Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34#include "qgroup.h"
 
 
 
 
 
  35
  36/*
  37 * backref_node, mapping_node and tree_block start with this
  38 */
  39struct tree_entry {
  40	struct rb_node rb_node;
  41	u64 bytenr;
  42};
  43
  44/*
  45 * present a tree block in the backref cache
  46 */
  47struct backref_node {
  48	struct rb_node rb_node;
  49	u64 bytenr;
  50
  51	u64 new_bytenr;
  52	/* objectid of tree block owner, can be not uptodate */
  53	u64 owner;
  54	/* link to pending, changed or detached list */
  55	struct list_head list;
  56	/* list of upper level blocks reference this block */
  57	struct list_head upper;
  58	/* list of child blocks in the cache */
  59	struct list_head lower;
  60	/* NULL if this node is not tree root */
  61	struct btrfs_root *root;
  62	/* extent buffer got by COW the block */
  63	struct extent_buffer *eb;
  64	/* level of tree block */
  65	unsigned int level:8;
  66	/* is the block in non-reference counted tree */
  67	unsigned int cowonly:1;
  68	/* 1 if no child node in the cache */
  69	unsigned int lowest:1;
  70	/* is the extent buffer locked */
  71	unsigned int locked:1;
  72	/* has the block been processed */
  73	unsigned int processed:1;
  74	/* have backrefs of this block been checked */
  75	unsigned int checked:1;
  76	/*
  77	 * 1 if corresponding block has been cowed but some upper
  78	 * level block pointers may not point to the new location
  79	 */
  80	unsigned int pending:1;
  81	/*
  82	 * 1 if the backref node isn't connected to any other
  83	 * backref node.
  84	 */
  85	unsigned int detached:1;
  86};
  87
  88/*
  89 * present a block pointer in the backref cache
  90 */
  91struct backref_edge {
  92	struct list_head list[2];
  93	struct backref_node *node[2];
  94};
  95
  96#define LOWER	0
  97#define UPPER	1
  98#define RELOCATION_RESERVED_NODES	256
  99
 100struct backref_cache {
 101	/* red black tree of all backref nodes in the cache */
 102	struct rb_root rb_root;
 103	/* for passing backref nodes to btrfs_reloc_cow_block */
 104	struct backref_node *path[BTRFS_MAX_LEVEL];
 105	/*
 106	 * list of blocks that have been cowed but some block
 107	 * pointers in upper level blocks may not reflect the
 108	 * new location
 109	 */
 110	struct list_head pending[BTRFS_MAX_LEVEL];
 111	/* list of backref nodes with no child node */
 112	struct list_head leaves;
 113	/* list of blocks that have been cowed in current transaction */
 114	struct list_head changed;
 115	/* list of detached backref node. */
 116	struct list_head detached;
 117
 118	u64 last_trans;
 119
 120	int nr_nodes;
 121	int nr_edges;
 122};
 123
 124/*
 125 * map address of tree root to tree
 126 */
 127struct mapping_node {
 128	struct rb_node rb_node;
 129	u64 bytenr;
 
 
 130	void *data;
 131};
 132
 133struct mapping_tree {
 134	struct rb_root rb_root;
 135	spinlock_t lock;
 136};
 137
 138/*
 139 * present a tree block to process
 140 */
 141struct tree_block {
 142	struct rb_node rb_node;
 143	u64 bytenr;
 
 
 
 144	struct btrfs_key key;
 145	unsigned int level:8;
 146	unsigned int key_ready:1;
 147};
 148
 149#define MAX_EXTENTS 128
 150
 151struct file_extent_cluster {
 152	u64 start;
 153	u64 end;
 154	u64 boundary[MAX_EXTENTS];
 155	unsigned int nr;
 156};
 157
 158struct reloc_control {
 159	/* block group to relocate */
 160	struct btrfs_block_group_cache *block_group;
 161	/* extent tree */
 162	struct btrfs_root *extent_root;
 163	/* inode for moving data */
 164	struct inode *data_inode;
 165
 166	struct btrfs_block_rsv *block_rsv;
 167
 168	struct backref_cache backref_cache;
 169
 170	struct file_extent_cluster cluster;
 171	/* tree blocks have been processed */
 172	struct extent_io_tree processed_blocks;
 173	/* map start of tree root to corresponding reloc tree */
 174	struct mapping_tree reloc_root_tree;
 175	/* list of reloc trees */
 176	struct list_head reloc_roots;
 
 
 177	/* size of metadata reservation for merging reloc trees */
 178	u64 merging_rsv_size;
 179	/* size of relocated tree nodes */
 180	u64 nodes_relocated;
 181	/* reserved size for block group relocation*/
 182	u64 reserved_bytes;
 183
 184	u64 search_start;
 185	u64 extents_found;
 186
 187	unsigned int stage:8;
 188	unsigned int create_reloc_tree:1;
 189	unsigned int merge_reloc_tree:1;
 190	unsigned int found_file_extent:1;
 191};
 192
 193/* stages of data relocation */
 194#define MOVE_DATA_EXTENTS	0
 195#define UPDATE_DATA_PTRS	1
 196
 197static void remove_backref_node(struct backref_cache *cache,
 198				struct backref_node *node);
 199static void __mark_block_processed(struct reloc_control *rc,
 200				   struct backref_node *node);
 201
 202static void mapping_tree_init(struct mapping_tree *tree)
 203{
 204	tree->rb_root = RB_ROOT;
 205	spin_lock_init(&tree->lock);
 206}
 207
 208static void backref_cache_init(struct backref_cache *cache)
 209{
 210	int i;
 211	cache->rb_root = RB_ROOT;
 212	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 213		INIT_LIST_HEAD(&cache->pending[i]);
 214	INIT_LIST_HEAD(&cache->changed);
 215	INIT_LIST_HEAD(&cache->detached);
 216	INIT_LIST_HEAD(&cache->leaves);
 217}
 218
 219static void backref_cache_cleanup(struct backref_cache *cache)
 220{
 221	struct backref_node *node;
 222	int i;
 223
 224	while (!list_empty(&cache->detached)) {
 225		node = list_entry(cache->detached.next,
 226				  struct backref_node, list);
 227		remove_backref_node(cache, node);
 228	}
 229
 230	while (!list_empty(&cache->leaves)) {
 231		node = list_entry(cache->leaves.next,
 232				  struct backref_node, lower);
 233		remove_backref_node(cache, node);
 234	}
 235
 236	cache->last_trans = 0;
 237
 238	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 239		ASSERT(list_empty(&cache->pending[i]));
 240	ASSERT(list_empty(&cache->changed));
 241	ASSERT(list_empty(&cache->detached));
 242	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 243	ASSERT(!cache->nr_nodes);
 244	ASSERT(!cache->nr_edges);
 245}
 246
 247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 248{
 249	struct backref_node *node;
 250
 251	node = kzalloc(sizeof(*node), GFP_NOFS);
 252	if (node) {
 253		INIT_LIST_HEAD(&node->list);
 254		INIT_LIST_HEAD(&node->upper);
 255		INIT_LIST_HEAD(&node->lower);
 256		RB_CLEAR_NODE(&node->rb_node);
 257		cache->nr_nodes++;
 258	}
 259	return node;
 260}
 261
 262static void free_backref_node(struct backref_cache *cache,
 263			      struct backref_node *node)
 264{
 265	if (node) {
 266		cache->nr_nodes--;
 267		kfree(node);
 268	}
 269}
 270
 271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 272{
 273	struct backref_edge *edge;
 274
 275	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 276	if (edge)
 277		cache->nr_edges++;
 278	return edge;
 279}
 280
 281static void free_backref_edge(struct backref_cache *cache,
 282			      struct backref_edge *edge)
 283{
 284	if (edge) {
 285		cache->nr_edges--;
 286		kfree(edge);
 287	}
 288}
 289
 290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 291				   struct rb_node *node)
 292{
 293	struct rb_node **p = &root->rb_node;
 294	struct rb_node *parent = NULL;
 295	struct tree_entry *entry;
 296
 297	while (*p) {
 298		parent = *p;
 299		entry = rb_entry(parent, struct tree_entry, rb_node);
 300
 301		if (bytenr < entry->bytenr)
 302			p = &(*p)->rb_left;
 303		else if (bytenr > entry->bytenr)
 304			p = &(*p)->rb_right;
 305		else
 306			return parent;
 307	}
 308
 309	rb_link_node(node, parent, p);
 310	rb_insert_color(node, root);
 311	return NULL;
 312}
 313
 314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 315{
 316	struct rb_node *n = root->rb_node;
 317	struct tree_entry *entry;
 318
 319	while (n) {
 320		entry = rb_entry(n, struct tree_entry, rb_node);
 321
 322		if (bytenr < entry->bytenr)
 323			n = n->rb_left;
 324		else if (bytenr > entry->bytenr)
 325			n = n->rb_right;
 326		else
 327			return n;
 328	}
 329	return NULL;
 330}
 331
 332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 333{
 334
 335	struct btrfs_fs_info *fs_info = NULL;
 336	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 337					      rb_node);
 338	if (bnode->root)
 339		fs_info = bnode->root->fs_info;
 340	btrfs_panic(fs_info, errno,
 341		    "Inconsistency in backref cache found at offset %llu",
 342		    bytenr);
 343}
 344
 345/*
 346 * walk up backref nodes until reach node presents tree root
 347 */
 348static struct backref_node *walk_up_backref(struct backref_node *node,
 349					    struct backref_edge *edges[],
 350					    int *index)
 351{
 352	struct backref_edge *edge;
 353	int idx = *index;
 354
 355	while (!list_empty(&node->upper)) {
 356		edge = list_entry(node->upper.next,
 357				  struct backref_edge, list[LOWER]);
 358		edges[idx++] = edge;
 359		node = edge->node[UPPER];
 360	}
 361	BUG_ON(node->detached);
 362	*index = idx;
 363	return node;
 364}
 365
 366/*
 367 * walk down backref nodes to find start of next reference path
 368 */
 369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 370					      int *index)
 371{
 372	struct backref_edge *edge;
 373	struct backref_node *lower;
 374	int idx = *index;
 375
 376	while (idx > 0) {
 377		edge = edges[idx - 1];
 378		lower = edge->node[LOWER];
 379		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 380			idx--;
 381			continue;
 382		}
 383		edge = list_entry(edge->list[LOWER].next,
 384				  struct backref_edge, list[LOWER]);
 385		edges[idx - 1] = edge;
 386		*index = idx;
 387		return edge->node[UPPER];
 388	}
 389	*index = 0;
 390	return NULL;
 391}
 392
 393static void unlock_node_buffer(struct backref_node *node)
 394{
 395	if (node->locked) {
 396		btrfs_tree_unlock(node->eb);
 397		node->locked = 0;
 398	}
 399}
 400
 401static void drop_node_buffer(struct backref_node *node)
 402{
 403	if (node->eb) {
 404		unlock_node_buffer(node);
 405		free_extent_buffer(node->eb);
 406		node->eb = NULL;
 407	}
 408}
 409
 410static void drop_backref_node(struct backref_cache *tree,
 411			      struct backref_node *node)
 412{
 413	BUG_ON(!list_empty(&node->upper));
 414
 415	drop_node_buffer(node);
 416	list_del(&node->list);
 417	list_del(&node->lower);
 418	if (!RB_EMPTY_NODE(&node->rb_node))
 419		rb_erase(&node->rb_node, &tree->rb_root);
 420	free_backref_node(tree, node);
 421}
 422
 423/*
 424 * remove a backref node from the backref cache
 425 */
 426static void remove_backref_node(struct backref_cache *cache,
 427				struct backref_node *node)
 428{
 429	struct backref_node *upper;
 430	struct backref_edge *edge;
 431
 432	if (!node)
 433		return;
 434
 435	BUG_ON(!node->lowest && !node->detached);
 436	while (!list_empty(&node->upper)) {
 437		edge = list_entry(node->upper.next, struct backref_edge,
 438				  list[LOWER]);
 439		upper = edge->node[UPPER];
 440		list_del(&edge->list[LOWER]);
 441		list_del(&edge->list[UPPER]);
 442		free_backref_edge(cache, edge);
 443
 444		if (RB_EMPTY_NODE(&upper->rb_node)) {
 445			BUG_ON(!list_empty(&node->upper));
 446			drop_backref_node(cache, node);
 447			node = upper;
 448			node->lowest = 1;
 449			continue;
 450		}
 451		/*
 452		 * add the node to leaf node list if no other
 453		 * child block cached.
 454		 */
 455		if (list_empty(&upper->lower)) {
 456			list_add_tail(&upper->lower, &cache->leaves);
 457			upper->lowest = 1;
 458		}
 459	}
 460
 461	drop_backref_node(cache, node);
 462}
 463
 464static void update_backref_node(struct backref_cache *cache,
 465				struct backref_node *node, u64 bytenr)
 466{
 467	struct rb_node *rb_node;
 468	rb_erase(&node->rb_node, &cache->rb_root);
 469	node->bytenr = bytenr;
 470	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 471	if (rb_node)
 472		backref_tree_panic(rb_node, -EEXIST, bytenr);
 473}
 474
 475/*
 476 * update backref cache after a transaction commit
 477 */
 478static int update_backref_cache(struct btrfs_trans_handle *trans,
 479				struct backref_cache *cache)
 480{
 481	struct backref_node *node;
 482	int level = 0;
 483
 484	if (cache->last_trans == 0) {
 485		cache->last_trans = trans->transid;
 486		return 0;
 487	}
 488
 489	if (cache->last_trans == trans->transid)
 490		return 0;
 491
 492	/*
 493	 * detached nodes are used to avoid unnecessary backref
 494	 * lookup. transaction commit changes the extent tree.
 495	 * so the detached nodes are no longer useful.
 496	 */
 497	while (!list_empty(&cache->detached)) {
 498		node = list_entry(cache->detached.next,
 499				  struct backref_node, list);
 500		remove_backref_node(cache, node);
 501	}
 502
 503	while (!list_empty(&cache->changed)) {
 504		node = list_entry(cache->changed.next,
 505				  struct backref_node, list);
 506		list_del_init(&node->list);
 507		BUG_ON(node->pending);
 508		update_backref_node(cache, node, node->new_bytenr);
 509	}
 510
 511	/*
 512	 * some nodes can be left in the pending list if there were
 513	 * errors during processing the pending nodes.
 514	 */
 515	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 516		list_for_each_entry(node, &cache->pending[level], list) {
 517			BUG_ON(!node->pending);
 518			if (node->bytenr == node->new_bytenr)
 519				continue;
 520			update_backref_node(cache, node, node->new_bytenr);
 521		}
 522	}
 523
 524	cache->last_trans = 0;
 525	return 1;
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529static int should_ignore_root(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530{
 531	struct btrfs_root *reloc_root;
 532
 533	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 534		return 0;
 535
 
 
 
 
 536	reloc_root = root->reloc_root;
 537	if (!reloc_root)
 538		return 0;
 539
 540	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 541	    root->fs_info->running_transaction->transid - 1)
 542		return 0;
 543	/*
 544	 * if there is reloc tree and it was created in previous
 545	 * transaction backref lookup can find the reloc tree,
 546	 * so backref node for the fs tree root is useless for
 547	 * relocation.
 548	 */
 549	return 1;
 550}
 
 551/*
 552 * find reloc tree by address of tree root
 553 */
 554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 555					  u64 bytenr)
 556{
 
 557	struct rb_node *rb_node;
 558	struct mapping_node *node;
 559	struct btrfs_root *root = NULL;
 560
 
 561	spin_lock(&rc->reloc_root_tree.lock);
 562	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 563	if (rb_node) {
 564		node = rb_entry(rb_node, struct mapping_node, rb_node);
 565		root = (struct btrfs_root *)node->data;
 566	}
 567	spin_unlock(&rc->reloc_root_tree.lock);
 568	return root;
 569}
 570
 571static int is_cowonly_root(u64 root_objectid)
 572{
 573	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 576	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 578	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 579	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 580	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 581	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 582		return 1;
 583	return 0;
 584}
 585
 586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 587					u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 588{
 589	struct btrfs_key key;
 590
 591	key.objectid = root_objectid;
 592	key.type = BTRFS_ROOT_ITEM_KEY;
 593	if (is_cowonly_root(root_objectid))
 594		key.offset = 0;
 595	else
 596		key.offset = (u64)-1;
 597
 598	return btrfs_get_fs_root(fs_info, &key, false);
 599}
 600
 601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 602static noinline_for_stack
 603struct btrfs_root *find_tree_root(struct reloc_control *rc,
 604				  struct extent_buffer *leaf,
 605				  struct btrfs_extent_ref_v0 *ref0)
 606{
 607	struct btrfs_root *root;
 608	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 609	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 610
 611	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 
 612
 613	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 614	BUG_ON(IS_ERR(root));
 615
 616	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 617	    generation != btrfs_root_generation(&root->root_item))
 618		return NULL;
 619
 620	return root;
 621}
 622#endif
 
 
 623
 624static noinline_for_stack
 625int find_inline_backref(struct extent_buffer *leaf, int slot,
 626			unsigned long *ptr, unsigned long *end)
 627{
 628	struct btrfs_key key;
 629	struct btrfs_extent_item *ei;
 630	struct btrfs_tree_block_info *bi;
 631	u32 item_size;
 632
 633	btrfs_item_key_to_cpu(leaf, &key, slot);
 
 
 
 
 
 634
 635	item_size = btrfs_item_size_nr(leaf, slot);
 636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 637	if (item_size < sizeof(*ei)) {
 638		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 639		return 1;
 640	}
 641#endif
 642	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 643	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 644		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 645
 646	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 647	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 648		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 649		return 1;
 650	}
 651	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 652	    item_size <= sizeof(*ei)) {
 653		WARN_ON(item_size < sizeof(*ei));
 654		return 1;
 655	}
 656
 657	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 658		bi = (struct btrfs_tree_block_info *)(ei + 1);
 659		*ptr = (unsigned long)(bi + 1);
 660	} else {
 661		*ptr = (unsigned long)(ei + 1);
 
 
 
 
 
 
 
 662	}
 663	*end = (unsigned long)ei + item_size;
 664	return 0;
 665}
 666
 667/*
 668 * build backref tree for a given tree block. root of the backref tree
 669 * corresponds the tree block, leaves of the backref tree correspond
 670 * roots of b-trees that reference the tree block.
 671 *
 672 * the basic idea of this function is check backrefs of a given block
 673 * to find upper level blocks that reference the block, and then check
 674 * backrefs of these upper level blocks recursively. the recursion stop
 675 * when tree root is reached or backrefs for the block is cached.
 676 *
 677 * NOTE: if we find backrefs for a block are cached, we know backrefs
 678 * for all upper level blocks that directly/indirectly reference the
 679 * block are also cached.
 680 */
 681static noinline_for_stack
 682struct backref_node *build_backref_tree(struct reloc_control *rc,
 683					struct btrfs_key *node_key,
 684					int level, u64 bytenr)
 685{
 686	struct backref_cache *cache = &rc->backref_cache;
 687	struct btrfs_path *path1;
 688	struct btrfs_path *path2;
 689	struct extent_buffer *eb;
 690	struct btrfs_root *root;
 691	struct backref_node *cur;
 692	struct backref_node *upper;
 693	struct backref_node *lower;
 694	struct backref_node *node = NULL;
 695	struct backref_node *exist = NULL;
 696	struct backref_edge *edge;
 697	struct rb_node *rb_node;
 698	struct btrfs_key key;
 699	unsigned long end;
 700	unsigned long ptr;
 701	LIST_HEAD(list);
 702	LIST_HEAD(useless);
 703	int cowonly;
 704	int ret;
 705	int err = 0;
 706	bool need_check = true;
 707
 708	path1 = btrfs_alloc_path();
 709	path2 = btrfs_alloc_path();
 710	if (!path1 || !path2) {
 
 
 711		err = -ENOMEM;
 712		goto out;
 713	}
 714	path1->reada = READA_FORWARD;
 715	path2->reada = READA_FORWARD;
 716
 717	node = alloc_backref_node(cache);
 718	if (!node) {
 719		err = -ENOMEM;
 720		goto out;
 721	}
 722
 723	node->bytenr = bytenr;
 724	node->level = level;
 725	node->lowest = 1;
 726	cur = node;
 727again:
 728	end = 0;
 729	ptr = 0;
 730	key.objectid = cur->bytenr;
 731	key.type = BTRFS_METADATA_ITEM_KEY;
 732	key.offset = (u64)-1;
 733
 734	path1->search_commit_root = 1;
 735	path1->skip_locking = 1;
 736	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 737				0, 0);
 738	if (ret < 0) {
 739		err = ret;
 740		goto out;
 741	}
 742	ASSERT(ret);
 743	ASSERT(path1->slots[0]);
 744
 745	path1->slots[0]--;
 746
 747	WARN_ON(cur->checked);
 748	if (!list_empty(&cur->upper)) {
 749		/*
 750		 * the backref was added previously when processing
 751		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 752		 */
 753		ASSERT(list_is_singular(&cur->upper));
 754		edge = list_entry(cur->upper.next, struct backref_edge,
 755				  list[LOWER]);
 756		ASSERT(list_empty(&edge->list[UPPER]));
 757		exist = edge->node[UPPER];
 758		/*
 759		 * add the upper level block to pending list if we need
 760		 * check its backrefs
 761		 */
 762		if (!exist->checked)
 763			list_add_tail(&edge->list[UPPER], &list);
 764	} else {
 765		exist = NULL;
 766	}
 767
 768	while (1) {
 769		cond_resched();
 770		eb = path1->nodes[0];
 771
 772		if (ptr >= end) {
 773			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 774				ret = btrfs_next_leaf(rc->extent_root, path1);
 775				if (ret < 0) {
 776					err = ret;
 777					goto out;
 778				}
 779				if (ret > 0)
 780					break;
 781				eb = path1->nodes[0];
 782			}
 783
 784			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 785			if (key.objectid != cur->bytenr) {
 786				WARN_ON(exist);
 787				break;
 788			}
 789
 790			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 791			    key.type == BTRFS_METADATA_ITEM_KEY) {
 792				ret = find_inline_backref(eb, path1->slots[0],
 793							  &ptr, &end);
 794				if (ret)
 795					goto next;
 796			}
 797		}
 798
 799		if (ptr < end) {
 800			/* update key for inline back ref */
 801			struct btrfs_extent_inline_ref *iref;
 802			iref = (struct btrfs_extent_inline_ref *)ptr;
 803			key.type = btrfs_extent_inline_ref_type(eb, iref);
 804			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 805			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 806				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 807		}
 808
 809		if (exist &&
 810		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 811		      exist->owner == key.offset) ||
 812		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 813		      exist->bytenr == key.offset))) {
 814			exist = NULL;
 815			goto next;
 816		}
 817
 818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 819		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 820		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 821			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 822				struct btrfs_extent_ref_v0 *ref0;
 823				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 824						struct btrfs_extent_ref_v0);
 825				if (key.objectid == key.offset) {
 826					root = find_tree_root(rc, eb, ref0);
 827					if (root && !should_ignore_root(root))
 828						cur->root = root;
 829					else
 830						list_add(&cur->list, &useless);
 831					break;
 832				}
 833				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 834								      ref0)))
 835					cur->cowonly = 1;
 836			}
 837#else
 838		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
 839		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 840#endif
 841			if (key.objectid == key.offset) {
 842				/*
 843				 * only root blocks of reloc trees use
 844				 * backref of this type.
 845				 */
 846				root = find_reloc_root(rc, cur->bytenr);
 847				ASSERT(root);
 848				cur->root = root;
 849				break;
 850			}
 851
 852			edge = alloc_backref_edge(cache);
 853			if (!edge) {
 854				err = -ENOMEM;
 855				goto out;
 856			}
 857			rb_node = tree_search(&cache->rb_root, key.offset);
 858			if (!rb_node) {
 859				upper = alloc_backref_node(cache);
 860				if (!upper) {
 861					free_backref_edge(cache, edge);
 862					err = -ENOMEM;
 863					goto out;
 864				}
 865				upper->bytenr = key.offset;
 866				upper->level = cur->level + 1;
 867				/*
 868				 *  backrefs for the upper level block isn't
 869				 *  cached, add the block to pending list
 870				 */
 871				list_add_tail(&edge->list[UPPER], &list);
 872			} else {
 873				upper = rb_entry(rb_node, struct backref_node,
 874						 rb_node);
 875				ASSERT(upper->checked);
 876				INIT_LIST_HEAD(&edge->list[UPPER]);
 877			}
 878			list_add_tail(&edge->list[LOWER], &cur->upper);
 879			edge->node[LOWER] = cur;
 880			edge->node[UPPER] = upper;
 881
 882			goto next;
 883		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 884			goto next;
 885		}
 886
 887		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 888		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 889		if (IS_ERR(root)) {
 890			err = PTR_ERR(root);
 891			goto out;
 892		}
 893
 894		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 895			cur->cowonly = 1;
 896
 897		if (btrfs_root_level(&root->root_item) == cur->level) {
 898			/* tree root */
 899			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 900			       cur->bytenr);
 901			if (should_ignore_root(root))
 902				list_add(&cur->list, &useless);
 903			else
 904				cur->root = root;
 905			break;
 906		}
 907
 908		level = cur->level + 1;
 909
 910		/*
 911		 * searching the tree to find upper level blocks
 912		 * reference the block.
 913		 */
 914		path2->search_commit_root = 1;
 915		path2->skip_locking = 1;
 916		path2->lowest_level = level;
 917		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 918		path2->lowest_level = 0;
 919		if (ret < 0) {
 920			err = ret;
 921			goto out;
 922		}
 923		if (ret > 0 && path2->slots[level] > 0)
 924			path2->slots[level]--;
 925
 926		eb = path2->nodes[level];
 927		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 928		    cur->bytenr) {
 929			btrfs_err(root->fs_info,
 930	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 931				  cur->bytenr, level - 1, root->objectid,
 932				  node_key->objectid, node_key->type,
 933				  node_key->offset);
 934			err = -ENOENT;
 935			goto out;
 936		}
 937		lower = cur;
 938		need_check = true;
 939		for (; level < BTRFS_MAX_LEVEL; level++) {
 940			if (!path2->nodes[level]) {
 941				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 942				       lower->bytenr);
 943				if (should_ignore_root(root))
 944					list_add(&lower->list, &useless);
 945				else
 946					lower->root = root;
 947				break;
 948			}
 949
 950			edge = alloc_backref_edge(cache);
 951			if (!edge) {
 952				err = -ENOMEM;
 953				goto out;
 954			}
 955
 956			eb = path2->nodes[level];
 957			rb_node = tree_search(&cache->rb_root, eb->start);
 958			if (!rb_node) {
 959				upper = alloc_backref_node(cache);
 960				if (!upper) {
 961					free_backref_edge(cache, edge);
 962					err = -ENOMEM;
 963					goto out;
 964				}
 965				upper->bytenr = eb->start;
 966				upper->owner = btrfs_header_owner(eb);
 967				upper->level = lower->level + 1;
 968				if (!test_bit(BTRFS_ROOT_REF_COWS,
 969					      &root->state))
 970					upper->cowonly = 1;
 971
 972				/*
 973				 * if we know the block isn't shared
 974				 * we can void checking its backrefs.
 975				 */
 976				if (btrfs_block_can_be_shared(root, eb))
 977					upper->checked = 0;
 978				else
 979					upper->checked = 1;
 980
 981				/*
 982				 * add the block to pending list if we
 983				 * need check its backrefs, we only do this once
 984				 * while walking up a tree as we will catch
 985				 * anything else later on.
 986				 */
 987				if (!upper->checked && need_check) {
 988					need_check = false;
 989					list_add_tail(&edge->list[UPPER],
 990						      &list);
 991				} else {
 992					if (upper->checked)
 993						need_check = true;
 994					INIT_LIST_HEAD(&edge->list[UPPER]);
 995				}
 996			} else {
 997				upper = rb_entry(rb_node, struct backref_node,
 998						 rb_node);
 999				ASSERT(upper->checked);
1000				INIT_LIST_HEAD(&edge->list[UPPER]);
1001				if (!upper->owner)
1002					upper->owner = btrfs_header_owner(eb);
1003			}
1004			list_add_tail(&edge->list[LOWER], &lower->upper);
1005			edge->node[LOWER] = lower;
1006			edge->node[UPPER] = upper;
1007
1008			if (rb_node)
1009				break;
1010			lower = upper;
1011			upper = NULL;
1012		}
1013		btrfs_release_path(path2);
1014next:
1015		if (ptr < end) {
1016			ptr += btrfs_extent_inline_ref_size(key.type);
1017			if (ptr >= end) {
1018				WARN_ON(ptr > end);
1019				ptr = 0;
1020				end = 0;
1021			}
1022		}
1023		if (ptr >= end)
1024			path1->slots[0]++;
1025	}
1026	btrfs_release_path(path1);
1027
1028	cur->checked = 1;
1029	WARN_ON(exist);
1030
1031	/* the pending list isn't empty, take the first block to process */
1032	if (!list_empty(&list)) {
1033		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034		list_del_init(&edge->list[UPPER]);
1035		cur = edge->node[UPPER];
1036		goto again;
1037	}
1038
1039	/*
1040	 * everything goes well, connect backref nodes and insert backref nodes
1041	 * into the cache.
1042	 */
1043	ASSERT(node->checked);
1044	cowonly = node->cowonly;
1045	if (!cowonly) {
1046		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047				      &node->rb_node);
1048		if (rb_node)
1049			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050		list_add_tail(&node->lower, &cache->leaves);
1051	}
1052
1053	list_for_each_entry(edge, &node->upper, list[LOWER])
1054		list_add_tail(&edge->list[UPPER], &list);
1055
1056	while (!list_empty(&list)) {
1057		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058		list_del_init(&edge->list[UPPER]);
1059		upper = edge->node[UPPER];
1060		if (upper->detached) {
1061			list_del(&edge->list[LOWER]);
1062			lower = edge->node[LOWER];
1063			free_backref_edge(cache, edge);
1064			if (list_empty(&lower->upper))
1065				list_add(&lower->list, &useless);
1066			continue;
1067		}
1068
1069		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070			if (upper->lowest) {
1071				list_del_init(&upper->lower);
1072				upper->lowest = 0;
1073			}
1074
1075			list_add_tail(&edge->list[UPPER], &upper->lower);
1076			continue;
1077		}
1078
1079		if (!upper->checked) {
1080			/*
1081			 * Still want to blow up for developers since this is a
1082			 * logic bug.
1083			 */
1084			ASSERT(0);
1085			err = -EINVAL;
1086			goto out;
1087		}
1088		if (cowonly != upper->cowonly) {
1089			ASSERT(0);
1090			err = -EINVAL;
1091			goto out;
1092		}
1093
1094		if (!cowonly) {
1095			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096					      &upper->rb_node);
1097			if (rb_node)
1098				backref_tree_panic(rb_node, -EEXIST,
1099						   upper->bytenr);
1100		}
 
1101
1102		list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104		list_for_each_entry(edge, &upper->upper, list[LOWER])
1105			list_add_tail(&edge->list[UPPER], &list);
 
1106	}
1107	/*
1108	 * process useless backref nodes. backref nodes for tree leaves
1109	 * are deleted from the cache. backref nodes for upper level
1110	 * tree blocks are left in the cache to avoid unnecessary backref
1111	 * lookup.
1112	 */
1113	while (!list_empty(&useless)) {
1114		upper = list_entry(useless.next, struct backref_node, list);
1115		list_del_init(&upper->list);
1116		ASSERT(list_empty(&upper->upper));
1117		if (upper == node)
1118			node = NULL;
1119		if (upper->lowest) {
1120			list_del_init(&upper->lower);
1121			upper->lowest = 0;
1122		}
1123		while (!list_empty(&upper->lower)) {
1124			edge = list_entry(upper->lower.next,
1125					  struct backref_edge, list[UPPER]);
1126			list_del(&edge->list[UPPER]);
1127			list_del(&edge->list[LOWER]);
1128			lower = edge->node[LOWER];
1129			free_backref_edge(cache, edge);
1130
1131			if (list_empty(&lower->upper))
1132				list_add(&lower->list, &useless);
1133		}
1134		__mark_block_processed(rc, upper);
1135		if (upper->level > 0) {
1136			list_add(&upper->list, &cache->detached);
1137			upper->detached = 1;
1138		} else {
1139			rb_erase(&upper->rb_node, &cache->rb_root);
1140			free_backref_node(cache, upper);
1141		}
1142	}
1143out:
1144	btrfs_free_path(path1);
1145	btrfs_free_path(path2);
1146	if (err) {
1147		while (!list_empty(&useless)) {
1148			lower = list_entry(useless.next,
1149					   struct backref_node, list);
1150			list_del_init(&lower->list);
1151		}
1152		while (!list_empty(&list)) {
1153			edge = list_first_entry(&list, struct backref_edge,
1154						list[UPPER]);
1155			list_del(&edge->list[UPPER]);
1156			list_del(&edge->list[LOWER]);
1157			lower = edge->node[LOWER];
1158			upper = edge->node[UPPER];
1159			free_backref_edge(cache, edge);
1160
1161			/*
1162			 * Lower is no longer linked to any upper backref nodes
1163			 * and isn't in the cache, we can free it ourselves.
1164			 */
1165			if (list_empty(&lower->upper) &&
1166			    RB_EMPTY_NODE(&lower->rb_node))
1167				list_add(&lower->list, &useless);
1168
1169			if (!RB_EMPTY_NODE(&upper->rb_node))
1170				continue;
1171
1172			/* Add this guy's upper edges to the list to process */
1173			list_for_each_entry(edge, &upper->upper, list[LOWER])
1174				list_add_tail(&edge->list[UPPER], &list);
1175			if (list_empty(&upper->upper))
1176				list_add(&upper->list, &useless);
1177		}
1178
1179		while (!list_empty(&useless)) {
1180			lower = list_entry(useless.next,
1181					   struct backref_node, list);
1182			list_del_init(&lower->list);
1183			if (lower == node)
1184				node = NULL;
1185			free_backref_node(cache, lower);
1186		}
1187
1188		free_backref_node(cache, node);
1189		return ERR_PTR(err);
1190	}
1191	ASSERT(!node || !node->detached);
 
