&cur->rb_node, &cache->rb_root);
 436			btrfs_backref_free_node(cache, cur);
 437		}
 438	}
 439	return ret;
 
 440}
 441
 442/*
 443 * Build backref tree for a given tree block. Root of the backref tree
 444 * corresponds the tree block, leaves of the backref tree correspond roots of
 445 * b-trees that reference the tree block.
 446 *
 447 * The basic idea of this function is check backrefs of a given block to find
 448 * upper level blocks that reference the block, and then check backrefs of
 449 * these upper level blocks recursively. The recursion stops when tree root is
 450 * reached or backrefs for the block is cached.
 451 *
 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 453 * all upper level blocks that directly/indirectly reference the block are also
 454 * cached.
 455 */
 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 457			struct reloc_control *rc, struct btrfs_key *node_key,
 458			int level, u64 bytenr)
 459{
 460	struct btrfs_backref_iter *iter;
 461	struct btrfs_backref_cache *cache = &rc->backref_cache;
 462	/* For searching parent of TREE_BLOCK_REF */
 463	struct btrfs_path *path;
 464	struct btrfs_backref_node *cur;
 465	struct btrfs_backref_node *node = NULL;
 466	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 467	int ret;
 468	int err = 0;
 
 469
 470	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 471	if (!iter)
 472		return ERR_PTR(-ENOMEM);
 473	path = btrfs_alloc_path();
 474	if (!path) {
 475		err = -ENOMEM;
 476		goto out;
 477	}
 
 
 478
 479	node = btrfs_backref_alloc_node(cache, bytenr, level);
 480	if (!node) {
 481		err = -ENOMEM;
 482		goto out;
 483	}
 484
 
 
 485	node->lowest = 1;
 486	cur = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	/* Breadth-first search to build backref cache */
 489	do {
 490		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 491						  cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492		if (ret < 0) {
 493			err = ret;
 494			goto out;
 495		}
 496		edge = list_first_entry_or_null(&cache->pending_edge,
 497				struct btrfs_backref_edge, list[UPPER]);
 498		/*
 499		 * The pending list isn't empty, take the first block to
 500		 * process
 501		 */
 502		if (edge) {
 503			list_del_init(&edge->list[UPPER]);
 504			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		}
 506	} while (edge);
 507
 508	/* Finish the upper linkage of newly added edges/nodes */
 509	ret = btrfs_backref_finish_upper_links(cache, node);
 510	if (ret < 0) {
 511		err = ret;
 512		goto out;
 513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514
 515	if (handle_useless_nodes(rc, node))
 516		node = NULL;
 
 
 
 
 
 
 
 
 
 
 517out:
 518	btrfs_backref_iter_free(iter);
 519	btrfs_free_path(path);
 520	if (err) {
 521		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		return ERR_PTR(err);
 523	}
 524	ASSERT(!node || !node->detached);
 525	ASSERT(list_empty(&cache->useless_node) &&
 526	       list_empty(&cache->pending_edge));
 527	return node;
 528}
 529
 530/*
 531 * helper to add backref node for the newly created snapshot.
 532 * the backref node is created by cloning backref node that
 533 * corresponds to root of source tree
 534 */
 535static int clone_backref_node(struct btrfs_trans_handle *trans,
 536			      struct reloc_control *rc,
 537			      struct btrfs_root *src,
 538			      struct btrfs_root *dest)
 539{
 540	struct btrfs_root *reloc_root = src->reloc_root;
 541	struct btrfs_backref_cache *cache = &rc->backref_cache;
 542	struct btrfs_backref_node *node = NULL;
 543	struct btrfs_backref_node *new_node;
 544	struct btrfs_backref_edge *edge;
 545	struct btrfs_backref_edge *new_edge;
 546	struct rb_node *rb_node;
 547
 548	if (cache->last_trans > 0)
 549		update_backref_cache(trans, cache);
 550
 551	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 552	if (rb_node) {
 553		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 554		if (node->detached)
 555			node = NULL;
 556		else
 557			BUG_ON(node->new_bytenr != reloc_root->node->start);
 558	}
 559
 560	if (!node) {
 561		rb_node = rb_simple_search(&cache->rb_root,
 562					   reloc_root->commit_root->start);
 563		if (rb_node) {
 564			node = rb_entry(rb_node, struct btrfs_backref_node,
 565					rb_node);
 566			BUG_ON(node->detached);
 567		}
 568	}
 569
 570	if (!node)
 571		return 0;
 572
 573	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 574					    node->level);
 575	if (!new_node)
 576		return -ENOMEM;
 577
 
 
 578	new_node->lowest = node->lowest;
 579	new_node->checked = 1;
 580	new_node->root = btrfs_grab_root(dest);
 581	ASSERT(new_node->root);
 582
 583	if (!node->lowest) {
 584		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 585			new_edge = btrfs_backref_alloc_edge(cache);
 586			if (!new_edge)
 587				goto fail;
 588
 589			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 590						new_node, LINK_UPPER);
 
 
 591		}
 592	} else {
 593		list_add_tail(&new_node->lower, &cache->leaves);
 594	}
 595
 596	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 597				   &new_node->rb_node);
 598	if (rb_node)
 599		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 600
 601	if (!new_node->lowest) {
 602		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 603			list_add_tail(&new_edge->list[LOWER],
 604				      &new_edge->node[LOWER]->upper);
 605		}
 606	}
 607	return 0;
 608fail:
 609	while (!list_empty(&new_node->lower)) {
 610		new_edge = list_entry(new_node->lower.next,
 611				      struct btrfs_backref_edge, list[UPPER]);
 612		list_del(&new_edge->list[UPPER]);
 613		btrfs_backref_free_edge(cache, new_edge);
 614	}
 615	btrfs_backref_free_node(cache, new_node);
 616	return -ENOMEM;
 617}
 618
 619/*
 620 * helper to add 'address of tree root -> reloc tree' mapping
 621 */
 622static int __must_check __add_reloc_root(struct btrfs_root *root)
 623{
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	struct rb_node *rb_node;
 626	struct mapping_node *node;
 627	struct reloc_control *rc = fs_info->reloc_ctl;
 628
 629	node = kmalloc(sizeof(*node), GFP_NOFS);
 630	if (!node)
 631		return -ENOMEM;
 632
 633	node->bytenr = root->commit_root->start;
 634	node->data = root;
 635
 636	spin_lock(&rc->reloc_root_tree.lock);
 637	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 638				   node->bytenr, &node->rb_node);
 639	spin_unlock(&rc->reloc_root_tree.lock);
 640	if (rb_node) {
 641		btrfs_panic(fs_info, -EEXIST,
 642			    "Duplicate root found for start=%llu while inserting into relocation tree",
 643			    node->bytenr);
 
 
 644	}
 645
 646	list_add_tail(&root->root_list, &rc->reloc_roots);
 647	return 0;
 648}
 649
 650/*
 651 * helper to delete the 'address of tree root -> reloc tree'
 652 * mapping
 653 */
 654static void __del_reloc_root(struct btrfs_root *root)
 655{
 656	struct btrfs_fs_info *fs_info = root->fs_info;
 657	struct rb_node *rb_node;
 658	struct mapping_node *node = NULL;
 659	struct reloc_control *rc = fs_info->reloc_ctl;
 660	bool put_ref = false;
 661
 662	if (rc && root->node) {
 663		spin_lock(&rc->reloc_root_tree.lock);
 664		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 665					   root->commit_root->start);
 666		if (rb_node) {
 667			node = rb_entry(rb_node, struct mapping_node, rb_node);
 668			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 669			RB_CLEAR_NODE(&node->rb_node);
 670		}
 671		spin_unlock(&rc->reloc_root_tree.lock);
 672		if (!node)
 673			return;
 674		BUG_ON((struct btrfs_root *)node->data != root);
 675	}
 
 
 
 
 
 676
 677	/*
 678	 * We only put the reloc root here if it's on the list.  There's a lot
 679	 * of places where the pattern is to splice the rc->reloc_roots, process
 680	 * the reloc roots, and then add the reloc root back onto
 681	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 682	 * list we don't want the reference being dropped, because the guy
 683	 * messing with the list is in charge of the reference.
 684	 */
 685	spin_lock(&fs_info->trans_lock);
 686	if (!list_empty(&root->root_list)) {
 687		put_ref = true;
 688		list_del_init(&root->root_list);
 689	}
 690	spin_unlock(&fs_info->trans_lock);
 691	if (put_ref)
 692		btrfs_put_root(root);
 693	kfree(node);
 694}
 695
 696/*
 697 * helper to update the 'address of tree root -> reloc tree'
 698 * mapping
 699 */
 700static int __update_reloc_root(struct btrfs_root *root)
 701{
 702	struct btrfs_fs_info *fs_info = root->fs_info;
 703	struct rb_node *rb_node;
 704	struct mapping_node *node = NULL;
 705	struct reloc_control *rc = fs_info->reloc_ctl;
 706
 707	spin_lock(&rc->reloc_root_tree.lock);
 708	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 709				   root->commit_root->start);
 710	if (rb_node) {
 711		node = rb_entry(rb_node, struct mapping_node, rb_node);
 712		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 713	}
 714	spin_unlock(&rc->reloc_root_tree.lock);
 715
 716	if (!node)
 717		return 0;
 718	BUG_ON((struct btrfs_root *)node->data != root);
 719
 720	spin_lock(&rc->reloc_root_tree.lock);
 721	node->bytenr = root->node->start;
 722	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 723				   node->bytenr, &node->rb_node);
 724	spin_unlock(&rc->reloc_root_tree.lock);
 725	if (rb_node)
 726		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 727	return 0;
 728}
 729
 730static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 731					struct btrfs_root *root, u64 objectid)
 732{
 733	struct btrfs_fs_info *fs_info = root->fs_info;
 734	struct btrfs_root *reloc_root;
 735	struct extent_buffer *eb;
 736	struct btrfs_root_item *root_item;
 737	struct btrfs_key root_key;
 738	int ret;
 739
 740	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 741	BUG_ON(!root_item);
 742
 743	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 744	root_key.type = BTRFS_ROOT_ITEM_KEY;
 745	root_key.offset = objectid;
 746
 747	if (root->root_key.objectid == objectid) {
 748		u64 commit_root_gen;
 749
 750		/* called by btrfs_init_reloc_root */
 751		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 752				      BTRFS_TREE_RELOC_OBJECTID);
 753		BUG_ON(ret);
 754		/*
 755		 * Set the last_snapshot field to the generation of the commit
 756		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 757		 * correctly (returns true) when the relocation root is created
 758		 * either inside the critical section of a transaction commit
 759		 * (through transaction.c:qgroup_account_snapshot()) and when
 760		 * it's created before the transaction commit is started.
 761		 */
 762		commit_root_gen = btrfs_header_generation(root->commit_root);
 763		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 764	} else {
 765		/*
 766		 * called by btrfs_reloc_post_snapshot_hook.
 767		 * the source tree is a reloc tree, all tree blocks
 768		 * modified after it was created have RELOC flag
 769		 * set in their headers. so it's OK to not update
 770		 * the 'last_snapshot'.
 771		 */
 772		ret = btrfs_copy_root(trans, root, root->node, &eb,
 773				      BTRFS_TREE_RELOC_OBJECTID);
 774		BUG_ON(ret);
 775	}
 776
 777	memcpy(root_item, &root->root_item, sizeof(*root_item));
 778	btrfs_set_root_bytenr(root_item, eb->start);
 779	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 780	btrfs_set_root_generation(root_item, trans->transid);
 781
 782	if (root->root_key.objectid == objectid) {
 783		btrfs_set_root_refs(root_item, 0);
 784		memset(&root_item->drop_progress, 0,
 785		       sizeof(struct btrfs_disk_key));
 786		root_item->drop_level = 0;
 787	}
 788
 789	btrfs_tree_unlock(eb);
 790	free_extent_buffer(eb);
 791
 792	ret = btrfs_insert_root(trans, fs_info->tree_root,
 793				&root_key, root_item);
 794	BUG_ON(ret);
 795	kfree(root_item);
 796
 797	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 798	BUG_ON(IS_ERR(reloc_root));
 799	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 800	reloc_root->last_trans = trans->transid;
 801	return reloc_root;
 802}
 803
 804/*
 805 * create reloc tree for a given fs tree. reloc tree is just a
 806 * snapshot of the fs tree with special root objectid.
 807 *
 808 * The reloc_root comes out of here with two references, one for
 809 * root->reloc_root, and another for being on the rc->reloc_roots list.
 810 */
 811int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 812			  struct btrfs_root *root)
 813{
 814	struct btrfs_fs_info *fs_info = root->fs_info;
 815	struct btrfs_root *reloc_root;
 816	struct reloc_control *rc = fs_info->reloc_ctl;
 817	struct btrfs_block_rsv *rsv;
 818	int clear_rsv = 0;
 819	int ret;
 820
 821	if (!rc)
 822		return 0;
 823
 824	/*
 825	 * The subvolume has reloc tree but the swap is finished, no need to
 826	 * create/update the dead reloc tree
 827	 */
 828	if (reloc_root_is_dead(root))
 829		return 0;
 830
 831	/*
 832	 * This is subtle but important.  We do not do
 833	 * record_root_in_transaction for reloc roots, instead we record their
 834	 * corresponding fs root, and then here we update the last trans for the
 835	 * reloc root.  This means that we have to do this for the entire life
 836	 * of the reloc root, regardless of which stage of the relocation we are
 837	 * in.
 838	 */
 839	if (root->reloc_root) {
 840		reloc_root = root->reloc_root;
 841		reloc_root->last_trans = trans->transid;
 842		return 0;
 843	}
 844
 845	/*
 846	 * We are merging reloc roots, we do not need new reloc trees.  Also
 847	 * reloc trees never need their own reloc tree.
 848	 */
 849	if (!rc->create_reloc_tree ||
 850	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 851		return 0;
 852
 853	if (!trans->reloc_reserved) {
 854		rsv = trans->block_rsv;
 855		trans->block_rsv = rc->block_rsv;
 856		clear_rsv = 1;
 857	}
 858	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 859	if (clear_rsv)
 860		trans->block_rsv = rsv;
 861
 862	ret = __add_reloc_root(reloc_root);
 863	BUG_ON(ret < 0);
 864	root->reloc_root = btrfs_grab_root(reloc_root);
 865	return 0;
 866}
 867
 868/*
 869 * update root item of reloc tree
 870 */
 871int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 872			    struct btrfs_root *root)
 873{
 874	struct btrfs_fs_info *fs_info = root->fs_info;
 875	struct btrfs_root *reloc_root;
 876	struct btrfs_root_item *root_item;
 877	int ret;
 878
 879	if (!have_reloc_root(root))
 880		goto out;
 881
 882	reloc_root = root->reloc_root;
 883	root_item = &reloc_root->root_item;
 884
 885	/*
 886	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 887	 * the root.  We have the ref for root->reloc_root, but just in case
 888	 * hold it while we update the reloc root.
 889	 */
 890	btrfs_grab_root(reloc_root);
 891
 892	/* root->reloc_root will stay until current relocation finished */
 893	if (fs_info->reloc_ctl->merge_reloc_tree &&
 894	    btrfs_root_refs(root_item) == 0) {
 895		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 896		/*
 897		 * Mark the tree as dead before we change reloc_root so
 898		 * have_reloc_root will not touch it from now on.
 899		 */
 900		smp_wmb();
 901		__del_reloc_root(reloc_root);
 902	}
 903
 904	if (reloc_root->commit_root != reloc_root->node) {
 905		__update_reloc_root(reloc_root);
 906		btrfs_set_root_node(root_item, reloc_root->node);
 907		free_extent_buffer(reloc_root->commit_root);
 908		reloc_root->commit_root = btrfs_root_node(reloc_root);
 909	}
 910
 911	ret = btrfs_update_root(trans, fs_info->tree_root,
 912				&reloc_root->root_key, root_item);
 913	BUG_ON(ret);
 914	btrfs_put_root(reloc_root);
 915out:
 916	return 0;
 917}
 918
 919/*
 920 * helper to find first cached inode with inode number >= objectid
 921 * in a subvolume
 922 */
 923static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 924{
 925	struct rb_node *node;
 926	struct rb_node *prev;
 927	struct btrfs_inode *entry;
 928	struct inode *inode;
 929
 930	spin_lock(&root->inode_lock);
 931again:
 932	node = root->inode_tree.rb_node;
 933	prev = NULL;
 934	while (node) {
 935		prev = node;
 936		entry = rb_entry(node, struct btrfs_inode, rb_node);
 937
 938		if (objectid < btrfs_ino(entry))
 939			node = node->rb_left;
 940		else if (objectid > btrfs_ino(entry))
 941			node = node->rb_right;
 942		else
 943			break;
 944	}
 945	if (!node) {
 946		while (prev) {
 947			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 948			if (objectid <= btrfs_ino(entry)) {
 949				node = prev;
 950				break;
 951			}
 952			prev = rb_next(prev);
 953		}
 954	}
 955	while (node) {
 956		entry = rb_entry(node, struct btrfs_inode, rb_node);
 957		inode = igrab(&entry->vfs_inode);
 958		if (inode) {
 959			spin_unlock(&root->inode_lock);
 960			return inode;
 961		}
 962
 963		objectid = btrfs_ino(entry) + 1;
 964		if (cond_resched_lock(&root->inode_lock))
 965			goto again;
 966
 967		node = rb_next(node);
 968	}
 969	spin_unlock(&root->inode_lock);
 970	return NULL;
 971}
 972
 
