Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34#include "qgroup.h"
  35
  36/*
  37 * backref_node, mapping_node and tree_block start with this
  38 */
  39struct tree_entry {
  40	struct rb_node rb_node;
  41	u64 bytenr;
  42};
  43
  44/*
  45 * present a tree block in the backref cache
  46 */
  47struct backref_node {
  48	struct rb_node rb_node;
  49	u64 bytenr;
  50
  51	u64 new_bytenr;
  52	/* objectid of tree block owner, can be not uptodate */
  53	u64 owner;
  54	/* link to pending, changed or detached list */
  55	struct list_head list;
  56	/* list of upper level blocks reference this block */
  57	struct list_head upper;
  58	/* list of child blocks in the cache */
  59	struct list_head lower;
  60	/* NULL if this node is not tree root */
  61	struct btrfs_root *root;
  62	/* extent buffer got by COW the block */
  63	struct extent_buffer *eb;
  64	/* level of tree block */
  65	unsigned int level:8;
  66	/* is the block in non-reference counted tree */
  67	unsigned int cowonly:1;
  68	/* 1 if no child node in the cache */
  69	unsigned int lowest:1;
  70	/* is the extent buffer locked */
  71	unsigned int locked:1;
  72	/* has the block been processed */
  73	unsigned int processed:1;
  74	/* have backrefs of this block been checked */
  75	unsigned int checked:1;
  76	/*
  77	 * 1 if corresponding block has been cowed but some upper
  78	 * level block pointers may not point to the new location
  79	 */
  80	unsigned int pending:1;
  81	/*
  82	 * 1 if the backref node isn't connected to any other
  83	 * backref node.
  84	 */
  85	unsigned int detached:1;
  86};
  87
  88/*
  89 * present a block pointer in the backref cache
  90 */
  91struct backref_edge {
  92	struct list_head list[2];
  93	struct backref_node *node[2];
  94};
  95
  96#define LOWER	0
  97#define UPPER	1
  98#define RELOCATION_RESERVED_NODES	256
  99
 100struct backref_cache {
 101	/* red black tree of all backref nodes in the cache */
 102	struct rb_root rb_root;
 103	/* for passing backref nodes to btrfs_reloc_cow_block */
 104	struct backref_node *path[BTRFS_MAX_LEVEL];
 105	/*
 106	 * list of blocks that have been cowed but some block
 107	 * pointers in upper level blocks may not reflect the
 108	 * new location
 109	 */
 110	struct list_head pending[BTRFS_MAX_LEVEL];
 111	/* list of backref nodes with no child node */
 112	struct list_head leaves;
 113	/* list of blocks that have been cowed in current transaction */
 114	struct list_head changed;
 115	/* list of detached backref node. */
 116	struct list_head detached;
 117
 118	u64 last_trans;
 119
 120	int nr_nodes;
 121	int nr_edges;
 122};
 123
 124/*
 125 * map address of tree root to tree
 126 */
 127struct mapping_node {
 128	struct rb_node rb_node;
 129	u64 bytenr;
 130	void *data;
 131};
 132
 133struct mapping_tree {
 134	struct rb_root rb_root;
 135	spinlock_t lock;
 136};
 137
 138/*
 139 * present a tree block to process
 140 */
 141struct tree_block {
 142	struct rb_node rb_node;
 143	u64 bytenr;
 144	struct btrfs_key key;
 145	unsigned int level:8;
 146	unsigned int key_ready:1;
 147};
 148
 149#define MAX_EXTENTS 128
 150
 151struct file_extent_cluster {
 152	u64 start;
 153	u64 end;
 154	u64 boundary[MAX_EXTENTS];
 155	unsigned int nr;
 156};
 157
 158struct reloc_control {
 159	/* block group to relocate */
 160	struct btrfs_block_group_cache *block_group;
 161	/* extent tree */
 162	struct btrfs_root *extent_root;
 163	/* inode for moving data */
 164	struct inode *data_inode;
 165
 166	struct btrfs_block_rsv *block_rsv;
 167
 168	struct backref_cache backref_cache;
 169
 170	struct file_extent_cluster cluster;
 171	/* tree blocks have been processed */
 172	struct extent_io_tree processed_blocks;
 173	/* map start of tree root to corresponding reloc tree */
 174	struct mapping_tree reloc_root_tree;
 175	/* list of reloc trees */
 176	struct list_head reloc_roots;
 177	/* size of metadata reservation for merging reloc trees */
 178	u64 merging_rsv_size;
 179	/* size of relocated tree nodes */
 180	u64 nodes_relocated;
 181	/* reserved size for block group relocation*/
 182	u64 reserved_bytes;
 183
 184	u64 search_start;
 185	u64 extents_found;
 186
 187	unsigned int stage:8;
 188	unsigned int create_reloc_tree:1;
 189	unsigned int merge_reloc_tree:1;
 190	unsigned int found_file_extent:1;
 191};
 192
 193/* stages of data relocation */
 194#define MOVE_DATA_EXTENTS	0
 195#define UPDATE_DATA_PTRS	1
 196
 197static void remove_backref_node(struct backref_cache *cache,
 198				struct backref_node *node);
 199static void __mark_block_processed(struct reloc_control *rc,
 200				   struct backref_node *node);
 201
 202static void mapping_tree_init(struct mapping_tree *tree)
 203{
 204	tree->rb_root = RB_ROOT;
 205	spin_lock_init(&tree->lock);
 206}
 207
 208static void backref_cache_init(struct backref_cache *cache)
 209{
 210	int i;
 211	cache->rb_root = RB_ROOT;
 212	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 213		INIT_LIST_HEAD(&cache->pending[i]);
 214	INIT_LIST_HEAD(&cache->changed);
 215	INIT_LIST_HEAD(&cache->detached);
 216	INIT_LIST_HEAD(&cache->leaves);
 217}
 218
 219static void backref_cache_cleanup(struct backref_cache *cache)
 220{
 221	struct backref_node *node;
 222	int i;
 223
 224	while (!list_empty(&cache->detached)) {
 225		node = list_entry(cache->detached.next,
 226				  struct backref_node, list);
 227		remove_backref_node(cache, node);
 228	}
 229
 230	while (!list_empty(&cache->leaves)) {
 231		node = list_entry(cache->leaves.next,
 232				  struct backref_node, lower);
 233		remove_backref_node(cache, node);
 234	}
 235
 236	cache->last_trans = 0;
 237
 238	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 239		ASSERT(list_empty(&cache->pending[i]));
 240	ASSERT(list_empty(&cache->changed));
 241	ASSERT(list_empty(&cache->detached));
 242	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 243	ASSERT(!cache->nr_nodes);
 244	ASSERT(!cache->nr_edges);
 245}
 246
 247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 248{
 249	struct backref_node *node;
 250
 251	node = kzalloc(sizeof(*node), GFP_NOFS);
 252	if (node) {
 253		INIT_LIST_HEAD(&node->list);
 254		INIT_LIST_HEAD(&node->upper);
 255		INIT_LIST_HEAD(&node->lower);
 256		RB_CLEAR_NODE(&node->rb_node);
 257		cache->nr_nodes++;
 258	}
 259	return node;
 260}
 261
 262static void free_backref_node(struct backref_cache *cache,
 263			      struct backref_node *node)
 264{
 265	if (node) {
 266		cache->nr_nodes--;
 267		kfree(node);
 268	}
 269}
 270
 271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 272{
 273	struct backref_edge *edge;
 274
 275	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 276	if (edge)
 277		cache->nr_edges++;
 278	return edge;
 279}
 280
 281static void free_backref_edge(struct backref_cache *cache,
 282			      struct backref_edge *edge)
 283{
 284	if (edge) {
 285		cache->nr_edges--;
 286		kfree(edge);
 287	}
 288}
 289
 290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 291				   struct rb_node *node)
 292{
 293	struct rb_node **p = &root->rb_node;
 294	struct rb_node *parent = NULL;
 295	struct tree_entry *entry;
 296
 297	while (*p) {
 298		parent = *p;
 299		entry = rb_entry(parent, struct tree_entry, rb_node);
 300
 301		if (bytenr < entry->bytenr)
 302			p = &(*p)->rb_left;
 303		else if (bytenr > entry->bytenr)
 304			p = &(*p)->rb_right;
 305		else
 306			return parent;
 307	}
 308
 309	rb_link_node(node, parent, p);
 310	rb_insert_color(node, root);
 311	return NULL;
 312}
 313
 314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 315{
 316	struct rb_node *n = root->rb_node;
 317	struct tree_entry *entry;
 318
 319	while (n) {
 320		entry = rb_entry(n, struct tree_entry, rb_node);
 321
 322		if (bytenr < entry->bytenr)
 323			n = n->rb_left;
 324		else if (bytenr > entry->bytenr)
 325			n = n->rb_right;
 326		else
 327			return n;
 328	}
 329	return NULL;
 330}
 331
 332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 333{
 334
 335	struct btrfs_fs_info *fs_info = NULL;
 336	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 337					      rb_node);
 338	if (bnode->root)
 339		fs_info = bnode->root->fs_info;
 340	btrfs_panic(fs_info, errno,
 341		    "Inconsistency in backref cache found at offset %llu",
 342		    bytenr);
 343}
 344
 345/*
 346 * walk up backref nodes until reach node presents tree root
 347 */
 348static struct backref_node *walk_up_backref(struct backref_node *node,
 349					    struct backref_edge *edges[],
 350					    int *index)
 351{
 352	struct backref_edge *edge;
 353	int idx = *index;
 354
 355	while (!list_empty(&node->upper)) {
 356		edge = list_entry(node->upper.next,
 357				  struct backref_edge, list[LOWER]);
 358		edges[idx++] = edge;
 359		node = edge->node[UPPER];
 360	}
 361	BUG_ON(node->detached);
 362	*index = idx;
 363	return node;
 364}
 365
 366/*
 367 * walk down backref nodes to find start of next reference path
 368 */
 369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 370					      int *index)
 371{
 372	struct backref_edge *edge;
 373	struct backref_node *lower;
 374	int idx = *index;
 375
 376	while (idx > 0) {
 377		edge = edges[idx - 1];
 378		lower = edge->node[LOWER];
 379		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 380			idx--;
 381			continue;
 382		}
 383		edge = list_entry(edge->list[LOWER].next,
 384				  struct backref_edge, list[LOWER]);
 385		edges[idx - 1] = edge;
 386		*index = idx;
 387		return edge->node[UPPER];
 388	}
 389	*index = 0;
 390	return NULL;
 391}
 392
 393static void unlock_node_buffer(struct backref_node *node)
 394{
 395	if (node->locked) {
 396		btrfs_tree_unlock(node->eb);
 397		node->locked = 0;
 398	}
 399}
 400
 401static void drop_node_buffer(struct backref_node *node)
 402{
 403	if (node->eb) {
 404		unlock_node_buffer(node);
 405		free_extent_buffer(node->eb);
 406		node->eb = NULL;
 407	}
 408}
 409
 410static void drop_backref_node(struct backref_cache *tree,
 411			      struct backref_node *node)
 412{
 413	BUG_ON(!list_empty(&node->upper));
 414
 415	drop_node_buffer(node);
 416	list_del(&node->list);
 417	list_del(&node->lower);
 418	if (!RB_EMPTY_NODE(&node->rb_node))
 419		rb_erase(&node->rb_node, &tree->rb_root);
 420	free_backref_node(tree, node);
 421}
 422
 423/*
 424 * remove a backref node from the backref cache
 425 */
 426static void remove_backref_node(struct backref_cache *cache,
 427				struct backref_node *node)
 428{
 429	struct backref_node *upper;
 430	struct backref_edge *edge;
 431
 432	if (!node)
 433		return;
 434
 435	BUG_ON(!node->lowest && !node->detached);
