Loading...
1/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "volumes.h"
29#include "locking.h"
30#include "btrfs_inode.h"
31#include "async-thread.h"
32#include "free-space-cache.h"
33#include "inode-map.h"
34#include "qgroup.h"
35
36/*
37 * backref_node, mapping_node and tree_block start with this
38 */
39struct tree_entry {
40 struct rb_node rb_node;
41 u64 bytenr;
42};
43
44/*
45 * present a tree block in the backref cache
46 */
47struct backref_node {
48 struct rb_node rb_node;
49 u64 bytenr;
50
51 u64 new_bytenr;
52 /* objectid of tree block owner, can be not uptodate */
53 u64 owner;
54 /* link to pending, changed or detached list */
55 struct list_head list;
56 /* list of upper level blocks reference this block */
57 struct list_head upper;
58 /* list of child blocks in the cache */
59 struct list_head lower;
60 /* NULL if this node is not tree root */
61 struct btrfs_root *root;
62 /* extent buffer got by COW the block */
63 struct extent_buffer *eb;
64 /* level of tree block */
65 unsigned int level:8;
66 /* is the block in non-reference counted tree */
67 unsigned int cowonly:1;
68 /* 1 if no child node in the cache */
69 unsigned int lowest:1;
70 /* is the extent buffer locked */
71 unsigned int locked:1;
72 /* has the block been processed */
73 unsigned int processed:1;
74 /* have backrefs of this block been checked */
75 unsigned int checked:1;
76 /*
77 * 1 if corresponding block has been cowed but some upper
78 * level block pointers may not point to the new location
79 */
80 unsigned int pending:1;
81 /*
82 * 1 if the backref node isn't connected to any other
83 * backref node.
84 */
85 unsigned int detached:1;
86};
87
88/*
89 * present a block pointer in the backref cache
90 */
91struct backref_edge {
92 struct list_head list[2];
93 struct backref_node *node[2];
94};
95
96#define LOWER 0
97#define UPPER 1
98#define RELOCATION_RESERVED_NODES 256
99
100struct backref_cache {
101 /* red black tree of all backref nodes in the cache */
102 struct rb_root rb_root;
103 /* for passing backref nodes to btrfs_reloc_cow_block */
104 struct backref_node *path[BTRFS_MAX_LEVEL];
105 /*
106 * list of blocks that have been cowed but some block
107 * pointers in upper level blocks may not reflect the
108 * new location
109 */
110 struct list_head pending[BTRFS_MAX_LEVEL];
111 /* list of backref nodes with no child node */
112 struct list_head leaves;
113 /* list of blocks that have been cowed in current transaction */
114 struct list_head changed;
115 /* list of detached backref node. */
116 struct list_head detached;
117
118 u64 last_trans;
119
120 int nr_nodes;
121 int nr_edges;
122};
123
124/*
125 * map address of tree root to tree
126 */
127struct mapping_node {
128 struct rb_node rb_node;
129 u64 bytenr;
130 void *data;
131};
132
133struct mapping_tree {
134 struct rb_root rb_root;
135 spinlock_t lock;
136};
137
138/*
139 * present a tree block to process
140 */
141struct tree_block {
142 struct rb_node rb_node;
143 u64 bytenr;
144 struct btrfs_key key;
145 unsigned int level:8;
146 unsigned int key_ready:1;
147};
148
149#define MAX_EXTENTS 128
150
151struct file_extent_cluster {
152 u64 start;
153 u64 end;
154 u64 boundary[MAX_EXTENTS];
155 unsigned int nr;
156};
157
158struct reloc_control {
159 /* block group to relocate */
160 struct btrfs_block_group_cache *block_group;
161 /* extent tree */
162 struct btrfs_root *extent_root;
163 /* inode for moving data */
164 struct inode *data_inode;
165
166 struct btrfs_block_rsv *block_rsv;
167
168 struct backref_cache backref_cache;
169
170 struct file_extent_cluster cluster;
171 /* tree blocks have been processed */
172 struct extent_io_tree processed_blocks;
173 /* map start of tree root to corresponding reloc tree */
174 struct mapping_tree reloc_root_tree;
175 /* list of reloc trees */
176 struct list_head reloc_roots;
177 /* size of metadata reservation for merging reloc trees */
178 u64 merging_rsv_size;
179 /* size of relocated tree nodes */
180 u64 nodes_relocated;
181 /* reserved size for block group relocation*/
182 u64 reserved_bytes;
183
184 u64 search_start;
185 u64 extents_found;
186
187 unsigned int stage:8;
188 unsigned int create_reloc_tree:1;
189 unsigned int merge_reloc_tree:1;
190 unsigned int found_file_extent:1;
191};
192
193/* stages of data relocation */
194#define MOVE_DATA_EXTENTS 0
195#define UPDATE_DATA_PTRS 1
196
197static void remove_backref_node(struct backref_cache *cache,
198 struct backref_node *node);
199static void __mark_block_processed(struct reloc_control *rc,
200 struct backref_node *node);
201
202static void mapping_tree_init(struct mapping_tree *tree)
203{
204 tree->rb_root = RB_ROOT;
205 spin_lock_init(&tree->lock);
206}
207
208static void backref_cache_init(struct backref_cache *cache)
209{
210 int i;
211 cache->rb_root = RB_ROOT;
212 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
213 INIT_LIST_HEAD(&cache->pending[i]);
214 INIT_LIST_HEAD(&cache->changed);
215 INIT_LIST_HEAD(&cache->detached);
216 INIT_LIST_HEAD(&cache->leaves);
217}
218
219static void backref_cache_cleanup(struct backref_cache *cache)
220{
221 struct backref_node *node;
222 int i;
223
224 while (!list_empty(&cache->detached)) {
225 node = list_entry(cache->detached.next,
226 struct backref_node, list);
227 remove_backref_node(cache, node);
228 }
229
230 while (!list_empty(&cache->leaves)) {
231 node = list_entry(cache->leaves.next,
232 struct backref_node, lower);
233 remove_backref_node(cache, node);
234 }
235
236 cache->last_trans = 0;
237
238 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
239 ASSERT(list_empty(&cache->pending[i]));
240 ASSERT(list_empty(&cache->changed));
241 ASSERT(list_empty(&cache->detached));
242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
243 ASSERT(!cache->nr_nodes);
244 ASSERT(!cache->nr_edges);
245}
246
247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
248{
249 struct backref_node *node;
250
251 node = kzalloc(sizeof(*node), GFP_NOFS);
252 if (node) {
253 INIT_LIST_HEAD(&node->list);
254 INIT_LIST_HEAD(&node->upper);
255 INIT_LIST_HEAD(&node->lower);
256 RB_CLEAR_NODE(&node->rb_node);
257 cache->nr_nodes++;
258 }
259 return node;
260}
261
262static void free_backref_node(struct backref_cache *cache,
263 struct backref_node *node)
264{
265 if (node) {
266 cache->nr_nodes--;
267 kfree(node);
268 }
269}
270
271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
272{
273 struct backref_edge *edge;
274
275 edge = kzalloc(sizeof(*edge), GFP_NOFS);
276 if (edge)
277 cache->nr_edges++;
278 return edge;
279}
280
281static void free_backref_edge(struct backref_cache *cache,
282 struct backref_edge *edge)
283{
284 if (edge) {
285 cache->nr_edges--;
286 kfree(edge);
287 }
288}
289
290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
291 struct rb_node *node)
292{
293 struct rb_node **p = &root->rb_node;
294 struct rb_node *parent = NULL;
295 struct tree_entry *entry;
296
297 while (*p) {
298 parent = *p;
299 entry = rb_entry(parent, struct tree_entry, rb_node);
300
301 if (bytenr < entry->bytenr)
302 p = &(*p)->rb_left;
303 else if (bytenr > entry->bytenr)
304 p = &(*p)->rb_right;
305 else
306 return parent;
307 }
308
309 rb_link_node(node, parent, p);
310 rb_insert_color(node, root);
311 return NULL;
312}
313
314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
315{
316 struct rb_node *n = root->rb_node;
317 struct tree_entry *entry;
318
319 while (n) {
320 entry = rb_entry(n, struct tree_entry, rb_node);
321
322 if (bytenr < entry->bytenr)
323 n = n->rb_left;
324 else if (bytenr > entry->bytenr)
325 n = n->rb_right;
326 else
327 return n;
328 }
329 return NULL;
330}
331
332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
333{
334
335 struct btrfs_fs_info *fs_info = NULL;
336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
337 rb_node);
338 if (bnode->root)
339 fs_info = bnode->root->fs_info;
340 btrfs_panic(fs_info, errno,
341 "Inconsistency in backref cache found at offset %llu",
342 bytenr);
343}
344
345/*
346 * walk up backref nodes until reach node presents tree root
347 */
348static struct backref_node *walk_up_backref(struct backref_node *node,
349 struct backref_edge *edges[],
350 int *index)
351{
352 struct backref_edge *edge;
353 int idx = *index;
354
355 while (!list_empty(&node->upper)) {
356 edge = list_entry(node->upper.next,
357 struct backref_edge, list[LOWER]);
358 edges[idx++] = edge;
359 node = edge->node[UPPER];
360 }
361 BUG_ON(node->detached);
362 *index = idx;
363 return node;
364}
365
366/*
367 * walk down backref nodes to find start of next reference path
368 */
369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
370 int *index)
371{
372 struct backref_edge *edge;
373 struct backref_node *lower;
374 int idx = *index;
375
376 while (idx > 0) {
377 edge = edges[idx - 1];
378 lower = edge->node[LOWER];
379 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
380 idx--;
381 continue;
382 }
383 edge = list_entry(edge->list[LOWER].next,
384 struct backref_edge, list[LOWER]);
385 edges[idx - 1] = edge;
386 *index = idx;
387 return edge->node[UPPER];
388 }
389 *index = 0;
390 return NULL;
391}
392
393static void unlock_node_buffer(struct backref_node *node)
394{
395 if (node->locked) {
396 btrfs_tree_unlock(node->eb);
397 node->locked = 0;
398 }
399}
400
401static void drop_node_buffer(struct backref_node *node)
402{
403 if (node->eb) {
404 unlock_node_buffer(node);
405 free_extent_buffer(node->eb);
406 node->eb = NULL;
407 }
408}
409
410static void drop_backref_node(struct backref_cache *tree,
411 struct backref_node *node)
412{
413 BUG_ON(!list_empty(&node->upper));
414
415 drop_node_buffer(node);
416 list_del(&node->list);
417 list_del(&node->lower);
418 if (!RB_EMPTY_NODE(&node->rb_node))
419 rb_erase(&node->rb_node, &tree->rb_root);
420 free_backref_node(tree, node);
421}
422
423/*
424 * remove a backref node from the backref cache
425 */
426static void remove_backref_node(struct backref_cache *cache,
427 struct backref_node *node)
428{
429 struct backref_node *upper;
430 struct backref_edge *edge;
431
432 if (!node)
433 return;
434
435 BUG_ON(!node->lowest && !node->detached);
436 while (!list_empty(&node->upper)) {
437 edge = list_entry(node->upper.next, struct backref_edge,
438 list[LOWER]);
439 upper = edge->node[UPPER];
440 list_del(&edge->list[LOWER]);
441 list_del(&edge->list[UPPER]);
442 free_backref_edge(cache, edge);
443
444 if (RB_EMPTY_NODE(&upper->rb_node)) {
445 BUG_ON(!list_empty(&node->upper));
446 drop_backref_node(cache, node);
447 node = upper;
448 node->lowest = 1;
449 continue;
450 }
451 /*
452 * add the node to leaf node list if no other
453 * child block cached.
454 */
455 if (list_empty(&upper->lower)) {
456 list_add_tail(&upper->lower, &cache->leaves);
457 upper->lowest = 1;
458 }
459 }
460
461 drop_backref_node(cache, node);
462}
463
464static void update_backref_node(struct backref_cache *cache,
465 struct backref_node *node, u64 bytenr)
466{
467 struct rb_node *rb_node;
468 rb_erase(&node->rb_node, &cache->rb_root);
469 node->bytenr = bytenr;
470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
471 if (rb_node)
472 backref_tree_panic(rb_node, -EEXIST, bytenr);
473}
474
475/*
476 * update backref cache after a transaction commit
477 */
478static int update_backref_cache(struct btrfs_trans_handle *trans,
479 struct backref_cache *cache)
480{
481 struct backref_node *node;
482 int level = 0;
483
484 if (cache->last_trans == 0) {
485 cache->last_trans = trans->transid;
486 return 0;
487 }
488
489 if (cache->last_trans == trans->transid)
490 return 0;
491
492 /*
493 * detached nodes are used to avoid unnecessary backref
494 * lookup. transaction commit changes the extent tree.
495 * so the detached nodes are no longer useful.
496 */
497 while (!list_empty(&cache->detached)) {
498 node = list_entry(cache->detached.next,
499 struct backref_node, list);
500 remove_backref_node(cache, node);
501 }
502
503 while (!list_empty(&cache->changed)) {
504 node = list_entry(cache->changed.next,
505 struct backref_node, list);
506 list_del_init(&node->list);
507 BUG_ON(node->pending);
508 update_backref_node(cache, node, node->new_bytenr);
509 }
510
511 /*
512 * some nodes can be left in the pending list if there were
513 * errors during processing the pending nodes.
514 */
515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
516 list_for_each_entry(node, &cache->pending[level], list) {
517 BUG_ON(!node->pending);
518 if (node->bytenr == node->new_bytenr)
519 continue;
520 update_backref_node(cache, node, node->new_bytenr);
521 }
522 }
523
524 cache->last_trans = 0;
525 return 1;
526}
527
528
529static int should_ignore_root(struct btrfs_root *root)
530{
531 struct btrfs_root *reloc_root;
532
533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
534 return 0;
535
536 reloc_root = root->reloc_root;
537 if (!reloc_root)
538 return 0;
539
540 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
541 root->fs_info->running_transaction->transid - 1)
542 return 0;
543 /*
544 * if there is reloc tree and it was created in previous
545 * transaction backref lookup can find the reloc tree,
546 * so backref node for the fs tree root is useless for
547 * relocation.
548 */
549 return 1;
550}
551/*
552 * find reloc tree by address of tree root
553 */
554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
555 u64 bytenr)
556{
557 struct rb_node *rb_node;
558 struct mapping_node *node;
559 struct btrfs_root *root = NULL;
560
561 spin_lock(&rc->reloc_root_tree.lock);
562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct mapping_node, rb_node);
565 root = (struct btrfs_root *)node->data;
566 }
567 spin_unlock(&rc->reloc_root_tree.lock);
568 return root;
569}
570
571static int is_cowonly_root(u64 root_objectid)
572{
573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
576 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
577 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
578 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
579 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
582 return 1;
583 return 0;
584}
585
586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
587 u64 root_objectid)
588{
589 struct btrfs_key key;
590
591 key.objectid = root_objectid;
592 key.type = BTRFS_ROOT_ITEM_KEY;
593 if (is_cowonly_root(root_objectid))
594 key.offset = 0;
595 else
596 key.offset = (u64)-1;
597
598 return btrfs_get_fs_root(fs_info, &key, false);
599}
600
601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
602static noinline_for_stack
603struct btrfs_root *find_tree_root(struct reloc_control *rc,
604 struct extent_buffer *leaf,
605 struct btrfs_extent_ref_v0 *ref0)
606{
607 struct btrfs_root *root;
608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
609 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
610
611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
612
613 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
614 BUG_ON(IS_ERR(root));
615
616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
617 generation != btrfs_root_generation(&root->root_item))
618 return NULL;
619
620 return root;
621}
622#endif
623
624static noinline_for_stack
625int find_inline_backref(struct extent_buffer *leaf, int slot,
626 unsigned long *ptr, unsigned long *end)
627{
628 struct btrfs_key key;
629 struct btrfs_extent_item *ei;
630 struct btrfs_tree_block_info *bi;
631 u32 item_size;
632
633 btrfs_item_key_to_cpu(leaf, &key, slot);
634
635 item_size = btrfs_item_size_nr(leaf, slot);
636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
637 if (item_size < sizeof(*ei)) {
638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
639 return 1;
640 }
641#endif
642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
643 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
644 BTRFS_EXTENT_FLAG_TREE_BLOCK));
645
646 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
647 item_size <= sizeof(*ei) + sizeof(*bi)) {
648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
649 return 1;
650 }
651 if (key.type == BTRFS_METADATA_ITEM_KEY &&
652 item_size <= sizeof(*ei)) {
653 WARN_ON(item_size < sizeof(*ei));
654 return 1;
655 }
656
657 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
658 bi = (struct btrfs_tree_block_info *)(ei + 1);
659 *ptr = (unsigned long)(bi + 1);
660 } else {
661 *ptr = (unsigned long)(ei + 1);
662 }
663 *end = (unsigned long)ei + item_size;
664 return 0;
665}
666
667/*
668 * build backref tree for a given tree block. root of the backref tree
669 * corresponds the tree block, leaves of the backref tree correspond
670 * roots of b-trees that reference the tree block.
671 *
672 * the basic idea of this function is check backrefs of a given block
673 * to find upper level blocks that reference the block, and then check
674 * backrefs of these upper level blocks recursively. the recursion stop
675 * when tree root is reached or backrefs for the block is cached.
676 *
677 * NOTE: if we find backrefs for a block are cached, we know backrefs
678 * for all upper level blocks that directly/indirectly reference the
679 * block are also cached.
680 */
681static noinline_for_stack
682struct backref_node *build_backref_tree(struct reloc_control *rc,
683 struct btrfs_key *node_key,
684 int level, u64 bytenr)
685{
686 struct backref_cache *cache = &rc->backref_cache;
687 struct btrfs_path *path1;
688 struct btrfs_path *path2;
689 struct extent_buffer *eb;
690 struct btrfs_root *root;
691 struct backref_node *cur;
692 struct backref_node *upper;
693 struct backref_node *lower;
694 struct backref_node *node = NULL;
695 struct backref_node *exist = NULL;
696 struct backref_edge *edge;
697 struct rb_node *rb_node;
698 struct btrfs_key key;
699 unsigned long end;
700 unsigned long ptr;
701 LIST_HEAD(list);
702 LIST_HEAD(useless);
703 int cowonly;
704 int ret;
705 int err = 0;
706 bool need_check = true;
707
708 path1 = btrfs_alloc_path();
709 path2 = btrfs_alloc_path();
710 if (!path1 || !path2) {
711 err = -ENOMEM;
712 goto out;
713 }
714 path1->reada = READA_FORWARD;
715 path2->reada = READA_FORWARD;
716
717 node = alloc_backref_node(cache);
718 if (!node) {
719 err = -ENOMEM;
720 goto out;
721 }
722
723 node->bytenr = bytenr;
724 node->level = level;
725 node->lowest = 1;
726 cur = node;
727again:
728 end = 0;
729 ptr = 0;
730 key.objectid = cur->bytenr;
731 key.type = BTRFS_METADATA_ITEM_KEY;
732 key.offset = (u64)-1;
733
734 path1->search_commit_root = 1;
735 path1->skip_locking = 1;
736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
737 0, 0);
738 if (ret < 0) {
739 err = ret;
740 goto out;
741 }
742 ASSERT(ret);
743 ASSERT(path1->slots[0]);
744
745 path1->slots[0]--;
746
747 WARN_ON(cur->checked);
748 if (!list_empty(&cur->upper)) {
749 /*
750 * the backref was added previously when processing
751 * backref of type BTRFS_TREE_BLOCK_REF_KEY
752 */
753 ASSERT(list_is_singular(&cur->upper));
754 edge = list_entry(cur->upper.next, struct backref_edge,
755 list[LOWER]);
756 ASSERT(list_empty(&edge->list[UPPER]));
757 exist = edge->node[UPPER];
758 /*
759 * add the upper level block to pending list if we need
760 * check its backrefs
761 */
762 if (!exist->checked)
763 list_add_tail(&edge->list[UPPER], &list);
764 } else {
765 exist = NULL;
766 }
767
768 while (1) {
769 cond_resched();
770 eb = path1->nodes[0];
771
772 if (ptr >= end) {
773 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
774 ret = btrfs_next_leaf(rc->extent_root, path1);
775 if (ret < 0) {
776 err = ret;
777 goto out;
778 }
779 if (ret > 0)
780 break;
781 eb = path1->nodes[0];
782 }
783
784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
785 if (key.objectid != cur->bytenr) {
786 WARN_ON(exist);
787 break;
788 }
789
790 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
791 key.type == BTRFS_METADATA_ITEM_KEY) {
792 ret = find_inline_backref(eb, path1->slots[0],
793 &ptr, &end);
794 if (ret)
795 goto next;
796 }
797 }
798
799 if (ptr < end) {
800 /* update key for inline back ref */
801 struct btrfs_extent_inline_ref *iref;
802 iref = (struct btrfs_extent_inline_ref *)ptr;
803 key.type = btrfs_extent_inline_ref_type(eb, iref);
804 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
806 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
807 }
808
809 if (exist &&
810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
811 exist->owner == key.offset) ||
812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
813 exist->bytenr == key.offset))) {
814 exist = NULL;
815 goto next;
816 }
817
818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
820 key.type == BTRFS_EXTENT_REF_V0_KEY) {
821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
822 struct btrfs_extent_ref_v0 *ref0;
823 ref0 = btrfs_item_ptr(eb, path1->slots[0],
824 struct btrfs_extent_ref_v0);
825 if (key.objectid == key.offset) {
826 root = find_tree_root(rc, eb, ref0);
827 if (root && !should_ignore_root(root))
828 cur->root = root;
829 else
830 list_add(&cur->list, &useless);
831 break;
832 }
833 if (is_cowonly_root(btrfs_ref_root_v0(eb,
834 ref0)))
835 cur->cowonly = 1;
836 }
837#else
838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
840#endif
841 if (key.objectid == key.offset) {
842 /*
843 * only root blocks of reloc trees use
844 * backref of this type.
845 */
846 root = find_reloc_root(rc, cur->bytenr);
847 ASSERT(root);
848 cur->root = root;
849 break;
850 }
851
852 edge = alloc_backref_edge(cache);
853 if (!edge) {
854 err = -ENOMEM;
855 goto out;
856 }
857 rb_node = tree_search(&cache->rb_root, key.offset);
858 if (!rb_node) {
859 upper = alloc_backref_node(cache);
860 if (!upper) {
861 free_backref_edge(cache, edge);
862 err = -ENOMEM;
863 goto out;
864 }
865 upper->bytenr = key.offset;
866 upper->level = cur->level + 1;
867 /*
868 * backrefs for the upper level block isn't
869 * cached, add the block to pending list
870 */
871 list_add_tail(&edge->list[UPPER], &list);
872 } else {
873 upper = rb_entry(rb_node, struct backref_node,
874 rb_node);
875 ASSERT(upper->checked);
876 INIT_LIST_HEAD(&edge->list[UPPER]);
877 }
878 list_add_tail(&edge->list[LOWER], &cur->upper);
879 edge->node[LOWER] = cur;
880 edge->node[UPPER] = upper;
881
882 goto next;
883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
884 goto next;
885 }
886
887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
888 root = read_fs_root(rc->extent_root->fs_info, key.offset);
889 if (IS_ERR(root)) {
890 err = PTR_ERR(root);
891 goto out;
892 }
893
894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
895 cur->cowonly = 1;
896
897 if (btrfs_root_level(&root->root_item) == cur->level) {
898 /* tree root */
899 ASSERT(btrfs_root_bytenr(&root->root_item) ==
900 cur->bytenr);
901 if (should_ignore_root(root))
902 list_add(&cur->list, &useless);
903 else
904 cur->root = root;
905 break;
906 }
907
908 level = cur->level + 1;
909
910 /*
911 * searching the tree to find upper level blocks
912 * reference the block.
913 */
914 path2->search_commit_root = 1;
915 path2->skip_locking = 1;
916 path2->lowest_level = level;
917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
918 path2->lowest_level = 0;
919 if (ret < 0) {
920 err = ret;
921 goto out;
922 }
923 if (ret > 0 && path2->slots[level] > 0)
924 path2->slots[level]--;
925
926 eb = path2->nodes[level];
927 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
928 cur->bytenr) {
929 btrfs_err(root->fs_info,
930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
931 cur->bytenr, level - 1, root->objectid,
932 node_key->objectid, node_key->type,
933 node_key->offset);
934 err = -ENOENT;
935 goto out;
936 }
937 lower = cur;
938 need_check = true;
939 for (; level < BTRFS_MAX_LEVEL; level++) {
940 if (!path2->nodes[level]) {
941 ASSERT(btrfs_root_bytenr(&root->root_item) ==
942 lower->bytenr);
943 if (should_ignore_root(root))
944 list_add(&lower->list, &useless);
945 else
946 lower->root = root;
947 break;
948 }
949
950 edge = alloc_backref_edge(cache);
951 if (!edge) {
952 err = -ENOMEM;
953 goto out;
954 }
955
956 eb = path2->nodes[level];
957 rb_node = tree_search(&cache->rb_root, eb->start);
958 if (!rb_node) {
959 upper = alloc_backref_node(cache);
960 if (!upper) {
961 free_backref_edge(cache, edge);
962 err = -ENOMEM;
963 goto out;
964 }
965 upper->bytenr = eb->start;
966 upper->owner = btrfs_header_owner(eb);
967 upper->level = lower->level + 1;
968 if (!test_bit(BTRFS_ROOT_REF_COWS,
969 &root->state))
970 upper->cowonly = 1;
971
972 /*
973 * if we know the block isn't shared
974 * we can void checking its backrefs.
975 */
976 if (btrfs_block_can_be_shared(root, eb))
977 upper->checked = 0;
978 else
979 upper->checked = 1;
980
981 /*
982 * add the block to pending list if we
983 * need check its backrefs, we only do this once
984 * while walking up a tree as we will catch
985 * anything else later on.
986 */
987 if (!upper->checked && need_check) {
988 need_check = false;
989 list_add_tail(&edge->list[UPPER],
990 &list);
991 } else {
992 if (upper->checked)
993 need_check = true;
994 INIT_LIST_HEAD(&edge->list[UPPER]);
995 }
996 } else {
997 upper = rb_entry(rb_node, struct backref_node,
998 rb_node);
999 ASSERT(upper->checked);
1000 INIT_LIST_HEAD(&edge->list[UPPER]);
1001 if (!upper->owner)
1002 upper->owner = btrfs_header_owner(eb);
1003 }
1004 list_add_tail(&edge->list[LOWER], &lower->upper);
1005 edge->node[LOWER] = lower;
1006 edge->node[UPPER] = upper;
1007
1008 if (rb_node)
1009 break;
1010 lower = upper;
1011 upper = NULL;
1012 }
1013 btrfs_release_path(path2);
1014next:
1015 if (ptr < end) {
1016 ptr += btrfs_extent_inline_ref_size(key.type);
1017 if (ptr >= end) {
1018 WARN_ON(ptr > end);
1019 ptr = 0;
1020 end = 0;
1021 }
1022 }
1023 if (ptr >= end)
1024 path1->slots[0]++;
1025 }
1026 btrfs_release_path(path1);
1027
1028 cur->checked = 1;
1029 WARN_ON(exist);
1030
1031 /* the pending list isn't empty, take the first block to process */
1032 if (!list_empty(&list)) {
1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034 list_del_init(&edge->list[UPPER]);
1035 cur = edge->node[UPPER];
1036 goto again;
1037 }
1038
1039 /*
1040 * everything goes well, connect backref nodes and insert backref nodes
1041 * into the cache.
1042 */
1043 ASSERT(node->checked);
1044 cowonly = node->cowonly;
1045 if (!cowonly) {
1046 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047 &node->rb_node);
1048 if (rb_node)
1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050 list_add_tail(&node->lower, &cache->leaves);
1051 }
1052
1053 list_for_each_entry(edge, &node->upper, list[LOWER])
1054 list_add_tail(&edge->list[UPPER], &list);
1055
1056 while (!list_empty(&list)) {
1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058 list_del_init(&edge->list[UPPER]);
1059 upper = edge->node[UPPER];
1060 if (upper->detached) {
1061 list_del(&edge->list[LOWER]);
1062 lower = edge->node[LOWER];
1063 free_backref_edge(cache, edge);
1064 if (list_empty(&lower->upper))
1065 list_add(&lower->list, &useless);
1066 continue;
1067 }
1068
1069 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070 if (upper->lowest) {
1071 list_del_init(&upper->lower);
1072 upper->lowest = 0;
1073 }
1074
1075 list_add_tail(&edge->list[UPPER], &upper->lower);
1076 continue;
1077 }
1078
1079 if (!upper->checked) {
1080 /*
1081 * Still want to blow up for developers since this is a
1082 * logic bug.
1083 */
1084 ASSERT(0);
1085 err = -EINVAL;
1086 goto out;
1087 }
1088 if (cowonly != upper->cowonly) {
1089 ASSERT(0);
1090 err = -EINVAL;
1091 goto out;
1092 }
1093
1094 if (!cowonly) {
1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096 &upper->rb_node);
1097 if (rb_node)
1098 backref_tree_panic(rb_node, -EEXIST,
1099 upper->bytenr);
1100 }
1101
1102 list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104 list_for_each_entry(edge, &upper->upper, list[LOWER])
1105 list_add_tail(&edge->list[UPPER], &list);
1106 }
1107 /*
1108 * process useless backref nodes. backref nodes for tree leaves
1109 * are deleted from the cache. backref nodes for upper level
1110 * tree blocks are left in the cache to avoid unnecessary backref
1111 * lookup.
1112 */
1113 while (!list_empty(&useless)) {
1114 upper = list_entry(useless.next, struct backref_node, list);
1115 list_del_init(&upper->list);
1116 ASSERT(list_empty(&upper->upper));
1117 if (upper == node)
1118 node = NULL;
1119 if (upper->lowest) {
1120 list_del_init(&upper->lower);
1121 upper->lowest = 0;
1122 }
1123 while (!list_empty(&upper->lower)) {
1124 edge = list_entry(upper->lower.next,
1125 struct backref_edge, list[UPPER]);
1126 list_del(&edge->list[UPPER]);
1127 list_del(&edge->list[LOWER]);
1128 lower = edge->node[LOWER];
1129 free_backref_edge(cache, edge);
1130
1131 if (list_empty(&lower->upper))
1132 list_add(&lower->list, &useless);
1133 }
1134 __mark_block_processed(rc, upper);
1135 if (upper->level > 0) {
1136 list_add(&upper->list, &cache->detached);
1137 upper->detached = 1;
1138 } else {
1139 rb_erase(&upper->rb_node, &cache->rb_root);
1140 free_backref_node(cache, upper);
1141 }
1142 }
1143out:
1144 btrfs_free_path(path1);
1145 btrfs_free_path(path2);
1146 if (err) {
1147 while (!list_empty(&useless)) {
1148 lower = list_entry(useless.next,
1149 struct backref_node, list);
1150 list_del_init(&lower->list);
1151 }
1152 while (!list_empty(&list)) {
1153 edge = list_first_entry(&list, struct backref_edge,
1154 list[UPPER]);
1155 list_del(&edge->list[UPPER]);
1156 list_del(&edge->list[LOWER]);
1157 lower = edge->node[LOWER];
1158 upper = edge->node[UPPER];
1159 free_backref_edge(cache, edge);
1160
1161 /*
1162 * Lower is no longer linked to any upper backref nodes
1163 * and isn't in the cache, we can free it ourselves.