 
 
 
 
 
 
 
 
 973/*
 974 * get new location of data
 975 */
 976static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
 977			    u64 bytenr, u64 num_bytes)
 978{
 979	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
 980	struct btrfs_path *path;
 981	struct btrfs_file_extent_item *fi;
 982	struct extent_buffer *leaf;
 983	int ret;
 984
 985	path = btrfs_alloc_path();
 986	if (!path)
 987		return -ENOMEM;
 988
 989	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
 990	ret = btrfs_lookup_file_extent(NULL, root, path,
 991			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
 992	if (ret < 0)
 993		goto out;
 994	if (ret > 0) {
 995		ret = -ENOENT;
 996		goto out;
 997	}
 998
 999	leaf = path->nodes[0];
1000	fi = btrfs_item_ptr(leaf, path->slots[0],
1001			    struct btrfs_file_extent_item);
1002
1003	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004	       btrfs_file_extent_compression(leaf, fi) ||
1005	       btrfs_file_extent_encryption(leaf, fi) ||
1006	       btrfs_file_extent_other_encoding(leaf, fi));
1007
1008	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009		ret = -EINVAL;
1010		goto out;
1011	}
1012
1013	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014	ret = 0;
1015out:
1016	btrfs_free_path(path);
1017	return ret;
1018}
1019
1020/*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024static noinline_for_stack
1025int replace_file_extents(struct btrfs_trans_handle *trans,
1026			 struct reloc_control *rc,
1027			 struct btrfs_root *root,
1028			 struct extent_buffer *leaf)
1029{
1030	struct btrfs_fs_info *fs_info = root->fs_info;
1031	struct btrfs_key key;
1032	struct btrfs_file_extent_item *fi;
1033	struct inode *inode = NULL;
1034	u64 parent;
1035	u64 bytenr;
1036	u64 new_bytenr = 0;
1037	u64 num_bytes;
1038	u64 end;
1039	u32 nritems;
1040	u32 i;
1041	int ret = 0;
1042	int first = 1;
1043	int dirty = 0;
1044
1045	if (rc->stage != UPDATE_DATA_PTRS)
1046		return 0;
1047
1048	/* reloc trees always use full backref */
1049	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050		parent = leaf->start;
1051	else
1052		parent = 0;
1053
1054	nritems = btrfs_header_nritems(leaf);
1055	for (i = 0; i < nritems; i++) {
1056		struct btrfs_ref ref = { 0 };
1057
1058		cond_resched();
1059		btrfs_item_key_to_cpu(leaf, &key, i);
1060		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061			continue;
1062		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063		if (btrfs_file_extent_type(leaf, fi) ==
1064		    BTRFS_FILE_EXTENT_INLINE)
1065			continue;
1066		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068		if (bytenr == 0)
1069			continue;
1070		if (!in_range(bytenr, rc->block_group->start,
1071			      rc->block_group->length))
1072			continue;
1073
1074		/*
1075		 * if we are modifying block in fs tree, wait for readpage
1076		 * to complete and drop the extent cache
1077		 */
1078		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079			if (first) {
1080				inode = find_next_inode(root, key.objectid);
1081				first = 0;
1082			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083				btrfs_add_delayed_iput(inode);
1084				inode = find_next_inode(root, key.objectid);
1085			}
1086			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087				end = key.offset +
1088				      btrfs_file_extent_num_bytes(leaf, fi);
1089				WARN_ON(!IS_ALIGNED(key.offset,
1090						    fs_info->sectorsize));
1091				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092				end--;
1093				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094						      key.offset, end);
1095				if (!ret)
1096					continue;
1097
1098				btrfs_drop_extent_cache(BTRFS_I(inode),
1099						key.offset,	end, 1);
1100				unlock_extent(&BTRFS_I(inode)->io_tree,
1101					      key.offset, end);
1102			}
1103		}
1104
1105		ret = get_new_location(rc->data_inode, &new_bytenr,
1106				       bytenr, num_bytes);
1107		if (ret) {
1108			/*
1109			 * Don't have to abort since we've not changed anything
1110			 * in the file extent yet.
1111			 */
1112			break;
1113		}
1114
1115		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116		dirty = 1;
1117
1118		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120				       num_bytes, parent);
1121		ref.real_root = root->root_key.objectid;
1122		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123				    key.objectid, key.offset);
1124		ret = btrfs_inc_extent_ref(trans, &ref);
1125		if (ret) {
1126			btrfs_abort_transaction(trans, ret);
1127			break;
1128		}
1129
1130		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131				       num_bytes, parent);
1132		ref.real_root = root->root_key.objectid;
1133		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134				    key.objectid, key.offset);
1135		ret = btrfs_free_extent(trans, &ref);
1136		if (ret) {
1137			btrfs_abort_transaction(trans, ret);
1138			break;
1139		}
1140	}
1141	if (dirty)
1142		btrfs_mark_buffer_dirty(leaf);
1143	if (inode)
1144		btrfs_add_delayed_iput(inode);
1145	return ret;
1146}
1147
1148static noinline_for_stack
1149int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150		     struct btrfs_path *path, int level)
1151{
1152	struct btrfs_disk_key key1;
1153	struct btrfs_disk_key key2;
1154	btrfs_node_key(eb, &key1, slot);
1155	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156	return memcmp(&key1, &key2, sizeof(key1));
1157}
1158
1159/*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168static noinline_for_stack
1169int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170		 struct btrfs_root *dest, struct btrfs_root *src,
1171		 struct btrfs_path *path, struct btrfs_key *next_key,
1172		 int lowest_level, int max_level)
1173{
1174	struct btrfs_fs_info *fs_info = dest->fs_info;
1175	struct extent_buffer *eb;
1176	struct extent_buffer *parent;
1177	struct btrfs_ref ref = { 0 };
1178	struct btrfs_key key;
1179	u64 old_bytenr;
1180	u64 new_bytenr;
1181	u64 old_ptr_gen;
1182	u64 new_ptr_gen;
1183	u64 last_snapshot;
1184	u32 blocksize;
1185	int cow = 0;
1186	int level;
1187	int ret;
1188	int slot;
1189
1190	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194again:
1195	slot = path->slots[lowest_level];
1196	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198	eb = btrfs_lock_root_node(dest);
1199	btrfs_set_lock_blocking_write(eb);
1200	level = btrfs_header_level(eb);
1201
1202	if (level < lowest_level) {
1203		btrfs_tree_unlock(eb);
1204		free_extent_buffer(eb);
1205		return 0;
1206	}
1207
1208	if (cow) {
1209		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210		BUG_ON(ret);
1211	}
1212	btrfs_set_lock_blocking_write(eb);
1213
1214	if (next_key) {
1215		next_key->objectid = (u64)-1;
1216		next_key->type = (u8)-1;
1217		next_key->offset = (u64)-1;
1218	}
1219
1220	parent = eb;
1221	while (1) {
1222		struct btrfs_key first_key;
1223
1224		level = btrfs_header_level(parent);
1225		BUG_ON(level < lowest_level);
1226
1227		ret = btrfs_bin_search(parent, &key, &slot);
1228		if (ret < 0)
1229			break;
1230		if (ret && slot > 0)
1231			slot--;
1232
1233		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235
1236		old_bytenr = btrfs_node_blockptr(parent, slot);
1237		blocksize = fs_info->nodesize;
1238		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239		btrfs_node_key_to_cpu(parent, &first_key, slot);
1240
1241		if (level <= max_level) {
1242			eb = path->nodes[level];
1243			new_bytenr = btrfs_node_blockptr(eb,
1244							path->slots[level]);
1245			new_ptr_gen = btrfs_node_ptr_generation(eb,
1246							path->slots[level]);
1247		} else {
1248			new_bytenr = 0;
1249			new_ptr_gen = 0;
1250		}
1251
1252		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1253			ret = level;
1254			break;
1255		}
1256
1257		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258		    memcmp_node_keys(parent, slot, path, level)) {
1259			if (level <= lowest_level) {
1260				ret = 0;
1261				break;
1262			}
1263
1264			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265					     level - 1, &first_key);
1266			if (IS_ERR(eb)) {
1267				ret = PTR_ERR(eb);
1268				break;
1269			} else if (!extent_buffer_uptodate(eb)) {
1270				ret = -EIO;
1271				free_extent_buffer(eb);
1272				break;
1273			}
1274			btrfs_tree_lock(eb);
1275			if (cow) {
1276				ret = btrfs_cow_block(trans, dest, eb, parent,
1277						      slot, &eb);
1278				BUG_ON(ret);
1279			}
1280			btrfs_set_lock_blocking_write(eb);
1281
1282			btrfs_tree_unlock(parent);
1283			free_extent_buffer(parent);
1284
1285			parent = eb;
1286			continue;
1287		}
1288
1289		if (!cow) {
1290			btrfs_tree_unlock(parent);
1291			free_extent_buffer(parent);
1292			cow = 1;
1293			goto again;
1294		}
1295
1296		btrfs_node_key_to_cpu(path->nodes[level], &key,
1297				      path->slots[level]);
1298		btrfs_release_path(path);
1299
1300		path->lowest_level = level;
1301		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302		path->lowest_level = 0;
1303		BUG_ON(ret);
1304
1305		/*
1306		 * Info qgroup to trace both subtrees.
1307		 *
1308		 * We must trace both trees.
1309		 * 1) Tree reloc subtree
1310		 *    If not traced, we will leak data numbers
1311		 * 2) Fs subtree
1312		 *    If not traced, we will double count old data
1313		 *
1314		 * We don't scan the subtree right now, but only record
1315		 * the swapped tree blocks.
1316		 * The real subtree rescan is delayed until we have new
1317		 * CoW on the subtree root node before transaction commit.
1318		 */
1319		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320				rc->block_group, parent, slot,
1321				path->nodes[level], path->slots[level],
1322				last_snapshot);
 