 436	while (!list_empty(&node->upper)) {
 437		edge = list_entry(node->upper.next, struct backref_edge,
 438				  list[LOWER]);
 439		upper = edge->node[UPPER];
 440		list_del(&edge->list[LOWER]);
 441		list_del(&edge->list[UPPER]);
 442		free_backref_edge(cache, edge);
 443
 444		if (RB_EMPTY_NODE(&upper->rb_node)) {
 445			BUG_ON(!list_empty(&node->upper));
 446			drop_backref_node(cache, node);
 447			node = upper;
 448			node->lowest = 1;
 449			continue;
 450		}
 451		/*
 452		 * add the node to leaf node list if no other
 453		 * child block cached.
 454		 */
 455		if (list_empty(&upper->lower)) {
 456			list_add_tail(&upper->lower, &cache->leaves);
 457			upper->lowest = 1;
 458		}
 459	}
 460
 461	drop_backref_node(cache, node);
 462}
 463
 464static void update_backref_node(struct backref_cache *cache,
 465				struct backref_node *node, u64 bytenr)
 466{
 467	struct rb_node *rb_node;
 468	rb_erase(&node->rb_node, &cache->rb_root);
 469	node->bytenr = bytenr;
 470	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 471	if (rb_node)
 472		backref_tree_panic(rb_node, -EEXIST, bytenr);
 473}
 474
 475/*
 476 * update backref cache after a transaction commit
 477 */
 478static int update_backref_cache(struct btrfs_trans_handle *trans,
 479				struct backref_cache *cache)
 480{
 481	struct backref_node *node;
 482	int level = 0;
 483
 484	if (cache->last_trans == 0) {
 485		cache->last_trans = trans->transid;
 486		return 0;
 487	}
 488
 489	if (cache->last_trans == trans->transid)
 490		return 0;
 491
 492	/*
 493	 * detached nodes are used to avoid unnecessary backref
 494	 * lookup. transaction commit changes the extent tree.
 495	 * so the detached nodes are no longer useful.
 496	 */
 497	while (!list_empty(&cache->detached)) {
 498		node = list_entry(cache->detached.next,
 499				  struct backref_node, list);
 500		remove_backref_node(cache, node);
 501	}
 502
 503	while (!list_empty(&cache->changed)) {
 504		node = list_entry(cache->changed.next,
 505				  struct backref_node, list);
 506		list_del_init(&node->list);
 507		BUG_ON(node->pending);
 508		update_backref_node(cache, node, node->new_bytenr);
 509	}
 510
 511	/*
 512	 * some nodes can be left in the pending list if there were
 513	 * errors during processing the pending nodes.
 514	 */
 515	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 516		list_for_each_entry(node, &cache->pending[level], list) {
 517			BUG_ON(!node->pending);
 518			if (node->bytenr == node->new_bytenr)
 519				continue;
 520			update_backref_node(cache, node, node->new_bytenr);
 521		}
 522	}
 523
 524	cache->last_trans = 0;
 525	return 1;
 526}
 527
 528
 529static int should_ignore_root(struct btrfs_root *root)
 530{
 531	struct btrfs_root *reloc_root;
 532
 533	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 534		return 0;
 535
 536	reloc_root = root->reloc_root;
 537	if (!reloc_root)
 538		return 0;
 539
 540	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 541	    root->fs_info->running_transaction->transid - 1)
 542		return 0;
 543	/*
 544	 * if there is reloc tree and it was created in previous
 545	 * transaction backref lookup can find the reloc tree,
 546	 * so backref node for the fs tree root is useless for
 547	 * relocation.
 548	 */
 549	return 1;
 550}
 551/*
 552 * find reloc tree by address of tree root
 553 */
 554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 555					  u64 bytenr)
 556{
 557	struct rb_node *rb_node;
 558	struct mapping_node *node;
 559	struct btrfs_root *root = NULL;
 560
 561	spin_lock(&rc->reloc_root_tree.lock);
 562	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 563	if (rb_node) {
 564		node = rb_entry(rb_node, struct mapping_node, rb_node);
 565		root = (struct btrfs_root *)node->data;
 566	}
 567	spin_unlock(&rc->reloc_root_tree.lock);
 568	return root;
 569}
 570
 571static int is_cowonly_root(u64 root_objectid)
 572{
 573	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 576	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 578	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 579	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 580	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 581	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 582		return 1;
 583	return 0;
 584}
 585
 586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 587					u64 root_objectid)
 588{
 589	struct btrfs_key key;
 590
 591	key.objectid = root_objectid;
 592	key.type = BTRFS_ROOT_ITEM_KEY;
 593	if (is_cowonly_root(root_objectid))
 594		key.offset = 0;
 595	else
 596		key.offset = (u64)-1;
 597
 598	return btrfs_get_fs_root(fs_info, &key, false);
 599}
 600
 601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 602static noinline_for_stack
 603struct btrfs_root *find_tree_root(struct reloc_control *rc,
 604				  struct extent_buffer *leaf,
 605				  struct btrfs_extent_ref_v0 *ref0)
 606{
 607	struct btrfs_root *root;
 608	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 609	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 610
 611	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 612
 613	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 614	BUG_ON(IS_ERR(root));
 615
 616	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 617	    generation != btrfs_root_generation(&root->root_item))
 618		return NULL;
 619
 620	return root;
 621}
 622#endif
 623
 624static noinline_for_stack
 625int find_inline_backref(struct extent_buffer *leaf, int slot,
 626			unsigned long *ptr, unsigned long *end)
 627{
 628	struct btrfs_key key;
 629	struct btrfs_extent_item *ei;
 630	struct btrfs_tree_block_info *bi;
 631	u32 item_size;
 632
 633	btrfs_item_key_to_cpu(leaf, &key, slot);
 634
 635	item_size = btrfs_item_size_nr(leaf, slot);
 636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 637	if (item_size < sizeof(*ei)) {
 638		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 639		return 1;
 640	}
 641#endif
 642	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 643	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 644		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 645
 646	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 647	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 648		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 649		return 1;
 650	}
 651	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 652	    item_size <= sizeof(*ei)) {
 653		WARN_ON(item_size < sizeof(*ei));
 654		return 1;
 655	}
 656
 657	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 658		bi = (struct btrfs_tree_block_info *)(ei + 1);
 659		*ptr = (unsigned long)(bi + 1);
 660	} else {
 661		*ptr = (unsigned long)(ei + 1);
 662	}
 663	*end = (unsigned long)ei + item_size;
 664	return 0;
 665}
 666
 667/*
 668 * build backref tree for a given tree block. root of the backref tree
 669 * corresponds the tree block, leaves of the backref tree correspond
 670 * roots of b-trees that reference the tree block.
 671 *
 672 * the basic idea of this function is check backrefs of a given block
 673 * to find upper level blocks that reference the block, and then check
 674 * backrefs of these upper level blocks recursively. the recursion stop
 675 * when tree root is reached or backrefs for the block is cached.
 676 *
 677 * NOTE: if we find backrefs for a block are cached, we know backrefs
 678 * for all upper level blocks that directly/indirectly reference the
 679 * block are also cached.
 680 */
 681static noinline_for_stack
 682struct backref_node *build_backref_tree(struct reloc_control *rc,
 683					struct btrfs_key *node_key,
 684					int level, u64 bytenr)
 685{
 686	struct backref_cache *cache = &rc->backref_cache;
 687	struct btrfs_path *path1;
 688	struct btrfs_path *path2;
 689	struct extent_buffer *eb;
 690	struct btrfs_root *root;
 691	struct backref_node *cur;
 692	struct backref_node *upper;
 693	struct backref_node *lower;
 694	struct backref_node *node = NULL;
 695	struct backref_node *exist = NULL;
 696	struct backref_edge *edge;
 697	struct rb_node *rb_node;
 698	struct btrfs_key key;
 699	unsigned long end;
 700	unsigned long ptr;
 701	LIST_HEAD(list);
 702	LIST_HEAD(useless);
 703	int cowonly;
 704	int ret;
 705	int err = 0;
 706	bool need_check = true;
 707
 708	path1 = btrfs_alloc_path();
 709	path2 = btrfs_alloc_path();
 710	if (!path1 || !path2) {
 711		err = -ENOMEM;
 712		goto out;
 713	}
 714	path1->reada = READA_FORWARD;
 715	path2->reada = READA_FORWARD;
 716
 717	node = alloc_backref_node(cache);
 718	if (!node) {
 719		err = -ENOMEM;
 720		goto out;
 721	}
 722
 723	node->bytenr = bytenr;
 724	node->level = level;
 725	node->lowest = 1;
 726	cur = node;
 727again:
 728	end = 0;
 729	ptr = 0;
 730	key.objectid = cur->bytenr;
 731	key.type = BTRFS_METADATA_ITEM_KEY;
 732	key.offset = (u64)-1;
 733
 734	path1->search_commit_root = 1;
 735	path1->skip_locking = 1;
 736	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 737				0, 0);
 738	if (ret < 0) {
 739		err = ret;
 740		goto out;
 741	}
 742	ASSERT(ret);
 743	ASSERT(path1->slots[0]);
 744
 745	path1->slots[0]--;
 746
 747	WARN_ON(cur->checked);
 748	if (!list_empty(&cur->upper)) {
 749		/*
 750		 * the backref was added previously when processing
 751		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 752		 */
 753		ASSERT(list_is_singular(&cur->upper));
 754		edge = list_entry(cur->upper.next, struct backref_edge,
 755				  list[LOWER]);
 756		ASSERT(list_empty(&edge->list[UPPER]));
 757		exist = edge->node[UPPER];
 758		/*
 759		 * add the upper level block to pending list if we need
 760		 * check its backrefs
 761		 */
 762		if (!exist->checked)
 763			list_add_tail(&edge->list[UPPER], &list);
 764	} else {
 765		exist = NULL;
 766	}
 767
 768	while (1) {
 769		cond_resched();
 770		eb = path1->nodes[0];
 771
 772		if (ptr >= end) {
 773			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 774				ret = btrfs_next_leaf(rc->extent_root, path1);
 775				if (ret < 0) {
 776					err = ret;
 777					goto out;
 778				}
 779				if (ret > 0)
 780					break;
 781				eb = path1->nodes[0];
 782			}
 783
 784			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 785			if (key.objectid != cur->bytenr) {
 786				WARN_ON(exist);
 787				break;
 788			}
 789
 790			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 791			    key.type == BTRFS_METADATA_ITEM_KEY) {
 792				ret = find_inline_backref(eb, path1->slots[0],
 793							  &ptr, &end);
 794				if (ret)
 795					goto next;
 796			}
 797		}
 798
 799		if (ptr < end) {
 800			/* update key for inline back ref */