1164 */
1165 if (list_empty(&lower->upper) &&
1166 RB_EMPTY_NODE(&lower->rb_node))
1167 list_add(&lower->list, &useless);
1168
1169 if (!RB_EMPTY_NODE(&upper->rb_node))
1170 continue;
1171
1172 /* Add this guy's upper edges to the list to process */
1173 list_for_each_entry(edge, &upper->upper, list[LOWER])
1174 list_add_tail(&edge->list[UPPER], &list);
1175 if (list_empty(&upper->upper))
1176 list_add(&upper->list, &useless);
1177 }
1178
1179 while (!list_empty(&useless)) {
1180 lower = list_entry(useless.next,
1181 struct backref_node, list);
1182 list_del_init(&lower->list);
1183 if (lower == node)
1184 node = NULL;
1185 free_backref_node(cache, lower);
1186 }
1187
1188 free_backref_node(cache, node);
1189 return ERR_PTR(err);
1190 }
1191 ASSERT(!node || !node->detached);
1192 return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201 struct reloc_control *rc,
1202 struct btrfs_root *src,
1203 struct btrfs_root *dest)
1204{
1205 struct btrfs_root *reloc_root = src->reloc_root;
1206 struct backref_cache *cache = &rc->backref_cache;
1207 struct backref_node *node = NULL;
1208 struct backref_node *new_node;
1209 struct backref_edge *edge;
1210 struct backref_edge *new_edge;
1211 struct rb_node *rb_node;
1212
1213 if (cache->last_trans > 0)
1214 update_backref_cache(trans, cache);
1215
1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217 if (rb_node) {
1218 node = rb_entry(rb_node, struct backref_node, rb_node);
1219 if (node->detached)
1220 node = NULL;
1221 else
1222 BUG_ON(node->new_bytenr != reloc_root->node->start);
1223 }
1224
1225 if (!node) {
1226 rb_node = tree_search(&cache->rb_root,
1227 reloc_root->commit_root->start);
1228 if (rb_node) {
1229 node = rb_entry(rb_node, struct backref_node,
1230 rb_node);
1231 BUG_ON(node->detached);
1232 }
1233 }
1234
1235 if (!node)
1236 return 0;
1237
1238 new_node = alloc_backref_node(cache);
1239 if (!new_node)
1240 return -ENOMEM;
1241
1242 new_node->bytenr = dest->node->start;
1243 new_node->level = node->level;
1244 new_node->lowest = node->lowest;
1245 new_node->checked = 1;
1246 new_node->root = dest;
1247
1248 if (!node->lowest) {
1249 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250 new_edge = alloc_backref_edge(cache);
1251 if (!new_edge)
1252 goto fail;
1253
1254 new_edge->node[UPPER] = new_node;
1255 new_edge->node[LOWER] = edge->node[LOWER];
1256 list_add_tail(&new_edge->list[UPPER],
1257 &new_node->lower);
1258 }
1259 } else {
1260 list_add_tail(&new_node->lower, &cache->leaves);
1261 }
1262
1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264 &new_node->rb_node);
1265 if (rb_node)
1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268 if (!new_node->lowest) {
1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270 list_add_tail(&new_edge->list[LOWER],
1271 &new_edge->node[LOWER]->upper);
1272 }
1273 }
1274 return 0;
1275fail:
1276 while (!list_empty(&new_node->lower)) {
1277 new_edge = list_entry(new_node->lower.next,
1278 struct backref_edge, list[UPPER]);
1279 list_del(&new_edge->list[UPPER]);
1280 free_backref_edge(cache, new_edge);
1281 }
1282 free_backref_node(cache, new_node);
1283 return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291 struct btrfs_fs_info *fs_info = root->fs_info;
1292 struct rb_node *rb_node;
1293 struct mapping_node *node;
1294 struct reloc_control *rc = fs_info->reloc_ctl;
1295
1296 node = kmalloc(sizeof(*node), GFP_NOFS);
1297 if (!node)
1298 return -ENOMEM;
1299
1300 node->bytenr = root->node->start;
1301 node->data = root;
1302
1303 spin_lock(&rc->reloc_root_tree.lock);
1304 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1305 node->bytenr, &node->rb_node);
1306 spin_unlock(&rc->reloc_root_tree.lock);
1307 if (rb_node) {
1308 btrfs_panic(fs_info, -EEXIST,
1309 "Duplicate root found for start=%llu while inserting into relocation tree",
1310 node->bytenr);
1311 kfree(node);
1312 return -EEXIST;
1313 }
1314
1315 list_add_tail(&root->root_list, &rc->reloc_roots);
1316 return 0;
1317}
1318
1319/*
1320 * helper to delete the 'address of tree root -> reloc tree'
1321 * mapping
1322 */
1323static void __del_reloc_root(struct btrfs_root *root)
1324{
1325 struct btrfs_fs_info *fs_info = root->fs_info;
1326 struct rb_node *rb_node;
1327 struct mapping_node *node = NULL;
1328 struct reloc_control *rc = fs_info->reloc_ctl;
1329
1330 spin_lock(&rc->reloc_root_tree.lock);
1331 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332 root->node->start);
1333 if (rb_node) {
1334 node = rb_entry(rb_node, struct mapping_node, rb_node);
1335 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1336 }
1337 spin_unlock(&rc->reloc_root_tree.lock);
1338
1339 if (!node)
1340 return;
1341 BUG_ON((struct btrfs_root *)node->data != root);
1342
1343 spin_lock(&fs_info->trans_lock);
1344 list_del_init(&root->root_list);
1345 spin_unlock(&fs_info->trans_lock);
1346 kfree(node);
1347}
1348
1349/*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
1353static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354{
1355 struct btrfs_fs_info *fs_info = root->fs_info;
1356 struct rb_node *rb_node;
1357 struct mapping_node *node = NULL;
1358 struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360 spin_lock(&rc->reloc_root_tree.lock);
1361 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362 root->node->start);
1363 if (rb_node) {
1364 node = rb_entry(rb_node, struct mapping_node, rb_node);
1365 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366 }
1367 spin_unlock(&rc->reloc_root_tree.lock);
1368
1369 if (!node)
1370 return 0;
1371 BUG_ON((struct btrfs_root *)node->data != root);
1372
1373 spin_lock(&rc->reloc_root_tree.lock);
1374 node->bytenr = new_bytenr;
1375 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376 node->bytenr, &node->rb_node);
1377 spin_unlock(&rc->reloc_root_tree.lock);
1378 if (rb_node)
1379 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380 return 0;
1381}
1382
1383static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root, u64 objectid)
1385{
1386 struct btrfs_fs_info *fs_info = root->fs_info;
1387 struct btrfs_root *reloc_root;
1388 struct extent_buffer *eb;
1389 struct btrfs_root_item *root_item;
1390 struct btrfs_key root_key;
1391 int ret;
1392
1393 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394 BUG_ON(!root_item);
1395
1396 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397 root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 root_key.offset = objectid;
1399
1400 if (root->root_key.objectid == objectid) {
1401 u64 commit_root_gen;
1402
1403 /* called by btrfs_init_reloc_root */
1404 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405 BTRFS_TREE_RELOC_OBJECTID);
1406 BUG_ON(ret);
1407 /*
1408 * Set the last_snapshot field to the generation of the commit
1409 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410 * correctly (returns true) when the relocation root is created
1411 * either inside the critical section of a transaction commit
1412 * (through transaction.c:qgroup_account_snapshot()) and when
1413 * it's created before the transaction commit is started.
1414 */
1415 commit_root_gen = btrfs_header_generation(root->commit_root);
1416 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417 } else {
1418 /*
1419 * called by btrfs_reloc_post_snapshot_hook.
1420 * the source tree is a reloc tree, all tree blocks
1421 * modified after it was created have RELOC flag
1422 * set in their headers. so it's OK to not update
1423 * the 'last_snapshot'.
1424 */
1425 ret = btrfs_copy_root(trans, root, root->node, &eb,
1426 BTRFS_TREE_RELOC_OBJECTID);
1427 BUG_ON(ret);
1428 }
1429
1430 memcpy(root_item, &root->root_item, sizeof(*root_item));
1431 btrfs_set_root_bytenr(root_item, eb->start);
1432 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433 btrfs_set_root_generation(root_item, trans->transid);
1434
1435 if (root->root_key.objectid == objectid) {
1436 btrfs_set_root_refs(root_item, 0);
1437 memset(&root_item->drop_progress, 0,
1438 sizeof(struct btrfs_disk_key));
1439 root_item->drop_level = 0;
1440 }
1441
1442 btrfs_tree_unlock(eb);
1443 free_extent_buffer(eb);
1444
1445 ret = btrfs_insert_root(trans, fs_info->tree_root,
1446 &root_key, root_item);
1447 BUG_ON(ret);
1448 kfree(root_item);
1449
1450 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1451 BUG_ON(IS_ERR(reloc_root));
1452 reloc_root->last_trans = trans->transid;
1453 return reloc_root;
1454}
1455
1456/*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
1459 */
1460int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root)
1462{
1463 struct btrfs_fs_info *fs_info = root->fs_info;
1464 struct btrfs_root *reloc_root;
1465 struct reloc_control *rc = fs_info->reloc_ctl;
1466 struct btrfs_block_rsv *rsv;
1467 int clear_rsv = 0;
1468 int ret;
1469
1470 if (root->reloc_root) {
1471 reloc_root = root->reloc_root;
1472 reloc_root->last_trans = trans->transid;
1473 return 0;
1474 }
1475
1476 if (!rc || !rc->create_reloc_tree ||
1477 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1478 return 0;
1479
1480 if (!trans->reloc_reserved) {
1481 rsv = trans->block_rsv;
1482 trans->block_rsv = rc->block_rsv;
1483 clear_rsv = 1;
1484 }
1485 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1486 if (clear_rsv)
1487 trans->block_rsv = rsv;
1488
1489 ret = __add_reloc_root(reloc_root);
1490 BUG_ON(ret < 0);
1491 root->reloc_root = reloc_root;
1492 return 0;
1493}
1494
1495/*
1496 * update root item of reloc tree
1497 */
1498int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root)
1500{
1501 struct btrfs_fs_info *fs_info = root->fs_info;
1502 struct btrfs_root *reloc_root;
1503 struct btrfs_root_item *root_item;
1504 int ret;
1505
1506 if (!root->reloc_root)
1507 goto out;
1508
1509 reloc_root = root->reloc_root;
1510 root_item = &reloc_root->root_item;
1511
1512 if (fs_info->reloc_ctl->merge_reloc_tree &&
1513 btrfs_root_refs(root_item) == 0) {
1514 root->reloc_root = NULL;
1515 __del_reloc_root(reloc_root);
1516 }
1517
1518 if (reloc_root->commit_root != reloc_root->node) {
1519 btrfs_set_root_node(root_item, reloc_root->node);
1520 free_extent_buffer(reloc_root->commit_root);
1521 reloc_root->commit_root = btrfs_root_node(reloc_root);
1522 }
1523
1524 ret = btrfs_update_root(trans, fs_info->tree_root,
1525 &reloc_root->root_key, root_item);
1526 BUG_ON(ret);
1527
1528out:
1529 return 0;
1530}
1531
1532/*
1533 * helper to find first cached inode with inode number >= objectid
1534 * in a subvolume
1535 */
1536static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1537{
1538 struct rb_node *node;
1539 struct rb_node *prev;
1540 struct btrfs_inode *entry;
1541 struct inode *inode;
1542
1543 spin_lock(&root->inode_lock);
1544again:
1545 node = root->inode_tree.rb_node;
1546 prev = NULL;
1547 while (node) {
1548 prev = node;
1549 entry = rb_entry(node, struct btrfs_inode, rb_node);
1550
1551 if (objectid < btrfs_ino(&entry->vfs_inode))
1552 node = node->rb_left;
1553 else if (objectid > btrfs_ino(&entry->vfs_inode))
1554 node = node->rb_right;
1555 else
1556 break;
1557 }
1558 if (!node) {
1559 while (prev) {
1560 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1561 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1562 node = prev;
1563 break;
1564 }
1565 prev = rb_next(prev);
1566 }
1567 }
1568 while (node) {
1569 entry = rb_entry(node, struct btrfs_inode, rb_node);
1570 inode = igrab(&entry->vfs_inode);
1571 if (inode) {
1572 spin_unlock(&root->inode_lock);
1573 return inode;
1574 }
1575
1576 objectid = btrfs_ino(&entry->vfs_inode) + 1;
1577 if (cond_resched_lock(&root->inode_lock))
1578 goto again;
1579
1580 node = rb_next(node);
1581 }
1582 spin_unlock(&root->inode_lock);
1583 return NULL;
1584}
1585
1586static int in_block_group(u64 bytenr,
1587 struct btrfs_block_group_cache *block_group)
1588{
1589 if (bytenr >= block_group->key.objectid &&
1590 bytenr < block_group->key.objectid + block_group->key.offset)
1591 return 1;
1592 return 0;
1593}
1594
1595/*
1596 * get new location of data
1597 */
1598static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1599 u64 bytenr, u64 num_bytes)
1600{
1601 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1602 struct btrfs_path *path;
1603 struct btrfs_file_extent_item *fi;
1604 struct extent_buffer *leaf;
1605 int ret;
1606
1607 path = btrfs_alloc_path();
1608 if (!path)
1609 return -ENOMEM;
1610
1611 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1612 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1613 bytenr, 0);
1614 if (ret < 0)
1615 goto out;
1616 if (ret > 0) {
1617 ret = -ENOENT;
1618 goto out;
1619 }
1620
1621 leaf = path->nodes[0];
1622 fi = btrfs_item_ptr(leaf, path->slots[0],
1623 struct btrfs_file_extent_item);
1624
1625 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1626 btrfs_file_extent_compression(leaf, fi) ||
1627 btrfs_file_extent_encryption(leaf, fi) ||
1628 btrfs_file_extent_other_encoding(leaf, fi));
1629
1630 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1631 ret = -EINVAL;
1632 goto out;
1633 }
1634
1635 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1636 ret = 0;
1637out:
1638 btrfs_free_path(path);
1639 return ret;
1640}
1641
1642/*
1643 * update file extent items in the tree leaf to point to
1644 * the new locations.
1645 */
1646static noinline_for_stack
1647int replace_file_extents(struct btrfs_trans_handle *trans,
1648 struct reloc_control *rc,
1649 struct btrfs_root *root,
1650 struct extent_buffer *leaf)
1651{
1652 struct btrfs_fs_info *fs_info = root->fs_info;
1653 struct btrfs_key key;
1654 struct btrfs_file_extent_item *fi;
1655 struct inode *inode = NULL;
1656 u64 parent;
1657 u64 bytenr;
1658 u64 new_bytenr = 0;
1659 u64 num_bytes;
1660 u64 end;
1661 u32 nritems;
1662 u32 i;
1663 int ret = 0;
1664 int first = 1;
1665 int dirty = 0;
1666
1667 if (rc->stage != UPDATE_DATA_PTRS)
1668 return 0;
1669
1670 /* reloc trees always use full backref */
1671 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1672 parent = leaf->start;
1673 else
1674 parent = 0;
1675
1676 nritems = btrfs_header_nritems(leaf);
1677 for (i = 0; i < nritems; i++) {
1678 cond_resched();
1679 btrfs_item_key_to_cpu(leaf, &key, i);
1680 if (key.type != BTRFS_EXTENT_DATA_KEY)
1681 continue;
1682 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1683 if (btrfs_file_extent_type(leaf, fi) ==
1684 BTRFS_FILE_EXTENT_INLINE)
1685 continue;
1686 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1687 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1688 if (bytenr == 0)
1689 continue;
1690 if (!in_block_group(bytenr, rc->block_group))
1691 continue;
1692
1693 /*
1694 * if we are modifying block in fs tree, wait for readpage
1695 * to complete and drop the extent cache
1696 */
1697 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1698 if (first) {
1699 inode = find_next_inode(root, key.objectid);
1700 first = 0;
1701 } else if (inode && btrfs_ino(inode) < key.objectid) {
1702 btrfs_add_delayed_iput(inode);
1703 inode = find_next_inode(root, key.objectid);
1704 }
1705 if (inode && btrfs_ino(inode) == key.objectid) {
1706 end = key.offset +
1707 btrfs_file_extent_num_bytes(leaf, fi);
1708 WARN_ON(!IS_ALIGNED(key.offset,
1709 fs_info->sectorsize));
1710 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1711 end--;
1712 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1713 key.offset, end);
1714 if (!ret)
1715 continue;
1716
1717 btrfs_drop_extent_cache(inode, key.offset, end,
1718 1);
1719 unlock_extent(&BTRFS_I(inode)->io_tree,
1720 key.offset, end);
1721 }
1722 }
1723
1724 ret = get_new_location(rc->data_inode, &new_bytenr,
1725 bytenr, num_bytes);
1726 if (ret) {
1727 /*
1728 * Don't have to abort since we've not changed anything
1729 * in the file extent yet.
1730 */
1731 break;
1732 }
1733
1734 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1735 dirty = 1;
1736
1737 key.offset -= btrfs_file_extent_offset(leaf, fi);
1738 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1739 num_bytes, parent,
1740 btrfs_header_owner(leaf),
1741 key.objectid, key.offset);
1742 if (ret) {
1743 btrfs_abort_transaction(trans, ret);
1744 break;
1745 }
1746
1747 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1748 parent, btrfs_header_owner(leaf),
1749 key.objectid, key.offset);
1750 if (ret) {
1751 btrfs_abort_transaction(trans, ret);
1752 break;
1753 }
1754 }
1755 if (dirty)
1756 btrfs_mark_buffer_dirty(leaf);
1757 if (inode)
1758 btrfs_add_delayed_iput(inode);
1759 return ret;
1760}
1761
1762static noinline_for_stack
1763int memcmp_node_keys(struct extent_buffer *eb, int slot,
1764 struct btrfs_path *path, int level)
1765{
1766 struct btrfs_disk_key key1;
1767 struct btrfs_disk_key key2;
1768 btrfs_node_key(eb, &key1, slot);
1769 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1770 return memcmp(&key1, &key2, sizeof(key1));
1771}
1772
1773/*
1774 * try to replace tree blocks in fs tree with the new blocks
1775 * in reloc tree. tree blocks haven't been modified since the
1776 * reloc tree was create can be replaced.
1777 *
1778 * if a block was replaced, level of the block + 1 is returned.
1779 * if no block got replaced, 0 is returned. if there are other
1780 * errors, a negative error number is returned.
1781 */
1782static noinline_for_stack
1783int replace_path(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *dest, struct btrfs_root *src,
1785 struct btrfs_path *path, struct btrfs_key *next_key,
1786 int lowest_level, int max_level)
1787{
1788 struct btrfs_fs_info *fs_info = dest->fs_info;
1789 struct extent_buffer *eb;
1790 struct extent_buffer *parent;
1791 struct btrfs_key key;
1792 u64 old_bytenr;
1793 u64 new_bytenr;
1794 u64 old_ptr_gen;
1795 u64 new_ptr_gen;
1796 u64 last_snapshot;
1797 u32 blocksize;
1798 int cow = 0;
1799 int level;
1800 int ret;
1801 int slot;
1802
1803 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807again:
1808 slot = path->slots[lowest_level];
1809 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811 eb = btrfs_lock_root_node(dest);
1812 btrfs_set_lock_blocking(eb);
1813 level = btrfs_header_level(eb);
1814
1815 if (level < lowest_level) {
1816 btrfs_tree_unlock(eb);
1817 free_extent_buffer(eb);
1818 return 0;
1819 }
1820
1821 if (cow) {
1822 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823 BUG_ON(ret);
1824 }
1825 btrfs_set_lock_blocking(eb);
1826
1827 if (next_key) {
1828 next_key->objectid = (u64)-1;
1829 next_key->type = (u8)-1;
1830 next_key->offset = (u64)-1;
1831 }
1832
1833 parent = eb;
1834 while (1) {
1835 level = btrfs_header_level(parent);
1836 BUG_ON(level < lowest_level);
1837
1838 ret = btrfs_bin_search(parent, &key, level, &slot);
1839 if (ret && slot > 0)
1840 slot--;
1841
1842 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845 old_bytenr = btrfs_node_blockptr(parent, slot);
1846 blocksize = fs_info->nodesize;
1847 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1848
1849 if (level <= max_level) {
1850 eb = path->nodes[level];
1851 new_bytenr = btrfs_node_blockptr(eb,
1852 path->slots[level]);
1853 new_ptr_gen = btrfs_node_ptr_generation(eb,
1854 path->slots[level]);
1855 } else {
1856 new_bytenr = 0;
1857 new_ptr_gen = 0;
1858 }
1859
1860 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1861 ret = level;
1862 break;
1863 }
1864
1865 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866 memcmp_node_keys(parent, slot, path, level)) {
1867 if (level <= lowest_level) {
1868 ret = 0;
1869 break;
1870 }
1871
1872 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1873 if (IS_ERR(eb)) {
1874 ret = PTR_ERR(eb);
1875 break;
1876 } else if (!extent_buffer_uptodate(eb)) {
1877 ret = -EIO;
1878 free_extent_buffer(eb);
1879 break;
1880 }
1881 btrfs_tree_lock(eb);
1882 if (cow) {
1883 ret = btrfs_cow_block(trans, dest, eb, parent,
1884 slot, &eb);
1885 BUG_ON(ret);
1886 }
1887 btrfs_set_lock_blocking(eb);
1888
1889 btrfs_tree_unlock(parent);
1890 free_extent_buffer(parent);
1891
1892 parent = eb;
1893 continue;
1894 }
1895
1896 if (!cow) {
1897 btrfs_tree_unlock(parent);
1898 free_extent_buffer(parent);
1899 cow = 1;
1900 goto again;
1901 }
1902
1903 btrfs_node_key_to_cpu(path->nodes[level], &key,
1904 path->slots[level]);
1905 btrfs_release_path(path);
1906
1907 path->lowest_level = level;
1908 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909 path->lowest_level = 0;
1910 BUG_ON(ret);
1911
1912 /*
1913 * Info qgroup to trace both subtrees.
1914 *
1915 * We must trace both trees.
1916 * 1) Tree reloc subtree
1917 * If not traced, we will leak data numbers
1918 * 2) Fs subtree
1919 * If not traced, we will double count old data
1920 * and tree block numbers, if current trans doesn't free
1921 * data reloc tree inode.
1922 */
1923 ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1924 btrfs_header_generation(parent),
1925 btrfs_header_level(parent));
1926 if (ret < 0)
1927 break;
1928 ret = btrfs_qgroup_trace_subtree(trans, dest,
1929 path->nodes[level],
1930 btrfs_header_generation(path->nodes[level]),
1931 btrfs_header_level(path->nodes[level]));
1932 if (ret < 0)
1933 break;
1934
1935 /*
1936 * swap blocks in fs tree and reloc tree.
1937 */
1938 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1939 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1940 btrfs_mark_buffer_dirty(parent);
1941
1942 btrfs_set_node_blockptr(path->nodes[level],
1943 path->slots[level], old_bytenr);
1944 btrfs_set_node_ptr_generation(path->nodes[level],
1945 path->slots[level], old_ptr_gen);
1946 btrfs_mark_buffer_dirty(path->nodes[level]);
1947
1948 ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1949 blocksize, path->nodes[level]->start,
1950 src->root_key.objectid, level - 1, 0);
1951 BUG_ON(ret);
1952 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1953 blocksize, 0, dest->root_key.objectid,
1954 level - 1, 0);
1955 BUG_ON(ret);
1956
1957 ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1958 path->nodes[level]->start,
1959 src->root_key.objectid, level - 1, 0);
1960 BUG_ON(ret);
1961
1962 ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1963 0, dest->root_key.objectid, level - 1,
1964 0);
1965 BUG_ON(ret);
1966
1967 btrfs_unlock_up_safe(path, 0);
1968
1969 ret = level;
1970 break;
1971 }
1972 btrfs_tree_unlock(parent);
1973 free_extent_buffer(parent);
1974 return ret;
1975}
1976
1977/*
1978 * helper to find next relocated block in reloc tree
1979 */
1980static noinline_for_stack
1981int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1982 int *level)
1983{
1984 struct extent_buffer *eb;
1985 int i;
1986 u64 last_snapshot;
1987 u32 nritems;
1988
1989 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1990
1991 for (i = 0; i < *level; i++) {
1992 free_extent_buffer(path->nodes[i]);
1993 path->nodes[i] = NULL;
1994 }
1995
1996 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1997 eb = path->nodes[i];
1998 nritems = btrfs_header_nritems(eb);
1999 while (path->slots[i] + 1 < nritems) {
2000 path->slots[i]++;
2001 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2002 last_snapshot)
2003 continue;
2004
2005 *level = i;
2006 return 0;
2007 }
2008 free_extent_buffer(path->nodes[i]);
2009 path->nodes[i] = NULL;
2010 }
2011 return 1;
2012}
2013
2014/*
2015 * walk down reloc tree to find relocated block of lowest level
2016 */
2017static noinline_for_stack
2018int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2019 int *level)
2020{
2021 struct btrfs_fs_info *fs_info = root->fs_info;
2022 struct extent_buffer *eb = NULL;
2023 int i;
2024 u64 bytenr;
2025 u64 ptr_gen = 0;
2026 u64 last_snapshot;
2027 u32 nritems;
2028
2029 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2030
2031 for (i = *level; i > 0; i--) {
2032 eb = path->nodes[i];
2033 nritems = btrfs_header_nritems(eb);
2034 while (path->slots[i] < nritems) {
2035 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036 if (ptr_gen > last_snapshot)
2037 break;
2038 path->slots[i]++;
2039 }
2040 if (path->slots[i] >= nritems) {
2041 if (i == *level)
2042 break;
2043 *level = i + 1;
2044 return 0;
2045 }
2046 if (i == 1) {
2047 *level = i;
2048 return 0;
2049 }
2050
2051 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052 eb = read_tree_block(fs_info, bytenr, ptr_gen);
2053 if (IS_ERR(eb)) {
2054 return PTR_ERR(eb);
2055 } else if (!extent_buffer_uptodate(eb)) {
2056 free_extent_buffer(eb);
2057 return -EIO;
2058 }
2059 BUG_ON(btrfs_header_level(eb) != i - 1);
2060 path->nodes[i - 1] = eb;
2061 path->slots[i - 1] = 0;
2062 }
2063 return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071 struct btrfs_key *min_key,
2072 struct btrfs_key *max_key)
2073{
2074 struct btrfs_fs_info *fs_info = root->fs_info;
2075 struct inode *inode = NULL;
2076 u64 objectid;
2077 u64 start, end;
2078 u64 ino;
2079
2080 objectid = min_key->objectid;
2081 while (1) {
2082 cond_resched();
2083 iput(inode);
2084
2085 if (objectid > max_key->objectid)
2086 break;
2087
2088 inode = find_next_inode(root, objectid);
2089 if (!inode)
2090 break;
2091 ino = btrfs_ino(inode);
2092
2093 if (ino > max_key->objectid) {
2094 iput(inode);
2095 break;
2096 }
2097
2098 objectid = ino + 1;
2099 if (!S_ISREG(inode->i_mode))
2100 continue;
2101
2102 if (unlikely(min_key->objectid == ino)) {
2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104 continue;
2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106 start = 0;
2107 else {
2108 start = min_key->offset;
2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 }
2111 } else {
2112 start = 0;
2113 }
2114
2115 if (unlikely(max_key->objectid == ino)) {
2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117 continue;
2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119 end = (u64)-1;
2120 } else {
2121 if (max_key->offset == 0)
2122 continue;
2123 end = max_key->offset;
2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 end--;
2126 }
2127 } else {
2128 end = (u64)-1;
2129 }
2130
2131 /* the lock_extent waits for readpage to complete */
2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133 btrfs_drop_extent_cache(inode, start, end, 1);
2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 }
2136 return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140 struct btrfs_key *key)
2141
2142{
2143 while (level < BTRFS_MAX_LEVEL) {
2144 if (!path->nodes[level])
2145 break;
2146 if (path->slots[level] + 1 <
2147 btrfs_header_nritems(path->nodes[level])) {
2148 btrfs_node_key_to_cpu(path->nodes[level], key,
2149 path->slots[level] + 1);
2150 return 0;
2151 }
2152 level++;
2153 }
2154 return 1;
2155}
2156
2157/*
2158 * merge the relocated tree blocks in reloc tree with corresponding
2159 * fs tree.
2160 */
2161static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2162 struct btrfs_root *root)
2163{
2164 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2165 LIST_HEAD(inode_list);
2166 struct btrfs_key key;
2167 struct btrfs_key next_key;
2168 struct btrfs_trans_handle *trans = NULL;
2169 struct btrfs_root *reloc_root;
2170 struct btrfs_root_item *root_item;
2171 struct btrfs_path *path;
2172 struct extent_buffer *leaf;
2173 int level;
2174 int max_level;
2175 int replaced = 0;
2176 int ret;
2177 int err = 0;
2178 u32 min_reserved;
2179
2180 path = btrfs_alloc_path();
2181 if (!path)
2182 return -ENOMEM;
2183 path->reada = READA_FORWARD;
2184
2185 reloc_root = root->reloc_root;
2186 root_item = &reloc_root->root_item;
2187
2188 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2189 level = btrfs_root_level(root_item);
2190 extent_buffer_get(reloc_root->node);
2191 path->nodes[level] = reloc_root->node;
2192 path->slots[level] = 0;
2193 } else {
2194 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2195
2196 level = root_item->drop_level;
2197 BUG_ON(level == 0);
2198 path->lowest_level = level;
2199 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2200 path->lowest_level = 0;
2201 if (ret < 0) {
2202 btrfs_free_path(path);
2203 return ret;
2204 }
2205
2206 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2207 path->slots[level]);
2208 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2209
2210 btrfs_unlock_up_safe(path, 0);
2211 }
2212
2213 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2214 memset(&next_key, 0, sizeof(next_key));
2215
2216 while (1) {
2217 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2218 BTRFS_RESERVE_FLUSH_ALL);
2219 if (ret) {
2220 err = ret;
2221 goto out;
2222 }
2223 trans = btrfs_start_transaction(root, 0);
2224 if (IS_ERR(trans)) {
2225 err = PTR_ERR(trans);
2226 trans = NULL;
2227 goto out;
2228 }
2229 trans->block_rsv = rc->block_rsv;
2230
2231 replaced = 0;
2232 max_level = level;
2233
2234 ret = walk_down_reloc_tree(reloc_root, path, &level);
2235 if (ret < 0) {
2236 err = ret;
2237 goto out;
2238 }
2239 if (ret > 0)
2240 break;
2241
2242 if (!find_next_key(path, level, &key) &&
2243 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2244 ret = 0;
2245 } else {
2246 ret = replace_path(trans, root, reloc_root, path,
2247 &next_key, level, max_level);
2248 }
2249 if (ret < 0) {
2250 err = ret;
2251 goto out;
2252 }
2253
2254 if (ret > 0) {
2255 level = ret;
2256 btrfs_node_key_to_cpu(path->nodes[level], &key,
2257 path->slots[level]);
2258 replaced = 1;
2259 }
2260
2261 ret = walk_up_reloc_tree(reloc_root, path, &level);
2262 if (ret > 0)
2263 break;
2264
2265 BUG_ON(level == 0);
2266 /*
2267 * save the merging progress in the drop_progress.
2268 * this is OK since root refs == 1 in this case.
2269 */
2270 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2271 path->slots[level]);
2272 root_item->drop_level = level;
2273
2274 btrfs_end_transaction_throttle(trans);
2275 trans = NULL;
2276
2277 btrfs_btree_balance_dirty(fs_info);
2278
2279 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2280 invalidate_extent_cache(root, &key, &next_key);
2281 }
2282
2283 /*
2284 * handle the case only one block in the fs tree need to be
2285 * relocated and the block is tree root.