 
 
 
 
1323		if (ret < 0)
1324			break;
 
1325		/*
1326		 * swap blocks in fs tree and reloc tree.
1327		 */
1328		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330		btrfs_mark_buffer_dirty(parent);
1331
1332		btrfs_set_node_blockptr(path->nodes[level],
1333					path->slots[level], old_bytenr);
1334		btrfs_set_node_ptr_generation(path->nodes[level],
1335					      path->slots[level], old_ptr_gen);
1336		btrfs_mark_buffer_dirty(path->nodes[level]);
1337
1338		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339				       blocksize, path->nodes[level]->start);
1340		ref.skip_qgroup = true;
1341		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342		ret = btrfs_inc_extent_ref(trans, &ref);
1343		BUG_ON(ret);
1344		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345				       blocksize, 0);
1346		ref.skip_qgroup = true;
1347		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348		ret = btrfs_inc_extent_ref(trans, &ref);
1349		BUG_ON(ret);
1350
1351		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352				       blocksize, path->nodes[level]->start);
1353		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354		ref.skip_qgroup = true;
1355		ret = btrfs_free_extent(trans, &ref);
1356		BUG_ON(ret);
1357
1358		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359				       blocksize, 0);
1360		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361		ref.skip_qgroup = true;
1362		ret = btrfs_free_extent(trans, &ref);
1363		BUG_ON(ret);
1364
1365		btrfs_unlock_up_safe(path, 0);
1366
1367		ret = level;
1368		break;
1369	}
1370	btrfs_tree_unlock(parent);
1371	free_extent_buffer(parent);
1372	return ret;
1373}
1374
1375/*
1376 * helper to find next relocated block in reloc tree
1377 */
1378static noinline_for_stack
1379int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380		       int *level)
1381{
1382	struct extent_buffer *eb;
1383	int i;
1384	u64 last_snapshot;
1385	u32 nritems;
1386
1387	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388
1389	for (i = 0; i < *level; i++) {
1390		free_extent_buffer(path->nodes[i]);
1391		path->nodes[i] = NULL;
1392	}
1393
1394	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395		eb = path->nodes[i];
1396		nritems = btrfs_header_nritems(eb);
1397		while (path->slots[i] + 1 < nritems) {
1398			path->slots[i]++;
1399			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400			    last_snapshot)
1401				continue;
1402
1403			*level = i;
1404			return 0;
1405		}
1406		free_extent_buffer(path->nodes[i]);
1407		path->nodes[i] = NULL;
1408	}
1409	return 1;
1410}
1411
1412/*
1413 * walk down reloc tree to find relocated block of lowest level
1414 */
1415static noinline_for_stack
1416int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417			 int *level)
1418{
1419	struct btrfs_fs_info *fs_info = root->fs_info;
1420	struct extent_buffer *eb = NULL;
1421	int i;
1422	u64 bytenr;
1423	u64 ptr_gen = 0;
1424	u64 last_snapshot;
1425	u32 nritems;
1426
1427	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428
1429	for (i = *level; i > 0; i--) {
1430		struct btrfs_key first_key;
1431
1432		eb = path->nodes[i];
1433		nritems = btrfs_header_nritems(eb);
1434		while (path->slots[i] < nritems) {
1435			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436			if (ptr_gen > last_snapshot)
1437				break;
1438			path->slots[i]++;
1439		}
1440		if (path->slots[i] >= nritems) {
1441			if (i == *level)
1442				break;
1443			*level = i + 1;
1444			return 0;
1445		}
1446		if (i == 1) {
1447			*level = i;
1448			return 0;
1449		}
1450
1451		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454				     &first_key);
1455		if (IS_ERR(eb)) {
1456			return PTR_ERR(eb);
1457		} else if (!extent_buffer_uptodate(eb)) {
1458			free_extent_buffer(eb);
1459			return -EIO;
1460		}
1461		BUG_ON(btrfs_header_level(eb) != i - 1);
1462		path->nodes[i - 1] = eb;
1463		path->slots[i - 1] = 0;
1464	}
1465	return 1;
1466}
1467
1468/*
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1471 */
1472static int invalidate_extent_cache(struct btrfs_root *root,
1473				   struct btrfs_key *min_key,
1474				   struct btrfs_key *max_key)
1475{
1476	struct btrfs_fs_info *fs_info = root->fs_info;
1477	struct inode *inode = NULL;
1478	u64 objectid;
1479	u64 start, end;
1480	u64 ino;
1481
1482	objectid = min_key->objectid;
1483	while (1) {
1484		cond_resched();
1485		iput(inode);
1486
1487		if (objectid > max_key->objectid)
1488			break;
1489
1490		inode = find_next_inode(root, objectid);
1491		if (!inode)
1492			break;
1493		ino = btrfs_ino(BTRFS_I(inode));
1494
1495		if (ino > max_key->objectid) {
1496			iput(inode);
1497			break;
1498		}
1499
1500		objectid = ino + 1;
1501		if (!S_ISREG(inode->i_mode))
1502			continue;
1503
1504		if (unlikely(min_key->objectid == ino)) {
1505			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506				continue;
1507			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508				start = 0;
1509			else {
1510				start = min_key->offset;
1511				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512			}
1513		} else {
1514			start = 0;
1515		}
1516
1517		if (unlikely(max_key->objectid == ino)) {
1518			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519				continue;
1520			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521				end = (u64)-1;
1522			} else {
1523				if (max_key->offset == 0)
1524					continue;
1525				end = max_key->offset;
1526				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527				end--;
1528			}
1529		} else {
1530			end = (u64)-1;
1531		}
1532
1533		/* the lock_extent waits for readpage to complete */
1534		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537	}
1538	return 0;
1539}
1540
1541static int find_next_key(struct btrfs_path *path, int level,
1542			 struct btrfs_key *key)
1543
1544{
1545	while (level < BTRFS_MAX_LEVEL) {
1546		if (!path->nodes[level])
1547			break;
1548		if (path->slots[level] + 1 <
1549		    btrfs_header_nritems(path->nodes[level])) {
1550			btrfs_node_key_to_cpu(path->nodes[level], key,
1551					      path->slots[level] + 1);
1552			return 0;
1553		}
1554		level++;
1555	}
1556	return 1;
1557}
1558
1559/*
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1561 */
1562static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563				struct reloc_control *rc,
1564				struct btrfs_root *root)
1565{
1566	struct btrfs_root *reloc_root = root->reloc_root;
1567	struct btrfs_root_item *reloc_root_item;
1568
1569	/* @root must be a subvolume tree root with a valid reloc tree */
1570	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571	ASSERT(reloc_root);
1572
1573	reloc_root_item = &reloc_root->root_item;
1574	memset(&reloc_root_item->drop_progress, 0,
1575		sizeof(reloc_root_item->drop_progress));
1576	reloc_root_item->drop_level = 0;
1577	btrfs_set_root_refs(reloc_root_item, 0);
1578	btrfs_update_reloc_root(trans, root);
1579
1580	if (list_empty(&root->reloc_dirty_list)) {
1581		btrfs_grab_root(root);
1582		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583	}
1584}
1585
1586static int clean_dirty_subvols(struct reloc_control *rc)
1587{
1588	struct btrfs_root *root;
1589	struct btrfs_root *next;
1590	int ret = 0;
1591	int ret2;
1592
1593	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594				 reloc_dirty_list) {
1595		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596			/* Merged subvolume, cleanup its reloc root */
1597			struct btrfs_root *reloc_root = root->reloc_root;
1598
1599			list_del_init(&root->reloc_dirty_list);
1600			root->reloc_root = NULL;
1601			/*
1602			 * Need barrier to ensure clear_bit() only happens after
1603			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604			 */
1605			smp_wmb();
1606			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607			if (reloc_root) {
1608				/*
1609				 * btrfs_drop_snapshot drops our ref we hold for
1610				 * ->reloc_root.  If it fails however we must
1611				 * drop the ref ourselves.
1612				 */
1613				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614				if (ret2 < 0) {
1615					btrfs_put_root(reloc_root);
1616					if (!ret)
1617						ret = ret2;
1618				}
1619			}
1620			btrfs_put_root(root);
1621		} else {
1622			/* Orphan reloc tree, just clean it up */
1623			ret2 = btrfs_drop_snapshot(root, 0, 1);
1624			if (ret2 < 0) {
1625				btrfs_put_root(root);
1626				if (!ret)
1627					ret = ret2;
1628			}
1629		}
1630	}
1631	return ret;
1632}
1633
1634/*
1635 * merge the relocated tree blocks in reloc tree with corresponding
1636 * fs tree.
1637 */
1638static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639					       struct btrfs_root *root)
1640{
1641	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
 
1642	struct btrfs_key key;
1643	struct btrfs_key next_key;
1644	struct btrfs_trans_handle *trans = NULL;
1645	struct btrfs_root *reloc_root;
1646	struct btrfs_root_item *root_item;
1647	struct btrfs_path *path;
1648	struct extent_buffer *leaf;
1649	int level;
1650	int max_level;
1651	int replaced = 0;
1652	int ret;
1653	int err = 0;
1654	u32 min_reserved;
1655
1656	path = btrfs_alloc_path();
1657	if (!path)
1658		return -ENOMEM;
1659	path->reada = READA_FORWARD;
1660
1661	reloc_root = root->reloc_root;
1662	root_item = &reloc_root->root_item;
1663
1664	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665		level = btrfs_root_level(root_item);
1666		atomic_inc(&reloc_root->node->refs);
1667		path->nodes[level] = reloc_root->node;
1668		path->slots[level] = 0;
1669	} else {
1670		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671
1672		level = root_item->drop_level;
1673		BUG_ON(level == 0);
1674		path->lowest_level = level;
1675		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676		path->lowest_level = 0;
1677		if (ret < 0) {
1678			btrfs_free_path(path);
1679			return ret;
1680		}
1681
1682		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683				      path->slots[level]);
1684		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685
1686		btrfs_unlock_up_safe(path, 0);
1687	}
1688
1689	/*
1690	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1692	 * block COW, we COW at most from level 1 to root level for each tree.
1693	 *
1694	 * Thus the needed metadata size is at most root_level * nodesize,
1695	 * and * 2 since we have two trees to COW.
1696	 */
1697	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1698	memset(&next_key, 0, sizeof(next_key));
1699
1700	while (1) {
1701		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1702					     BTRFS_RESERVE_FLUSH_LIMIT);
1703		if (ret) {
1704			err = ret;
1705			goto out;
1706		}
1707		trans = btrfs_start_transaction(root, 0);
1708		if (IS_ERR(trans)) {
1709			err = PTR_ERR(trans);
1710			trans = NULL;
1711			goto out;
1712		}
1713
1714		/*
1715		 * At this point we no longer have a reloc_control, so we can't
1716		 * depend on btrfs_init_reloc_root to update our last_trans.
1717		 *
1718		 * But that's ok, we started the trans handle on our
1719		 * corresponding fs_root, which means it's been added to the
1720		 * dirty list.  At commit time we'll still call
1721		 * btrfs_update_reloc_root() and update our root item
1722		 * appropriately.
1723		 */
1724		reloc_root->last_trans = trans->transid;
1725		trans->block_rsv = rc->block_rsv;
1726
1727		replaced = 0;
1728		max_level = level;
1729
1730		ret = walk_down_reloc_tree(reloc_root, path, &level);
1731		if (ret < 0) {
1732			err = ret;
1733			goto out;
1734		}
1735		if (ret > 0)
1736			break;
1737
1738		if (!find_next_key(path, level, &key) &&
1739		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1740			ret = 0;
1741		} else {
1742			ret = replace_path(trans, rc, root, reloc_root, path,
1743					   &next_key, level, max_level);
1744		}
1745		if (ret < 0) {
1746			err = ret;
1747			goto out;
1748		}
1749
1750		if (ret > 0) {
1751			level = ret;
1752			btrfs_node_key_to_cpu(path->nodes[level], &key,
1753					      path->slots[level]);
1754			replaced = 1;
1755		}
1756
1757		ret = walk_up_reloc_tree(reloc_root, path, &level);
1758		if (ret > 0)
1759			break;
1760
1761		BUG_ON(level == 0);
1762		/*
1763		 * save the merging progress in the drop_progress.
1764		 * this is OK since root refs == 1 in this case.
1765		 */
1766		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1767			       path->slots[level]);
1768		root_item->drop_level = level;
1769
1770		btrfs_end_transaction_throttle(trans);
1771		trans = NULL;
1772
1773		btrfs_btree_balance_dirty(fs_info);
1774
1775		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1776			invalidate_extent_cache(root, &key, &next_key);
1777	}
1778
1779	/*
1780	 * handle the case only one block in the fs tree need to be
1781	 * relocated and the block is tree root.
1782	 */
1783	leaf = btrfs_lock_root_node(root);
1784	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1785	btrfs_tree_unlock(leaf);
1786	free_extent_buffer(leaf);
1787	if (ret < 0)
1788		err = ret;
1789out:
1790	btrfs_free_path(path);
1791
1792	if (err == 0)
1793		insert_dirty_subvol(trans, rc, root);
 