 801			struct btrfs_extent_inline_ref *iref;
 802			iref = (struct btrfs_extent_inline_ref *)ptr;
 803			key.type = btrfs_extent_inline_ref_type(eb, iref);
 804			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 805			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 806				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 807		}
 808
 809		if (exist &&
 810		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 811		      exist->owner == key.offset) ||
 812		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 813		      exist->bytenr == key.offset))) {
 814			exist = NULL;
 815			goto next;
 816		}
 817
 818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 819		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 820		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 821			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 822				struct btrfs_extent_ref_v0 *ref0;
 823				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 824						struct btrfs_extent_ref_v0);
 825				if (key.objectid == key.offset) {
 826					root = find_tree_root(rc, eb, ref0);
 827					if (root && !should_ignore_root(root))
 828						cur->root = root;
 829					else
 830						list_add(&cur->list, &useless);
 831					break;
 832				}
 833				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 834								      ref0)))
 835					cur->cowonly = 1;
 836			}
 837#else
 838		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
 839		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 840#endif
 841			if (key.objectid == key.offset) {
 842				/*
 843				 * only root blocks of reloc trees use
 844				 * backref of this type.
 845				 */
 846				root = find_reloc_root(rc, cur->bytenr);
 847				ASSERT(root);
 848				cur->root = root;
 849				break;
 850			}
 851
 852			edge = alloc_backref_edge(cache);
 853			if (!edge) {
 854				err = -ENOMEM;
 855				goto out;
 856			}
 857			rb_node = tree_search(&cache->rb_root, key.offset);
 858			if (!rb_node) {
 859				upper = alloc_backref_node(cache);
 860				if (!upper) {
 861					free_backref_edge(cache, edge);
 862					err = -ENOMEM;
 863					goto out;
 864				}
 865				upper->bytenr = key.offset;
 866				upper->level = cur->level + 1;
 867				/*
 868				 *  backrefs for the upper level block isn't
 869				 *  cached, add the block to pending list
 870				 */
 871				list_add_tail(&edge->list[UPPER], &list);
 872			} else {
 873				upper = rb_entry(rb_node, struct backref_node,
 874						 rb_node);
 875				ASSERT(upper->checked);
 876				INIT_LIST_HEAD(&edge->list[UPPER]);
 877			}
 878			list_add_tail(&edge->list[LOWER], &cur->upper);
 879			edge->node[LOWER] = cur;
 880			edge->node[UPPER] = upper;
 881
 882			goto next;
 883		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 884			goto next;
 885		}
 886
 887		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 888		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 889		if (IS_ERR(root)) {
 890			err = PTR_ERR(root);
 891			goto out;
 892		}
 893
 894		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 895			cur->cowonly = 1;
 896
 897		if (btrfs_root_level(&root->root_item) == cur->level) {
 898			/* tree root */
 899			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 900			       cur->bytenr);
 901			if (should_ignore_root(root))
 902				list_add(&cur->list, &useless);
 903			else
 904				cur->root = root;
 905			break;
 906		}
 907
 908		level = cur->level + 1;
 909
 910		/*
 911		 * searching the tree to find upper level blocks
 912		 * reference the block.
 913		 */
 914		path2->search_commit_root = 1;
 915		path2->skip_locking = 1;
 916		path2->lowest_level = level;
 917		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 918		path2->lowest_level = 0;
 919		if (ret < 0) {
 920			err = ret;
 921			goto out;
 922		}
 923		if (ret > 0 && path2->slots[level] > 0)
 924			path2->slots[level]--;
 925
 926		eb = path2->nodes[level];
 927		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 928		    cur->bytenr) {
 929			btrfs_err(root->fs_info,
 930	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 931				  cur->bytenr, level - 1, root->objectid,
 932				  node_key->objectid, node_key->type,
 933				  node_key->offset);
 934			err = -ENOENT;
 935			goto out;
 936		}
 937		lower = cur;
 938		need_check = true;
 939		for (; level < BTRFS_MAX_LEVEL; level++) {
 940			if (!path2->nodes[level]) {
 941				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 942				       lower->bytenr);
 943				if (should_ignore_root(root))
 944					list_add(&lower->list, &useless);
 945				else
 946					lower->root = root;
 947				break;
 948			}
 949
 950			edge = alloc_backref_edge(cache);
 951			if (!edge) {
 952				err = -ENOMEM;
 953				goto out;
 954			}
 955
 956			eb = path2->nodes[level];
 957			rb_node = tree_search(&cache->rb_root, eb->start);
 958			if (!rb_node) {
 959				upper = alloc_backref_node(cache);
 960				if (!upper) {
 961					free_backref_edge(cache, edge);
 962					err = -ENOMEM;
 963					goto out;
 964				}
 965				upper->bytenr = eb->start;
 966				upper->owner = btrfs_header_owner(eb);
 967				upper->level = lower->level + 1;
 968				if (!test_bit(BTRFS_ROOT_REF_COWS,
 969					      &root->state))
 970					upper->cowonly = 1;
 971
 972				/*
 973				 * if we know the block isn't shared
 974				 * we can void checking its backrefs.
 975				 */
 976				if (btrfs_block_can_be_shared(root, eb))
 977					upper->checked = 0;
 978				else
 979					upper->checked = 1;
 980
 981				/*
 982				 * add the block to pending list if we
 983				 * need check its backrefs, we only do this once
 984				 * while walking up a tree as we will catch
 985				 * anything else later on.
 986				 */
 987				if (!upper->checked && need_check) {
 988					need_check = false;
 989					list_add_tail(&edge->list[UPPER],
 990						      &list);
 991				} else {
 992					if (upper->checked)
 993						need_check = true;
 994					INIT_LIST_HEAD(&edge->list[UPPER]);
 995				}
 996			} else {
 997				upper = rb_entry(rb_node, struct backref_node,
 998						 rb_node);
 999				ASSERT(upper->checked);
1000				INIT_LIST_HEAD(&edge->list[UPPER]);
1001				if (!upper->owner)
1002					upper->owner = btrfs_header_owner(eb);
1003			}
1004			list_add_tail(&edge->list[LOWER], &lower->upper);
1005			edge->node[LOWER] = lower;
1006			edge->node[UPPER] = upper;
1007
1008			if (rb_node)
1009				break;
1010			lower = upper;
1011			upper = NULL;
1012		}
1013		btrfs_release_path(path2);
1014next:
1015		if (ptr < end) {
1016			ptr += btrfs_extent_inline_ref_size(key.type);
1017			if (ptr >= end) {
1018				WARN_ON(ptr > end);
1019				ptr = 0;
1020				end = 0;
1021			}
1022		}
1023		if (ptr >= end)
1024			path1->slots[0]++;
1025	}
1026	btrfs_release_path(path1);
1027
1028	cur->checked = 1;
1029	WARN_ON(exist);
1030
1031	/* the pending list isn't empty, take the first block to process */
1032	if (!list_empty(&list)) {
1033		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034		list_del_init(&edge->list[UPPER]);
1035		cur = edge->node[UPPER];
1036		goto again;
1037	}
1038
1039	/*
1040	 * everything goes well, connect backref nodes and insert backref nodes
1041	 * into the cache.
1042	 */
1043	ASSERT(node->checked);
1044	cowonly = node->cowonly;
1045	if (!cowonly) {
1046		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047				      &node->rb_node);
1048		if (rb_node)
1049			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050		list_add_tail(&node->lower, &cache->leaves);
1051	}
1052
1053	list_for_each_entry(edge, &node->upper, list[LOWER])
1054		list_add_tail(&edge->list[UPPER], &list);
1055
1056	while (!list_empty(&list)) {
1057		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058		list_del_init(&edge->list[UPPER]);
1059		upper = edge->node[UPPER];
1060		if (upper->detached) {
1061			list_del(&edge->list[LOWER]);
1062			lower = edge->node[LOWER];
1063			free_backref_edge(cache, edge);
1064			if (list_empty(&lower->upper))
1065				list_add(&lower->list, &useless);
1066			continue;
1067		}
1068
1069		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070			if (upper->lowest) {
1071				list_del_init(&upper->lower);
1072				upper->lowest = 0;
1073			}
1074
1075			list_add_tail(&edge->list[UPPER], &upper->lower);
1076			continue;
1077		}
1078
1079		if (!upper->checked) {
1080			/*
1081			 * Still want to blow up for developers since this is a
1082			 * logic bug.
1083			 */
1084			ASSERT(0);
1085			err = -EINVAL;
1086			goto out;
1087		}
1088		if (cowonly != upper->cowonly) {
1089			ASSERT(0);
1090			err = -EINVAL;
1091			goto out;
1092		}
1093
1094		if (!cowonly) {
1095			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096					      &upper->rb_node);
1097			if (rb_node)
1098				backref_tree_panic(rb_node, -EEXIST,
1099						   upper->bytenr);
1100		}
1101
1102		list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104		list_for_each_entry(edge, &upper->upper, list[LOWER])
1105			list_add_tail(&edge->list[UPPER], &list);
1106	}
1107	/*
1108	 * process useless backref nodes. backref nodes for tree leaves
1109	 * are deleted from the cache. backref nodes for upper level
1110	 * tree blocks are left in the cache to avoid unnecessary backref
1111	 * lookup.
1112	 */
1113	while (!list_empty(&useless)) {
1114		upper = list_entry(useless.next, struct backref_node, list);
1115		list_del_init(&upper->list);
1116		ASSERT(list_empty(&upper->upper));
1117		if (upper == node)
1118			node = NULL;
1119		if (upper->lowest) {
1120			list_del_init(&upper->lower);
1121			upper->lowest = 0;
1122		}
1123		while (!list_empty(&upper->lower)) {
1124			edge = list_entry(upper->lower.next,
1125					  struct backref_edge, list[UPPER]);
1126			list_del(&edge->list[UPPER]);
1127			list_del(&edge->list[LOWER]);
1128			lower = edge->node[LOWER];
1129			free_backref_edge(cache, edge);
1130
1131			if (list_empty(&lower->upper))
1132				list_add(&lower->list, &useless);
1133		}
1134		__mark_block_processed(rc, upper);
1135		if (upper->level > 0) {
1136			list_add(&upper->list, &cache->detached);
1137			upper->detached = 1;
1138		} else {
1139			rb_erase(&upper->rb_node, &cache->rb_root);
1140			free_backref_node(cache, upper);
1141		}
1142	}
1143out:
1144	btrfs_free_path(path1);
1145	btrfs_free_path(path2);
1146	if (err) {
1147		while (!list_empty(&useless)) {
1148			lower = list_entry(useless.next,
1149					   struct backref_node, list);
1150			list_del_init(&lower->list);
1151		}
1152		while (!list_empty(&list)) {
1153			edge = list_first_entry(&list, struct backref_edge,
1154						list[UPPER]);
1155			list_del(&edge->list[UPPER]);
 