2286 */
2287 leaf = btrfs_lock_root_node(root);
2288 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2289 btrfs_tree_unlock(leaf);
2290 free_extent_buffer(leaf);
2291 if (ret < 0)
2292 err = ret;
2293out:
2294 btrfs_free_path(path);
2295
2296 if (err == 0) {
2297 memset(&root_item->drop_progress, 0,
2298 sizeof(root_item->drop_progress));
2299 root_item->drop_level = 0;
2300 btrfs_set_root_refs(root_item, 0);
2301 btrfs_update_reloc_root(trans, root);
2302 }
2303
2304 if (trans)
2305 btrfs_end_transaction_throttle(trans);
2306
2307 btrfs_btree_balance_dirty(fs_info);
2308
2309 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2310 invalidate_extent_cache(root, &key, &next_key);
2311
2312 return err;
2313}
2314
2315static noinline_for_stack
2316int prepare_to_merge(struct reloc_control *rc, int err)
2317{
2318 struct btrfs_root *root = rc->extent_root;
2319 struct btrfs_fs_info *fs_info = root->fs_info;
2320 struct btrfs_root *reloc_root;
2321 struct btrfs_trans_handle *trans;
2322 LIST_HEAD(reloc_roots);
2323 u64 num_bytes = 0;
2324 int ret;
2325
2326 mutex_lock(&fs_info->reloc_mutex);
2327 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2328 rc->merging_rsv_size += rc->nodes_relocated * 2;
2329 mutex_unlock(&fs_info->reloc_mutex);
2330
2331again:
2332 if (!err) {
2333 num_bytes = rc->merging_rsv_size;
2334 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2335 BTRFS_RESERVE_FLUSH_ALL);
2336 if (ret)
2337 err = ret;
2338 }
2339
2340 trans = btrfs_join_transaction(rc->extent_root);
2341 if (IS_ERR(trans)) {
2342 if (!err)
2343 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2344 num_bytes);
2345 return PTR_ERR(trans);
2346 }
2347
2348 if (!err) {
2349 if (num_bytes != rc->merging_rsv_size) {
2350 btrfs_end_transaction(trans);
2351 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2352 num_bytes);
2353 goto again;
2354 }
2355 }
2356
2357 rc->merge_reloc_tree = 1;
2358
2359 while (!list_empty(&rc->reloc_roots)) {
2360 reloc_root = list_entry(rc->reloc_roots.next,
2361 struct btrfs_root, root_list);
2362 list_del_init(&reloc_root->root_list);
2363
2364 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2365 BUG_ON(IS_ERR(root));
2366 BUG_ON(root->reloc_root != reloc_root);
2367
2368 /*
2369 * set reference count to 1, so btrfs_recover_relocation
2370 * knows it should resumes merging
2371 */
2372 if (!err)
2373 btrfs_set_root_refs(&reloc_root->root_item, 1);
2374 btrfs_update_reloc_root(trans, root);
2375
2376 list_add(&reloc_root->root_list, &reloc_roots);
2377 }
2378
2379 list_splice(&reloc_roots, &rc->reloc_roots);
2380
2381 if (!err)
2382 btrfs_commit_transaction(trans);
2383 else
2384 btrfs_end_transaction(trans);
2385 return err;
2386}
2387
2388static noinline_for_stack
2389void free_reloc_roots(struct list_head *list)
2390{
2391 struct btrfs_root *reloc_root;
2392
2393 while (!list_empty(list)) {
2394 reloc_root = list_entry(list->next, struct btrfs_root,
2395 root_list);
2396 free_extent_buffer(reloc_root->node);
2397 free_extent_buffer(reloc_root->commit_root);
2398 reloc_root->node = NULL;
2399 reloc_root->commit_root = NULL;
2400 __del_reloc_root(reloc_root);
2401 }
2402}
2403
2404static noinline_for_stack
2405void merge_reloc_roots(struct reloc_control *rc)
2406{
2407 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2408 struct btrfs_root *root;
2409 struct btrfs_root *reloc_root;
2410 LIST_HEAD(reloc_roots);
2411 int found = 0;
2412 int ret = 0;
2413again:
2414 root = rc->extent_root;
2415
2416 /*
2417 * this serializes us with btrfs_record_root_in_transaction,
2418 * we have to make sure nobody is in the middle of
2419 * adding their roots to the list while we are
2420 * doing this splice
2421 */
2422 mutex_lock(&fs_info->reloc_mutex);
2423 list_splice_init(&rc->reloc_roots, &reloc_roots);
2424 mutex_unlock(&fs_info->reloc_mutex);
2425
2426 while (!list_empty(&reloc_roots)) {
2427 found = 1;
2428 reloc_root = list_entry(reloc_roots.next,
2429 struct btrfs_root, root_list);
2430
2431 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2432 root = read_fs_root(fs_info,
2433 reloc_root->root_key.offset);
2434 BUG_ON(IS_ERR(root));
2435 BUG_ON(root->reloc_root != reloc_root);
2436
2437 ret = merge_reloc_root(rc, root);
2438 if (ret) {
2439 if (list_empty(&reloc_root->root_list))
2440 list_add_tail(&reloc_root->root_list,
2441 &reloc_roots);
2442 goto out;
2443 }
2444 } else {
2445 list_del_init(&reloc_root->root_list);
2446 }
2447
2448 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2449 if (ret < 0) {
2450 if (list_empty(&reloc_root->root_list))
2451 list_add_tail(&reloc_root->root_list,
2452 &reloc_roots);
2453 goto out;
2454 }
2455 }
2456
2457 if (found) {
2458 found = 0;
2459 goto again;
2460 }
2461out:
2462 if (ret) {
2463 btrfs_handle_fs_error(fs_info, ret, NULL);
2464 if (!list_empty(&reloc_roots))
2465 free_reloc_roots(&reloc_roots);
2466
2467 /* new reloc root may be added */
2468 mutex_lock(&fs_info->reloc_mutex);
2469 list_splice_init(&rc->reloc_roots, &reloc_roots);
2470 mutex_unlock(&fs_info->reloc_mutex);
2471 if (!list_empty(&reloc_roots))
2472 free_reloc_roots(&reloc_roots);
2473 }
2474
2475 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2476}
2477
2478static void free_block_list(struct rb_root *blocks)
2479{
2480 struct tree_block *block;
2481 struct rb_node *rb_node;
2482 while ((rb_node = rb_first(blocks))) {
2483 block = rb_entry(rb_node, struct tree_block, rb_node);
2484 rb_erase(rb_node, blocks);
2485 kfree(block);
2486 }
2487}
2488
2489static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2490 struct btrfs_root *reloc_root)
2491{
2492 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2493 struct btrfs_root *root;
2494
2495 if (reloc_root->last_trans == trans->transid)
2496 return 0;
2497
2498 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2499 BUG_ON(IS_ERR(root));
2500 BUG_ON(root->reloc_root != reloc_root);
2501
2502 return btrfs_record_root_in_trans(trans, root);
2503}
2504
2505static noinline_for_stack
2506struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2507 struct reloc_control *rc,
2508 struct backref_node *node,
2509 struct backref_edge *edges[])
2510{
2511 struct backref_node *next;
2512 struct btrfs_root *root;
2513 int index = 0;
2514
2515 next = node;
2516 while (1) {
2517 cond_resched();
2518 next = walk_up_backref(next, edges, &index);
2519 root = next->root;
2520 BUG_ON(!root);
2521 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2522
2523 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2524 record_reloc_root_in_trans(trans, root);
2525 break;
2526 }
2527
2528 btrfs_record_root_in_trans(trans, root);
2529 root = root->reloc_root;
2530
2531 if (next->new_bytenr != root->node->start) {
2532 BUG_ON(next->new_bytenr);
2533 BUG_ON(!list_empty(&next->list));
2534 next->new_bytenr = root->node->start;
2535 next->root = root;
2536 list_add_tail(&next->list,
2537 &rc->backref_cache.changed);
2538 __mark_block_processed(rc, next);
2539 break;
2540 }
2541
2542 WARN_ON(1);
2543 root = NULL;
2544 next = walk_down_backref(edges, &index);
2545 if (!next || next->level <= node->level)
2546 break;
2547 }
2548 if (!root)
2549 return NULL;
2550
2551 next = node;
2552 /* setup backref node path for btrfs_reloc_cow_block */
2553 while (1) {
2554 rc->backref_cache.path[next->level] = next;
2555 if (--index < 0)
2556 break;
2557 next = edges[index]->node[UPPER];
2558 }
2559 return root;
2560}
2561
2562/*
2563 * select a tree root for relocation. return NULL if the block
2564 * is reference counted. we should use do_relocation() in this
2565 * case. return a tree root pointer if the block isn't reference
2566 * counted. return -ENOENT if the block is root of reloc tree.
2567 */
2568static noinline_for_stack
2569struct btrfs_root *select_one_root(struct backref_node *node)
2570{
2571 struct backref_node *next;
2572 struct btrfs_root *root;
2573 struct btrfs_root *fs_root = NULL;
2574 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575 int index = 0;
2576
2577 next = node;
2578 while (1) {
2579 cond_resched();
2580 next = walk_up_backref(next, edges, &index);
2581 root = next->root;
2582 BUG_ON(!root);
2583
2584 /* no other choice for non-references counted tree */
2585 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2586 return root;
2587
2588 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2589 fs_root = root;
2590
2591 if (next != node)
2592 return NULL;
2593
2594 next = walk_down_backref(edges, &index);
2595 if (!next || next->level <= node->level)
2596 break;
2597 }
2598
2599 if (!fs_root)
2600 return ERR_PTR(-ENOENT);
2601 return fs_root;
2602}
2603
2604static noinline_for_stack
2605u64 calcu_metadata_size(struct reloc_control *rc,
2606 struct backref_node *node, int reserve)
2607{
2608 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2609 struct backref_node *next = node;
2610 struct backref_edge *edge;
2611 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2612 u64 num_bytes = 0;
2613 int index = 0;
2614
2615 BUG_ON(reserve && node->processed);
2616
2617 while (next) {
2618 cond_resched();
2619 while (1) {
2620 if (next->processed && (reserve || next != node))
2621 break;
2622
2623 num_bytes += fs_info->nodesize;
2624
2625 if (list_empty(&next->upper))
2626 break;
2627
2628 edge = list_entry(next->upper.next,
2629 struct backref_edge, list[LOWER]);
2630 edges[index++] = edge;
2631 next = edge->node[UPPER];
2632 }
2633 next = walk_down_backref(edges, &index);
2634 }
2635 return num_bytes;
2636}
2637
2638static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2639 struct reloc_control *rc,
2640 struct backref_node *node)
2641{
2642 struct btrfs_root *root = rc->extent_root;
2643 struct btrfs_fs_info *fs_info = root->fs_info;
2644 u64 num_bytes;
2645 int ret;
2646 u64 tmp;
2647
2648 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2649
2650 trans->block_rsv = rc->block_rsv;
2651 rc->reserved_bytes += num_bytes;
2652
2653 /*
2654 * We are under a transaction here so we can only do limited flushing.
2655 * If we get an enospc just kick back -EAGAIN so we know to drop the
2656 * transaction and try to refill when we can flush all the things.
2657 */
2658 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2659 BTRFS_RESERVE_FLUSH_LIMIT);
2660 if (ret) {
2661 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2662 while (tmp <= rc->reserved_bytes)
2663 tmp <<= 1;
2664 /*
2665 * only one thread can access block_rsv at this point,
2666 * so we don't need hold lock to protect block_rsv.
2667 * we expand more reservation size here to allow enough
2668 * space for relocation and we will return eailer in
2669 * enospc case.
2670 */
2671 rc->block_rsv->size = tmp + fs_info->nodesize *
2672 RELOCATION_RESERVED_NODES;
2673 return -EAGAIN;
2674 }
2675
2676 return 0;
2677}
2678
2679/*
2680 * relocate a block tree, and then update pointers in upper level
2681 * blocks that reference the block to point to the new location.
2682 *
2683 * if called by link_to_upper, the block has already been relocated.
2684 * in that case this function just updates pointers.
2685 */
2686static int do_relocation(struct btrfs_trans_handle *trans,
2687 struct reloc_control *rc,
2688 struct backref_node *node,
2689 struct btrfs_key *key,
2690 struct btrfs_path *path, int lowest)
2691{
2692 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693 struct backref_node *upper;
2694 struct backref_edge *edge;
2695 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2696 struct btrfs_root *root;
2697 struct extent_buffer *eb;
2698 u32 blocksize;
2699 u64 bytenr;
2700 u64 generation;
2701 int slot;
2702 int ret;
2703 int err = 0;
2704
2705 BUG_ON(lowest && node->eb);
2706
2707 path->lowest_level = node->level + 1;
2708 rc->backref_cache.path[node->level] = node;
2709 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2710 cond_resched();
2711
2712 upper = edge->node[UPPER];
2713 root = select_reloc_root(trans, rc, upper, edges);
2714 BUG_ON(!root);
2715
2716 if (upper->eb && !upper->locked) {
2717 if (!lowest) {
2718 ret = btrfs_bin_search(upper->eb, key,
2719 upper->level, &slot);
2720 BUG_ON(ret);
2721 bytenr = btrfs_node_blockptr(upper->eb, slot);
2722 if (node->eb->start == bytenr)
2723 goto next;
2724 }
2725 drop_node_buffer(upper);
2726 }
2727
2728 if (!upper->eb) {
2729 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2730 if (ret) {
2731 if (ret < 0)
2732 err = ret;
2733 else
2734 err = -ENOENT;
2735
2736 btrfs_release_path(path);
2737 break;
2738 }
2739
2740 if (!upper->eb) {
2741 upper->eb = path->nodes[upper->level];
2742 path->nodes[upper->level] = NULL;
2743 } else {
2744 BUG_ON(upper->eb != path->nodes[upper->level]);
2745 }
2746
2747 upper->locked = 1;
2748 path->locks[upper->level] = 0;
2749
2750 slot = path->slots[upper->level];
2751 btrfs_release_path(path);
2752 } else {
2753 ret = btrfs_bin_search(upper->eb, key, upper->level,
2754 &slot);
2755 BUG_ON(ret);
2756 }
2757
2758 bytenr = btrfs_node_blockptr(upper->eb, slot);
2759 if (lowest) {
2760 if (bytenr != node->bytenr) {
2761 btrfs_err(root->fs_info,
2762 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2763 bytenr, node->bytenr, slot,
2764 upper->eb->start);
2765 err = -EIO;
2766 goto next;
2767 }
2768 } else {
2769 if (node->eb->start == bytenr)
2770 goto next;
2771 }
2772
2773 blocksize = root->fs_info->nodesize;
2774 generation = btrfs_node_ptr_generation(upper->eb, slot);
2775 eb = read_tree_block(fs_info, bytenr, generation);
2776 if (IS_ERR(eb)) {
2777 err = PTR_ERR(eb);
2778 goto next;
2779 } else if (!extent_buffer_uptodate(eb)) {
2780 free_extent_buffer(eb);
2781 err = -EIO;
2782 goto next;
2783 }
2784 btrfs_tree_lock(eb);
2785 btrfs_set_lock_blocking(eb);
2786
2787 if (!node->eb) {
2788 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2789 slot, &eb);
2790 btrfs_tree_unlock(eb);
2791 free_extent_buffer(eb);
2792 if (ret < 0) {
2793 err = ret;
2794 goto next;
2795 }
2796 BUG_ON(node->eb != eb);
2797 } else {
2798 btrfs_set_node_blockptr(upper->eb, slot,
2799 node->eb->start);
2800 btrfs_set_node_ptr_generation(upper->eb, slot,
2801 trans->transid);
2802 btrfs_mark_buffer_dirty(upper->eb);
2803
2804 ret = btrfs_inc_extent_ref(trans, root->fs_info,
2805 node->eb->start, blocksize,
2806 upper->eb->start,
2807 btrfs_header_owner(upper->eb),
2808 node->level, 0);
2809 BUG_ON(ret);
2810
2811 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2812 BUG_ON(ret);
2813 }
2814next:
2815 if (!upper->pending)
2816 drop_node_buffer(upper);
2817 else
2818 unlock_node_buffer(upper);
2819 if (err)
2820 break;
2821 }
2822
2823 if (!err && node->pending) {
2824 drop_node_buffer(node);
2825 list_move_tail(&node->list, &rc->backref_cache.changed);
2826 node->pending = 0;
2827 }
2828
2829 path->lowest_level = 0;
2830 BUG_ON(err == -ENOSPC);
2831 return err;
2832}
2833
2834static int link_to_upper(struct btrfs_trans_handle *trans,
2835 struct reloc_control *rc,
2836 struct backref_node *node,
2837 struct btrfs_path *path)
2838{
2839 struct btrfs_key key;
2840
2841 btrfs_node_key_to_cpu(node->eb, &key, 0);
2842 return do_relocation(trans, rc, node, &key, path, 0);
2843}
2844
2845static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2846 struct reloc_control *rc,
2847 struct btrfs_path *path, int err)
2848{
2849 LIST_HEAD(list);
2850 struct backref_cache *cache = &rc->backref_cache;
2851 struct backref_node *node;
2852 int level;
2853 int ret;
2854
2855 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2856 while (!list_empty(&cache->pending[level])) {
2857 node = list_entry(cache->pending[level].next,
2858 struct backref_node, list);
2859 list_move_tail(&node->list, &list);
2860 BUG_ON(!node->pending);
2861
2862 if (!err) {
2863 ret = link_to_upper(trans, rc, node, path);
2864 if (ret < 0)
2865 err = ret;
2866 }
2867 }
2868 list_splice_init(&list, &cache->pending[level]);
2869 }
2870 return err;
2871}
2872
2873static void mark_block_processed(struct reloc_control *rc,
2874 u64 bytenr, u32 blocksize)
2875{
2876 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2877 EXTENT_DIRTY);
2878}
2879
2880static void __mark_block_processed(struct reloc_control *rc,
2881 struct backref_node *node)
2882{
2883 u32 blocksize;
2884 if (node->level == 0 ||
2885 in_block_group(node->bytenr, rc->block_group)) {
2886 blocksize = rc->extent_root->fs_info->nodesize;
2887 mark_block_processed(rc, node->bytenr, blocksize);
2888 }
2889 node->processed = 1;
2890}
2891
2892/*
2893 * mark a block and all blocks directly/indirectly reference the block
2894 * as processed.
2895 */
2896static void update_processed_blocks(struct reloc_control *rc,
2897 struct backref_node *node)
2898{
2899 struct backref_node *next = node;
2900 struct backref_edge *edge;
2901 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2902 int index = 0;
2903
2904 while (next) {
2905 cond_resched();
2906 while (1) {
2907 if (next->processed)
2908 break;
2909
2910 __mark_block_processed(rc, next);
2911
2912 if (list_empty(&next->upper))
2913 break;
2914
2915 edge = list_entry(next->upper.next,
2916 struct backref_edge, list[LOWER]);
2917 edges[index++] = edge;
2918 next = edge->node[UPPER];
2919 }
2920 next = walk_down_backref(edges, &index);
2921 }
2922}
2923
2924static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2925{
2926 u32 blocksize = rc->extent_root->fs_info->nodesize;
2927
2928 if (test_range_bit(&rc->processed_blocks, bytenr,
2929 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2930 return 1;
2931 return 0;
2932}
2933
2934static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2935 struct tree_block *block)
2936{
2937 struct extent_buffer *eb;
2938
2939 BUG_ON(block->key_ready);
2940 eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2941 if (IS_ERR(eb)) {
2942 return PTR_ERR(eb);
2943 } else if (!extent_buffer_uptodate(eb)) {
2944 free_extent_buffer(eb);
2945 return -EIO;
2946 }
2947 WARN_ON(btrfs_header_level(eb) != block->level);
2948 if (block->level == 0)
2949 btrfs_item_key_to_cpu(eb, &block->key, 0);
2950 else
2951 btrfs_node_key_to_cpu(eb, &block->key, 0);
2952 free_extent_buffer(eb);
2953 block->key_ready = 1;
2954 return 0;
2955}
2956
2957/*
2958 * helper function to relocate a tree block
2959 */
2960static int relocate_tree_block(struct btrfs_trans_handle *trans,
2961 struct reloc_control *rc,
2962 struct backref_node *node,
2963 struct btrfs_key *key,
2964 struct btrfs_path *path)
2965{
2966 struct btrfs_root *root;
2967 int ret = 0;
2968
2969 if (!node)
2970 return 0;
2971
2972 BUG_ON(node->processed);
2973 root = select_one_root(node);
2974 if (root == ERR_PTR(-ENOENT)) {
2975 update_processed_blocks(rc, node);
2976 goto out;
2977 }
2978
2979 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2980 ret = reserve_metadata_space(trans, rc, node);
2981 if (ret)
2982 goto out;
2983 }
2984
2985 if (root) {
2986 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987 BUG_ON(node->new_bytenr);
2988 BUG_ON(!list_empty(&node->list));
2989 btrfs_record_root_in_trans(trans, root);
2990 root = root->reloc_root;
2991 node->new_bytenr = root->node->start;
2992 node->root = root;
2993 list_add_tail(&node->list, &rc->backref_cache.changed);
2994 } else {
2995 path->lowest_level = node->level;
2996 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2997 btrfs_release_path(path);
2998 if (ret > 0)
2999 ret = 0;
3000 }
3001 if (!ret)
3002 update_processed_blocks(rc, node);
3003 } else {
3004 ret = do_relocation(trans, rc, node, key, path, 1);
3005 }
3006out:
3007 if (ret || node->level == 0 || node->cowonly)
3008 remove_backref_node(&rc->backref_cache, node);
3009 return ret;
3010}
3011
3012/*
3013 * relocate a list of blocks
3014 */
3015static noinline_for_stack
3016int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3017 struct reloc_control *rc, struct rb_root *blocks)
3018{
3019 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3020 struct backref_node *node;
3021 struct btrfs_path *path;
3022 struct tree_block *block;
3023 struct rb_node *rb_node;
3024 int ret;
3025 int err = 0;
3026
3027 path = btrfs_alloc_path();
3028 if (!path) {
3029 err = -ENOMEM;
3030 goto out_free_blocks;
3031 }
3032
3033 rb_node = rb_first(blocks);
3034 while (rb_node) {
3035 block = rb_entry(rb_node, struct tree_block, rb_node);
3036 if (!block->key_ready)
3037 readahead_tree_block(fs_info, block->bytenr);
3038 rb_node = rb_next(rb_node);
3039 }
3040
3041 rb_node = rb_first(blocks);
3042 while (rb_node) {
3043 block = rb_entry(rb_node, struct tree_block, rb_node);
3044 if (!block->key_ready) {
3045 err = get_tree_block_key(fs_info, block);
3046 if (err)
3047 goto out_free_path;
3048 }
3049 rb_node = rb_next(rb_node);
3050 }
3051
3052 rb_node = rb_first(blocks);
3053 while (rb_node) {
3054 block = rb_entry(rb_node, struct tree_block, rb_node);
3055
3056 node = build_backref_tree(rc, &block->key,
3057 block->level, block->bytenr);
3058 if (IS_ERR(node)) {
3059 err = PTR_ERR(node);
3060 goto out;
3061 }
3062
3063 ret = relocate_tree_block(trans, rc, node, &block->key,
3064 path);
3065 if (ret < 0) {
3066 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3067 err = ret;
3068 goto out;
3069 }
3070 rb_node = rb_next(rb_node);
3071 }
3072out:
3073 err = finish_pending_nodes(trans, rc, path, err);
3074
3075out_free_path:
3076 btrfs_free_path(path);
3077out_free_blocks:
3078 free_block_list(blocks);
3079 return err;
3080}
3081
3082static noinline_for_stack
3083int prealloc_file_extent_cluster(struct inode *inode,
3084 struct file_extent_cluster *cluster)
3085{
3086 u64 alloc_hint = 0;
3087 u64 start;
3088 u64 end;
3089 u64 offset = BTRFS_I(inode)->index_cnt;
3090 u64 num_bytes;
3091 int nr = 0;
3092 int ret = 0;
3093 u64 prealloc_start = cluster->start - offset;
3094 u64 prealloc_end = cluster->end - offset;
3095 u64 cur_offset;
3096
3097 BUG_ON(cluster->start != cluster->boundary[0]);
3098 inode_lock(inode);
3099
3100 ret = btrfs_check_data_free_space(inode, prealloc_start,
3101 prealloc_end + 1 - prealloc_start);
3102 if (ret)
3103 goto out;
3104
3105 cur_offset = prealloc_start;
3106 while (nr < cluster->nr) {
3107 start = cluster->boundary[nr] - offset;
3108 if (nr + 1 < cluster->nr)
3109 end = cluster->boundary[nr + 1] - 1 - offset;
3110 else
3111 end = cluster->end - offset;
3112
3113 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3114 num_bytes = end + 1 - start;
3115 if (cur_offset < start)
3116 btrfs_free_reserved_data_space(inode, cur_offset,
3117 start - cur_offset);
3118 ret = btrfs_prealloc_file_range(inode, 0, start,
3119 num_bytes, num_bytes,
3120 end + 1, &alloc_hint);
3121 cur_offset = end + 1;
3122 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3123 if (ret)
3124 break;
3125 nr++;
3126 }
3127 if (cur_offset < prealloc_end)
3128 btrfs_free_reserved_data_space(inode, cur_offset,
3129 prealloc_end + 1 - cur_offset);
3130out:
3131 inode_unlock(inode);
3132 return ret;
3133}
3134
3135static noinline_for_stack
3136int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3137 u64 block_start)
3138{
3139 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3140 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3141 struct extent_map *em;
3142 int ret = 0;
3143
3144 em = alloc_extent_map();
3145 if (!em)
3146 return -ENOMEM;
3147
3148 em->start = start;
3149 em->len = end + 1 - start;
3150 em->block_len = em->len;
3151 em->block_start = block_start;
3152 em->bdev = fs_info->fs_devices->latest_bdev;
3153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3154
3155 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3156 while (1) {
3157 write_lock(&em_tree->lock);
3158 ret = add_extent_mapping(em_tree, em, 0);
3159 write_unlock(&em_tree->lock);
3160 if (ret != -EEXIST) {
3161 free_extent_map(em);
3162 break;
3163 }
3164 btrfs_drop_extent_cache(inode, start, end, 0);
3165 }
3166 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3167 return ret;
3168}
3169
3170static int relocate_file_extent_cluster(struct inode *inode,
3171 struct file_extent_cluster *cluster)
3172{
3173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3174 u64 page_start;
3175 u64 page_end;
3176 u64 offset = BTRFS_I(inode)->index_cnt;
3177 unsigned long index;
3178 unsigned long last_index;
3179 struct page *page;
3180 struct file_ra_state *ra;
3181 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3182 int nr = 0;
3183 int ret = 0;
3184
3185 if (!cluster->nr)
3186 return 0;
3187
3188 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3189 if (!ra)
3190 return -ENOMEM;
3191
3192 ret = prealloc_file_extent_cluster(inode, cluster);
3193 if (ret)
3194 goto out;
3195
3196 file_ra_state_init(ra, inode->i_mapping);
3197
3198 ret = setup_extent_mapping(inode, cluster->start - offset,
3199 cluster->end - offset, cluster->start);
3200 if (ret)
3201 goto out;
3202
3203 index = (cluster->start - offset) >> PAGE_SHIFT;
3204 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3205 while (index <= last_index) {
3206 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3207 if (ret)
3208 goto out;
3209
3210 page = find_lock_page(inode->i_mapping, index);
3211 if (!page) {
3212 page_cache_sync_readahead(inode->i_mapping,
3213 ra, NULL, index,
3214 last_index + 1 - index);
3215 page = find_or_create_page(inode->i_mapping, index,
3216 mask);
3217 if (!page) {
3218 btrfs_delalloc_release_metadata(inode,
3219 PAGE_SIZE);
3220 ret = -ENOMEM;
3221 goto out;
3222 }
3223 }
3224
3225 if (PageReadahead(page)) {
3226 page_cache_async_readahead(inode->i_mapping,
3227 ra, NULL, page, index,
3228 last_index + 1 - index);
3229 }
3230
3231 if (!PageUptodate(page)) {
3232 btrfs_readpage(NULL, page);
3233 lock_page(page);
3234 if (!PageUptodate(page)) {
3235 unlock_page(page);
3236 put_page(page);
3237 btrfs_delalloc_release_metadata(inode,
3238 PAGE_SIZE);
3239 ret = -EIO;
3240 goto out;
3241 }
3242 }
3243
3244 page_start = page_offset(page);
3245 page_end = page_start + PAGE_SIZE - 1;
3246
3247 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3248
3249 set_page_extent_mapped(page);
3250
3251 if (nr < cluster->nr &&
3252 page_start + offset == cluster->boundary[nr]) {
3253 set_extent_bits(&BTRFS_I(inode)->io_tree,
3254 page_start, page_end,
3255 EXTENT_BOUNDARY);
3256 nr++;
3257 }
3258
3259 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3260 set_page_dirty(page);
3261
3262 unlock_extent(&BTRFS_I(inode)->io_tree,
3263 page_start, page_end);
3264 unlock_page(page);
3265 put_page(page);
3266
3267 index++;
3268 balance_dirty_pages_ratelimited(inode->i_mapping);
3269 btrfs_throttle(fs_info);
3270 }
3271 WARN_ON(nr != cluster->nr);
3272out:
3273 kfree(ra);
3274 return ret;
3275}
3276
3277static noinline_for_stack
3278int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3279 struct file_extent_cluster *cluster)
3280{
3281 int ret;
3282
3283 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3284 ret = relocate_file_extent_cluster(inode, cluster);
3285 if (ret)
3286 return ret;
3287 cluster->nr = 0;
3288 }
3289
3290 if (!cluster->nr)
3291 cluster->start = extent_key->objectid;
3292 else
3293 BUG_ON(cluster->nr >= MAX_EXTENTS);
3294 cluster->end = extent_key->objectid + extent_key->offset - 1;
3295 cluster->boundary[cluster->nr] = extent_key->objectid;
3296 cluster->nr++;
3297
3298 if (cluster->nr >= MAX_EXTENTS) {
3299 ret = relocate_file_extent_cluster(inode, cluster);
3300 if (ret)
3301 return ret;
3302 cluster->nr = 0;
3303 }
3304 return 0;
3305}
3306
3307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3308static int get_ref_objectid_v0(struct reloc_control *rc,
3309 struct btrfs_path *path,
3310 struct btrfs_key *extent_key,
3311 u64 *ref_objectid, int *path_change)
3312{
3313 struct btrfs_key key;
3314 struct extent_buffer *leaf;
3315 struct btrfs_extent_ref_v0 *ref0;
3316 int ret;
3317 int slot;
3318
3319 leaf = path->nodes[0];
3320 slot = path->slots[0];
3321 while (1) {
3322 if (slot >= btrfs_header_nritems(leaf)) {
3323 ret = btrfs_next_leaf(rc->extent_root, path);
3324 if (ret < 0)
3325 return ret;
3326 BUG_ON(ret > 0);
3327 leaf = path->nodes[0];
3328 slot = path->slots[0];
3329 if (path_change)
3330 *path_change = 1;
3331 }
3332 btrfs_item_key_to_cpu(leaf, &key, slot);
3333 if (key.objectid != extent_key->objectid)
3334 return -ENOENT;
3335
3336 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3337 slot++;
3338 continue;
3339 }
3340 ref0 = btrfs_item_ptr(leaf, slot,
3341 struct btrfs_extent_ref_v0);
3342 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3343 break;
3344 }
3345 return 0;
3346}
3347#endif
3348
3349/*
3350 * helper to add a tree block to the list.
3351 * the major work is getting the generation and level of the block
3352 */
3353static int add_tree_block(struct reloc_control *rc,
3354 struct btrfs_key *extent_key,
3355 struct btrfs_path *path,
3356 struct rb_root *blocks)
3357{
3358 struct extent_buffer *eb;
3359 struct btrfs_extent_item *ei;
3360 struct btrfs_tree_block_info *bi;
3361 struct tree_block *block;
3362 struct rb_node *rb_node;
3363 u32 item_size;
3364 int level = -1;
3365 u64 generation;
3366
3367 eb = path->nodes[0];
3368 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3369
3370 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3371 item_size >= sizeof(*ei) + sizeof(*bi)) {
3372 ei = btrfs_item_ptr(eb, path->slots[0],
3373 struct btrfs_extent_item);
3374 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3375 bi = (struct btrfs_tree_block_info *)(ei + 1);
3376 level = btrfs_tree_block_level(eb, bi);
3377 } else {
3378 level = (int)extent_key->offset;
3379 }
3380 generation = btrfs_extent_generation(eb, ei);
3381 } else {
3382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3383 u64 ref_owner;
3384 int ret;
3385
3386 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3387 ret = get_ref_objectid_v0(rc, path, extent_key,
3388 &ref_owner, NULL);
3389 if (ret < 0)
3390 return ret;
3391 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3392 level = (int)ref_owner;
3393 /* FIXME: get real generation */
3394 generation = 0;
3395#else
3396 BUG();
3397#endif
3398 }
3399
3400 btrfs_release_path(path);
3401
3402 BUG_ON(level == -1);
3403
3404 block = kmalloc(sizeof(*block), GFP_NOFS);
3405 if (!block)
3406 return -ENOMEM;
3407
3408 block->bytenr = extent_key->objectid;
3409 block->key.objectid = rc->extent_root->fs_info->nodesize;
3410 block->key.offset = generation;
3411 block->level = level;
3412 block->key_ready = 0;
3413
3414 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3415 if (rb_node)
3416 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3417
3418 return 0;
3419}
3420
3421/*
3422 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3423 */
3424static int __add_tree_block(struct reloc_control *rc,
3425 u64 bytenr, u32 blocksize,
3426 struct rb_root *blocks)
3427{
3428 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3429 struct btrfs_path *path;
3430 struct btrfs_key key;
3431 int ret;
3432 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3433
3434 if (tree_block_processed(bytenr, rc))
3435 return 0;
3436
3437 if (tree_search(blocks, bytenr))
3438 return 0;
3439
3440 path = btrfs_alloc_path();
3441 if (!path)
3442 return -ENOMEM;
3443again:
3444 key.objectid = bytenr;
3445 if (skinny) {
3446 key.type = BTRFS_METADATA_ITEM_KEY;
3447 key.offset = (u64)-1;
3448 } else {
3449 key.type = BTRFS_EXTENT_ITEM_KEY;
3450 key.offset = blocksize;
3451 }
3452
3453 path->search_commit_root = 1;
3454 path->skip_locking = 1;
3455 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3456 if (ret < 0)
3457 goto out;
3458
3459 if (ret > 0 && skinny) {
3460 if (path->slots[0]) {
3461 path->slots[0]--;
3462 btrfs_item_key_to_cpu(path->nodes[0], &key,
3463 path->slots[0]);
3464 if (key.objectid == bytenr &&
3465 (key.type == BTRFS_METADATA_ITEM_KEY ||
3466 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3467 key.offset == blocksize)))
3468 ret = 0;
3469 }
3470
3471 if (ret) {
3472 skinny = false;
3473 btrfs_release_path(path);
3474 goto again;
3475 }
3476 }
3477 BUG_ON(ret);
3478
3479 ret = add_tree_block(rc, &key, path, blocks);
3480out:
3481 btrfs_free_path(path);
3482 return ret;
3483}
3484
3485/*
3486 * helper to check if the block use full backrefs for pointers in it
3487 */
3488static int block_use_full_backref(struct reloc_control *rc,
3489 struct extent_buffer *eb)
3490{
3491 u64 flags;
3492 int ret;
3493
3494 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3495 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3496 return 1;
3497
3498 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3499 eb->start, btrfs_header_level(eb), 1,
3500 NULL, &flags);
3501 BUG_ON(ret);
3502
3503 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3504 ret = 1;
3505 else
3506 ret = 0;
3507 return ret;
3508}
3509
3510static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3511 struct btrfs_block_group_cache *block_group,
3512 struct inode *inode,
3513 u64 ino)
3514{
3515 struct btrfs_key key;
3516 struct btrfs_root *root = fs_info->tree_root;
3517 struct btrfs_trans_handle *trans;
3518 int ret = 0;
3519
3520 if (inode)
3521 goto truncate;
3522
3523 key.objectid = ino;
3524 key.type = BTRFS_INODE_ITEM_KEY;
3525 key.offset = 0;
3526
3527 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3528 if (IS_ERR(inode) || is_bad_inode(inode)) {
3529 if (!IS_ERR(inode))
3530 iput(inode);
3531 return -ENOENT;
3532 }
3533
3534truncate:
3535 ret = btrfs_check_trunc_cache_free_space(fs_info,
3536 &fs_info->global_block_rsv);
3537 if (ret)
3538 goto out;
3539
3540 trans = btrfs_join_transaction(root);
3541 if (IS_ERR(trans)) {
3542 ret = PTR_ERR(trans);
3543 goto out;
3544 }
3545
3546 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3547
3548 btrfs_end_transaction(trans);
3549 btrfs_btree_balance_dirty(fs_info);
3550out:
3551 iput(inode);
3552 return ret;
3553}
3554
3555/*
3556 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3557 * this function scans fs tree to find blocks reference the data extent
3558 */
3559static int find_data_references(struct reloc_control *rc,
3560 struct btrfs_key *extent_key,
3561 struct extent_buffer *leaf,
3562 struct btrfs_extent_data_ref *ref,
3563 struct rb_root *blocks)
3564{
3565 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566 struct btrfs_path *path;
3567 struct tree_block *block;
3568 struct btrfs_root *root;
3569 struct btrfs_file_extent_item *fi;
3570 struct rb_node *rb_node;
3571 struct btrfs_key key;
3572 u64 ref_root;
3573 u64 ref_objectid;
3574 u64 ref_offset;
3575 u32 ref_count;
3576 u32 nritems;
3577 int err = 0;
3578 int added = 0;
3579 int counted;
3580 int ret;
3581
3582 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3583 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3584 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3585 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3586
3587 /*
3588 * This is an extent belonging to the free space cache, lets just delete
3589 * it and redo the search.