 
 
 
 
1794
1795	if (trans)
1796		btrfs_end_transaction_throttle(trans);
1797
1798	btrfs_btree_balance_dirty(fs_info);
1799
1800	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1801		invalidate_extent_cache(root, &key, &next_key);
1802
1803	return err;
1804}
1805
1806static noinline_for_stack
1807int prepare_to_merge(struct reloc_control *rc, int err)
1808{
1809	struct btrfs_root *root = rc->extent_root;
1810	struct btrfs_fs_info *fs_info = root->fs_info;
1811	struct btrfs_root *reloc_root;
1812	struct btrfs_trans_handle *trans;
1813	LIST_HEAD(reloc_roots);
1814	u64 num_bytes = 0;
1815	int ret;
1816
1817	mutex_lock(&fs_info->reloc_mutex);
1818	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1819	rc->merging_rsv_size += rc->nodes_relocated * 2;
1820	mutex_unlock(&fs_info->reloc_mutex);
1821
1822again:
1823	if (!err) {
1824		num_bytes = rc->merging_rsv_size;
1825		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1826					  BTRFS_RESERVE_FLUSH_ALL);
1827		if (ret)
1828			err = ret;
1829	}
1830
1831	trans = btrfs_join_transaction(rc->extent_root);
1832	if (IS_ERR(trans)) {
1833		if (!err)
1834			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835						num_bytes, NULL);
1836		return PTR_ERR(trans);
1837	}
1838
1839	if (!err) {
1840		if (num_bytes != rc->merging_rsv_size) {
1841			btrfs_end_transaction(trans);
1842			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1843						num_bytes, NULL);
1844			goto again;
1845		}
1846	}
1847
1848	rc->merge_reloc_tree = 1;
1849
1850	while (!list_empty(&rc->reloc_roots)) {
1851		reloc_root = list_entry(rc->reloc_roots.next,
1852					struct btrfs_root, root_list);
1853		list_del_init(&reloc_root->root_list);
1854
1855		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1856				false);
1857		BUG_ON(IS_ERR(root));
1858		BUG_ON(root->reloc_root != reloc_root);
1859
1860		/*
1861		 * set reference count to 1, so btrfs_recover_relocation
1862		 * knows it should resumes merging
1863		 */
1864		if (!err)
1865			btrfs_set_root_refs(&reloc_root->root_item, 1);
1866		btrfs_update_reloc_root(trans, root);
1867
1868		list_add(&reloc_root->root_list, &reloc_roots);
1869		btrfs_put_root(root);
1870	}
1871
1872	list_splice(&reloc_roots, &rc->reloc_roots);
1873
1874	if (!err)
1875		btrfs_commit_transaction(trans);
1876	else
1877		btrfs_end_transaction(trans);
1878	return err;
1879}
1880
1881static noinline_for_stack
1882void free_reloc_roots(struct list_head *list)
1883{
1884	struct btrfs_root *reloc_root, *tmp;
1885
1886	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
 
 
 
 
1887		__del_reloc_root(reloc_root);
 
1888}
1889
1890static noinline_for_stack
1891void merge_reloc_roots(struct reloc_control *rc)
1892{
1893	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1894	struct btrfs_root *root;
1895	struct btrfs_root *reloc_root;
1896	LIST_HEAD(reloc_roots);
1897	int found = 0;
1898	int ret = 0;
1899again:
1900	root = rc->extent_root;
1901
1902	/*
1903	 * this serializes us with btrfs_record_root_in_transaction,
1904	 * we have to make sure nobody is in the middle of
1905	 * adding their roots to the list while we are
1906	 * doing this splice
1907	 */
1908	mutex_lock(&fs_info->reloc_mutex);
1909	list_splice_init(&rc->reloc_roots, &reloc_roots);
1910	mutex_unlock(&fs_info->reloc_mutex);
1911
1912	while (!list_empty(&reloc_roots)) {
1913		found = 1;
1914		reloc_root = list_entry(reloc_roots.next,
1915					struct btrfs_root, root_list);
1916
1917		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1918					 false);
1919		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
 
 
1920			BUG_ON(IS_ERR(root));
1921			BUG_ON(root->reloc_root != reloc_root);
 
1922			ret = merge_reloc_root(rc, root);
1923			btrfs_put_root(root);
1924			if (ret) {
1925				if (list_empty(&reloc_root->root_list))
1926					list_add_tail(&reloc_root->root_list,
1927						      &reloc_roots);
1928				goto out;
1929			}
1930		} else {
1931			if (!IS_ERR(root)) {
1932				if (root->reloc_root == reloc_root) {
1933					root->reloc_root = NULL;
1934					btrfs_put_root(reloc_root);
1935				}
1936				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1937					  &root->state);
1938				btrfs_put_root(root);
1939			}
1940
1941			list_del_init(&reloc_root->root_list);
1942			/* Don't forget to queue this reloc root for cleanup */
1943			list_add_tail(&reloc_root->reloc_dirty_list,
1944				      &rc->dirty_subvol_roots);
 
 
1945		}
1946	}
1947
1948	if (found) {
1949		found = 0;
1950		goto again;
1951	}
1952out:
1953	if (ret) {
1954		btrfs_handle_fs_error(fs_info, ret, NULL);
1955		free_reloc_roots(&reloc_roots);
 
1956
1957		/* new reloc root may be added */
1958		mutex_lock(&fs_info->reloc_mutex);
1959		list_splice_init(&rc->reloc_roots, &reloc_roots);
1960		mutex_unlock(&fs_info->reloc_mutex);
1961		free_reloc_roots(&reloc_roots);
 
1962	}
1963
1964	/*
1965	 * We used to have
1966	 *
1967	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1968	 *
1969	 * here, but it's wrong.  If we fail to start the transaction in
1970	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971	 * have actually been removed from the reloc_root_tree rb tree.  This is
1972	 * fine because we're bailing here, and we hold a reference on the root
1973	 * for the list that holds it, so these roots will be cleaned up when we
1974	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1975	 * will be cleaned up on unmount.
1976	 *
1977	 * The remaining nodes will be cleaned up by free_reloc_control.
1978	 */
1979}
1980
1981static void free_block_list(struct rb_root *blocks)
1982{
1983	struct tree_block *block;
1984	struct rb_node *rb_node;
1985	while ((rb_node = rb_first(blocks))) {
1986		block = rb_entry(rb_node, struct tree_block, rb_node);
1987		rb_erase(rb_node, blocks);
1988		kfree(block);
1989	}
1990}
1991
1992static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1993				      struct btrfs_root *reloc_root)
1994{
1995	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1996	struct btrfs_root *root;
1997	int ret;
1998
1999	if (reloc_root->last_trans == trans->transid)
2000		return 0;
2001
2002	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2003	BUG_ON(IS_ERR(root));
2004	BUG_ON(root->reloc_root != reloc_root);
2005	ret = btrfs_record_root_in_trans(trans, root);
2006	btrfs_put_root(root);
2007
2008	return ret;
2009}
2010
2011static noinline_for_stack
2012struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2013				     struct reloc_control *rc,
2014				     struct btrfs_backref_node *node,
2015				     struct btrfs_backref_edge *edges[])
2016{
2017	struct btrfs_backref_node *next;
2018	struct btrfs_root *root;
2019	int index = 0;
2020
2021	next = node;
2022	while (1) {
2023		cond_resched();
2024		next = walk_up_backref(next, edges, &index);
2025		root = next->root;
2026		BUG_ON(!root);
2027		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2028
2029		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2030			record_reloc_root_in_trans(trans, root);
2031			break;
2032		}
2033
2034		btrfs_record_root_in_trans(trans, root);
2035		root = root->reloc_root;
2036
2037		if (next->new_bytenr != root->node->start) {
2038			BUG_ON(next->new_bytenr);
2039			BUG_ON(!list_empty(&next->list));
2040			next->new_bytenr = root->node->start;
2041			btrfs_put_root(next->root);
2042			next->root = btrfs_grab_root(root);
2043			ASSERT(next->root);
2044			list_add_tail(&next->list,
2045				      &rc->backref_cache.changed);
2046			mark_block_processed(rc, next);
2047			break;
2048		}
2049
2050		WARN_ON(1);
2051		root = NULL;
2052		next = walk_down_backref(edges, &index);
2053		if (!next || next->level <= node->level)
2054			break;
2055	}
2056	if (!root)
2057		return NULL;
2058
2059	next = node;
2060	/* setup backref node path for btrfs_reloc_cow_block */
2061	while (1) {
2062		rc->backref_cache.path[next->level] = next;
2063		if (--index < 0)
2064			break;
2065		next = edges[index]->node[UPPER];
2066	}
2067	return root;
2068}
2069
2070/*
2071 * Select a tree root for relocation.
2072 *
2073 * Return NULL if the block is not shareable. We should use do_relocation() in
2074 * this case.
2075 *
2076 * Return a tree root pointer if the block is shareable.
2077 * Return -ENOENT if the block is root of reloc tree.
2078 */
2079static noinline_for_stack
2080struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2081{
2082	struct btrfs_backref_node *next;
2083	struct btrfs_root *root;
2084	struct btrfs_root *fs_root = NULL;
2085	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2086	int index = 0;
2087
2088	next = node;
2089	while (1) {
2090		cond_resched();
2091		next = walk_up_backref(next, edges, &index);
2092		root = next->root;
2093		BUG_ON(!root);
2094
2095		/* No other choice for non-shareable tree */
2096		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2097			return root;
2098
2099		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2100			fs_root = root;
2101
2102		if (next != node)
2103			return NULL;
2104
2105		next = walk_down_backref(edges, &index);
2106		if (!next || next->level <= node->level)
2107			break;
2108	}
2109
2110	if (!fs_root)
2111		return ERR_PTR(-ENOENT);
2112	return fs_root;
2113}
2114
2115static noinline_for_stack
2116u64 calcu_metadata_size(struct reloc_control *rc,
2117			struct btrfs_backref_node *node, int reserve)
2118{
2119	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120	struct btrfs_backref_node *next = node;
2121	struct btrfs_backref_edge *edge;
2122	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123	u64 num_bytes = 0;
2124	int index = 0;
2125
2126	BUG_ON(reserve && node->processed);
2127
2128	while (next) {
2129		cond_resched();
2130		while (1) {
2131			if (next->processed && (reserve || next != node))
2132				break;
2133
2134			num_bytes += fs_info->nodesize;
2135
2136			if (list_empty(&next->upper))
2137				break;
2138
2139			edge = list_entry(next->upper.next,
2140					struct btrfs_backref_edge, list[LOWER]);
2141			edges[index++] = edge;
2142			next = edge->node[UPPER];
2143		}
2144		next = walk_down_backref(edges, &index);
2145	}
2146	return num_bytes;
2147}
2148
2149static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2150				  struct reloc_control *rc,
2151				  struct btrfs_backref_node *node)
2152{
2153	struct btrfs_root *root = rc->extent_root;
2154	struct btrfs_fs_info *fs_info = root->fs_info;
2155	u64 num_bytes;
2156	int ret;
2157	u64 tmp;
2158
2159	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2160
2161	trans->block_rsv = rc->block_rsv;
2162	rc->reserved_bytes += num_bytes;
2163
2164	/*
2165	 * We are under a transaction here so we can only do limited flushing.
2166	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167	 * transaction and try to refill when we can flush all the things.
2168	 */
2169	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2170				BTRFS_RESERVE_FLUSH_LIMIT);
2171	if (ret) {
2172		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2173		while (tmp <= rc->reserved_bytes)
2174			tmp <<= 1;
2175		/*
2176		 * only one thread can access block_rsv at this point,
2177		 * so we don't need hold lock to protect block_rsv.
2178		 * we expand more reservation size here to allow enough
2179		 * space for relocation and we will return earlier in
2180		 * enospc case.
2181		 */
2182		rc->block_rsv->size = tmp + fs_info->nodesize *
2183				      RELOCATION_RESERVED_NODES;
2184		return -EAGAIN;
2185	}
2186
2187	return 0;
2188}
2189
2190/*
2191 * relocate a block tree, and then update pointers in upper level
2192 * blocks that reference the block to point to the new location.
2193 *
2194 * if called by link_to_upper, the block has already been relocated.
2195 * in that case this function just updates pointers.
2196 */
2197static int do_relocation(struct btrfs_trans_handle *trans,
2198			 struct reloc_control *rc,
2199			 struct btrfs_backref_node *node,
2200			 struct btrfs_key *key,
2201			 struct btrfs_path *path, int lowest)
2202{
2203	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2204	struct btrfs_backref_node *upper;
2205	struct btrfs_backref_edge *edge;
2206	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2207	struct btrfs_root *root;
2208	struct extent_buffer *eb;
2209	u32 blocksize;
2210	u64 bytenr;
2211	u64 generation;
2212	int slot;
2213	int ret;
2214	int err = 0;
2215
2216	BUG_ON(lowest && node->eb);
2217
2218	path->lowest_level = node->level + 1;
2219	rc->backref_cache.path[node->level] = node;
2220	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2221		struct btrfs_key first_key;
2222		struct btrfs_ref ref = { 0 };
2223
2224		cond_resched();
2225
2226		upper = edge->node[UPPER];
2227		root = select_reloc_root(trans, rc, upper, edges);
2228		BUG_ON(!root);
2229
2230		if (upper->eb && !upper->locked) {
2231			if (!lowest) {
2232				ret = btrfs_bin_search(upper->eb, key, &slot);
2233				if (ret < 0) {
2234					err = ret;
2235					goto next;
2236				}
2237				BUG_ON(ret);
2238				bytenr = btrfs_node_blockptr(upper->eb, slot);
2239				if (node->eb->start == bytenr)
2240					goto next;
2241			}
2242			btrfs_backref_drop_node_buffer(upper);
2243		}
2244
2245		if (!upper->eb) {
2246			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2247			if (ret) {
2248				if (ret < 0)
2249					err = ret;
2250				else
2251					err = -ENOENT;
2252
2253				btrfs_release_path(path);
2254				break;
2255			}
2256
2257			if (!upper->eb) {
2258				upper->eb = path->nodes[upper->level];
2259				path->nodes[upper->level] = NULL;
2260			} else {
2261				BUG_ON(upper->eb != path->nodes[upper->level]);
2262			}
2263
2264			upper->locked = 1;
2265			path->locks[upper->level] = 0;
2266
2267			slot = path->slots[upper->level];
2268			btrfs_release_path(path);
2269		} else {
2270			ret = btrfs_bin_search(upper->eb, key, &slot);
2271			if (ret < 0) {
2272				err = ret;
2273				goto next;
2274			}
2275			BUG_ON(ret);
2276		}
2277
2278		bytenr = btrfs_node_blockptr(upper->eb, slot);
2279		if (lowest) {
2280			if (bytenr != node->bytenr) {
2281				btrfs_err(root->fs_info,
2282		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283					  bytenr, node->bytenr, slot,
2284					  upper->eb->start);
2285				err = -EIO;
2286				goto next;
2287			}
2288		} else {
2289			if (node->eb->start == bytenr)
2290				goto next;
2291		}
2292
2293		blocksize = root->fs_info->nodesize;
2294		generation = btrfs_node_ptr_generation(upper->eb, slot);
2295		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2296		eb = read_tree_block(fs_info, bytenr, generation,
2297				     upper->level - 1, &first_key);
2298		if (IS_ERR(eb)) {
2299			err = PTR_ERR(eb);
2300			goto next;
2301		} else if (!extent_buffer_uptodate(eb)) {
2302			free_extent_buffer(eb);
2303			err = -EIO;
2304			goto next;
2305		}
2306		btrfs_tree_lock(eb);
2307		btrfs_set_lock_blocking_write(eb);
2308
2309		if (!node->eb) {
2310			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2311					      slot, &eb);
2312			btrfs_tree_unlock(eb);
2313			free_extent_buffer(eb);
2314			if (ret < 0) {
2315				err = ret;
2316				goto next;
2317			}
2318			BUG_ON(node->eb != eb);
2319		} else {
2320			btrfs_set_node_blockptr(upper->eb, slot,
2321						node->eb->start);
2322			btrfs_set_node_ptr_generation(upper->eb, slot,
2323						      trans->transid);
2324			btrfs_mark_buffer_dirty(upper->eb);
2325
2326			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2327					       node->eb->start, blocksize,
2328					       upper->eb->start);
2329			ref.real_root = root->root_key.objectid;
2330			btrfs_init_tree_ref(&ref, node->level,
2331					    btrfs_header_owner(upper->eb));
2332			ret = btrfs_inc_extent_ref(trans, &ref);
2333			BUG_ON(ret);
2334
2335			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2336			BUG_ON(ret);
2337		}
2338next:
2339		if (!upper->pending)
2340			btrfs_backref_drop_node_buffer(upper);
2341		else
2342			btrfs_backref_unlock_node_buffer(upper);
2343		if (err)
2344			break;
2345	}
2346
2347	if (!err && node->pending) {
2348		btrfs_backref_drop_node_buffer(node);
2349		list_move_tail(&node->list, &rc->backref_cache.changed);
2350		node->pending = 0;
2351	}
2352
2353	path->lowest_level = 0;
2354	BUG_ON(err == -ENOSPC);
2355	return err;
2356}
2357
2358static int link_to_upper(struct btrfs_trans_handle *trans,
2359			 struct reloc_control *rc,
2360			 struct btrfs_backref_node *node,
2361			 struct btrfs_path *path)
2362{
2363	struct btrfs_key key;
2364
2365	btrfs_node_key_to_cpu(node->eb, &key, 0);
2366	return do_relocation(trans, rc, node, &key, path, 0);
2367}
2368
2369static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2370				struct reloc_control *rc,
2371				struct btrfs_path *path, int err)
2372{
2373	LIST_HEAD(list);
2374	struct btrfs_backref_cache *cache = &rc->backref_cache;
2375	struct btrfs_backref_node *node;
2376	int level;
2377	int ret;
2378
2379	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2380		while (!list_empty(&cache->pending[level])) {
2381			node = list_entry(cache->pending[level].next,
2382					  struct btrfs_backref_node, list);
2383			list_move_tail(&node->list, &list);
2384			BUG_ON(!node->pending);
2385
2386			if (!err) {
2387				ret = link_to_upper(trans, rc, node, path);
2388				if (ret < 0)
2389					err = ret;
2390			}
2391		}
2392		list_splice_init(&list, &cache->pending[level]);
2393	}
2394	return err;
2395}
2396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397/*
2398 * mark a block and all blocks directly/indirectly reference the block
2399 * as processed.
2400 */
2401static void update_processed_blocks(struct reloc_control *rc,
2402				    struct btrfs_backref_node *node)
2403{
2404	struct btrfs_backref_node *next = node;
2405	struct btrfs_backref_edge *edge;
2406	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2407	int index = 0;
2408
2409	while (next) {
2410		cond_resched();
2411		while (1) {
2412			if (next->processed)
2413				break;
2414
2415			mark_block_processed(rc, next);
2416
2417			if (list_empty(&next->upper))
2418				break;
2419
2420			edge = list_entry(next->upper.next,
2421					struct btrfs_backref_edge, list[LOWER]);
2422			edges[index++] = edge;
2423			next = edge->node[UPPER];
2424		}
2425		next = walk_down_backref(edges, &index);
2426	}
2427}
2428
2429static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2430{
2431	u32 blocksize = rc->extent_root->fs_info->nodesize;
2432
2433	if (test_range_bit(&rc->processed_blocks, bytenr,
2434			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2435		return 1;
2436	return 0;
2437}
2438
2439static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2440			      struct tree_block *block)
2441{
2442	struct extent_buffer *eb;
2443
2444	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2445			     block->level, NULL);
2446	if (IS_ERR(eb)) {
2447		return PTR_ERR(eb);
2448	} else if (!extent_buffer_uptodate(eb)) {
2449		free_extent_buffer(eb);
2450		return -EIO;
2451	}
 