 
1192	return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201			      struct reloc_control *rc,
1202			      struct btrfs_root *src,
1203			      struct btrfs_root *dest)
1204{
1205	struct btrfs_root *reloc_root = src->reloc_root;
1206	struct backref_cache *cache = &rc->backref_cache;
1207	struct backref_node *node = NULL;
1208	struct backref_node *new_node;
1209	struct backref_edge *edge;
1210	struct backref_edge *new_edge;
1211	struct rb_node *rb_node;
1212
1213	if (cache->last_trans > 0)
1214		update_backref_cache(trans, cache);
1215
1216	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217	if (rb_node) {
1218		node = rb_entry(rb_node, struct backref_node, rb_node);
1219		if (node->detached)
1220			node = NULL;
1221		else
1222			BUG_ON(node->new_bytenr != reloc_root->node->start);
1223	}
1224
1225	if (!node) {
1226		rb_node = tree_search(&cache->rb_root,
1227				      reloc_root->commit_root->start);
1228		if (rb_node) {
1229			node = rb_entry(rb_node, struct backref_node,
1230					rb_node);
1231			BUG_ON(node->detached);
1232		}
1233	}
1234
1235	if (!node)
1236		return 0;
1237
1238	new_node = alloc_backref_node(cache);
 
1239	if (!new_node)
1240		return -ENOMEM;
1241
1242	new_node->bytenr = dest->node->start;
1243	new_node->level = node->level;
1244	new_node->lowest = node->lowest;
1245	new_node->checked = 1;
1246	new_node->root = dest;
 
1247
1248	if (!node->lowest) {
1249		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250			new_edge = alloc_backref_edge(cache);
1251			if (!new_edge)
1252				goto fail;
1253
1254			new_edge->node[UPPER] = new_node;
1255			new_edge->node[LOWER] = edge->node[LOWER];
1256			list_add_tail(&new_edge->list[UPPER],
1257				      &new_node->lower);
1258		}
1259	} else {
1260		list_add_tail(&new_node->lower, &cache->leaves);
1261	}
1262
1263	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264			      &new_node->rb_node);
1265	if (rb_node)
1266		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268	if (!new_node->lowest) {
1269		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270			list_add_tail(&new_edge->list[LOWER],
1271				      &new_edge->node[LOWER]->upper);
1272		}
1273	}
1274	return 0;
1275fail:
1276	while (!list_empty(&new_node->lower)) {
1277		new_edge = list_entry(new_node->lower.next,
1278				      struct backref_edge, list[UPPER]);
1279		list_del(&new_edge->list[UPPER]);
1280		free_backref_edge(cache, new_edge);
1281	}
1282	free_backref_node(cache, new_node);
1283	return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291	struct btrfs_fs_info *fs_info = root->fs_info;
1292	struct rb_node *rb_node;
1293	struct mapping_node *node;
1294	struct reloc_control *rc = fs_info->reloc_ctl;
1295
1296	node = kmalloc(sizeof(*node), GFP_NOFS);
1297	if (!node)
1298		return -ENOMEM;
1299
1300	node->bytenr = root->node->start;
1301	node->data = root;
1302
1303	spin_lock(&rc->reloc_root_tree.lock);
1304	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1305			      node->bytenr, &node->rb_node);
1306	spin_unlock(&rc->reloc_root_tree.lock);
1307	if (rb_node) {
1308		btrfs_panic(fs_info, -EEXIST,
1309			    "Duplicate root found for start=%llu while inserting into relocation tree",
1310			    node->bytenr);
1311		kfree(node);
1312		return -EEXIST;
1313	}
1314
1315	list_add_tail(&root->root_list, &rc->reloc_roots);
1316	return 0;
1317}
1318
1319/*
1320 * helper to delete the 'address of tree root -> reloc tree'
1321 * mapping
1322 */
1323static void __del_reloc_root(struct btrfs_root *root)
1324{
1325	struct btrfs_fs_info *fs_info = root->fs_info;
1326	struct rb_node *rb_node;
1327	struct mapping_node *node = NULL;
1328	struct reloc_control *rc = fs_info->reloc_ctl;
 
1329
1330	spin_lock(&rc->reloc_root_tree.lock);
1331	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332			      root->node->start);
1333	if (rb_node) {
1334		node = rb_entry(rb_node, struct mapping_node, rb_node);
1335		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
 
 
 
 
1336	}
1337	spin_unlock(&rc->reloc_root_tree.lock);
1338
1339	if (!node)
1340		return;
1341	BUG_ON((struct btrfs_root *)node->data != root);
1342
 
 
 
 
 
 
 
 
1343	spin_lock(&fs_info->trans_lock);
1344	list_del_init(&root->root_list);
 
 
 
1345	spin_unlock(&fs_info->trans_lock);
 
 
1346	kfree(node);
1347}
1348
1349/*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
1353static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354{
1355	struct btrfs_fs_info *fs_info = root->fs_info;
1356	struct rb_node *rb_node;
1357	struct mapping_node *node = NULL;
1358	struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360	spin_lock(&rc->reloc_root_tree.lock);
1361	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362			      root->node->start);
1363	if (rb_node) {
1364		node = rb_entry(rb_node, struct mapping_node, rb_node);
1365		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366	}
1367	spin_unlock(&rc->reloc_root_tree.lock);
1368
1369	if (!node)
1370		return 0;
1371	BUG_ON((struct btrfs_root *)node->data != root);
1372
1373	spin_lock(&rc->reloc_root_tree.lock);
1374	node->bytenr = new_bytenr;
1375	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376			      node->bytenr, &node->rb_node);
1377	spin_unlock(&rc->reloc_root_tree.lock);
1378	if (rb_node)
1379		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380	return 0;
1381}
1382
1383static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384					struct btrfs_root *root, u64 objectid)
1385{
1386	struct btrfs_fs_info *fs_info = root->fs_info;
1387	struct btrfs_root *reloc_root;
1388	struct extent_buffer *eb;
1389	struct btrfs_root_item *root_item;
1390	struct btrfs_key root_key;
1391	int ret;
 
1392
1393	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394	BUG_ON(!root_item);
 
1395
1396	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397	root_key.type = BTRFS_ROOT_ITEM_KEY;
1398	root_key.offset = objectid;
1399
1400	if (root->root_key.objectid == objectid) {
1401		u64 commit_root_gen;
1402
1403		/* called by btrfs_init_reloc_root */
1404		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405				      BTRFS_TREE_RELOC_OBJECTID);
1406		BUG_ON(ret);
 
 
1407		/*
1408		 * Set the last_snapshot field to the generation of the commit
1409		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410		 * correctly (returns true) when the relocation root is created
1411		 * either inside the critical section of a transaction commit
1412		 * (through transaction.c:qgroup_account_snapshot()) and when
1413		 * it's created before the transaction commit is started.
1414		 */
1415		commit_root_gen = btrfs_header_generation(root->commit_root);
1416		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417	} else {
1418		/*
1419		 * called by btrfs_reloc_post_snapshot_hook.
1420		 * the source tree is a reloc tree, all tree blocks
1421		 * modified after it was created have RELOC flag
1422		 * set in their headers. so it's OK to not update
1423		 * the 'last_snapshot'.
1424		 */
1425		ret = btrfs_copy_root(trans, root, root->node, &eb,
1426				      BTRFS_TREE_RELOC_OBJECTID);
1427		BUG_ON(ret);
 
1428	}
1429
 
 
 
 
 
 
1430	memcpy(root_item, &root->root_item, sizeof(*root_item));
1431	btrfs_set_root_bytenr(root_item, eb->start);
1432	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433	btrfs_set_root_generation(root_item, trans->transid);
1434
1435	if (root->root_key.objectid == objectid) {
1436		btrfs_set_root_refs(root_item, 0);
1437		memset(&root_item->drop_progress, 0,
1438		       sizeof(struct btrfs_disk_key));
1439		root_item->drop_level = 0;
1440	}
1441
1442	btrfs_tree_unlock(eb);
1443	free_extent_buffer(eb);
1444
1445	ret = btrfs_insert_root(trans, fs_info->tree_root,
1446				&root_key, root_item);
1447	BUG_ON(ret);
 
 
1448	kfree(root_item);
1449
1450	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1451	BUG_ON(IS_ERR(reloc_root));
 
 
 
 
1452	reloc_root->last_trans = trans->transid;
1453	return reloc_root;
 
 
 
 
 
 
1454}
1455
1456/*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
 
 
 
1459 */
1460int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461			  struct btrfs_root *root)
1462{
1463	struct btrfs_fs_info *fs_info = root->fs_info;
1464	struct btrfs_root *reloc_root;
1465	struct reloc_control *rc = fs_info->reloc_ctl;
1466	struct btrfs_block_rsv *rsv;
1467	int clear_rsv = 0;
1468	int ret;
1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	if (root->reloc_root) {
1471		reloc_root = root->reloc_root;
1472		reloc_root->last_trans = trans->transid;
1473		return 0;
1474	}
1475
1476	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1477	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1478		return 0;
1479
1480	if (!trans->reloc_reserved) {
1481		rsv = trans->block_rsv;
1482		trans->block_rsv = rc->block_rsv;
1483		clear_rsv = 1;
1484	}
1485	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1486	if (clear_rsv)
1487		trans->block_rsv = rsv;
 
 
1488
1489	ret = __add_reloc_root(reloc_root);
1490	BUG_ON(ret < 0);
1491	root->reloc_root = reloc_root;
 
 
 
 
 
1492	return 0;
1493}
1494
1495/*
1496 * update root item of reloc tree
1497 */
1498int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1499			    struct btrfs_root *root)
1500{
1501	struct btrfs_fs_info *fs_info = root->fs_info;
1502	struct btrfs_root *reloc_root;
1503	struct btrfs_root_item *root_item;
1504	int ret;
1505
1506	if (!root->reloc_root)
1507		goto out;
1508
1509	reloc_root = root->reloc_root;
1510	root_item = &reloc_root->root_item;
1511
 
 
 
 
 
 
 
 
1512	if (fs_info->reloc_ctl->merge_reloc_tree &&
1513	    btrfs_root_refs(root_item) == 0) {
1514		root->reloc_root = NULL;
 
 
 
 
 
1515		__del_reloc_root(reloc_root);
1516	}
1517
1518	if (reloc_root->commit_root != reloc_root->node) {
 
1519		btrfs_set_root_node(root_item, reloc_root->node);
1520		free_extent_buffer(reloc_root->commit_root);
1521		reloc_root->commit_root = btrfs_root_node(reloc_root);
1522	}
1523
1524	ret = btrfs_update_root(trans, fs_info->tree_root,
1525				&reloc_root->root_key, root_item);
1526	BUG_ON(ret);
1527
1528out:
1529	return 0;
1530}
1531
1532/*
1533 * helper to find first cached inode with inode number >= objectid
1534 * in a subvolume
1535 */
1536static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1537{
1538	struct rb_node *node;
1539	struct rb_node *prev;
1540	struct btrfs_inode *entry;
1541	struct inode *inode;
1542
1543	spin_lock(&root->inode_lock);
1544again:
1545	node = root->inode_tree.rb_node;
1546	prev = NULL;
1547	while (node) {
1548		prev = node;
1549		entry = rb_entry(node, struct btrfs_inode, rb_node);
1550
1551		if (objectid < btrfs_ino(&entry->vfs_inode))
1552			node = node->rb_left;
1553		else if (objectid > btrfs_ino(&entry->vfs_inode))
1554			node = node->rb_right;
1555		else
1556			break;
1557	}
1558	if (!node) {
1559		while (prev) {
1560			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1561			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1562				node = prev;
1563				break;
1564			}
1565			prev = rb_next(prev);
1566		}
1567	}
1568	while (node) {
1569		entry = rb_entry(node, struct btrfs_inode, rb_node);
1570		inode = igrab(&entry->vfs_inode);
1571		if (inode) {
1572			spin_unlock(&root->inode_lock);
1573			return inode;
1574		}
1575
1576		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1577		if (cond_resched_lock(&root->inode_lock))
1578			goto again;
1579
1580		node = rb_next(node);
1581	}
1582	spin_unlock(&root->inode_lock);
1583	return NULL;
1584}
1585
1586static int in_block_group(u64 bytenr,
1587			  struct btrfs_block_group_cache *block_group)
1588{
1589	if (bytenr >= block_group->key.objectid &&
1590	    bytenr < block_group->key.objectid + block_group->key.offset)
1591		return 1;
1592	return 0;
1593}
1594
1595/*
1596 * get new location of data
1597 */
1598static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1599			    u64 bytenr, u64 num_bytes)
1600{
1601	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1602	struct btrfs_path *path;
1603	struct btrfs_file_extent_item *fi;
1604	struct extent_buffer *leaf;
1605	int ret;
1606
1607	path = btrfs_alloc_path();
1608	if (!path)
1609		return -ENOMEM;
1610
1611	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1612	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1613				       bytenr, 0);
1614	if (ret < 0)
1615		goto out;
1616	if (ret > 0) {
1617		ret = -ENOENT;
1618		goto out;
1619	}
1620
1621	leaf = path->nodes[0];
1622	fi = btrfs_item_ptr(leaf, path->slots[0],
1623			    struct btrfs_file_extent_item);
1624
1625	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1626	       btrfs_file_extent_compression(leaf, fi) ||
1627	       btrfs_file_extent_encryption(leaf, fi) ||
1628	       btrfs_file_extent_other_encoding(leaf, fi));
1629
1630	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1631		ret = -EINVAL;
1632		goto out;
1633	}
1634
1635	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1636	ret = 0;
1637out:
1638	btrfs_free_path(path);
1639	return ret;
1640}
1641
1642/*
1643 * update file extent items in the tree leaf to point to
1644 * the new locations.
1645 */
1646static noinline_for_stack
1647int replace_file_extents(struct btrfs_trans_handle *trans,
1648			 struct reloc_control *rc,
1649			 struct btrfs_root *root,
1650			 struct extent_buffer *leaf)
1651{
1652	struct btrfs_fs_info *fs_info = root->fs_info;
1653	struct btrfs_key key;
1654	struct btrfs_file_extent_item *fi;
1655	struct inode *inode = NULL;
1656	u64 parent;
1657	u64 bytenr;
1658	u64 new_bytenr = 0;
1659	u64 num_bytes;
1660	u64 end;
1661	u32 nritems;
1662	u32 i;
1663	int ret = 0;
1664	int first = 1;
1665	int dirty = 0;
1666
1667	if (rc->stage != UPDATE_DATA_PTRS)
1668		return 0;
1669
1670	/* reloc trees always use full backref */
1671	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1672		parent = leaf->start;
1673	else
1674		parent = 0;
1675
1676	nritems = btrfs_header_nritems(leaf);
1677	for (i = 0; i < nritems; i++) {
 
 
1678		cond_resched();
1679		btrfs_item_key_to_cpu(leaf, &key, i);
1680		if (key.type != BTRFS_EXTENT_DATA_KEY)
1681			continue;
1682		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1683		if (btrfs_file_extent_type(leaf, fi) ==
1684		    BTRFS_FILE_EXTENT_INLINE)
1685			continue;
1686		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1687		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1688		if (bytenr == 0)
1689			continue;
1690		if (!in_block_group(bytenr, rc->block_group))
 
1691			continue;
1692
1693		/*
1694		 * if we are modifying block in fs tree, wait for readpage
1695		 * to complete and drop the extent cache
1696		 */
1697		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1698			if (first) {
1699				inode = find_next_inode(root, key.objectid);
1700				first = 0;
1701			} else if (inode && btrfs_ino(inode) < key.objectid) {
1702				btrfs_add_delayed_iput(inode);
1703				inode = find_next_inode(root, key.objectid);
1704			}
1705			if (inode && btrfs_ino(inode) == key.objectid) {
1706				end = key.offset +
1707				      btrfs_file_extent_num_bytes(leaf, fi);
1708				WARN_ON(!IS_ALIGNED(key.offset,
1709						    fs_info->sectorsize));
1710				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1711				end--;
1712				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1713						      key.offset, end);
1714				if (!ret)
1715					continue;
1716
1717				btrfs_drop_extent_cache(inode, key.offset, end,
1718							1);
1719				unlock_extent(&BTRFS_I(inode)->io_tree,
1720					      key.offset, end);
1721			}
1722		}
1723
1724		ret = get_new_location(rc->data_inode, &new_bytenr,
1725				       bytenr, num_bytes);
1726		if (ret) {
1727			/*
1728			 * Don't have to abort since we've not changed anything
1729			 * in the file extent yet.
1730			 */
1731			break;
1732		}
1733
1734		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1735		dirty = 1;
1736
1737		key.offset -= btrfs_file_extent_offset(leaf, fi);
1738		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1739					   num_bytes, parent,
1740					   btrfs_header_owner(leaf),
1741					   key.objectid, key.offset);
 
 
1742		if (ret) {
1743			btrfs_abort_transaction(trans, ret);
1744			break;
1745		}
1746
1747		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1748					parent, btrfs_header_owner(leaf),
1749					key.objectid, key.offset);
 
 
 
1750		if (ret) {
1751			btrfs_abort_transaction(trans, ret);
1752			break;
1753		}
1754	}
1755	if (dirty)
1756		btrfs_mark_buffer_dirty(leaf);
1757	if (inode)
1758		btrfs_add_delayed_iput(inode);
1759	return ret;
1760}
1761
1762static noinline_for_stack
1763int memcmp_node_keys(struct extent_buffer *eb, int slot,
1764		     struct btrfs_path *path, int level)
1765{
1766	struct btrfs_disk_key key1;
1767	struct btrfs_disk_key key2;
1768	btrfs_node_key(eb, &key1, slot);
1769	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1770	return memcmp(&key1, &key2, sizeof(key1));
1771}
1772
1773/*
1774 * try to replace tree blocks in fs tree with the new blocks
1775 * in reloc tree. tree blocks haven't been modified since the
1776 * reloc tree was create can be replaced.
1777 *
1778 * if a block was replaced, level of the block + 1 is returned.
1779 * if no block got replaced, 0 is returned. if there are other
1780 * errors, a negative error number is returned.
1781 */
1782static noinline_for_stack
1783int replace_path(struct btrfs_trans_handle *trans,
1784		 struct btrfs_root *dest, struct btrfs_root *src,
1785		 struct btrfs_path *path, struct btrfs_key *next_key,
1786		 int lowest_level, int max_level)
1787{
1788	struct btrfs_fs_info *fs_info = dest->fs_info;
1789	struct extent_buffer *eb;
1790	struct extent_buffer *parent;
 
1791	struct btrfs_key key;
1792	u64 old_bytenr;
1793	u64 new_bytenr;
1794	u64 old_ptr_gen;
1795	u64 new_ptr_gen;
1796	u64 last_snapshot;
1797	u32 blocksize;
1798	int cow = 0;
1799	int level;
1800	int ret;
1801	int slot;
1802
1803	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807again:
1808	slot = path->slots[lowest_level];
1809	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811	eb = btrfs_lock_root_node(dest);
1812	btrfs_set_lock_blocking(eb);
1813	level = btrfs_header_level(eb);
1814
1815	if (level < lowest_level) {
1816		btrfs_tree_unlock(eb);
1817		free_extent_buffer(eb);
1818		return 0;
1819	}
1820
1821	if (cow) {
1822		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823		BUG_ON(ret);
 
 
 
 
 
1824	}
1825	btrfs_set_lock_blocking(eb);
1826
1827	if (next_key) {
1828		next_key->objectid = (u64)-1;
1829		next_key->type = (u8)-1;
1830		next_key->offset = (u64)-1;
1831	}
1832
1833	parent = eb;
1834	while (1) {
1835		level = btrfs_header_level(parent);
1836		BUG_ON(level < lowest_level);
1837
1838		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1839		if (ret && slot > 0)
1840			slot--;
1841
1842		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845		old_bytenr = btrfs_node_blockptr(parent, slot);
1846		blocksize = fs_info->nodesize;
1847		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1848
1849		if (level <= max_level) {
1850			eb = path->nodes[level];
1851			new_bytenr = btrfs_node_blockptr(eb,
1852							path->slots[level]);
1853			new_ptr_gen = btrfs_node_ptr_generation(eb,
1854							path->slots[level]);
1855		} else {
1856			new_bytenr = 0;
1857			new_ptr_gen = 0;
1858		}
1859
1860		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1861			ret = level;
1862			break;
1863		}
1864
1865		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866		    memcmp_node_keys(parent, slot, path, level)) {
1867			if (level <= lowest_level) {
1868				ret = 0;
1869				break;
1870			}
1871
1872			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1873			if (IS_ERR(eb)) {
1874				ret = PTR_ERR(eb);
1875				break;
1876			} else if (!extent_buffer_uptodate(eb)) {
1877				ret = -EIO;
1878				free_extent_buffer(eb);
1879				break;
1880			}
1881			btrfs_tree_lock(eb);
1882			if (cow) {
1883				ret = btrfs_cow_block(trans, dest, eb, parent,
1884						      slot, &eb);
1885				BUG_ON(ret);
 
 
 
 
 
1886			}
1887			btrfs_set_lock_blocking(eb);
1888
1889			btrfs_tree_unlock(parent);
1890			free_extent_buffer(parent);
1891
1892			parent = eb;
1893			continue;
1894		}
1895
1896		if (!cow) {
1897			btrfs_tree_unlock(parent);
1898			free_extent_buffer(parent);
1899			cow = 1;
1900			goto again;
1901		}
1902
1903		btrfs_node_key_to_cpu(path->nodes[level], &key,
1904				      path->slots[level]);
1905		btrfs_release_path(path);
1906
1907		path->lowest_level = level;
1908		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909		path->lowest_level = 0;
1910		BUG_ON(ret);
 
 
 
 
1911
1912		/*
1913		 * Info qgroup to trace both subtrees.
1914		 *
1915		 * We must trace both trees.
1916		 * 1) Tree reloc subtree
1917		 *    If not traced, we will leak data numbers
1918		 * 2) Fs subtree
1919		 *    If not traced, we will double count old data
1920		 *    and tree block numbers, if current trans doesn't free
1921		 *    data reloc tree inode.
 
 
 
1922		 */
1923		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1924				btrfs_header_generation(parent),
1925				btrfs_header_level(parent));
1926		if (ret < 0)
1927			break;
1928		ret = btrfs_qgroup_trace_subtree(trans, dest,
1929				path->nodes[level],
1930				btrfs_header_generation(path->nodes[level]),
1931				btrfs_header_level(path->nodes[level]));
1932		if (ret < 0)
1933			break;
1934
1935		/*
1936		 * swap blocks in fs tree and reloc tree.
1937		 */
1938		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1939		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1940		btrfs_mark_buffer_dirty(parent);
1941
1942		btrfs_set_node_blockptr(path->nodes[level],
1943					path->slots[level], old_bytenr);
1944		btrfs_set_node_ptr_generation(path->nodes[level],
1945					      path->slots[level], old_ptr_gen);
1946		btrfs_mark_buffer_dirty(path->nodes[level]);
1947
1948		ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1949					blocksize, path->nodes[level]->start,
1950					src->root_key.objectid, level - 1, 0);
1951		BUG_ON(ret);
1952		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1953					blocksize, 0, dest->root_key.objectid,
1954					level - 1, 0);
1955		BUG_ON(ret);
1956
1957		ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1958					path->nodes[level]->start,
1959					src->root_key.objectid, level - 1, 0);
1960		BUG_ON(ret);
1961
1962		ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1963					0, dest->root_key.objectid, level - 1,
1964					0);
1965		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966
1967		btrfs_unlock_up_safe(path, 0);
1968
1969		ret = level;
1970		break;
1971	}
1972	btrfs_tree_unlock(parent);
1973	free_extent_buffer(parent);
1974	return ret;
1975}
1976
1977/*
1978 * helper to find next relocated block in reloc tree
1979 */
1980static noinline_for_stack
1981int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1982		       int *level)
1983{
1984	struct extent_buffer *eb;
1985	int i;
1986	u64 last_snapshot;
1987	u32 nritems;
1988
1989	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1990
1991	for (i = 0; i < *level; i++) {
1992		free_extent_buffer(path->nodes[i]);
1993		path->nodes[i] = NULL;
1994	}
1995
1996	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1997		eb = path->nodes[i];
1998		nritems = btrfs_header_nritems(eb);
1999		while (path->slots[i] + 1 < nritems) {
2000			path->slots[i]++;
2001			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2002			    last_snapshot)
2003				continue;
2004
2005			*level = i;
2006			return 0;
2007		}
2008		free_extent_buffer(path->nodes[i]);
2009		path->nodes[i] = NULL;
2010	}
2011	return 1;
2012}
2013
2014/*
2015 * walk down reloc tree to find relocated block of lowest level
2016 */
2017static noinline_for_stack
2018int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2019			 int *level)
2020{
2021	struct btrfs_fs_info *fs_info = root->fs_info;
2022	struct extent_buffer *eb = NULL;
2023	int i;
2024	u64 bytenr;
2025	u64 ptr_gen = 0;
2026	u64 last_snapshot;
2027	u32 nritems;
2028
2029	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2030
2031	for (i = *level; i > 0; i--) {
2032		eb = path->nodes[i];
2033		nritems = btrfs_header_nritems(eb);
2034		while (path->slots[i] < nritems) {
2035			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036			if (ptr_gen > last_snapshot)
2037				break;
2038			path->slots[i]++;
2039		}
2040		if (path->slots[i] >= nritems) {
2041			if (i == *level)
2042				break;
2043			*level = i + 1;
2044			return 0;
2045		}
2046		if (i == 1) {
2047			*level = i;
2048			return 0;
2049		}
2050
2051		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052		eb = read_tree_block(fs_info, bytenr, ptr_gen);
2053		if (IS_ERR(eb)) {
2054			return PTR_ERR(eb);
2055		} else if (!extent_buffer_uptodate(eb)) {
2056			free_extent_buffer(eb);
2057			return -EIO;
2058		}
2059		BUG_ON(btrfs_header_level(eb) != i - 1);
2060		path->nodes[i - 1] = eb;
2061		path->slots[i - 1] = 0;
2062	}
2063	return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071				   struct btrfs_key *min_key,
2072				   struct btrfs_key *max_key)
2073{
2074	struct btrfs_fs_info *fs_info = root->fs_info;
2075	struct inode *inode = NULL;
2076	u64 objectid;
2077	u64 start, end;
2078	u64 ino;
2079
2080	objectid = min_key->objectid;
2081	while (1) {
2082		cond_resched();
2083		iput(inode);
2084
2085		if (objectid > max_key->objectid)
2086			break;
2087
2088		inode = find_next_inode(root, objectid);
2089		if (!inode)
2090			break;
2091		ino = btrfs_ino(inode);
2092
2093		if (ino > max_key->objectid) {
2094			iput(inode);
2095			break;
2096		}
2097
2098		objectid = ino + 1;
2099		if (!S_ISREG(inode->i_mode))
2100			continue;
2101
2102		if (unlikely(min_key->objectid == ino)) {
2103			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104				continue;
2105			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106				start = 0;
2107			else {
2108				start = min_key->offset;
2109				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110			}
2111		} else {
2112			start = 0;
2113		}
2114
2115		if (unlikely(max_key->objectid == ino)) {
2116			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117				continue;
2118			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119				end = (u64)-1;
2120			} else {
2121				if (max_key->offset == 0)
2122					continue;
2123				end = max_key->offset;
2124				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125				end--;
2126			}
2127		} else {
2128			end = (u64)-1;
2129		}
2130
2131		/* the lock_extent waits for readpage to complete */
2132		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133		btrfs_drop_extent_cache(inode, start, end, 1);
2134		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135	}
2136	return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140			 struct btrfs_key *key)
2141
2142{
2143	while (level < BTRFS_MAX_LEVEL) {
2144		if (!path->nodes[level])
2145			break;
2146		if (path->slots[level] + 1 <
2147		    btrfs_header_nritems(path->nodes[level])) {
2148			btrfs_node_key_to_cpu(path->nodes[level], key,
2149					      path->slots[level] + 1);
2150			return 0;
2151		}
2152		level++;
2153	}
2154	return 1;
2155}
2156
2157/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158 * merge the relocated tree blocks in reloc tree with corresponding
2159 * fs tree.
2160 */
2161static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2162					       struct btrfs_root *root)
2163{
2164	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2165	LIST_HEAD(inode_list);
2166	struct btrfs_key key;
2167	struct btrfs_key next_key;
2168	struct btrfs_trans_handle *trans = NULL;
2169	struct btrfs_root *reloc_root;
2170	struct btrfs_root_item *root_item;
2171	struct btrfs_path *path;
2172	struct extent_buffer *leaf;
 
2173	int level;
2174	int max_level;
2175	int replaced = 0;
2176	int ret;
2177	int err = 0;
2178	u32 min_reserved;
2179
2180	path = btrfs_alloc_path();
2181	if (!path)
2182		return -ENOMEM;
2183	path->reada = READA_FORWARD;
2184
2185	reloc_root = root->reloc_root;
2186	root_item = &reloc_root->root_item;
2187
2188	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2189		level = btrfs_root_level(root_item);
2190		extent_buffer_get(reloc_root->node);
2191		path->nodes[level] = reloc_root->node;
2192		path->slots[level] = 0;
2193	} else {
2194		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2195
2196		level = root_item->drop_level;
2197		BUG_ON(level == 0);
2198		path->lowest_level = level;
2199		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2200		path->lowest_level = 0;
2201		if (ret < 0) {
2202			btrfs_free_path(path);
2203			return ret;
2204		}
2205
2206		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2207				      path->slots[level]);
2208		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2209
2210		btrfs_unlock_up_safe(path, 0);
2211	}
2212
2213	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2214	memset(&next_key, 0, sizeof(next_key));
2215
2216	while (1) {
2217		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2218					     BTRFS_RESERVE_FLUSH_ALL);
2219		if (ret) {
2220			err = ret;
2221			goto out;
2222		}
2223		trans = btrfs_start_transaction(root, 0);
2224		if (IS_ERR(trans)) {
2225			err = PTR_ERR(trans);
2226			trans = NULL;
2227			goto out;
2228		}
 
 
 
 
 
 
 
 
 
 
 
 
2229		trans->block_rsv = rc->block_rsv;
2230
2231		replaced = 0;
2232		max_level = level;
2233
2234		ret = walk_down_reloc_tree(reloc_root, path, &level);
2235		if (ret < 0) {
2236			err = ret;
2237			goto out;
2238		}
2239		if (ret > 0)
2240			break;
2241
2242		if (!find_next_key(path, level, &key) &&
2243		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2244			ret = 0;
2245		} else {
2246			ret = replace_path(trans, root, reloc_root, path,
2247					   &next_key, level, max_level);
2248		}
2249		if (ret < 0) {
2250			err = ret;
2251			goto out;
2252		}
2253
2254		if (ret > 0) {
2255			level = ret;
2256			btrfs_node_key_to_cpu(path->nodes[level], &key,
2257					      path->slots[level]);
2258			replaced = 1;
2259		}
2260
2261		ret = walk_up_reloc_tree(reloc_root, path, &level);
2262		if (ret > 0)
2263			break;
2264
2265		BUG_ON(level == 0);
2266		/*
2267		 * save the merging progress in the drop_progress.
2268		 * this is OK since root refs == 1 in this case.
2269		 */
2270		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2271			       path->slots[level]);
2272		root_item->drop_level = level;
2273
2274		btrfs_end_transaction_throttle(trans);
2275		trans = NULL;
2276
2277		btrfs_btree_balance_dirty(fs_info);
2278
2279		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2280			invalidate_extent_cache(root, &key, &next_key);
2281	}
2282
2283	/*
2284	 * handle the case only one block in the fs tree need to be
2285	 * relocated and the block is tree root.
2286	 */
2287	leaf = btrfs_lock_root_node(root);
2288	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2289	btrfs_tree_unlock(leaf);
2290	free_extent_buffer(leaf);
2291	if (ret < 0)
2292		err = ret;
2293out:
2294	btrfs_free_path(path);
2295
2296	if (err == 0) {
2297		memset(&root_item->drop_progress, 0,
2298		       sizeof(root_item->drop_progress));
2299		root_item->drop_level = 0;
2300		btrfs_set_root_refs(root_item, 0);
2301		btrfs_update_reloc_root(trans, root);
2302	}
2303
2304	if (trans)
2305		btrfs_end_transaction_throttle(trans);
2306
2307	btrfs_btree_balance_dirty(fs_info);
2308
2309	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2310		invalidate_extent_cache(root, &key, &next_key);
2311
2312	return err;
2313}
2314
2315static noinline_for_stack
2316int prepare_to_merge(struct reloc_control *rc, int err)
2317{
2318	struct btrfs_root *root = rc->extent_root;
2319	struct btrfs_fs_info *fs_info = root->fs_info;
2320	struct btrfs_root *reloc_root;
2321	struct btrfs_trans_handle *trans;
2322	LIST_HEAD(reloc_roots);
2323	u64 num_bytes = 0;
2324	int ret;
2325
2326	mutex_lock(&fs_info->reloc_mutex);
2327	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2328	rc->merging_rsv_size += rc->nodes_relocated * 2;
2329	mutex_unlock(&fs_info->reloc_mutex);
2330
2331again:
2332	if (!err) {
2333		num_bytes = rc->merging_rsv_size;
2334		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2335					  BTRFS_RESERVE_FLUSH_ALL);
2336		if (ret)
2337			err = ret;
2338	}
2339
2340	trans = btrfs_join_transaction(rc->extent_root);
2341	if (IS_ERR(trans)) {
2342		if (!err)
2343			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2344						num_bytes);
2345		return PTR_ERR(trans);
2346	}
2347
2348	if (!err) {
2349		if (num_bytes != rc->merging_rsv_size) {
2350			btrfs_end_transaction(trans);
2351			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2352						num_bytes);
2353			goto again;
2354		}
2355	}
2356
2357	rc->merge_reloc_tree = 1;
2358
2359	while (!list_empty(&rc->reloc_roots)) {
2360		reloc_root = list_entry(rc->reloc_roots.next,
2361					struct btrfs_root, root_list);
2362		list_del_init(&reloc_root->root_list);
2363
2364		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2365		BUG_ON(IS_ERR(root));
2366		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
2367
2368		/*
2369		 * set reference count to 1, so btrfs_recover_relocation
2370		 * knows it should resumes merging
2371		 */
2372		if (!err)
2373			btrfs_set_root_refs(&reloc_root->root_item, 1);
2374		btrfs_update_reloc_root(trans, root);
2375
 