 
 
 
 
 
 
 
 
1156			list_del(&edge->list[LOWER]);
1157			lower = edge->node[LOWER];
1158			upper = edge->node[UPPER];
1159			free_backref_edge(cache, edge);
1160
1161			/*
1162			 * Lower is no longer linked to any upper backref nodes
1163			 * and isn't in the cache, we can free it ourselves.
1164			 */
1165			if (list_empty(&lower->upper) &&
1166			    RB_EMPTY_NODE(&lower->rb_node))
1167				list_add(&lower->list, &useless);
1168
1169			if (!RB_EMPTY_NODE(&upper->rb_node))
1170				continue;
1171
1172			/* Add this guy's upper edges to the list to process */
1173			list_for_each_entry(edge, &upper->upper, list[LOWER])
1174				list_add_tail(&edge->list[UPPER], &list);
1175			if (list_empty(&upper->upper))
1176				list_add(&upper->list, &useless);
1177		}
1178
1179		while (!list_empty(&useless)) {
1180			lower = list_entry(useless.next,
1181					   struct backref_node, list);
1182			list_del_init(&lower->list);
1183			if (lower == node)
1184				node = NULL;
1185			free_backref_node(cache, lower);
1186		}
1187
1188		free_backref_node(cache, node);
1189		return ERR_PTR(err);
1190	}
1191	ASSERT(!node || !node->detached);
1192	return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201			      struct reloc_control *rc,
1202			      struct btrfs_root *src,
1203			      struct btrfs_root *dest)
1204{
1205	struct btrfs_root *reloc_root = src->reloc_root;
1206	struct backref_cache *cache = &rc->backref_cache;
1207	struct backref_node *node = NULL;
1208	struct backref_node *new_node;
1209	struct backref_edge *edge;
1210	struct backref_edge *new_edge;
1211	struct rb_node *rb_node;
1212
1213	if (cache->last_trans > 0)
1214		update_backref_cache(trans, cache);
1215
1216	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217	if (rb_node) {
1218		node = rb_entry(rb_node, struct backref_node, rb_node);
1219		if (node->detached)
1220			node = NULL;
1221		else
1222			BUG_ON(node->new_bytenr != reloc_root->node->start);
1223	}
1224
1225	if (!node) {
1226		rb_node = tree_search(&cache->rb_root,
1227				      reloc_root->commit_root->start);
1228		if (rb_node) {
1229			node = rb_entry(rb_node, struct backref_node,
1230					rb_node);
1231			BUG_ON(node->detached);
1232		}
1233	}
1234
1235	if (!node)
1236		return 0;
1237
1238	new_node = alloc_backref_node(cache);
1239	if (!new_node)
1240		return -ENOMEM;
1241
1242	new_node->bytenr = dest->node->start;
1243	new_node->level = node->level;
1244	new_node->lowest = node->lowest;
1245	new_node->checked = 1;
1246	new_node->root = dest;
1247
1248	if (!node->lowest) {
1249		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250			new_edge = alloc_backref_edge(cache);
1251			if (!new_edge)
1252				goto fail;
1253
1254			new_edge->node[UPPER] = new_node;
1255			new_edge->node[LOWER] = edge->node[LOWER];
1256			list_add_tail(&new_edge->list[UPPER],
1257				      &new_node->lower);
1258		}
1259	} else {
1260		list_add_tail(&new_node->lower, &cache->leaves);
1261	}
1262
1263	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264			      &new_node->rb_node);
1265	if (rb_node)
1266		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268	if (!new_node->lowest) {
1269		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270			list_add_tail(&new_edge->list[LOWER],
1271				      &new_edge->node[LOWER]->upper);
1272		}
1273	}
1274	return 0;
1275fail:
1276	while (!list_empty(&new_node->lower)) {
1277		new_edge = list_entry(new_node->lower.next,
1278				      struct backref_edge, list[UPPER]);
1279		list_del(&new_edge->list[UPPER]);
1280		free_backref_edge(cache, new_edge);
1281	}
1282	free_backref_node(cache, new_node);
1283	return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291	struct btrfs_fs_info *fs_info = root->fs_info;
1292	struct rb_node *rb_node;
1293	struct mapping_node *node;
1294	struct reloc_control *rc = fs_info->reloc_ctl;
1295
1296	node = kmalloc(sizeof(*node), GFP_NOFS);
1297	if (!node)
1298		return -ENOMEM;
1299
1300	node->bytenr = root->node->start;
1301	node->data = root;
1302
1303	spin_lock(&rc->reloc_root_tree.lock);
1304	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1305			      node->bytenr, &node->rb_node);
1306	spin_unlock(&rc->reloc_root_tree.lock);
1307	if (rb_node) {
1308		btrfs_panic(fs_info, -EEXIST,
1309			    "Duplicate root found for start=%llu while inserting into relocation tree",
1310			    node->bytenr);
1311		kfree(node);
1312		return -EEXIST;
1313	}
1314
1315	list_add_tail(&root->root_list, &rc->reloc_roots);
1316	return 0;
1317}
1318
1319/*
1320 * helper to delete the 'address of tree root -> reloc tree'
1321 * mapping
1322 */
1323static void __del_reloc_root(struct btrfs_root *root)
1324{
1325	struct btrfs_fs_info *fs_info = root->fs_info;
1326	struct rb_node *rb_node;
1327	struct mapping_node *node = NULL;
1328	struct reloc_control *rc = fs_info->reloc_ctl;
1329
1330	spin_lock(&rc->reloc_root_tree.lock);
1331	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332			      root->node->start);
1333	if (rb_node) {
1334		node = rb_entry(rb_node, struct mapping_node, rb_node);
1335		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1336	}
1337	spin_unlock(&rc->reloc_root_tree.lock);
1338
1339	if (!node)
1340		return;
1341	BUG_ON((struct btrfs_root *)node->data != root);
1342
1343	spin_lock(&fs_info->trans_lock);
1344	list_del_init(&root->root_list);
1345	spin_unlock(&fs_info->trans_lock);
1346	kfree(node);
1347}
1348
1349/*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
1353static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354{
1355	struct btrfs_fs_info *fs_info = root->fs_info;
1356	struct rb_node *rb_node;
1357	struct mapping_node *node = NULL;
1358	struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360	spin_lock(&rc->reloc_root_tree.lock);
1361	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362			      root->node->start);
1363	if (rb_node) {
1364		node = rb_entry(rb_node, struct mapping_node, rb_node);
1365		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366	}
1367	spin_unlock(&rc->reloc_root_tree.lock);
1368
1369	if (!node)
1370		return 0;
1371	BUG_ON((struct btrfs_root *)node->data != root);
1372
1373	spin_lock(&rc->reloc_root_tree.lock);
1374	node->bytenr = new_bytenr;
1375	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376			      node->bytenr, &node->rb_node);
1377	spin_unlock(&rc->reloc_root_tree.lock);
1378	if (rb_node)
1379		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380	return 0;
1381}
1382
1383static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384					struct btrfs_root *root, u64 objectid)
1385{
1386	struct btrfs_fs_info *fs_info = root->fs_info;
1387	struct btrfs_root *reloc_root;
1388	struct extent_buffer *eb;
1389	struct btrfs_root_item *root_item;
1390	struct btrfs_key root_key;
 