2452	if (block->level == 0)
2453		btrfs_item_key_to_cpu(eb, &block->key, 0);
2454	else
2455		btrfs_node_key_to_cpu(eb, &block->key, 0);
2456	free_extent_buffer(eb);
2457	block->key_ready = 1;
2458	return 0;
2459}
2460
2461/*
2462 * helper function to relocate a tree block
2463 */
2464static int relocate_tree_block(struct btrfs_trans_handle *trans,
2465				struct reloc_control *rc,
2466				struct btrfs_backref_node *node,
2467				struct btrfs_key *key,
2468				struct btrfs_path *path)
2469{
2470	struct btrfs_root *root;
2471	int ret = 0;
2472
2473	if (!node)
2474		return 0;
2475
2476	/*
2477	 * If we fail here we want to drop our backref_node because we are going
2478	 * to start over and regenerate the tree for it.
2479	 */
2480	ret = reserve_metadata_space(trans, rc, node);
2481	if (ret)
2482		goto out;
2483
2484	BUG_ON(node->processed);
2485	root = select_one_root(node);
2486	if (root == ERR_PTR(-ENOENT)) {
2487		update_processed_blocks(rc, node);
2488		goto out;
2489	}
2490
 
 
 
 
 
 
2491	if (root) {
2492		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2493			BUG_ON(node->new_bytenr);
2494			BUG_ON(!list_empty(&node->list));
2495			btrfs_record_root_in_trans(trans, root);
2496			root = root->reloc_root;
2497			node->new_bytenr = root->node->start;
2498			btrfs_put_root(node->root);
2499			node->root = btrfs_grab_root(root);
2500			ASSERT(node->root);
2501			list_add_tail(&node->list, &rc->backref_cache.changed);
2502		} else {
2503			path->lowest_level = node->level;
2504			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2505			btrfs_release_path(path);
2506			if (ret > 0)
2507				ret = 0;
2508		}
2509		if (!ret)
2510			update_processed_blocks(rc, node);
2511	} else {
2512		ret = do_relocation(trans, rc, node, key, path, 1);
2513	}
2514out:
2515	if (ret || node->level == 0 || node->cowonly)
2516		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2517	return ret;
2518}
2519
2520/*
2521 * relocate a list of blocks
2522 */
2523static noinline_for_stack
2524int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2525			 struct reloc_control *rc, struct rb_root *blocks)
2526{
2527	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2528	struct btrfs_backref_node *node;
2529	struct btrfs_path *path;
2530	struct tree_block *block;
2531	struct tree_block *next;
2532	int ret;
2533	int err = 0;
2534
2535	path = btrfs_alloc_path();
2536	if (!path) {
2537		err = -ENOMEM;
2538		goto out_free_blocks;
2539	}
2540
2541	/* Kick in readahead for tree blocks with missing keys */
2542	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2543		if (!block->key_ready)
2544			readahead_tree_block(fs_info, block->bytenr);
 
2545	}
2546
2547	/* Get first keys */
2548	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2549		if (!block->key_ready) {
2550			err = get_tree_block_key(fs_info, block);
2551			if (err)
2552				goto out_free_path;
2553		}
 
2554	}
2555
2556	/* Do tree relocation */
2557	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
 
2558		node = build_backref_tree(rc, &block->key,
2559					  block->level, block->bytenr);
2560		if (IS_ERR(node)) {
2561			err = PTR_ERR(node);
2562			goto out;
2563		}
2564
2565		ret = relocate_tree_block(trans, rc, node, &block->key,
2566					  path);
2567		if (ret < 0) {
2568			err = ret;
2569			break;
 
2570		}
 
2571	}
2572out:
2573	err = finish_pending_nodes(trans, rc, path, err);
2574
2575out_free_path:
2576	btrfs_free_path(path);
2577out_free_blocks:
2578	free_block_list(blocks);
2579	return err;
2580}
2581
2582static noinline_for_stack int prealloc_file_extent_cluster(
2583				struct btrfs_inode *inode,
2584				struct file_extent_cluster *cluster)
2585{
2586	u64 alloc_hint = 0;
2587	u64 start;
2588	u64 end;
2589	u64 offset = inode->index_cnt;
2590	u64 num_bytes;
2591	int nr;
2592	int ret = 0;
2593	u64 prealloc_start = cluster->start - offset;
2594	u64 prealloc_end = cluster->end - offset;
2595	u64 cur_offset = prealloc_start;
2596
2597	BUG_ON(cluster->start != cluster->boundary[0]);
2598	ret = btrfs_alloc_data_chunk_ondemand(inode,
2599					      prealloc_end + 1 - prealloc_start);
 
 
2600	if (ret)
2601		return ret;
2602
2603	inode_lock(&inode->vfs_inode);
2604	for (nr = 0; nr < cluster->nr; nr++) {
2605		start = cluster->boundary[nr] - offset;
2606		if (nr + 1 < cluster->nr)
2607			end = cluster->boundary[nr + 1] - 1 - offset;
2608		else
2609			end = cluster->end - offset;
2610
2611		lock_extent(&inode->io_tree, start, end);
2612		num_bytes = end + 1 - start;
2613		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
 
 
 
2614						num_bytes, num_bytes,
2615						end + 1, &alloc_hint);
2616		cur_offset = end + 1;
2617		unlock_extent(&inode->io_tree, start, end);
2618		if (ret)
2619			break;
 
2620	}
2621	inode_unlock(&inode->vfs_inode);
2622
2623	if (cur_offset < prealloc_end)
2624		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2625					       prealloc_end + 1 - cur_offset);
 
 
2626	return ret;
2627}
2628
2629static noinline_for_stack
2630int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631			 u64 block_start)
2632{
 
2633	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634	struct extent_map *em;
2635	int ret = 0;
2636
2637	em = alloc_extent_map();
2638	if (!em)
2639		return -ENOMEM;
2640
2641	em->start = start;
2642	em->len = end + 1 - start;
2643	em->block_len = em->len;
2644	em->block_start = block_start;
 