 
 
 
2376		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2377	}
2378
2379	list_splice(&reloc_roots, &rc->reloc_roots);
2380
2381	if (!err)
2382		btrfs_commit_transaction(trans);
2383	else
2384		btrfs_end_transaction(trans);
2385	return err;
2386}
2387
2388static noinline_for_stack
2389void free_reloc_roots(struct list_head *list)
2390{
2391	struct btrfs_root *reloc_root;
2392
2393	while (!list_empty(list)) {
2394		reloc_root = list_entry(list->next, struct btrfs_root,
2395					root_list);
2396		free_extent_buffer(reloc_root->node);
2397		free_extent_buffer(reloc_root->commit_root);
2398		reloc_root->node = NULL;
2399		reloc_root->commit_root = NULL;
2400		__del_reloc_root(reloc_root);
2401	}
2402}
2403
2404static noinline_for_stack
2405void merge_reloc_roots(struct reloc_control *rc)
2406{
2407	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2408	struct btrfs_root *root;
2409	struct btrfs_root *reloc_root;
2410	LIST_HEAD(reloc_roots);
2411	int found = 0;
2412	int ret = 0;
2413again:
2414	root = rc->extent_root;
2415
2416	/*
2417	 * this serializes us with btrfs_record_root_in_transaction,
2418	 * we have to make sure nobody is in the middle of
2419	 * adding their roots to the list while we are
2420	 * doing this splice
2421	 */
2422	mutex_lock(&fs_info->reloc_mutex);
2423	list_splice_init(&rc->reloc_roots, &reloc_roots);
2424	mutex_unlock(&fs_info->reloc_mutex);
2425
2426	while (!list_empty(&reloc_roots)) {
2427		found = 1;
2428		reloc_root = list_entry(reloc_roots.next,
2429					struct btrfs_root, root_list);
2430
 
 
2431		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2432			root = read_fs_root(fs_info,
2433					    reloc_root->root_key.offset);
2434			BUG_ON(IS_ERR(root));
2435			BUG_ON(root->reloc_root != reloc_root);
2436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437			ret = merge_reloc_root(rc, root);
 
2438			if (ret) {
2439				if (list_empty(&reloc_root->root_list))
2440					list_add_tail(&reloc_root->root_list,
2441						      &reloc_roots);
2442				goto out;
2443			}
2444		} else {
2445			list_del_init(&reloc_root->root_list);
2446		}
 
 
 
 
 
 
 
2447
2448		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2449		if (ret < 0) {
2450			if (list_empty(&reloc_root->root_list))
2451				list_add_tail(&reloc_root->root_list,
2452					      &reloc_roots);
2453			goto out;
2454		}
2455	}
2456
2457	if (found) {
2458		found = 0;
2459		goto again;
2460	}
2461out:
2462	if (ret) {
2463		btrfs_handle_fs_error(fs_info, ret, NULL);
2464		if (!list_empty(&reloc_roots))
2465			free_reloc_roots(&reloc_roots);
2466
2467		/* new reloc root may be added */
2468		mutex_lock(&fs_info->reloc_mutex);
2469		list_splice_init(&rc->reloc_roots, &reloc_roots);
2470		mutex_unlock(&fs_info->reloc_mutex);
2471		if (!list_empty(&reloc_roots))
2472			free_reloc_roots(&reloc_roots);
2473	}
2474
2475	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476}
2477
2478static void free_block_list(struct rb_root *blocks)
2479{
2480	struct tree_block *block;
2481	struct rb_node *rb_node;
2482	while ((rb_node = rb_first(blocks))) {
2483		block = rb_entry(rb_node, struct tree_block, rb_node);
2484		rb_erase(rb_node, blocks);
2485		kfree(block);
2486	}
2487}
2488
2489static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2490				      struct btrfs_root *reloc_root)
2491{
2492	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2493	struct btrfs_root *root;
 
2494
2495	if (reloc_root->last_trans == trans->transid)
2496		return 0;
2497
2498	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2499	BUG_ON(IS_ERR(root));
2500	BUG_ON(root->reloc_root != reloc_root);
2501
2502	return btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2503}
2504
2505static noinline_for_stack
2506struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2507				     struct reloc_control *rc,
2508				     struct backref_node *node,
2509				     struct backref_edge *edges[])
2510{
2511	struct backref_node *next;
2512	struct btrfs_root *root;
2513	int index = 0;
 
2514
2515	next = node;
2516	while (1) {
2517		cond_resched();
2518		next = walk_up_backref(next, edges, &index);
2519		root = next->root;
2520		BUG_ON(!root);
2521		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522
2523		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2524			record_reloc_root_in_trans(trans, root);
 
 
2525			break;
2526		}
2527
2528		btrfs_record_root_in_trans(trans, root);
 
 
2529		root = root->reloc_root;
2530
 
 
 
 
 
 
 
2531		if (next->new_bytenr != root->node->start) {
2532			BUG_ON(next->new_bytenr);
2533			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534			next->new_bytenr = root->node->start;
2535			next->root = root;
 
 
2536			list_add_tail(&next->list,
2537				      &rc->backref_cache.changed);
2538			__mark_block_processed(rc, next);
2539			break;
2540		}
2541
2542		WARN_ON(1);
2543		root = NULL;
2544		next = walk_down_backref(edges, &index);
2545		if (!next || next->level <= node->level)
2546			break;
2547	}
2548	if (!root)
2549		return NULL;
 
 
 
 
 
 
2550
2551	next = node;
2552	/* setup backref node path for btrfs_reloc_cow_block */
2553	while (1) {
2554		rc->backref_cache.path[next->level] = next;
2555		if (--index < 0)
2556			break;
2557		next = edges[index]->node[UPPER];
2558	}
2559	return root;
2560}
2561
2562/*
2563 * select a tree root for relocation. return NULL if the block
2564 * is reference counted. we should use do_relocation() in this
2565 * case. return a tree root pointer if the block isn't reference
2566 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2567 */
2568static noinline_for_stack
2569struct btrfs_root *select_one_root(struct backref_node *node)
2570{
2571	struct backref_node *next;
2572	struct btrfs_root *root;
2573	struct btrfs_root *fs_root = NULL;
2574	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575	int index = 0;
2576
2577	next = node;
2578	while (1) {
2579		cond_resched();
2580		next = walk_up_backref(next, edges, &index);
2581		root = next->root;
2582		BUG_ON(!root);
2583
2584		/* no other choice for non-references counted tree */
2585		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 
 
 
 
 
 
 
2586			return root;
2587
2588		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2589			fs_root = root;
2590
2591		if (next != node)
2592			return NULL;
2593
2594		next = walk_down_backref(edges, &index);
2595		if (!next || next->level <= node->level)
2596			break;
2597	}
2598
2599	if (!fs_root)
2600		return ERR_PTR(-ENOENT);
2601	return fs_root;
2602}
2603
2604static noinline_for_stack
2605u64 calcu_metadata_size(struct reloc_control *rc,
2606			struct backref_node *node, int reserve)
2607{
2608	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2609	struct backref_node *next = node;
2610	struct backref_edge *edge;
2611	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2612	u64 num_bytes = 0;
2613	int index = 0;
2614
2615	BUG_ON(reserve && node->processed);
2616
2617	while (next) {
2618		cond_resched();
2619		while (1) {
2620			if (next->processed && (reserve || next != node))
2621				break;
2622
2623			num_bytes += fs_info->nodesize;
2624
2625			if (list_empty(&next->upper))
2626				break;
2627
2628			edge = list_entry(next->upper.next,
2629					  struct backref_edge, list[LOWER]);
2630			edges[index++] = edge;
2631			next = edge->node[UPPER];
2632		}
2633		next = walk_down_backref(edges, &index);
2634	}
2635	return num_bytes;
2636}
2637
2638static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2639				  struct reloc_control *rc,
2640				  struct backref_node *node)
2641{
2642	struct btrfs_root *root = rc->extent_root;
2643	struct btrfs_fs_info *fs_info = root->fs_info;
2644	u64 num_bytes;
2645	int ret;
2646	u64 tmp;
2647
2648	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2649
2650	trans->block_rsv = rc->block_rsv;
2651	rc->reserved_bytes += num_bytes;
2652
2653	/*
2654	 * We are under a transaction here so we can only do limited flushing.
2655	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2656	 * transaction and try to refill when we can flush all the things.
2657	 */
2658	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2659				BTRFS_RESERVE_FLUSH_LIMIT);
2660	if (ret) {
2661		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2662		while (tmp <= rc->reserved_bytes)
2663			tmp <<= 1;
2664		/*
2665		 * only one thread can access block_rsv at this point,
2666		 * so we don't need hold lock to protect block_rsv.
2667		 * we expand more reservation size here to allow enough
2668		 * space for relocation and we will return eailer in
2669		 * enospc case.
2670		 */
2671		rc->block_rsv->size = tmp + fs_info->nodesize *
2672				      RELOCATION_RESERVED_NODES;
2673		return -EAGAIN;
2674	}
2675
2676	return 0;
2677}
2678
2679/*
2680 * relocate a block tree, and then update pointers in upper level
2681 * blocks that reference the block to point to the new location.
2682 *
2683 * if called by link_to_upper, the block has already been relocated.
2684 * in that case this function just updates pointers.
2685 */
2686static int do_relocation(struct btrfs_trans_handle *trans,
2687			 struct reloc_control *rc,
2688			 struct backref_node *node,
2689			 struct btrfs_key *key,
2690			 struct btrfs_path *path, int lowest)
2691{
2692	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693	struct backref_node *upper;
2694	struct backref_edge *edge;
2695	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2696	struct btrfs_root *root;
2697	struct extent_buffer *eb;
2698	u32 blocksize;
2699	u64 bytenr;
2700	u64 generation;
2701	int slot;
2702	int ret;
2703	int err = 0;
2704
2705	BUG_ON(lowest && node->eb);
 
 
 
 
2706
2707	path->lowest_level = node->level + 1;
2708	rc->backref_cache.path[node->level] = node;
2709	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
2710		cond_resched();
2711
2712		upper = edge->node[UPPER];
2713		root = select_reloc_root(trans, rc, upper, edges);
2714		BUG_ON(!root);
 
 
 
2715
2716		if (upper->eb && !upper->locked) {
2717			if (!lowest) {
2718				ret = btrfs_bin_search(upper->eb, key,
2719						       upper->level, &slot);
 
2720				BUG_ON(ret);
2721				bytenr = btrfs_node_blockptr(upper->eb, slot);
2722				if (node->eb->start == bytenr)
2723					goto next;
2724			}
2725			drop_node_buffer(upper);
2726		}
2727
2728		if (!upper->eb) {
2729			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2730			if (ret) {
2731				if (ret < 0)
2732					err = ret;
2733				else
2734					err = -ENOENT;
2735
2736				btrfs_release_path(path);
2737				break;
2738			}
2739
2740			if (!upper->eb) {
2741				upper->eb = path->nodes[upper->level];
2742				path->nodes[upper->level] = NULL;
2743			} else {
2744				BUG_ON(upper->eb != path->nodes[upper->level]);
2745			}
2746
2747			upper->locked = 1;
2748			path->locks[upper->level] = 0;
2749
2750			slot = path->slots[upper->level];
2751			btrfs_release_path(path);
2752		} else {
2753			ret = btrfs_bin_search(upper->eb, key, upper->level,
2754					       &slot);
 
2755			BUG_ON(ret);
2756		}
2757
2758		bytenr = btrfs_node_blockptr(upper->eb, slot);
2759		if (lowest) {
2760			if (bytenr != node->bytenr) {
2761				btrfs_err(root->fs_info,
2762		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2763					  bytenr, node->bytenr, slot,
2764					  upper->eb->start);
2765				err = -EIO;
2766				goto next;
2767			}
2768		} else {
2769			if (node->eb->start == bytenr)
2770				goto next;
2771		}
2772
2773		blocksize = root->fs_info->nodesize;
2774		generation = btrfs_node_ptr_generation(upper->eb, slot);
2775		eb = read_tree_block(fs_info, bytenr, generation);
2776		if (IS_ERR(eb)) {
2777			err = PTR_ERR(eb);
2778			goto next;
2779		} else if (!extent_buffer_uptodate(eb)) {
2780			free_extent_buffer(eb);
2781			err = -EIO;
2782			goto next;
2783		}
2784		btrfs_tree_lock(eb);
2785		btrfs_set_lock_blocking(eb);
2786
2787		if (!node->eb) {
2788			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2789					      slot, &eb);
2790			btrfs_tree_unlock(eb);
2791			free_extent_buffer(eb);
2792			if (ret < 0) {
2793				err = ret;
2794				goto next;
2795			}
2796			BUG_ON(node->eb != eb);
 
 
 
2797		} else {
2798			btrfs_set_node_blockptr(upper->eb, slot,
2799						node->eb->start);
2800			btrfs_set_node_ptr_generation(upper->eb, slot,
2801						      trans->transid);
2802			btrfs_mark_buffer_dirty(upper->eb);
2803
2804			ret = btrfs_inc_extent_ref(trans, root->fs_info,
2805						node->eb->start, blocksize,
2806						upper->eb->start,
2807						btrfs_header_owner(upper->eb),
2808						node->level, 0);
2809			BUG_ON(ret);
2810
2811			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2812			BUG_ON(ret);
 
 
 
2813		}
2814next:
2815		if (!upper->pending)
2816			drop_node_buffer(upper);
2817		else
2818			unlock_node_buffer(upper);
2819		if (err)
2820			break;
2821	}
2822
2823	if (!err && node->pending) {
2824		drop_node_buffer(node);
2825		list_move_tail(&node->list, &rc->backref_cache.changed);
2826		node->pending = 0;
2827	}
2828
2829	path->lowest_level = 0;
2830	BUG_ON(err == -ENOSPC);
2831	return err;
 
 
 
 
 
2832}
2833
2834static int link_to_upper(struct btrfs_trans_handle *trans,
2835			 struct reloc_control *rc,
2836			 struct backref_node *node,
2837			 struct btrfs_path *path)
2838{
2839	struct btrfs_key key;
2840
2841	btrfs_node_key_to_cpu(node->eb, &key, 0);
2842	return do_relocation(trans, rc, node, &key, path, 0);
2843}
2844
2845static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2846				struct reloc_control *rc,
2847				struct btrfs_path *path, int err)
2848{
2849	LIST_HEAD(list);
2850	struct backref_cache *cache = &rc->backref_cache;
2851	struct backref_node *node;
2852	int level;
2853	int ret;
2854
2855	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2856		while (!list_empty(&cache->pending[level])) {
2857			node = list_entry(cache->pending[level].next,
2858					  struct backref_node, list);
2859			list_move_tail(&node->list, &list);
2860			BUG_ON(!node->pending);
2861
2862			if (!err) {
2863				ret = link_to_upper(trans, rc, node, path);
2864				if (ret < 0)
2865					err = ret;
2866			}
2867		}
2868		list_splice_init(&list, &cache->pending[level]);
2869	}
2870	return err;
2871}
2872
2873static void mark_block_processed(struct reloc_control *rc,
2874				 u64 bytenr, u32 blocksize)
2875{
2876	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2877			EXTENT_DIRTY);
2878}
2879
2880static void __mark_block_processed(struct reloc_control *rc,
2881				   struct backref_node *node)
2882{
2883	u32 blocksize;
2884	if (node->level == 0 ||
2885	    in_block_group(node->bytenr, rc->block_group)) {
2886		blocksize = rc->extent_root->fs_info->nodesize;
2887		mark_block_processed(rc, node->bytenr, blocksize);
2888	}
2889	node->processed = 1;
2890}
2891
2892/*
2893 * mark a block and all blocks directly/indirectly reference the block
2894 * as processed.
2895 */
2896static void update_processed_blocks(struct reloc_control *rc,
2897				    struct backref_node *node)
2898{
2899	struct backref_node *next = node;
2900	struct backref_edge *edge;
2901	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2902	int index = 0;
2903
2904	while (next) {
2905		cond_resched();
2906		while (1) {
2907			if (next->processed)
2908				break;
2909
2910			__mark_block_processed(rc, next);
2911
2912			if (list_empty(&next->upper))
2913				break;
2914
2915			edge = list_entry(next->upper.next,
2916					  struct backref_edge, list[LOWER]);
2917			edges[index++] = edge;
2918			next = edge->node[UPPER];
2919		}
2920		next = walk_down_backref(edges, &index);
2921	}
2922}
2923
2924static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2925{
2926	u32 blocksize = rc->extent_root->fs_info->nodesize;
2927
2928	if (test_range_bit(&rc->processed_blocks, bytenr,
2929			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2930		return 1;
2931	return 0;
2932}
2933
2934static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2935			      struct tree_block *block)
2936{
2937	struct extent_buffer *eb;
2938
2939	BUG_ON(block->key_ready);
2940	eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2941	if (IS_ERR(eb)) {
2942		return PTR_ERR(eb);
2943	} else if (!extent_buffer_uptodate(eb)) {
2944		free_extent_buffer(eb);
2945		return -EIO;
2946	}
2947	WARN_ON(btrfs_header_level(eb) != block->level);
2948	if (block->level == 0)
2949		btrfs_item_key_to_cpu(eb, &block->key, 0);
2950	else
2951		btrfs_node_key_to_cpu(eb, &block->key, 0);
2952	free_extent_buffer(eb);
2953	block->key_ready = 1;
2954	return 0;
2955}
2956
2957/*
2958 * helper function to relocate a tree block
2959 */
2960static int relocate_tree_block(struct btrfs_trans_handle *trans,
2961				struct reloc_control *rc,
2962				struct backref_node *node,
2963				struct btrfs_key *key,
2964				struct btrfs_path *path)
2965{
2966	struct btrfs_root *root;
2967	int ret = 0;
2968
2969	if (!node)
2970		return 0;
2971
 
 
 
 
 
 
 
 
2972	BUG_ON(node->processed);
2973	root = select_one_root(node);
2974	if (root == ERR_PTR(-ENOENT)) {
2975		update_processed_blocks(rc, node);
2976		goto out;
2977	}
2978
2979	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2980		ret = reserve_metadata_space(trans, rc, node);
2981		if (ret)
2982			goto out;
 
 
 
2983	}
2984
2985	if (root) {
2986		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987			BUG_ON(node->new_bytenr);
2988			BUG_ON(!list_empty(&node->list));
2989			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990			root = root->reloc_root;
2991			node->new_bytenr = root->node->start;
2992			node->root = root;
 
 
2993			list_add_tail(&node->list, &rc->backref_cache.changed);
2994		} else {
2995			path->lowest_level = node->level;
2996			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2997			btrfs_release_path(path);
2998			if (ret > 0)
2999				ret = 0;
3000		}
3001		if (!ret)
3002			update_processed_blocks(rc, node);
3003	} else {
3004		ret = do_relocation(trans, rc, node, key, path, 1);
3005	}
3006out:
3007	if (ret || node->level == 0 || node->cowonly)
3008		remove_backref_node(&rc->backref_cache, node);
3009	return ret;
3010}
3011
3012/*
3013 * relocate a list of blocks
3014 */
3015static noinline_for_stack
3016int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3017			 struct reloc_control *rc, struct rb_root *blocks)
3018{
3019	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3020	struct backref_node *node;
3021	struct btrfs_path *path;
3022	struct tree_block *block;
3023	struct rb_node *rb_node;
3024	int ret;
3025	int err = 0;
3026
3027	path = btrfs_alloc_path();
3028	if (!path) {
3029		err = -ENOMEM;
3030		goto out_free_blocks;
3031	}
3032
3033	rb_node = rb_first(blocks);
3034	while (rb_node) {
3035		block = rb_entry(rb_node, struct tree_block, rb_node);
3036		if (!block->key_ready)
3037			readahead_tree_block(fs_info, block->bytenr);
3038		rb_node = rb_next(rb_node);
 
3039	}
3040
3041	rb_node = rb_first(blocks);
3042	while (rb_node) {
3043		block = rb_entry(rb_node, struct tree_block, rb_node);
3044		if (!block->key_ready) {
3045			err = get_tree_block_key(fs_info, block);
3046			if (err)
3047				goto out_free_path;
3048		}
3049		rb_node = rb_next(rb_node);
3050	}
3051
3052	rb_node = rb_first(blocks);
3053	while (rb_node) {
3054		block = rb_entry(rb_node, struct tree_block, rb_node);
3055
3056		node = build_backref_tree(rc, &block->key,
3057					  block->level, block->bytenr);
3058		if (IS_ERR(node)) {
3059			err = PTR_ERR(node);
3060			goto out;
3061		}
3062
3063		ret = relocate_tree_block(trans, rc, node, &block->key,
3064					  path);
3065		if (ret < 0) {
3066			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3067				err = ret;
3068			goto out;
3069		}
3070		rb_node = rb_next(rb_node);
3071	}
3072out:
3073	err = finish_pending_nodes(trans, rc, path, err);
3074
3075out_free_path:
3076	btrfs_free_path(path);
3077out_free_blocks:
3078	free_block_list(blocks);
3079	return err;
3080}
3081
3082static noinline_for_stack
3083int prealloc_file_extent_cluster(struct inode *inode,
3084				 struct file_extent_cluster *cluster)
3085{
3086	u64 alloc_hint = 0;
3087	u64 start;
3088	u64 end;
3089	u64 offset = BTRFS_I(inode)->index_cnt;
3090	u64 num_bytes;
3091	int nr = 0;
3092	int ret = 0;
3093	u64 prealloc_start = cluster->start - offset;
3094	u64 prealloc_end = cluster->end - offset;
3095	u64 cur_offset;
3096
3097	BUG_ON(cluster->start != cluster->boundary[0]);
3098	inode_lock(inode);
3099
3100	ret = btrfs_check_data_free_space(inode, prealloc_start,
3101					  prealloc_end + 1 - prealloc_start);
3102	if (ret)
3103		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104
3105	cur_offset = prealloc_start;
3106	while (nr < cluster->nr) {
3107		start = cluster->boundary[nr] - offset;
3108		if (nr + 1 < cluster->nr)
3109			end = cluster->boundary[nr + 1] - 1 - offset;
3110		else
3111			end = cluster->end - offset;
3112
3113		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3114		num_bytes = end + 1 - start;
3115		if (cur_offset < start)
3116			btrfs_free_reserved_data_space(inode, cur_offset,
3117					start - cur_offset);
3118		ret = btrfs_prealloc_file_range(inode, 0, start,
3119						num_bytes, num_bytes,
3120						end + 1, &alloc_hint);
3121		cur_offset = end + 1;
3122		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3123		if (ret)
3124			break;
3125		nr++;
3126	}
 
 
3127	if (cur_offset < prealloc_end)
3128		btrfs_free_reserved_data_space(inode, cur_offset,
3129				       prealloc_end + 1 - cur_offset);
3130out:
3131	inode_unlock(inode);
3132	return ret;
3133}
3134
3135static noinline_for_stack
3136int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3137			 u64 block_start)
3138{
3139	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3140	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3141	struct extent_map *em;
3142	int ret = 0;
3143
3144	em = alloc_extent_map();
3145	if (!em)
3146		return -ENOMEM;
3147
3148	em->start = start;
3149	em->len = end + 1 - start;
3150	em->block_len = em->len;
3151	em->block_start = block_start;
3152	em->bdev = fs_info->fs_devices->latest_bdev;
3153	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3154
3155	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3156	while (1) {
3157		write_lock(&em_tree->lock);
3158		ret = add_extent_mapping(em_tree, em, 0);
3159		write_unlock(&em_tree->lock);
3160		if (ret != -EEXIST) {
3161			free_extent_map(em);
3162			break;
3163		}
3164		btrfs_drop_extent_cache(inode, start, end, 0);
3165	}
3166	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3167	return ret;
3168}
3169
 
 
 
 
 
 
 
 
 
 
 
3170static int relocate_file_extent_cluster(struct inode *inode,
3171					struct file_extent_cluster *cluster)
3172{
3173	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3174	u64 page_start;
3175	u64 page_end;
3176	u64 offset = BTRFS_I(inode)->index_cnt;
3177	unsigned long index;
3178	unsigned long last_index;
3179	struct page *page;
3180	struct file_ra_state *ra;
3181	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3182	int nr = 0;
3183	int ret = 0;
3184
3185	if (!cluster->nr)
3186		return 0;
3187
3188	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3189	if (!ra)
3190		return -ENOMEM;
3191
3192	ret = prealloc_file_extent_cluster(inode, cluster);
3193	if (ret)
3194		goto out;
3195
3196	file_ra_state_init(ra, inode->i_mapping);
3197
3198	ret = setup_extent_mapping(inode, cluster->start - offset,
3199				   cluster->end - offset, cluster->start);
3200	if (ret)
3201		goto out;
3202
3203	index = (cluster->start - offset) >> PAGE_SHIFT;
3204	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3205	while (index <= last_index) {
3206		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
 
3207		if (ret)
3208			goto out;
3209
3210		page = find_lock_page(inode->i_mapping, index);
3211		if (!page) {
3212			page_cache_sync_readahead(inode->i_mapping,
3213						  ra, NULL, index,
3214						  last_index + 1 - index);
3215			page = find_or_create_page(inode->i_mapping, index,
3216						   mask);
3217			if (!page) {
3218				btrfs_delalloc_release_metadata(inode,
 
 
3219							PAGE_SIZE);
3220				ret = -ENOMEM;
3221				goto out;
3222			}
3223		}
 
 
 
 
 
 
 
 
 
3224
3225		if (PageReadahead(page)) {
3226			page_cache_async_readahead(inode->i_mapping,
3227						   ra, NULL, page, index,
3228						   last_index + 1 - index);
3229		}
3230
3231		if (!PageUptodate(page)) {
3232			btrfs_readpage(NULL, page);
3233			lock_page(page);
3234			if (!PageUptodate(page)) {
3235				unlock_page(page);
3236				put_page(page);
3237				btrfs_delalloc_release_metadata(inode,
3238							PAGE_SIZE);
 
 
3239				ret = -EIO;
3240				goto out;
3241			}
3242		}
3243
3244		page_start = page_offset(page);
3245		page_end = page_start + PAGE_SIZE - 1;
3246
3247		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3248
3249		set_page_extent_mapped(page);
3250
3251		if (nr < cluster->nr &&
3252		    page_start + offset == cluster->boundary[nr]) {
3253			set_extent_bits(&BTRFS_I(inode)->io_tree,
3254					page_start, page_end,
3255					EXTENT_BOUNDARY);
3256			nr++;
3257		}
3258
3259		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260		set_page_dirty(page);
3261
3262		unlock_extent(&BTRFS_I(inode)->io_tree,
3263			      page_start, page_end);
3264		unlock_page(page);
3265		put_page(page);
3266
3267		index++;
 
3268		balance_dirty_pages_ratelimited(inode->i_mapping);
3269		btrfs_throttle(fs_info);
 
 
 
 
3270	}
3271	WARN_ON(nr != cluster->nr);
 
 
3272out:
3273	kfree(ra);
3274	return ret;
3275}
3276
3277static noinline_for_stack
3278int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3279			 struct file_extent_cluster *cluster)
3280{
3281	int ret;
3282
3283	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3284		ret = relocate_file_extent_cluster(inode, cluster);
3285		if (ret)
3286			return ret;
3287		cluster->nr = 0;
3288	}
3289
3290	if (!cluster->nr)
3291		cluster->start = extent_key->objectid;
3292	else
3293		BUG_ON(cluster->nr >= MAX_EXTENTS);
3294	cluster->end = extent_key->objectid + extent_key->offset - 1;
3295	cluster->boundary[cluster->nr] = extent_key->objectid;
3296	cluster->nr++;
3297
3298	if (cluster->nr >= MAX_EXTENTS) {
3299		ret = relocate_file_extent_cluster(inode, cluster);
3300		if (ret)
3301			return ret;
3302		cluster->nr = 0;
3303	}
3304	return 0;
3305}
3306
3307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3308static int get_ref_objectid_v0(struct reloc_control *rc,
3309			       struct btrfs_path *path,
3310			       struct btrfs_key *extent_key,
3311			       u64 *ref_objectid, int *path_change)
3312{
3313	struct btrfs_key key;
3314	struct extent_buffer *leaf;
3315	struct btrfs_extent_ref_v0 *ref0;
3316	int ret;
3317	int slot;
3318
3319	leaf = path->nodes[0];
3320	slot = path->slots[0];
3321	while (1) {
3322		if (slot >= btrfs_header_nritems(leaf)) {
3323			ret = btrfs_next_leaf(rc->extent_root, path);
3324			if (ret < 0)
3325				return ret;
3326			BUG_ON(ret > 0);
3327			leaf = path->nodes[0];
3328			slot = path->slots[0];
3329			if (path_change)
3330				*path_change = 1;
3331		}
3332		btrfs_item_key_to_cpu(leaf, &key, slot);
3333		if (key.objectid != extent_key->objectid)
3334			return -ENOENT;
3335
3336		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3337			slot++;
3338			continue;
3339		}
3340		ref0 = btrfs_item_ptr(leaf, slot,
3341				struct btrfs_extent_ref_v0);
3342		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3343		break;
3344	}
3345	return 0;
3346}
3347#endif
3348
3349/*
3350 * helper to add a tree block to the list.
3351 * the major work is getting the generation and level of the block
3352 */
3353static int add_tree_block(struct reloc_control *rc,
3354			  struct btrfs_key *extent_key,
3355			  struct btrfs_path *path,
3356			  struct rb_root *blocks)
3357{
3358	struct extent_buffer *eb;
3359	struct btrfs_extent_item *ei;
3360	struct btrfs_tree_block_info *bi;
3361	struct tree_block *block;
3362	struct rb_node *rb_node;
3363	u32 item_size;
3364	int level = -1;
3365	u64 generation;
 
3366
3367	eb =  path->nodes[0];
3368	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3369
3370	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3371	    item_size >= sizeof(*ei) + sizeof(*bi)) {
 
 
3372		ei = btrfs_item_ptr(eb, path->slots[0],
3373				struct btrfs_extent_item);
 
3374		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3375			bi = (struct btrfs_tree_block_info *)(ei + 1);
3376			level = btrfs_tree_block_level(eb, bi);
 
3377		} else {
3378			level = (int)extent_key->offset;
 
3379		}
3380		generation = btrfs_extent_generation(eb, ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381	} else {
3382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3383		u64 ref_owner;
3384		int ret;
3385
3386		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3387		ret = get_ref_objectid_v0(rc, path, extent_key,
3388					  &ref_owner, NULL);
3389		if (ret < 0)
3390			return ret;
3391		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3392		level = (int)ref_owner;
3393		/* FIXME: get real generation */
3394		generation = 0;
3395#else
3396		BUG();
3397#endif
3398	}
3399
3400	btrfs_release_path(path);
3401
3402	BUG_ON(level == -1);
3403
3404	block = kmalloc(sizeof(*block), GFP_NOFS);
3405	if (!block)
3406		return -ENOMEM;
3407
3408	block->bytenr = extent_key->objectid;
3409	block->key.objectid = rc->extent_root->fs_info->nodesize;
3410	block->key.offset = generation;
3411	block->level = level;
3412	block->key_ready = 0;
 