1391	int ret;
1392
1393	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394	BUG_ON(!root_item);
1395
1396	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397	root_key.type = BTRFS_ROOT_ITEM_KEY;
1398	root_key.offset = objectid;
1399
1400	if (root->root_key.objectid == objectid) {
1401		u64 commit_root_gen;
1402
1403		/* called by btrfs_init_reloc_root */
1404		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405				      BTRFS_TREE_RELOC_OBJECTID);
1406		BUG_ON(ret);
1407		/*
1408		 * Set the last_snapshot field to the generation of the commit
1409		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410		 * correctly (returns true) when the relocation root is created
1411		 * either inside the critical section of a transaction commit
1412		 * (through transaction.c:qgroup_account_snapshot()) and when
1413		 * it's created before the transaction commit is started.
1414		 */
1415		commit_root_gen = btrfs_header_generation(root->commit_root);
1416		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417	} else {
1418		/*
1419		 * called by btrfs_reloc_post_snapshot_hook.
1420		 * the source tree is a reloc tree, all tree blocks
1421		 * modified after it was created have RELOC flag
1422		 * set in their headers. so it's OK to not update
1423		 * the 'last_snapshot'.
1424		 */
1425		ret = btrfs_copy_root(trans, root, root->node, &eb,
1426				      BTRFS_TREE_RELOC_OBJECTID);
1427		BUG_ON(ret);
1428	}
1429
1430	memcpy(root_item, &root->root_item, sizeof(*root_item));
1431	btrfs_set_root_bytenr(root_item, eb->start);
1432	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433	btrfs_set_root_generation(root_item, trans->transid);
1434
1435	if (root->root_key.objectid == objectid) {
1436		btrfs_set_root_refs(root_item, 0);
1437		memset(&root_item->drop_progress, 0,
1438		       sizeof(struct btrfs_disk_key));
1439		root_item->drop_level = 0;
 
 
 
 
 