3590 */
3591 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3592 ret = delete_block_group_cache(fs_info, rc->block_group,
3593 NULL, ref_objectid);
3594 if (ret != -ENOENT)
3595 return ret;
3596 ret = 0;
3597 }
3598
3599 path = btrfs_alloc_path();
3600 if (!path)
3601 return -ENOMEM;
3602 path->reada = READA_FORWARD;
3603
3604 root = read_fs_root(fs_info, ref_root);
3605 if (IS_ERR(root)) {
3606 err = PTR_ERR(root);
3607 goto out;
3608 }
3609
3610 key.objectid = ref_objectid;
3611 key.type = BTRFS_EXTENT_DATA_KEY;
3612 if (ref_offset > ((u64)-1 << 32))
3613 key.offset = 0;
3614 else
3615 key.offset = ref_offset;
3616
3617 path->search_commit_root = 1;
3618 path->skip_locking = 1;
3619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620 if (ret < 0) {
3621 err = ret;
3622 goto out;
3623 }
3624
3625 leaf = path->nodes[0];
3626 nritems = btrfs_header_nritems(leaf);
3627 /*
3628 * the references in tree blocks that use full backrefs
3629 * are not counted in
3630 */
3631 if (block_use_full_backref(rc, leaf))
3632 counted = 0;
3633 else
3634 counted = 1;
3635 rb_node = tree_search(blocks, leaf->start);
3636 if (rb_node) {
3637 if (counted)
3638 added = 1;
3639 else
3640 path->slots[0] = nritems;
3641 }
3642
3643 while (ref_count > 0) {
3644 while (path->slots[0] >= nritems) {
3645 ret = btrfs_next_leaf(root, path);
3646 if (ret < 0) {
3647 err = ret;
3648 goto out;
3649 }
3650 if (WARN_ON(ret > 0))
3651 goto out;
3652
3653 leaf = path->nodes[0];
3654 nritems = btrfs_header_nritems(leaf);
3655 added = 0;
3656
3657 if (block_use_full_backref(rc, leaf))
3658 counted = 0;
3659 else
3660 counted = 1;
3661 rb_node = tree_search(blocks, leaf->start);
3662 if (rb_node) {
3663 if (counted)
3664 added = 1;
3665 else
3666 path->slots[0] = nritems;
3667 }
3668 }
3669
3670 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3671 if (WARN_ON(key.objectid != ref_objectid ||
3672 key.type != BTRFS_EXTENT_DATA_KEY))
3673 break;
3674
3675 fi = btrfs_item_ptr(leaf, path->slots[0],
3676 struct btrfs_file_extent_item);
3677
3678 if (btrfs_file_extent_type(leaf, fi) ==
3679 BTRFS_FILE_EXTENT_INLINE)
3680 goto next;
3681
3682 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3683 extent_key->objectid)
3684 goto next;
3685
3686 key.offset -= btrfs_file_extent_offset(leaf, fi);
3687 if (key.offset != ref_offset)
3688 goto next;
3689
3690 if (counted)
3691 ref_count--;
3692 if (added)
3693 goto next;
3694
3695 if (!tree_block_processed(leaf->start, rc)) {
3696 block = kmalloc(sizeof(*block), GFP_NOFS);
3697 if (!block) {
3698 err = -ENOMEM;
3699 break;
3700 }
3701 block->bytenr = leaf->start;
3702 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3703 block->level = 0;
3704 block->key_ready = 1;
3705 rb_node = tree_insert(blocks, block->bytenr,
3706 &block->rb_node);
3707 if (rb_node)
3708 backref_tree_panic(rb_node, -EEXIST,
3709 block->bytenr);
3710 }
3711 if (counted)
3712 added = 1;
3713 else
3714 path->slots[0] = nritems;
3715next:
3716 path->slots[0]++;
3717
3718 }
3719out:
3720 btrfs_free_path(path);
3721 return err;
3722}
3723
3724/*
3725 * helper to find all tree blocks that reference a given data extent
3726 */
3727static noinline_for_stack
3728int add_data_references(struct reloc_control *rc,
3729 struct btrfs_key *extent_key,
3730 struct btrfs_path *path,
3731 struct rb_root *blocks)
3732{
3733 struct btrfs_key key;
3734 struct extent_buffer *eb;
3735 struct btrfs_extent_data_ref *dref;
3736 struct btrfs_extent_inline_ref *iref;
3737 unsigned long ptr;
3738 unsigned long end;
3739 u32 blocksize = rc->extent_root->fs_info->nodesize;
3740 int ret = 0;
3741 int err = 0;
3742
3743 eb = path->nodes[0];
3744 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3745 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3746#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3747 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3748 ptr = end;
3749 else
3750#endif
3751 ptr += sizeof(struct btrfs_extent_item);
3752
3753 while (ptr < end) {
3754 iref = (struct btrfs_extent_inline_ref *)ptr;
3755 key.type = btrfs_extent_inline_ref_type(eb, iref);
3756 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3757 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3758 ret = __add_tree_block(rc, key.offset, blocksize,
3759 blocks);
3760 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3761 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3762 ret = find_data_references(rc, extent_key,
3763 eb, dref, blocks);
3764 } else {
3765 BUG();
3766 }
3767 if (ret) {
3768 err = ret;
3769 goto out;
3770 }
3771 ptr += btrfs_extent_inline_ref_size(key.type);
3772 }
3773 WARN_ON(ptr > end);
3774
3775 while (1) {
3776 cond_resched();
3777 eb = path->nodes[0];
3778 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3779 ret = btrfs_next_leaf(rc->extent_root, path);
3780 if (ret < 0) {
3781 err = ret;
3782 break;
3783 }
3784 if (ret > 0)
3785 break;
3786 eb = path->nodes[0];
3787 }
3788
3789 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3790 if (key.objectid != extent_key->objectid)
3791 break;
3792
3793#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3794 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3795 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3796#else
3797 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3798 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3799#endif
3800 ret = __add_tree_block(rc, key.offset, blocksize,
3801 blocks);
3802 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3803 dref = btrfs_item_ptr(eb, path->slots[0],
3804 struct btrfs_extent_data_ref);
3805 ret = find_data_references(rc, extent_key,
3806 eb, dref, blocks);
3807 } else {
3808 ret = 0;
3809 }
3810 if (ret) {
3811 err = ret;
3812 break;
3813 }
3814 path->slots[0]++;
3815 }
3816out:
3817 btrfs_release_path(path);
3818 if (err)
3819 free_block_list(blocks);
3820 return err;
3821}
3822
3823/*
3824 * helper to find next unprocessed extent
3825 */
3826static noinline_for_stack
3827int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3828 struct btrfs_key *extent_key)
3829{
3830 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3831 struct btrfs_key key;
3832 struct extent_buffer *leaf;
3833 u64 start, end, last;
3834 int ret;
3835
3836 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3837 while (1) {
3838 cond_resched();
3839 if (rc->search_start >= last) {
3840 ret = 1;
3841 break;
3842 }
3843
3844 key.objectid = rc->search_start;
3845 key.type = BTRFS_EXTENT_ITEM_KEY;
3846 key.offset = 0;
3847
3848 path->search_commit_root = 1;
3849 path->skip_locking = 1;
3850 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3851 0, 0);
3852 if (ret < 0)
3853 break;
3854next:
3855 leaf = path->nodes[0];
3856 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3857 ret = btrfs_next_leaf(rc->extent_root, path);
3858 if (ret != 0)
3859 break;
3860 leaf = path->nodes[0];
3861 }
3862
3863 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864 if (key.objectid >= last) {
3865 ret = 1;
3866 break;
3867 }
3868
3869 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3870 key.type != BTRFS_METADATA_ITEM_KEY) {
3871 path->slots[0]++;
3872 goto next;
3873 }
3874
3875 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3876 key.objectid + key.offset <= rc->search_start) {
3877 path->slots[0]++;
3878 goto next;
3879 }
3880
3881 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3882 key.objectid + fs_info->nodesize <=
3883 rc->search_start) {
3884 path->slots[0]++;
3885 goto next;
3886 }
3887
3888 ret = find_first_extent_bit(&rc->processed_blocks,
3889 key.objectid, &start, &end,
3890 EXTENT_DIRTY, NULL);
3891
3892 if (ret == 0 && start <= key.objectid) {
3893 btrfs_release_path(path);
3894 rc->search_start = end + 1;
3895 } else {
3896 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3897 rc->search_start = key.objectid + key.offset;
3898 else
3899 rc->search_start = key.objectid +
3900 fs_info->nodesize;
3901 memcpy(extent_key, &key, sizeof(key));
3902 return 0;
3903 }
3904 }
3905 btrfs_release_path(path);
3906 return ret;
3907}
3908
3909static void set_reloc_control(struct reloc_control *rc)
3910{
3911 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3912
3913 mutex_lock(&fs_info->reloc_mutex);
3914 fs_info->reloc_ctl = rc;
3915 mutex_unlock(&fs_info->reloc_mutex);
3916}
3917
3918static void unset_reloc_control(struct reloc_control *rc)
3919{
3920 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921
3922 mutex_lock(&fs_info->reloc_mutex);
3923 fs_info->reloc_ctl = NULL;
3924 mutex_unlock(&fs_info->reloc_mutex);
3925}
3926
3927static int check_extent_flags(u64 flags)
3928{
3929 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3930 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3931 return 1;
3932 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3933 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3934 return 1;
3935 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3936 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3937 return 1;
3938 return 0;
3939}
3940
3941static noinline_for_stack
3942int prepare_to_relocate(struct reloc_control *rc)
3943{
3944 struct btrfs_trans_handle *trans;
3945 int ret;
3946
3947 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3948 BTRFS_BLOCK_RSV_TEMP);
3949 if (!rc->block_rsv)
3950 return -ENOMEM;
3951
3952 memset(&rc->cluster, 0, sizeof(rc->cluster));
3953 rc->search_start = rc->block_group->key.objectid;
3954 rc->extents_found = 0;
3955 rc->nodes_relocated = 0;
3956 rc->merging_rsv_size = 0;
3957 rc->reserved_bytes = 0;
3958 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3959 RELOCATION_RESERVED_NODES;
3960 ret = btrfs_block_rsv_refill(rc->extent_root,
3961 rc->block_rsv, rc->block_rsv->size,
3962 BTRFS_RESERVE_FLUSH_ALL);
3963 if (ret)
3964 return ret;
3965
3966 rc->create_reloc_tree = 1;
3967 set_reloc_control(rc);
3968
3969 trans = btrfs_join_transaction(rc->extent_root);
3970 if (IS_ERR(trans)) {
3971 unset_reloc_control(rc);
3972 /*
3973 * extent tree is not a ref_cow tree and has no reloc_root to
3974 * cleanup. And callers are responsible to free the above
3975 * block rsv.
3976 */
3977 return PTR_ERR(trans);
3978 }
3979 btrfs_commit_transaction(trans);
3980 return 0;
3981}
3982
3983static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3984{
3985 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3986 struct rb_root blocks = RB_ROOT;
3987 struct btrfs_key key;
3988 struct btrfs_trans_handle *trans = NULL;
3989 struct btrfs_path *path;
3990 struct btrfs_extent_item *ei;
3991 u64 flags;
3992 u32 item_size;
3993 int ret;
3994 int err = 0;
3995 int progress = 0;
3996
3997 path = btrfs_alloc_path();
3998 if (!path)
3999 return -ENOMEM;
4000 path->reada = READA_FORWARD;
4001
4002 ret = prepare_to_relocate(rc);
4003 if (ret) {
4004 err = ret;
4005 goto out_free;
4006 }
4007
4008 while (1) {
4009 rc->reserved_bytes = 0;
4010 ret = btrfs_block_rsv_refill(rc->extent_root,
4011 rc->block_rsv, rc->block_rsv->size,
4012 BTRFS_RESERVE_FLUSH_ALL);
4013 if (ret) {
4014 err = ret;
4015 break;
4016 }
4017 progress++;
4018 trans = btrfs_start_transaction(rc->extent_root, 0);
4019 if (IS_ERR(trans)) {
4020 err = PTR_ERR(trans);
4021 trans = NULL;
4022 break;
4023 }
4024restart:
4025 if (update_backref_cache(trans, &rc->backref_cache)) {
4026 btrfs_end_transaction(trans);
4027 continue;
4028 }
4029
4030 ret = find_next_extent(rc, path, &key);
4031 if (ret < 0)
4032 err = ret;
4033 if (ret != 0)
4034 break;
4035
4036 rc->extents_found++;
4037
4038 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039 struct btrfs_extent_item);
4040 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4041 if (item_size >= sizeof(*ei)) {
4042 flags = btrfs_extent_flags(path->nodes[0], ei);
4043 ret = check_extent_flags(flags);
4044 BUG_ON(ret);
4045
4046 } else {
4047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4048 u64 ref_owner;
4049 int path_change = 0;
4050
4051 BUG_ON(item_size !=
4052 sizeof(struct btrfs_extent_item_v0));
4053 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4054 &path_change);
4055 if (ret < 0) {
4056 err = ret;
4057 break;
4058 }
4059 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4060 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4061 else
4062 flags = BTRFS_EXTENT_FLAG_DATA;
4063
4064 if (path_change) {
4065 btrfs_release_path(path);
4066
4067 path->search_commit_root = 1;
4068 path->skip_locking = 1;
4069 ret = btrfs_search_slot(NULL, rc->extent_root,
4070 &key, path, 0, 0);
4071 if (ret < 0) {
4072 err = ret;
4073 break;
4074 }
4075 BUG_ON(ret > 0);
4076 }
4077#else
4078 BUG();
4079#endif
4080 }
4081
4082 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4083 ret = add_tree_block(rc, &key, path, &blocks);
4084 } else if (rc->stage == UPDATE_DATA_PTRS &&
4085 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4086 ret = add_data_references(rc, &key, path, &blocks);
4087 } else {
4088 btrfs_release_path(path);
4089 ret = 0;
4090 }
4091 if (ret < 0) {
4092 err = ret;
4093 break;
4094 }
4095
4096 if (!RB_EMPTY_ROOT(&blocks)) {
4097 ret = relocate_tree_blocks(trans, rc, &blocks);
4098 if (ret < 0) {
4099 /*
4100 * if we fail to relocate tree blocks, force to update
4101 * backref cache when committing transaction.
4102 */
4103 rc->backref_cache.last_trans = trans->transid - 1;
4104
4105 if (ret != -EAGAIN) {
4106 err = ret;
4107 break;
4108 }
4109 rc->extents_found--;
4110 rc->search_start = key.objectid;
4111 }
4112 }
4113
4114 btrfs_end_transaction_throttle(trans);
4115 btrfs_btree_balance_dirty(fs_info);
4116 trans = NULL;
4117
4118 if (rc->stage == MOVE_DATA_EXTENTS &&
4119 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4120 rc->found_file_extent = 1;
4121 ret = relocate_data_extent(rc->data_inode,
4122 &key, &rc->cluster);
4123 if (ret < 0) {
4124 err = ret;
4125 break;
4126 }
4127 }
4128 }
4129 if (trans && progress && err == -ENOSPC) {
4130 ret = btrfs_force_chunk_alloc(trans, fs_info,
4131 rc->block_group->flags);
4132 if (ret == 1) {
4133 err = 0;
4134 progress = 0;
4135 goto restart;
4136 }
4137 }
4138
4139 btrfs_release_path(path);
4140 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4141
4142 if (trans) {
4143 btrfs_end_transaction_throttle(trans);
4144 btrfs_btree_balance_dirty(fs_info);
4145 }
4146
4147 if (!err) {
4148 ret = relocate_file_extent_cluster(rc->data_inode,
4149 &rc->cluster);
4150 if (ret < 0)
4151 err = ret;
4152 }
4153
4154 rc->create_reloc_tree = 0;
4155 set_reloc_control(rc);
4156
4157 backref_cache_cleanup(&rc->backref_cache);
4158 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159
4160 err = prepare_to_merge(rc, err);
4161
4162 merge_reloc_roots(rc);
4163
4164 rc->merge_reloc_tree = 0;
4165 unset_reloc_control(rc);
4166 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4167
4168 /* get rid of pinned extents */
4169 trans = btrfs_join_transaction(rc->extent_root);
4170 if (IS_ERR(trans)) {
4171 err = PTR_ERR(trans);
4172 goto out_free;
4173 }
4174 btrfs_commit_transaction(trans);
4175out_free:
4176 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4177 btrfs_free_path(path);
4178 return err;
4179}
4180
4181static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root, u64 objectid)
4183{
4184 struct btrfs_path *path;
4185 struct btrfs_inode_item *item;
4186 struct extent_buffer *leaf;
4187 int ret;
4188
4189 path = btrfs_alloc_path();
4190 if (!path)
4191 return -ENOMEM;
4192
4193 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4194 if (ret)
4195 goto out;
4196
4197 leaf = path->nodes[0];
4198 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4199 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4200 btrfs_set_inode_generation(leaf, item, 1);
4201 btrfs_set_inode_size(leaf, item, 0);
4202 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4203 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4204 BTRFS_INODE_PREALLOC);
4205 btrfs_mark_buffer_dirty(leaf);
4206out:
4207 btrfs_free_path(path);
4208 return ret;
4209}
4210
4211/*
4212 * helper to create inode for data relocation.
4213 * the inode is in data relocation tree and its link count is 0
4214 */
4215static noinline_for_stack
4216struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4217 struct btrfs_block_group_cache *group)
4218{
4219 struct inode *inode = NULL;
4220 struct btrfs_trans_handle *trans;
4221 struct btrfs_root *root;
4222 struct btrfs_key key;
4223 u64 objectid;
4224 int err = 0;
4225
4226 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4227 if (IS_ERR(root))
4228 return ERR_CAST(root);
4229
4230 trans = btrfs_start_transaction(root, 6);
4231 if (IS_ERR(trans))
4232 return ERR_CAST(trans);
4233
4234 err = btrfs_find_free_objectid(root, &objectid);
4235 if (err)
4236 goto out;
4237
4238 err = __insert_orphan_inode(trans, root, objectid);
4239 BUG_ON(err);
4240
4241 key.objectid = objectid;
4242 key.type = BTRFS_INODE_ITEM_KEY;
4243 key.offset = 0;
4244 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4245 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4246 BTRFS_I(inode)->index_cnt = group->key.objectid;
4247
4248 err = btrfs_orphan_add(trans, inode);
4249out:
4250 btrfs_end_transaction(trans);
4251 btrfs_btree_balance_dirty(fs_info);
4252 if (err) {
4253 if (inode)
4254 iput(inode);
4255 inode = ERR_PTR(err);
4256 }
4257 return inode;
4258}
4259
4260static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4261{
4262 struct reloc_control *rc;
4263
4264 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4265 if (!rc)
4266 return NULL;
4267
4268 INIT_LIST_HEAD(&rc->reloc_roots);
4269 backref_cache_init(&rc->backref_cache);
4270 mapping_tree_init(&rc->reloc_root_tree);
4271 extent_io_tree_init(&rc->processed_blocks,
4272 fs_info->btree_inode->i_mapping);
4273 return rc;
4274}
4275
4276/*
4277 * Print the block group being relocated
4278 */
4279static void describe_relocation(struct btrfs_fs_info *fs_info,
4280 struct btrfs_block_group_cache *block_group)
4281{
4282 char buf[128]; /* prefixed by a '|' that'll be dropped */
4283 u64 flags = block_group->flags;
4284
4285 /* Shouldn't happen */
4286 if (!flags) {
4287 strcpy(buf, "|NONE");
4288 } else {
4289 char *bp = buf;
4290
4291#define DESCRIBE_FLAG(f, d) \
4292 if (flags & BTRFS_BLOCK_GROUP_##f) { \
4293 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4294 flags &= ~BTRFS_BLOCK_GROUP_##f; \
4295 }
4296 DESCRIBE_FLAG(DATA, "data");
4297 DESCRIBE_FLAG(SYSTEM, "system");
4298 DESCRIBE_FLAG(METADATA, "metadata");
4299 DESCRIBE_FLAG(RAID0, "raid0");
4300 DESCRIBE_FLAG(RAID1, "raid1");
4301 DESCRIBE_FLAG(DUP, "dup");
4302 DESCRIBE_FLAG(RAID10, "raid10");
4303 DESCRIBE_FLAG(RAID5, "raid5");
4304 DESCRIBE_FLAG(RAID6, "raid6");
4305 if (flags)
4306 snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4307#undef DESCRIBE_FLAG
4308 }
4309
4310 btrfs_info(fs_info,
4311 "relocating block group %llu flags %s",
4312 block_group->key.objectid, buf + 1);
4313}
4314
4315/*
4316 * function to relocate all extents in a block group.
4317 */
4318int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4319{
4320 struct btrfs_root *extent_root = fs_info->extent_root;
4321 struct reloc_control *rc;
4322 struct inode *inode;
4323 struct btrfs_path *path;
4324 int ret;
4325 int rw = 0;
4326 int err = 0;
4327
4328 rc = alloc_reloc_control(fs_info);
4329 if (!rc)
4330 return -ENOMEM;
4331
4332 rc->extent_root = extent_root;
4333
4334 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4335 BUG_ON(!rc->block_group);
4336
4337 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4338 if (ret) {
4339 err = ret;
4340 goto out;
4341 }
4342 rw = 1;
4343
4344 path = btrfs_alloc_path();
4345 if (!path) {
4346 err = -ENOMEM;
4347 goto out;
4348 }
4349
4350 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4351 path);
4352 btrfs_free_path(path);
4353
4354 if (!IS_ERR(inode))
4355 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4356 else
4357 ret = PTR_ERR(inode);
4358
4359 if (ret && ret != -ENOENT) {
4360 err = ret;
4361 goto out;
4362 }
4363
4364 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4365 if (IS_ERR(rc->data_inode)) {
4366 err = PTR_ERR(rc->data_inode);
4367 rc->data_inode = NULL;
4368 goto out;
4369 }
4370
4371 describe_relocation(fs_info, rc->block_group);
4372
4373 btrfs_wait_block_group_reservations(rc->block_group);
4374 btrfs_wait_nocow_writers(rc->block_group);
4375 btrfs_wait_ordered_roots(fs_info, -1,
4376 rc->block_group->key.objectid,
4377 rc->block_group->key.offset);
4378
4379 while (1) {
4380 mutex_lock(&fs_info->cleaner_mutex);
4381 ret = relocate_block_group(rc);
4382 mutex_unlock(&fs_info->cleaner_mutex);
4383 if (ret < 0) {
4384 err = ret;
4385 goto out;
4386 }
4387
4388 if (rc->extents_found == 0)
4389 break;
4390
4391 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4392
4393 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4394 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4395 (u64)-1);
4396 if (ret) {
4397 err = ret;
4398 goto out;
4399 }
4400 invalidate_mapping_pages(rc->data_inode->i_mapping,
4401 0, -1);
4402 rc->stage = UPDATE_DATA_PTRS;
4403 }
4404 }
4405
4406 WARN_ON(rc->block_group->pinned > 0);
4407 WARN_ON(rc->block_group->reserved > 0);
4408 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410 if (err && rw)
4411 btrfs_dec_block_group_ro(rc->block_group);
4412 iput(rc->data_inode);
4413 btrfs_put_block_group(rc->block_group);
4414 kfree(rc);
4415 return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420 struct btrfs_fs_info *fs_info = root->fs_info;
4421 struct btrfs_trans_handle *trans;
4422 int ret, err;
4423
4424 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425 if (IS_ERR(trans))
4426 return PTR_ERR(trans);
4427
4428 memset(&root->root_item.drop_progress, 0,
4429 sizeof(root->root_item.drop_progress));
4430 root->root_item.drop_level = 0;
4431 btrfs_set_root_refs(&root->root_item, 0);
4432 ret = btrfs_update_root(trans, fs_info->tree_root,
4433 &root->root_key, &root->root_item);
4434
4435 err = btrfs_end_transaction(trans);
4436 if (err)
4437 return err;
4438 return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449 struct btrfs_fs_info *fs_info = root->fs_info;
4450 LIST_HEAD(reloc_roots);
4451 struct btrfs_key key;
4452 struct btrfs_root *fs_root;
4453 struct btrfs_root *reloc_root;
4454 struct btrfs_path *path;
4455 struct extent_buffer *leaf;
4456 struct reloc_control *rc = NULL;
4457 struct btrfs_trans_handle *trans;
4458 int ret;
4459 int err = 0;
4460
4461 path = btrfs_alloc_path();
4462 if (!path)
4463 return -ENOMEM;
4464 path->reada = READA_BACK;
4465
4466 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467 key.type = BTRFS_ROOT_ITEM_KEY;
4468 key.offset = (u64)-1;
4469
4470 while (1) {
4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472 path, 0, 0);
4473 if (ret < 0) {
4474 err = ret;
4475 goto out;
4476 }
4477 if (ret > 0) {
4478 if (path->slots[0] == 0)
4479 break;
4480 path->slots[0]--;
4481 }
4482 leaf = path->nodes[0];
4483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484 btrfs_release_path(path);
4485
4486 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487 key.type != BTRFS_ROOT_ITEM_KEY)
4488 break;
4489
4490 reloc_root = btrfs_read_fs_root(root, &key);
4491 if (IS_ERR(reloc_root)) {
4492 err = PTR_ERR(reloc_root);
4493 goto out;
4494 }
4495
4496 list_add(&reloc_root->root_list, &reloc_roots);
4497
4498 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499 fs_root = read_fs_root(fs_info,
4500 reloc_root->root_key.offset);
4501 if (IS_ERR(fs_root)) {
4502 ret = PTR_ERR(fs_root);
4503 if (ret != -ENOENT) {
4504 err = ret;
4505 goto out;
4506 }
4507 ret = mark_garbage_root(reloc_root);
4508 if (ret < 0) {
4509 err = ret;
4510 goto out;
4511 }
4512 }
4513 }
4514
4515 if (key.offset == 0)
4516 break;
4517
4518 key.offset--;
4519 }
4520 btrfs_release_path(path);
4521
4522 if (list_empty(&reloc_roots))
4523 goto out;
4524
4525 rc = alloc_reloc_control(fs_info);
4526 if (!rc) {
4527 err = -ENOMEM;
4528 goto out;
4529 }
4530
4531 rc->extent_root = fs_info->extent_root;
4532
4533 set_reloc_control(rc);
4534
4535 trans = btrfs_join_transaction(rc->extent_root);
4536 if (IS_ERR(trans)) {
4537 unset_reloc_control(rc);
4538 err = PTR_ERR(trans);
4539 goto out_free;
4540 }
4541
4542 rc->merge_reloc_tree = 1;
4543
4544 while (!list_empty(&reloc_roots)) {
4545 reloc_root = list_entry(reloc_roots.next,
4546 struct btrfs_root, root_list);
4547 list_del(&reloc_root->root_list);
4548
4549 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550 list_add_tail(&reloc_root->root_list,
4551 &rc->reloc_roots);
4552 continue;
4553 }
4554
4555 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4556 if (IS_ERR(fs_root)) {
4557 err = PTR_ERR(fs_root);
4558 goto out_free;
4559 }
4560
4561 err = __add_reloc_root(reloc_root);
4562 BUG_ON(err < 0); /* -ENOMEM or logic error */
4563 fs_root->reloc_root = reloc_root;
4564 }
4565
4566 err = btrfs_commit_transaction(trans);
4567 if (err)
4568 goto out_free;
4569
4570 merge_reloc_roots(rc);
4571
4572 unset_reloc_control(rc);
4573
4574 trans = btrfs_join_transaction(rc->extent_root);
4575 if (IS_ERR(trans)) {
4576 err = PTR_ERR(trans);
4577 goto out_free;
4578 }
4579 err = btrfs_commit_transaction(trans);
4580out_free:
4581 kfree(rc);
4582out:
4583 if (!list_empty(&reloc_roots))
4584 free_reloc_roots(&reloc_roots);
4585
4586 btrfs_free_path(path);
4587
4588 if (err == 0) {
4589 /* cleanup orphan inode in data relocation tree */
4590 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4591 if (IS_ERR(fs_root))
4592 err = PTR_ERR(fs_root);
4593 else
4594 err = btrfs_orphan_cleanup(fs_root);
4595 }
4596 return err;
4597}
4598
4599/*
4600 * helper to add ordered checksum for data relocation.
4601 *
4602 * cloning checksum properly handles the nodatasum extents.
4603 * it also saves CPU time to re-calculate the checksum.
4604 */
4605int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4606{
4607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4608 struct btrfs_ordered_sum *sums;
4609 struct btrfs_ordered_extent *ordered;
4610 int ret;
4611 u64 disk_bytenr;
4612 u64 new_bytenr;
4613 LIST_HEAD(list);
4614
4615 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4616 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4617
4618 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4619 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4620 disk_bytenr + len - 1, &list, 0);
4621 if (ret)
4622 goto out;
4623
4624 while (!list_empty(&list)) {
4625 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4626 list_del_init(&sums->list);
4627
4628 /*
4629 * We need to offset the new_bytenr based on where the csum is.
4630 * We need to do this because we will read in entire prealloc
4631 * extents but we may have written to say the middle of the
4632 * prealloc extent, so we need to make sure the csum goes with
4633 * the right disk offset.
4634 *
4635 * We can do this because the data reloc inode refers strictly
4636 * to the on disk bytes, so we don't have to worry about
4637 * disk_len vs real len like with real inodes since it's all
4638 * disk length.