3413
3414	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3415	if (rb_node)
3416		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3417
3418	return 0;
3419}
3420
3421/*
3422 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3423 */
3424static int __add_tree_block(struct reloc_control *rc,
3425			    u64 bytenr, u32 blocksize,
3426			    struct rb_root *blocks)
3427{
3428	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3429	struct btrfs_path *path;
3430	struct btrfs_key key;
3431	int ret;
3432	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3433
3434	if (tree_block_processed(bytenr, rc))
3435		return 0;
3436
3437	if (tree_search(blocks, bytenr))
3438		return 0;
3439
3440	path = btrfs_alloc_path();
3441	if (!path)
3442		return -ENOMEM;
3443again:
3444	key.objectid = bytenr;
3445	if (skinny) {
3446		key.type = BTRFS_METADATA_ITEM_KEY;
3447		key.offset = (u64)-1;
3448	} else {
3449		key.type = BTRFS_EXTENT_ITEM_KEY;
3450		key.offset = blocksize;
3451	}
3452
3453	path->search_commit_root = 1;
3454	path->skip_locking = 1;
3455	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3456	if (ret < 0)
3457		goto out;
3458
3459	if (ret > 0 && skinny) {
3460		if (path->slots[0]) {
3461			path->slots[0]--;
3462			btrfs_item_key_to_cpu(path->nodes[0], &key,
3463					      path->slots[0]);
3464			if (key.objectid == bytenr &&
3465			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3466			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3467			      key.offset == blocksize)))
3468				ret = 0;
3469		}
3470
3471		if (ret) {
3472			skinny = false;
3473			btrfs_release_path(path);
3474			goto again;
3475		}
3476	}
3477	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
3478
3479	ret = add_tree_block(rc, &key, path, blocks);
3480out:
3481	btrfs_free_path(path);
3482	return ret;
3483}
3484
3485/*
3486 * helper to check if the block use full backrefs for pointers in it
3487 */
3488static int block_use_full_backref(struct reloc_control *rc,
3489				  struct extent_buffer *eb)
3490{
3491	u64 flags;
3492	int ret;
3493
3494	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3495	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3496		return 1;
3497
3498	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3499				       eb->start, btrfs_header_level(eb), 1,
3500				       NULL, &flags);
3501	BUG_ON(ret);
3502
3503	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3504		ret = 1;
3505	else
3506		ret = 0;
3507	return ret;
3508}
3509
3510static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3511				    struct btrfs_block_group_cache *block_group,
3512				    struct inode *inode,
3513				    u64 ino)
3514{
3515	struct btrfs_key key;
3516	struct btrfs_root *root = fs_info->tree_root;
3517	struct btrfs_trans_handle *trans;
3518	int ret = 0;
3519
3520	if (inode)
3521		goto truncate;
3522
3523	key.objectid = ino;
3524	key.type = BTRFS_INODE_ITEM_KEY;
3525	key.offset = 0;
3526
3527	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3528	if (IS_ERR(inode) || is_bad_inode(inode)) {
3529		if (!IS_ERR(inode))
3530			iput(inode);
3531		return -ENOENT;
3532	}
3533
3534truncate:
3535	ret = btrfs_check_trunc_cache_free_space(fs_info,
3536						 &fs_info->global_block_rsv);
3537	if (ret)
3538		goto out;
3539
3540	trans = btrfs_join_transaction(root);
3541	if (IS_ERR(trans)) {
3542		ret = PTR_ERR(trans);
3543		goto out;
3544	}
3545
3546	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3547
3548	btrfs_end_transaction(trans);
3549	btrfs_btree_balance_dirty(fs_info);
3550out:
3551	iput(inode);
3552	return ret;
3553}
3554
3555/*
3556 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3557 * this function scans fs tree to find blocks reference the data extent
3558 */
3559static int find_data_references(struct reloc_control *rc,
3560				struct btrfs_key *extent_key,
3561				struct extent_buffer *leaf,
3562				struct btrfs_extent_data_ref *ref,
3563				struct rb_root *blocks)
3564{
3565	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566	struct btrfs_path *path;
3567	struct tree_block *block;
3568	struct btrfs_root *root;
3569	struct btrfs_file_extent_item *fi;
3570	struct rb_node *rb_node;
3571	struct btrfs_key key;
3572	u64 ref_root;
3573	u64 ref_objectid;
3574	u64 ref_offset;
3575	u32 ref_count;
3576	u32 nritems;
3577	int err = 0;
3578	int added = 0;
3579	int counted;
3580	int ret;
3581
3582	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3583	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3584	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3585	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3586
3587	/*
3588	 * This is an extent belonging to the free space cache, lets just delete
3589	 * it and redo the search.
3590	 */
3591	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3592		ret = delete_block_group_cache(fs_info, rc->block_group,
3593					       NULL, ref_objectid);
3594		if (ret != -ENOENT)
3595			return ret;
3596		ret = 0;
3597	}
3598
3599	path = btrfs_alloc_path();
3600	if (!path)
3601		return -ENOMEM;
3602	path->reada = READA_FORWARD;
3603
3604	root = read_fs_root(fs_info, ref_root);
3605	if (IS_ERR(root)) {
3606		err = PTR_ERR(root);
3607		goto out;
3608	}
3609
3610	key.objectid = ref_objectid;
3611	key.type = BTRFS_EXTENT_DATA_KEY;
3612	if (ref_offset > ((u64)-1 << 32))
3613		key.offset = 0;
3614	else
3615		key.offset = ref_offset;
3616
3617	path->search_commit_root = 1;
3618	path->skip_locking = 1;
3619	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620	if (ret < 0) {
3621		err = ret;
3622		goto out;
3623	}
3624
3625	leaf = path->nodes[0];
3626	nritems = btrfs_header_nritems(leaf);
3627	/*
3628	 * the references in tree blocks that use full backrefs
3629	 * are not counted in
3630	 */
3631	if (block_use_full_backref(rc, leaf))
3632		counted = 0;
3633	else
3634		counted = 1;
3635	rb_node = tree_search(blocks, leaf->start);
3636	if (rb_node) {
3637		if (counted)
3638			added = 1;
3639		else
3640			path->slots[0] = nritems;
3641	}
3642
3643	while (ref_count > 0) {
3644		while (path->slots[0] >= nritems) {
3645			ret = btrfs_next_leaf(root, path);
3646			if (ret < 0) {
3647				err = ret;
3648				goto out;
3649			}
3650			if (WARN_ON(ret > 0))
3651				goto out;
3652
3653			leaf = path->nodes[0];
3654			nritems = btrfs_header_nritems(leaf);
3655			added = 0;
3656
3657			if (block_use_full_backref(rc, leaf))
3658				counted = 0;
3659			else
3660				counted = 1;
3661			rb_node = tree_search(blocks, leaf->start);
3662			if (rb_node) {
3663				if (counted)
3664					added = 1;
3665				else
3666					path->slots[0] = nritems;
3667			}
3668		}
3669
3670		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3671		if (WARN_ON(key.objectid != ref_objectid ||
3672		    key.type != BTRFS_EXTENT_DATA_KEY))
 
 
3673			break;
3674
3675		fi = btrfs_item_ptr(leaf, path->slots[0],
3676				    struct btrfs_file_extent_item);
3677
3678		if (btrfs_file_extent_type(leaf, fi) ==
3679		    BTRFS_FILE_EXTENT_INLINE)
3680			goto next;
3681
3682		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3683		    extent_key->objectid)
3684			goto next;
3685
3686		key.offset -= btrfs_file_extent_offset(leaf, fi);
3687		if (key.offset != ref_offset)
3688			goto next;
3689
3690		if (counted)
3691			ref_count--;
3692		if (added)
3693			goto next;
3694
3695		if (!tree_block_processed(leaf->start, rc)) {
3696			block = kmalloc(sizeof(*block), GFP_NOFS);
3697			if (!block) {
3698				err = -ENOMEM;
3699				break;
3700			}
3701			block->bytenr = leaf->start;
3702			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3703			block->level = 0;
3704			block->key_ready = 1;
3705			rb_node = tree_insert(blocks, block->bytenr,
3706					      &block->rb_node);
3707			if (rb_node)
3708				backref_tree_panic(rb_node, -EEXIST,
3709						   block->bytenr);
3710		}
3711		if (counted)
3712			added = 1;
3713		else
3714			path->slots[0] = nritems;
3715next:
3716		path->slots[0]++;
3717
3718	}
3719out:
3720	btrfs_free_path(path);
3721	return err;
 
 
3722}
3723
3724/*
3725 * helper to find all tree blocks that reference a given data extent
3726 */
3727static noinline_for_stack
3728int add_data_references(struct reloc_control *rc,
3729			struct btrfs_key *extent_key,
3730			struct btrfs_path *path,
3731			struct rb_root *blocks)
3732{
3733	struct btrfs_key key;
3734	struct extent_buffer *eb;
3735	struct btrfs_extent_data_ref *dref;
3736	struct btrfs_extent_inline_ref *iref;
3737	unsigned long ptr;
3738	unsigned long end;
3739	u32 blocksize = rc->extent_root->fs_info->nodesize;
3740	int ret = 0;
3741	int err = 0;
3742
3743	eb = path->nodes[0];
3744	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3745	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3746#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3747	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3748		ptr = end;
3749	else
3750#endif
3751		ptr += sizeof(struct btrfs_extent_item);
3752
3753	while (ptr < end) {
3754		iref = (struct btrfs_extent_inline_ref *)ptr;
3755		key.type = btrfs_extent_inline_ref_type(eb, iref);
3756		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3757			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3758			ret = __add_tree_block(rc, key.offset, blocksize,
3759					       blocks);
3760		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3761			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3762			ret = find_data_references(rc, extent_key,
3763						   eb, dref, blocks);
3764		} else {
3765			BUG();
3766		}
3767		if (ret) {
3768			err = ret;
3769			goto out;
3770		}
3771		ptr += btrfs_extent_inline_ref_size(key.type);
3772	}
3773	WARN_ON(ptr > end);
3774
3775	while (1) {
3776		cond_resched();
3777		eb = path->nodes[0];
3778		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3779			ret = btrfs_next_leaf(rc->extent_root, path);
3780			if (ret < 0) {
3781				err = ret;
3782				break;
3783			}
3784			if (ret > 0)
3785				break;
3786			eb = path->nodes[0];
3787		}
3788
3789		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3790		if (key.objectid != extent_key->objectid)
 
3791			break;
3792
3793#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3794		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3795		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3796#else
3797		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3798		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3799#endif
3800			ret = __add_tree_block(rc, key.offset, blocksize,
3801					       blocks);
3802		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3803			dref = btrfs_item_ptr(eb, path->slots[0],
3804					      struct btrfs_extent_data_ref);
3805			ret = find_data_references(rc, extent_key,
3806						   eb, dref, blocks);
3807		} else {
3808			ret = 0;
3809		}
3810		if (ret) {
3811			err = ret;
 
 
 
 
 
3812			break;
3813		}
3814		path->slots[0]++;
3815	}
3816out:
3817	btrfs_release_path(path);
3818	if (err)
3819		free_block_list(blocks);
3820	return err;
 
3821}
3822
3823/*
3824 * helper to find next unprocessed extent
3825 */
3826static noinline_for_stack
3827int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3828		     struct btrfs_key *extent_key)
3829{
3830	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3831	struct btrfs_key key;
3832	struct extent_buffer *leaf;
3833	u64 start, end, last;
3834	int ret;
3835
3836	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3837	while (1) {
3838		cond_resched();
3839		if (rc->search_start >= last) {
3840			ret = 1;
3841			break;
3842		}
3843
3844		key.objectid = rc->search_start;
3845		key.type = BTRFS_EXTENT_ITEM_KEY;
3846		key.offset = 0;
3847
3848		path->search_commit_root = 1;
3849		path->skip_locking = 1;
3850		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3851					0, 0);
3852		if (ret < 0)
3853			break;
3854next:
3855		leaf = path->nodes[0];
3856		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3857			ret = btrfs_next_leaf(rc->extent_root, path);
3858			if (ret != 0)
3859				break;
3860			leaf = path->nodes[0];
3861		}
3862
3863		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864		if (key.objectid >= last) {
3865			ret = 1;
3866			break;
3867		}
3868
3869		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3870		    key.type != BTRFS_METADATA_ITEM_KEY) {
3871			path->slots[0]++;
3872			goto next;
3873		}
3874
3875		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3876		    key.objectid + key.offset <= rc->search_start) {
3877			path->slots[0]++;
3878			goto next;
3879		}
3880
3881		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3882		    key.objectid + fs_info->nodesize <=
3883		    rc->search_start) {
3884			path->slots[0]++;
3885			goto next;
3886		}
3887
3888		ret = find_first_extent_bit(&rc->processed_blocks,
3889					    key.objectid, &start, &end,
3890					    EXTENT_DIRTY, NULL);
3891
3892		if (ret == 0 && start <= key.objectid) {
3893			btrfs_release_path(path);
3894			rc->search_start = end + 1;
3895		} else {
3896			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3897				rc->search_start = key.objectid + key.offset;
3898			else
3899				rc->search_start = key.objectid +
3900					fs_info->nodesize;
3901			memcpy(extent_key, &key, sizeof(key));
3902			return 0;
3903		}
3904	}
3905	btrfs_release_path(path);
3906	return ret;
3907}
3908
3909static void set_reloc_control(struct reloc_control *rc)
3910{
3911	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3912
3913	mutex_lock(&fs_info->reloc_mutex);
3914	fs_info->reloc_ctl = rc;
3915	mutex_unlock(&fs_info->reloc_mutex);
3916}
3917
3918static void unset_reloc_control(struct reloc_control *rc)
3919{
3920	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921
3922	mutex_lock(&fs_info->reloc_mutex);
3923	fs_info->reloc_ctl = NULL;
3924	mutex_unlock(&fs_info->reloc_mutex);
3925}
3926
3927static int check_extent_flags(u64 flags)
3928{
3929	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3930	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3931		return 1;
3932	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3933	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3934		return 1;
3935	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3936	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3937		return 1;
3938	return 0;
3939}
3940
3941static noinline_for_stack
3942int prepare_to_relocate(struct reloc_control *rc)
3943{
3944	struct btrfs_trans_handle *trans;
3945	int ret;
3946
3947	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3948					      BTRFS_BLOCK_RSV_TEMP);
3949	if (!rc->block_rsv)
3950		return -ENOMEM;
3951
3952	memset(&rc->cluster, 0, sizeof(rc->cluster));
3953	rc->search_start = rc->block_group->key.objectid;
3954	rc->extents_found = 0;
3955	rc->nodes_relocated = 0;
3956	rc->merging_rsv_size = 0;
3957	rc->reserved_bytes = 0;
3958	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3959			      RELOCATION_RESERVED_NODES;
3960	ret = btrfs_block_rsv_refill(rc->extent_root,
3961				     rc->block_rsv, rc->block_rsv->size,
3962				     BTRFS_RESERVE_FLUSH_ALL);
3963	if (ret)
3964		return ret;
3965
3966	rc->create_reloc_tree = 1;
3967	set_reloc_control(rc);
3968
3969	trans = btrfs_join_transaction(rc->extent_root);
3970	if (IS_ERR(trans)) {
3971		unset_reloc_control(rc);
3972		/*
3973		 * extent tree is not a ref_cow tree and has no reloc_root to
3974		 * cleanup.  And callers are responsible to free the above
3975		 * block rsv.
3976		 */
3977		return PTR_ERR(trans);
3978	}
3979	btrfs_commit_transaction(trans);
3980	return 0;
3981}
3982
3983static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3984{
3985	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3986	struct rb_root blocks = RB_ROOT;
3987	struct btrfs_key key;
3988	struct btrfs_trans_handle *trans = NULL;
3989	struct btrfs_path *path;
3990	struct btrfs_extent_item *ei;
3991	u64 flags;
3992	u32 item_size;
3993	int ret;
3994	int err = 0;
3995	int progress = 0;
3996
3997	path = btrfs_alloc_path();
3998	if (!path)
3999		return -ENOMEM;
4000	path->reada = READA_FORWARD;
4001
4002	ret = prepare_to_relocate(rc);
4003	if (ret) {
4004		err = ret;
4005		goto out_free;
4006	}
4007
4008	while (1) {
4009		rc->reserved_bytes = 0;
4010		ret = btrfs_block_rsv_refill(rc->extent_root,
4011					rc->block_rsv, rc->block_rsv->size,
4012					BTRFS_RESERVE_FLUSH_ALL);
4013		if (ret) {
4014			err = ret;
4015			break;
4016		}
4017		progress++;
4018		trans = btrfs_start_transaction(rc->extent_root, 0);
4019		if (IS_ERR(trans)) {
4020			err = PTR_ERR(trans);
4021			trans = NULL;
4022			break;
4023		}
4024restart:
4025		if (update_backref_cache(trans, &rc->backref_cache)) {
4026			btrfs_end_transaction(trans);
 
4027			continue;
4028		}
4029
4030		ret = find_next_extent(rc, path, &key);
4031		if (ret < 0)
4032			err = ret;
4033		if (ret != 0)
4034			break;
4035
4036		rc->extents_found++;
4037
4038		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039				    struct btrfs_extent_item);
4040		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4041		if (item_size >= sizeof(*ei)) {
4042			flags = btrfs_extent_flags(path->nodes[0], ei);
4043			ret = check_extent_flags(flags);
4044			BUG_ON(ret);
4045
4046		} else {
4047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4048			u64 ref_owner;
4049			int path_change = 0;
4050
4051			BUG_ON(item_size !=
4052			       sizeof(struct btrfs_extent_item_v0));
4053			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4054						  &path_change);
4055			if (ret < 0) {
4056				err = ret;
4057				break;
4058			}
4059			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4060				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4061			else
4062				flags = BTRFS_EXTENT_FLAG_DATA;
4063
4064			if (path_change) {
4065				btrfs_release_path(path);
4066
4067				path->search_commit_root = 1;
4068				path->skip_locking = 1;
4069				ret = btrfs_search_slot(NULL, rc->extent_root,
4070							&key, path, 0, 0);
4071				if (ret < 0) {
4072					err = ret;
4073					break;
4074				}
4075				BUG_ON(ret > 0);
4076			}
4077#else
4078			BUG();
4079#endif
4080		}
4081
4082		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4083			ret = add_tree_block(rc, &key, path, &blocks);
4084		} else if (rc->stage == UPDATE_DATA_PTRS &&
4085			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4086			ret = add_data_references(rc, &key, path, &blocks);
4087		} else {
4088			btrfs_release_path(path);
4089			ret = 0;
4090		}
4091		if (ret < 0) {
4092			err = ret;
4093			break;
4094		}
4095
4096		if (!RB_EMPTY_ROOT(&blocks)) {
4097			ret = relocate_tree_blocks(trans, rc, &blocks);
4098			if (ret < 0) {
4099				/*
4100				 * if we fail to relocate tree blocks, force to update
4101				 * backref cache when committing transaction.
4102				 */
4103				rc->backref_cache.last_trans = trans->transid - 1;
4104
4105				if (ret != -EAGAIN) {
4106					err = ret;
4107					break;
4108				}
4109				rc->extents_found--;
4110				rc->search_start = key.objectid;
4111			}
4112		}
4113
4114		btrfs_end_transaction_throttle(trans);
4115		btrfs_btree_balance_dirty(fs_info);
4116		trans = NULL;
4117
4118		if (rc->stage == MOVE_DATA_EXTENTS &&
4119		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4120			rc->found_file_extent = 1;
4121			ret = relocate_data_extent(rc->data_inode,
4122						   &key, &rc->cluster);
4123			if (ret < 0) {
4124				err = ret;
4125				break;
4126			}
4127		}
 
 
 
 
4128	}
4129	if (trans && progress && err == -ENOSPC) {
4130		ret = btrfs_force_chunk_alloc(trans, fs_info,
4131					      rc->block_group->flags);
4132		if (ret == 1) {
4133			err = 0;
4134			progress = 0;
4135			goto restart;
4136		}
4137	}
4138
4139	btrfs_release_path(path);
4140	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4141
4142	if (trans) {
4143		btrfs_end_transaction_throttle(trans);
4144		btrfs_btree_balance_dirty(fs_info);
4145	}
4146
4147	if (!err) {
4148		ret = relocate_file_extent_cluster(rc->data_inode,
4149						   &rc->cluster);
4150		if (ret < 0)
4151			err = ret;
4152	}
4153
4154	rc->create_reloc_tree = 0;
4155	set_reloc_control(rc);
4156
4157	backref_cache_cleanup(&rc->backref_cache);
4158	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159
 
 
 
 
 
 
 
 
4160	err = prepare_to_merge(rc, err);
4161
4162	merge_reloc_roots(rc);
4163
4164	rc->merge_reloc_tree = 0;
4165	unset_reloc_control(rc);
4166	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4167
4168	/* get rid of pinned extents */
4169	trans = btrfs_join_transaction(rc->extent_root);
4170	if (IS_ERR(trans)) {
4171		err = PTR_ERR(trans);
4172		goto out_free;
4173	}
4174	btrfs_commit_transaction(trans);
 
 
4175out_free:
 
 
 
4176	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4177	btrfs_free_path(path);
4178	return err;
4179}
4180
4181static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4182				 struct btrfs_root *root, u64 objectid)
4183{
4184	struct btrfs_path *path;
4185	struct btrfs_inode_item *item;
4186	struct extent_buffer *leaf;
 
4187	int ret;
4188
 
 
 
4189	path = btrfs_alloc_path();
4190	if (!path)
4191		return -ENOMEM;
4192
4193	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4194	if (ret)
4195		goto out;
4196
4197	leaf = path->nodes[0];
4198	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4199	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4200	btrfs_set_inode_generation(leaf, item, 1);
4201	btrfs_set_inode_size(leaf, item, 0);
4202	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4203	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4204					  BTRFS_INODE_PREALLOC);
4205	btrfs_mark_buffer_dirty(leaf);
4206out:
4207	btrfs_free_path(path);
4208	return ret;
4209}
4210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4211/*
4212 * helper to create inode for data relocation.
4213 * the inode is in data relocation tree and its link count is 0
4214 */
4215static noinline_for_stack
4216struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4217				 struct btrfs_block_group_cache *group)
4218{
4219	struct inode *inode = NULL;
4220	struct btrfs_trans_handle *trans;
4221	struct btrfs_root *root;
4222	struct btrfs_key key;
4223	u64 objectid;
4224	int err = 0;
4225
4226	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4227	if (IS_ERR(root))
4228		return ERR_CAST(root);
4229
4230	trans = btrfs_start_transaction(root, 6);
4231	if (IS_ERR(trans))
 
4232		return ERR_CAST(trans);
 
4233
4234	err = btrfs_find_free_objectid(root, &objectid);
4235	if (err)
4236		goto out;
4237
4238	err = __insert_orphan_inode(trans, root, objectid);
4239	BUG_ON(err);
 
4240
4241	key.objectid = objectid;
4242	key.type = BTRFS_INODE_ITEM_KEY;
4243	key.offset = 0;
4244	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4245	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4246	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
4247
4248	err = btrfs_orphan_add(trans, inode);
4249out:
 
4250	btrfs_end_transaction(trans);
4251	btrfs_btree_balance_dirty(fs_info);
4252	if (err) {
4253		if (inode)
4254			iput(inode);
4255		inode = ERR_PTR(err);
4256	}
4257	return inode;
4258}
4259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4260static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4261{
4262	struct reloc_control *rc;
4263
4264	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4265	if (!rc)
4266		return NULL;
4267
4268	INIT_LIST_HEAD(&rc->reloc_roots);
4269	backref_cache_init(&rc->backref_cache);
 
4270	mapping_tree_init(&rc->reloc_root_tree);
4271	extent_io_tree_init(&rc->processed_blocks,
4272			    fs_info->btree_inode->i_mapping);
4273	return rc;
4274}
4275
 
 
 
 
 
 
 
 
 
 
 
 
4276/*
4277 * Print the block group being relocated
4278 */
4279static void describe_relocation(struct btrfs_fs_info *fs_info,
4280				struct btrfs_block_group_cache *block_group)
4281{
4282	char buf[128];		/* prefixed by a '|' that'll be dropped */
4283	u64 flags = block_group->flags;
4284
4285	/* Shouldn't happen */
4286	if (!flags) {
4287		strcpy(buf, "|NONE");
4288	} else {
4289		char *bp = buf;
4290
4291#define DESCRIBE_FLAG(f, d) \
4292		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4293			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4294			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4295		}
4296		DESCRIBE_FLAG(DATA,     "data");
4297		DESCRIBE_FLAG(SYSTEM,   "system");
4298		DESCRIBE_FLAG(METADATA, "metadata");
4299		DESCRIBE_FLAG(RAID0,    "raid0");
4300		DESCRIBE_FLAG(RAID1,    "raid1");
4301		DESCRIBE_FLAG(DUP,      "dup");
4302		DESCRIBE_FLAG(RAID10,   "raid10");
4303		DESCRIBE_FLAG(RAID5,    "raid5");
4304		DESCRIBE_FLAG(RAID6,    "raid6");
4305		if (flags)
4306			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4307#undef DESCRIBE_FLAG
4308	}
4309
4310	btrfs_info(fs_info,
4311		   "relocating block group %llu flags %s",
4312		   block_group->key.objectid, buf + 1);
 
 
 
 
 
 
 
 
 
4313}
4314
4315/*
4316 * function to relocate all extents in a block group.
4317 */
4318int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4319{
 
4320	struct btrfs_root *extent_root = fs_info->extent_root;
4321	struct reloc_control *rc;
4322	struct inode *inode;
4323	struct btrfs_path *path;
4324	int ret;
4325	int rw = 0;
4326	int err = 0;
4327
 
 
 
 
 
 
 
 
 
4328	rc = alloc_reloc_control(fs_info);
4329	if (!rc)
 
4330		return -ENOMEM;
 
4331
4332	rc->extent_root = extent_root;
 
 
 
 
4333
4334	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4335	BUG_ON(!rc->block_group);
4336
4337	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4338	if (ret) {
4339		err = ret;
4340		goto out;
4341	}
4342	rw = 1;
4343
4344	path = btrfs_alloc_path();
4345	if (!path) {
4346		err = -ENOMEM;
4347		goto out;
4348	}
4349
4350	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4351					path);
4352	btrfs_free_path(path);
4353
4354	if (!IS_ERR(inode))
4355		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4356	else
4357		ret = PTR_ERR(inode);
4358
4359	if (ret && ret != -ENOENT) {
4360		err = ret;
4361		goto out;
4362	}
4363
4364	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4365	if (IS_ERR(rc->data_inode)) {
4366		err = PTR_ERR(rc->data_inode);
4367		rc->data_inode = NULL;
4368		goto out;
4369	}
4370
4371	describe_relocation(fs_info, rc->block_group);
4372
4373	btrfs_wait_block_group_reservations(rc->block_group);
4374	btrfs_wait_nocow_writers(rc->block_group);
4375	btrfs_wait_ordered_roots(fs_info, -1,
4376				 rc->block_group->key.objectid,
4377				 rc->block_group->key.offset);
4378
4379	while (1) {
 
 
4380		mutex_lock(&fs_info->cleaner_mutex);
4381		ret = relocate_block_group(rc);
4382		mutex_unlock(&fs_info->cleaner_mutex);
4383		if (ret < 0) {
4384			err = ret;
4385			goto out;
4386		}
4387
4388		if (rc->extents_found == 0)
4389			break;
4390
4391		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4392
 
 
 
 
 
 
 
 
 
 
4393		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4394			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4395						       (u64)-1);
4396			if (ret) {
4397				err = ret;
4398				goto out;
4399			}
4400			invalidate_mapping_pages(rc->data_inode->i_mapping,
4401						 0, -1);
4402			rc->stage = UPDATE_DATA_PTRS;
4403		}
 
 
 
 
 
 
 
 
 
4404	}
4405
4406	WARN_ON(rc->block_group->pinned > 0);
4407	WARN_ON(rc->block_group->reserved > 0);
4408	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410	if (err && rw)
4411		btrfs_dec_block_group_ro(rc->block_group);
4412	iput(rc->data_inode);
4413	btrfs_put_block_group(rc->block_group);
4414	kfree(rc);
 
 
4415	return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420	struct btrfs_fs_info *fs_info = root->fs_info;
4421	struct btrfs_trans_handle *trans;
4422	int ret, err;
4423
4424	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425	if (IS_ERR(trans))
4426		return PTR_ERR(trans);
4427
4428	memset(&root->root_item.drop_progress, 0,
4429		sizeof(root->root_item.drop_progress));
4430	root->root_item.drop_level = 0;
4431	btrfs_set_root_refs(&root->root_item, 0);
4432	ret = btrfs_update_root(trans, fs_info->tree_root,
4433				&root->root_key, &root->root_item);
4434
4435	err = btrfs_end_transaction(trans);
4436	if (err)
4437		return err;
4438	return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449	struct btrfs_fs_info *fs_info = root->fs_info;
4450	LIST_HEAD(reloc_roots);
4451	struct btrfs_key key;
4452	struct btrfs_root *fs_root;
4453	struct btrfs_root *reloc_root;
4454	struct btrfs_path *path;
4455	struct extent_buffer *leaf;
4456	struct reloc_control *rc = NULL;
4457	struct btrfs_trans_handle *trans;
4458	int ret;
4459	int err = 0;
4460
4461	path = btrfs_alloc_path();
4462	if (!path)
4463		return -ENOMEM;
4464	path->reada = READA_BACK;
4465
4466	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467	key.type = BTRFS_ROOT_ITEM_KEY;
4468	key.offset = (u64)-1;
4469
4470	while (1) {
4471		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472					path, 0, 0);
4473		if (ret < 0) {
4474			err = ret;
4475			goto out;
4476		}
4477		if (ret > 0) {
4478			if (path->slots[0] == 0)
4479				break;
4480			path->slots[0]--;
4481		}
4482		leaf = path->nodes[0];
4483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484		btrfs_release_path(path);
4485
4486		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487		    key.type != BTRFS_ROOT_ITEM_KEY)
4488			break;
4489
4490		reloc_root = btrfs_read_fs_root(root, &key);
4491		if (IS_ERR(reloc_root)) {
4492			err = PTR_ERR(reloc_root);
4493			goto out;
4494		}
4495
 
4496		list_add(&reloc_root->root_list, &reloc_roots);
4497
4498		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499			fs_root = read_fs_root(fs_info,
4500					       reloc_root->root_key.offset);
4501			if (IS_ERR(fs_root)) {
4502				ret = PTR_ERR(fs_root);
4503				if (ret != -ENOENT) {
4504					err = ret;
4505					goto out;
4506				}
4507				ret = mark_garbage_root(reloc_root);
4508				if (ret < 0) {
4509					err = ret;
4510					goto out;
4511				}
 
 
4512			}
4513		}
4514
4515		if (key.offset == 0)
4516			break;
4517
4518		key.offset--;
4519	}
4520	btrfs_release_path(path);
4521
4522	if (list_empty(&reloc_roots))
4523		goto out;
4524
4525	rc = alloc_reloc_control(fs_info);
4526	if (!rc) {
4527		err = -ENOMEM;
4528		goto out;
4529	}
4530
 
 
 
 
 
 
4531	rc->extent_root = fs_info->extent_root;
4532
4533	set_reloc_control(rc);
4534
4535	trans = btrfs_join_transaction(rc->extent_root);
4536	if (IS_ERR(trans)) {
4537		unset_reloc_control(rc);
4538		err = PTR_ERR(trans);
4539		goto out_free;
4540	}
4541
4542	rc->merge_reloc_tree = 1;
4543
4544	while (!list_empty(&reloc_roots)) {
4545		reloc_root = list_entry(reloc_roots.next,
4546					struct btrfs_root, root_list);
4547		list_del(&reloc_root->root_list);
4548
4549		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550			list_add_tail(&reloc_root->root_list,
4551				      &rc->reloc_roots);
4552			continue;
4553		}
4554
4555		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
4556		if (IS_ERR(fs_root)) {
4557			err = PTR_ERR(fs_root);
4558			goto out_free;
 
 
4559		}
4560
4561		err = __add_reloc_root(reloc_root);
4562		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
4564	}
4565
4566	err = btrfs_commit_transaction(trans);
4567	if (err)
4568		goto out_free;
4569
4570	merge_reloc_roots(rc);
4571
4572	unset_reloc_control(rc);
4573
4574	trans = btrfs_join_transaction(rc->extent_root);
4575	if (IS_ERR(trans)) {
4576		err = PTR_ERR(trans);
4577		goto out_free;
4578	}
4579	err = btrfs_commit_transaction(trans);
4580out_free:
4581	kfree(rc);
 
 
 
 
 
 
 
4582out:
4583	if (!list_empty(&reloc_roots))
4584		free_reloc_roots(&reloc_roots);
4585
4586	btrfs_free_path(path);
4587
4588	if (err == 0) {
4589		/* cleanup orphan inode in data relocation tree */
4590		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4591		if (IS_ERR(fs_root))
4592			err = PTR_ERR(fs_root);
4593		else
4594			err = btrfs_orphan_cleanup(fs_root);
4595	}
4596	return err;
4597}
4598
4599/*
4600 * helper to add ordered checksum for data relocation.
4601 *
4602 * cloning checksum properly handles the nodatasum extents.
4603 * it also saves CPU time to re-calculate the checksum.
4604 */
4605int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4606{
4607	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4608	struct btrfs_ordered_sum *sums;
4609	struct btrfs_ordered_extent *ordered;
4610	int ret;
4611	u64 disk_bytenr;
4612	u64 new_bytenr;
4613	LIST_HEAD(list);
4614
4615	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4616	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4617
4618	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4619	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4620				       disk_bytenr + len - 1, &list, 0);
4621	if (ret)
4622		goto out;
4623
4624	while (!list_empty(&list)) {
4625		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4626		list_del_init(&sums->list);
4627
4628		/*
4629		 * We need to offset the new_bytenr based on where the csum is.
4630		 * We need to do this because we will read in entire prealloc
4631		 * extents but we may have written to say the middle of the
4632		 * prealloc extent, so we need to make sure the csum goes with
4633		 * the right disk offset.
4634		 *
4635		 * We can do this because the data reloc inode refers strictly
4636		 * to the on disk bytes, so we don't have to worry about
4637		 * disk_len vs real len like with real inodes since it's all
4638		 * disk length.
4639		 */
4640		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4641		sums->bytenr = new_bytenr;
4642
4643		btrfs_add_ordered_sum(inode, ordered, sums);
4644	}
4645out:
4646	btrfs_put_ordered_extent(ordered);
4647	return ret;
4648}
4649
4650int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4651			  struct btrfs_root *root, struct extent_buffer *buf,
4652			  struct extent_buffer *cow)
4653{
4654	struct btrfs_fs_info *fs_info = root->fs_info;
4655	struct reloc_control *rc;
4656	struct backref_node *node;
4657	int first_cow = 0;
4658	int level;
4659	int ret = 0;
4660
4661	rc = fs_info->reloc_ctl;
4662	if (!rc)
4663		return 0;
4664
4665	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4666	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4667
4668	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4669		if (buf == root->node)
4670			__update_reloc_root(root, cow->start);
4671	}
4672
4673	level = btrfs_header_level(buf);
4674	if (btrfs_header_generation(buf) <=
4675	    btrfs_root_last_snapshot(&root->root_item))
4676		first_cow = 1;
4677
4678	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4679	    rc->create_reloc_tree) {
4680		WARN_ON(!first_cow && level == 0);
4681
4682		node = rc->backref_cache.path[level];
4683		BUG_ON(node->bytenr != buf->start &&
4684		       node->new_bytenr != buf->start);
4685
4686		drop_node_buffer(node);
4687		extent_buffer_get(cow);
4688		node->eb = cow;
4689		node->new_bytenr = cow->start;
4690
4691		if (!node->pending) {
4692			list_move_tail(&node->list,
4693				       &rc->backref_cache.pending[level]);
4694			node->pending = 1;
4695		}
4696
4697		if (first_cow)
4698			__mark_block_processed(rc, node);
4699
4700		if (first_cow && level > 0)
4701			rc->nodes_relocated += buf->len;
4702	}
4703
4704	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4705		ret = replace_file_extents(trans, rc, root, cow);
4706	return ret;
4707}
4708
4709/*
4710 * called before creating snapshot. it calculates metadata reservation
4711 * required for relocating tree blocks in the snapshot
4712 */
4713void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4714			      u64 *bytes_to_reserve)
4715{
4716	struct btrfs_root *root;
4717	struct reloc_control *rc;
4718
4719	root = pending->root;
4720	if (!root->reloc_root)
4721		return;
4722
4723	rc = root->fs_info->reloc_ctl;
4724	if (!rc->merge_reloc_tree)
4725		return;
4726
4727	root = root->reloc_root;
4728	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4729	/*
4730	 * relocation is in the stage of merging trees. the space
4731	 * used by merging a reloc tree is twice the size of
4732	 * relocated tree nodes in the worst case. half for cowing
4733	 * the reloc tree, half for cowing the fs tree. the space
4734	 * used by cowing the reloc tree will be freed after the
4735	 * tree is dropped. if we create snapshot, cowing the fs
4736	 * tree may use more space than it frees. so we need
4737	 * reserve extra space.
4738	 */
4739	*bytes_to_reserve += rc->nodes_relocated;
4740}
4741
4742/*
4743 * called after snapshot is created. migrate block reservation
4744 * and create reloc root for the newly created snapshot
 