 
1440	}
1441
1442	btrfs_tree_unlock(eb);
1443	free_extent_buffer(eb);
1444
1445	ret = btrfs_insert_root(trans, fs_info->tree_root,
1446				&root_key, root_item);
1447	BUG_ON(ret);
1448	kfree(root_item);
1449
1450	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1451	BUG_ON(IS_ERR(reloc_root));
1452	reloc_root->last_trans = trans->transid;
1453	return reloc_root;
1454}
1455
1456/*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
1459 */
1460int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461			  struct btrfs_root *root)
1462{
1463	struct btrfs_fs_info *fs_info = root->fs_info;
1464	struct btrfs_root *reloc_root;
1465	struct reloc_control *rc = fs_info->reloc_ctl;
1466	struct btrfs_block_rsv *rsv;
1467	int clear_rsv = 0;
1468	int ret;
1469
1470	if (root->reloc_root) {
1471		reloc_root = root->reloc_root;
1472		reloc_root->last_trans = trans->transid;
1473		return 0;
1474	}
1475
1476	if (!rc || !rc->create_reloc_tree ||
1477	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1478		return 0;
1479
1480	if (!trans->reloc_reserved) {
1481		rsv = trans->block_rsv;
1482		trans->block_rsv = rc->block_rsv;
1483		clear_rsv = 1;
1484	}
1485	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1486	if (clear_rsv)
1487		trans->block_rsv = rsv;
1488
1489	ret = __add_reloc_root(reloc_root);
1490	BUG_ON(ret < 0);
1491	root->reloc_root = reloc_root;
1492	return 0;
1493}
1494
1495/*
1496 * update root item of reloc tree
1497 */
1498int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1499			    struct btrfs_root *root)
1500{
1501	struct btrfs_fs_info *fs_info = root->fs_info;
1502	struct btrfs_root *reloc_root;
1503	struct btrfs_root_item *root_item;
1504	int ret;
1505
1506	if (!root->reloc_root)
1507		goto out;
1508
1509	reloc_root = root->reloc_root;
1510	root_item = &reloc_root->root_item;
1511
1512	if (fs_info->reloc_ctl->merge_reloc_tree &&
1513	    btrfs_root_refs(root_item) == 0) {
1514		root->reloc_root = NULL;
1515		__del_reloc_root(reloc_root);
1516	}
1517
1518	if (reloc_root->commit_root != reloc_root->node) {
1519		btrfs_set_root_node(root_item, reloc_root->node);
1520		free_extent_buffer(reloc_root->commit_root);
1521		reloc_root->commit_root = btrfs_root_node(reloc_root);
1522	}
1523
1524	ret = btrfs_update_root(trans, fs_info->tree_root,
1525				&reloc_root->root_key, root_item);
1526	BUG_ON(ret);
1527
1528out:
1529	return 0;
1530}
1531
1532/*
1533 * helper to find first cached inode with inode number >= objectid
1534 * in a subvolume
1535 */
1536static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1537{
1538	struct rb_node *node;
1539	struct rb_node *prev;
1540	struct btrfs_inode *entry;
1541	struct inode *inode;
1542
1543	spin_lock(&root->inode_lock);
1544again:
1545	node = root->inode_tree.rb_node;
1546	prev = NULL;
1547	while (node) {
1548		prev = node;
1549		entry = rb_entry(node, struct btrfs_inode, rb_node);
1550
1551		if (objectid < btrfs_ino(&entry->vfs_inode))
1552			node = node->rb_left;
1553		else if (objectid > btrfs_ino(&entry->vfs_inode))
1554			node = node->rb_right;
1555		else
1556			break;
1557	}
1558	if (!node) {
1559		while (prev) {
1560			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1561			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1562				node = prev;
1563				break;
1564			}
1565			prev = rb_next(prev);
1566		}
1567	}
1568	while (node) {
1569		entry = rb_entry(node, struct btrfs_inode, rb_node);
1570		inode = igrab(&entry->vfs_inode);
1571		if (inode) {
1572			spin_unlock(&root->inode_lock);
1573			return inode;
1574		}
1575
1576		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1577		if (cond_resched_lock(&root->inode_lock))
1578			goto again;
1579
1580		node = rb_next(node);
1581	}
1582	spin_unlock(&root->inode_lock);
1583	return NULL;
1584}
1585
1586static int in_block_group(u64 bytenr,
1587			  struct btrfs_block_group_cache *block_group)
1588{
1589	if (bytenr >= block_group->key.objectid &&
1590	    bytenr < block_group->key.objectid + block_group->key.offset)
1591		return 1;
1592	return 0;
1593}
1594
1595/*
1596 * get new location of data
1597 */
1598static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1599			    u64 bytenr, u64 num_bytes)
1600{
1601	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1602	struct btrfs_path *path;
1603	struct btrfs_file_extent_item *fi;
1604	struct extent_buffer *leaf;
1605	int ret;
1606
1607	path = btrfs_alloc_path();
1608	if (!path)
1609		return -ENOMEM;
1610
1611	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1612	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1613				       bytenr, 0);
1614	if (ret < 0)
1615		goto out;
1616	if (ret > 0) {
1617		ret = -ENOENT;
1618		goto out;
1619	}
1620
1621	leaf = path->nodes[0];
1622	fi = btrfs_item_ptr(leaf, path->slots[0],
1623			    struct btrfs_file_extent_item);
1624
1625	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1626	       btrfs_file_extent_compression(leaf, fi) ||
1627	       btrfs_file_extent_encryption(leaf, fi) ||
1628	       btrfs_file_extent_other_encoding(leaf, fi));
1629
1630	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1631		ret = -EINVAL;
1632		goto out;
1633	}
1634
1635	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1636	ret = 0;
1637out:
1638	btrfs_free_path(path);
1639	return ret;
1640}
1641
1642/*
1643 * update file extent items in the tree leaf to point to
1644 * the new locations.
1645 */
1646static noinline_for_stack
1647int replace_file_extents(struct btrfs_trans_handle *trans,
1648			 struct reloc_control *rc,
1649			 struct btrfs_root *root,
1650			 struct extent_buffer *leaf)
1651{
1652	struct btrfs_fs_info *fs_info = root->fs_info;
1653	struct btrfs_key key;
1654	struct btrfs_file_extent_item *fi;
1655	struct inode *inode = NULL;
1656	u64 parent;
1657	u64 bytenr;
1658	u64 new_bytenr = 0;
1659	u64 num_bytes;
1660	u64 end;
1661	u32 nritems;
1662	u32 i;
1663	int ret = 0;
1664	int first = 1;
1665	int dirty = 0;
1666
1667	if (rc->stage != UPDATE_DATA_PTRS)
1668		return 0;
1669
1670	/* reloc trees always use full backref */
1671	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1672		parent = leaf->start;
1673	else
1674		parent = 0;
1675
1676	nritems = btrfs_header_nritems(leaf);
1677	for (i = 0; i < nritems; i++) {
1678		cond_resched();
1679		btrfs_item_key_to_cpu(leaf, &key, i);
1680		if (key.type != BTRFS_EXTENT_DATA_KEY)
1681			continue;
1682		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1683		if (btrfs_file_extent_type(leaf, fi) ==
1684		    BTRFS_FILE_EXTENT_INLINE)
1685			continue;
1686		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1687		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1688		if (bytenr == 0)
1689			continue;
1690		if (!in_block_group(bytenr, rc->block_group))
1691			continue;
1692
1693		/*
1694		 * if we are modifying block in fs tree, wait for readpage
1695		 * to complete and drop the extent cache
1696		 */
1697		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1698			if (first) {
1699				inode = find_next_inode(root, key.objectid);
1700				first = 0;
1701			} else if (inode && btrfs_ino(inode) < key.objectid) {
1702				btrfs_add_delayed_iput(inode);
1703				inode = find_next_inode(root, key.objectid);
1704			}
1705			if (inode && btrfs_ino(inode) == key.objectid) {
1706				end = key.offset +
1707				      btrfs_file_extent_num_bytes(leaf, fi);
1708				WARN_ON(!IS_ALIGNED(key.offset,
1709						    fs_info->sectorsize));
1710				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1711				end--;
1712				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1713						      key.offset, end);
1714				if (!ret)
1715					continue;
1716
1717				btrfs_drop_extent_cache(inode, key.offset, end,
1718							1);
1719				unlock_extent(&BTRFS_I(inode)->io_tree,
1720					      key.offset, end);
1721			}
1722		}
1723
1724		ret = get_new_location(rc->data_inode, &new_bytenr,
1725				       bytenr, num_bytes);
1726		if (ret) {
1727			/*
1728			 * Don't have to abort since we've not changed anything
1729			 * in the file extent yet.
1730			 */
1731			break;
1732		}
1733
1734		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1735		dirty = 1;
1736
1737		key.offset -= btrfs_file_extent_offset(leaf, fi);
1738		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1739					   num_bytes, parent,
1740					   btrfs_header_owner(leaf),
1741					   key.objectid, key.offset);
1742		if (ret) {
1743			btrfs_abort_transaction(trans, ret);
1744			break;
1745		}
1746
1747		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1748					parent, btrfs_header_owner(leaf),
1749					key.objectid, key.offset);
1750		if (ret) {
1751			btrfs_abort_transaction(trans, ret);
1752			break;
1753		}
1754	}
1755	if (dirty)
1756		btrfs_mark_buffer_dirty(leaf);
1757	if (inode)
1758		btrfs_add_delayed_iput(inode);
1759	return ret;
1760}
1761
1762static noinline_for_stack
1763int memcmp_node_keys(struct extent_buffer *eb, int slot,
1764		     struct btrfs_path *path, int level)
1765{
1766	struct btrfs_disk_key key1;
1767	struct btrfs_disk_key key2;
1768	btrfs_node_key(eb, &key1, slot);
1769	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1770	return memcmp(&key1, &key2, sizeof(key1));
1771}
1772
1773/*
1774 * try to replace tree blocks in fs tree with the new blocks
1775 * in reloc tree. tree blocks haven't been modified since the
1776 * reloc tree was create can be replaced.
1777 *
1778 * if a block was replaced, level of the block + 1 is returned.
1779 * if no block got replaced, 0 is returned. if there are other
1780 * errors, a negative error number is returned.
1781 */
1782static noinline_for_stack
1783int replace_path(struct btrfs_trans_handle *trans,
1784		 struct btrfs_root *dest, struct btrfs_root *src,
1785		 struct btrfs_path *path, struct btrfs_key *next_key,
1786		 int lowest_level, int max_level)
1787{
1788	struct btrfs_fs_info *fs_info = dest->fs_info;
1789	struct extent_buffer *eb;
1790	struct extent_buffer *parent;
1791	struct btrfs_key key;
1792	u64 old_bytenr;
1793	u64 new_bytenr;
1794	u64 old_ptr_gen;
1795	u64 new_ptr_gen;
1796	u64 last_snapshot;
1797	u32 blocksize;
1798	int cow = 0;
1799	int level;
1800	int ret;
1801	int slot;
1802
1803	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807again:
1808	slot = path->slots[lowest_level];
1809	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811	eb = btrfs_lock_root_node(dest);
1812	btrfs_set_lock_blocking(eb);
1813	level = btrfs_header_level(eb);
1814
1815	if (level < lowest_level) {
1816		btrfs_tree_unlock(eb);
1817		free_extent_buffer(eb);
1818		return 0;
1819	}
1820
1821	if (cow) {
1822		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823		BUG_ON(ret);
1824	}
1825	btrfs_set_lock_blocking(eb);
1826
1827	if (next_key) {
1828		next_key->objectid = (u64)-1;
1829		next_key->type = (u8)-1;
1830		next_key->offset = (u64)-1;
1831	}
1832
1833	parent = eb;
1834	while (1) {
1835		level = btrfs_header_level(parent);
1836		BUG_ON(level < lowest_level);
1837
1838		ret = btrfs_bin_search(parent, &key, level, &slot);
1839		if (ret && slot > 0)
1840			slot--;
1841
1842		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845		old_bytenr = btrfs_node_blockptr(parent, slot);
1846		blocksize = fs_info->nodesize;
1847		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1848
1849		if (level <= max_level) {
1850			eb = path->nodes[level];
1851			new_bytenr = btrfs_node_blockptr(eb,
1852							path->slots[level]);
1853			new_ptr_gen = btrfs_node_ptr_generation(eb,
1854							path->slots[level]);
1855		} else {
1856			new_bytenr = 0;
1857			new_ptr_gen = 0;
1858		}
1859
1860		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1861			ret = level;
1862			break;
1863		}
1864
1865		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866		    memcmp_node_keys(parent, slot, path, level)) {
1867			if (level <= lowest_level) {
1868				ret = 0;
1869				break;
1870			}
1871
1872			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1873			if (IS_ERR(eb)) {
1874				ret = PTR_ERR(eb);
1875				break;
1876			} else if (!extent_buffer_uptodate(eb)) {
1877				ret = -EIO;
1878				free_extent_buffer(eb);
1879				break;
1880			}
1881			btrfs_tree_lock(eb);
1882			if (cow) {
1883				ret = btrfs_cow_block(trans, dest, eb, parent,
1884						      slot, &eb);
1885				BUG_ON(ret);
1886			}
1887			btrfs_set_lock_blocking(eb);
1888
1889			btrfs_tree_unlock(parent);
1890			free_extent_buffer(parent);
1891
1892			parent = eb;
1893			continue;
1894		}
1895
1896		if (!cow) {
1897			btrfs_tree_unlock(parent);
1898			free_extent_buffer(parent);
1899			cow = 1;
1900			goto again;
1901		}
1902
1903		btrfs_node_key_to_cpu(path->nodes[level], &key,
1904				      path->slots[level]);
1905		btrfs_release_path(path);
1906
1907		path->lowest_level = level;
1908		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909		path->lowest_level = 0;
1910		BUG_ON(ret);
1911
1912		/*
1913		 * Info qgroup to trace both subtrees.
1914		 *
1915		 * We must trace both trees.
1916		 * 1) Tree reloc subtree
1917		 *    If not traced, we will leak data numbers
1918		 * 2) Fs subtree
1919		 *    If not traced, we will double count old data
1920		 *    and tree block numbers, if current trans doesn't free
1921		 *    data reloc tree inode.
1922		 */
1923		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1924				btrfs_header_generation(parent),
1925				btrfs_header_level(parent));
1926		if (ret < 0)
1927			break;
1928		ret = btrfs_qgroup_trace_subtree(trans, dest,
1929				path->nodes[level],
1930				btrfs_header_generation(path->nodes[level]),
1931				btrfs_header_level(path->nodes[level]));
1932		if (ret < 0)
1933			break;
1934
1935		/*
1936		 * swap blocks in fs tree and reloc tree.
1937		 */
1938		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1939		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1940		btrfs_mark_buffer_dirty(parent);
1941
1942		btrfs_set_node_blockptr(path->nodes[level],
1943					path->slots[level], old_bytenr);
1944		btrfs_set_node_ptr_generation(path->nodes[level],
1945					      path->slots[level], old_ptr_gen);
1946		btrfs_mark_buffer_dirty(path->nodes[level]);
1947
1948		ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1949					blocksize, path->nodes[level]->start,
1950					src->root_key.objectid, level - 1, 0);
 
1951		BUG_ON(ret);
1952		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1953					blocksize, 0, dest->root_key.objectid,
1954					level - 1, 0);
1955		BUG_ON(ret);
1956
1957		ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1958					path->nodes[level]->start,
1959					src->root_key.objectid, level - 1, 0);
 