4639 */
4640 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4641 sums->bytenr = new_bytenr;
4642
4643 btrfs_add_ordered_sum(inode, ordered, sums);
4644 }
4645out:
4646 btrfs_put_ordered_extent(ordered);
4647 return ret;
4648}
4649
4650int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4651 struct btrfs_root *root, struct extent_buffer *buf,
4652 struct extent_buffer *cow)
4653{
4654 struct btrfs_fs_info *fs_info = root->fs_info;
4655 struct reloc_control *rc;
4656 struct backref_node *node;
4657 int first_cow = 0;
4658 int level;
4659 int ret = 0;
4660
4661 rc = fs_info->reloc_ctl;
4662 if (!rc)
4663 return 0;
4664
4665 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4666 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4667
4668 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4669 if (buf == root->node)
4670 __update_reloc_root(root, cow->start);
4671 }
4672
4673 level = btrfs_header_level(buf);
4674 if (btrfs_header_generation(buf) <=
4675 btrfs_root_last_snapshot(&root->root_item))
4676 first_cow = 1;
4677
4678 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4679 rc->create_reloc_tree) {
4680 WARN_ON(!first_cow && level == 0);
4681
4682 node = rc->backref_cache.path[level];
4683 BUG_ON(node->bytenr != buf->start &&
4684 node->new_bytenr != buf->start);
4685
4686 drop_node_buffer(node);
4687 extent_buffer_get(cow);
4688 node->eb = cow;
4689 node->new_bytenr = cow->start;
4690
4691 if (!node->pending) {
4692 list_move_tail(&node->list,
4693 &rc->backref_cache.pending[level]);
4694 node->pending = 1;
4695 }
4696
4697 if (first_cow)
4698 __mark_block_processed(rc, node);
4699
4700 if (first_cow && level > 0)
4701 rc->nodes_relocated += buf->len;
4702 }
4703
4704 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4705 ret = replace_file_extents(trans, rc, root, cow);
4706 return ret;
4707}
4708
4709/*
4710 * called before creating snapshot. it calculates metadata reservation
4711 * required for relocating tree blocks in the snapshot
4712 */
4713void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4714 u64 *bytes_to_reserve)
4715{
4716 struct btrfs_root *root;
4717 struct reloc_control *rc;
4718
4719 root = pending->root;
4720 if (!root->reloc_root)
4721 return;
4722
4723 rc = root->fs_info->reloc_ctl;
4724 if (!rc->merge_reloc_tree)
4725 return;
4726
4727 root = root->reloc_root;
4728 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4729 /*
4730 * relocation is in the stage of merging trees. the space
4731 * used by merging a reloc tree is twice the size of
4732 * relocated tree nodes in the worst case. half for cowing
4733 * the reloc tree, half for cowing the fs tree. the space
4734 * used by cowing the reloc tree will be freed after the
4735 * tree is dropped. if we create snapshot, cowing the fs
4736 * tree may use more space than it frees. so we need
4737 * reserve extra space.
4738 */
4739 *bytes_to_reserve += rc->nodes_relocated;
4740}
4741
4742/*
4743 * called after snapshot is created. migrate block reservation
4744 * and create reloc root for the newly created snapshot
4745 */
4746int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4747 struct btrfs_pending_snapshot *pending)
4748{
4749 struct btrfs_root *root = pending->root;
4750 struct btrfs_root *reloc_root;
4751 struct btrfs_root *new_root;
4752 struct reloc_control *rc;
4753 int ret;
4754
4755 if (!root->reloc_root)
4756 return 0;
4757
4758 rc = root->fs_info->reloc_ctl;
4759 rc->merging_rsv_size += rc->nodes_relocated;
4760
4761 if (rc->merge_reloc_tree) {
4762 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4763 rc->block_rsv,
4764 rc->nodes_relocated, 1);
4765 if (ret)
4766 return ret;
4767 }
4768
4769 new_root = pending->snap;
4770 reloc_root = create_reloc_root(trans, root->reloc_root,
4771 new_root->root_key.objectid);
4772 if (IS_ERR(reloc_root))
4773 return PTR_ERR(reloc_root);
4774
4775 ret = __add_reloc_root(reloc_root);
4776 BUG_ON(ret < 0);
4777 new_root->reloc_root = reloc_root;
4778
4779 if (rc->create_reloc_tree)
4780 ret = clone_backref_node(trans, rc, root, reloc_root);
4781 return ret;
4782}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25#include "backref.h"
26#include "misc.h"
27
28/*
29 * Relocation overview
30 *
31 * [What does relocation do]
32 *
33 * The objective of relocation is to relocate all extents of the target block
34 * group to other block groups.
35 * This is utilized by resize (shrink only), profile converting, compacting
36 * space, or balance routine to spread chunks over devices.
37 *
38 * Before | After
39 * ------------------------------------------------------------------
40 * BG A: 10 data extents | BG A: deleted
41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
43 *
44 * [How does relocation work]
45 *
46 * 1. Mark the target block group read-only
47 * New extents won't be allocated from the target block group.
48 *
49 * 2.1 Record each extent in the target block group
50 * To build a proper map of extents to be relocated.
51 *
52 * 2.2 Build data reloc tree and reloc trees
53 * Data reloc tree will contain an inode, recording all newly relocated
54 * data extents.
55 * There will be only one data reloc tree for one data block group.
56 *
57 * Reloc tree will be a special snapshot of its source tree, containing
58 * relocated tree blocks.
59 * Each tree referring to a tree block in target block group will get its
60 * reloc tree built.
61 *
62 * 2.3 Swap source tree with its corresponding reloc tree
63 * Each involved tree only refers to new extents after swap.
64 *
65 * 3. Cleanup reloc trees and data reloc tree.
66 * As old extents in the target block group are still referenced by reloc
67 * trees, we need to clean them up before really freeing the target block
68 * group.
69 *
70 * The main complexity is in steps 2.2 and 2.3.
71 *
72 * The entry point of relocation is relocate_block_group() function.
73 */
74
75#define RELOCATION_RESERVED_NODES 256
76/*
77 * map address of tree root to tree
78 */
79struct mapping_node {
80 struct {
81 struct rb_node rb_node;
82 u64 bytenr;
83 }; /* Use rb_simle_node for search/insert */
84 void *data;
85};
86
87struct mapping_tree {
88 struct rb_root rb_root;
89 spinlock_t lock;
90};
91
92/*
93 * present a tree block to process
94 */
95struct tree_block {
96 struct {
97 struct rb_node rb_node;
98 u64 bytenr;
99 }; /* Use rb_simple_node for search/insert */
100 u64 owner;
101 struct btrfs_key key;
102 unsigned int level:8;
103 unsigned int key_ready:1;
104};
105
106#define MAX_EXTENTS 128
107
108struct file_extent_cluster {
109 u64 start;
110 u64 end;
111 u64 boundary[MAX_EXTENTS];
112 unsigned int nr;
113};
114
115struct reloc_control {
116 /* block group to relocate */
117 struct btrfs_block_group *block_group;
118 /* extent tree */
119 struct btrfs_root *extent_root;
120 /* inode for moving data */
121 struct inode *data_inode;
122
123 struct btrfs_block_rsv *block_rsv;
124
125 struct btrfs_backref_cache backref_cache;
126
127 struct file_extent_cluster cluster;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree;
132 /* list of reloc trees */
133 struct list_head reloc_roots;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size;
138 /* size of relocated tree nodes */
139 u64 nodes_relocated;
140 /* reserved size for block group relocation*/
141 u64 reserved_bytes;
142
143 u64 search_start;
144 u64 extents_found;
145
146 unsigned int stage:8;
147 unsigned int create_reloc_tree:1;
148 unsigned int merge_reloc_tree:1;
149 unsigned int found_file_extent:1;
150};
151
152/* stages of data relocation */
153#define MOVE_DATA_EXTENTS 0
154#define UPDATE_DATA_PTRS 1
155
156static void mark_block_processed(struct reloc_control *rc,
157 struct btrfs_backref_node *node)
158{
159 u32 blocksize;
160
161 if (node->level == 0 ||
162 in_range(node->bytenr, rc->block_group->start,
163 rc->block_group->length)) {
164 blocksize = rc->extent_root->fs_info->nodesize;
165 set_extent_bits(&rc->processed_blocks, node->bytenr,
166 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 }
168 node->processed = 1;
169}
170
171
172static void mapping_tree_init(struct mapping_tree *tree)
173{
174 tree->rb_root = RB_ROOT;
175 spin_lock_init(&tree->lock);
176}
177
178/*
179 * walk up backref nodes until reach node presents tree root
180 */
181static struct btrfs_backref_node *walk_up_backref(
182 struct btrfs_backref_node *node,
183 struct btrfs_backref_edge *edges[], int *index)
184{
185 struct btrfs_backref_edge *edge;
186 int idx = *index;
187
188 while (!list_empty(&node->upper)) {
189 edge = list_entry(node->upper.next,
190 struct btrfs_backref_edge, list[LOWER]);
191 edges[idx++] = edge;
192 node = edge->node[UPPER];
193 }
194 BUG_ON(node->detached);
195 *index = idx;
196 return node;
197}
198
199/*
200 * walk down backref nodes to find start of next reference path
201 */
202static struct btrfs_backref_node *walk_down_backref(
203 struct btrfs_backref_edge *edges[], int *index)
204{
205 struct btrfs_backref_edge *edge;
206 struct btrfs_backref_node *lower;
207 int idx = *index;
208
209 while (idx > 0) {
210 edge = edges[idx - 1];
211 lower = edge->node[LOWER];
212 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 idx--;
214 continue;
215 }
216 edge = list_entry(edge->list[LOWER].next,
217 struct btrfs_backref_edge, list[LOWER]);
218 edges[idx - 1] = edge;
219 *index = idx;
220 return edge->node[UPPER];
221 }
222 *index = 0;
223 return NULL;
224}
225
226static void update_backref_node(struct btrfs_backref_cache *cache,
227 struct btrfs_backref_node *node, u64 bytenr)
228{
229 struct rb_node *rb_node;
230 rb_erase(&node->rb_node, &cache->rb_root);
231 node->bytenr = bytenr;
232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 if (rb_node)
234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235}
236
237/*
238 * update backref cache after a transaction commit
239 */
240static int update_backref_cache(struct btrfs_trans_handle *trans,
241 struct btrfs_backref_cache *cache)
242{
243 struct btrfs_backref_node *node;
244 int level = 0;
245
246 if (cache->last_trans == 0) {
247 cache->last_trans = trans->transid;
248 return 0;
249 }
250
251 if (cache->last_trans == trans->transid)
252 return 0;
253
254 /*
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
258 */
259 while (!list_empty(&cache->detached)) {
260 node = list_entry(cache->detached.next,
261 struct btrfs_backref_node, list);
262 btrfs_backref_cleanup_node(cache, node);
263 }
264
265 while (!list_empty(&cache->changed)) {
266 node = list_entry(cache->changed.next,
267 struct btrfs_backref_node, list);
268 list_del_init(&node->list);
269 BUG_ON(node->pending);
270 update_backref_node(cache, node, node->new_bytenr);
271 }
272
273 /*
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
276 */
277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 list_for_each_entry(node, &cache->pending[level], list) {
279 BUG_ON(!node->pending);
280 if (node->bytenr == node->new_bytenr)
281 continue;
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284 }
285
286 cache->last_trans = 0;
287 return 1;
288}
289
290static bool reloc_root_is_dead(struct btrfs_root *root)
291{
292 /*
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
296 */
297 smp_rmb();
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 return true;
300 return false;
301}
302
303/*
304 * Check if this subvolume tree has valid reloc tree.
305 *
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
309 * special case.
310 */
311static bool have_reloc_root(struct btrfs_root *root)
312{
313 if (reloc_root_is_dead(root))
314 return false;
315 if (!root->reloc_root)
316 return false;
317 return true;
318}
319
320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321{
322 struct btrfs_root *reloc_root;
323
324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 return 0;
326
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root))
329 return 1;
330
331 reloc_root = root->reloc_root;
332 if (!reloc_root)
333 return 0;
334
335 if (btrfs_header_generation(reloc_root->commit_root) ==
336 root->fs_info->running_transaction->transid)
337 return 0;
338 /*
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
342 * relocation.
343 */
344 return 1;
345}
346
347/*
348 * find reloc tree by address of tree root
349 */
350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351{
352 struct reloc_control *rc = fs_info->reloc_ctl;
353 struct rb_node *rb_node;
354 struct mapping_node *node;
355 struct btrfs_root *root = NULL;
356
357 ASSERT(rc);
358 spin_lock(&rc->reloc_root_tree.lock);
359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 if (rb_node) {
361 node = rb_entry(rb_node, struct mapping_node, rb_node);
362 root = (struct btrfs_root *)node->data;
363 }
364 spin_unlock(&rc->reloc_root_tree.lock);
365 return btrfs_grab_root(root);
366}
367
368/*
369 * For useless nodes, do two major clean ups:
370 *
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
374 *
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
377 *
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
380 */
381static bool handle_useless_nodes(struct reloc_control *rc,
382 struct btrfs_backref_node *node)
383{
384 struct btrfs_backref_cache *cache = &rc->backref_cache;
385 struct list_head *useless_node = &cache->useless_node;
386 bool ret = false;
387
388 while (!list_empty(useless_node)) {
389 struct btrfs_backref_node *cur;
390
391 cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 list);
393 list_del_init(&cur->list);
394
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur->upper));
397
398 if (cur == node)
399 ret = true;
400
401 /* The node is the lowest node */
402 if (cur->lowest) {
403 list_del_init(&cur->lower);
404 cur->lowest = 0;
405 }
406
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur->lower)) {
409 struct btrfs_backref_edge *edge;
410 struct btrfs_backref_node *lower;
411
412 edge = list_entry(cur->lower.next,
413 struct btrfs_backref_edge, list[UPPER]);
414 list_del(&edge->list[UPPER]);
415 list_del(&edge->list[LOWER]);
416 lower = edge->node[LOWER];
417 btrfs_backref_free_edge(cache, edge);
418
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower->upper))
421 list_add(&lower->list, useless_node);
422 }
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc, cur);
425
426 /*
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
430 */
431 if (cur->level > 0) {
432 list_add(&cur->list, &cache->detached);
433 cur->detached = 1;
434 } else {
435 rb_erase(&cur->rb_node, &cache->rb_root);
436 btrfs_backref_free_node(cache, cur);
437 }
438 }
439 return ret;
440}
441
442/*
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
446 *
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
451 *
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
454 * cached.
455 */
456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 struct reloc_control *rc, struct btrfs_key *node_key,
458 int level, u64 bytenr)
459{
460 struct btrfs_backref_iter *iter;
461 struct btrfs_backref_cache *cache = &rc->backref_cache;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path *path;
464 struct btrfs_backref_node *cur;
465 struct btrfs_backref_node *node = NULL;
466 struct btrfs_backref_edge *edge;
467 int ret;
468 int err = 0;
469
470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 if (!iter)
472 return ERR_PTR(-ENOMEM);
473 path = btrfs_alloc_path();
474 if (!path) {
475 err = -ENOMEM;
476 goto out;
477 }
478
479 node = btrfs_backref_alloc_node(cache, bytenr, level);
480 if (!node) {
481 err = -ENOMEM;
482 goto out;
483 }
484
485 node->lowest = 1;
486 cur = node;
487
488 /* Breadth-first search to build backref cache */
489 do {
490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 cur);
492 if (ret < 0) {
493 err = ret;
494 goto out;
495 }
496 edge = list_first_entry_or_null(&cache->pending_edge,
497 struct btrfs_backref_edge, list[UPPER]);
498 /*
499 * The pending list isn't empty, take the first block to
500 * process
501 */
502 if (edge) {
503 list_del_init(&edge->list[UPPER]);
504 cur = edge->node[UPPER];
505 }
506 } while (edge);
507
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret = btrfs_backref_finish_upper_links(cache, node);
510 if (ret < 0) {
511 err = ret;
512 goto out;
513 }
514
515 if (handle_useless_nodes(rc, node))
516 node = NULL;
517out:
518 btrfs_backref_iter_free(iter);
519 btrfs_free_path(path);
520 if (err) {
521 btrfs_backref_error_cleanup(cache, node);
522 return ERR_PTR(err);
523 }
524 ASSERT(!node || !node->detached);
525 ASSERT(list_empty(&cache->useless_node) &&
526 list_empty(&cache->pending_edge));
527 return node;
528}
529
530/*
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
534 */
535static int clone_backref_node(struct btrfs_trans_handle *trans,
536 struct reloc_control *rc,
537 struct btrfs_root *src,
538 struct btrfs_root *dest)
539{
540 struct btrfs_root *reloc_root = src->reloc_root;
541 struct btrfs_backref_cache *cache = &rc->backref_cache;
542 struct btrfs_backref_node *node = NULL;
543 struct btrfs_backref_node *new_node;
544 struct btrfs_backref_edge *edge;
545 struct btrfs_backref_edge *new_edge;
546 struct rb_node *rb_node;
547
548 if (cache->last_trans > 0)
549 update_backref_cache(trans, cache);
550
551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 if (rb_node) {
553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 if (node->detached)
555 node = NULL;
556 else
557 BUG_ON(node->new_bytenr != reloc_root->node->start);
558 }
559
560 if (!node) {
561 rb_node = rb_simple_search(&cache->rb_root,
562 reloc_root->commit_root->start);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct btrfs_backref_node,
565 rb_node);
566 BUG_ON(node->detached);
567 }
568 }
569
570 if (!node)
571 return 0;
572
573 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 node->level);
575 if (!new_node)
576 return -ENOMEM;
577
578 new_node->lowest = node->lowest;
579 new_node->checked = 1;
580 new_node->root = btrfs_grab_root(dest);
581 ASSERT(new_node->root);
582
583 if (!node->lowest) {
584 list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 new_edge = btrfs_backref_alloc_edge(cache);
586 if (!new_edge)
587 goto fail;
588
589 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 new_node, LINK_UPPER);
591 }
592 } else {
593 list_add_tail(&new_node->lower, &cache->leaves);
594 }
595
596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 &new_node->rb_node);
598 if (rb_node)
599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600
601 if (!new_node->lowest) {
602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 list_add_tail(&new_edge->list[LOWER],
604 &new_edge->node[LOWER]->upper);
605 }
606 }
607 return 0;
608fail:
609 while (!list_empty(&new_node->lower)) {
610 new_edge = list_entry(new_node->lower.next,
611 struct btrfs_backref_edge, list[UPPER]);
612 list_del(&new_edge->list[UPPER]);
613 btrfs_backref_free_edge(cache, new_edge);
614 }
615 btrfs_backref_free_node(cache, new_node);
616 return -ENOMEM;
617}
618
619/*
620 * helper to add 'address of tree root -> reloc tree' mapping
621 */
622static int __must_check __add_reloc_root(struct btrfs_root *root)
623{
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 struct rb_node *rb_node;
626 struct mapping_node *node;
627 struct reloc_control *rc = fs_info->reloc_ctl;
628
629 node = kmalloc(sizeof(*node), GFP_NOFS);
630 if (!node)
631 return -ENOMEM;
632
633 node->bytenr = root->commit_root->start;
634 node->data = root;
635
636 spin_lock(&rc->reloc_root_tree.lock);
637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 node->bytenr, &node->rb_node);
639 spin_unlock(&rc->reloc_root_tree.lock);
640 if (rb_node) {
641 btrfs_err(fs_info,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
643 node->bytenr);
644 return -EEXIST;
645 }
646
647 list_add_tail(&root->root_list, &rc->reloc_roots);
648 return 0;
649}
650
651/*
652 * helper to delete the 'address of tree root -> reloc tree'
653 * mapping
654 */
655static void __del_reloc_root(struct btrfs_root *root)
656{
657 struct btrfs_fs_info *fs_info = root->fs_info;
658 struct rb_node *rb_node;
659 struct mapping_node *node = NULL;
660 struct reloc_control *rc = fs_info->reloc_ctl;
661 bool put_ref = false;
662
663 if (rc && root->node) {
664 spin_lock(&rc->reloc_root_tree.lock);
665 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
666 root->commit_root->start);
667 if (rb_node) {
668 node = rb_entry(rb_node, struct mapping_node, rb_node);
669 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
670 RB_CLEAR_NODE(&node->rb_node);
671 }
672 spin_unlock(&rc->reloc_root_tree.lock);
673 ASSERT(!node || (struct btrfs_root *)node->data == root);
674 }
675
676 /*
677 * We only put the reloc root here if it's on the list. There's a lot
678 * of places where the pattern is to splice the rc->reloc_roots, process
679 * the reloc roots, and then add the reloc root back onto
680 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
681 * list we don't want the reference being dropped, because the guy
682 * messing with the list is in charge of the reference.
683 */
684 spin_lock(&fs_info->trans_lock);
685 if (!list_empty(&root->root_list)) {
686 put_ref = true;
687 list_del_init(&root->root_list);
688 }
689 spin_unlock(&fs_info->trans_lock);
690 if (put_ref)
691 btrfs_put_root(root);
692 kfree(node);
693}
694
695/*
696 * helper to update the 'address of tree root -> reloc tree'
697 * mapping
698 */
699static int __update_reloc_root(struct btrfs_root *root)
700{
701 struct btrfs_fs_info *fs_info = root->fs_info;
702 struct rb_node *rb_node;
703 struct mapping_node *node = NULL;
704 struct reloc_control *rc = fs_info->reloc_ctl;
705
706 spin_lock(&rc->reloc_root_tree.lock);
707 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
708 root->commit_root->start);
709 if (rb_node) {
710 node = rb_entry(rb_node, struct mapping_node, rb_node);
711 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
712 }
713 spin_unlock(&rc->reloc_root_tree.lock);
714
715 if (!node)
716 return 0;
717 BUG_ON((struct btrfs_root *)node->data != root);
718
719 spin_lock(&rc->reloc_root_tree.lock);
720 node->bytenr = root->node->start;
721 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
722 node->bytenr, &node->rb_node);
723 spin_unlock(&rc->reloc_root_tree.lock);
724 if (rb_node)
725 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
726 return 0;
727}
728
729static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
730 struct btrfs_root *root, u64 objectid)
731{
732 struct btrfs_fs_info *fs_info = root->fs_info;
733 struct btrfs_root *reloc_root;
734 struct extent_buffer *eb;
735 struct btrfs_root_item *root_item;
736 struct btrfs_key root_key;
737 int ret = 0;
738 bool must_abort = false;
739
740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 if (!root_item)
742 return ERR_PTR(-ENOMEM);
743
744 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
745 root_key.type = BTRFS_ROOT_ITEM_KEY;
746 root_key.offset = objectid;
747
748 if (root->root_key.objectid == objectid) {
749 u64 commit_root_gen;
750
751 /* called by btrfs_init_reloc_root */
752 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
753 BTRFS_TREE_RELOC_OBJECTID);
754 if (ret)
755 goto fail;
756
757 /*
758 * Set the last_snapshot field to the generation of the commit
759 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
760 * correctly (returns true) when the relocation root is created
761 * either inside the critical section of a transaction commit
762 * (through transaction.c:qgroup_account_snapshot()) and when
763 * it's created before the transaction commit is started.
764 */
765 commit_root_gen = btrfs_header_generation(root->commit_root);
766 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
767 } else {
768 /*
769 * called by btrfs_reloc_post_snapshot_hook.
770 * the source tree is a reloc tree, all tree blocks
771 * modified after it was created have RELOC flag
772 * set in their headers. so it's OK to not update
773 * the 'last_snapshot'.
774 */
775 ret = btrfs_copy_root(trans, root, root->node, &eb,
776 BTRFS_TREE_RELOC_OBJECTID);
777 if (ret)
778 goto fail;
779 }
780
781 /*
782 * We have changed references at this point, we must abort the
783 * transaction if anything fails.
784 */
785 must_abort = true;
786
787 memcpy(root_item, &root->root_item, sizeof(*root_item));
788 btrfs_set_root_bytenr(root_item, eb->start);
789 btrfs_set_root_level(root_item, btrfs_header_level(eb));
790 btrfs_set_root_generation(root_item, trans->transid);
791
792 if (root->root_key.objectid == objectid) {
793 btrfs_set_root_refs(root_item, 0);
794 memset(&root_item->drop_progress, 0,
795 sizeof(struct btrfs_disk_key));
796 btrfs_set_root_drop_level(root_item, 0);
797 }
798
799 btrfs_tree_unlock(eb);
800 free_extent_buffer(eb);
801
802 ret = btrfs_insert_root(trans, fs_info->tree_root,
803 &root_key, root_item);
804 if (ret)
805 goto fail;
806
807 kfree(root_item);
808
809 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
810 if (IS_ERR(reloc_root)) {
811 ret = PTR_ERR(reloc_root);
812 goto abort;
813 }
814 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
815 reloc_root->last_trans = trans->transid;
816 return reloc_root;
817fail:
818 kfree(root_item);
819abort:
820 if (must_abort)
821 btrfs_abort_transaction(trans, ret);
822 return ERR_PTR(ret);
823}
824
825/*
826 * create reloc tree for a given fs tree. reloc tree is just a
827 * snapshot of the fs tree with special root objectid.
828 *
829 * The reloc_root comes out of here with two references, one for
830 * root->reloc_root, and another for being on the rc->reloc_roots list.
831 */
832int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
833 struct btrfs_root *root)
834{
835 struct btrfs_fs_info *fs_info = root->fs_info;
836 struct btrfs_root *reloc_root;
837 struct reloc_control *rc = fs_info->reloc_ctl;
838 struct btrfs_block_rsv *rsv;
839 int clear_rsv = 0;
840 int ret;
841
842 if (!rc)
843 return 0;
844
845 /*
846 * The subvolume has reloc tree but the swap is finished, no need to
847 * create/update the dead reloc tree
848 */
849 if (reloc_root_is_dead(root))
850 return 0;
851
852 /*
853 * This is subtle but important. We do not do
854 * record_root_in_transaction for reloc roots, instead we record their
855 * corresponding fs root, and then here we update the last trans for the
856 * reloc root. This means that we have to do this for the entire life
857 * of the reloc root, regardless of which stage of the relocation we are
858 * in.
859 */
860 if (root->reloc_root) {
861 reloc_root = root->reloc_root;
862 reloc_root->last_trans = trans->transid;
863 return 0;
864 }
865
866 /*
867 * We are merging reloc roots, we do not need new reloc trees. Also
868 * reloc trees never need their own reloc tree.
869 */
870 if (!rc->create_reloc_tree ||
871 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
872 return 0;
873
874 if (!trans->reloc_reserved) {
875 rsv = trans->block_rsv;
876 trans->block_rsv = rc->block_rsv;
877 clear_rsv = 1;
878 }
879 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
880 if (clear_rsv)
881 trans->block_rsv = rsv;
882 if (IS_ERR(reloc_root))
883 return PTR_ERR(reloc_root);
884
885 ret = __add_reloc_root(reloc_root);
886 ASSERT(ret != -EEXIST);
887 if (ret) {
888 /* Pairs with create_reloc_root */
889 btrfs_put_root(reloc_root);
890 return ret;
891 }
892 root->reloc_root = btrfs_grab_root(reloc_root);
893 return 0;
894}
895
896/*
897 * update root item of reloc tree
898 */
899int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root)
901{
902 struct btrfs_fs_info *fs_info = root->fs_info;
903 struct btrfs_root *reloc_root;
904 struct btrfs_root_item *root_item;
905 int ret;
906
907 if (!have_reloc_root(root))
908 return 0;
909
910 reloc_root = root->reloc_root;
911 root_item = &reloc_root->root_item;
912
913 /*
914 * We are probably ok here, but __del_reloc_root() will drop its ref of
915 * the root. We have the ref for root->reloc_root, but just in case
916 * hold it while we update the reloc root.
917 */
918 btrfs_grab_root(reloc_root);
919
920 /* root->reloc_root will stay until current relocation finished */
921 if (fs_info->reloc_ctl->merge_reloc_tree &&
922 btrfs_root_refs(root_item) == 0) {
923 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
924 /*
925 * Mark the tree as dead before we change reloc_root so
926 * have_reloc_root will not touch it from now on.
927 */
928 smp_wmb();
929 __del_reloc_root(reloc_root);
930 }
931
932 if (reloc_root->commit_root != reloc_root->node) {
933 __update_reloc_root(reloc_root);
934 btrfs_set_root_node(root_item, reloc_root->node);
935 free_extent_buffer(reloc_root->commit_root);
936 reloc_root->commit_root = btrfs_root_node(reloc_root);
937 }
938
939 ret = btrfs_update_root(trans, fs_info->tree_root,
940 &reloc_root->root_key, root_item);
941 btrfs_put_root(reloc_root);
942 return ret;
943}
944
945/*
946 * helper to find first cached inode with inode number >= objectid
947 * in a subvolume
948 */
949static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
950{
951 struct rb_node *node;
952 struct rb_node *prev;
953 struct btrfs_inode *entry;
954 struct inode *inode;
955
956 spin_lock(&root->inode_lock);
957again:
958 node = root->inode_tree.rb_node;
959 prev = NULL;
960 while (node) {
961 prev = node;
962 entry = rb_entry(node, struct btrfs_inode, rb_node);
963
964 if (objectid < btrfs_ino(entry))
965 node = node->rb_left;
966 else if (objectid > btrfs_ino(entry))
967 node = node->rb_right;
968 else
969 break;
970 }
971 if (!node) {
972 while (prev) {
973 entry = rb_entry(prev, struct btrfs_inode, rb_node);
974 if (objectid <= btrfs_ino(entry)) {
975 node = prev;
976 break;
977 }
978 prev = rb_next(prev);
979 }
980 }
981 while (node) {
982 entry = rb_entry(node, struct btrfs_inode, rb_node);
983 inode = igrab(&entry->vfs_inode);
984 if (inode) {
985 spin_unlock(&root->inode_lock);
986 return inode;
987 }
988
989 objectid = btrfs_ino(entry) + 1;
990 if (cond_resched_lock(&root->inode_lock))
991 goto again;
992
993 node = rb_next(node);
994 }
995 spin_unlock(&root->inode_lock);
996 return NULL;
997}
998
999/*
1000 * get new location of data
1001 */
1002static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1003 u64 bytenr, u64 num_bytes)
1004{
1005 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1006 struct btrfs_path *path;
1007 struct btrfs_file_extent_item *fi;
1008 struct extent_buffer *leaf;
1009 int ret;
1010
1011 path = btrfs_alloc_path();
1012 if (!path)
1013 return -ENOMEM;
1014
1015 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1016 ret = btrfs_lookup_file_extent(NULL, root, path,
1017 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1018 if (ret < 0)
1019 goto out;
1020 if (ret > 0) {
1021 ret = -ENOENT;
1022 goto out;
1023 }
1024
1025 leaf = path->nodes[0];
1026 fi = btrfs_item_ptr(leaf, path->slots[0],
1027 struct btrfs_file_extent_item);
1028
1029 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1030 btrfs_file_extent_compression(leaf, fi) ||
1031 btrfs_file_extent_encryption(leaf, fi) ||
1032 btrfs_file_extent_other_encoding(leaf, fi));
1033
1034 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035 ret = -EINVAL;
1036 goto out;
1037 }
1038
1039 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040 ret = 0;
1041out:
1042 btrfs_free_path(path);
1043 return ret;
1044}
1045
1046/*
1047 * update file extent items in the tree leaf to point to
1048 * the new locations.
1049 */
1050static noinline_for_stack
1051int replace_file_extents(struct btrfs_trans_handle *trans,
1052 struct reloc_control *rc,
1053 struct btrfs_root *root,
1054 struct extent_buffer *leaf)
1055{
1056 struct btrfs_fs_info *fs_info = root->fs_info;
1057 struct btrfs_key key;
1058 struct btrfs_file_extent_item *fi;
1059 struct inode *inode = NULL;
1060 u64 parent;
1061 u64 bytenr;
1062 u64 new_bytenr = 0;
1063 u64 num_bytes;
1064 u64 end;
1065 u32 nritems;
1066 u32 i;
1067 int ret = 0;
1068 int first = 1;
1069 int dirty = 0;
1070
1071 if (rc->stage != UPDATE_DATA_PTRS)
1072 return 0;
1073
1074 /* reloc trees always use full backref */
1075 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1076 parent = leaf->start;
1077 else
1078 parent = 0;
1079
1080 nritems = btrfs_header_nritems(leaf);
1081 for (i = 0; i < nritems; i++) {
1082 struct btrfs_ref ref = { 0 };
1083
1084 cond_resched();
1085 btrfs_item_key_to_cpu(leaf, &key, i);
1086 if (key.type != BTRFS_EXTENT_DATA_KEY)
1087 continue;
1088 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1089 if (btrfs_file_extent_type(leaf, fi) ==
1090 BTRFS_FILE_EXTENT_INLINE)
1091 continue;
1092 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1094 if (bytenr == 0)
1095 continue;
1096 if (!in_range(bytenr, rc->block_group->start,
1097 rc->block_group->length))
1098 continue;
1099
1100 /*
1101 * if we are modifying block in fs tree, wait for readpage
1102 * to complete and drop the extent cache
1103 */
1104 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1105 if (first) {
1106 inode = find_next_inode(root, key.objectid);
1107 first = 0;
1108 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1109 btrfs_add_delayed_iput(inode);
1110 inode = find_next_inode(root, key.objectid);
1111 }
1112 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1113 end = key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 WARN_ON(!IS_ALIGNED(key.offset,
1116 fs_info->sectorsize));
1117 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1118 end--;
1119 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1120 key.offset, end);
1121 if (!ret)
1122 continue;
1123
1124 btrfs_drop_extent_cache(BTRFS_I(inode),
1125 key.offset, end, 1);
1126 unlock_extent(&BTRFS_I(inode)->io_tree,
1127 key.offset, end);
1128 }
1129 }
1130
1131 ret = get_new_location(rc->data_inode, &new_bytenr,
1132 bytenr, num_bytes);
1133 if (ret) {
1134 /*
1135 * Don't have to abort since we've not changed anything
1136 * in the file extent yet.