 
 
 
4745 */
4746int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4747			       struct btrfs_pending_snapshot *pending)
4748{
4749	struct btrfs_root *root = pending->root;
4750	struct btrfs_root *reloc_root;
4751	struct btrfs_root *new_root;
4752	struct reloc_control *rc;
4753	int ret;
4754
4755	if (!root->reloc_root)
4756		return 0;
4757
4758	rc = root->fs_info->reloc_ctl;
4759	rc->merging_rsv_size += rc->nodes_relocated;
4760
4761	if (rc->merge_reloc_tree) {
4762		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4763					      rc->block_rsv,
4764					      rc->nodes_relocated, 1);
4765		if (ret)
4766			return ret;
4767	}
4768
4769	new_root = pending->snap;
4770	reloc_root = create_reloc_root(trans, root->reloc_root,
4771				       new_root->root_key.objectid);
4772	if (IS_ERR(reloc_root))
4773		return PTR_ERR(reloc_root);
4774
4775	ret = __add_reloc_root(reloc_root);
4776	BUG_ON(ret < 0);
4777	new_root->reloc_root = reloc_root;
 
 
 
 
 
4778
4779	if (rc->create_reloc_tree)
4780		ret = clone_backref_node(trans, rc, root, reloc_root);
4781	return ret;
4782}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
 
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27
  28/*
  29 * Relocation overview
  30 *
  31 * [What does relocation do]
  32 *
  33 * The objective of relocation is to relocate all extents of the target block
  34 * group to other block groups.
  35 * This is utilized by resize (shrink only), profile converting, compacting
  36 * space, or balance routine to spread chunks over devices.
  37 *
  38 * 		Before		|		After
  39 * ------------------------------------------------------------------
  40 *  BG A: 10 data extents	| BG A: deleted
  41 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  42 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  43 *
  44 * [How does relocation work]
  45 *
  46 * 1.   Mark the target block group read-only
  47 *      New extents won't be allocated from the target block group.
  48 *
  49 * 2.1  Record each extent in the target block group
  50 *      To build a proper map of extents to be relocated.
  51 *
  52 * 2.2  Build data reloc tree and reloc trees
  53 *      Data reloc tree will contain an inode, recording all newly relocated
  54 *      data extents.
  55 *      There will be only one data reloc tree for one data block group.
  56 *
  57 *      Reloc tree will be a special snapshot of its source tree, containing
  58 *      relocated tree blocks.
  59 *      Each tree referring to a tree block in target block group will get its
  60 *      reloc tree built.
  61 *
  62 * 2.3  Swap source tree with its corresponding reloc tree
  63 *      Each involved tree only refers to new extents after swap.
  64 *
  65 * 3.   Cleanup reloc trees and data reloc tree.
  66 *      As old extents in the target block group are still referenced by reloc
  67 *      trees, we need to clean them up before really freeing the target block
  68 *      group.
  69 *
  70 * The main complexity is in steps 2.2 and 2.3.
  71 *
  72 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  73 */
 
 
 
 
  74
 
 
  75#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * map address of tree root to tree
  78 */
  79struct mapping_node {
  80	struct {
  81		struct rb_node rb_node;
  82		u64 bytenr;
  83	}; /* Use rb_simle_node for search/insert */
  84	void *data;
  85};
  86
  87struct mapping_tree {
  88	struct rb_root rb_root;
  89	spinlock_t lock;
  90};
  91
  92/*
  93 * present a tree block to process
  94 */
  95struct tree_block {
  96	struct {
  97		struct rb_node rb_node;
  98		u64 bytenr;
  99	}; /* Use rb_simple_node for search/insert */
 100	u64 owner;
 101	struct btrfs_key key;
 102	unsigned int level:8;
 103	unsigned int key_ready:1;
 104};
 105
 106#define MAX_EXTENTS 128
 107
 108struct file_extent_cluster {
 109	u64 start;
 110	u64 end;
 111	u64 boundary[MAX_EXTENTS];
 112	unsigned int nr;
 113};
 114
 115struct reloc_control {
 116	/* block group to relocate */
 117	struct btrfs_block_group *block_group;
 118	/* extent tree */
 119	struct btrfs_root *extent_root;
 120	/* inode for moving data */
 121	struct inode *data_inode;
 122
 123	struct btrfs_block_rsv *block_rsv;
 124
 125	struct btrfs_backref_cache backref_cache;
 126
 127	struct file_extent_cluster cluster;
 128	/* tree blocks have been processed */
 129	struct extent_io_tree processed_blocks;
 130	/* map start of tree root to corresponding reloc tree */
 131	struct mapping_tree reloc_root_tree;
 132	/* list of reloc trees */
 133	struct list_head reloc_roots;
 134	/* list of subvolume trees that get relocated */
 135	struct list_head dirty_subvol_roots;
 136	/* size of metadata reservation for merging reloc trees */
 137	u64 merging_rsv_size;
 138	/* size of relocated tree nodes */
 139	u64 nodes_relocated;
 140	/* reserved size for block group relocation*/
 141	u64 reserved_bytes;
 142
 143	u64 search_start;
 144	u64 extents_found;
 145
 146	unsigned int stage:8;
 147	unsigned int create_reloc_tree:1;
 148	unsigned int merge_reloc_tree:1;
 149	unsigned int found_file_extent:1;
 150};
 151
 152/* stages of data relocation */
 153#define MOVE_DATA_EXTENTS	0
 154#define UPDATE_DATA_PTRS	1
 155
 156static void mark_block_processed(struct reloc_control *rc,
 157				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158{
 159	u32 blocksize;
 
 
 
 
 
 
 160
 161	if (node->level == 0 ||
 162	    in_range(node->bytenr, rc->block_group->start,
 163		     rc->block_group->length)) {
 164		blocksize = rc->extent_root->fs_info->nodesize;
 165		set_extent_bits(&rc->processed_blocks, node->bytenr,
 166				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 167	}
 168	node->processed = 1;
 
 
 
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171
 172static void mapping_tree_init(struct mapping_tree *tree)
 173{
 174	tree->rb_root = RB_ROOT;
 175	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * walk up backref nodes until reach node presents tree root
 180 */
 181static struct btrfs_backref_node *walk_up_backref(
 182		struct btrfs_backref_node *node,
 183		struct btrfs_backref_edge *edges[], int *index)
 184{
 185	struct btrfs_backref_edge *edge;
 186	int idx = *index;
 187
 188	while (!list_empty(&node->upper)) {
 189		edge = list_entry(node->upper.next,
 190				  struct btrfs_backref_edge, list[LOWER]);
 191		edges[idx++] = edge;
 192		node = edge->node[UPPER];
 193	}
 194	BUG_ON(node->detached);
 195	*index = idx;
 196	return node;
 197}
 198
 199/*
 200 * walk down backref nodes to find start of next reference path
 201 */
 202static struct btrfs_backref_node *walk_down_backref(
 203		struct btrfs_backref_edge *edges[], int *index)
 204{
 205	struct btrfs_backref_edge *edge;
 206	struct btrfs_backref_node *lower;
 207	int idx = *index;
 208
 209	while (idx > 0) {
 210		edge = edges[idx - 1];
 211		lower = edge->node[LOWER];
 212		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 213			idx--;
 214			continue;
 215		}
 216		edge = list_entry(edge->list[LOWER].next,
 217				  struct btrfs_backref_edge, list[LOWER]);
 218		edges[idx - 1] = edge;
 219		*index = idx;
 220		return edge->node[UPPER];
 221	}
 222	*index = 0;
 223	return NULL;
 224}
 225
 226static void update_backref_node(struct btrfs_backref_cache *cache,
 227				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct rb_node *rb_node;
 230	rb_erase(&node->rb_node, &cache->rb_root);
 231	node->bytenr = bytenr;
 232	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 233	if (rb_node)
 234		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 235}
 236
 237/*
 238 * update backref cache after a transaction commit
 239 */
 240static int update_backref_cache(struct btrfs_trans_handle *trans,
 241				struct btrfs_backref_cache *cache)
 242{
 243	struct btrfs_backref_node *node;
 244	int level = 0;
 245
 246	if (cache->last_trans == 0) {
 247		cache->last_trans = trans->transid;
 248		return 0;
 249	}
 250
 251	if (cache->last_trans == trans->transid)
 252		return 0;
 253
 254	/*
 255	 * detached nodes are used to avoid unnecessary backref
 256	 * lookup. transaction commit changes the extent tree.
 257	 * so the detached nodes are no longer useful.
 258	 */
 259	while (!list_empty(&cache->detached)) {
 260		node = list_entry(cache->detached.next,
 261				  struct btrfs_backref_node, list);
 262		btrfs_backref_cleanup_node(cache, node);
 263	}
 264
 265	while (!list_empty(&cache->changed)) {
 266		node = list_entry(cache->changed.next,
 267				  struct btrfs_backref_node, list);
 268		list_del_init(&node->list);
 269		BUG_ON(node->pending);
 270		update_backref_node(cache, node, node->new_bytenr);
 271	}
 272
 273	/*
 274	 * some nodes can be left in the pending list if there were
 275	 * errors during processing the pending nodes.
 276	 */
 277	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 278		list_for_each_entry(node, &cache->pending[level], list) {
 279			BUG_ON(!node->pending);
 280			if (node->bytenr == node->new_bytenr)
 281				continue;
 282			update_backref_node(cache, node, node->new_bytenr);
 283		}
 284	}
 285
 286	cache->last_trans = 0;
 287	return 1;
 288}
 289
 290static bool reloc_root_is_dead(struct btrfs_root *root)
 291{
 292	/*
 293	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 294	 * btrfs_update_reloc_root. We need to see the updated bit before
 295	 * trying to access reloc_root
 296	 */
 297	smp_rmb();
 298	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 299		return true;
 300	return false;
 301}
 302
 303/*
 304 * Check if this subvolume tree has valid reloc tree.
 305 *
 306 * Reloc tree after swap is considered dead, thus not considered as valid.
 307 * This is enough for most callers, as they don't distinguish dead reloc root
 308 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 309 * special case.
 310 */
 311static bool have_reloc_root(struct btrfs_root *root)
 312{
 313	if (reloc_root_is_dead(root))
 314		return false;
 315	if (!root->reloc_root)
 316		return false;
 317	return true;
 318}
 319
 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 321{
 322	struct btrfs_root *reloc_root;
 323
 324	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 325		return 0;
 326
 327	/* This root has been merged with its reloc tree, we can ignore it */
 328	if (reloc_root_is_dead(root))
 329		return 1;
 330
 331	reloc_root = root->reloc_root;
 332	if (!reloc_root)
 333		return 0;
 334
 335	if (btrfs_header_generation(reloc_root->commit_root) ==
 336	    root->fs_info->running_transaction->transid)
 337		return 0;
 338	/*
 339	 * if there is reloc tree and it was created in previous
 340	 * transaction backref lookup can find the reloc tree,
 341	 * so backref node for the fs tree root is useless for
 342	 * relocation.
 343	 */
 344	return 1;
 345}
 346
 347/*
 348 * find reloc tree by address of tree root
 349 */
 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 351{
 352	struct reloc_control *rc = fs_info->reloc_ctl;
 353	struct rb_node *rb_node;
 354	struct mapping_node *node;
 355	struct btrfs_root *root = NULL;
 356
 357	ASSERT(rc);
 358	spin_lock(&rc->reloc_root_tree.lock);
 359	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 360	if (rb_node) {
 361		node = rb_entry(rb_node, struct mapping_node, rb_node);
 362		root = (struct btrfs_root *)node->data;
 363	}
 364	spin_unlock(&rc->reloc_root_tree.lock);
 365	return btrfs_grab_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366}
 367
 368/*
 369 * For useless nodes, do two major clean ups:
 370 *
 371 * - Cleanup the children edges and nodes
 372 *   If child node is also orphan (no parent) during cleanup, then the child
 373 *   node will also be cleaned up.
 374 *
 375 * - Freeing up leaves (level 0), keeps nodes detached
 376 *   For nodes, the node is still cached as "detached"
 377 *
 378 * Return false if @node is not in the @useless_nodes list.
 379 * Return true if @node is in the @useless_nodes list.
 380 */
 381static bool handle_useless_nodes(struct reloc_control *rc,
 382				 struct btrfs_backref_node *node)
 383{
 384	struct btrfs_backref_cache *cache = &rc->backref_cache;
 385	struct list_head *useless_node = &cache->useless_node;
 386	bool ret = false;
 
 
 
 
 
 
 
 
 387
 388	while (!list_empty(useless_node)) {
 389		struct btrfs_backref_node *cur;
 
 
 
 
 
 
 
 390
 391		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 392				 list);
 393		list_del_init(&cur->list);
 394
 395		/* Only tree root nodes can be added to @useless_nodes */
 396		ASSERT(list_empty(&cur->upper));
 397
 398		if (cur == node)
 399			ret = true;
 
 400
 401		/* The node is the lowest node */
 402		if (cur->lowest) {
 403			list_del_init(&cur->lower);
 404			cur->lowest = 0;
 405		}
 406
 407		/* Cleanup the lower edges */
 408		while (!list_empty(&cur->lower)) {
 409			struct btrfs_backref_edge *edge;
 410			struct btrfs_backref_node *lower;
 
 
 
 
 411
 412			edge = list_entry(cur->lower.next,
 413					struct btrfs_backref_edge, list[UPPER]);
 414			list_del(&edge->list[UPPER]);
 415			list_del(&edge->list[LOWER]);
 416			lower = edge->node[LOWER];
 417			btrfs_backref_free_edge(cache, edge);
 418
 419			/* Child node is also orphan, queue for cleanup */
 420			if (list_empty(&lower->upper))
 421				list_add(&lower->list, useless_node);
 422		}
 423		/* Mark this block processed for relocation */
 424		mark_block_processed(rc, cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425
 426		/*
 427		 * Backref nodes for tree leaves are deleted from the cache.
 428		 * Backref nodes for upper level tree blocks are left in the
 429		 * cache to avoid unnecessary backref lookup.
 430		 */
 431		if (cur->level > 0) {
 432			list_add(&cur->list, &cache->detached);
 433			cur->detached = 1;
 434		} else {
 435			rb_erase(&cur->rb_node, &cache->rb_root);
 436			btrfs_backref_free_node(cache, cur);
 437		}
 438	}
 439	return ret;
 
 440}
 441
 442/*
 443 * Build backref tree for a given tree block. Root of the backref tree
 444 * corresponds the tree block, leaves of the backref tree correspond roots of
 445 * b-trees that reference the tree block.
 446 *
 447 * The basic idea of this function is check backrefs of a given block to find
 448 * upper level blocks that reference the block, and then check backrefs of
 449 * these upper level blocks recursively. The recursion stops when tree root is
 450 * reached or backrefs for the block is cached.
 451 *
 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 453 * all upper level blocks that directly/indirectly reference the block are also
 454 * cached.
 455 */
 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 457			struct reloc_control *rc, struct btrfs_key *node_key,
 458			int level, u64 bytenr)
 459{
 460	struct btrfs_backref_iter *iter;
 461	struct btrfs_backref_cache *cache = &rc->backref_cache;
 462	/* For searching parent of TREE_BLOCK_REF */
 463	struct btrfs_path *path;
 464	struct btrfs_backref_node *cur;
 465	struct btrfs_backref_node *node = NULL;
 466	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 467	int ret;
 468	int err = 0;
 
 469
 470	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 471	if (!iter)
 472		return ERR_PTR(-ENOMEM);
 473	path = btrfs_alloc_path();
 474	if (!path) {
 475		err = -ENOMEM;
 476		goto out;
 477	}
 
 
 478
 479	node = btrfs_backref_alloc_node(cache, bytenr, level);
 480	if (!node) {
 481		err = -ENOMEM;
 482		goto out;
 483	}
 484
 
 
 485	node->lowest = 1;
 486	cur = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	/* Breadth-first search to build backref cache */
 489	do {
 490		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 491						  cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492		if (ret < 0) {
 493			err = ret;
 494			goto out;
 495		}
 496		edge = list_first_entry_or_null(&cache->pending_edge,
 497				struct btrfs_backref_edge, list[UPPER]);
 498		/*
 499		 * The pending list isn't empty, take the first block to
 500		 * process
 501		 */
 502		if (edge) {
 503			list_del_init(&edge->list[UPPER]);
 504			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		}
 506	} while (edge);
 507
 508	/* Finish the upper linkage of newly added edges/nodes */
 509	ret = btrfs_backref_finish_upper_links(cache, node);
 510	if (ret < 0) {
 511		err = ret;
 512		goto out;
 513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514
 515	if (handle_useless_nodes(rc, node))
 516		node = NULL;
 
 
 
 
 
 
 
 
 
 
 517out:
 518	btrfs_backref_iter_free(iter);
 519	btrfs_free_path(path);
 520	if (err) {
 521		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		return ERR_PTR(err);
 523	}
 524	ASSERT(!node || !node->detached);
 525	ASSERT(list_empty(&cache->useless_node) &&
 526	       list_empty(&cache->pending_edge));
 527	return node;
 528}
 529
 530/*
 531 * helper to add backref node for the newly created snapshot.
 532 * the backref node is created by cloning backref node that
 533 * corresponds to root of source tree
 534 */
 535static int clone_backref_node(struct btrfs_trans_handle *trans,
 536			      struct reloc_control *rc,
 537			      struct btrfs_root *src,
 538			      struct btrfs_root *dest)
 539{
 540	struct btrfs_root *reloc_root = src->reloc_root;
 541	struct btrfs_backref_cache *cache = &rc->backref_cache;
 542	struct btrfs_backref_node *node = NULL;
 543	struct btrfs_backref_node *new_node;
 544	struct btrfs_backref_edge *edge;
 545	struct btrfs_backref_edge *new_edge;
 546	struct rb_node *rb_node;
 547
 548	if (cache->last_trans > 0)
 549		update_backref_cache(trans, cache);
 550
 551	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 552	if (rb_node) {
 553		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 554		if (node->detached)
 555			node = NULL;
 556		else
 557			BUG_ON(node->new_bytenr != reloc_root->node->start);
 558	}
 559
 560	if (!node) {
 561		rb_node = rb_simple_search(&cache->rb_root,
 562					   reloc_root->commit_root->start);
 563		if (rb_node) {
 564			node = rb_entry(rb_node, struct btrfs_backref_node,
 565					rb_node);
 566			BUG_ON(node->detached);
 567		}
 568	}
 569
 570	if (!node)
 571		return 0;
 572
 573	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 574					    node->level);
 575	if (!new_node)
 576		return -ENOMEM;
 577
 
 
 578	new_node->lowest = node->lowest;
 579	new_node->checked = 1;
 580	new_node->root = btrfs_grab_root(dest);
 581	ASSERT(new_node->root);
 582
 583	if (!node->lowest) {
 584		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 585			new_edge = btrfs_backref_alloc_edge(cache);
 586			if (!new_edge)
 587				goto fail;
 588
 589			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 590						new_node, LINK_UPPER);
 
 
 591		}
 592	} else {
 593		list_add_tail(&new_node->lower, &cache->leaves);
 594	}
 595
 596	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 597				   &new_node->rb_node);
 598	if (rb_node)
 599		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 600
 601	if (!new_node->lowest) {
 602		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 603			list_add_tail(&new_edge->list[LOWER],
 604				      &new_edge->node[LOWER]->upper);
 605		}
 606	}
 607	return 0;
 608fail:
 609	while (!list_empty(&new_node->lower)) {
 610		new_edge = list_entry(new_node->lower.next,
 611				      struct btrfs_backref_edge, list[UPPER]);
 612		list_del(&new_edge->list[UPPER]);
 613		btrfs_backref_free_edge(cache, new_edge);
 614	}
 615	btrfs_backref_free_node(cache, new_node);
 616	return -ENOMEM;
 617}
 618
 619/*
 620 * helper to add 'address of tree root -> reloc tree' mapping
 621 */
 622static int __must_check __add_reloc_root(struct btrfs_root *root)
 623{
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	struct rb_node *rb_node;
 626	struct mapping_node *node;
 627	struct reloc_control *rc = fs_info->reloc_ctl;
 628
 629	node = kmalloc(sizeof(*node), GFP_NOFS);
 630	if (!node)
 631		return -ENOMEM;
 632
 633	node->bytenr = root->commit_root->start;
 634	node->data = root;
 635
 636	spin_lock(&rc->reloc_root_tree.lock);
 637	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 638				   node->bytenr, &node->rb_node);
 639	spin_unlock(&rc->reloc_root_tree.lock);
 640	if (rb_node) {
 641		btrfs_err(fs_info,
 642			    "Duplicate root found for start=%llu while inserting into relocation tree",
 643			    node->bytenr);
 
 644		return -EEXIST;
 645	}
 646
 647	list_add_tail(&root->root_list, &rc->reloc_roots);
 648	return 0;
 649}
 650
 651/*
 652 * helper to delete the 'address of tree root -> reloc tree'
 653 * mapping
 654 */
 655static void __del_reloc_root(struct btrfs_root *root)
 656{
 657	struct btrfs_fs_info *fs_info = root->fs_info;
 658	struct rb_node *rb_node;
 659	struct mapping_node *node = NULL;
 660	struct reloc_control *rc = fs_info->reloc_ctl;
 661	bool put_ref = false;
 662
 663	if (rc && root->node) {
 664		spin_lock(&rc->reloc_root_tree.lock);
 665		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 666					   root->commit_root->start);
 667		if (rb_node) {
 668			node = rb_entry(rb_node, struct mapping_node, rb_node);
 669			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 670			RB_CLEAR_NODE(&node->rb_node);
 671		}
 672		spin_unlock(&rc->reloc_root_tree.lock);
 673		ASSERT(!node || (struct btrfs_root *)node->data == root);
 674	}
 
 
 
 
 
 675
 676	/*
 677	 * We only put the reloc root here if it's on the list.  There's a lot
 678	 * of places where the pattern is to splice the rc->reloc_roots, process
 679	 * the reloc roots, and then add the reloc root back onto
 680	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 681	 * list we don't want the reference being dropped, because the guy
 682	 * messing with the list is in charge of the reference.
 683	 */
 684	spin_lock(&fs_info->trans_lock);
 685	if (!list_empty(&root->root_list)) {
 686		put_ref = true;
 687		list_del_init(&root->root_list);
 688	}
 689	spin_unlock(&fs_info->trans_lock);
 690	if (put_ref)
 691		btrfs_put_root(root);
 692	kfree(node);
 693}
 694
 695/*
 696 * helper to update the 'address of tree root -> reloc tree'
 697 * mapping
 698 */
 699static int __update_reloc_root(struct btrfs_root *root)
 700{
 701	struct btrfs_fs_info *fs_info = root->fs_info;
 702	struct rb_node *rb_node;
 703	struct mapping_node *node = NULL;
 704	struct reloc_control *rc = fs_info->reloc_ctl;
 705
 706	spin_lock(&rc->reloc_root_tree.lock);
 707	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 708				   root->commit_root->start);
 709	if (rb_node) {
 710		node = rb_entry(rb_node, struct mapping_node, rb_node);
 711		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 712	}
 713	spin_unlock(&rc->reloc_root_tree.lock);
 714
 715	if (!node)
 716		return 0;
 717	BUG_ON((struct btrfs_root *)node->data != root);
 718
 719	spin_lock(&rc->reloc_root_tree.lock);
 720	node->bytenr = root->node->start;
 721	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 722				   node->bytenr, &node->rb_node);
 723	spin_unlock(&rc->reloc_root_tree.lock);
 724	if (rb_node)
 725		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 726	return 0;
 727}
 728
 729static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 730					struct btrfs_root *root, u64 objectid)
 731{
 732	struct btrfs_fs_info *fs_info = root->fs_info;
 733	struct btrfs_root *reloc_root;
 734	struct extent_buffer *eb;
 735	struct btrfs_root_item *root_item;
 736	struct btrfs_key root_key;
 737	int ret = 0;
 738	bool must_abort = false;
 739
 740	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 741	if (!root_item)
 742		return ERR_PTR(-ENOMEM);
 743
 744	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 745	root_key.type = BTRFS_ROOT_ITEM_KEY;
 746	root_key.offset = objectid;
 747
 748	if (root->root_key.objectid == objectid) {
 749		u64 commit_root_gen;
 750
 751		/* called by btrfs_init_reloc_root */
 752		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 753				      BTRFS_TREE_RELOC_OBJECTID);
 754		if (ret)
 755			goto fail;
 756
 757		/*
 758		 * Set the last_snapshot field to the generation of the commit
 759		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 760		 * correctly (returns true) when the relocation root is created
 761		 * either inside the critical section of a transaction commit
 762		 * (through transaction.c:qgroup_account_snapshot()) and when
 763		 * it's created before the transaction commit is started.
 764		 */
 765		commit_root_gen = btrfs_header_generation(root->commit_root);
 766		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 767	} else {
 768		/*
 769		 * called by btrfs_reloc_post_snapshot_hook.
 770		 * the source tree is a reloc tree, all tree blocks
 771		 * modified after it was created have RELOC flag
 772		 * set in their headers. so it's OK to not update
 773		 * the 'last_snapshot'.
 774		 */
 775		ret = btrfs_copy_root(trans, root, root->node, &eb,
 776				      BTRFS_TREE_RELOC_OBJECTID);
 777		if (ret)
 778			goto fail;
 779	}
 780
 781	/*
 782	 * We have changed references at this point, we must abort the
 783	 * transaction if anything fails.
 784	 */
 785	must_abort = true;
 786
 787	memcpy(root_item, &root->root_item, sizeof(*root_item));
 788	btrfs_set_root_bytenr(root_item, eb->start);
 789	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 790	btrfs_set_root_generation(root_item, trans->transid);
 791
 792	if (root->root_key.objectid == objectid) {
 793		btrfs_set_root_refs(root_item, 0);
 794		memset(&root_item->drop_progress, 0,
 795		       sizeof(struct btrfs_disk_key));
 796		btrfs_set_root_drop_level(root_item, 0);
 797	}
 798
 799	btrfs_tree_unlock(eb);
 800	free_extent_buffer(eb);
 801
 802	ret = btrfs_insert_root(trans, fs_info->tree_root,
 803				&root_key, root_item);
 804	if (ret)
 805		goto fail;
 806
 807	kfree(root_item);
 808
 809	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 810	if (IS_ERR(reloc_root)) {
 811		ret = PTR_ERR(reloc_root);
 812		goto abort;
 813	}
 814	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 815	reloc_root->last_trans = trans->transid;
 816	return reloc_root;
 817fail:
 818	kfree(root_item);
 819abort:
 820	if (must_abort)
 821		btrfs_abort_transaction(trans, ret);
 822	return ERR_PTR(ret);
 823}
 824
 825/*
 826 * create reloc tree for a given fs tree. reloc tree is just a
 827 * snapshot of the fs tree with special root objectid.
 828 *
 829 * The reloc_root comes out of here with two references, one for
 830 * root->reloc_root, and another for being on the rc->reloc_roots list.
 831 */
 832int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 833			  struct btrfs_root *root)
 834{
 835	struct btrfs_fs_info *fs_info = root->fs_info;
 836	struct btrfs_root *reloc_root;
 837	struct reloc_control *rc = fs_info->reloc_ctl;
 838	struct btrfs_block_rsv *rsv;
 839	int clear_rsv = 0;
 840	int ret;
 841
 842	if (!rc)
 843		return 0;
 844
 845	/*
 846	 * The subvolume has reloc tree but the swap is finished, no need to
 847	 * create/update the dead reloc tree
 848	 */
 849	if (reloc_root_is_dead(root))
 850		return 0;
 851
 852	/*
 853	 * This is subtle but important.  We do not do
 854	 * record_root_in_transaction for reloc roots, instead we record their
 855	 * corresponding fs root, and then here we update the last trans for the
 856	 * reloc root.  This means that we have to do this for the entire life
 857	 * of the reloc root, regardless of which stage of the relocation we are
 858	 * in.
 859	 */
 860	if (root->reloc_root) {
 861		reloc_root = root->reloc_root;
 862		reloc_root->last_trans = trans->transid;
 863		return 0;
 864	}
 865
 866	/*
 867	 * We are merging reloc roots, we do not need new reloc trees.  Also
 868	 * reloc trees never need their own reloc tree.
 869	 */
 870	if (!rc->create_reloc_tree ||
 871	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 872		return 0;
 873
 874	if (!trans->reloc_reserved) {
 875		rsv = trans->block_rsv;
 876		trans->block_rsv = rc->block_rsv;
 877		clear_rsv = 1;
 878	}
 879	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 880	if (clear_rsv)
 881		trans->block_rsv = rsv;
 882	if (IS_ERR(reloc_root))
 883		return PTR_ERR(reloc_root);
 884
 885	ret = __add_reloc_root(reloc_root);
 886	ASSERT(ret != -EEXIST);
 887	if (ret) {
 888		/* Pairs with create_reloc_root */
 889		btrfs_put_root(reloc_root);
 890		return ret;
 891	}
 892	root->reloc_root = btrfs_grab_root(reloc_root);
 893	return 0;
 894}
 895
 896/*
 897 * update root item of reloc tree
 898 */
 899int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 900			    struct btrfs_root *root)
 901{
 902	struct btrfs_fs_info *fs_info = root->fs_info;
 903	struct btrfs_root *reloc_root;
 904	struct btrfs_root_item *root_item;
 905	int ret;
 906
 907	if (!have_reloc_root(root))
 908		return 0;
 909
 910	reloc_root = root->reloc_root;
 911	root_item = &reloc_root->root_item;
 912
 913	/*
 914	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 915	 * the root.  We have the ref for root->reloc_root, but just in case
 916	 * hold it while we update the reloc root.
 917	 */
 918	btrfs_grab_root(reloc_root);
 919
 920	/* root->reloc_root will stay until current relocation finished */
 921	if (fs_info->reloc_ctl->merge_reloc_tree &&
 922	    btrfs_root_refs(root_item) == 0) {
 923		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 924		/*
 925		 * Mark the tree as dead before we change reloc_root so
 926		 * have_reloc_root will not touch it from now on.
 927		 */
 928		smp_wmb();
 929		__del_reloc_root(reloc_root);
 930	}
 931
 932	if (reloc_root->commit_root != reloc_root->node) {
 933		__update_reloc_root(reloc_root);
 934		btrfs_set_root_node(root_item, reloc_root->node);
 935		free_extent_buffer(reloc_root->commit_root);
 936		reloc_root->commit_root = btrfs_root_node(reloc_root);
 937	}
 938
 939	ret = btrfs_update_root(trans, fs_info->tree_root,
 940				&reloc_root->root_key, root_item);
 941	btrfs_put_root(reloc_root);
 942	return ret;
 
 
 943}
 944
 945/*
 946 * helper to find first cached inode with inode number >= objectid
 947 * in a subvolume
 948 */
 949static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 950{
 951	struct rb_node *node;
 952	struct rb_node *prev;
 953	struct btrfs_inode *entry;
 954	struct inode *inode;
 955
 956	spin_lock(&root->inode_lock);
 957again:
 958	node = root->inode_tree.rb_node;
 959	prev = NULL;
 960	while (node) {
 961		prev = node;
 962		entry = rb_entry(node, struct btrfs_inode, rb_node);
 963
 964		if (objectid < btrfs_ino(entry))
 965			node = node->rb_left;
 966		else if (objectid > btrfs_ino(entry))
 967			node = node->rb_right;
 968		else
 969			break;
 970	}
 971	if (!node) {
 972		while (prev) {
 973			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 974			if (objectid <= btrfs_ino(entry)) {
 975				node = prev;
 976				break;
 977			}
 978			prev = rb_next(prev);
 979		}
 980	}
 981	while (node) {
 982		entry = rb_entry(node, struct btrfs_inode, rb_node);
 983		inode = igrab(&entry->vfs_inode);
 984		if (inode) {
 985			spin_unlock(&root->inode_lock);
 986			return inode;
 987		}
 988
 989		objectid = btrfs_ino(entry) + 1;
 990		if (cond_resched_lock(&root->inode_lock))
 991			goto again;
 992
 993		node = rb_next(node);
 994	}
 995	spin_unlock(&root->inode_lock);
 996	return NULL;
 997}
 998
 
 
 
 
 
 
 
 
 