2645	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646
2647	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648	while (1) {
2649		write_lock(&em_tree->lock);
2650		ret = add_extent_mapping(em_tree, em, 0);
2651		write_unlock(&em_tree->lock);
2652		if (ret != -EEXIST) {
2653			free_extent_map(em);
2654			break;
2655		}
2656		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657	}
2658	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659	return ret;
2660}
2661
2662/*
2663 * Allow error injection to test balance cancellation
2664 */
2665int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666{
2667	return atomic_read(&fs_info->balance_cancel_req) ||
2668		fatal_signal_pending(current);
2669}
2670ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2671
2672static int relocate_file_extent_cluster(struct inode *inode,
2673					struct file_extent_cluster *cluster)
2674{
2675	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2676	u64 page_start;
2677	u64 page_end;
2678	u64 offset = BTRFS_I(inode)->index_cnt;
2679	unsigned long index;
2680	unsigned long last_index;
2681	struct page *page;
2682	struct file_ra_state *ra;
2683	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2684	int nr = 0;
2685	int ret = 0;
2686
2687	if (!cluster->nr)
2688		return 0;
2689
2690	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2691	if (!ra)
2692		return -ENOMEM;
2693
2694	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2695	if (ret)
2696		goto out;
2697
2698	file_ra_state_init(ra, inode->i_mapping);
2699
2700	ret = setup_extent_mapping(inode, cluster->start - offset,
2701				   cluster->end - offset, cluster->start);
2702	if (ret)
2703		goto out;
2704
2705	index = (cluster->start - offset) >> PAGE_SHIFT;
2706	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2707	while (index <= last_index) {
2708		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2709				PAGE_SIZE);
2710		if (ret)
2711			goto out;
2712
2713		page = find_lock_page(inode->i_mapping, index);
2714		if (!page) {
2715			page_cache_sync_readahead(inode->i_mapping,
2716						  ra, NULL, index,
2717						  last_index + 1 - index);
2718			page = find_or_create_page(inode->i_mapping, index,
2719						   mask);
2720			if (!page) {
2721				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2722							PAGE_SIZE, true);
2723				btrfs_delalloc_release_extents(BTRFS_I(inode),
2724							PAGE_SIZE);
2725				ret = -ENOMEM;
2726				goto out;
2727			}
2728		}
2729
2730		if (PageReadahead(page)) {
2731			page_cache_async_readahead(inode->i_mapping,
2732						   ra, NULL, page, index,
2733						   last_index + 1 - index);
2734		}
2735
2736		if (!PageUptodate(page)) {
2737			btrfs_readpage(NULL, page);
2738			lock_page(page);
2739			if (!PageUptodate(page)) {
2740				unlock_page(page);
2741				put_page(page);
2742				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2743							PAGE_SIZE, true);
2744				btrfs_delalloc_release_extents(BTRFS_I(inode),
2745							       PAGE_SIZE);
2746				ret = -EIO;
2747				goto out;
2748			}
2749		}
2750
2751		page_start = page_offset(page);
2752		page_end = page_start + PAGE_SIZE - 1;
2753
2754		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2755
2756		set_page_extent_mapped(page);
2757
2758		if (nr < cluster->nr &&
2759		    page_start + offset == cluster->boundary[nr]) {
2760			set_extent_bits(&BTRFS_I(inode)->io_tree,
2761					page_start, page_end,
2762					EXTENT_BOUNDARY);
2763			nr++;
2764		}
2765
2766		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2767						page_end, 0, NULL);
2768		if (ret) {
2769			unlock_page(page);
2770			put_page(page);
2771			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2772							 PAGE_SIZE, true);
2773			btrfs_delalloc_release_extents(BTRFS_I(inode),
2774			                               PAGE_SIZE);
2775
2776			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2777					  page_start, page_end,
2778					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2779			goto out;
2780
2781		}
2782		set_page_dirty(page);
2783
2784		unlock_extent(&BTRFS_I(inode)->io_tree,
2785			      page_start, page_end);
2786		unlock_page(page);
2787		put_page(page);
2788
2789		index++;
2790		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2791		balance_dirty_pages_ratelimited(inode->i_mapping);
2792		btrfs_throttle(fs_info);
2793		if (btrfs_should_cancel_balance(fs_info)) {
2794			ret = -ECANCELED;
2795			goto out;
2796		}
2797	}
2798	WARN_ON(nr != cluster->nr);
2799out:
2800	kfree(ra);
2801	return ret;
2802}
2803
2804static noinline_for_stack
2805int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2806			 struct file_extent_cluster *cluster)
2807{
2808	int ret;
2809
2810	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2811		ret = relocate_file_extent_cluster(inode, cluster);
2812		if (ret)
2813			return ret;
2814		cluster->nr = 0;
2815	}
2816
2817	if (!cluster->nr)
2818		cluster->start = extent_key->objectid;
2819	else
2820		BUG_ON(cluster->nr >= MAX_EXTENTS);
2821	cluster->end = extent_key->objectid + extent_key->offset - 1;
2822	cluster->boundary[cluster->nr] = extent_key->objectid;
2823	cluster->nr++;
2824
2825	if (cluster->nr >= MAX_EXTENTS) {
2826		ret = relocate_file_extent_cluster(inode, cluster);
2827		if (ret)
2828			return ret;
2829		cluster->nr = 0;
2830	}
2831	return 0;
2832}
2833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834/*
2835 * helper to add a tree block to the list.
2836 * the major work is getting the generation and level of the block
2837 */
2838static int add_tree_block(struct reloc_control *rc,
2839			  struct btrfs_key *extent_key,
2840			  struct btrfs_path *path,
2841			  struct rb_root *blocks)
2842{
2843	struct extent_buffer *eb;
2844	struct btrfs_extent_item *ei;
2845	struct btrfs_tree_block_info *bi;
2846	struct tree_block *block;
2847	struct rb_node *rb_node;
2848	u32 item_size;
2849	int level = -1;
2850	u64 generation;
2851
2852	eb =  path->nodes[0];
2853	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2854
2855	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2856	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2857		ei = btrfs_item_ptr(eb, path->slots[0],
2858				struct btrfs_extent_item);
2859		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2860			bi = (struct btrfs_tree_block_info *)(ei + 1);
2861			level = btrfs_tree_block_level(eb, bi);
2862		} else {
2863			level = (int)extent_key->offset;
2864		}
2865		generation = btrfs_extent_generation(eb, ei);
2866	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2867		btrfs_print_v0_err(eb->fs_info);
2868		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2869		return -EINVAL;
2870	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871		BUG();
 
2872	}
2873
2874	btrfs_release_path(path);
2875
2876	BUG_ON(level == -1);
2877
2878	block = kmalloc(sizeof(*block), GFP_NOFS);
2879	if (!block)
2880		return -ENOMEM;
2881
2882	block->bytenr = extent_key->objectid;
2883	block->key.objectid = rc->extent_root->fs_info->nodesize;
2884	block->key.offset = generation;
2885	block->level = level;
2886	block->key_ready = 0;
2887
2888	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2889	if (rb_node)
2890		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2891				    -EEXIST);
2892
2893	return 0;
2894}
2895
2896/*
2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898 */
2899static int __add_tree_block(struct reloc_control *rc,
2900			    u64 bytenr, u32 blocksize,
2901			    struct rb_root *blocks)
2902{
2903	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904	struct btrfs_path *path;
2905	struct btrfs_key key;
2906	int ret;
2907	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2908
2909	if (tree_block_processed(bytenr, rc))
2910		return 0;
2911
2912	if (rb_simple_search(blocks, bytenr))
2913		return 0;
2914
2915	path = btrfs_alloc_path();
2916	if (!path)
2917		return -ENOMEM;
2918again:
2919	key.objectid = bytenr;
2920	if (skinny) {
2921		key.type = BTRFS_METADATA_ITEM_KEY;
2922		key.offset = (u64)-1;
2923	} else {
2924		key.type = BTRFS_EXTENT_ITEM_KEY;
2925		key.offset = blocksize;
2926	}
2927
2928	path->search_commit_root = 1;
2929	path->skip_locking = 1;
2930	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2931	if (ret < 0)
2932		goto out;
2933
2934	if (ret > 0 && skinny) {
2935		if (path->slots[0]) {
2936			path->slots[0]--;
2937			btrfs_item_key_to_cpu(path->nodes[0], &key,
2938					      path->slots[0]);
2939			if (key.objectid == bytenr &&
2940			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2941			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2942			      key.offset == blocksize)))
2943				ret = 0;
2944		}
2945
2946		if (ret) {
2947			skinny = false;
2948			btrfs_release_path(path);
2949			goto again;
2950		}
2951	}
2952	if (ret) {
2953		ASSERT(ret == 1);
2954		btrfs_print_leaf(path->nodes[0]);
2955		btrfs_err(fs_info,
2956	     "tree block extent item (%llu) is not found in extent tree",
2957		     bytenr);
2958		WARN_ON(1);
2959		ret = -EINVAL;
2960		goto out;
2961	}
2962
2963	ret = add_tree_block(rc, &key, path, blocks);
2964out:
2965	btrfs_free_path(path);
2966	return ret;
2967}
2968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2970				    struct btrfs_block_group *block_group,
2971				    struct inode *inode,
2972				    u64 ino)
2973{
 
2974	struct btrfs_root *root = fs_info->tree_root;
2975	struct btrfs_trans_handle *trans;
2976	int ret = 0;
2977
2978	if (inode)
2979		goto truncate;
2980
2981	inode = btrfs_iget(fs_info->sb, ino, root);
2982	if (IS_ERR(inode))
 
 
 
 
 
 
2983		return -ENOENT;
 
2984
2985truncate:
2986	ret = btrfs_check_trunc_cache_free_space(fs_info,
2987						 &fs_info->global_block_rsv);
2988	if (ret)
2989		goto out;
2990
2991	trans = btrfs_join_transaction(root);
2992	if (IS_ERR(trans)) {
2993		ret = PTR_ERR(trans);
2994		goto out;
2995	}
2996
2997	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2998
2999	btrfs_end_transaction(trans);
3000	btrfs_btree_balance_dirty(fs_info);
3001out:
3002	iput(inode);
3003	return ret;
3004}
3005
3006/*
3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008 * cache inode, to avoid free space cache data extent blocking data relocation.
3009 */
3010static int delete_v1_space_cache(struct extent_buffer *leaf,
3011				 struct btrfs_block_group *block_group,
3012				 u64 data_bytenr)
 
 
3013{
3014	u64 space_cache_ino;
3015	struct btrfs_file_extent_item *ei;
 
 
 
 
3016	struct btrfs_key key;
3017	bool found = false;
3018	int i;
 
 
 
 
 
 
3019	int ret;
3020
3021	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3022		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3025		btrfs_item_key_to_cpu(leaf, &key, i);
3026		if (key.type != BTRFS_EXTENT_DATA_KEY)
3027			continue;
3028		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3029		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3030		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3031			found = true;
3032			space_cache_ino = key.objectid;
3033			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034		}
 
 
 
 
 
 
 
3035	}
3036	if (!found)
3037		return -ENOENT;
3038	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3039					space_cache_ino);
3040	return ret;
3041}
3042
3043/*
3044 * helper to find all tree blocks that reference a given data extent
3045 */
3046static noinline_for_stack
3047int add_data_references(struct reloc_control *rc,
3048			struct btrfs_key *extent_key,
3049			struct btrfs_path *path,
3050			struct rb_root *blocks)
3051{
3052	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3053	struct ulist *leaves = NULL;
3054	struct ulist_iterator leaf_uiter;
3055	struct ulist_node *ref_node = NULL;
3056	const u32 blocksize = fs_info->nodesize;
 
 
3057	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
3058
3059	btrfs_release_path(path);
3060	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3061				   0, &leaves, NULL, true);
3062	if (ret < 0)
3063		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064
3065	ULIST_ITER_INIT(&leaf_uiter);
3066	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3067		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
3068
3069		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3070		if (IS_ERR(eb)) {
3071			ret = PTR_ERR(eb);
3072			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073		}
3074		ret = delete_v1_space_cache(eb, rc->block_group,
3075					    extent_key->objectid);
3076		free_extent_buffer(eb);
3077		if (ret < 0)
3078			break;
3079		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3080		if (ret < 0)
3081			break;
 
 
3082	}
3083	if (ret < 0)
 