1960		BUG_ON(ret);
1961
1962		ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1963					0, dest->root_key.objectid, level - 1,
1964					0);
1965		BUG_ON(ret);
1966
1967		btrfs_unlock_up_safe(path, 0);
1968
1969		ret = level;
1970		break;
1971	}
1972	btrfs_tree_unlock(parent);
1973	free_extent_buffer(parent);
1974	return ret;
1975}
1976
1977/*
1978 * helper to find next relocated block in reloc tree
1979 */
1980static noinline_for_stack
1981int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1982		       int *level)
1983{
1984	struct extent_buffer *eb;
1985	int i;
1986	u64 last_snapshot;
1987	u32 nritems;
1988
1989	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1990
1991	for (i = 0; i < *level; i++) {
1992		free_extent_buffer(path->nodes[i]);
1993		path->nodes[i] = NULL;
1994	}
1995
1996	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1997		eb = path->nodes[i];
1998		nritems = btrfs_header_nritems(eb);
1999		while (path->slots[i] + 1 < nritems) {
2000			path->slots[i]++;
2001			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2002			    last_snapshot)
2003				continue;
2004
2005			*level = i;
2006			return 0;
2007		}
2008		free_extent_buffer(path->nodes[i]);
2009		path->nodes[i] = NULL;
2010	}
2011	return 1;
2012}
2013
2014/*
2015 * walk down reloc tree to find relocated block of lowest level
2016 */
2017static noinline_for_stack
2018int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2019			 int *level)
2020{
2021	struct btrfs_fs_info *fs_info = root->fs_info;
2022	struct extent_buffer *eb = NULL;
2023	int i;
2024	u64 bytenr;
2025	u64 ptr_gen = 0;
2026	u64 last_snapshot;
 
2027	u32 nritems;
2028
2029	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2030
2031	for (i = *level; i > 0; i--) {
2032		eb = path->nodes[i];
2033		nritems = btrfs_header_nritems(eb);
2034		while (path->slots[i] < nritems) {
2035			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036			if (ptr_gen > last_snapshot)
2037				break;
2038			path->slots[i]++;
2039		}
2040		if (path->slots[i] >= nritems) {
2041			if (i == *level)
2042				break;
2043			*level = i + 1;
2044			return 0;
2045		}
2046		if (i == 1) {
2047			*level = i;
2048			return 0;
2049		}
2050
2051		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052		eb = read_tree_block(fs_info, bytenr, ptr_gen);
2053		if (IS_ERR(eb)) {
2054			return PTR_ERR(eb);
2055		} else if (!extent_buffer_uptodate(eb)) {
2056			free_extent_buffer(eb);
2057			return -EIO;
2058		}
2059		BUG_ON(btrfs_header_level(eb) != i - 1);
2060		path->nodes[i - 1] = eb;
2061		path->slots[i - 1] = 0;
2062	}
2063	return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071				   struct btrfs_key *min_key,
2072				   struct btrfs_key *max_key)
2073{
2074	struct btrfs_fs_info *fs_info = root->fs_info;
2075	struct inode *inode = NULL;
2076	u64 objectid;
2077	u64 start, end;
2078	u64 ino;
2079
2080	objectid = min_key->objectid;
2081	while (1) {
2082		cond_resched();
2083		iput(inode);
2084
2085		if (objectid > max_key->objectid)
2086			break;
2087
2088		inode = find_next_inode(root, objectid);
2089		if (!inode)
2090			break;
2091		ino = btrfs_ino(inode);
2092
2093		if (ino > max_key->objectid) {
2094			iput(inode);
2095			break;
2096		}
2097
2098		objectid = ino + 1;
2099		if (!S_ISREG(inode->i_mode))
2100			continue;
2101
2102		if (unlikely(min_key->objectid == ino)) {
2103			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104				continue;
2105			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106				start = 0;
2107			else {
2108				start = min_key->offset;
2109				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110			}
2111		} else {
2112			start = 0;
2113		}
2114
2115		if (unlikely(max_key->objectid == ino)) {
2116			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117				continue;
2118			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119				end = (u64)-1;
2120			} else {
2121				if (max_key->offset == 0)
2122					continue;
2123				end = max_key->offset;
2124				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125				end--;
2126			}
2127		} else {
2128			end = (u64)-1;
2129		}
2130
2131		/* the lock_extent waits for readpage to complete */
2132		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133		btrfs_drop_extent_cache(inode, start, end, 1);
2134		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135	}
2136	return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140			 struct btrfs_key *key)
2141
2142{
2143	while (level < BTRFS_MAX_LEVEL) {
2144		if (!path->nodes[level])
2145			break;
2146		if (path->slots[level] + 1 <
2147		    btrfs_header_nritems(path->nodes[level])) {
2148			btrfs_node_key_to_cpu(path->nodes[level], key,
2149					      path->slots[level] + 1);
2150			return 0;
2151		}
2152		level++;
2153	}
2154	return 1;
2155}
2156
2157/*
2158 * merge the relocated tree blocks in reloc tree with corresponding
2159 * fs tree.
2160 */
2161static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2162					       struct btrfs_root *root)
2163{
2164	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2165	LIST_HEAD(inode_list);
2166	struct btrfs_key key;
2167	struct btrfs_key next_key;
2168	struct btrfs_trans_handle *trans = NULL;
2169	struct btrfs_root *reloc_root;
2170	struct btrfs_root_item *root_item;
2171	struct btrfs_path *path;
2172	struct extent_buffer *leaf;
2173	int level;
2174	int max_level;
2175	int replaced = 0;
2176	int ret;
2177	int err = 0;
2178	u32 min_reserved;
2179
2180	path = btrfs_alloc_path();
2181	if (!path)
2182		return -ENOMEM;
2183	path->reada = READA_FORWARD;
2184
2185	reloc_root = root->reloc_root;
2186	root_item = &reloc_root->root_item;
2187
2188	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2189		level = btrfs_root_level(root_item);
2190		extent_buffer_get(reloc_root->node);
2191		path->nodes[level] = reloc_root->node;
2192		path->slots[level] = 0;
2193	} else {
2194		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2195
2196		level = root_item->drop_level;
2197		BUG_ON(level == 0);
2198		path->lowest_level = level;
2199		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2200		path->lowest_level = 0;
2201		if (ret < 0) {
2202			btrfs_free_path(path);
2203			return ret;
2204		}
2205
2206		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2207				      path->slots[level]);
2208		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2209
2210		btrfs_unlock_up_safe(path, 0);
2211	}
2212
2213	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2214	memset(&next_key, 0, sizeof(next_key));
2215
2216	while (1) {
2217		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2218					     BTRFS_RESERVE_FLUSH_ALL);
2219		if (ret) {
2220			err = ret;
2221			goto out;
2222		}
2223		trans = btrfs_start_transaction(root, 0);
2224		if (IS_ERR(trans)) {
2225			err = PTR_ERR(trans);
2226			trans = NULL;
2227			goto out;
2228		}
2229		trans->block_rsv = rc->block_rsv;
2230
2231		replaced = 0;
2232		max_level = level;
2233
2234		ret = walk_down_reloc_tree(reloc_root, path, &level);
2235		if (ret < 0) {
2236			err = ret;
2237			goto out;
2238		}
2239		if (ret > 0)
2240			break;
2241
2242		if (!find_next_key(path, level, &key) &&
2243		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2244			ret = 0;
2245		} else {
2246			ret = replace_path(trans, root, reloc_root, path,
2247					   &next_key, level, max_level);
2248		}
2249		if (ret < 0) {
2250			err = ret;
2251			goto out;
2252		}
2253
2254		if (ret > 0) {
2255			level = ret;
2256			btrfs_node_key_to_cpu(path->nodes[level], &key,
2257					      path->slots[level]);
2258			replaced = 1;
2259		}
2260
2261		ret = walk_up_reloc_tree(reloc_root, path, &level);
2262		if (ret > 0)
2263			break;
2264
2265		BUG_ON(level == 0);
2266		/*
2267		 * save the merging progress in the drop_progress.
2268		 * this is OK since root refs == 1 in this case.
2269		 */
2270		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2271			       path->slots[level]);
2272		root_item->drop_level = level;
2273
2274		btrfs_end_transaction_throttle(trans);
2275		trans = NULL;
2276
2277		btrfs_btree_balance_dirty(fs_info);
2278
2279		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2280			invalidate_extent_cache(root, &key, &next_key);
2281	}
2282
2283	/*
2284	 * handle the case only one block in the fs tree need to be
2285	 * relocated and the block is tree root.
2286	 */
2287	leaf = btrfs_lock_root_node(root);
2288	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2289	btrfs_tree_unlock(leaf);
2290	free_extent_buffer(leaf);
2291	if (ret < 0)
2292		err = ret;
2293out:
2294	btrfs_free_path(path);
2295
2296	if (err == 0) {
2297		memset(&root_item->drop_progress, 0,
2298		       sizeof(root_item->drop_progress));
2299		root_item->drop_level = 0;
2300		btrfs_set_root_refs(root_item, 0);
2301		btrfs_update_reloc_root(trans, root);
2302	}
2303
2304	if (trans)
2305		btrfs_end_transaction_throttle(trans);
2306
2307	btrfs_btree_balance_dirty(fs_info);
2308
2309	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2310		invalidate_extent_cache(root, &key, &next_key);
2311
2312	return err;
2313}
2314
2315static noinline_for_stack
2316int prepare_to_merge(struct reloc_control *rc, int err)
2317{
2318	struct btrfs_root *root = rc->extent_root;
2319	struct btrfs_fs_info *fs_info = root->fs_info;
2320	struct btrfs_root *reloc_root;
2321	struct btrfs_trans_handle *trans;
2322	LIST_HEAD(reloc_roots);
2323	u64 num_bytes = 0;
2324	int ret;
2325
2326	mutex_lock(&fs_info->reloc_mutex);
2327	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2328	rc->merging_rsv_size += rc->nodes_relocated * 2;
2329	mutex_unlock(&fs_info->reloc_mutex);
2330
2331again:
2332	if (!err) {
2333		num_bytes = rc->merging_rsv_size;
2334		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2335					  BTRFS_RESERVE_FLUSH_ALL);
2336		if (ret)
2337			err = ret;
2338	}
2339
2340	trans = btrfs_join_transaction(rc->extent_root);
2341	if (IS_ERR(trans)) {
2342		if (!err)
2343			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2344						num_bytes);
2345		return PTR_ERR(trans);
2346	}
2347
2348	if (!err) {
2349		if (num_bytes != rc->merging_rsv_size) {
2350			btrfs_end_transaction(trans);
2351			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2352						num_bytes);
2353			goto again;
2354		}
2355	}
2356
2357	rc->merge_reloc_tree = 1;
2358
2359	while (!list_empty(&rc->reloc_roots)) {
2360		reloc_root = list_entry(rc->reloc_roots.next,
2361					struct btrfs_root, root_list);
2362		list_del_init(&reloc_root->root_list);
2363
2364		root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
2365		BUG_ON(IS_ERR(root));
2366		BUG_ON(root->reloc_root != reloc_root);
2367
2368		/*
2369		 * set reference count to 1, so btrfs_recover_relocation
2370		 * knows it should resumes merging
2371		 */
2372		if (!err)
2373			btrfs_set_root_refs(&reloc_root->root_item, 1);
2374		btrfs_update_reloc_root(trans, root);
2375
2376		list_add(&reloc_root->root_list, &reloc_roots);
2377	}
2378
2379	list_splice(&reloc_roots, &rc->reloc_roots);
2380
2381	if (!err)
2382		btrfs_commit_transaction(trans);
2383	else
2384		btrfs_end_transaction(trans);
2385	return err;
2386}
2387
2388static noinline_for_stack
2389void free_reloc_roots(struct list_head *list)
2390{
2391	struct btrfs_root *reloc_root;
2392
2393	while (!list_empty(list)) {
2394		reloc_root = list_entry(list->next, struct btrfs_root,
2395					root_list);
2396		free_extent_buffer(reloc_root->node);
2397		free_extent_buffer(reloc_root->commit_root);
2398		reloc_root->node = NULL;
2399		reloc_root->commit_root = NULL;
2400		__del_reloc_root(reloc_root);
2401	}
2402}
2403
2404static noinline_for_stack
2405void merge_reloc_roots(struct reloc_control *rc)
2406{
2407	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2408	struct btrfs_root *root;
2409	struct btrfs_root *reloc_root;
 