 999/*
1000 * get new location of data
1001 */
1002static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1003			    u64 bytenr, u64 num_bytes)
1004{
1005	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1006	struct btrfs_path *path;
1007	struct btrfs_file_extent_item *fi;
1008	struct extent_buffer *leaf;
1009	int ret;
1010
1011	path = btrfs_alloc_path();
1012	if (!path)
1013		return -ENOMEM;
1014
1015	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1016	ret = btrfs_lookup_file_extent(NULL, root, path,
1017			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1018	if (ret < 0)
1019		goto out;
1020	if (ret > 0) {
1021		ret = -ENOENT;
1022		goto out;
1023	}
1024
1025	leaf = path->nodes[0];
1026	fi = btrfs_item_ptr(leaf, path->slots[0],
1027			    struct btrfs_file_extent_item);
1028
1029	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1030	       btrfs_file_extent_compression(leaf, fi) ||
1031	       btrfs_file_extent_encryption(leaf, fi) ||
1032	       btrfs_file_extent_other_encoding(leaf, fi));
1033
1034	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035		ret = -EINVAL;
1036		goto out;
1037	}
1038
1039	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040	ret = 0;
1041out:
1042	btrfs_free_path(path);
1043	return ret;
1044}
1045
1046/*
1047 * update file extent items in the tree leaf to point to
1048 * the new locations.
1049 */
1050static noinline_for_stack
1051int replace_file_extents(struct btrfs_trans_handle *trans,
1052			 struct reloc_control *rc,
1053			 struct btrfs_root *root,
1054			 struct extent_buffer *leaf)
1055{
1056	struct btrfs_fs_info *fs_info = root->fs_info;
1057	struct btrfs_key key;
1058	struct btrfs_file_extent_item *fi;
1059	struct inode *inode = NULL;
1060	u64 parent;
1061	u64 bytenr;
1062	u64 new_bytenr = 0;
1063	u64 num_bytes;
1064	u64 end;
1065	u32 nritems;
1066	u32 i;
1067	int ret = 0;
1068	int first = 1;
1069	int dirty = 0;
1070
1071	if (rc->stage != UPDATE_DATA_PTRS)
1072		return 0;
1073
1074	/* reloc trees always use full backref */
1075	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1076		parent = leaf->start;
1077	else
1078		parent = 0;
1079
1080	nritems = btrfs_header_nritems(leaf);
1081	for (i = 0; i < nritems; i++) {
1082		struct btrfs_ref ref = { 0 };
1083
1084		cond_resched();
1085		btrfs_item_key_to_cpu(leaf, &key, i);
1086		if (key.type != BTRFS_EXTENT_DATA_KEY)
1087			continue;
1088		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1089		if (btrfs_file_extent_type(leaf, fi) ==
1090		    BTRFS_FILE_EXTENT_INLINE)
1091			continue;
1092		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1094		if (bytenr == 0)
1095			continue;
1096		if (!in_range(bytenr, rc->block_group->start,
1097			      rc->block_group->length))
1098			continue;
1099
1100		/*
1101		 * if we are modifying block in fs tree, wait for readpage
1102		 * to complete and drop the extent cache
1103		 */
1104		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1105			if (first) {
1106				inode = find_next_inode(root, key.objectid);
1107				first = 0;
1108			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1109				btrfs_add_delayed_iput(inode);
1110				inode = find_next_inode(root, key.objectid);
1111			}
1112			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1113				end = key.offset +
1114				      btrfs_file_extent_num_bytes(leaf, fi);
1115				WARN_ON(!IS_ALIGNED(key.offset,
1116						    fs_info->sectorsize));
1117				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1118				end--;
1119				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1120						      key.offset, end);
1121				if (!ret)
1122					continue;
1123
1124				btrfs_drop_extent_cache(BTRFS_I(inode),
1125						key.offset,	end, 1);
1126				unlock_extent(&BTRFS_I(inode)->io_tree,
1127					      key.offset, end);
1128			}
1129		}
1130
1131		ret = get_new_location(rc->data_inode, &new_bytenr,
1132				       bytenr, num_bytes);
1133		if (ret) {
1134			/*
1135			 * Don't have to abort since we've not changed anything
1136			 * in the file extent yet.
1137			 */
1138			break;
1139		}
1140
1141		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1142		dirty = 1;
1143
1144		key.offset -= btrfs_file_extent_offset(leaf, fi);
1145		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1146				       num_bytes, parent);
1147		ref.real_root = root->root_key.objectid;
1148		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1149				    key.objectid, key.offset);
1150		ret = btrfs_inc_extent_ref(trans, &ref);
1151		if (ret) {
1152			btrfs_abort_transaction(trans, ret);
1153			break;
1154		}
1155
1156		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1157				       num_bytes, parent);
1158		ref.real_root = root->root_key.objectid;
1159		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160				    key.objectid, key.offset);
1161		ret = btrfs_free_extent(trans, &ref);
1162		if (ret) {
1163			btrfs_abort_transaction(trans, ret);
1164			break;
1165		}
1166	}
1167	if (dirty)
1168		btrfs_mark_buffer_dirty(leaf);
1169	if (inode)
1170		btrfs_add_delayed_iput(inode);
1171	return ret;
1172}
1173
1174static noinline_for_stack
1175int memcmp_node_keys(struct extent_buffer *eb, int slot,
1176		     struct btrfs_path *path, int level)
1177{
1178	struct btrfs_disk_key key1;
1179	struct btrfs_disk_key key2;
1180	btrfs_node_key(eb, &key1, slot);
1181	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1182	return memcmp(&key1, &key2, sizeof(key1));
1183}
1184
1185/*
1186 * try to replace tree blocks in fs tree with the new blocks
1187 * in reloc tree. tree blocks haven't been modified since the
1188 * reloc tree was create can be replaced.
1189 *
1190 * if a block was replaced, level of the block + 1 is returned.
1191 * if no block got replaced, 0 is returned. if there are other
1192 * errors, a negative error number is returned.
1193 */
1194static noinline_for_stack
1195int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1196		 struct btrfs_root *dest, struct btrfs_root *src,
1197		 struct btrfs_path *path, struct btrfs_key *next_key,
1198		 int lowest_level, int max_level)
1199{
1200	struct btrfs_fs_info *fs_info = dest->fs_info;
1201	struct extent_buffer *eb;
1202	struct extent_buffer *parent;
1203	struct btrfs_ref ref = { 0 };
1204	struct btrfs_key key;
1205	u64 old_bytenr;
1206	u64 new_bytenr;
1207	u64 old_ptr_gen;
1208	u64 new_ptr_gen;
1209	u64 last_snapshot;
1210	u32 blocksize;
1211	int cow = 0;
1212	int level;
1213	int ret;
1214	int slot;
1215
1216	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1217	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1218
1219	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1220again:
1221	slot = path->slots[lowest_level];
1222	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1223
1224	eb = btrfs_lock_root_node(dest);
 
1225	level = btrfs_header_level(eb);
1226
1227	if (level < lowest_level) {
1228		btrfs_tree_unlock(eb);
1229		free_extent_buffer(eb);
1230		return 0;
1231	}
1232
1233	if (cow) {
1234		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1235				      BTRFS_NESTING_COW);
1236		if (ret) {
1237			btrfs_tree_unlock(eb);
1238			free_extent_buffer(eb);
1239			return ret;
1240		}
1241	}
 
1242
1243	if (next_key) {
1244		next_key->objectid = (u64)-1;
1245		next_key->type = (u8)-1;
1246		next_key->offset = (u64)-1;
1247	}
1248
1249	parent = eb;
1250	while (1) {
1251		level = btrfs_header_level(parent);
1252		ASSERT(level >= lowest_level);
1253
1254		ret = btrfs_bin_search(parent, &key, &slot);
1255		if (ret < 0)
1256			break;
1257		if (ret && slot > 0)
1258			slot--;
1259
1260		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1261			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1262
1263		old_bytenr = btrfs_node_blockptr(parent, slot);
1264		blocksize = fs_info->nodesize;
1265		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1266
1267		if (level <= max_level) {
1268			eb = path->nodes[level];
1269			new_bytenr = btrfs_node_blockptr(eb,
1270							path->slots[level]);
1271			new_ptr_gen = btrfs_node_ptr_generation(eb,
1272							path->slots[level]);
1273		} else {
1274			new_bytenr = 0;
1275			new_ptr_gen = 0;
1276		}
1277
1278		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1279			ret = level;
1280			break;
1281		}
1282
1283		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1284		    memcmp_node_keys(parent, slot, path, level)) {
1285			if (level <= lowest_level) {
1286				ret = 0;
1287				break;
1288			}
1289
1290			eb = btrfs_read_node_slot(parent, slot);
1291			if (IS_ERR(eb)) {
1292				ret = PTR_ERR(eb);
1293				break;
 
 
 
 
1294			}
1295			btrfs_tree_lock(eb);
1296			if (cow) {
1297				ret = btrfs_cow_block(trans, dest, eb, parent,
1298						      slot, &eb,
1299						      BTRFS_NESTING_COW);
1300				if (ret) {
1301					btrfs_tree_unlock(eb);
1302					free_extent_buffer(eb);
1303					break;
1304				}
1305			}
 
1306
1307			btrfs_tree_unlock(parent);
1308			free_extent_buffer(parent);
1309
1310			parent = eb;
1311			continue;
1312		}
1313
1314		if (!cow) {
1315			btrfs_tree_unlock(parent);
1316			free_extent_buffer(parent);
1317			cow = 1;
1318			goto again;
1319		}
1320
1321		btrfs_node_key_to_cpu(path->nodes[level], &key,
1322				      path->slots[level]);
1323		btrfs_release_path(path);
1324
1325		path->lowest_level = level;
1326		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1327		path->lowest_level = 0;
1328		if (ret) {
1329			if (ret > 0)
1330				ret = -ENOENT;
1331			break;
1332		}
1333
1334		/*
1335		 * Info qgroup to trace both subtrees.
1336		 *
1337		 * We must trace both trees.
1338		 * 1) Tree reloc subtree
1339		 *    If not traced, we will leak data numbers
1340		 * 2) Fs subtree
1341		 *    If not traced, we will double count old data
1342		 *
1343		 * We don't scan the subtree right now, but only record
1344		 * the swapped tree blocks.
1345		 * The real subtree rescan is delayed until we have new
1346		 * CoW on the subtree root node before transaction commit.
1347		 */
1348		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1349				rc->block_group, parent, slot,
1350				path->nodes[level], path->slots[level],
1351				last_snapshot);
 
 
 
 
 
1352		if (ret < 0)
1353			break;
 
1354		/*
1355		 * swap blocks in fs tree and reloc tree.
1356		 */
1357		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1358		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1359		btrfs_mark_buffer_dirty(parent);
1360
1361		btrfs_set_node_blockptr(path->nodes[level],
1362					path->slots[level], old_bytenr);
1363		btrfs_set_node_ptr_generation(path->nodes[level],
1364					      path->slots[level], old_ptr_gen);
1365		btrfs_mark_buffer_dirty(path->nodes[level]);
1366
1367		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1368				       blocksize, path->nodes[level]->start);
1369		ref.skip_qgroup = true;
1370		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1371		ret = btrfs_inc_extent_ref(trans, &ref);
1372		if (ret) {
1373			btrfs_abort_transaction(trans, ret);
1374			break;
1375		}
1376		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1377				       blocksize, 0);
1378		ref.skip_qgroup = true;
1379		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1380		ret = btrfs_inc_extent_ref(trans, &ref);
1381		if (ret) {
1382			btrfs_abort_transaction(trans, ret);
1383			break;
1384		}
1385
1386		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1387				       blocksize, path->nodes[level]->start);
1388		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1389		ref.skip_qgroup = true;
1390		ret = btrfs_free_extent(trans, &ref);
1391		if (ret) {
1392			btrfs_abort_transaction(trans, ret);
1393			break;
1394		}
1395
1396		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1397				       blocksize, 0);
1398		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1399		ref.skip_qgroup = true;
1400		ret = btrfs_free_extent(trans, &ref);
1401		if (ret) {
1402			btrfs_abort_transaction(trans, ret);
1403			break;
1404		}
1405
1406		btrfs_unlock_up_safe(path, 0);
1407
1408		ret = level;
1409		break;
1410	}
1411	btrfs_tree_unlock(parent);
1412	free_extent_buffer(parent);
1413	return ret;
1414}
1415
1416/*
1417 * helper to find next relocated block in reloc tree
1418 */
1419static noinline_for_stack
1420int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1421		       int *level)
1422{
1423	struct extent_buffer *eb;
1424	int i;
1425	u64 last_snapshot;
1426	u32 nritems;
1427
1428	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1429
1430	for (i = 0; i < *level; i++) {
1431		free_extent_buffer(path->nodes[i]);
1432		path->nodes[i] = NULL;
1433	}
1434
1435	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1436		eb = path->nodes[i];
1437		nritems = btrfs_header_nritems(eb);
1438		while (path->slots[i] + 1 < nritems) {
1439			path->slots[i]++;
1440			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1441			    last_snapshot)
1442				continue;
1443
1444			*level = i;
1445			return 0;
1446		}
1447		free_extent_buffer(path->nodes[i]);
1448		path->nodes[i] = NULL;
1449	}
1450	return 1;
1451}
1452
1453/*
1454 * walk down reloc tree to find relocated block of lowest level
1455 */
1456static noinline_for_stack
1457int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1458			 int *level)
1459{
 
1460	struct extent_buffer *eb = NULL;
1461	int i;
 
1462	u64 ptr_gen = 0;
1463	u64 last_snapshot;
1464	u32 nritems;
1465
1466	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1467
1468	for (i = *level; i > 0; i--) {
1469		eb = path->nodes[i];
1470		nritems = btrfs_header_nritems(eb);
1471		while (path->slots[i] < nritems) {
1472			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1473			if (ptr_gen > last_snapshot)
1474				break;
1475			path->slots[i]++;
1476		}
1477		if (path->slots[i] >= nritems) {
1478			if (i == *level)
1479				break;
1480			*level = i + 1;
1481			return 0;
1482		}
1483		if (i == 1) {
1484			*level = i;
1485			return 0;
1486		}
1487
1488		eb = btrfs_read_node_slot(eb, path->slots[i]);
1489		if (IS_ERR(eb))
 
1490			return PTR_ERR(eb);
 
 
 
 
1491		BUG_ON(btrfs_header_level(eb) != i - 1);
1492		path->nodes[i - 1] = eb;
1493		path->slots[i - 1] = 0;
1494	}
1495	return 1;
1496}
1497
1498/*
1499 * invalidate extent cache for file extents whose key in range of
1500 * [min_key, max_key)
1501 */
1502static int invalidate_extent_cache(struct btrfs_root *root,
1503				   struct btrfs_key *min_key,
1504				   struct btrfs_key *max_key)
1505{
1506	struct btrfs_fs_info *fs_info = root->fs_info;
1507	struct inode *inode = NULL;
1508	u64 objectid;
1509	u64 start, end;
1510	u64 ino;
1511
1512	objectid = min_key->objectid;
1513	while (1) {
1514		cond_resched();
1515		iput(inode);
1516
1517		if (objectid > max_key->objectid)
1518			break;
1519
1520		inode = find_next_inode(root, objectid);
1521		if (!inode)
1522			break;
1523		ino = btrfs_ino(BTRFS_I(inode));
1524
1525		if (ino > max_key->objectid) {
1526			iput(inode);
1527			break;
1528		}
1529
1530		objectid = ino + 1;
1531		if (!S_ISREG(inode->i_mode))
1532			continue;
1533
1534		if (unlikely(min_key->objectid == ino)) {
1535			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1536				continue;
1537			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1538				start = 0;
1539			else {
1540				start = min_key->offset;
1541				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1542			}
1543		} else {
1544			start = 0;
1545		}
1546
1547		if (unlikely(max_key->objectid == ino)) {
1548			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1549				continue;
1550			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1551				end = (u64)-1;
1552			} else {
1553				if (max_key->offset == 0)
1554					continue;
1555				end = max_key->offset;
1556				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1557				end--;
1558			}
1559		} else {
1560			end = (u64)-1;
1561		}
1562
1563		/* the lock_extent waits for readpage to complete */
1564		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1565		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1566		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1567	}
1568	return 0;
1569}
1570
1571static int find_next_key(struct btrfs_path *path, int level,
1572			 struct btrfs_key *key)
1573
1574{
1575	while (level < BTRFS_MAX_LEVEL) {
1576		if (!path->nodes[level])
1577			break;
1578		if (path->slots[level] + 1 <
1579		    btrfs_header_nritems(path->nodes[level])) {
1580			btrfs_node_key_to_cpu(path->nodes[level], key,
1581					      path->slots[level] + 1);
1582			return 0;
1583		}
1584		level++;
1585	}
1586	return 1;
1587}
1588
1589/*
1590 * Insert current subvolume into reloc_control::dirty_subvol_roots
1591 */
1592static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1593			       struct reloc_control *rc,
1594			       struct btrfs_root *root)
1595{
1596	struct btrfs_root *reloc_root = root->reloc_root;
1597	struct btrfs_root_item *reloc_root_item;
1598	int ret;
1599
1600	/* @root must be a subvolume tree root with a valid reloc tree */
1601	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1602	ASSERT(reloc_root);
1603
1604	reloc_root_item = &reloc_root->root_item;
1605	memset(&reloc_root_item->drop_progress, 0,
1606		sizeof(reloc_root_item->drop_progress));
1607	btrfs_set_root_drop_level(reloc_root_item, 0);
1608	btrfs_set_root_refs(reloc_root_item, 0);
1609	ret = btrfs_update_reloc_root(trans, root);
1610	if (ret)
1611		return ret;
1612
1613	if (list_empty(&root->reloc_dirty_list)) {
1614		btrfs_grab_root(root);
1615		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1616	}
1617
1618	return 0;
1619}
1620
1621static int clean_dirty_subvols(struct reloc_control *rc)
1622{
1623	struct btrfs_root *root;
1624	struct btrfs_root *next;
1625	int ret = 0;
1626	int ret2;
1627
1628	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1629				 reloc_dirty_list) {
1630		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1631			/* Merged subvolume, cleanup its reloc root */
1632			struct btrfs_root *reloc_root = root->reloc_root;
1633
1634			list_del_init(&root->reloc_dirty_list);
1635			root->reloc_root = NULL;
1636			/*
1637			 * Need barrier to ensure clear_bit() only happens after
1638			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1639			 */
1640			smp_wmb();
1641			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1642			if (reloc_root) {
1643				/*
1644				 * btrfs_drop_snapshot drops our ref we hold for
1645				 * ->reloc_root.  If it fails however we must
1646				 * drop the ref ourselves.
1647				 */
1648				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1649				if (ret2 < 0) {
1650					btrfs_put_root(reloc_root);
1651					if (!ret)
1652						ret = ret2;
1653				}
1654			}
1655			btrfs_put_root(root);
1656		} else {
1657			/* Orphan reloc tree, just clean it up */
1658			ret2 = btrfs_drop_snapshot(root, 0, 1);
1659			if (ret2 < 0) {
1660				btrfs_put_root(root);
1661				if (!ret)
1662					ret = ret2;
1663			}
1664		}
1665	}
1666	return ret;
1667}
1668
1669/*
1670 * merge the relocated tree blocks in reloc tree with corresponding
1671 * fs tree.
1672 */
1673static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1674					       struct btrfs_root *root)
1675{
1676	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
 
1677	struct btrfs_key key;
1678	struct btrfs_key next_key;
1679	struct btrfs_trans_handle *trans = NULL;
1680	struct btrfs_root *reloc_root;
1681	struct btrfs_root_item *root_item;
1682	struct btrfs_path *path;
1683	struct extent_buffer *leaf;
1684	int reserve_level;
1685	int level;
1686	int max_level;
1687	int replaced = 0;
1688	int ret = 0;
 
1689	u32 min_reserved;
1690
1691	path = btrfs_alloc_path();
1692	if (!path)
1693		return -ENOMEM;
1694	path->reada = READA_FORWARD;
1695
1696	reloc_root = root->reloc_root;
1697	root_item = &reloc_root->root_item;
1698
1699	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1700		level = btrfs_root_level(root_item);
1701		atomic_inc(&reloc_root->node->refs);
1702		path->nodes[level] = reloc_root->node;
1703		path->slots[level] = 0;
1704	} else {
1705		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1706
1707		level = btrfs_root_drop_level(root_item);
1708		BUG_ON(level == 0);
1709		path->lowest_level = level;
1710		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1711		path->lowest_level = 0;
1712		if (ret < 0) {
1713			btrfs_free_path(path);
1714			return ret;
1715		}
1716
1717		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1718				      path->slots[level]);
1719		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1720
1721		btrfs_unlock_up_safe(path, 0);
1722	}
1723
1724	/*
1725	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1726	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1727	 * block COW, we COW at most from level 1 to root level for each tree.
1728	 *
1729	 * Thus the needed metadata size is at most root_level * nodesize,
1730	 * and * 2 since we have two trees to COW.
1731	 */
1732	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1733	min_reserved = fs_info->nodesize * reserve_level * 2;
1734	memset(&next_key, 0, sizeof(next_key));
1735
1736	while (1) {
1737		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1738					     BTRFS_RESERVE_FLUSH_LIMIT);
1739		if (ret)
 
1740			goto out;
 
1741		trans = btrfs_start_transaction(root, 0);
1742		if (IS_ERR(trans)) {
1743			ret = PTR_ERR(trans);
1744			trans = NULL;
1745			goto out;
1746		}
1747
1748		/*
1749		 * At this point we no longer have a reloc_control, so we can't
1750		 * depend on btrfs_init_reloc_root to update our last_trans.
1751		 *
1752		 * But that's ok, we started the trans handle on our
1753		 * corresponding fs_root, which means it's been added to the
1754		 * dirty list.  At commit time we'll still call
1755		 * btrfs_update_reloc_root() and update our root item
1756		 * appropriately.
1757		 */
1758		reloc_root->last_trans = trans->transid;
1759		trans->block_rsv = rc->block_rsv;
1760
1761		replaced = 0;
1762		max_level = level;
1763
1764		ret = walk_down_reloc_tree(reloc_root, path, &level);
1765		if (ret < 0)
 
1766			goto out;
 
1767		if (ret > 0)
1768			break;
1769
1770		if (!find_next_key(path, level, &key) &&
1771		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1772			ret = 0;
1773		} else {
1774			ret = replace_path(trans, rc, root, reloc_root, path,
1775					   &next_key, level, max_level);
1776		}
1777		if (ret < 0)
 
1778			goto out;
 
 
1779		if (ret > 0) {
1780			level = ret;
1781			btrfs_node_key_to_cpu(path->nodes[level], &key,
1782					      path->slots[level]);
1783			replaced = 1;
1784		}
1785
1786		ret = walk_up_reloc_tree(reloc_root, path, &level);
1787		if (ret > 0)
1788			break;
1789
1790		BUG_ON(level == 0);
1791		/*
1792		 * save the merging progress in the drop_progress.
1793		 * this is OK since root refs == 1 in this case.
1794		 */
1795		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1796			       path->slots[level]);
1797		btrfs_set_root_drop_level(root_item, level);
1798
1799		btrfs_end_transaction_throttle(trans);
1800		trans = NULL;
1801
1802		btrfs_btree_balance_dirty(fs_info);
1803
1804		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1805			invalidate_extent_cache(root, &key, &next_key);
1806	}
1807
1808	/*
1809	 * handle the case only one block in the fs tree need to be
1810	 * relocated and the block is tree root.
1811	 */
1812	leaf = btrfs_lock_root_node(root);
1813	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1814			      BTRFS_NESTING_COW);
1815	btrfs_tree_unlock(leaf);
1816	free_extent_buffer(leaf);
 
 
1817out:
1818	btrfs_free_path(path);
1819
1820	if (ret == 0) {
1821		ret = insert_dirty_subvol(trans, rc, root);
1822		if (ret)
1823			btrfs_abort_transaction(trans, ret);
 
 
1824	}
1825
1826	if (trans)
1827		btrfs_end_transaction_throttle(trans);
1828
1829	btrfs_btree_balance_dirty(fs_info);
1830
1831	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1832		invalidate_extent_cache(root, &key, &next_key);
1833
1834	return ret;
1835}
1836
1837static noinline_for_stack
1838int prepare_to_merge(struct reloc_control *rc, int err)
1839{
1840	struct btrfs_root *root = rc->extent_root;
1841	struct btrfs_fs_info *fs_info = root->fs_info;
1842	struct btrfs_root *reloc_root;
1843	struct btrfs_trans_handle *trans;
1844	LIST_HEAD(reloc_roots);
1845	u64 num_bytes = 0;
1846	int ret;
1847
1848	mutex_lock(&fs_info->reloc_mutex);
1849	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1850	rc->merging_rsv_size += rc->nodes_relocated * 2;
1851	mutex_unlock(&fs_info->reloc_mutex);
1852
1853again:
1854	if (!err) {
1855		num_bytes = rc->merging_rsv_size;
1856		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1857					  BTRFS_RESERVE_FLUSH_ALL);
1858		if (ret)
1859			err = ret;
1860	}
1861
1862	trans = btrfs_join_transaction(rc->extent_root);
1863	if (IS_ERR(trans)) {
1864		if (!err)
1865			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866						num_bytes, NULL);
1867		return PTR_ERR(trans);
1868	}
1869
1870	if (!err) {
1871		if (num_bytes != rc->merging_rsv_size) {
1872			btrfs_end_transaction(trans);
1873			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1874						num_bytes, NULL);
1875			goto again;
1876		}
1877	}
1878
1879	rc->merge_reloc_tree = 1;
1880
1881	while (!list_empty(&rc->reloc_roots)) {
1882		reloc_root = list_entry(rc->reloc_roots.next,
1883					struct btrfs_root, root_list);
1884		list_del_init(&reloc_root->root_list);
1885
1886		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1887				false);
1888		if (IS_ERR(root)) {
1889			/*
1890			 * Even if we have an error we need this reloc root
1891			 * back on our list so we can clean up properly.
1892			 */
1893			list_add(&reloc_root->root_list, &reloc_roots);
1894			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1895			if (!err)
1896				err = PTR_ERR(root);
1897			break;
1898		}
1899		ASSERT(root->reloc_root == reloc_root);
1900
1901		/*
1902		 * set reference count to 1, so btrfs_recover_relocation
1903		 * knows it should resumes merging
1904		 */
1905		if (!err)
1906			btrfs_set_root_refs(&reloc_root->root_item, 1);
1907		ret = btrfs_update_reloc_root(trans, root);
1908
1909		/*
1910		 * Even if we have an error we need this reloc root back on our
1911		 * list so we can clean up properly.
1912		 */
1913		list_add(&reloc_root->root_list, &reloc_roots);
1914		btrfs_put_root(root);
1915
1916		if (ret) {
1917			btrfs_abort_transaction(trans, ret);
1918			if (!err)
1919				err = ret;
1920			break;
1921		}
1922	}
1923
1924	list_splice(&reloc_roots, &rc->reloc_roots);
1925
1926	if (!err)
1927		err = btrfs_commit_transaction(trans);
1928	else
1929		btrfs_end_transaction(trans);
1930	return err;
1931}
1932
1933static noinline_for_stack
1934void free_reloc_roots(struct list_head *list)
1935{
1936	struct btrfs_root *reloc_root, *tmp;
1937
1938	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
 
 
 
 
1939		__del_reloc_root(reloc_root);
 
1940}
1941
1942static noinline_for_stack
1943void merge_reloc_roots(struct reloc_control *rc)
1944{
1945	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1946	struct btrfs_root *root;
1947	struct btrfs_root *reloc_root;
1948	LIST_HEAD(reloc_roots);
1949	int found = 0;
1950	int ret = 0;
1951again:
1952	root = rc->extent_root;
1953
1954	/*
1955	 * this serializes us with btrfs_record_root_in_transaction,
1956	 * we have to make sure nobody is in the middle of
1957	 * adding their roots to the list while we are
1958	 * doing this splice
1959	 */
1960	mutex_lock(&fs_info->reloc_mutex);
1961	list_splice_init(&rc->reloc_roots, &reloc_roots);
1962	mutex_unlock(&fs_info->reloc_mutex);
1963
1964	while (!list_empty(&reloc_roots)) {
1965		found = 1;
1966		reloc_root = list_entry(reloc_roots.next,
1967					struct btrfs_root, root_list);
1968
1969		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1970					 false);
1971		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1972			if (IS_ERR(root)) {
1973				/*
1974				 * For recovery we read the fs roots on mount,
1975				 * and if we didn't find the root then we marked
1976				 * the reloc root as a garbage root.  For normal
1977				 * relocation obviously the root should exist in
1978				 * memory.  However there's no reason we can't
1979				 * handle the error properly here just in case.
1980				 */
1981				ASSERT(0);
1982				ret = PTR_ERR(root);
1983				goto out;
1984			}
1985			if (root->reloc_root != reloc_root) {
1986				/*
1987				 * This is actually impossible without something
1988				 * going really wrong (like weird race condition
1989				 * or cosmic rays).
1990				 */
1991				ASSERT(0);
1992				ret = -EINVAL;
1993				goto out;
1994			}
1995			ret = merge_reloc_root(rc, root);
1996			btrfs_put_root(root);
1997			if (ret) {
1998				if (list_empty(&reloc_root->root_list))
1999					list_add_tail(&reloc_root->root_list,
2000						      &reloc_roots);
2001				goto out;
2002			}
2003		} else {
2004			if (!IS_ERR(root)) {
2005				if (root->reloc_root == reloc_root) {
2006					root->reloc_root = NULL;
2007					btrfs_put_root(reloc_root);
2008				}
2009				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2010					  &root->state);
2011				btrfs_put_root(root);
2012			}
2013
2014			list_del_init(&reloc_root->root_list);
2015			/* Don't forget to queue this reloc root for cleanup */
2016			list_add_tail(&reloc_root->reloc_dirty_list,
2017				      &rc->dirty_subvol_roots);
 
 
2018		}
2019	}
2020
2021	if (found) {
2022		found = 0;
2023		goto again;
2024	}
2025out:
2026	if (ret) {
2027		btrfs_handle_fs_error(fs_info, ret, NULL);
2028		free_reloc_roots(&reloc_roots);
 
2029
2030		/* new reloc root may be added */
2031		mutex_lock(&fs_info->reloc_mutex);
2032		list_splice_init(&rc->reloc_roots, &reloc_roots);
2033		mutex_unlock(&fs_info->reloc_mutex);
2034		free_reloc_roots(&reloc_roots);
 
2035	}
2036
2037	/*
2038	 * We used to have
2039	 *
2040	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2041	 *
2042	 * here, but it's wrong.  If we fail to start the transaction in
2043	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2044	 * have actually been removed from the reloc_root_tree rb tree.  This is
2045	 * fine because we're bailing here, and we hold a reference on the root
2046	 * for the list that holds it, so these roots will be cleaned up when we
2047	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2048	 * will be cleaned up on unmount.
2049	 *
2050	 * The remaining nodes will be cleaned up by free_reloc_control.
2051	 */
2052}
2053
2054static void free_block_list(struct rb_root *blocks)
2055{
2056	struct tree_block *block;
2057	struct rb_node *rb_node;
2058	while ((rb_node = rb_first(blocks))) {
2059		block = rb_entry(rb_node, struct tree_block, rb_node);
2060		rb_erase(rb_node, blocks);
2061		kfree(block);
2062	}
2063}
2064
2065static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2066				      struct btrfs_root *reloc_root)
2067{
2068	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2069	struct btrfs_root *root;
2070	int ret;
2071
2072	if (reloc_root->last_trans == trans->transid)
2073		return 0;
2074
2075	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
 