 
3084		free_block_list(blocks);
3085	ulist_free(leaves);
3086	return ret;
3087}
3088
3089/*
3090 * helper to find next unprocessed extent
3091 */
3092static noinline_for_stack
3093int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3094		     struct btrfs_key *extent_key)
3095{
3096	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3097	struct btrfs_key key;
3098	struct extent_buffer *leaf;
3099	u64 start, end, last;
3100	int ret;
3101
3102	last = rc->block_group->start + rc->block_group->length;
3103	while (1) {
3104		cond_resched();
3105		if (rc->search_start >= last) {
3106			ret = 1;
3107			break;
3108		}
3109
3110		key.objectid = rc->search_start;
3111		key.type = BTRFS_EXTENT_ITEM_KEY;
3112		key.offset = 0;
3113
3114		path->search_commit_root = 1;
3115		path->skip_locking = 1;
3116		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3117					0, 0);
3118		if (ret < 0)
3119			break;
3120next:
3121		leaf = path->nodes[0];
3122		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3123			ret = btrfs_next_leaf(rc->extent_root, path);
3124			if (ret != 0)
3125				break;
3126			leaf = path->nodes[0];
3127		}
3128
3129		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3130		if (key.objectid >= last) {
3131			ret = 1;
3132			break;
3133		}
3134
3135		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3136		    key.type != BTRFS_METADATA_ITEM_KEY) {
3137			path->slots[0]++;
3138			goto next;
3139		}
3140
3141		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3142		    key.objectid + key.offset <= rc->search_start) {
3143			path->slots[0]++;
3144			goto next;
3145		}
3146
3147		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3148		    key.objectid + fs_info->nodesize <=
3149		    rc->search_start) {
3150			path->slots[0]++;
3151			goto next;
3152		}
3153
3154		ret = find_first_extent_bit(&rc->processed_blocks,
3155					    key.objectid, &start, &end,
3156					    EXTENT_DIRTY, NULL);
3157
3158		if (ret == 0 && start <= key.objectid) {
3159			btrfs_release_path(path);
3160			rc->search_start = end + 1;
3161		} else {
3162			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3163				rc->search_start = key.objectid + key.offset;
3164			else
3165				rc->search_start = key.objectid +
3166					fs_info->nodesize;
3167			memcpy(extent_key, &key, sizeof(key));
3168			return 0;
3169		}
3170	}
3171	btrfs_release_path(path);
3172	return ret;
3173}
3174
3175static void set_reloc_control(struct reloc_control *rc)
3176{
3177	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3178
3179	mutex_lock(&fs_info->reloc_mutex);
3180	fs_info->reloc_ctl = rc;
3181	mutex_unlock(&fs_info->reloc_mutex);
3182}
3183
3184static void unset_reloc_control(struct reloc_control *rc)
3185{
3186	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187
3188	mutex_lock(&fs_info->reloc_mutex);
3189	fs_info->reloc_ctl = NULL;
3190	mutex_unlock(&fs_info->reloc_mutex);
3191}
3192
3193static int check_extent_flags(u64 flags)
3194{
3195	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3197		return 1;
3198	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3199	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200		return 1;
3201	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3202	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3203		return 1;
3204	return 0;
3205}
3206
3207static noinline_for_stack
3208int prepare_to_relocate(struct reloc_control *rc)
3209{
3210	struct btrfs_trans_handle *trans;
3211	int ret;
3212
3213	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3214					      BTRFS_BLOCK_RSV_TEMP);
3215	if (!rc->block_rsv)
3216		return -ENOMEM;
3217
3218	memset(&rc->cluster, 0, sizeof(rc->cluster));
3219	rc->search_start = rc->block_group->start;
3220	rc->extents_found = 0;
3221	rc->nodes_relocated = 0;
3222	rc->merging_rsv_size = 0;
3223	rc->reserved_bytes = 0;
3224	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3225			      RELOCATION_RESERVED_NODES;
3226	ret = btrfs_block_rsv_refill(rc->extent_root,
3227				     rc->block_rsv, rc->block_rsv->size,
3228				     BTRFS_RESERVE_FLUSH_ALL);
3229	if (ret)
3230		return ret;
3231
3232	rc->create_reloc_tree = 1;
3233	set_reloc_control(rc);
3234
3235	trans = btrfs_join_transaction(rc->extent_root);
3236	if (IS_ERR(trans)) {
3237		unset_reloc_control(rc);
3238		/*
3239		 * extent tree is not a ref_cow tree and has no reloc_root to
3240		 * cleanup.  And callers are responsible to free the above
3241		 * block rsv.
3242		 */
3243		return PTR_ERR(trans);
3244	}
3245	btrfs_commit_transaction(trans);
3246	return 0;
3247}
3248
3249static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3250{
3251	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3252	struct rb_root blocks = RB_ROOT;
3253	struct btrfs_key key;
3254	struct btrfs_trans_handle *trans = NULL;
3255	struct btrfs_path *path;
3256	struct btrfs_extent_item *ei;
3257	u64 flags;
3258	u32 item_size;
3259	int ret;
3260	int err = 0;
3261	int progress = 0;
3262
3263	path = btrfs_alloc_path();
3264	if (!path)
3265		return -ENOMEM;
3266	path->reada = READA_FORWARD;
3267
3268	ret = prepare_to_relocate(rc);
3269	if (ret) {
3270		err = ret;
3271		goto out_free;
3272	}
3273
3274	while (1) {
3275		rc->reserved_bytes = 0;
3276		ret = btrfs_block_rsv_refill(rc->extent_root,
3277					rc->block_rsv, rc->block_rsv->size,
3278					BTRFS_RESERVE_FLUSH_ALL);
3279		if (ret) {
3280			err = ret;
3281			break;
3282		}
3283		progress++;
3284		trans = btrfs_start_transaction(rc->extent_root, 0);
3285		if (IS_ERR(trans)) {
3286			err = PTR_ERR(trans);
3287			trans = NULL;
3288			break;
3289		}
3290restart:
3291		if (update_backref_cache(trans, &rc->backref_cache)) {
3292			btrfs_end_transaction(trans);
3293			trans = NULL;
3294			continue;
3295		}
3296
3297		ret = find_next_extent(rc, path, &key);
3298		if (ret < 0)
3299			err = ret;
3300		if (ret != 0)
3301			break;
3302
3303		rc->extents_found++;
3304
3305		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306				    struct btrfs_extent_item);
3307		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3308		if (item_size >= sizeof(*ei)) {
3309			flags = btrfs_extent_flags(path->nodes[0], ei);
3310			ret = check_extent_flags(flags);
3311			BUG_ON(ret);
3312		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3313			err = -EINVAL;
3314			btrfs_print_v0_err(trans->fs_info);
3315			btrfs_abort_transaction(trans, err);
3316			break;
3317		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318			BUG();
 
3319		}
3320
3321		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3322			ret = add_tree_block(rc, &key, path, &blocks);
3323		} else if (rc->stage == UPDATE_DATA_PTRS &&
3324			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3325			ret = add_data_references(rc, &key, path, &blocks);
3326		} else {
3327			btrfs_release_path(path);
3328			ret = 0;
3329		}
3330		if (ret < 0) {
3331			err = ret;
3332			break;
3333		}
3334
3335		if (!RB_EMPTY_ROOT(&blocks)) {
3336			ret = relocate_tree_blocks(trans, rc, &blocks);
3337			if (ret < 0) {
 
 
 
 
 
 
3338				if (ret != -EAGAIN) {
3339					err = ret;
3340					break;
3341				}
3342				rc->extents_found--;
3343				rc->search_start = key.objectid;
3344			}
3345		}
3346
3347		btrfs_end_transaction_throttle(trans);
3348		btrfs_btree_balance_dirty(fs_info);
3349		trans = NULL;
3350
3351		if (rc->stage == MOVE_DATA_EXTENTS &&
3352		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353			rc->found_file_extent = 1;
3354			ret = relocate_data_extent(rc->data_inode,
3355						   &key, &rc->cluster);
3356			if (ret < 0) {
3357				err = ret;
3358				break;
3359			}
3360		}
3361		if (btrfs_should_cancel_balance(fs_info)) {
3362			err = -ECANCELED;
3363			break;
3364		}
3365	}
3366	if (trans && progress && err == -ENOSPC) {
3367		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
 
3368		if (ret == 1) {
3369			err = 0;
3370			progress = 0;
3371			goto restart;
3372		}
3373	}
3374
3375	btrfs_release_path(path);
3376	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3377
3378	if (trans) {
3379		btrfs_end_transaction_throttle(trans);
3380		btrfs_btree_balance_dirty(fs_info);
3381	}
3382
3383	if (!err) {
3384		ret = relocate_file_extent_cluster(rc->data_inode,
3385						   &rc->cluster);
3386		if (ret < 0)
3387			err = ret;
3388	}
3389
3390	rc->create_reloc_tree = 0;
3391	set_reloc_control(rc);
3392
3393	btrfs_backref_release_cache(&rc->backref_cache);
3394	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3395
3396	/*
3397	 * Even in the case when the relocation is cancelled, we should all go
3398	 * through prepare_to_merge() and merge_reloc_roots().
3399	 *
3400	 * For error (including cancelled balance), prepare_to_merge() will
3401	 * mark all reloc trees orphan, then queue them for cleanup in
3402	 * merge_reloc_roots()
3403	 */
3404	err = prepare_to_merge(rc, err);
3405
3406	merge_reloc_roots(rc);
3407
3408	rc->merge_reloc_tree = 0;
3409	unset_reloc_control(rc);
3410	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3411
3412	/* get rid of pinned extents */
3413	trans = btrfs_join_transaction(rc->extent_root);
3414	if (IS_ERR(trans)) {
3415		err = PTR_ERR(trans);
3416		goto out_free;
3417	}
3418	btrfs_commit_transaction(trans);
3419out_free:
3420	ret = clean_dirty_subvols(rc);
3421	if (ret < 0 && !err)
3422		err = ret;
3423	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3424	btrfs_free_path(path);
3425	return err;
3426}
3427
3428static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3429				 struct btrfs_root *root, u64 objectid)
3430{
3431	struct btrfs_path *path;
3432	struct btrfs_inode_item *item;
3433	struct extent_buffer *leaf;
3434	int ret;
3435
3436	path = btrfs_alloc_path();
3437	if (!path)
3438		return -ENOMEM;
3439
3440	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3441	if (ret)
3442		goto out;
3443
3444	leaf = path->nodes[0];
3445	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3446	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3447	btrfs_set_inode_generation(leaf, item, 1);
3448	btrfs_set_inode_size(leaf, item, 0);
3449	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3450	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3451					  BTRFS_INODE_PREALLOC);
3452	btrfs_mark_buffer_dirty(leaf);
3453out:
3454	btrfs_free_path(path);
3455	return ret;
3456}
3457
3458/*
3459 * helper to create inode for data relocation.
3460 * the inode is in data relocation tree and its link count is 0
3461 */
3462static noinline_for_stack
3463struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3464				 struct btrfs_block_group *group)
3465{
3466	struct inode *inode = NULL;
3467	struct btrfs_trans_handle *trans;
3468	struct btrfs_root *root;
 
3469	u64 objectid;
3470	int err = 0;
3471
3472	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3473	trans = btrfs_start_transaction(root, 6);
3474	if (IS_ERR(trans)) {
3475		btrfs_put_root(root);
3476		return ERR_CAST(trans);
3477	}
3478
3479	err = btrfs_find_free_objectid(root, &objectid);
3480	if (err)
3481		goto out;
3482
3483	err = __insert_orphan_inode(trans, root, objectid);
3484	BUG_ON(err);
3485
3486	inode = btrfs_iget(fs_info->sb, objectid, root);
3487	BUG_ON(IS_ERR(inode));
3488	BTRFS_I(inode)->index_cnt = group->start;
 
 
 
3489
3490	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3491out:
3492	btrfs_put_root(root);
3493	btrfs_end_transaction(trans);
3494	btrfs_btree_balance_dirty(fs_info);
3495	if (err) {
3496		if (inode)
3497			iput(inode);
3498		inode = ERR_PTR(err);
3499	}
3500	return inode;
3501}
3502
3503static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3504{
3505	struct reloc_control *rc;
3506
3507	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3508	if (!rc)
3509		return NULL;
3510
3511	INIT_LIST_HEAD(&rc->reloc_roots);
3512	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3513	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3514	mapping_tree_init(&rc->reloc_root_tree);
3515	extent_io_tree_init(fs_info, &rc->processed_blocks,
3516			    IO_TREE_RELOC_BLOCKS, NULL);
3517	return rc;
3518}
3519
3520static void free_reloc_control(struct reloc_control *rc)
3521{
3522	struct mapping_node *node, *tmp;
3523
3524	free_reloc_roots(&rc->reloc_roots);
3525	rbtree_postorder_for_each_entry_safe(node, tmp,
3526			&rc->reloc_root_tree.rb_root, rb_node)
3527		kfree(node);
3528
3529	kfree(rc);
3530}
3531
3532/*
3533 * Print the block group being relocated
3534 */
3535static void describe_relocation(struct btrfs_fs_info *fs_info,
3536				struct btrfs_block_group *block_group)
3537{
3538	char buf[128] = {'\0'};
 
3539
3540	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3541
3542	btrfs_info(fs_info,
3543		   "relocating block group %llu flags %s",
3544		   block_group->start, buf);
3545}
3546
3547static const char *stage_to_string(int stage)
3548{
3549	if (stage == MOVE_DATA_EXTENTS)
3550		return "move data extents";
3551	if (stage == UPDATE_DATA_PTRS)
3552		return "update data pointers";
3553	return "unknown";
3554}
3555
3556/*
3557 * function to relocate all extents in a block group.
3558 */
3559int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3560{
3561	struct btrfs_block_group *bg;
3562	struct btrfs_root *extent_root = fs_info->extent_root;
3563	struct reloc_control *rc;
3564	struct inode *inode;
3565	struct btrfs_path *path;
3566	int ret;
3567	int rw = 0;
3568	int err = 0;
3569
3570	bg = btrfs_lookup_block_group(fs_info, group_start);
3571	if (!bg)
3572		return -ENOENT;
3573
3574	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3575		btrfs_put_block_group(bg);
3576		return -ETXTBSY;
3577	}
3578
3579	rc = alloc_reloc_control(fs_info);
3580	if (!rc) {
3581		btrfs_put_block_group(bg);
3582		return -ENOMEM;
3583	}
3584
3585	rc->extent_root = extent_root;
3586	rc->block_group = bg;
3587
3588	ret = btrfs_inc_block_group_ro(rc->block_group, true);
 
 
 
3589	if (ret) {
3590		err = ret;
3591		goto out;
3592	}
3593	rw = 1;
3594
3595	path = btrfs_alloc_path();
3596	if (!path) {
3597		err = -ENOMEM;
3598		goto out;
3599	}
3600
3601	inode = lookup_free_space_inode(rc->block_group, path);
 
3602	btrfs_free_path(path);
3603
3604	if (!IS_ERR(inode))
3605		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3606	else
3607		ret = PTR_ERR(inode);
3608
3609	if (ret && ret != -ENOENT) {
3610		err = ret;
3611		goto out;
3612	}
3613
3614	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3615	if (IS_ERR(rc->data_inode)) {
3616		err = PTR_ERR(rc->data_inode);
3617		rc->data_inode = NULL;
3618		goto out;
3619	}
3620
3621	describe_relocation(fs_info, rc->block_group);
3622
3623	btrfs_wait_block_group_reservations(rc->block_group);
3624	btrfs_wait_nocow_writers(rc->block_group);
3625	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3626				 rc->block_group->start,
3627				 rc->block_group->length);
3628
3629	while (1) {
3630		int finishes_stage;
3631
3632		mutex_lock(&fs_info->cleaner_mutex);
3633		ret = relocate_block_group(rc);
3634		mutex_unlock(&fs_info->cleaner_mutex);
3635		if (ret < 0)
3636			err = ret;
 