1137 */
1138 break;
1139 }
1140
1141 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1142 dirty = 1;
1143
1144 key.offset -= btrfs_file_extent_offset(leaf, fi);
1145 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1146 num_bytes, parent);
1147 ref.real_root = root->root_key.objectid;
1148 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1149 key.objectid, key.offset);
1150 ret = btrfs_inc_extent_ref(trans, &ref);
1151 if (ret) {
1152 btrfs_abort_transaction(trans, ret);
1153 break;
1154 }
1155
1156 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1157 num_bytes, parent);
1158 ref.real_root = root->root_key.objectid;
1159 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160 key.objectid, key.offset);
1161 ret = btrfs_free_extent(trans, &ref);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, ret);
1164 break;
1165 }
1166 }
1167 if (dirty)
1168 btrfs_mark_buffer_dirty(leaf);
1169 if (inode)
1170 btrfs_add_delayed_iput(inode);
1171 return ret;
1172}
1173
1174static noinline_for_stack
1175int memcmp_node_keys(struct extent_buffer *eb, int slot,
1176 struct btrfs_path *path, int level)
1177{
1178 struct btrfs_disk_key key1;
1179 struct btrfs_disk_key key2;
1180 btrfs_node_key(eb, &key1, slot);
1181 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1182 return memcmp(&key1, &key2, sizeof(key1));
1183}
1184
1185/*
1186 * try to replace tree blocks in fs tree with the new blocks
1187 * in reloc tree. tree blocks haven't been modified since the
1188 * reloc tree was create can be replaced.
1189 *
1190 * if a block was replaced, level of the block + 1 is returned.
1191 * if no block got replaced, 0 is returned. if there are other
1192 * errors, a negative error number is returned.
1193 */
1194static noinline_for_stack
1195int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1196 struct btrfs_root *dest, struct btrfs_root *src,
1197 struct btrfs_path *path, struct btrfs_key *next_key,
1198 int lowest_level, int max_level)
1199{
1200 struct btrfs_fs_info *fs_info = dest->fs_info;
1201 struct extent_buffer *eb;
1202 struct extent_buffer *parent;
1203 struct btrfs_ref ref = { 0 };
1204 struct btrfs_key key;
1205 u64 old_bytenr;
1206 u64 new_bytenr;
1207 u64 old_ptr_gen;
1208 u64 new_ptr_gen;
1209 u64 last_snapshot;
1210 u32 blocksize;
1211 int cow = 0;
1212 int level;
1213 int ret;
1214 int slot;
1215
1216 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1217 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1218
1219 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1220again:
1221 slot = path->slots[lowest_level];
1222 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1223
1224 eb = btrfs_lock_root_node(dest);
1225 level = btrfs_header_level(eb);
1226
1227 if (level < lowest_level) {
1228 btrfs_tree_unlock(eb);
1229 free_extent_buffer(eb);
1230 return 0;
1231 }
1232
1233 if (cow) {
1234 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1235 BTRFS_NESTING_COW);
1236 if (ret) {
1237 btrfs_tree_unlock(eb);
1238 free_extent_buffer(eb);
1239 return ret;
1240 }
1241 }
1242
1243 if (next_key) {
1244 next_key->objectid = (u64)-1;
1245 next_key->type = (u8)-1;
1246 next_key->offset = (u64)-1;
1247 }
1248
1249 parent = eb;
1250 while (1) {
1251 level = btrfs_header_level(parent);
1252 ASSERT(level >= lowest_level);
1253
1254 ret = btrfs_bin_search(parent, &key, &slot);
1255 if (ret < 0)
1256 break;
1257 if (ret && slot > 0)
1258 slot--;
1259
1260 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1261 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1262
1263 old_bytenr = btrfs_node_blockptr(parent, slot);
1264 blocksize = fs_info->nodesize;
1265 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1266
1267 if (level <= max_level) {
1268 eb = path->nodes[level];
1269 new_bytenr = btrfs_node_blockptr(eb,
1270 path->slots[level]);
1271 new_ptr_gen = btrfs_node_ptr_generation(eb,
1272 path->slots[level]);
1273 } else {
1274 new_bytenr = 0;
1275 new_ptr_gen = 0;
1276 }
1277
1278 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1279 ret = level;
1280 break;
1281 }
1282
1283 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1284 memcmp_node_keys(parent, slot, path, level)) {
1285 if (level <= lowest_level) {
1286 ret = 0;
1287 break;
1288 }
1289
1290 eb = btrfs_read_node_slot(parent, slot);
1291 if (IS_ERR(eb)) {
1292 ret = PTR_ERR(eb);
1293 break;
1294 }
1295 btrfs_tree_lock(eb);
1296 if (cow) {
1297 ret = btrfs_cow_block(trans, dest, eb, parent,
1298 slot, &eb,
1299 BTRFS_NESTING_COW);
1300 if (ret) {
1301 btrfs_tree_unlock(eb);
1302 free_extent_buffer(eb);
1303 break;
1304 }
1305 }
1306
1307 btrfs_tree_unlock(parent);
1308 free_extent_buffer(parent);
1309
1310 parent = eb;
1311 continue;
1312 }
1313
1314 if (!cow) {
1315 btrfs_tree_unlock(parent);
1316 free_extent_buffer(parent);
1317 cow = 1;
1318 goto again;
1319 }
1320
1321 btrfs_node_key_to_cpu(path->nodes[level], &key,
1322 path->slots[level]);
1323 btrfs_release_path(path);
1324
1325 path->lowest_level = level;
1326 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1327 path->lowest_level = 0;
1328 if (ret) {
1329 if (ret > 0)
1330 ret = -ENOENT;
1331 break;
1332 }
1333
1334 /*
1335 * Info qgroup to trace both subtrees.
1336 *
1337 * We must trace both trees.
1338 * 1) Tree reloc subtree
1339 * If not traced, we will leak data numbers
1340 * 2) Fs subtree
1341 * If not traced, we will double count old data
1342 *
1343 * We don't scan the subtree right now, but only record
1344 * the swapped tree blocks.
1345 * The real subtree rescan is delayed until we have new
1346 * CoW on the subtree root node before transaction commit.
1347 */
1348 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1349 rc->block_group, parent, slot,
1350 path->nodes[level], path->slots[level],
1351 last_snapshot);
1352 if (ret < 0)
1353 break;
1354 /*
1355 * swap blocks in fs tree and reloc tree.
1356 */
1357 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1358 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1359 btrfs_mark_buffer_dirty(parent);
1360
1361 btrfs_set_node_blockptr(path->nodes[level],
1362 path->slots[level], old_bytenr);
1363 btrfs_set_node_ptr_generation(path->nodes[level],
1364 path->slots[level], old_ptr_gen);
1365 btrfs_mark_buffer_dirty(path->nodes[level]);
1366
1367 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1368 blocksize, path->nodes[level]->start);
1369 ref.skip_qgroup = true;
1370 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1371 ret = btrfs_inc_extent_ref(trans, &ref);
1372 if (ret) {
1373 btrfs_abort_transaction(trans, ret);
1374 break;
1375 }
1376 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1377 blocksize, 0);
1378 ref.skip_qgroup = true;
1379 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1380 ret = btrfs_inc_extent_ref(trans, &ref);
1381 if (ret) {
1382 btrfs_abort_transaction(trans, ret);
1383 break;
1384 }
1385
1386 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1387 blocksize, path->nodes[level]->start);
1388 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1389 ref.skip_qgroup = true;
1390 ret = btrfs_free_extent(trans, &ref);
1391 if (ret) {
1392 btrfs_abort_transaction(trans, ret);
1393 break;
1394 }
1395
1396 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1397 blocksize, 0);
1398 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1399 ref.skip_qgroup = true;
1400 ret = btrfs_free_extent(trans, &ref);
1401 if (ret) {
1402 btrfs_abort_transaction(trans, ret);
1403 break;
1404 }
1405
1406 btrfs_unlock_up_safe(path, 0);
1407
1408 ret = level;
1409 break;
1410 }
1411 btrfs_tree_unlock(parent);
1412 free_extent_buffer(parent);
1413 return ret;
1414}
1415
1416/*
1417 * helper to find next relocated block in reloc tree
1418 */
1419static noinline_for_stack
1420int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1421 int *level)
1422{
1423 struct extent_buffer *eb;
1424 int i;
1425 u64 last_snapshot;
1426 u32 nritems;
1427
1428 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1429
1430 for (i = 0; i < *level; i++) {
1431 free_extent_buffer(path->nodes[i]);
1432 path->nodes[i] = NULL;
1433 }
1434
1435 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1436 eb = path->nodes[i];
1437 nritems = btrfs_header_nritems(eb);
1438 while (path->slots[i] + 1 < nritems) {
1439 path->slots[i]++;
1440 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1441 last_snapshot)
1442 continue;
1443
1444 *level = i;
1445 return 0;
1446 }
1447 free_extent_buffer(path->nodes[i]);
1448 path->nodes[i] = NULL;
1449 }
1450 return 1;
1451}
1452
1453/*
1454 * walk down reloc tree to find relocated block of lowest level
1455 */
1456static noinline_for_stack
1457int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1458 int *level)
1459{
1460 struct extent_buffer *eb = NULL;
1461 int i;
1462 u64 ptr_gen = 0;
1463 u64 last_snapshot;
1464 u32 nritems;
1465
1466 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1467
1468 for (i = *level; i > 0; i--) {
1469 eb = path->nodes[i];
1470 nritems = btrfs_header_nritems(eb);
1471 while (path->slots[i] < nritems) {
1472 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1473 if (ptr_gen > last_snapshot)
1474 break;
1475 path->slots[i]++;
1476 }
1477 if (path->slots[i] >= nritems) {
1478 if (i == *level)
1479 break;
1480 *level = i + 1;
1481 return 0;
1482 }
1483 if (i == 1) {
1484 *level = i;
1485 return 0;
1486 }
1487
1488 eb = btrfs_read_node_slot(eb, path->slots[i]);
1489 if (IS_ERR(eb))
1490 return PTR_ERR(eb);
1491 BUG_ON(btrfs_header_level(eb) != i - 1);
1492 path->nodes[i - 1] = eb;
1493 path->slots[i - 1] = 0;
1494 }
1495 return 1;
1496}
1497
1498/*
1499 * invalidate extent cache for file extents whose key in range of
1500 * [min_key, max_key)
1501 */
1502static int invalidate_extent_cache(struct btrfs_root *root,
1503 struct btrfs_key *min_key,
1504 struct btrfs_key *max_key)
1505{
1506 struct btrfs_fs_info *fs_info = root->fs_info;
1507 struct inode *inode = NULL;
1508 u64 objectid;
1509 u64 start, end;
1510 u64 ino;
1511
1512 objectid = min_key->objectid;
1513 while (1) {
1514 cond_resched();
1515 iput(inode);
1516
1517 if (objectid > max_key->objectid)
1518 break;
1519
1520 inode = find_next_inode(root, objectid);
1521 if (!inode)
1522 break;
1523 ino = btrfs_ino(BTRFS_I(inode));
1524
1525 if (ino > max_key->objectid) {
1526 iput(inode);
1527 break;
1528 }
1529
1530 objectid = ino + 1;
1531 if (!S_ISREG(inode->i_mode))
1532 continue;
1533
1534 if (unlikely(min_key->objectid == ino)) {
1535 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1536 continue;
1537 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1538 start = 0;
1539 else {
1540 start = min_key->offset;
1541 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1542 }
1543 } else {
1544 start = 0;
1545 }
1546
1547 if (unlikely(max_key->objectid == ino)) {
1548 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1549 continue;
1550 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1551 end = (u64)-1;
1552 } else {
1553 if (max_key->offset == 0)
1554 continue;
1555 end = max_key->offset;
1556 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1557 end--;
1558 }
1559 } else {
1560 end = (u64)-1;
1561 }
1562
1563 /* the lock_extent waits for readpage to complete */
1564 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1565 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1566 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1567 }
1568 return 0;
1569}
1570
1571static int find_next_key(struct btrfs_path *path, int level,
1572 struct btrfs_key *key)
1573
1574{
1575 while (level < BTRFS_MAX_LEVEL) {
1576 if (!path->nodes[level])
1577 break;
1578 if (path->slots[level] + 1 <
1579 btrfs_header_nritems(path->nodes[level])) {
1580 btrfs_node_key_to_cpu(path->nodes[level], key,
1581 path->slots[level] + 1);
1582 return 0;
1583 }
1584 level++;
1585 }
1586 return 1;
1587}
1588
1589/*
1590 * Insert current subvolume into reloc_control::dirty_subvol_roots
1591 */
1592static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1593 struct reloc_control *rc,
1594 struct btrfs_root *root)
1595{
1596 struct btrfs_root *reloc_root = root->reloc_root;
1597 struct btrfs_root_item *reloc_root_item;
1598 int ret;
1599
1600 /* @root must be a subvolume tree root with a valid reloc tree */
1601 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1602 ASSERT(reloc_root);
1603
1604 reloc_root_item = &reloc_root->root_item;
1605 memset(&reloc_root_item->drop_progress, 0,
1606 sizeof(reloc_root_item->drop_progress));
1607 btrfs_set_root_drop_level(reloc_root_item, 0);
1608 btrfs_set_root_refs(reloc_root_item, 0);
1609 ret = btrfs_update_reloc_root(trans, root);
1610 if (ret)
1611 return ret;
1612
1613 if (list_empty(&root->reloc_dirty_list)) {
1614 btrfs_grab_root(root);
1615 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1616 }
1617
1618 return 0;
1619}
1620
1621static int clean_dirty_subvols(struct reloc_control *rc)
1622{
1623 struct btrfs_root *root;
1624 struct btrfs_root *next;
1625 int ret = 0;
1626 int ret2;
1627
1628 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1629 reloc_dirty_list) {
1630 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1631 /* Merged subvolume, cleanup its reloc root */
1632 struct btrfs_root *reloc_root = root->reloc_root;
1633
1634 list_del_init(&root->reloc_dirty_list);
1635 root->reloc_root = NULL;
1636 /*
1637 * Need barrier to ensure clear_bit() only happens after
1638 * root->reloc_root = NULL. Pairs with have_reloc_root.
1639 */
1640 smp_wmb();
1641 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1642 if (reloc_root) {
1643 /*
1644 * btrfs_drop_snapshot drops our ref we hold for
1645 * ->reloc_root. If it fails however we must
1646 * drop the ref ourselves.
1647 */
1648 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1649 if (ret2 < 0) {
1650 btrfs_put_root(reloc_root);
1651 if (!ret)
1652 ret = ret2;
1653 }
1654 }
1655 btrfs_put_root(root);
1656 } else {
1657 /* Orphan reloc tree, just clean it up */
1658 ret2 = btrfs_drop_snapshot(root, 0, 1);
1659 if (ret2 < 0) {
1660 btrfs_put_root(root);
1661 if (!ret)
1662 ret = ret2;
1663 }
1664 }
1665 }
1666 return ret;
1667}
1668
1669/*
1670 * merge the relocated tree blocks in reloc tree with corresponding
1671 * fs tree.
1672 */
1673static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1674 struct btrfs_root *root)
1675{
1676 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1677 struct btrfs_key key;
1678 struct btrfs_key next_key;
1679 struct btrfs_trans_handle *trans = NULL;
1680 struct btrfs_root *reloc_root;
1681 struct btrfs_root_item *root_item;
1682 struct btrfs_path *path;
1683 struct extent_buffer *leaf;
1684 int reserve_level;
1685 int level;
1686 int max_level;
1687 int replaced = 0;
1688 int ret = 0;
1689 u32 min_reserved;
1690
1691 path = btrfs_alloc_path();
1692 if (!path)
1693 return -ENOMEM;
1694 path->reada = READA_FORWARD;
1695
1696 reloc_root = root->reloc_root;
1697 root_item = &reloc_root->root_item;
1698
1699 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1700 level = btrfs_root_level(root_item);
1701 atomic_inc(&reloc_root->node->refs);
1702 path->nodes[level] = reloc_root->node;
1703 path->slots[level] = 0;
1704 } else {
1705 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1706
1707 level = btrfs_root_drop_level(root_item);
1708 BUG_ON(level == 0);
1709 path->lowest_level = level;
1710 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1711 path->lowest_level = 0;
1712 if (ret < 0) {
1713 btrfs_free_path(path);
1714 return ret;
1715 }
1716
1717 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1718 path->slots[level]);
1719 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1720
1721 btrfs_unlock_up_safe(path, 0);
1722 }
1723
1724 /*
1725 * In merge_reloc_root(), we modify the upper level pointer to swap the
1726 * tree blocks between reloc tree and subvolume tree. Thus for tree
1727 * block COW, we COW at most from level 1 to root level for each tree.
1728 *
1729 * Thus the needed metadata size is at most root_level * nodesize,
1730 * and * 2 since we have two trees to COW.
1731 */
1732 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1733 min_reserved = fs_info->nodesize * reserve_level * 2;
1734 memset(&next_key, 0, sizeof(next_key));
1735
1736 while (1) {
1737 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1738 BTRFS_RESERVE_FLUSH_LIMIT);
1739 if (ret)
1740 goto out;
1741 trans = btrfs_start_transaction(root, 0);
1742 if (IS_ERR(trans)) {
1743 ret = PTR_ERR(trans);
1744 trans = NULL;
1745 goto out;
1746 }
1747
1748 /*
1749 * At this point we no longer have a reloc_control, so we can't
1750 * depend on btrfs_init_reloc_root to update our last_trans.
1751 *
1752 * But that's ok, we started the trans handle on our
1753 * corresponding fs_root, which means it's been added to the
1754 * dirty list. At commit time we'll still call
1755 * btrfs_update_reloc_root() and update our root item
1756 * appropriately.
1757 */
1758 reloc_root->last_trans = trans->transid;
1759 trans->block_rsv = rc->block_rsv;
1760
1761 replaced = 0;
1762 max_level = level;
1763
1764 ret = walk_down_reloc_tree(reloc_root, path, &level);
1765 if (ret < 0)
1766 goto out;
1767 if (ret > 0)
1768 break;
1769
1770 if (!find_next_key(path, level, &key) &&
1771 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1772 ret = 0;
1773 } else {
1774 ret = replace_path(trans, rc, root, reloc_root, path,
1775 &next_key, level, max_level);
1776 }
1777 if (ret < 0)
1778 goto out;
1779 if (ret > 0) {
1780 level = ret;
1781 btrfs_node_key_to_cpu(path->nodes[level], &key,
1782 path->slots[level]);
1783 replaced = 1;
1784 }
1785
1786 ret = walk_up_reloc_tree(reloc_root, path, &level);
1787 if (ret > 0)
1788 break;
1789
1790 BUG_ON(level == 0);
1791 /*
1792 * save the merging progress in the drop_progress.
1793 * this is OK since root refs == 1 in this case.
1794 */
1795 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1796 path->slots[level]);
1797 btrfs_set_root_drop_level(root_item, level);
1798
1799 btrfs_end_transaction_throttle(trans);
1800 trans = NULL;
1801
1802 btrfs_btree_balance_dirty(fs_info);
1803
1804 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1805 invalidate_extent_cache(root, &key, &next_key);
1806 }
1807
1808 /*
1809 * handle the case only one block in the fs tree need to be
1810 * relocated and the block is tree root.
1811 */
1812 leaf = btrfs_lock_root_node(root);
1813 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1814 BTRFS_NESTING_COW);
1815 btrfs_tree_unlock(leaf);
1816 free_extent_buffer(leaf);
1817out:
1818 btrfs_free_path(path);
1819
1820 if (ret == 0) {
1821 ret = insert_dirty_subvol(trans, rc, root);
1822 if (ret)
1823 btrfs_abort_transaction(trans, ret);
1824 }
1825
1826 if (trans)
1827 btrfs_end_transaction_throttle(trans);
1828
1829 btrfs_btree_balance_dirty(fs_info);
1830
1831 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1832 invalidate_extent_cache(root, &key, &next_key);
1833
1834 return ret;
1835}
1836
1837static noinline_for_stack
1838int prepare_to_merge(struct reloc_control *rc, int err)
1839{
1840 struct btrfs_root *root = rc->extent_root;
1841 struct btrfs_fs_info *fs_info = root->fs_info;
1842 struct btrfs_root *reloc_root;
1843 struct btrfs_trans_handle *trans;
1844 LIST_HEAD(reloc_roots);
1845 u64 num_bytes = 0;
1846 int ret;
1847
1848 mutex_lock(&fs_info->reloc_mutex);
1849 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1850 rc->merging_rsv_size += rc->nodes_relocated * 2;
1851 mutex_unlock(&fs_info->reloc_mutex);
1852
1853again:
1854 if (!err) {
1855 num_bytes = rc->merging_rsv_size;
1856 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1857 BTRFS_RESERVE_FLUSH_ALL);
1858 if (ret)
1859 err = ret;
1860 }
1861
1862 trans = btrfs_join_transaction(rc->extent_root);
1863 if (IS_ERR(trans)) {
1864 if (!err)
1865 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866 num_bytes, NULL);
1867 return PTR_ERR(trans);
1868 }
1869
1870 if (!err) {
1871 if (num_bytes != rc->merging_rsv_size) {
1872 btrfs_end_transaction(trans);
1873 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1874 num_bytes, NULL);
1875 goto again;
1876 }
1877 }
1878
1879 rc->merge_reloc_tree = 1;
1880
1881 while (!list_empty(&rc->reloc_roots)) {
1882 reloc_root = list_entry(rc->reloc_roots.next,
1883 struct btrfs_root, root_list);
1884 list_del_init(&reloc_root->root_list);
1885
1886 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1887 false);
1888 if (IS_ERR(root)) {
1889 /*
1890 * Even if we have an error we need this reloc root
1891 * back on our list so we can clean up properly.
1892 */
1893 list_add(&reloc_root->root_list, &reloc_roots);
1894 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1895 if (!err)
1896 err = PTR_ERR(root);
1897 break;
1898 }
1899 ASSERT(root->reloc_root == reloc_root);
1900
1901 /*
1902 * set reference count to 1, so btrfs_recover_relocation
1903 * knows it should resumes merging
1904 */
1905 if (!err)
1906 btrfs_set_root_refs(&reloc_root->root_item, 1);
1907 ret = btrfs_update_reloc_root(trans, root);
1908
1909 /*
1910 * Even if we have an error we need this reloc root back on our
1911 * list so we can clean up properly.
1912 */
1913 list_add(&reloc_root->root_list, &reloc_roots);
1914 btrfs_put_root(root);
1915
1916 if (ret) {
1917 btrfs_abort_transaction(trans, ret);
1918 if (!err)
1919 err = ret;
1920 break;
1921 }
1922 }
1923
1924 list_splice(&reloc_roots, &rc->reloc_roots);
1925
1926 if (!err)
1927 err = btrfs_commit_transaction(trans);
1928 else
1929 btrfs_end_transaction(trans);
1930 return err;
1931}
1932
1933static noinline_for_stack
1934void free_reloc_roots(struct list_head *list)
1935{
1936 struct btrfs_root *reloc_root, *tmp;
1937
1938 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1939 __del_reloc_root(reloc_root);
1940}
1941
1942static noinline_for_stack
1943void merge_reloc_roots(struct reloc_control *rc)
1944{
1945 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1946 struct btrfs_root *root;
1947 struct btrfs_root *reloc_root;
1948 LIST_HEAD(reloc_roots);
1949 int found = 0;
1950 int ret = 0;
1951again:
1952 root = rc->extent_root;
1953
1954 /*
1955 * this serializes us with btrfs_record_root_in_transaction,
1956 * we have to make sure nobody is in the middle of
1957 * adding their roots to the list while we are
1958 * doing this splice
1959 */
1960 mutex_lock(&fs_info->reloc_mutex);
1961 list_splice_init(&rc->reloc_roots, &reloc_roots);
1962 mutex_unlock(&fs_info->reloc_mutex);
1963
1964 while (!list_empty(&reloc_roots)) {
1965 found = 1;
1966 reloc_root = list_entry(reloc_roots.next,
1967 struct btrfs_root, root_list);
1968
1969 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1970 false);
1971 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1972 if (IS_ERR(root)) {
1973 /*
1974 * For recovery we read the fs roots on mount,
1975 * and if we didn't find the root then we marked
1976 * the reloc root as a garbage root. For normal
1977 * relocation obviously the root should exist in
1978 * memory. However there's no reason we can't
1979 * handle the error properly here just in case.
1980 */
1981 ASSERT(0);
1982 ret = PTR_ERR(root);
1983 goto out;
1984 }
1985 if (root->reloc_root != reloc_root) {
1986 /*
1987 * This is actually impossible without something
1988 * going really wrong (like weird race condition
1989 * or cosmic rays).
1990 */
1991 ASSERT(0);
1992 ret = -EINVAL;
1993 goto out;
1994 }
1995 ret = merge_reloc_root(rc, root);
1996 btrfs_put_root(root);
1997 if (ret) {
1998 if (list_empty(&reloc_root->root_list))
1999 list_add_tail(&reloc_root->root_list,
2000 &reloc_roots);
2001 goto out;
2002 }
2003 } else {
2004 if (!IS_ERR(root)) {
2005 if (root->reloc_root == reloc_root) {
2006 root->reloc_root = NULL;
2007 btrfs_put_root(reloc_root);
2008 }
2009 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2010 &root->state);
2011 btrfs_put_root(root);
2012 }
2013
2014 list_del_init(&reloc_root->root_list);
2015 /* Don't forget to queue this reloc root for cleanup */
2016 list_add_tail(&reloc_root->reloc_dirty_list,
2017 &rc->dirty_subvol_roots);
2018 }
2019 }
2020
2021 if (found) {
2022 found = 0;
2023 goto again;
2024 }
2025out:
2026 if (ret) {
2027 btrfs_handle_fs_error(fs_info, ret, NULL);
2028 free_reloc_roots(&reloc_roots);
2029
2030 /* new reloc root may be added */
2031 mutex_lock(&fs_info->reloc_mutex);
2032 list_splice_init(&rc->reloc_roots, &reloc_roots);
2033 mutex_unlock(&fs_info->reloc_mutex);
2034 free_reloc_roots(&reloc_roots);
2035 }
2036
2037 /*
2038 * We used to have
2039 *
2040 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2041 *
2042 * here, but it's wrong. If we fail to start the transaction in
2043 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2044 * have actually been removed from the reloc_root_tree rb tree. This is
2045 * fine because we're bailing here, and we hold a reference on the root
2046 * for the list that holds it, so these roots will be cleaned up when we
2047 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2048 * will be cleaned up on unmount.
2049 *
2050 * The remaining nodes will be cleaned up by free_reloc_control.
2051 */
2052}
2053
2054static void free_block_list(struct rb_root *blocks)
2055{
2056 struct tree_block *block;
2057 struct rb_node *rb_node;
2058 while ((rb_node = rb_first(blocks))) {
2059 block = rb_entry(rb_node, struct tree_block, rb_node);
2060 rb_erase(rb_node, blocks);
2061 kfree(block);
2062 }
2063}
2064
2065static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2066 struct btrfs_root *reloc_root)
2067{
2068 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2069 struct btrfs_root *root;
2070 int ret;
2071
2072 if (reloc_root->last_trans == trans->transid)
2073 return 0;
2074
2075 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2076
2077 /*
2078 * This should succeed, since we can't have a reloc root without having
2079 * already looked up the actual root and created the reloc root for this
2080 * root.
2081 *
2082 * However if there's some sort of corruption where we have a ref to a
2083 * reloc root without a corresponding root this could return ENOENT.
2084 */
2085 if (IS_ERR(root)) {
2086 ASSERT(0);
2087 return PTR_ERR(root);
2088 }
2089 if (root->reloc_root != reloc_root) {
2090 ASSERT(0);
2091 btrfs_err(fs_info,
2092 "root %llu has two reloc roots associated with it",
2093 reloc_root->root_key.offset);
2094 btrfs_put_root(root);
2095 return -EUCLEAN;
2096 }
2097 ret = btrfs_record_root_in_trans(trans, root);
2098 btrfs_put_root(root);
2099
2100 return ret;
2101}
2102
2103static noinline_for_stack
2104struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2105 struct reloc_control *rc,
2106 struct btrfs_backref_node *node,
2107 struct btrfs_backref_edge *edges[])
2108{
2109 struct btrfs_backref_node *next;
2110 struct btrfs_root *root;
2111 int index = 0;
2112 int ret;
2113
2114 next = node;
2115 while (1) {
2116 cond_resched();
2117 next = walk_up_backref(next, edges, &index);
2118 root = next->root;
2119
2120 /*
2121 * If there is no root, then our references for this block are
2122 * incomplete, as we should be able to walk all the way up to a
2123 * block that is owned by a root.
2124 *
2125 * This path is only for SHAREABLE roots, so if we come upon a
2126 * non-SHAREABLE root then we have backrefs that resolve
2127 * improperly.
2128 *
2129 * Both of these cases indicate file system corruption, or a bug
2130 * in the backref walking code.
2131 */
2132 if (!root) {
2133 ASSERT(0);
2134 btrfs_err(trans->fs_info,
2135 "bytenr %llu doesn't have a backref path ending in a root",
2136 node->bytenr);
2137 return ERR_PTR(-EUCLEAN);
2138 }
2139 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2140 ASSERT(0);
2141 btrfs_err(trans->fs_info,
2142 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2143 node->bytenr);
2144 return ERR_PTR(-EUCLEAN);
2145 }
2146
2147 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2148 ret = record_reloc_root_in_trans(trans, root);
2149 if (ret)
2150 return ERR_PTR(ret);
2151 break;
2152 }
2153
2154 ret = btrfs_record_root_in_trans(trans, root);
2155 if (ret)
2156 return ERR_PTR(ret);
2157 root = root->reloc_root;
2158
2159 /*
2160 * We could have raced with another thread which failed, so
2161 * root->reloc_root may not be set, return ENOENT in this case.
2162 */
2163 if (!root)
2164 return ERR_PTR(-ENOENT);
2165
2166 if (next->new_bytenr != root->node->start) {
2167 /*
2168 * We just created the reloc root, so we shouldn't have
2169 * ->new_bytenr set and this shouldn't be in the changed
2170 * list. If it is then we have multiple roots pointing
2171 * at the same bytenr which indicates corruption, or
2172 * we've made a mistake in the backref walking code.
2173 */
2174 ASSERT(next->new_bytenr == 0);
2175 ASSERT(list_empty(&next->list));
2176 if (next->new_bytenr || !list_empty(&next->list)) {
2177 btrfs_err(trans->fs_info,
2178 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2179 node->bytenr, next->bytenr);
2180 return ERR_PTR(-EUCLEAN);
2181 }
2182
2183 next->new_bytenr = root->node->start;
2184 btrfs_put_root(next->root);
2185 next->root = btrfs_grab_root(root);
2186 ASSERT(next->root);
2187 list_add_tail(&next->list,
2188 &rc->backref_cache.changed);
2189 mark_block_processed(rc, next);
2190 break;
2191 }
2192
2193 WARN_ON(1);
2194 root = NULL;
2195 next = walk_down_backref(edges, &index);
2196 if (!next || next->level <= node->level)
2197 break;
2198 }
2199 if (!root) {
2200 /*
2201 * This can happen if there's fs corruption or if there's a bug
2202 * in the backref lookup code.
2203 */
2204 ASSERT(0);
2205 return ERR_PTR(-ENOENT);
2206 }
2207
2208 next = node;
2209 /* setup backref node path for btrfs_reloc_cow_block */
2210 while (1) {
2211 rc->backref_cache.path[next->level] = next;
2212 if (--index < 0)
2213 break;
2214 next = edges[index]->node[UPPER];
2215 }
2216 return root;
2217}
2218
2219/*
2220 * Select a tree root for relocation.