 
2076
2077	/*
2078	 * This should succeed, since we can't have a reloc root without having
2079	 * already looked up the actual root and created the reloc root for this
2080	 * root.
2081	 *
2082	 * However if there's some sort of corruption where we have a ref to a
2083	 * reloc root without a corresponding root this could return ENOENT.
2084	 */
2085	if (IS_ERR(root)) {
2086		ASSERT(0);
2087		return PTR_ERR(root);
2088	}
2089	if (root->reloc_root != reloc_root) {
2090		ASSERT(0);
2091		btrfs_err(fs_info,
2092			  "root %llu has two reloc roots associated with it",
2093			  reloc_root->root_key.offset);
2094		btrfs_put_root(root);
2095		return -EUCLEAN;
2096	}
2097	ret = btrfs_record_root_in_trans(trans, root);
2098	btrfs_put_root(root);
2099
2100	return ret;
2101}
2102
2103static noinline_for_stack
2104struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2105				     struct reloc_control *rc,
2106				     struct btrfs_backref_node *node,
2107				     struct btrfs_backref_edge *edges[])
2108{
2109	struct btrfs_backref_node *next;
2110	struct btrfs_root *root;
2111	int index = 0;
2112	int ret;
2113
2114	next = node;
2115	while (1) {
2116		cond_resched();
2117		next = walk_up_backref(next, edges, &index);
2118		root = next->root;
2119
2120		/*
2121		 * If there is no root, then our references for this block are
2122		 * incomplete, as we should be able to walk all the way up to a
2123		 * block that is owned by a root.
2124		 *
2125		 * This path is only for SHAREABLE roots, so if we come upon a
2126		 * non-SHAREABLE root then we have backrefs that resolve
2127		 * improperly.
2128		 *
2129		 * Both of these cases indicate file system corruption, or a bug
2130		 * in the backref walking code.
2131		 */
2132		if (!root) {
2133			ASSERT(0);
2134			btrfs_err(trans->fs_info,
2135		"bytenr %llu doesn't have a backref path ending in a root",
2136				  node->bytenr);
2137			return ERR_PTR(-EUCLEAN);
2138		}
2139		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2140			ASSERT(0);
2141			btrfs_err(trans->fs_info,
2142	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2143				  node->bytenr);
2144			return ERR_PTR(-EUCLEAN);
2145		}
2146
2147		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2148			ret = record_reloc_root_in_trans(trans, root);
2149			if (ret)
2150				return ERR_PTR(ret);
2151			break;
2152		}
2153
2154		ret = btrfs_record_root_in_trans(trans, root);
2155		if (ret)
2156			return ERR_PTR(ret);
2157		root = root->reloc_root;
2158
2159		/*
2160		 * We could have raced with another thread which failed, so
2161		 * root->reloc_root may not be set, return ENOENT in this case.
2162		 */
2163		if (!root)
2164			return ERR_PTR(-ENOENT);
2165
2166		if (next->new_bytenr != root->node->start) {
2167			/*
2168			 * We just created the reloc root, so we shouldn't have
2169			 * ->new_bytenr set and this shouldn't be in the changed
2170			 *  list.  If it is then we have multiple roots pointing
2171			 *  at the same bytenr which indicates corruption, or
2172			 *  we've made a mistake in the backref walking code.
2173			 */
2174			ASSERT(next->new_bytenr == 0);
2175			ASSERT(list_empty(&next->list));
2176			if (next->new_bytenr || !list_empty(&next->list)) {
2177				btrfs_err(trans->fs_info,
2178	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2179					  node->bytenr, next->bytenr);
2180				return ERR_PTR(-EUCLEAN);
2181			}
2182
2183			next->new_bytenr = root->node->start;
2184			btrfs_put_root(next->root);
2185			next->root = btrfs_grab_root(root);
2186			ASSERT(next->root);
2187			list_add_tail(&next->list,
2188				      &rc->backref_cache.changed);
2189			mark_block_processed(rc, next);
2190			break;
2191		}
2192
2193		WARN_ON(1);
2194		root = NULL;
2195		next = walk_down_backref(edges, &index);
2196		if (!next || next->level <= node->level)
2197			break;
2198	}
2199	if (!root) {
2200		/*
2201		 * This can happen if there's fs corruption or if there's a bug
2202		 * in the backref lookup code.
2203		 */
2204		ASSERT(0);
2205		return ERR_PTR(-ENOENT);
2206	}
2207
2208	next = node;
2209	/* setup backref node path for btrfs_reloc_cow_block */
2210	while (1) {
2211		rc->backref_cache.path[next->level] = next;
2212		if (--index < 0)
2213			break;
2214		next = edges[index]->node[UPPER];
2215	}
2216	return root;
2217}
2218
2219/*
2220 * Select a tree root for relocation.
2221 *
2222 * Return NULL if the block is not shareable. We should use do_relocation() in
2223 * this case.
2224 *
2225 * Return a tree root pointer if the block is shareable.
2226 * Return -ENOENT if the block is root of reloc tree.
2227 */
2228static noinline_for_stack
2229struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2230{
2231	struct btrfs_backref_node *next;
2232	struct btrfs_root *root;
2233	struct btrfs_root *fs_root = NULL;
2234	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2235	int index = 0;
2236
2237	next = node;
2238	while (1) {
2239		cond_resched();
2240		next = walk_up_backref(next, edges, &index);
2241		root = next->root;
 
2242
2243		/*
2244		 * This can occur if we have incomplete extent refs leading all
2245		 * the way up a particular path, in this case return -EUCLEAN.
2246		 */
2247		if (!root)
2248			return ERR_PTR(-EUCLEAN);
2249
2250		/* No other choice for non-shareable tree */
2251		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2252			return root;
2253
2254		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2255			fs_root = root;
2256
2257		if (next != node)
2258			return NULL;
2259
2260		next = walk_down_backref(edges, &index);
2261		if (!next || next->level <= node->level)
2262			break;
2263	}
2264
2265	if (!fs_root)
2266		return ERR_PTR(-ENOENT);
2267	return fs_root;
2268}
2269
2270static noinline_for_stack
2271u64 calcu_metadata_size(struct reloc_control *rc,
2272			struct btrfs_backref_node *node, int reserve)
2273{
2274	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2275	struct btrfs_backref_node *next = node;
2276	struct btrfs_backref_edge *edge;
2277	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2278	u64 num_bytes = 0;
2279	int index = 0;
2280
2281	BUG_ON(reserve && node->processed);
2282
2283	while (next) {
2284		cond_resched();
2285		while (1) {
2286			if (next->processed && (reserve || next != node))
2287				break;
2288
2289			num_bytes += fs_info->nodesize;
2290
2291			if (list_empty(&next->upper))
2292				break;
2293
2294			edge = list_entry(next->upper.next,
2295					struct btrfs_backref_edge, list[LOWER]);
2296			edges[index++] = edge;
2297			next = edge->node[UPPER];
2298		}
2299		next = walk_down_backref(edges, &index);
2300	}
2301	return num_bytes;
2302}
2303
2304static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2305				  struct reloc_control *rc,
2306				  struct btrfs_backref_node *node)
2307{
2308	struct btrfs_root *root = rc->extent_root;
2309	struct btrfs_fs_info *fs_info = root->fs_info;
2310	u64 num_bytes;
2311	int ret;
2312	u64 tmp;
2313
2314	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2315
2316	trans->block_rsv = rc->block_rsv;
2317	rc->reserved_bytes += num_bytes;
2318
2319	/*
2320	 * We are under a transaction here so we can only do limited flushing.
2321	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2322	 * transaction and try to refill when we can flush all the things.
2323	 */
2324	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2325				BTRFS_RESERVE_FLUSH_LIMIT);
2326	if (ret) {
2327		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2328		while (tmp <= rc->reserved_bytes)
2329			tmp <<= 1;
2330		/*
2331		 * only one thread can access block_rsv at this point,
2332		 * so we don't need hold lock to protect block_rsv.
2333		 * we expand more reservation size here to allow enough
2334		 * space for relocation and we will return earlier in
2335		 * enospc case.
2336		 */
2337		rc->block_rsv->size = tmp + fs_info->nodesize *
2338				      RELOCATION_RESERVED_NODES;
2339		return -EAGAIN;
2340	}
2341
2342	return 0;
2343}
2344
2345/*
2346 * relocate a block tree, and then update pointers in upper level
2347 * blocks that reference the block to point to the new location.
2348 *
2349 * if called by link_to_upper, the block has already been relocated.
2350 * in that case this function just updates pointers.
2351 */
2352static int do_relocation(struct btrfs_trans_handle *trans,
2353			 struct reloc_control *rc,
2354			 struct btrfs_backref_node *node,
2355			 struct btrfs_key *key,
2356			 struct btrfs_path *path, int lowest)
2357{
2358	struct btrfs_backref_node *upper;
2359	struct btrfs_backref_edge *edge;
2360	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2361	struct btrfs_root *root;
2362	struct extent_buffer *eb;
2363	u32 blocksize;
2364	u64 bytenr;
 
2365	int slot;
2366	int ret = 0;
 
2367
2368	/*
2369	 * If we are lowest then this is the first time we're processing this
2370	 * block, and thus shouldn't have an eb associated with it yet.
2371	 */
2372	ASSERT(!lowest || !node->eb);
2373
2374	path->lowest_level = node->level + 1;
2375	rc->backref_cache.path[node->level] = node;
2376	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2377		struct btrfs_ref ref = { 0 };
2378
2379		cond_resched();
2380
2381		upper = edge->node[UPPER];
2382		root = select_reloc_root(trans, rc, upper, edges);
2383		if (IS_ERR(root)) {
2384			ret = PTR_ERR(root);
2385			goto next;
2386		}
2387
2388		if (upper->eb && !upper->locked) {
2389			if (!lowest) {
2390				ret = btrfs_bin_search(upper->eb, key, &slot);
2391				if (ret < 0)
2392					goto next;
2393				BUG_ON(ret);
2394				bytenr = btrfs_node_blockptr(upper->eb, slot);
2395				if (node->eb->start == bytenr)
2396					goto next;
2397			}
2398			btrfs_backref_drop_node_buffer(upper);
2399		}
2400
2401		if (!upper->eb) {
2402			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2403			if (ret) {
2404				if (ret > 0)
2405					ret = -ENOENT;
 
 
2406
2407				btrfs_release_path(path);
2408				break;
2409			}
2410
2411			if (!upper->eb) {
2412				upper->eb = path->nodes[upper->level];
2413				path->nodes[upper->level] = NULL;
2414			} else {
2415				BUG_ON(upper->eb != path->nodes[upper->level]);
2416			}
2417
2418			upper->locked = 1;
2419			path->locks[upper->level] = 0;
2420
2421			slot = path->slots[upper->level];
2422			btrfs_release_path(path);
2423		} else {
2424			ret = btrfs_bin_search(upper->eb, key, &slot);
2425			if (ret < 0)
2426				goto next;
2427			BUG_ON(ret);
2428		}
2429
2430		bytenr = btrfs_node_blockptr(upper->eb, slot);
2431		if (lowest) {
2432			if (bytenr != node->bytenr) {
2433				btrfs_err(root->fs_info,
2434		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2435					  bytenr, node->bytenr, slot,
2436					  upper->eb->start);
2437				ret = -EIO;
2438				goto next;
2439			}
2440		} else {
2441			if (node->eb->start == bytenr)
2442				goto next;
2443		}
2444
2445		blocksize = root->fs_info->nodesize;
2446		eb = btrfs_read_node_slot(upper->eb, slot);
 
2447		if (IS_ERR(eb)) {
2448			ret = PTR_ERR(eb);
 
 
 
 
2449			goto next;
2450		}
2451		btrfs_tree_lock(eb);
 
2452
2453		if (!node->eb) {
2454			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2455					      slot, &eb, BTRFS_NESTING_COW);
2456			btrfs_tree_unlock(eb);
2457			free_extent_buffer(eb);
2458			if (ret < 0)
 
2459				goto next;
2460			/*
2461			 * We've just COWed this block, it should have updated
2462			 * the correct backref node entry.
2463			 */
2464			ASSERT(node->eb == eb);
2465		} else {
2466			btrfs_set_node_blockptr(upper->eb, slot,
2467						node->eb->start);
2468			btrfs_set_node_ptr_generation(upper->eb, slot,
2469						      trans->transid);
2470			btrfs_mark_buffer_dirty(upper->eb);
2471
2472			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2473					       node->eb->start, blocksize,
2474					       upper->eb->start);
2475			ref.real_root = root->root_key.objectid;
2476			btrfs_init_tree_ref(&ref, node->level,
2477					    btrfs_header_owner(upper->eb));
2478			ret = btrfs_inc_extent_ref(trans, &ref);
2479			if (!ret)
2480				ret = btrfs_drop_subtree(trans, root, eb,
2481							 upper->eb);
2482			if (ret)
2483				btrfs_abort_transaction(trans, ret);
2484		}
2485next:
2486		if (!upper->pending)
2487			btrfs_backref_drop_node_buffer(upper);
2488		else
2489			btrfs_backref_unlock_node_buffer(upper);
2490		if (ret)
2491			break;
2492	}
2493
2494	if (!ret && node->pending) {
2495		btrfs_backref_drop_node_buffer(node);
2496		list_move_tail(&node->list, &rc->backref_cache.changed);
2497		node->pending = 0;
2498	}
2499
2500	path->lowest_level = 0;
2501
2502	/*
2503	 * We should have allocated all of our space in the block rsv and thus
2504	 * shouldn't ENOSPC.
2505	 */
2506	ASSERT(ret != -ENOSPC);
2507	return ret;
2508}
2509
2510static int link_to_upper(struct btrfs_trans_handle *trans,
2511			 struct reloc_control *rc,
2512			 struct btrfs_backref_node *node,
2513			 struct btrfs_path *path)
2514{
2515	struct btrfs_key key;
2516
2517	btrfs_node_key_to_cpu(node->eb, &key, 0);
2518	return do_relocation(trans, rc, node, &key, path, 0);
2519}
2520
2521static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2522				struct reloc_control *rc,
2523				struct btrfs_path *path, int err)
2524{
2525	LIST_HEAD(list);
2526	struct btrfs_backref_cache *cache = &rc->backref_cache;
2527	struct btrfs_backref_node *node;
2528	int level;
2529	int ret;
2530
2531	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2532		while (!list_empty(&cache->pending[level])) {
2533			node = list_entry(cache->pending[level].next,
2534					  struct btrfs_backref_node, list);
2535			list_move_tail(&node->list, &list);
2536			BUG_ON(!node->pending);
2537
2538			if (!err) {
2539				ret = link_to_upper(trans, rc, node, path);
2540				if (ret < 0)
2541					err = ret;
2542			}
2543		}
2544		list_splice_init(&list, &cache->pending[level]);
2545	}
2546	return err;
2547}
2548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549/*
2550 * mark a block and all blocks directly/indirectly reference the block
2551 * as processed.
2552 */
2553static void update_processed_blocks(struct reloc_control *rc,
2554				    struct btrfs_backref_node *node)
2555{
2556	struct btrfs_backref_node *next = node;
2557	struct btrfs_backref_edge *edge;
2558	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2559	int index = 0;
2560
2561	while (next) {
2562		cond_resched();
2563		while (1) {
2564			if (next->processed)
2565				break;
2566
2567			mark_block_processed(rc, next);
2568
2569			if (list_empty(&next->upper))
2570				break;
2571
2572			edge = list_entry(next->upper.next,
2573					struct btrfs_backref_edge, list[LOWER]);
2574			edges[index++] = edge;
2575			next = edge->node[UPPER];
2576		}
2577		next = walk_down_backref(edges, &index);
2578	}
2579}
2580
2581static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2582{
2583	u32 blocksize = rc->extent_root->fs_info->nodesize;
2584
2585	if (test_range_bit(&rc->processed_blocks, bytenr,
2586			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2587		return 1;
2588	return 0;
2589}
2590
2591static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2592			      struct tree_block *block)
2593{
2594	struct extent_buffer *eb;
2595
2596	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2597			     block->key.offset, block->level, NULL);
2598	if (IS_ERR(eb)) {
2599		return PTR_ERR(eb);
2600	} else if (!extent_buffer_uptodate(eb)) {
2601		free_extent_buffer(eb);
2602		return -EIO;
2603	}
 
2604	if (block->level == 0)
2605		btrfs_item_key_to_cpu(eb, &block->key, 0);
2606	else
2607		btrfs_node_key_to_cpu(eb, &block->key, 0);
2608	free_extent_buffer(eb);
2609	block->key_ready = 1;
2610	return 0;
2611}
2612
2613/*
2614 * helper function to relocate a tree block
2615 */
2616static int relocate_tree_block(struct btrfs_trans_handle *trans,
2617				struct reloc_control *rc,
2618				struct btrfs_backref_node *node,
2619				struct btrfs_key *key,
2620				struct btrfs_path *path)
2621{
2622	struct btrfs_root *root;
2623	int ret = 0;
2624
2625	if (!node)
2626		return 0;
2627
2628	/*
2629	 * If we fail here we want to drop our backref_node because we are going
2630	 * to start over and regenerate the tree for it.
2631	 */
2632	ret = reserve_metadata_space(trans, rc, node);
2633	if (ret)
2634		goto out;
2635
2636	BUG_ON(node->processed);
2637	root = select_one_root(node);
2638	if (IS_ERR(root)) {
2639		ret = PTR_ERR(root);
 
 
2640
2641		/* See explanation in select_one_root for the -EUCLEAN case. */
2642		ASSERT(ret == -ENOENT);
2643		if (ret == -ENOENT) {
2644			ret = 0;
2645			update_processed_blocks(rc, node);
2646		}
2647		goto out;
2648	}
2649
2650	if (root) {
2651		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2652			/*
2653			 * This block was the root block of a root, and this is
2654			 * the first time we're processing the block and thus it
2655			 * should not have had the ->new_bytenr modified and
2656			 * should have not been included on the changed list.
2657			 *
2658			 * However in the case of corruption we could have
2659			 * multiple refs pointing to the same block improperly,
2660			 * and thus we would trip over these checks.  ASSERT()
2661			 * for the developer case, because it could indicate a
2662			 * bug in the backref code, however error out for a
2663			 * normal user in the case of corruption.
2664			 */
2665			ASSERT(node->new_bytenr == 0);
2666			ASSERT(list_empty(&node->list));
2667			if (node->new_bytenr || !list_empty(&node->list)) {
2668				btrfs_err(root->fs_info,
2669				  "bytenr %llu has improper references to it",
2670					  node->bytenr);
2671				ret = -EUCLEAN;
2672				goto out;
2673			}
2674			ret = btrfs_record_root_in_trans(trans, root);
2675			if (ret)
2676				goto out;
2677			/*
2678			 * Another thread could have failed, need to check if we
2679			 * have reloc_root actually set.
2680			 */
2681			if (!root->reloc_root) {
2682				ret = -ENOENT;
2683				goto out;
2684			}
2685			root = root->reloc_root;
2686			node->new_bytenr = root->node->start;
2687			btrfs_put_root(node->root);
2688			node->root = btrfs_grab_root(root);
2689			ASSERT(node->root);
2690			list_add_tail(&node->list, &rc->backref_cache.changed);
2691		} else {
2692			path->lowest_level = node->level;
2693			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694			btrfs_release_path(path);
2695			if (ret > 0)
2696				ret = 0;
2697		}
2698		if (!ret)
2699			update_processed_blocks(rc, node);
2700	} else {
2701		ret = do_relocation(trans, rc, node, key, path, 1);
2702	}
2703out:
2704	if (ret || node->level == 0 || node->cowonly)
2705		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2706	return ret;
2707}
2708
2709/*
2710 * relocate a list of blocks
2711 */
2712static noinline_for_stack
2713int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2714			 struct reloc_control *rc, struct rb_root *blocks)
2715{
2716	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2717	struct btrfs_backref_node *node;
2718	struct btrfs_path *path;
2719	struct tree_block *block;
2720	struct tree_block *next;
2721	int ret;
2722	int err = 0;
2723
2724	path = btrfs_alloc_path();
2725	if (!path) {
2726		err = -ENOMEM;
2727		goto out_free_blocks;
2728	}
2729
2730	/* Kick in readahead for tree blocks with missing keys */
2731	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2732		if (!block->key_ready)
2733			btrfs_readahead_tree_block(fs_info, block->bytenr,
2734						   block->owner, 0,
2735						   block->level);
2736	}
2737
2738	/* Get first keys */
2739	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2740		if (!block->key_ready) {
2741			err = get_tree_block_key(fs_info, block);
2742			if (err)
2743				goto out_free_path;
2744		}
 
2745	}
2746
2747	/* Do tree relocation */
2748	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
 
2749		node = build_backref_tree(rc, &block->key,
2750					  block->level, block->bytenr);
2751		if (IS_ERR(node)) {
2752			err = PTR_ERR(node);
2753			goto out;
2754		}
2755
2756		ret = relocate_tree_block(trans, rc, node, &block->key,
2757					  path);
2758		if (ret < 0) {
2759			err = ret;
2760			break;
 
2761		}
 
2762	}
2763out:
2764	err = finish_pending_nodes(trans, rc, path, err);
2765
2766out_free_path:
2767	btrfs_free_path(path);
2768out_free_blocks:
2769	free_block_list(blocks);
2770	return err;
2771}
2772
2773static noinline_for_stack int prealloc_file_extent_cluster(
2774				struct btrfs_inode *inode,
2775				struct file_extent_cluster *cluster)
2776{
2777	u64 alloc_hint = 0;
2778	u64 start;
2779	u64 end;
2780	u64 offset = inode->index_cnt;
2781	u64 num_bytes;
2782	int nr;
2783	int ret = 0;
2784	u64 prealloc_start = cluster->start - offset;
2785	u64 prealloc_end = cluster->end - offset;
2786	u64 cur_offset = prealloc_start;
2787
2788	BUG_ON(cluster->start != cluster->boundary[0]);
2789	ret = btrfs_alloc_data_chunk_ondemand(inode,
2790					      prealloc_end + 1 - prealloc_start);
 
 
2791	if (ret)
2792		return ret;
2793
2794	/*
2795	 * On a zoned filesystem, we cannot preallocate the file region.
2796	 * Instead, we dirty and fiemap_write the region.
2797	 */
2798	if (btrfs_is_zoned(inode->root->fs_info)) {
2799		struct btrfs_root *root = inode->root;
2800		struct btrfs_trans_handle *trans;
2801
2802		end = cluster->end - offset + 1;
2803		trans = btrfs_start_transaction(root, 1);
2804		if (IS_ERR(trans))
2805			return PTR_ERR(trans);
2806
2807		inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2808		i_size_write(&inode->vfs_inode, end);
2809		ret = btrfs_update_inode(trans, root, inode);
2810		if (ret) {
2811			btrfs_abort_transaction(trans, ret);
2812			btrfs_end_transaction(trans);
2813			return ret;
2814		}
2815
2816		return btrfs_end_transaction(trans);
2817	}
2818
2819	btrfs_inode_lock(&inode->vfs_inode, 0);
2820	for (nr = 0; nr < cluster->nr; nr++) {
2821		start = cluster->boundary[nr] - offset;
2822		if (nr + 1 < cluster->nr)
2823			end = cluster->boundary[nr + 1] - 1 - offset;
2824		else
2825			end = cluster->end - offset;
2826
2827		lock_extent(&inode->io_tree, start, end);
2828		num_bytes = end + 1 - start;
2829		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
 
 
 
2830						num_bytes, num_bytes,
2831						end + 1, &alloc_hint);
2832		cur_offset = end + 1;
2833		unlock_extent(&inode->io_tree, start, end);
2834		if (ret)
2835			break;
 
2836	}
2837	btrfs_inode_unlock(&inode->vfs_inode, 0);
2838
2839	if (cur_offset < prealloc_end)
2840		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2841					       prealloc_end + 1 - cur_offset);
 
 
2842	return ret;
2843}
2844
2845static noinline_for_stack
2846int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2847			 u64 block_start)
2848{
 
2849	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2850	struct extent_map *em;
2851	int ret = 0;
2852
2853	em = alloc_extent_map();
2854	if (!em)
2855		return -ENOMEM;
2856
2857	em->start = start;
2858	em->len = end + 1 - start;
2859	em->block_len = em->len;
2860	em->block_start = block_start;
 
2861	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2862
2863	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2864	while (1) {
2865		write_lock(&em_tree->lock);
2866		ret = add_extent_mapping(em_tree, em, 0);
2867		write_unlock(&em_tree->lock);
2868		if (ret != -EEXIST) {
2869			free_extent_map(em);
2870			break;
2871		}
2872		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2873	}
2874	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2875	return ret;
2876}
2877
2878/*
2879 * Allow error injection to test balance/relocation cancellation
2880 */
2881noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2882{
2883	return atomic_read(&fs_info->balance_cancel_req) ||
2884		atomic_read(&fs_info->reloc_cancel_req) ||
2885		fatal_signal_pending(current);
2886}
2887ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2888
2889static int relocate_file_extent_cluster(struct inode *inode,
2890					struct file_extent_cluster *cluster)
2891{
2892	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2893	u64 page_start;
2894	u64 page_end;
2895	u64 offset = BTRFS_I(inode)->index_cnt;
2896	unsigned long index;
2897	unsigned long last_index;
2898	struct page *page;
2899	struct file_ra_state *ra;
2900	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2901	int nr = 0;
2902	int ret = 0;
2903
2904	if (!cluster->nr)
2905		return 0;
2906
2907	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2908	if (!ra)
2909		return -ENOMEM;
2910
2911	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2912	if (ret)
2913		goto out;
2914
2915	file_ra_state_init(ra, inode->i_mapping);
2916
2917	ret = setup_extent_mapping(inode, cluster->start - offset,
2918				   cluster->end - offset, cluster->start);
2919	if (ret)
2920		goto out;
2921
2922	index = (cluster->start - offset) >> PAGE_SHIFT;
2923	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2924	while (index <= last_index) {
2925		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2926				PAGE_SIZE);
2927		if (ret)
2928			goto out;
2929
2930		page = find_lock_page(inode->i_mapping, index);
2931		if (!page) {
2932			page_cache_sync_readahead(inode->i_mapping,
2933						  ra, NULL, index,
2934						  last_index + 1 - index);
2935			page = find_or_create_page(inode->i_mapping, index,
2936						   mask);
2937			if (!page) {
2938				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2939							PAGE_SIZE, true);
2940				btrfs_delalloc_release_extents(BTRFS_I(inode),
2941							PAGE_SIZE);
2942				ret = -ENOMEM;
2943				goto out;
2944			}
2945		}
2946		ret = set_page_extent_mapped(page);
2947		if (ret < 0) {
2948			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2949							PAGE_SIZE, true);
2950			btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2951			unlock_page(page);
2952			put_page(page);
2953			goto out;
2954		}
2955
2956		if (PageReadahead(page)) {
2957			page_cache_async_readahead(inode->i_mapping,
2958						   ra, NULL, page, index,
2959						   last_index + 1 - index);
2960		}
2961
2962		if (!PageUptodate(page)) {
2963			btrfs_readpage(NULL, page);
2964			lock_page(page);
2965			if (!PageUptodate(page)) {
2966				unlock_page(page);
2967				put_page(page);
2968				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2969							PAGE_SIZE, true);
2970				btrfs_delalloc_release_extents(BTRFS_I(inode),
2971							       PAGE_SIZE);
2972				ret = -EIO;
2973				goto out;
2974			}
2975		}
2976
2977		page_start = page_offset(page);
2978		page_end = page_start + PAGE_SIZE - 1;
2979
2980		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2981
 
 
2982		if (nr < cluster->nr &&
2983		    page_start + offset == cluster->boundary[nr]) {
2984			set_extent_bits(&BTRFS_I(inode)->io_tree,
2985					page_start, page_end,
2986					EXTENT_BOUNDARY);
2987			nr++;
2988		}
2989
2990		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2991						page_end, 0, NULL);
2992		if (ret) {
2993			unlock_page(page);
2994			put_page(page);
2995			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2996							 PAGE_SIZE, true);
2997			btrfs_delalloc_release_extents(BTRFS_I(inode),
2998			                               PAGE_SIZE);
2999
3000			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3001					  page_start, page_end,
3002					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3003			goto out;
3004
3005		}
3006		set_page_dirty(page);
3007
3008		unlock_extent(&BTRFS_I(inode)->io_tree,
3009			      page_start, page_end);
3010		unlock_page(page);
3011		put_page(page);
3012
3013		index++;
3014		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3015		balance_dirty_pages_ratelimited(inode->i_mapping);
3016		btrfs_throttle(fs_info);
3017		if (btrfs_should_cancel_balance(fs_info)) {
3018			ret = -ECANCELED;
3019			goto out;
3020		}
3021	}
3022	WARN_ON(nr != cluster->nr);
3023	if (btrfs_is_zoned(fs_info) && !ret)
3024		ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3025out:
3026	kfree(ra);
3027	return ret;
3028}
3029
3030static noinline_for_stack
3031int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3032			 struct file_extent_cluster *cluster)
3033{
3034	int ret;
3035
3036	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3037		ret = relocate_file_extent_cluster(inode, cluster);
3038		if (ret)
3039			return ret;
3040		cluster->nr = 0;
3041	}
3042
3043	if (!cluster->nr)
3044		cluster->start = extent_key->objectid;
3045	else
3046		BUG_ON(cluster->nr >= MAX_EXTENTS);
3047	cluster->end = extent_key->objectid + extent_key->offset - 1;
3048	cluster->boundary[cluster->nr] = extent_key->objectid;
3049	cluster->nr++;
3050
3051	if (cluster->nr >= MAX_EXTENTS) {
3052		ret = relocate_file_extent_cluster(inode, cluster);
3053		if (ret)
3054			return ret;
3055		cluster->nr = 0;
3056	}
3057	return 0;
3058}
3059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3060/*
3061 * helper to add a tree block to the list.
3062 * the major work is getting the generation and level of the block
3063 */
3064static int add_tree_block(struct reloc_control *rc,
3065			  struct btrfs_key *extent_key,
3066			  struct btrfs_path *path,
3067			  struct rb_root *blocks)
3068{
3069	struct extent_buffer *eb;
3070	struct btrfs_extent_item *ei;
3071	struct btrfs_tree_block_info *bi;
3072	struct tree_block *block;
3073	struct rb_node *rb_node;
3074	u32 item_size;
3075	int level = -1;
3076	u64 generation;
3077	u64 owner = 0;
3078
3079	eb =  path->nodes[0];
3080	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3081
3082	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3083	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3084		unsigned long ptr = 0, end;
3085
3086		ei = btrfs_item_ptr(eb, path->slots[0],
3087				struct btrfs_extent_item);
3088		end = (unsigned long)ei + item_size;
3089		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3090			bi = (struct btrfs_tree_block_info *)(ei + 1);
3091			level = btrfs_tree_block_level(eb, bi);
3092			ptr = (unsigned long)(bi + 1);
3093		} else {
3094			level = (int)extent_key->offset;
3095			ptr = (unsigned long)(ei + 1);
3096		}
3097		generation = btrfs_extent_generation(eb, ei);
3098
3099		/*
3100		 * We're reading random blocks without knowing their owner ahead
3101		 * of time.  This is ok most of the time, as all reloc roots and
3102		 * fs roots have the same lock type.  However normal trees do
3103		 * not, and the only way to know ahead of time is to read the
3104		 * inline ref offset.  We know it's an fs root if
3105		 *
3106		 * 1. There's more than one ref.
3107		 * 2. There's a SHARED_DATA_REF_KEY set.
3108		 * 3. FULL_BACKREF is set on the flags.
3109		 *
3110		 * Otherwise it's safe to assume that the ref offset == the
3111		 * owner of this block, so we can use that when calling
3112		 * read_tree_block.
3113		 */
3114		if (btrfs_extent_refs(eb, ei) == 1 &&
3115		    !(btrfs_extent_flags(eb, ei) &
3116		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3117		    ptr < end) {
3118			struct btrfs_extent_inline_ref *iref;
3119			int type;
3120
3121			iref = (struct btrfs_extent_inline_ref *)ptr;
3122			type = btrfs_get_extent_inline_ref_type(eb, iref,
3123							BTRFS_REF_TYPE_BLOCK);
3124			if (type == BTRFS_REF_TYPE_INVALID)
3125				return -EINVAL;
3126			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3127				owner = btrfs_extent_inline_ref_offset(eb, iref);
3128		}
3129	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3130		btrfs_print_v0_err(eb->fs_info);
3131		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3132		return -EINVAL;
3133	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3134		BUG();
 
3135	}
3136
3137	btrfs_release_path(path);
3138
3139	BUG_ON(level == -1);
3140
3141	block = kmalloc(sizeof(*block), GFP_NOFS);
3142	if (!block)
3143		return -ENOMEM;
3144
3145	block->bytenr = extent_key->objectid;
3146	block->key.objectid = rc->extent_root->fs_info->nodesize;
3147	block->key.offset = generation;
3148	block->level = level;
3149	block->key_ready = 0;
3150	block->owner = owner;
3151
3152	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3153	if (rb_node)
3154		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3155				    -EEXIST);
3156
3157	return 0;
3158}
3159
3160/*
3161 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3162 */
3163static int __add_tree_block(struct reloc_control *rc,
3164			    u64 bytenr, u32 blocksize,
3165			    struct rb_root *blocks)
3166{
3167	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3168	struct btrfs_path *path;
3169	struct btrfs_key key;
3170	int ret;
3171	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3172
3173	if (tree_block_processed(bytenr, rc))
3174		return 0;
3175
3176	if (rb_simple_search(blocks, bytenr))
3177		return 0;
3178
3179	path = btrfs_alloc_path();
3180	if (!path)
3181		return -ENOMEM;
3182again:
3183	key.objectid = bytenr;
3184	if (skinny) {
3185		key.type = BTRFS_METADATA_ITEM_KEY;
3186		key.offset = (u64)-1;
3187	} else {
3188		key.type = BTRFS_EXTENT_ITEM_KEY;
3189		key.offset = blocksize;
3190	}
3191
3192	path->search_commit_root = 1;
3193	path->skip_locking = 1;
3194	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3195	if (ret < 0)
3196		goto out;
3197
3198	if (ret > 0 && skinny) {
3199		if (path->slots[0]) {
3200			path->slots[0]--;
3201			btrfs_item_key_to_cpu(path->nodes[0], &key,
3202					      path->slots[0]);
3203			if (key.objectid == bytenr &&
3204			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3205			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3206			      key.offset == blocksize)))
3207				ret = 0;
3208		}
3209
3210		if (ret) {
3211			skinny = false;
3212			btrfs_release_path(path);
3213			goto again;
3214		}
3215	}
3216	if (ret) {
3217		ASSERT(ret == 1);
3218		btrfs_print_leaf(path->nodes[0]);
3219		btrfs_err(fs_info,
3220	     "tree block extent item (%llu) is not found in extent tree",
3221		     bytenr);
3222		WARN_ON(1);
3223		ret = -EINVAL;
3224		goto out;
3225	}
3226
3227	ret = add_tree_block(rc, &key, path, blocks);
3228out:
3229	btrfs_free_path(path);
3230	return ret;
3231}
3232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3234				    struct btrfs_block_group *block_group,
3235				    struct inode *inode,
3236				    u64 ino)
3237{
 
3238	struct btrfs_root *root = fs_info->tree_root;
3239	struct btrfs_trans_handle *trans;
3240	int ret = 0;
3241
3242	if (inode)
3243		goto truncate;
3244
3245	inode = btrfs_iget(fs_info->sb, ino, root);
3246	if (IS_ERR(inode))
 
 
 
 
 
 
3247		return -ENOENT;
 
3248
3249truncate:
3250	ret = btrfs_check_trunc_cache_free_space(fs_info,
3251						 &fs_info->global_block_rsv);
3252	if (ret)
3253		goto out;
3254
3255	trans = btrfs_join_transaction(root);
3256	if (IS_ERR(trans)) {
3257		ret = PTR_ERR(trans);
3258		goto out;
3259	}
3260
3261	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3262
3263	btrfs_end_transaction(trans);
3264	btrfs_btree_balance_dirty(fs_info);
3265out:
3266	iput(inode);
3267	return ret;
3268}
3269
3270/*
3271 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3272 * cache inode, to avoid free space cache data extent blocking data relocation.
3273 */
3274static int delete_v1_space_cache(struct extent_buffer *leaf,
3275				 struct btrfs_block_group *block_group,
3276				 u64 data_bytenr)
 