 
 
 
 
 
 
3637
3638		finishes_stage = rc->stage;
3639		/*
3640		 * We may have gotten ENOSPC after we already dirtied some
3641		 * extents.  If writeout happens while we're relocating a
3642		 * different block group we could end up hitting the
3643		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644		 * btrfs_reloc_cow_block.  Make sure we write everything out
3645		 * properly so we don't trip over this problem, and then break
3646		 * out of the loop if we hit an error.
3647		 */
3648		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3649			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3650						       (u64)-1);
3651			if (ret)
3652				err = ret;
 
 
3653			invalidate_mapping_pages(rc->data_inode->i_mapping,
3654						 0, -1);
3655			rc->stage = UPDATE_DATA_PTRS;
3656		}
3657
3658		if (err < 0)
3659			goto out;
3660
3661		if (rc->extents_found == 0)
3662			break;
3663
3664		btrfs_info(fs_info, "found %llu extents, stage: %s",
3665			   rc->extents_found, stage_to_string(finishes_stage));
3666	}
3667
3668	WARN_ON(rc->block_group->pinned > 0);
3669	WARN_ON(rc->block_group->reserved > 0);
3670	WARN_ON(rc->block_group->used > 0);
3671out:
3672	if (err && rw)
3673		btrfs_dec_block_group_ro(rc->block_group);
3674	iput(rc->data_inode);
3675	btrfs_put_block_group(rc->block_group);
3676	free_reloc_control(rc);
3677	return err;
3678}
3679
3680static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3681{
3682	struct btrfs_fs_info *fs_info = root->fs_info;
3683	struct btrfs_trans_handle *trans;
3684	int ret, err;
3685
3686	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3687	if (IS_ERR(trans))
3688		return PTR_ERR(trans);
3689
3690	memset(&root->root_item.drop_progress, 0,
3691		sizeof(root->root_item.drop_progress));
3692	root->root_item.drop_level = 0;
3693	btrfs_set_root_refs(&root->root_item, 0);
3694	ret = btrfs_update_root(trans, fs_info->tree_root,
3695				&root->root_key, &root->root_item);
3696
3697	err = btrfs_end_transaction(trans);
3698	if (err)
3699		return err;
3700	return ret;
3701}
3702
3703/*
3704 * recover relocation interrupted by system crash.
3705 *
3706 * this function resumes merging reloc trees with corresponding fs trees.
3707 * this is important for keeping the sharing of tree blocks
3708 */
3709int btrfs_recover_relocation(struct btrfs_root *root)
3710{
3711	struct btrfs_fs_info *fs_info = root->fs_info;
3712	LIST_HEAD(reloc_roots);
3713	struct btrfs_key key;
3714	struct btrfs_root *fs_root;
3715	struct btrfs_root *reloc_root;
3716	struct btrfs_path *path;
3717	struct extent_buffer *leaf;
3718	struct reloc_control *rc = NULL;
3719	struct btrfs_trans_handle *trans;
3720	int ret;
3721	int err = 0;
3722
3723	path = btrfs_alloc_path();
3724	if (!path)
3725		return -ENOMEM;
3726	path->reada = READA_BACK;
3727
3728	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3729	key.type = BTRFS_ROOT_ITEM_KEY;
3730	key.offset = (u64)-1;
3731
3732	while (1) {
3733		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3734					path, 0, 0);
3735		if (ret < 0) {
3736			err = ret;
3737			goto out;
3738		}
3739		if (ret > 0) {
3740			if (path->slots[0] == 0)
3741				break;
3742			path->slots[0]--;
3743		}
3744		leaf = path->nodes[0];
3745		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3746		btrfs_release_path(path);
3747
3748		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3749		    key.type != BTRFS_ROOT_ITEM_KEY)
3750			break;
3751
3752		reloc_root = btrfs_read_tree_root(root, &key);
3753		if (IS_ERR(reloc_root)) {
3754			err = PTR_ERR(reloc_root);
3755			goto out;
3756		}
3757
3758		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3759		list_add(&reloc_root->root_list, &reloc_roots);
3760
3761		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3762			fs_root = btrfs_get_fs_root(fs_info,
3763					reloc_root->root_key.offset, false);
3764			if (IS_ERR(fs_root)) {
3765				ret = PTR_ERR(fs_root);
3766				if (ret != -ENOENT) {
3767					err = ret;
3768					goto out;
3769				}
3770				ret = mark_garbage_root(reloc_root);
3771				if (ret < 0) {
3772					err = ret;
3773					goto out;
3774				}
3775			} else {
3776				btrfs_put_root(fs_root);
3777			}
3778		}
3779
3780		if (key.offset == 0)
3781			break;
3782
3783		key.offset--;
3784	}
3785	btrfs_release_path(path);
3786
3787	if (list_empty(&reloc_roots))
3788		goto out;
3789
3790	rc = alloc_reloc_control(fs_info);
3791	if (!rc) {
3792		err = -ENOMEM;
3793		goto out;
3794	}
3795
3796	rc->extent_root = fs_info->extent_root;
3797
3798	set_reloc_control(rc);
3799
3800	trans = btrfs_join_transaction(rc->extent_root);
3801	if (IS_ERR(trans)) {
 
3802		err = PTR_ERR(trans);
3803		goto out_unset;
3804	}
3805
3806	rc->merge_reloc_tree = 1;
3807
3808	while (!list_empty(&reloc_roots)) {
3809		reloc_root = list_entry(reloc_roots.next,
3810					struct btrfs_root, root_list);
3811		list_del(&reloc_root->root_list);
3812
3813		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3814			list_add_tail(&reloc_root->root_list,
3815				      &rc->reloc_roots);
3816			continue;
3817		}
3818
3819		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3820					    false);
3821		if (IS_ERR(fs_root)) {
3822			err = PTR_ERR(fs_root);
3823			list_add_tail(&reloc_root->root_list, &reloc_roots);
3824			btrfs_end_transaction(trans);
3825			goto out_unset;
3826		}
3827
3828		err = __add_reloc_root(reloc_root);
3829		BUG_ON(err < 0); /* -ENOMEM or logic error */
3830		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3831		btrfs_put_root(fs_root);
3832	}
3833
3834	err = btrfs_commit_transaction(trans);
3835	if (err)
3836		goto out_unset;
3837
3838	merge_reloc_roots(rc);
3839
3840	unset_reloc_control(rc);
3841
3842	trans = btrfs_join_transaction(rc->extent_root);
3843	if (IS_ERR(trans)) {
3844		err = PTR_ERR(trans);
3845		goto out_clean;
3846	}
3847	err = btrfs_commit_transaction(trans);
3848out_clean:
3849	ret = clean_dirty_subvols(rc);
3850	if (ret < 0 && !err)
3851		err = ret;
3852out_unset:
3853	unset_reloc_control(rc);
3854	free_reloc_control(rc);
3855out:
3856	free_reloc_roots(&reloc_roots);
 
3857
3858	btrfs_free_path(path);
3859
3860	if (err == 0) {
3861		/* cleanup orphan inode in data relocation tree */
3862		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3863		ASSERT(fs_root);
3864		err = btrfs_orphan_cleanup(fs_root);
3865		btrfs_put_root(fs_root);
 
3866	}
3867	return err;
3868}
3869
3870/*
3871 * helper to add ordered checksum for data relocation.
3872 *
3873 * cloning checksum properly handles the nodatasum extents.
3874 * it also saves CPU time to re-calculate the checksum.
3875 */
3876int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3877{
3878	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3879	struct btrfs_ordered_sum *sums;
3880	struct btrfs_ordered_extent *ordered;
3881	int ret;
3882	u64 disk_bytenr;
3883	u64 new_bytenr;
3884	LIST_HEAD(list);
3885
3886	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3887	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3888
3889	disk_bytenr = file_pos + inode->index_cnt;
3890	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3891				       disk_bytenr + len - 1, &list, 0);
3892	if (ret)
3893		goto out;
3894
3895	while (!list_empty(&list)) {
3896		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3897		list_del_init(&sums->list);
3898
3899		/*
3900		 * We need to offset the new_bytenr based on where the csum is.
3901		 * We need to do this because we will read in entire prealloc
3902		 * extents but we may have written to say the middle of the
3903		 * prealloc extent, so we need to make sure the csum goes with
3904		 * the right disk offset.
3905		 *
3906		 * We can do this because the data reloc inode refers strictly
3907		 * to the on disk bytes, so we don't have to worry about
3908		 * disk_len vs real len like with real inodes since it's all
3909		 * disk length.
3910		 */
3911		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3912		sums->bytenr = new_bytenr;
3913
3914		btrfs_add_ordered_sum(ordered, sums);
3915	}
3916out:
3917	btrfs_put_ordered_extent(ordered);
3918	return ret;
3919}
3920
3921int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3922			  struct btrfs_root *root, struct extent_buffer *buf,
3923			  struct extent_buffer *cow)
3924{
3925	struct btrfs_fs_info *fs_info = root->fs_info;
3926	struct reloc_control *rc;
3927	struct btrfs_backref_node *node;
3928	int first_cow = 0;
3929	int level;
3930	int ret = 0;
3931
3932	rc = fs_info->reloc_ctl;
3933	if (!rc)
3934		return 0;
3935
3936	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3937	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3938
 
 
 
 
 
3939	level = btrfs_header_level(buf);
3940	if (btrfs_header_generation(buf) <=
3941	    btrfs_root_last_snapshot(&root->root_item))
3942		first_cow = 1;
3943
3944	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3945	    rc->create_reloc_tree) {
3946		WARN_ON(!first_cow && level == 0);
3947
3948		node = rc->backref_cache.path[level];
3949		BUG_ON(node->bytenr != buf->start &&
3950		       node->new_bytenr != buf->start);
3951
3952		btrfs_backref_drop_node_buffer(node);
3953		atomic_inc(&cow->refs);
3954		node->eb = cow;
3955		node->new_bytenr = cow->start;
3956
3957		if (!node->pending) {
3958			list_move_tail(&node->list,
3959				       &rc->backref_cache.pending[level]);
3960			node->pending = 1;
3961		}
3962
3963		if (first_cow)
3964			mark_block_processed(rc, node);
3965
3966		if (first_cow && level > 0)
3967			rc->nodes_relocated += buf->len;
3968	}
3969
3970	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3971		ret = replace_file_extents(trans, rc, root, cow);
3972	return ret;
3973}
3974
3975/*
3976 * called before creating snapshot. it calculates metadata reservation
3977 * required for relocating tree blocks in the snapshot
3978 */
3979void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3980			      u64 *bytes_to_reserve)
3981{
3982	struct btrfs_root *root = pending->root;
3983	struct reloc_control *rc = root->fs_info->reloc_ctl;
3984
3985	if (!rc || !have_reloc_root(root))
 
3986		return;
3987
 
3988	if (!rc->merge_reloc_tree)
3989		return;
3990
3991	root = root->reloc_root;
3992	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3993	/*
3994	 * relocation is in the stage of merging trees. the space
3995	 * used by merging a reloc tree is twice the size of
3996	 * relocated tree nodes in the worst case. half for cowing
3997	 * the reloc tree, half for cowing the fs tree. the space
3998	 * used by cowing the reloc tree will be freed after the
3999	 * tree is dropped. if we create snapshot, cowing the fs
4000	 * tree may use more space than it frees. so we need
4001	 * reserve extra space.
4002	 */
4003	*bytes_to_reserve += rc->nodes_relocated;
4004}
4005
4006/*
4007 * called after snapshot is created. migrate block reservation
4008 * and create reloc root for the newly created snapshot
4009 *
4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011 * references held on the reloc_root, one for root->reloc_root and one for
4012 * rc->reloc_roots.
4013 */
4014int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4015			       struct btrfs_pending_snapshot *pending)
4016{
4017	struct btrfs_root *root = pending->root;
4018	struct btrfs_root *reloc_root;
4019	struct btrfs_root *new_root;
4020	struct reloc_control *rc = root->fs_info->reloc_ctl;
4021	int ret;
4022
4023	if (!rc || !have_reloc_root(root))
4024		return 0;
4025
4026	rc = root->fs_info->reloc_ctl;
4027	rc->merging_rsv_size += rc->nodes_relocated;
4028
4029	if (rc->merge_reloc_tree) {
4030		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4031					      rc->block_rsv,
4032					      rc->nodes_relocated, true);
4033		if (ret)
4034			return ret;
4035	}
4036
4037	new_root = pending->snap;
4038	reloc_root = create_reloc_root(trans, root->reloc_root,
4039				       new_root->root_key.objectid);
4040	if (IS_ERR(reloc_root))
4041		return PTR_ERR(reloc_root);
4042
4043	ret = __add_reloc_root(reloc_root);
4044	BUG_ON(ret < 0);
4045	new_root->reloc_root = btrfs_grab_root(reloc_root);
4046
4047	if (rc->create_reloc_tree)
4048		ret = clone_backref_node(trans, rc, root, reloc_root);
4049	return ret;
4050}