2221 *
2222 * Return NULL if the block is not shareable. We should use do_relocation() in
2223 * this case.
2224 *
2225 * Return a tree root pointer if the block is shareable.
2226 * Return -ENOENT if the block is root of reloc tree.
2227 */
2228static noinline_for_stack
2229struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2230{
2231 struct btrfs_backref_node *next;
2232 struct btrfs_root *root;
2233 struct btrfs_root *fs_root = NULL;
2234 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2235 int index = 0;
2236
2237 next = node;
2238 while (1) {
2239 cond_resched();
2240 next = walk_up_backref(next, edges, &index);
2241 root = next->root;
2242
2243 /*
2244 * This can occur if we have incomplete extent refs leading all
2245 * the way up a particular path, in this case return -EUCLEAN.
2246 */
2247 if (!root)
2248 return ERR_PTR(-EUCLEAN);
2249
2250 /* No other choice for non-shareable tree */
2251 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2252 return root;
2253
2254 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2255 fs_root = root;
2256
2257 if (next != node)
2258 return NULL;
2259
2260 next = walk_down_backref(edges, &index);
2261 if (!next || next->level <= node->level)
2262 break;
2263 }
2264
2265 if (!fs_root)
2266 return ERR_PTR(-ENOENT);
2267 return fs_root;
2268}
2269
2270static noinline_for_stack
2271u64 calcu_metadata_size(struct reloc_control *rc,
2272 struct btrfs_backref_node *node, int reserve)
2273{
2274 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2275 struct btrfs_backref_node *next = node;
2276 struct btrfs_backref_edge *edge;
2277 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2278 u64 num_bytes = 0;
2279 int index = 0;
2280
2281 BUG_ON(reserve && node->processed);
2282
2283 while (next) {
2284 cond_resched();
2285 while (1) {
2286 if (next->processed && (reserve || next != node))
2287 break;
2288
2289 num_bytes += fs_info->nodesize;
2290
2291 if (list_empty(&next->upper))
2292 break;
2293
2294 edge = list_entry(next->upper.next,
2295 struct btrfs_backref_edge, list[LOWER]);
2296 edges[index++] = edge;
2297 next = edge->node[UPPER];
2298 }
2299 next = walk_down_backref(edges, &index);
2300 }
2301 return num_bytes;
2302}
2303
2304static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2305 struct reloc_control *rc,
2306 struct btrfs_backref_node *node)
2307{
2308 struct btrfs_root *root = rc->extent_root;
2309 struct btrfs_fs_info *fs_info = root->fs_info;
2310 u64 num_bytes;
2311 int ret;
2312 u64 tmp;
2313
2314 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2315
2316 trans->block_rsv = rc->block_rsv;
2317 rc->reserved_bytes += num_bytes;
2318
2319 /*
2320 * We are under a transaction here so we can only do limited flushing.
2321 * If we get an enospc just kick back -EAGAIN so we know to drop the
2322 * transaction and try to refill when we can flush all the things.
2323 */
2324 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2325 BTRFS_RESERVE_FLUSH_LIMIT);
2326 if (ret) {
2327 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2328 while (tmp <= rc->reserved_bytes)
2329 tmp <<= 1;
2330 /*
2331 * only one thread can access block_rsv at this point,
2332 * so we don't need hold lock to protect block_rsv.
2333 * we expand more reservation size here to allow enough
2334 * space for relocation and we will return earlier in
2335 * enospc case.
2336 */
2337 rc->block_rsv->size = tmp + fs_info->nodesize *
2338 RELOCATION_RESERVED_NODES;
2339 return -EAGAIN;
2340 }
2341
2342 return 0;
2343}
2344
2345/*
2346 * relocate a block tree, and then update pointers in upper level
2347 * blocks that reference the block to point to the new location.
2348 *
2349 * if called by link_to_upper, the block has already been relocated.
2350 * in that case this function just updates pointers.
2351 */
2352static int do_relocation(struct btrfs_trans_handle *trans,
2353 struct reloc_control *rc,
2354 struct btrfs_backref_node *node,
2355 struct btrfs_key *key,
2356 struct btrfs_path *path, int lowest)
2357{
2358 struct btrfs_backref_node *upper;
2359 struct btrfs_backref_edge *edge;
2360 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2361 struct btrfs_root *root;
2362 struct extent_buffer *eb;
2363 u32 blocksize;
2364 u64 bytenr;
2365 int slot;
2366 int ret = 0;
2367
2368 /*
2369 * If we are lowest then this is the first time we're processing this
2370 * block, and thus shouldn't have an eb associated with it yet.
2371 */
2372 ASSERT(!lowest || !node->eb);
2373
2374 path->lowest_level = node->level + 1;
2375 rc->backref_cache.path[node->level] = node;
2376 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2377 struct btrfs_ref ref = { 0 };
2378
2379 cond_resched();
2380
2381 upper = edge->node[UPPER];
2382 root = select_reloc_root(trans, rc, upper, edges);
2383 if (IS_ERR(root)) {
2384 ret = PTR_ERR(root);
2385 goto next;
2386 }
2387
2388 if (upper->eb && !upper->locked) {
2389 if (!lowest) {
2390 ret = btrfs_bin_search(upper->eb, key, &slot);
2391 if (ret < 0)
2392 goto next;
2393 BUG_ON(ret);
2394 bytenr = btrfs_node_blockptr(upper->eb, slot);
2395 if (node->eb->start == bytenr)
2396 goto next;
2397 }
2398 btrfs_backref_drop_node_buffer(upper);
2399 }
2400
2401 if (!upper->eb) {
2402 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2403 if (ret) {
2404 if (ret > 0)
2405 ret = -ENOENT;
2406
2407 btrfs_release_path(path);
2408 break;
2409 }
2410
2411 if (!upper->eb) {
2412 upper->eb = path->nodes[upper->level];
2413 path->nodes[upper->level] = NULL;
2414 } else {
2415 BUG_ON(upper->eb != path->nodes[upper->level]);
2416 }
2417
2418 upper->locked = 1;
2419 path->locks[upper->level] = 0;
2420
2421 slot = path->slots[upper->level];
2422 btrfs_release_path(path);
2423 } else {
2424 ret = btrfs_bin_search(upper->eb, key, &slot);
2425 if (ret < 0)
2426 goto next;
2427 BUG_ON(ret);
2428 }
2429
2430 bytenr = btrfs_node_blockptr(upper->eb, slot);
2431 if (lowest) {
2432 if (bytenr != node->bytenr) {
2433 btrfs_err(root->fs_info,
2434 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2435 bytenr, node->bytenr, slot,
2436 upper->eb->start);
2437 ret = -EIO;
2438 goto next;
2439 }
2440 } else {
2441 if (node->eb->start == bytenr)
2442 goto next;
2443 }
2444
2445 blocksize = root->fs_info->nodesize;
2446 eb = btrfs_read_node_slot(upper->eb, slot);
2447 if (IS_ERR(eb)) {
2448 ret = PTR_ERR(eb);
2449 goto next;
2450 }
2451 btrfs_tree_lock(eb);
2452
2453 if (!node->eb) {
2454 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2455 slot, &eb, BTRFS_NESTING_COW);
2456 btrfs_tree_unlock(eb);
2457 free_extent_buffer(eb);
2458 if (ret < 0)
2459 goto next;
2460 /*
2461 * We've just COWed this block, it should have updated
2462 * the correct backref node entry.
2463 */
2464 ASSERT(node->eb == eb);
2465 } else {
2466 btrfs_set_node_blockptr(upper->eb, slot,
2467 node->eb->start);
2468 btrfs_set_node_ptr_generation(upper->eb, slot,
2469 trans->transid);
2470 btrfs_mark_buffer_dirty(upper->eb);
2471
2472 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2473 node->eb->start, blocksize,
2474 upper->eb->start);
2475 ref.real_root = root->root_key.objectid;
2476 btrfs_init_tree_ref(&ref, node->level,
2477 btrfs_header_owner(upper->eb));
2478 ret = btrfs_inc_extent_ref(trans, &ref);
2479 if (!ret)
2480 ret = btrfs_drop_subtree(trans, root, eb,
2481 upper->eb);
2482 if (ret)
2483 btrfs_abort_transaction(trans, ret);
2484 }
2485next:
2486 if (!upper->pending)
2487 btrfs_backref_drop_node_buffer(upper);
2488 else
2489 btrfs_backref_unlock_node_buffer(upper);
2490 if (ret)
2491 break;
2492 }
2493
2494 if (!ret && node->pending) {
2495 btrfs_backref_drop_node_buffer(node);
2496 list_move_tail(&node->list, &rc->backref_cache.changed);
2497 node->pending = 0;
2498 }
2499
2500 path->lowest_level = 0;
2501
2502 /*
2503 * We should have allocated all of our space in the block rsv and thus
2504 * shouldn't ENOSPC.
2505 */
2506 ASSERT(ret != -ENOSPC);
2507 return ret;
2508}
2509
2510static int link_to_upper(struct btrfs_trans_handle *trans,
2511 struct reloc_control *rc,
2512 struct btrfs_backref_node *node,
2513 struct btrfs_path *path)
2514{
2515 struct btrfs_key key;
2516
2517 btrfs_node_key_to_cpu(node->eb, &key, 0);
2518 return do_relocation(trans, rc, node, &key, path, 0);
2519}
2520
2521static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2522 struct reloc_control *rc,
2523 struct btrfs_path *path, int err)
2524{
2525 LIST_HEAD(list);
2526 struct btrfs_backref_cache *cache = &rc->backref_cache;
2527 struct btrfs_backref_node *node;
2528 int level;
2529 int ret;
2530
2531 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2532 while (!list_empty(&cache->pending[level])) {
2533 node = list_entry(cache->pending[level].next,
2534 struct btrfs_backref_node, list);
2535 list_move_tail(&node->list, &list);
2536 BUG_ON(!node->pending);
2537
2538 if (!err) {
2539 ret = link_to_upper(trans, rc, node, path);
2540 if (ret < 0)
2541 err = ret;
2542 }
2543 }
2544 list_splice_init(&list, &cache->pending[level]);
2545 }
2546 return err;
2547}
2548
2549/*
2550 * mark a block and all blocks directly/indirectly reference the block
2551 * as processed.
2552 */
2553static void update_processed_blocks(struct reloc_control *rc,
2554 struct btrfs_backref_node *node)
2555{
2556 struct btrfs_backref_node *next = node;
2557 struct btrfs_backref_edge *edge;
2558 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2559 int index = 0;
2560
2561 while (next) {
2562 cond_resched();
2563 while (1) {
2564 if (next->processed)
2565 break;
2566
2567 mark_block_processed(rc, next);
2568
2569 if (list_empty(&next->upper))
2570 break;
2571
2572 edge = list_entry(next->upper.next,
2573 struct btrfs_backref_edge, list[LOWER]);
2574 edges[index++] = edge;
2575 next = edge->node[UPPER];
2576 }
2577 next = walk_down_backref(edges, &index);
2578 }
2579}
2580
2581static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2582{
2583 u32 blocksize = rc->extent_root->fs_info->nodesize;
2584
2585 if (test_range_bit(&rc->processed_blocks, bytenr,
2586 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2587 return 1;
2588 return 0;
2589}
2590
2591static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2592 struct tree_block *block)
2593{
2594 struct extent_buffer *eb;
2595
2596 eb = read_tree_block(fs_info, block->bytenr, block->owner,
2597 block->key.offset, block->level, NULL);
2598 if (IS_ERR(eb)) {
2599 return PTR_ERR(eb);
2600 } else if (!extent_buffer_uptodate(eb)) {
2601 free_extent_buffer(eb);
2602 return -EIO;
2603 }
2604 if (block->level == 0)
2605 btrfs_item_key_to_cpu(eb, &block->key, 0);
2606 else
2607 btrfs_node_key_to_cpu(eb, &block->key, 0);
2608 free_extent_buffer(eb);
2609 block->key_ready = 1;
2610 return 0;
2611}
2612
2613/*
2614 * helper function to relocate a tree block
2615 */
2616static int relocate_tree_block(struct btrfs_trans_handle *trans,
2617 struct reloc_control *rc,
2618 struct btrfs_backref_node *node,
2619 struct btrfs_key *key,
2620 struct btrfs_path *path)
2621{
2622 struct btrfs_root *root;
2623 int ret = 0;
2624
2625 if (!node)
2626 return 0;
2627
2628 /*
2629 * If we fail here we want to drop our backref_node because we are going
2630 * to start over and regenerate the tree for it.
2631 */
2632 ret = reserve_metadata_space(trans, rc, node);
2633 if (ret)
2634 goto out;
2635
2636 BUG_ON(node->processed);
2637 root = select_one_root(node);
2638 if (IS_ERR(root)) {
2639 ret = PTR_ERR(root);
2640
2641 /* See explanation in select_one_root for the -EUCLEAN case. */
2642 ASSERT(ret == -ENOENT);
2643 if (ret == -ENOENT) {
2644 ret = 0;
2645 update_processed_blocks(rc, node);
2646 }
2647 goto out;
2648 }
2649
2650 if (root) {
2651 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2652 /*
2653 * This block was the root block of a root, and this is
2654 * the first time we're processing the block and thus it
2655 * should not have had the ->new_bytenr modified and
2656 * should have not been included on the changed list.
2657 *
2658 * However in the case of corruption we could have
2659 * multiple refs pointing to the same block improperly,
2660 * and thus we would trip over these checks. ASSERT()
2661 * for the developer case, because it could indicate a
2662 * bug in the backref code, however error out for a
2663 * normal user in the case of corruption.
2664 */
2665 ASSERT(node->new_bytenr == 0);
2666 ASSERT(list_empty(&node->list));
2667 if (node->new_bytenr || !list_empty(&node->list)) {
2668 btrfs_err(root->fs_info,
2669 "bytenr %llu has improper references to it",
2670 node->bytenr);
2671 ret = -EUCLEAN;
2672 goto out;
2673 }
2674 ret = btrfs_record_root_in_trans(trans, root);
2675 if (ret)
2676 goto out;
2677 /*
2678 * Another thread could have failed, need to check if we
2679 * have reloc_root actually set.
2680 */
2681 if (!root->reloc_root) {
2682 ret = -ENOENT;
2683 goto out;
2684 }
2685 root = root->reloc_root;
2686 node->new_bytenr = root->node->start;
2687 btrfs_put_root(node->root);
2688 node->root = btrfs_grab_root(root);
2689 ASSERT(node->root);
2690 list_add_tail(&node->list, &rc->backref_cache.changed);
2691 } else {
2692 path->lowest_level = node->level;
2693 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694 btrfs_release_path(path);
2695 if (ret > 0)
2696 ret = 0;
2697 }
2698 if (!ret)
2699 update_processed_blocks(rc, node);
2700 } else {
2701 ret = do_relocation(trans, rc, node, key, path, 1);
2702 }
2703out:
2704 if (ret || node->level == 0 || node->cowonly)
2705 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2706 return ret;
2707}
2708
2709/*
2710 * relocate a list of blocks
2711 */
2712static noinline_for_stack
2713int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2714 struct reloc_control *rc, struct rb_root *blocks)
2715{
2716 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2717 struct btrfs_backref_node *node;
2718 struct btrfs_path *path;
2719 struct tree_block *block;
2720 struct tree_block *next;
2721 int ret;
2722 int err = 0;
2723
2724 path = btrfs_alloc_path();
2725 if (!path) {
2726 err = -ENOMEM;
2727 goto out_free_blocks;
2728 }
2729
2730 /* Kick in readahead for tree blocks with missing keys */
2731 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2732 if (!block->key_ready)
2733 btrfs_readahead_tree_block(fs_info, block->bytenr,
2734 block->owner, 0,
2735 block->level);
2736 }
2737
2738 /* Get first keys */
2739 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740 if (!block->key_ready) {
2741 err = get_tree_block_key(fs_info, block);
2742 if (err)
2743 goto out_free_path;
2744 }
2745 }
2746
2747 /* Do tree relocation */
2748 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2749 node = build_backref_tree(rc, &block->key,
2750 block->level, block->bytenr);
2751 if (IS_ERR(node)) {
2752 err = PTR_ERR(node);
2753 goto out;
2754 }
2755
2756 ret = relocate_tree_block(trans, rc, node, &block->key,
2757 path);
2758 if (ret < 0) {
2759 err = ret;
2760 break;
2761 }
2762 }
2763out:
2764 err = finish_pending_nodes(trans, rc, path, err);
2765
2766out_free_path:
2767 btrfs_free_path(path);
2768out_free_blocks:
2769 free_block_list(blocks);
2770 return err;
2771}
2772
2773static noinline_for_stack int prealloc_file_extent_cluster(
2774 struct btrfs_inode *inode,
2775 struct file_extent_cluster *cluster)
2776{
2777 u64 alloc_hint = 0;
2778 u64 start;
2779 u64 end;
2780 u64 offset = inode->index_cnt;
2781 u64 num_bytes;
2782 int nr;
2783 int ret = 0;
2784 u64 prealloc_start = cluster->start - offset;
2785 u64 prealloc_end = cluster->end - offset;
2786 u64 cur_offset = prealloc_start;
2787
2788 BUG_ON(cluster->start != cluster->boundary[0]);
2789 ret = btrfs_alloc_data_chunk_ondemand(inode,
2790 prealloc_end + 1 - prealloc_start);
2791 if (ret)
2792 return ret;
2793
2794 /*
2795 * On a zoned filesystem, we cannot preallocate the file region.
2796 * Instead, we dirty and fiemap_write the region.
2797 */
2798 if (btrfs_is_zoned(inode->root->fs_info)) {
2799 struct btrfs_root *root = inode->root;
2800 struct btrfs_trans_handle *trans;
2801
2802 end = cluster->end - offset + 1;
2803 trans = btrfs_start_transaction(root, 1);
2804 if (IS_ERR(trans))
2805 return PTR_ERR(trans);
2806
2807 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2808 i_size_write(&inode->vfs_inode, end);
2809 ret = btrfs_update_inode(trans, root, inode);
2810 if (ret) {
2811 btrfs_abort_transaction(trans, ret);
2812 btrfs_end_transaction(trans);
2813 return ret;
2814 }
2815
2816 return btrfs_end_transaction(trans);
2817 }
2818
2819 btrfs_inode_lock(&inode->vfs_inode, 0);
2820 for (nr = 0; nr < cluster->nr; nr++) {
2821 start = cluster->boundary[nr] - offset;
2822 if (nr + 1 < cluster->nr)
2823 end = cluster->boundary[nr + 1] - 1 - offset;
2824 else
2825 end = cluster->end - offset;
2826
2827 lock_extent(&inode->io_tree, start, end);
2828 num_bytes = end + 1 - start;
2829 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2830 num_bytes, num_bytes,
2831 end + 1, &alloc_hint);
2832 cur_offset = end + 1;
2833 unlock_extent(&inode->io_tree, start, end);
2834 if (ret)
2835 break;
2836 }
2837 btrfs_inode_unlock(&inode->vfs_inode, 0);
2838
2839 if (cur_offset < prealloc_end)
2840 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2841 prealloc_end + 1 - cur_offset);
2842 return ret;
2843}
2844
2845static noinline_for_stack
2846int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2847 u64 block_start)
2848{
2849 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2850 struct extent_map *em;
2851 int ret = 0;
2852
2853 em = alloc_extent_map();
2854 if (!em)
2855 return -ENOMEM;
2856
2857 em->start = start;
2858 em->len = end + 1 - start;
2859 em->block_len = em->len;
2860 em->block_start = block_start;
2861 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2862
2863 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2864 while (1) {
2865 write_lock(&em_tree->lock);
2866 ret = add_extent_mapping(em_tree, em, 0);
2867 write_unlock(&em_tree->lock);
2868 if (ret != -EEXIST) {
2869 free_extent_map(em);
2870 break;
2871 }
2872 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2873 }
2874 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2875 return ret;
2876}
2877
2878/*
2879 * Allow error injection to test balance/relocation cancellation
2880 */
2881noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2882{
2883 return atomic_read(&fs_info->balance_cancel_req) ||
2884 atomic_read(&fs_info->reloc_cancel_req) ||
2885 fatal_signal_pending(current);
2886}
2887ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2888
2889static int relocate_file_extent_cluster(struct inode *inode,
2890 struct file_extent_cluster *cluster)
2891{
2892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2893 u64 page_start;
2894 u64 page_end;
2895 u64 offset = BTRFS_I(inode)->index_cnt;
2896 unsigned long index;
2897 unsigned long last_index;
2898 struct page *page;
2899 struct file_ra_state *ra;
2900 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2901 int nr = 0;
2902 int ret = 0;
2903
2904 if (!cluster->nr)
2905 return 0;
2906
2907 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2908 if (!ra)
2909 return -ENOMEM;
2910
2911 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2912 if (ret)
2913 goto out;
2914
2915 file_ra_state_init(ra, inode->i_mapping);
2916
2917 ret = setup_extent_mapping(inode, cluster->start - offset,
2918 cluster->end - offset, cluster->start);
2919 if (ret)
2920 goto out;
2921
2922 index = (cluster->start - offset) >> PAGE_SHIFT;
2923 last_index = (cluster->end - offset) >> PAGE_SHIFT;
2924 while (index <= last_index) {
2925 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2926 PAGE_SIZE);
2927 if (ret)
2928 goto out;
2929
2930 page = find_lock_page(inode->i_mapping, index);
2931 if (!page) {
2932 page_cache_sync_readahead(inode->i_mapping,
2933 ra, NULL, index,
2934 last_index + 1 - index);
2935 page = find_or_create_page(inode->i_mapping, index,
2936 mask);
2937 if (!page) {
2938 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2939 PAGE_SIZE, true);
2940 btrfs_delalloc_release_extents(BTRFS_I(inode),
2941 PAGE_SIZE);
2942 ret = -ENOMEM;
2943 goto out;
2944 }
2945 }
2946 ret = set_page_extent_mapped(page);
2947 if (ret < 0) {
2948 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2949 PAGE_SIZE, true);
2950 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2951 unlock_page(page);
2952 put_page(page);
2953 goto out;
2954 }
2955
2956 if (PageReadahead(page)) {
2957 page_cache_async_readahead(inode->i_mapping,
2958 ra, NULL, page, index,
2959 last_index + 1 - index);
2960 }
2961
2962 if (!PageUptodate(page)) {
2963 btrfs_readpage(NULL, page);
2964 lock_page(page);
2965 if (!PageUptodate(page)) {
2966 unlock_page(page);
2967 put_page(page);
2968 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2969 PAGE_SIZE, true);
2970 btrfs_delalloc_release_extents(BTRFS_I(inode),
2971 PAGE_SIZE);
2972 ret = -EIO;
2973 goto out;
2974 }
2975 }
2976
2977 page_start = page_offset(page);
2978 page_end = page_start + PAGE_SIZE - 1;
2979
2980 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2981
2982 if (nr < cluster->nr &&
2983 page_start + offset == cluster->boundary[nr]) {
2984 set_extent_bits(&BTRFS_I(inode)->io_tree,
2985 page_start, page_end,
2986 EXTENT_BOUNDARY);
2987 nr++;
2988 }
2989
2990 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2991 page_end, 0, NULL);
2992 if (ret) {
2993 unlock_page(page);
2994 put_page(page);
2995 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2996 PAGE_SIZE, true);
2997 btrfs_delalloc_release_extents(BTRFS_I(inode),
2998 PAGE_SIZE);
2999
3000 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3001 page_start, page_end,
3002 EXTENT_LOCKED | EXTENT_BOUNDARY);
3003 goto out;
3004
3005 }
3006 set_page_dirty(page);
3007
3008 unlock_extent(&BTRFS_I(inode)->io_tree,
3009 page_start, page_end);
3010 unlock_page(page);
3011 put_page(page);
3012
3013 index++;
3014 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3015 balance_dirty_pages_ratelimited(inode->i_mapping);
3016 btrfs_throttle(fs_info);
3017 if (btrfs_should_cancel_balance(fs_info)) {
3018 ret = -ECANCELED;
3019 goto out;
3020 }
3021 }
3022 WARN_ON(nr != cluster->nr);
3023 if (btrfs_is_zoned(fs_info) && !ret)
3024 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3025out:
3026 kfree(ra);
3027 return ret;
3028}
3029
3030static noinline_for_stack
3031int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3032 struct file_extent_cluster *cluster)
3033{
3034 int ret;
3035
3036 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3037 ret = relocate_file_extent_cluster(inode, cluster);
3038 if (ret)
3039 return ret;
3040 cluster->nr = 0;
3041 }
3042
3043 if (!cluster->nr)
3044 cluster->start = extent_key->objectid;
3045 else
3046 BUG_ON(cluster->nr >= MAX_EXTENTS);
3047 cluster->end = extent_key->objectid + extent_key->offset - 1;
3048 cluster->boundary[cluster->nr] = extent_key->objectid;
3049 cluster->nr++;
3050
3051 if (cluster->nr >= MAX_EXTENTS) {
3052 ret = relocate_file_extent_cluster(inode, cluster);
3053 if (ret)
3054 return ret;
3055 cluster->nr = 0;
3056 }
3057 return 0;
3058}
3059
3060/*
3061 * helper to add a tree block to the list.
3062 * the major work is getting the generation and level of the block
3063 */
3064static int add_tree_block(struct reloc_control *rc,
3065 struct btrfs_key *extent_key,
3066 struct btrfs_path *path,
3067 struct rb_root *blocks)
3068{
3069 struct extent_buffer *eb;
3070 struct btrfs_extent_item *ei;
3071 struct btrfs_tree_block_info *bi;
3072 struct tree_block *block;
3073 struct rb_node *rb_node;
3074 u32 item_size;
3075 int level = -1;
3076 u64 generation;
3077 u64 owner = 0;
3078
3079 eb = path->nodes[0];
3080 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3081
3082 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3083 item_size >= sizeof(*ei) + sizeof(*bi)) {
3084 unsigned long ptr = 0, end;
3085
3086 ei = btrfs_item_ptr(eb, path->slots[0],
3087 struct btrfs_extent_item);
3088 end = (unsigned long)ei + item_size;
3089 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3090 bi = (struct btrfs_tree_block_info *)(ei + 1);
3091 level = btrfs_tree_block_level(eb, bi);
3092 ptr = (unsigned long)(bi + 1);
3093 } else {
3094 level = (int)extent_key->offset;
3095 ptr = (unsigned long)(ei + 1);
3096 }
3097 generation = btrfs_extent_generation(eb, ei);
3098
3099 /*
3100 * We're reading random blocks without knowing their owner ahead
3101 * of time. This is ok most of the time, as all reloc roots and
3102 * fs roots have the same lock type. However normal trees do
3103 * not, and the only way to know ahead of time is to read the
3104 * inline ref offset. We know it's an fs root if
3105 *
3106 * 1. There's more than one ref.
3107 * 2. There's a SHARED_DATA_REF_KEY set.
3108 * 3. FULL_BACKREF is set on the flags.
3109 *
3110 * Otherwise it's safe to assume that the ref offset == the
3111 * owner of this block, so we can use that when calling
3112 * read_tree_block.
3113 */
3114 if (btrfs_extent_refs(eb, ei) == 1 &&
3115 !(btrfs_extent_flags(eb, ei) &
3116 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3117 ptr < end) {
3118 struct btrfs_extent_inline_ref *iref;
3119 int type;
3120
3121 iref = (struct btrfs_extent_inline_ref *)ptr;
3122 type = btrfs_get_extent_inline_ref_type(eb, iref,
3123 BTRFS_REF_TYPE_BLOCK);
3124 if (type == BTRFS_REF_TYPE_INVALID)
3125 return -EINVAL;
3126 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3127 owner = btrfs_extent_inline_ref_offset(eb, iref);
3128 }
3129 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3130 btrfs_print_v0_err(eb->fs_info);
3131 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3132 return -EINVAL;
3133 } else {
3134 BUG();
3135 }
3136
3137 btrfs_release_path(path);
3138
3139 BUG_ON(level == -1);
3140
3141 block = kmalloc(sizeof(*block), GFP_NOFS);
3142 if (!block)
3143 return -ENOMEM;
3144
3145 block->bytenr = extent_key->objectid;
3146 block->key.objectid = rc->extent_root->fs_info->nodesize;
3147 block->key.offset = generation;
3148 block->level = level;
3149 block->key_ready = 0;
3150 block->owner = owner;
3151
3152 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3153 if (rb_node)
3154 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3155 -EEXIST);
3156
3157 return 0;
3158}
3159
3160/*
3161 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3162 */
3163static int __add_tree_block(struct reloc_control *rc,
3164 u64 bytenr, u32 blocksize,
3165 struct rb_root *blocks)
3166{
3167 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3168 struct btrfs_path *path;
3169 struct btrfs_key key;
3170 int ret;
3171 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3172
3173 if (tree_block_processed(bytenr, rc))
3174 return 0;
3175
3176 if (rb_simple_search(blocks, bytenr))
3177 return 0;
3178
3179 path = btrfs_alloc_path();
3180 if (!path)
3181 return -ENOMEM;
3182again:
3183 key.objectid = bytenr;
3184 if (skinny) {
3185 key.type = BTRFS_METADATA_ITEM_KEY;
3186 key.offset = (u64)-1;
3187 } else {
3188 key.type = BTRFS_EXTENT_ITEM_KEY;
3189 key.offset = blocksize;
3190 }
3191
3192 path->search_commit_root = 1;
3193 path->skip_locking = 1;
3194 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3195 if (ret < 0)
3196 goto out;
3197
3198 if (ret > 0 && skinny) {
3199 if (path->slots[0]) {
3200 path->slots[0]--;
3201 btrfs_item_key_to_cpu(path->nodes[0], &key,
3202 path->slots[0]);
3203 if (key.objectid == bytenr &&
3204 (key.type == BTRFS_METADATA_ITEM_KEY ||
3205 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3206 key.offset == blocksize)))
3207 ret = 0;
3208 }
3209
3210 if (ret) {
3211 skinny = false;
3212 btrfs_release_path(path);
3213 goto again;
3214 }
3215 }
3216 if (ret) {
3217 ASSERT(ret == 1);
3218 btrfs_print_leaf(path->nodes[0]);
3219 btrfs_err(fs_info,
3220 "tree block extent item (%llu) is not found in extent tree",
3221 bytenr);
3222 WARN_ON(1);
3223 ret = -EINVAL;
3224 goto out;
3225 }
3226
3227 ret = add_tree_block(rc, &key, path, blocks);
3228out:
3229 btrfs_free_path(path);
3230 return ret;
3231}
3232
3233static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3234 struct btrfs_block_group *block_group,
3235 struct inode *inode,
3236 u64 ino)
3237{
3238 struct btrfs_root *root = fs_info->tree_root;
3239 struct btrfs_trans_handle *trans;
3240 int ret = 0;
3241
3242 if (inode)
3243 goto truncate;
3244
3245 inode = btrfs_iget(fs_info->sb, ino, root);
3246 if (IS_ERR(inode))
3247 return -ENOENT;
3248
3249truncate:
3250 ret = btrfs_check_trunc_cache_free_space(fs_info,
3251 &fs_info->global_block_rsv);
3252 if (ret)
3253 goto out;
3254
3255 trans = btrfs_join_transaction(root);
3256 if (IS_ERR(trans)) {
3257 ret = PTR_ERR(trans);
3258 goto out;
3259 }
3260
3261 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3262
3263 btrfs_end_transaction(trans);
3264 btrfs_btree_balance_dirty(fs_info);
3265out:
3266 iput(inode);
3267 return ret;
3268}
3269
3270/*
3271 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3272 * cache inode, to avoid free space cache data extent blocking data relocation.