 
3277{
3278	u64 space_cache_ino;
3279	struct btrfs_file_extent_item *ei;
 
 
 
 
3280	struct btrfs_key key;
3281	bool found = false;
3282	int i;
 
 
 
 
 
 
3283	int ret;
3284
3285	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3286		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287
3288	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3289		u8 type;
 
3290
3291		btrfs_item_key_to_cpu(leaf, &key, i);
3292		if (key.type != BTRFS_EXTENT_DATA_KEY)
3293			continue;
3294		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3295		type = btrfs_file_extent_type(leaf, ei);
 
 
 
 
 
 
 
3296
3297		if ((type == BTRFS_FILE_EXTENT_REG ||
3298		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3299		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3300			found = true;
3301			space_cache_ino = key.objectid;
3302			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303		}
 
 
 
 
 
 
 
3304	}
3305	if (!found)
3306		return -ENOENT;
3307	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3308					space_cache_ino);
3309	return ret;
3310}
3311
3312/*
3313 * helper to find all tree blocks that reference a given data extent
3314 */
3315static noinline_for_stack
3316int add_data_references(struct reloc_control *rc,
3317			struct btrfs_key *extent_key,
3318			struct btrfs_path *path,
3319			struct rb_root *blocks)
3320{
3321	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3322	struct ulist *leaves = NULL;
3323	struct ulist_iterator leaf_uiter;
3324	struct ulist_node *ref_node = NULL;
3325	const u32 blocksize = fs_info->nodesize;
 
 
3326	int ret = 0;
 
3327
3328	btrfs_release_path(path);
3329	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3330				   0, &leaves, NULL, true);
3331	if (ret < 0)
3332		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3333
3334	ULIST_ITER_INIT(&leaf_uiter);
3335	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3336		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
3337
3338		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3339		if (IS_ERR(eb)) {
3340			ret = PTR_ERR(eb);
3341			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3342		}
3343		ret = delete_v1_space_cache(eb, rc->block_group,
3344					    extent_key->objectid);
3345		free_extent_buffer(eb);
3346		if (ret < 0)
3347			break;
3348		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3349		if (ret < 0)
3350			break;
 
 
3351	}
3352	if (ret < 0)
 
 
3353		free_block_list(blocks);
3354	ulist_free(leaves);
3355	return ret;
3356}
3357
3358/*
3359 * helper to find next unprocessed extent
3360 */
3361static noinline_for_stack
3362int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3363		     struct btrfs_key *extent_key)
3364{
3365	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3366	struct btrfs_key key;
3367	struct extent_buffer *leaf;
3368	u64 start, end, last;
3369	int ret;
3370
3371	last = rc->block_group->start + rc->block_group->length;
3372	while (1) {
3373		cond_resched();
3374		if (rc->search_start >= last) {
3375			ret = 1;
3376			break;
3377		}
3378
3379		key.objectid = rc->search_start;
3380		key.type = BTRFS_EXTENT_ITEM_KEY;
3381		key.offset = 0;
3382
3383		path->search_commit_root = 1;
3384		path->skip_locking = 1;
3385		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3386					0, 0);
3387		if (ret < 0)
3388			break;
3389next:
3390		leaf = path->nodes[0];
3391		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3392			ret = btrfs_next_leaf(rc->extent_root, path);
3393			if (ret != 0)
3394				break;
3395			leaf = path->nodes[0];
3396		}
3397
3398		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3399		if (key.objectid >= last) {
3400			ret = 1;
3401			break;
3402		}
3403
3404		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3405		    key.type != BTRFS_METADATA_ITEM_KEY) {
3406			path->slots[0]++;
3407			goto next;
3408		}
3409
3410		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3411		    key.objectid + key.offset <= rc->search_start) {
3412			path->slots[0]++;
3413			goto next;
3414		}
3415
3416		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3417		    key.objectid + fs_info->nodesize <=
3418		    rc->search_start) {
3419			path->slots[0]++;
3420			goto next;
3421		}
3422
3423		ret = find_first_extent_bit(&rc->processed_blocks,
3424					    key.objectid, &start, &end,
3425					    EXTENT_DIRTY, NULL);
3426
3427		if (ret == 0 && start <= key.objectid) {
3428			btrfs_release_path(path);
3429			rc->search_start = end + 1;
3430		} else {
3431			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3432				rc->search_start = key.objectid + key.offset;
3433			else
3434				rc->search_start = key.objectid +
3435					fs_info->nodesize;
3436			memcpy(extent_key, &key, sizeof(key));
3437			return 0;
3438		}
3439	}
3440	btrfs_release_path(path);
3441	return ret;
3442}
3443
3444static void set_reloc_control(struct reloc_control *rc)
3445{
3446	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3447
3448	mutex_lock(&fs_info->reloc_mutex);
3449	fs_info->reloc_ctl = rc;
3450	mutex_unlock(&fs_info->reloc_mutex);
3451}
3452
3453static void unset_reloc_control(struct reloc_control *rc)
3454{
3455	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456
3457	mutex_lock(&fs_info->reloc_mutex);
3458	fs_info->reloc_ctl = NULL;
3459	mutex_unlock(&fs_info->reloc_mutex);
3460}
3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3462static noinline_for_stack
3463int prepare_to_relocate(struct reloc_control *rc)
3464{
3465	struct btrfs_trans_handle *trans;
3466	int ret;
3467
3468	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3469					      BTRFS_BLOCK_RSV_TEMP);
3470	if (!rc->block_rsv)
3471		return -ENOMEM;
3472
3473	memset(&rc->cluster, 0, sizeof(rc->cluster));
3474	rc->search_start = rc->block_group->start;
3475	rc->extents_found = 0;
3476	rc->nodes_relocated = 0;
3477	rc->merging_rsv_size = 0;
3478	rc->reserved_bytes = 0;
3479	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3480			      RELOCATION_RESERVED_NODES;
3481	ret = btrfs_block_rsv_refill(rc->extent_root,
3482				     rc->block_rsv, rc->block_rsv->size,
3483				     BTRFS_RESERVE_FLUSH_ALL);
3484	if (ret)
3485		return ret;
3486
3487	rc->create_reloc_tree = 1;
3488	set_reloc_control(rc);
3489
3490	trans = btrfs_join_transaction(rc->extent_root);
3491	if (IS_ERR(trans)) {
3492		unset_reloc_control(rc);
3493		/*
3494		 * extent tree is not a ref_cow tree and has no reloc_root to
3495		 * cleanup.  And callers are responsible to free the above
3496		 * block rsv.
3497		 */
3498		return PTR_ERR(trans);
3499	}
3500	return btrfs_commit_transaction(trans);
 
3501}
3502
3503static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3504{
3505	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3506	struct rb_root blocks = RB_ROOT;
3507	struct btrfs_key key;
3508	struct btrfs_trans_handle *trans = NULL;
3509	struct btrfs_path *path;
3510	struct btrfs_extent_item *ei;
3511	u64 flags;
 
3512	int ret;
3513	int err = 0;
3514	int progress = 0;
3515
3516	path = btrfs_alloc_path();
3517	if (!path)
3518		return -ENOMEM;
3519	path->reada = READA_FORWARD;
3520
3521	ret = prepare_to_relocate(rc);
3522	if (ret) {
3523		err = ret;
3524		goto out_free;
3525	}
3526
3527	while (1) {
3528		rc->reserved_bytes = 0;
3529		ret = btrfs_block_rsv_refill(rc->extent_root,
3530					rc->block_rsv, rc->block_rsv->size,
3531					BTRFS_RESERVE_FLUSH_ALL);
3532		if (ret) {
3533			err = ret;
3534			break;
3535		}
3536		progress++;
3537		trans = btrfs_start_transaction(rc->extent_root, 0);
3538		if (IS_ERR(trans)) {
3539			err = PTR_ERR(trans);
3540			trans = NULL;
3541			break;
3542		}
3543restart:
3544		if (update_backref_cache(trans, &rc->backref_cache)) {
3545			btrfs_end_transaction(trans);
3546			trans = NULL;
3547			continue;
3548		}
3549
3550		ret = find_next_extent(rc, path, &key);
3551		if (ret < 0)
3552			err = ret;
3553		if (ret != 0)
3554			break;
3555
3556		rc->extents_found++;
3557
3558		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3559				    struct btrfs_extent_item);
3560		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561
3562		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3563			ret = add_tree_block(rc, &key, path, &blocks);
3564		} else if (rc->stage == UPDATE_DATA_PTRS &&
3565			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3566			ret = add_data_references(rc, &key, path, &blocks);
3567		} else {
3568			btrfs_release_path(path);
3569			ret = 0;
3570		}
3571		if (ret < 0) {
3572			err = ret;
3573			break;
3574		}
3575
3576		if (!RB_EMPTY_ROOT(&blocks)) {
3577			ret = relocate_tree_blocks(trans, rc, &blocks);
3578			if (ret < 0) {
 
 
 
 
 
 
3579				if (ret != -EAGAIN) {
3580					err = ret;
3581					break;
3582				}
3583				rc->extents_found--;
3584				rc->search_start = key.objectid;
3585			}
3586		}
3587
3588		btrfs_end_transaction_throttle(trans);
3589		btrfs_btree_balance_dirty(fs_info);
3590		trans = NULL;
3591
3592		if (rc->stage == MOVE_DATA_EXTENTS &&
3593		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3594			rc->found_file_extent = 1;
3595			ret = relocate_data_extent(rc->data_inode,
3596						   &key, &rc->cluster);
3597			if (ret < 0) {
3598				err = ret;
3599				break;
3600			}
3601		}
3602		if (btrfs_should_cancel_balance(fs_info)) {
3603			err = -ECANCELED;
3604			break;
3605		}
3606	}
3607	if (trans && progress && err == -ENOSPC) {
3608		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
 
3609		if (ret == 1) {
3610			err = 0;
3611			progress = 0;
3612			goto restart;
3613		}
3614	}
3615
3616	btrfs_release_path(path);
3617	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3618
3619	if (trans) {
3620		btrfs_end_transaction_throttle(trans);
3621		btrfs_btree_balance_dirty(fs_info);
3622	}
3623
3624	if (!err) {
3625		ret = relocate_file_extent_cluster(rc->data_inode,
3626						   &rc->cluster);
3627		if (ret < 0)
3628			err = ret;
3629	}
3630
3631	rc->create_reloc_tree = 0;
3632	set_reloc_control(rc);
3633
3634	btrfs_backref_release_cache(&rc->backref_cache);
3635	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3636
3637	/*
3638	 * Even in the case when the relocation is cancelled, we should all go
3639	 * through prepare_to_merge() and merge_reloc_roots().
3640	 *
3641	 * For error (including cancelled balance), prepare_to_merge() will
3642	 * mark all reloc trees orphan, then queue them for cleanup in
3643	 * merge_reloc_roots()
3644	 */
3645	err = prepare_to_merge(rc, err);
3646
3647	merge_reloc_roots(rc);
3648
3649	rc->merge_reloc_tree = 0;
3650	unset_reloc_control(rc);
3651	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3652
3653	/* get rid of pinned extents */
3654	trans = btrfs_join_transaction(rc->extent_root);
3655	if (IS_ERR(trans)) {
3656		err = PTR_ERR(trans);
3657		goto out_free;
3658	}
3659	ret = btrfs_commit_transaction(trans);
3660	if (ret && !err)
3661		err = ret;
3662out_free:
3663	ret = clean_dirty_subvols(rc);
3664	if (ret < 0 && !err)
3665		err = ret;
3666	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3667	btrfs_free_path(path);
3668	return err;
3669}
3670
3671static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3672				 struct btrfs_root *root, u64 objectid)
3673{
3674	struct btrfs_path *path;
3675	struct btrfs_inode_item *item;
3676	struct extent_buffer *leaf;
3677	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3678	int ret;
3679
3680	if (btrfs_is_zoned(trans->fs_info))
3681		flags &= ~BTRFS_INODE_PREALLOC;
3682
3683	path = btrfs_alloc_path();
3684	if (!path)
3685		return -ENOMEM;
3686
3687	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3688	if (ret)
3689		goto out;
3690
3691	leaf = path->nodes[0];
3692	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3693	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3694	btrfs_set_inode_generation(leaf, item, 1);
3695	btrfs_set_inode_size(leaf, item, 0);
3696	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3697	btrfs_set_inode_flags(leaf, item, flags);
 
3698	btrfs_mark_buffer_dirty(leaf);
3699out:
3700	btrfs_free_path(path);
3701	return ret;
3702}
3703
3704static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3705				struct btrfs_root *root, u64 objectid)
3706{
3707	struct btrfs_path *path;
3708	struct btrfs_key key;
3709	int ret = 0;
3710
3711	path = btrfs_alloc_path();
3712	if (!path) {
3713		ret = -ENOMEM;
3714		goto out;
3715	}
3716
3717	key.objectid = objectid;
3718	key.type = BTRFS_INODE_ITEM_KEY;
3719	key.offset = 0;
3720	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3721	if (ret) {
3722		if (ret > 0)
3723			ret = -ENOENT;
3724		goto out;
3725	}
3726	ret = btrfs_del_item(trans, root, path);
3727out:
3728	if (ret)
3729		btrfs_abort_transaction(trans, ret);
3730	btrfs_free_path(path);
3731}
3732
3733/*
3734 * helper to create inode for data relocation.
3735 * the inode is in data relocation tree and its link count is 0
3736 */
3737static noinline_for_stack
3738struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3739				 struct btrfs_block_group *group)
3740{
3741	struct inode *inode = NULL;
3742	struct btrfs_trans_handle *trans;
3743	struct btrfs_root *root;
 
3744	u64 objectid;
3745	int err = 0;
3746
3747	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3748	trans = btrfs_start_transaction(root, 6);
3749	if (IS_ERR(trans)) {
3750		btrfs_put_root(root);
3751		return ERR_CAST(trans);
3752	}
3753
3754	err = btrfs_get_free_objectid(root, &objectid);
3755	if (err)
3756		goto out;
3757
3758	err = __insert_orphan_inode(trans, root, objectid);
3759	if (err)
3760		goto out;
3761
3762	inode = btrfs_iget(fs_info->sb, objectid, root);
3763	if (IS_ERR(inode)) {
3764		delete_orphan_inode(trans, root, objectid);
3765		err = PTR_ERR(inode);
3766		inode = NULL;
3767		goto out;
3768	}
3769	BTRFS_I(inode)->index_cnt = group->start;
3770
3771	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3772out:
3773	btrfs_put_root(root);
3774	btrfs_end_transaction(trans);
3775	btrfs_btree_balance_dirty(fs_info);
3776	if (err) {
3777		if (inode)
3778			iput(inode);
3779		inode = ERR_PTR(err);
3780	}
3781	return inode;
3782}
3783
3784/*
3785 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3786 * has been requested meanwhile and don't start in that case.
3787 *
3788 * Return:
3789 *   0             success
3790 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3791 *   -ECANCELED    cancellation request was set before the operation started
3792 *   -EAGAIN       can not start because there are ongoing send operations
3793 */
3794static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3795{
3796	spin_lock(&fs_info->send_reloc_lock);
3797	if (fs_info->send_in_progress) {
3798		btrfs_warn_rl(fs_info,
3799"cannot run relocation while send operations are in progress (%d in progress)",
3800			      fs_info->send_in_progress);
3801		spin_unlock(&fs_info->send_reloc_lock);
3802		return -EAGAIN;
3803	}
3804	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3805		/* This should not happen */
3806		spin_unlock(&fs_info->send_reloc_lock);
3807		btrfs_err(fs_info, "reloc already running, cannot start");
3808		return -EINPROGRESS;
3809	}
3810	spin_unlock(&fs_info->send_reloc_lock);
3811
3812	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3813		btrfs_info(fs_info, "chunk relocation canceled on start");
3814		/*
3815		 * On cancel, clear all requests but let the caller mark
3816		 * the end after cleanup operations.
3817		 */
3818		atomic_set(&fs_info->reloc_cancel_req, 0);
3819		return -ECANCELED;
3820	}
3821	return 0;
3822}
3823
3824/*
3825 * Mark end of chunk relocation that is cancellable and wake any waiters.
3826 */
3827static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3828{
3829	/* Requested after start, clear bit first so any waiters can continue */
3830	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3831		btrfs_info(fs_info, "chunk relocation canceled during operation");
3832	spin_lock(&fs_info->send_reloc_lock);
3833	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3834	spin_unlock(&fs_info->send_reloc_lock);
3835	atomic_set(&fs_info->reloc_cancel_req, 0);
3836}
3837
3838static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3839{
3840	struct reloc_control *rc;
3841
3842	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3843	if (!rc)
3844		return NULL;
3845
3846	INIT_LIST_HEAD(&rc->reloc_roots);
3847	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3848	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3849	mapping_tree_init(&rc->reloc_root_tree);
3850	extent_io_tree_init(fs_info, &rc->processed_blocks,
3851			    IO_TREE_RELOC_BLOCKS, NULL);
3852	return rc;
3853}
3854
3855static void free_reloc_control(struct reloc_control *rc)
3856{
3857	struct mapping_node *node, *tmp;
3858
3859	free_reloc_roots(&rc->reloc_roots);
3860	rbtree_postorder_for_each_entry_safe(node, tmp,
3861			&rc->reloc_root_tree.rb_root, rb_node)
3862		kfree(node);
3863
3864	kfree(rc);
3865}
3866
3867/*
3868 * Print the block group being relocated
3869 */
3870static void describe_relocation(struct btrfs_fs_info *fs_info,
3871				struct btrfs_block_group *block_group)
3872{
3873	char buf[128] = {'\0'};
 
 
 
 
 
 
 
3874
3875	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3876
3877	btrfs_info(fs_info,
3878		   "relocating block group %llu flags %s",
3879		   block_group->start, buf);
3880}
3881
3882static const char *stage_to_string(int stage)
3883{
3884	if (stage == MOVE_DATA_EXTENTS)
3885		return "move data extents";
3886	if (stage == UPDATE_DATA_PTRS)
3887		return "update data pointers";
3888	return "unknown";
3889}
3890
3891/*
3892 * function to relocate all extents in a block group.
3893 */
3894int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3895{
3896	struct btrfs_block_group *bg;
3897	struct btrfs_root *extent_root = fs_info->extent_root;
3898	struct reloc_control *rc;
3899	struct inode *inode;
3900	struct btrfs_path *path;
3901	int ret;
3902	int rw = 0;
3903	int err = 0;
3904
3905	bg = btrfs_lookup_block_group(fs_info, group_start);
3906	if (!bg)
3907		return -ENOENT;
3908
3909	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3910		btrfs_put_block_group(bg);
3911		return -ETXTBSY;
3912	}
3913
3914	rc = alloc_reloc_control(fs_info);
3915	if (!rc) {
3916		btrfs_put_block_group(bg);
3917		return -ENOMEM;
3918	}
3919
3920	ret = reloc_chunk_start(fs_info);
3921	if (ret < 0) {
3922		err = ret;
3923		goto out_put_bg;
3924	}
3925
3926	rc->extent_root = extent_root;
3927	rc->block_group = bg;
3928
3929	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3930	if (ret) {
3931		err = ret;
3932		goto out;
3933	}
3934	rw = 1;
3935
3936	path = btrfs_alloc_path();
3937	if (!path) {
3938		err = -ENOMEM;
3939		goto out;
3940	}
3941
3942	inode = lookup_free_space_inode(rc->block_group, path);
 
3943	btrfs_free_path(path);
3944
3945	if (!IS_ERR(inode))
3946		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3947	else
3948		ret = PTR_ERR(inode);
3949
3950	if (ret && ret != -ENOENT) {
3951		err = ret;
3952		goto out;
3953	}
3954
3955	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3956	if (IS_ERR(rc->data_inode)) {
3957		err = PTR_ERR(rc->data_inode);
3958		rc->data_inode = NULL;
3959		goto out;
3960	}
3961
3962	describe_relocation(fs_info, rc->block_group);
3963
3964	btrfs_wait_block_group_reservations(rc->block_group);
3965	btrfs_wait_nocow_writers(rc->block_group);
3966	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3967				 rc->block_group->start,
3968				 rc->block_group->length);
3969
3970	while (1) {
3971		int finishes_stage;
3972
3973		mutex_lock(&fs_info->cleaner_mutex);
3974		ret = relocate_block_group(rc);
3975		mutex_unlock(&fs_info->cleaner_mutex);
3976		if (ret < 0)
3977			err = ret;
 
 
 
 
 
 
 
3978
3979		finishes_stage = rc->stage;
3980		/*
3981		 * We may have gotten ENOSPC after we already dirtied some
3982		 * extents.  If writeout happens while we're relocating a
3983		 * different block group we could end up hitting the
3984		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3985		 * btrfs_reloc_cow_block.  Make sure we write everything out
3986		 * properly so we don't trip over this problem, and then break
3987		 * out of the loop if we hit an error.
3988		 */
3989		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3990			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3991						       (u64)-1);
3992			if (ret)
3993				err = ret;
 
 
3994			invalidate_mapping_pages(rc->data_inode->i_mapping,
3995						 0, -1);
3996			rc->stage = UPDATE_DATA_PTRS;
3997		}
3998
3999		if (err < 0)
4000			goto out;
4001
4002		if (rc->extents_found == 0)
4003			break;
4004
4005		btrfs_info(fs_info, "found %llu extents, stage: %s",
4006			   rc->extents_found, stage_to_string(finishes_stage));
4007	}
4008
4009	WARN_ON(rc->block_group->pinned > 0);
4010	WARN_ON(rc->block_group->reserved > 0);
4011	WARN_ON(rc->block_group->used > 0);
4012out:
4013	if (err && rw)
4014		btrfs_dec_block_group_ro(rc->block_group);
4015	iput(rc->data_inode);
4016out_put_bg:
4017	btrfs_put_block_group(bg);
4018	reloc_chunk_end(fs_info);
4019	free_reloc_control(rc);
4020	return err;
4021}
4022
4023static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4024{
4025	struct btrfs_fs_info *fs_info = root->fs_info;
4026	struct btrfs_trans_handle *trans;
4027	int ret, err;
4028
4029	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4030	if (IS_ERR(trans))
4031		return PTR_ERR(trans);
4032
4033	memset(&root->root_item.drop_progress, 0,
4034		sizeof(root->root_item.drop_progress));
4035	btrfs_set_root_drop_level(&root->root_item, 0);
4036	btrfs_set_root_refs(&root->root_item, 0);
4037	ret = btrfs_update_root(trans, fs_info->tree_root,
4038				&root->root_key, &root->root_item);
4039
4040	err = btrfs_end_transaction(trans);
4041	if (err)
4042		return err;
4043	return ret;
4044}
4045
4046/*
4047 * recover relocation interrupted by system crash.
4048 *
4049 * this function resumes merging reloc trees with corresponding fs trees.
4050 * this is important for keeping the sharing of tree blocks
4051 */
4052int btrfs_recover_relocation(struct btrfs_root *root)
4053{
4054	struct btrfs_fs_info *fs_info = root->fs_info;
4055	LIST_HEAD(reloc_roots);
4056	struct btrfs_key key;
4057	struct btrfs_root *fs_root;
4058	struct btrfs_root *reloc_root;
4059	struct btrfs_path *path;
4060	struct extent_buffer *leaf;
4061	struct reloc_control *rc = NULL;
4062	struct btrfs_trans_handle *trans;
4063	int ret;
4064	int err = 0;
4065
4066	path = btrfs_alloc_path();
4067	if (!path)
4068		return -ENOMEM;
4069	path->reada = READA_BACK;
4070
4071	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4072	key.type = BTRFS_ROOT_ITEM_KEY;
4073	key.offset = (u64)-1;
4074
4075	while (1) {
4076		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4077					path, 0, 0);
4078		if (ret < 0) {
4079			err = ret;
4080			goto out;
4081		}
4082		if (ret > 0) {
4083			if (path->slots[0] == 0)
4084				break;
4085			path->slots[0]--;
4086		}
4087		leaf = path->nodes[0];
4088		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4089		btrfs_release_path(path);
4090
4091		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4092		    key.type != BTRFS_ROOT_ITEM_KEY)
4093			break;
4094
4095		reloc_root = btrfs_read_tree_root(root, &key);
4096		if (IS_ERR(reloc_root)) {
4097			err = PTR_ERR(reloc_root);
4098			goto out;
4099		}
4100
4101		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4102		list_add(&reloc_root->root_list, &reloc_roots);
4103
4104		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4105			fs_root = btrfs_get_fs_root(fs_info,
4106					reloc_root->root_key.offset, false);
4107			if (IS_ERR(fs_root)) {
4108				ret = PTR_ERR(fs_root);
4109				if (ret != -ENOENT) {
4110					err = ret;
4111					goto out;
4112				}
4113				ret = mark_garbage_root(reloc_root);
4114				if (ret < 0) {
4115					err = ret;
4116					goto out;
4117				}
4118			} else {
4119				btrfs_put_root(fs_root);
4120			}
4121		}
4122
4123		if (key.offset == 0)
4124			break;
4125
4126		key.offset--;
4127	}
4128	btrfs_release_path(path);
4129
4130	if (list_empty(&reloc_roots))
4131		goto out;
4132
4133	rc = alloc_reloc_control(fs_info);
4134	if (!rc) {
4135		err = -ENOMEM;
4136		goto out;
4137	}
4138
4139	ret = reloc_chunk_start(fs_info);
4140	if (ret < 0) {
4141		err = ret;
4142		goto out_end;
4143	}
4144
4145	rc->extent_root = fs_info->extent_root;
4146
4147	set_reloc_control(rc);
4148
4149	trans = btrfs_join_transaction(rc->extent_root);
4150	if (IS_ERR(trans)) {
 
4151		err = PTR_ERR(trans);
4152		goto out_unset;
4153	}
4154
4155	rc->merge_reloc_tree = 1;
4156
4157	while (!list_empty(&reloc_roots)) {
4158		reloc_root = list_entry(reloc_roots.next,
4159					struct btrfs_root, root_list);
4160		list_del(&reloc_root->root_list);
4161
4162		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4163			list_add_tail(&reloc_root->root_list,
4164				      &rc->reloc_roots);
4165			continue;
4166		}
4167
4168		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4169					    false);
4170		if (IS_ERR(fs_root)) {
4171			err = PTR_ERR(fs_root);
4172			list_add_tail(&reloc_root->root_list, &reloc_roots);
4173			btrfs_end_transaction(trans);
4174			goto out_unset;
4175		}
4176
4177		err = __add_reloc_root(reloc_root);
4178		ASSERT(err != -EEXIST);
4179		if (err) {
4180			list_add_tail(&reloc_root->root_list, &reloc_roots);
4181			btrfs_put_root(fs_root);
4182			btrfs_end_transaction(trans);
4183			goto out_unset;
4184		}
4185		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4186		btrfs_put_root(fs_root);
4187	}
4188
4189	err = btrfs_commit_transaction(trans);
4190	if (err)
4191		goto out_unset;
4192
4193	merge_reloc_roots(rc);
4194
4195	unset_reloc_control(rc);
4196
4197	trans = btrfs_join_transaction(rc->extent_root);
4198	if (IS_ERR(trans)) {
4199		err = PTR_ERR(trans);
4200		goto out_clean;
4201	}
4202	err = btrfs_commit_transaction(trans);
4203out_clean:
4204	ret = clean_dirty_subvols(rc);
4205	if (ret < 0 && !err)
4206		err = ret;
4207out_unset:
4208	unset_reloc_control(rc);
4209out_end:
4210	reloc_chunk_end(fs_info);
4211	free_reloc_control(rc);
4212out:
4213	free_reloc_roots(&reloc_roots);
 
4214
4215	btrfs_free_path(path);
4216
4217	if (err == 0) {
4218		/* cleanup orphan inode in data relocation tree */
4219		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4220		ASSERT(fs_root);
4221		err = btrfs_orphan_cleanup(fs_root);
4222		btrfs_put_root(fs_root);
 
4223	}
4224	return err;
4225}
4226
4227/*
4228 * helper to add ordered checksum for data relocation.
4229 *
4230 * cloning checksum properly handles the nodatasum extents.
4231 * it also saves CPU time to re-calculate the checksum.
4232 */
4233int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4234{
4235	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4236	struct btrfs_ordered_sum *sums;
4237	struct btrfs_ordered_extent *ordered;
4238	int ret;
4239	u64 disk_bytenr;
4240	u64 new_bytenr;
4241	LIST_HEAD(list);
4242
4243	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4244	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4245
4246	disk_bytenr = file_pos + inode->index_cnt;
4247	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4248				       disk_bytenr + len - 1, &list, 0);
4249	if (ret)
4250		goto out;
4251
4252	while (!list_empty(&list)) {
4253		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4254		list_del_init(&sums->list);
4255
4256		/*
4257		 * We need to offset the new_bytenr based on where the csum is.
4258		 * We need to do this because we will read in entire prealloc
4259		 * extents but we may have written to say the middle of the
4260		 * prealloc extent, so we need to make sure the csum goes with
4261		 * the right disk offset.
4262		 *
4263		 * We can do this because the data reloc inode refers strictly
4264		 * to the on disk bytes, so we don't have to worry about
4265		 * disk_len vs real len like with real inodes since it's all
4266		 * disk length.
4267		 */
4268		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4269		sums->bytenr = new_bytenr;
4270
4271		btrfs_add_ordered_sum(ordered, sums);
4272	}
4273out:
4274	btrfs_put_ordered_extent(ordered);
4275	return ret;
4276}
4277
4278int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4279			  struct btrfs_root *root, struct extent_buffer *buf,
4280			  struct extent_buffer *cow)
4281{
4282	struct btrfs_fs_info *fs_info = root->fs_info;
4283	struct reloc_control *rc;
4284	struct btrfs_backref_node *node;
4285	int first_cow = 0;
4286	int level;
4287	int ret = 0;
4288
4289	rc = fs_info->reloc_ctl;
4290	if (!rc)
4291		return 0;
4292
4293	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4294	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4295
 
 
 
 
 
4296	level = btrfs_header_level(buf);
4297	if (btrfs_header_generation(buf) <=
4298	    btrfs_root_last_snapshot(&root->root_item))
4299		first_cow = 1;
4300
4301	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4302	    rc->create_reloc_tree) {
4303		WARN_ON(!first_cow && level == 0);
4304
4305		node = rc->backref_cache.path[level];
4306		BUG_ON(node->bytenr != buf->start &&
4307		       node->new_bytenr != buf->start);
4308
4309		btrfs_backref_drop_node_buffer(node);
4310		atomic_inc(&cow->refs);
4311		node->eb = cow;
4312		node->new_bytenr = cow->start;
4313
4314		if (!node->pending) {
4315			list_move_tail(&node->list,
4316				       &rc->backref_cache.pending[level]);
4317			node->pending = 1;
4318		}
4319
4320		if (first_cow)
4321			mark_block_processed(rc, node);
4322
4323		if (first_cow && level > 0)
4324			rc->nodes_relocated += buf->len;
4325	}
4326
4327	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4328		ret = replace_file_extents(trans, rc, root, cow);
4329	return ret;
4330}
4331
4332/*
4333 * called before creating snapshot. it calculates metadata reservation
4334 * required for relocating tree blocks in the snapshot
4335 */
4336void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4337			      u64 *bytes_to_reserve)
4338{
4339	struct btrfs_root *root = pending->root;
4340	struct reloc_control *rc = root->fs_info->reloc_ctl;
4341
4342	if (!rc || !have_reloc_root(root))
 
4343		return;
4344
 
4345	if (!rc->merge_reloc_tree)
4346		return;
4347
4348	root = root->reloc_root;
4349	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4350	/*
4351	 * relocation is in the stage of merging trees. the space
4352	 * used by merging a reloc tree is twice the size of
4353	 * relocated tree nodes in the worst case. half for cowing
4354	 * the reloc tree, half for cowing the fs tree. the space
4355	 * used by cowing the reloc tree will be freed after the
4356	 * tree is dropped. if we create snapshot, cowing the fs
4357	 * tree may use more space than it frees. so we need
4358	 * reserve extra space.
4359	 */
4360	*bytes_to_reserve += rc->nodes_relocated;
4361}
4362
4363/*
4364 * called after snapshot is created. migrate block reservation
4365 * and create reloc root for the newly created snapshot
4366 *
4367 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4368 * references held on the reloc_root, one for root->reloc_root and one for
4369 * rc->reloc_roots.
4370 */
4371int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4372			       struct btrfs_pending_snapshot *pending)
4373{
4374	struct btrfs_root *root = pending->root;
4375	struct btrfs_root *reloc_root;
4376	struct btrfs_root *new_root;
4377	struct reloc_control *rc = root->fs_info->reloc_ctl;
4378	int ret;
4379
4380	if (!rc || !have_reloc_root(root))
4381		return 0;
4382
4383	rc = root->fs_info->reloc_ctl;
4384	rc->merging_rsv_size += rc->nodes_relocated;
4385
4386	if (rc->merge_reloc_tree) {
4387		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4388					      rc->block_rsv,
4389					      rc->nodes_relocated, true);
4390		if (ret)
4391			return ret;
4392	}
4393
4394	new_root = pending->snap;
4395	reloc_root = create_reloc_root(trans, root->reloc_root,
4396				       new_root->root_key.objectid);
4397	if (IS_ERR(reloc_root))
4398		return PTR_ERR(reloc_root);
4399
4400	ret = __add_reloc_root(reloc_root);
4401	ASSERT(ret != -EEXIST);
4402	if (ret) {
4403		/* Pairs with create_reloc_root */
4404		btrfs_put_root(reloc_root);
4405		return ret;
4406	}
4407	new_root->reloc_root = btrfs_grab_root(reloc_root);
4408
4409	if (rc->create_reloc_tree)
4410		ret = clone_backref_node(trans, rc, root, reloc_root);
4411	return ret;
4412}