3273 */
3274static int delete_v1_space_cache(struct extent_buffer *leaf,
3275 struct btrfs_block_group *block_group,
3276 u64 data_bytenr)
3277{
3278 u64 space_cache_ino;
3279 struct btrfs_file_extent_item *ei;
3280 struct btrfs_key key;
3281 bool found = false;
3282 int i;
3283 int ret;
3284
3285 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3286 return 0;
3287
3288 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3289 u8 type;
3290
3291 btrfs_item_key_to_cpu(leaf, &key, i);
3292 if (key.type != BTRFS_EXTENT_DATA_KEY)
3293 continue;
3294 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3295 type = btrfs_file_extent_type(leaf, ei);
3296
3297 if ((type == BTRFS_FILE_EXTENT_REG ||
3298 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3299 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3300 found = true;
3301 space_cache_ino = key.objectid;
3302 break;
3303 }
3304 }
3305 if (!found)
3306 return -ENOENT;
3307 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3308 space_cache_ino);
3309 return ret;
3310}
3311
3312/*
3313 * helper to find all tree blocks that reference a given data extent
3314 */
3315static noinline_for_stack
3316int add_data_references(struct reloc_control *rc,
3317 struct btrfs_key *extent_key,
3318 struct btrfs_path *path,
3319 struct rb_root *blocks)
3320{
3321 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3322 struct ulist *leaves = NULL;
3323 struct ulist_iterator leaf_uiter;
3324 struct ulist_node *ref_node = NULL;
3325 const u32 blocksize = fs_info->nodesize;
3326 int ret = 0;
3327
3328 btrfs_release_path(path);
3329 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3330 0, &leaves, NULL, true);
3331 if (ret < 0)
3332 return ret;
3333
3334 ULIST_ITER_INIT(&leaf_uiter);
3335 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3336 struct extent_buffer *eb;
3337
3338 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3339 if (IS_ERR(eb)) {
3340 ret = PTR_ERR(eb);
3341 break;
3342 }
3343 ret = delete_v1_space_cache(eb, rc->block_group,
3344 extent_key->objectid);
3345 free_extent_buffer(eb);
3346 if (ret < 0)
3347 break;
3348 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3349 if (ret < 0)
3350 break;
3351 }
3352 if (ret < 0)
3353 free_block_list(blocks);
3354 ulist_free(leaves);
3355 return ret;
3356}
3357
3358/*
3359 * helper to find next unprocessed extent
3360 */
3361static noinline_for_stack
3362int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3363 struct btrfs_key *extent_key)
3364{
3365 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3366 struct btrfs_key key;
3367 struct extent_buffer *leaf;
3368 u64 start, end, last;
3369 int ret;
3370
3371 last = rc->block_group->start + rc->block_group->length;
3372 while (1) {
3373 cond_resched();
3374 if (rc->search_start >= last) {
3375 ret = 1;
3376 break;
3377 }
3378
3379 key.objectid = rc->search_start;
3380 key.type = BTRFS_EXTENT_ITEM_KEY;
3381 key.offset = 0;
3382
3383 path->search_commit_root = 1;
3384 path->skip_locking = 1;
3385 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3386 0, 0);
3387 if (ret < 0)
3388 break;
3389next:
3390 leaf = path->nodes[0];
3391 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3392 ret = btrfs_next_leaf(rc->extent_root, path);
3393 if (ret != 0)
3394 break;
3395 leaf = path->nodes[0];
3396 }
3397
3398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3399 if (key.objectid >= last) {
3400 ret = 1;
3401 break;
3402 }
3403
3404 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3405 key.type != BTRFS_METADATA_ITEM_KEY) {
3406 path->slots[0]++;
3407 goto next;
3408 }
3409
3410 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3411 key.objectid + key.offset <= rc->search_start) {
3412 path->slots[0]++;
3413 goto next;
3414 }
3415
3416 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3417 key.objectid + fs_info->nodesize <=
3418 rc->search_start) {
3419 path->slots[0]++;
3420 goto next;
3421 }
3422
3423 ret = find_first_extent_bit(&rc->processed_blocks,
3424 key.objectid, &start, &end,
3425 EXTENT_DIRTY, NULL);
3426
3427 if (ret == 0 && start <= key.objectid) {
3428 btrfs_release_path(path);
3429 rc->search_start = end + 1;
3430 } else {
3431 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3432 rc->search_start = key.objectid + key.offset;
3433 else
3434 rc->search_start = key.objectid +
3435 fs_info->nodesize;
3436 memcpy(extent_key, &key, sizeof(key));
3437 return 0;
3438 }
3439 }
3440 btrfs_release_path(path);
3441 return ret;
3442}
3443
3444static void set_reloc_control(struct reloc_control *rc)
3445{
3446 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3447
3448 mutex_lock(&fs_info->reloc_mutex);
3449 fs_info->reloc_ctl = rc;
3450 mutex_unlock(&fs_info->reloc_mutex);
3451}
3452
3453static void unset_reloc_control(struct reloc_control *rc)
3454{
3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456
3457 mutex_lock(&fs_info->reloc_mutex);
3458 fs_info->reloc_ctl = NULL;
3459 mutex_unlock(&fs_info->reloc_mutex);
3460}
3461
3462static noinline_for_stack
3463int prepare_to_relocate(struct reloc_control *rc)
3464{
3465 struct btrfs_trans_handle *trans;
3466 int ret;
3467
3468 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3469 BTRFS_BLOCK_RSV_TEMP);
3470 if (!rc->block_rsv)
3471 return -ENOMEM;
3472
3473 memset(&rc->cluster, 0, sizeof(rc->cluster));
3474 rc->search_start = rc->block_group->start;
3475 rc->extents_found = 0;
3476 rc->nodes_relocated = 0;
3477 rc->merging_rsv_size = 0;
3478 rc->reserved_bytes = 0;
3479 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3480 RELOCATION_RESERVED_NODES;
3481 ret = btrfs_block_rsv_refill(rc->extent_root,
3482 rc->block_rsv, rc->block_rsv->size,
3483 BTRFS_RESERVE_FLUSH_ALL);
3484 if (ret)
3485 return ret;
3486
3487 rc->create_reloc_tree = 1;
3488 set_reloc_control(rc);
3489
3490 trans = btrfs_join_transaction(rc->extent_root);
3491 if (IS_ERR(trans)) {
3492 unset_reloc_control(rc);
3493 /*
3494 * extent tree is not a ref_cow tree and has no reloc_root to
3495 * cleanup. And callers are responsible to free the above
3496 * block rsv.
3497 */
3498 return PTR_ERR(trans);
3499 }
3500 return btrfs_commit_transaction(trans);
3501}
3502
3503static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3504{
3505 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3506 struct rb_root blocks = RB_ROOT;
3507 struct btrfs_key key;
3508 struct btrfs_trans_handle *trans = NULL;
3509 struct btrfs_path *path;
3510 struct btrfs_extent_item *ei;
3511 u64 flags;
3512 int ret;
3513 int err = 0;
3514 int progress = 0;
3515
3516 path = btrfs_alloc_path();
3517 if (!path)
3518 return -ENOMEM;
3519 path->reada = READA_FORWARD;
3520
3521 ret = prepare_to_relocate(rc);
3522 if (ret) {
3523 err = ret;
3524 goto out_free;
3525 }
3526
3527 while (1) {
3528 rc->reserved_bytes = 0;
3529 ret = btrfs_block_rsv_refill(rc->extent_root,
3530 rc->block_rsv, rc->block_rsv->size,
3531 BTRFS_RESERVE_FLUSH_ALL);
3532 if (ret) {
3533 err = ret;
3534 break;
3535 }
3536 progress++;
3537 trans = btrfs_start_transaction(rc->extent_root, 0);
3538 if (IS_ERR(trans)) {
3539 err = PTR_ERR(trans);
3540 trans = NULL;
3541 break;
3542 }
3543restart:
3544 if (update_backref_cache(trans, &rc->backref_cache)) {
3545 btrfs_end_transaction(trans);
3546 trans = NULL;
3547 continue;
3548 }
3549
3550 ret = find_next_extent(rc, path, &key);
3551 if (ret < 0)
3552 err = ret;
3553 if (ret != 0)
3554 break;
3555
3556 rc->extents_found++;
3557
3558 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3559 struct btrfs_extent_item);
3560 flags = btrfs_extent_flags(path->nodes[0], ei);
3561
3562 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3563 ret = add_tree_block(rc, &key, path, &blocks);
3564 } else if (rc->stage == UPDATE_DATA_PTRS &&
3565 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3566 ret = add_data_references(rc, &key, path, &blocks);
3567 } else {
3568 btrfs_release_path(path);
3569 ret = 0;
3570 }
3571 if (ret < 0) {
3572 err = ret;
3573 break;
3574 }
3575
3576 if (!RB_EMPTY_ROOT(&blocks)) {
3577 ret = relocate_tree_blocks(trans, rc, &blocks);
3578 if (ret < 0) {
3579 if (ret != -EAGAIN) {
3580 err = ret;
3581 break;
3582 }
3583 rc->extents_found--;
3584 rc->search_start = key.objectid;
3585 }
3586 }
3587
3588 btrfs_end_transaction_throttle(trans);
3589 btrfs_btree_balance_dirty(fs_info);
3590 trans = NULL;
3591
3592 if (rc->stage == MOVE_DATA_EXTENTS &&
3593 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3594 rc->found_file_extent = 1;
3595 ret = relocate_data_extent(rc->data_inode,
3596 &key, &rc->cluster);
3597 if (ret < 0) {
3598 err = ret;
3599 break;
3600 }
3601 }
3602 if (btrfs_should_cancel_balance(fs_info)) {
3603 err = -ECANCELED;
3604 break;
3605 }
3606 }
3607 if (trans && progress && err == -ENOSPC) {
3608 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3609 if (ret == 1) {
3610 err = 0;
3611 progress = 0;
3612 goto restart;
3613 }
3614 }
3615
3616 btrfs_release_path(path);
3617 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3618
3619 if (trans) {
3620 btrfs_end_transaction_throttle(trans);
3621 btrfs_btree_balance_dirty(fs_info);
3622 }
3623
3624 if (!err) {
3625 ret = relocate_file_extent_cluster(rc->data_inode,
3626 &rc->cluster);
3627 if (ret < 0)
3628 err = ret;
3629 }
3630
3631 rc->create_reloc_tree = 0;
3632 set_reloc_control(rc);
3633
3634 btrfs_backref_release_cache(&rc->backref_cache);
3635 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3636
3637 /*
3638 * Even in the case when the relocation is cancelled, we should all go
3639 * through prepare_to_merge() and merge_reloc_roots().
3640 *
3641 * For error (including cancelled balance), prepare_to_merge() will
3642 * mark all reloc trees orphan, then queue them for cleanup in
3643 * merge_reloc_roots()
3644 */
3645 err = prepare_to_merge(rc, err);
3646
3647 merge_reloc_roots(rc);
3648
3649 rc->merge_reloc_tree = 0;
3650 unset_reloc_control(rc);
3651 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3652
3653 /* get rid of pinned extents */
3654 trans = btrfs_join_transaction(rc->extent_root);
3655 if (IS_ERR(trans)) {
3656 err = PTR_ERR(trans);
3657 goto out_free;
3658 }
3659 ret = btrfs_commit_transaction(trans);
3660 if (ret && !err)
3661 err = ret;
3662out_free:
3663 ret = clean_dirty_subvols(rc);
3664 if (ret < 0 && !err)
3665 err = ret;
3666 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3667 btrfs_free_path(path);
3668 return err;
3669}
3670
3671static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3672 struct btrfs_root *root, u64 objectid)
3673{
3674 struct btrfs_path *path;
3675 struct btrfs_inode_item *item;
3676 struct extent_buffer *leaf;
3677 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3678 int ret;
3679
3680 if (btrfs_is_zoned(trans->fs_info))
3681 flags &= ~BTRFS_INODE_PREALLOC;
3682
3683 path = btrfs_alloc_path();
3684 if (!path)
3685 return -ENOMEM;
3686
3687 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3688 if (ret)
3689 goto out;
3690
3691 leaf = path->nodes[0];
3692 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3693 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3694 btrfs_set_inode_generation(leaf, item, 1);
3695 btrfs_set_inode_size(leaf, item, 0);
3696 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3697 btrfs_set_inode_flags(leaf, item, flags);
3698 btrfs_mark_buffer_dirty(leaf);
3699out:
3700 btrfs_free_path(path);
3701 return ret;
3702}
3703
3704static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3705 struct btrfs_root *root, u64 objectid)
3706{
3707 struct btrfs_path *path;
3708 struct btrfs_key key;
3709 int ret = 0;
3710
3711 path = btrfs_alloc_path();
3712 if (!path) {
3713 ret = -ENOMEM;
3714 goto out;
3715 }
3716
3717 key.objectid = objectid;
3718 key.type = BTRFS_INODE_ITEM_KEY;
3719 key.offset = 0;
3720 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3721 if (ret) {
3722 if (ret > 0)
3723 ret = -ENOENT;
3724 goto out;
3725 }
3726 ret = btrfs_del_item(trans, root, path);
3727out:
3728 if (ret)
3729 btrfs_abort_transaction(trans, ret);
3730 btrfs_free_path(path);
3731}
3732
3733/*
3734 * helper to create inode for data relocation.
3735 * the inode is in data relocation tree and its link count is 0
3736 */
3737static noinline_for_stack
3738struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3739 struct btrfs_block_group *group)
3740{
3741 struct inode *inode = NULL;
3742 struct btrfs_trans_handle *trans;
3743 struct btrfs_root *root;
3744 u64 objectid;
3745 int err = 0;
3746
3747 root = btrfs_grab_root(fs_info->data_reloc_root);
3748 trans = btrfs_start_transaction(root, 6);
3749 if (IS_ERR(trans)) {
3750 btrfs_put_root(root);
3751 return ERR_CAST(trans);
3752 }
3753
3754 err = btrfs_get_free_objectid(root, &objectid);
3755 if (err)
3756 goto out;
3757
3758 err = __insert_orphan_inode(trans, root, objectid);
3759 if (err)
3760 goto out;
3761
3762 inode = btrfs_iget(fs_info->sb, objectid, root);
3763 if (IS_ERR(inode)) {
3764 delete_orphan_inode(trans, root, objectid);
3765 err = PTR_ERR(inode);
3766 inode = NULL;
3767 goto out;
3768 }
3769 BTRFS_I(inode)->index_cnt = group->start;
3770
3771 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3772out:
3773 btrfs_put_root(root);
3774 btrfs_end_transaction(trans);
3775 btrfs_btree_balance_dirty(fs_info);
3776 if (err) {
3777 if (inode)
3778 iput(inode);
3779 inode = ERR_PTR(err);
3780 }
3781 return inode;
3782}
3783
3784/*
3785 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3786 * has been requested meanwhile and don't start in that case.
3787 *
3788 * Return:
3789 * 0 success
3790 * -EINPROGRESS operation is already in progress, that's probably a bug
3791 * -ECANCELED cancellation request was set before the operation started
3792 * -EAGAIN can not start because there are ongoing send operations
3793 */
3794static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3795{
3796 spin_lock(&fs_info->send_reloc_lock);
3797 if (fs_info->send_in_progress) {
3798 btrfs_warn_rl(fs_info,
3799"cannot run relocation while send operations are in progress (%d in progress)",
3800 fs_info->send_in_progress);
3801 spin_unlock(&fs_info->send_reloc_lock);
3802 return -EAGAIN;
3803 }
3804 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3805 /* This should not happen */
3806 spin_unlock(&fs_info->send_reloc_lock);
3807 btrfs_err(fs_info, "reloc already running, cannot start");
3808 return -EINPROGRESS;
3809 }
3810 spin_unlock(&fs_info->send_reloc_lock);
3811
3812 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3813 btrfs_info(fs_info, "chunk relocation canceled on start");
3814 /*
3815 * On cancel, clear all requests but let the caller mark
3816 * the end after cleanup operations.
3817 */
3818 atomic_set(&fs_info->reloc_cancel_req, 0);
3819 return -ECANCELED;
3820 }
3821 return 0;
3822}
3823
3824/*
3825 * Mark end of chunk relocation that is cancellable and wake any waiters.
3826 */
3827static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3828{
3829 /* Requested after start, clear bit first so any waiters can continue */
3830 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3831 btrfs_info(fs_info, "chunk relocation canceled during operation");
3832 spin_lock(&fs_info->send_reloc_lock);
3833 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3834 spin_unlock(&fs_info->send_reloc_lock);
3835 atomic_set(&fs_info->reloc_cancel_req, 0);
3836}
3837
3838static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3839{
3840 struct reloc_control *rc;
3841
3842 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3843 if (!rc)
3844 return NULL;
3845
3846 INIT_LIST_HEAD(&rc->reloc_roots);
3847 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3848 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3849 mapping_tree_init(&rc->reloc_root_tree);
3850 extent_io_tree_init(fs_info, &rc->processed_blocks,
3851 IO_TREE_RELOC_BLOCKS, NULL);
3852 return rc;
3853}
3854
3855static void free_reloc_control(struct reloc_control *rc)
3856{
3857 struct mapping_node *node, *tmp;
3858
3859 free_reloc_roots(&rc->reloc_roots);
3860 rbtree_postorder_for_each_entry_safe(node, tmp,
3861 &rc->reloc_root_tree.rb_root, rb_node)
3862 kfree(node);
3863
3864 kfree(rc);
3865}
3866
3867/*
3868 * Print the block group being relocated
3869 */
3870static void describe_relocation(struct btrfs_fs_info *fs_info,
3871 struct btrfs_block_group *block_group)
3872{
3873 char buf[128] = {'\0'};
3874
3875 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3876
3877 btrfs_info(fs_info,
3878 "relocating block group %llu flags %s",
3879 block_group->start, buf);
3880}
3881
3882static const char *stage_to_string(int stage)
3883{
3884 if (stage == MOVE_DATA_EXTENTS)
3885 return "move data extents";
3886 if (stage == UPDATE_DATA_PTRS)
3887 return "update data pointers";
3888 return "unknown";
3889}
3890
3891/*
3892 * function to relocate all extents in a block group.
3893 */
3894int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3895{
3896 struct btrfs_block_group *bg;
3897 struct btrfs_root *extent_root = fs_info->extent_root;
3898 struct reloc_control *rc;
3899 struct inode *inode;
3900 struct btrfs_path *path;
3901 int ret;
3902 int rw = 0;
3903 int err = 0;
3904
3905 bg = btrfs_lookup_block_group(fs_info, group_start);
3906 if (!bg)
3907 return -ENOENT;
3908
3909 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3910 btrfs_put_block_group(bg);
3911 return -ETXTBSY;
3912 }
3913
3914 rc = alloc_reloc_control(fs_info);
3915 if (!rc) {
3916 btrfs_put_block_group(bg);
3917 return -ENOMEM;
3918 }
3919
3920 ret = reloc_chunk_start(fs_info);
3921 if (ret < 0) {
3922 err = ret;
3923 goto out_put_bg;
3924 }
3925
3926 rc->extent_root = extent_root;
3927 rc->block_group = bg;
3928
3929 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3930 if (ret) {
3931 err = ret;
3932 goto out;
3933 }
3934 rw = 1;
3935
3936 path = btrfs_alloc_path();
3937 if (!path) {
3938 err = -ENOMEM;
3939 goto out;
3940 }
3941
3942 inode = lookup_free_space_inode(rc->block_group, path);
3943 btrfs_free_path(path);
3944
3945 if (!IS_ERR(inode))
3946 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3947 else
3948 ret = PTR_ERR(inode);
3949
3950 if (ret && ret != -ENOENT) {
3951 err = ret;
3952 goto out;
3953 }
3954
3955 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3956 if (IS_ERR(rc->data_inode)) {
3957 err = PTR_ERR(rc->data_inode);
3958 rc->data_inode = NULL;
3959 goto out;
3960 }
3961
3962 describe_relocation(fs_info, rc->block_group);
3963
3964 btrfs_wait_block_group_reservations(rc->block_group);
3965 btrfs_wait_nocow_writers(rc->block_group);
3966 btrfs_wait_ordered_roots(fs_info, U64_MAX,
3967 rc->block_group->start,
3968 rc->block_group->length);
3969
3970 while (1) {
3971 int finishes_stage;
3972
3973 mutex_lock(&fs_info->cleaner_mutex);
3974 ret = relocate_block_group(rc);
3975 mutex_unlock(&fs_info->cleaner_mutex);
3976 if (ret < 0)
3977 err = ret;
3978
3979 finishes_stage = rc->stage;
3980 /*
3981 * We may have gotten ENOSPC after we already dirtied some
3982 * extents. If writeout happens while we're relocating a
3983 * different block group we could end up hitting the
3984 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3985 * btrfs_reloc_cow_block. Make sure we write everything out
3986 * properly so we don't trip over this problem, and then break
3987 * out of the loop if we hit an error.
3988 */
3989 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3990 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3991 (u64)-1);
3992 if (ret)
3993 err = ret;
3994 invalidate_mapping_pages(rc->data_inode->i_mapping,
3995 0, -1);
3996 rc->stage = UPDATE_DATA_PTRS;
3997 }
3998
3999 if (err < 0)
4000 goto out;
4001
4002 if (rc->extents_found == 0)
4003 break;
4004
4005 btrfs_info(fs_info, "found %llu extents, stage: %s",
4006 rc->extents_found, stage_to_string(finishes_stage));
4007 }
4008
4009 WARN_ON(rc->block_group->pinned > 0);
4010 WARN_ON(rc->block_group->reserved > 0);
4011 WARN_ON(rc->block_group->used > 0);
4012out:
4013 if (err && rw)
4014 btrfs_dec_block_group_ro(rc->block_group);
4015 iput(rc->data_inode);
4016out_put_bg:
4017 btrfs_put_block_group(bg);
4018 reloc_chunk_end(fs_info);
4019 free_reloc_control(rc);
4020 return err;
4021}
4022
4023static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4024{
4025 struct btrfs_fs_info *fs_info = root->fs_info;
4026 struct btrfs_trans_handle *trans;
4027 int ret, err;
4028
4029 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4030 if (IS_ERR(trans))
4031 return PTR_ERR(trans);
4032
4033 memset(&root->root_item.drop_progress, 0,
4034 sizeof(root->root_item.drop_progress));
4035 btrfs_set_root_drop_level(&root->root_item, 0);
4036 btrfs_set_root_refs(&root->root_item, 0);
4037 ret = btrfs_update_root(trans, fs_info->tree_root,
4038 &root->root_key, &root->root_item);
4039
4040 err = btrfs_end_transaction(trans);
4041 if (err)
4042 return err;
4043 return ret;
4044}
4045
4046/*
4047 * recover relocation interrupted by system crash.
4048 *
4049 * this function resumes merging reloc trees with corresponding fs trees.
4050 * this is important for keeping the sharing of tree blocks
4051 */
4052int btrfs_recover_relocation(struct btrfs_root *root)
4053{
4054 struct btrfs_fs_info *fs_info = root->fs_info;
4055 LIST_HEAD(reloc_roots);
4056 struct btrfs_key key;
4057 struct btrfs_root *fs_root;
4058 struct btrfs_root *reloc_root;
4059 struct btrfs_path *path;
4060 struct extent_buffer *leaf;
4061 struct reloc_control *rc = NULL;
4062 struct btrfs_trans_handle *trans;
4063 int ret;
4064 int err = 0;
4065
4066 path = btrfs_alloc_path();
4067 if (!path)
4068 return -ENOMEM;
4069 path->reada = READA_BACK;
4070
4071 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4072 key.type = BTRFS_ROOT_ITEM_KEY;
4073 key.offset = (u64)-1;
4074
4075 while (1) {
4076 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4077 path, 0, 0);
4078 if (ret < 0) {
4079 err = ret;
4080 goto out;
4081 }
4082 if (ret > 0) {
4083 if (path->slots[0] == 0)
4084 break;
4085 path->slots[0]--;
4086 }
4087 leaf = path->nodes[0];
4088 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4089 btrfs_release_path(path);
4090
4091 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4092 key.type != BTRFS_ROOT_ITEM_KEY)
4093 break;
4094
4095 reloc_root = btrfs_read_tree_root(root, &key);
4096 if (IS_ERR(reloc_root)) {
4097 err = PTR_ERR(reloc_root);
4098 goto out;
4099 }
4100
4101 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4102 list_add(&reloc_root->root_list, &reloc_roots);
4103
4104 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4105 fs_root = btrfs_get_fs_root(fs_info,
4106 reloc_root->root_key.offset, false);
4107 if (IS_ERR(fs_root)) {
4108 ret = PTR_ERR(fs_root);
4109 if (ret != -ENOENT) {
4110 err = ret;
4111 goto out;
4112 }
4113 ret = mark_garbage_root(reloc_root);
4114 if (ret < 0) {
4115 err = ret;
4116 goto out;
4117 }
4118 } else {
4119 btrfs_put_root(fs_root);
4120 }
4121 }
4122
4123 if (key.offset == 0)
4124 break;
4125
4126 key.offset--;
4127 }
4128 btrfs_release_path(path);
4129
4130 if (list_empty(&reloc_roots))
4131 goto out;
4132
4133 rc = alloc_reloc_control(fs_info);
4134 if (!rc) {
4135 err = -ENOMEM;
4136 goto out;
4137 }
4138
4139 ret = reloc_chunk_start(fs_info);
4140 if (ret < 0) {
4141 err = ret;
4142 goto out_end;
4143 }
4144
4145 rc->extent_root = fs_info->extent_root;
4146
4147 set_reloc_control(rc);
4148
4149 trans = btrfs_join_transaction(rc->extent_root);
4150 if (IS_ERR(trans)) {
4151 err = PTR_ERR(trans);
4152 goto out_unset;
4153 }
4154
4155 rc->merge_reloc_tree = 1;
4156
4157 while (!list_empty(&reloc_roots)) {
4158 reloc_root = list_entry(reloc_roots.next,
4159 struct btrfs_root, root_list);
4160 list_del(&reloc_root->root_list);
4161
4162 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4163 list_add_tail(&reloc_root->root_list,
4164 &rc->reloc_roots);
4165 continue;
4166 }
4167
4168 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4169 false);
4170 if (IS_ERR(fs_root)) {
4171 err = PTR_ERR(fs_root);
4172 list_add_tail(&reloc_root->root_list, &reloc_roots);
4173 btrfs_end_transaction(trans);
4174 goto out_unset;
4175 }
4176
4177 err = __add_reloc_root(reloc_root);
4178 ASSERT(err != -EEXIST);
4179 if (err) {
4180 list_add_tail(&reloc_root->root_list, &reloc_roots);
4181 btrfs_put_root(fs_root);
4182 btrfs_end_transaction(trans);
4183 goto out_unset;
4184 }
4185 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4186 btrfs_put_root(fs_root);
4187 }
4188
4189 err = btrfs_commit_transaction(trans);
4190 if (err)
4191 goto out_unset;
4192
4193 merge_reloc_roots(rc);
4194
4195 unset_reloc_control(rc);
4196
4197 trans = btrfs_join_transaction(rc->extent_root);
4198 if (IS_ERR(trans)) {
4199 err = PTR_ERR(trans);
4200 goto out_clean;
4201 }
4202 err = btrfs_commit_transaction(trans);
4203out_clean:
4204 ret = clean_dirty_subvols(rc);
4205 if (ret < 0 && !err)
4206 err = ret;
4207out_unset:
4208 unset_reloc_control(rc);
4209out_end:
4210 reloc_chunk_end(fs_info);
4211 free_reloc_control(rc);
4212out:
4213 free_reloc_roots(&reloc_roots);
4214
4215 btrfs_free_path(path);
4216
4217 if (err == 0) {
4218 /* cleanup orphan inode in data relocation tree */
4219 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4220 ASSERT(fs_root);
4221 err = btrfs_orphan_cleanup(fs_root);
4222 btrfs_put_root(fs_root);
4223 }
4224 return err;
4225}
4226
4227/*
4228 * helper to add ordered checksum for data relocation.
4229 *
4230 * cloning checksum properly handles the nodatasum extents.
4231 * it also saves CPU time to re-calculate the checksum.
4232 */
4233int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4234{
4235 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4236 struct btrfs_ordered_sum *sums;
4237 struct btrfs_ordered_extent *ordered;
4238 int ret;
4239 u64 disk_bytenr;
4240 u64 new_bytenr;
4241 LIST_HEAD(list);
4242
4243 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4244 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4245
4246 disk_bytenr = file_pos + inode->index_cnt;
4247 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4248 disk_bytenr + len - 1, &list, 0);
4249 if (ret)
4250 goto out;
4251
4252 while (!list_empty(&list)) {
4253 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4254 list_del_init(&sums->list);
4255
4256 /*
4257 * We need to offset the new_bytenr based on where the csum is.
4258 * We need to do this because we will read in entire prealloc
4259 * extents but we may have written to say the middle of the
4260 * prealloc extent, so we need to make sure the csum goes with
4261 * the right disk offset.
4262 *
4263 * We can do this because the data reloc inode refers strictly
4264 * to the on disk bytes, so we don't have to worry about
4265 * disk_len vs real len like with real inodes since it's all
4266 * disk length.
4267 */
4268 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4269 sums->bytenr = new_bytenr;
4270
4271 btrfs_add_ordered_sum(ordered, sums);
4272 }
4273out:
4274 btrfs_put_ordered_extent(ordered);
4275 return ret;
4276}
4277
4278int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4279 struct btrfs_root *root, struct extent_buffer *buf,
4280 struct extent_buffer *cow)
4281{
4282 struct btrfs_fs_info *fs_info = root->fs_info;
4283 struct reloc_control *rc;
4284 struct btrfs_backref_node *node;
4285 int first_cow = 0;
4286 int level;
4287 int ret = 0;
4288
4289 rc = fs_info->reloc_ctl;
4290 if (!rc)
4291 return 0;
4292
4293 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4294 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4295
4296 level = btrfs_header_level(buf);
4297 if (btrfs_header_generation(buf) <=
4298 btrfs_root_last_snapshot(&root->root_item))
4299 first_cow = 1;
4300
4301 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4302 rc->create_reloc_tree) {
4303 WARN_ON(!first_cow && level == 0);
4304
4305 node = rc->backref_cache.path[level];
4306 BUG_ON(node->bytenr != buf->start &&
4307 node->new_bytenr != buf->start);
4308
4309 btrfs_backref_drop_node_buffer(node);
4310 atomic_inc(&cow->refs);
4311 node->eb = cow;
4312 node->new_bytenr = cow->start;
4313
4314 if (!node->pending) {
4315 list_move_tail(&node->list,
4316 &rc->backref_cache.pending[level]);
4317 node->pending = 1;
4318 }
4319
4320 if (first_cow)
4321 mark_block_processed(rc, node);
4322
4323 if (first_cow && level > 0)
4324 rc->nodes_relocated += buf->len;
4325 }
4326
4327 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4328 ret = replace_file_extents(trans, rc, root, cow);
4329 return ret;
4330}
4331
4332/*
4333 * called before creating snapshot. it calculates metadata reservation
4334 * required for relocating tree blocks in the snapshot
4335 */
4336void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4337 u64 *bytes_to_reserve)
4338{
4339 struct btrfs_root *root = pending->root;
4340 struct reloc_control *rc = root->fs_info->reloc_ctl;
4341
4342 if (!rc || !have_reloc_root(root))
4343 return;
4344
4345 if (!rc->merge_reloc_tree)
4346 return;
4347
4348 root = root->reloc_root;
4349 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4350 /*
4351 * relocation is in the stage of merging trees. the space
4352 * used by merging a reloc tree is twice the size of
4353 * relocated tree nodes in the worst case. half for cowing
4354 * the reloc tree, half for cowing the fs tree. the space
4355 * used by cowing the reloc tree will be freed after the
4356 * tree is dropped. if we create snapshot, cowing the fs
4357 * tree may use more space than it frees. so we need
4358 * reserve extra space.
4359 */
4360 *bytes_to_reserve += rc->nodes_relocated;
4361}
4362
4363/*
4364 * called after snapshot is created. migrate block reservation
4365 * and create reloc root for the newly created snapshot
4366 *
4367 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4368 * references held on the reloc_root, one for root->reloc_root and one for
4369 * rc->reloc_roots.
4370 */
4371int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4372 struct btrfs_pending_snapshot *pending)
4373{
4374 struct btrfs_root *root = pending->root;
4375 struct btrfs_root *reloc_root;
4376 struct btrfs_root *new_root;
4377 struct reloc_control *rc = root->fs_info->reloc_ctl;
4378 int ret;
4379
4380 if (!rc || !have_reloc_root(root))
4381 return 0;
4382
4383 rc = root->fs_info->reloc_ctl;
4384 rc->merging_rsv_size += rc->nodes_relocated;
4385
4386 if (rc->merge_reloc_tree) {
4387 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4388 rc->block_rsv,
4389 rc->nodes_relocated, true);
4390 if (ret)
4391 return ret;
4392 }
4393
4394 new_root = pending->snap;
4395 reloc_root = create_reloc_root(trans, root->reloc_root,
4396 new_root->root_key.objectid);
4397 if (IS_ERR(reloc_root))
4398 return PTR_ERR(reloc_root);
4399
4400 ret = __add_reloc_root(reloc_root);
4401 ASSERT(ret != -EEXIST);
4402 if (ret) {
4403 /* Pairs with create_reloc_root */
4404 btrfs_put_root(reloc_root);
4405 return ret;
4406 }
4407 new_root->reloc_root = btrfs_grab_root(reloc_root);
4408
4409 if (rc->create_reloc_tree)
4410 ret = clone_backref_node(trans, rc, root, reloc_root);
4411 return ret;
4412}