 
 
2410	LIST_HEAD(reloc_roots);
2411	int found = 0;
2412	int ret = 0;
2413again:
2414	root = rc->extent_root;
2415
2416	/*
2417	 * this serializes us with btrfs_record_root_in_transaction,
2418	 * we have to make sure nobody is in the middle of
2419	 * adding their roots to the list while we are
2420	 * doing this splice
2421	 */
2422	mutex_lock(&fs_info->reloc_mutex);
2423	list_splice_init(&rc->reloc_roots, &reloc_roots);
2424	mutex_unlock(&fs_info->reloc_mutex);
2425
2426	while (!list_empty(&reloc_roots)) {
2427		found = 1;
2428		reloc_root = list_entry(reloc_roots.next,
2429					struct btrfs_root, root_list);
2430
2431		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2432			root = read_fs_root(fs_info,
2433					    reloc_root->root_key.offset);
2434			BUG_ON(IS_ERR(root));
2435			BUG_ON(root->reloc_root != reloc_root);
2436
2437			ret = merge_reloc_root(rc, root);
2438			if (ret) {
2439				if (list_empty(&reloc_root->root_list))
2440					list_add_tail(&reloc_root->root_list,
2441						      &reloc_roots);
2442				goto out;
2443			}
2444		} else {
2445			list_del_init(&reloc_root->root_list);
2446		}
2447
 
 
 
 
 
 
 
 
2448		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2449		if (ret < 0) {
2450			if (list_empty(&reloc_root->root_list))
2451				list_add_tail(&reloc_root->root_list,
2452					      &reloc_roots);
2453			goto out;
2454		}
2455	}
2456
2457	if (found) {
2458		found = 0;
2459		goto again;
2460	}
2461out:
2462	if (ret) {
2463		btrfs_handle_fs_error(fs_info, ret, NULL);
2464		if (!list_empty(&reloc_roots))
2465			free_reloc_roots(&reloc_roots);
2466
2467		/* new reloc root may be added */
2468		mutex_lock(&fs_info->reloc_mutex);
2469		list_splice_init(&rc->reloc_roots, &reloc_roots);
2470		mutex_unlock(&fs_info->reloc_mutex);
2471		if (!list_empty(&reloc_roots))
2472			free_reloc_roots(&reloc_roots);
2473	}
2474
2475	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
2476}
2477
2478static void free_block_list(struct rb_root *blocks)
2479{
2480	struct tree_block *block;
2481	struct rb_node *rb_node;
2482	while ((rb_node = rb_first(blocks))) {
2483		block = rb_entry(rb_node, struct tree_block, rb_node);
2484		rb_erase(rb_node, blocks);
2485		kfree(block);
2486	}
2487}
2488
2489static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2490				      struct btrfs_root *reloc_root)
2491{
2492	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2493	struct btrfs_root *root;
2494
2495	if (reloc_root->last_trans == trans->transid)
2496		return 0;
2497
2498	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2499	BUG_ON(IS_ERR(root));
2500	BUG_ON(root->reloc_root != reloc_root);
2501
2502	return btrfs_record_root_in_trans(trans, root);
2503}
2504
2505static noinline_for_stack
2506struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2507				     struct reloc_control *rc,
2508				     struct backref_node *node,
2509				     struct backref_edge *edges[])
2510{
2511	struct backref_node *next;
2512	struct btrfs_root *root;
2513	int index = 0;
2514
2515	next = node;
2516	while (1) {
2517		cond_resched();
2518		next = walk_up_backref(next, edges, &index);
2519		root = next->root;
2520		BUG_ON(!root);
2521		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2522
2523		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2524			record_reloc_root_in_trans(trans, root);
2525			break;
2526		}
2527
2528		btrfs_record_root_in_trans(trans, root);
2529		root = root->reloc_root;
2530
2531		if (next->new_bytenr != root->node->start) {
2532			BUG_ON(next->new_bytenr);
2533			BUG_ON(!list_empty(&next->list));
2534			next->new_bytenr = root->node->start;
2535			next->root = root;
2536			list_add_tail(&next->list,
2537				      &rc->backref_cache.changed);
2538			__mark_block_processed(rc, next);
2539			break;
2540		}
2541
2542		WARN_ON(1);
2543		root = NULL;
2544		next = walk_down_backref(edges, &index);
2545		if (!next || next->level <= node->level)
2546			break;
2547	}
2548	if (!root)
2549		return NULL;
2550
2551	next = node;
2552	/* setup backref node path for btrfs_reloc_cow_block */
2553	while (1) {
2554		rc->backref_cache.path[next->level] = next;
2555		if (--index < 0)
2556			break;
2557		next = edges[index]->node[UPPER];
2558	}
2559	return root;
2560}
2561
2562/*
2563 * select a tree root for relocation. return NULL if the block
2564 * is reference counted. we should use do_relocation() in this
2565 * case. return a tree root pointer if the block isn't reference
2566 * counted. return -ENOENT if the block is root of reloc tree.
2567 */
2568static noinline_for_stack
2569struct btrfs_root *select_one_root(struct backref_node *node)
 
2570{
2571	struct backref_node *next;
2572	struct btrfs_root *root;
2573	struct btrfs_root *fs_root = NULL;
2574	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575	int index = 0;
2576
2577	next = node;
2578	while (1) {
2579		cond_resched();
2580		next = walk_up_backref(next, edges, &index);
2581		root = next->root;
2582		BUG_ON(!root);
2583
2584		/* no other choice for non-references counted tree */
2585		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2586			return root;
2587
2588		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2589			fs_root = root;
2590
2591		if (next != node)
2592			return NULL;
2593
2594		next = walk_down_backref(edges, &index);
2595		if (!next || next->level <= node->level)
2596			break;
2597	}
2598
2599	if (!fs_root)
2600		return ERR_PTR(-ENOENT);
2601	return fs_root;
2602}
2603
2604static noinline_for_stack
2605u64 calcu_metadata_size(struct reloc_control *rc,
2606			struct backref_node *node, int reserve)
2607{
2608	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2609	struct backref_node *next = node;
2610	struct backref_edge *edge;
2611	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2612	u64 num_bytes = 0;
2613	int index = 0;
2614
2615	BUG_ON(reserve && node->processed);
2616
2617	while (next) {
2618		cond_resched();
2619		while (1) {
2620			if (next->processed && (reserve || next != node))
2621				break;
2622
2623			num_bytes += fs_info->nodesize;
 
2624
2625			if (list_empty(&next->upper))
2626				break;
2627
2628			edge = list_entry(next->upper.next,
2629					  struct backref_edge, list[LOWER]);
2630			edges[index++] = edge;
2631			next = edge->node[UPPER];
2632		}
2633		next = walk_down_backref(edges, &index);
2634	}
2635	return num_bytes;
2636}
2637
2638static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2639				  struct reloc_control *rc,
2640				  struct backref_node *node)
2641{
2642	struct btrfs_root *root = rc->extent_root;
2643	struct btrfs_fs_info *fs_info = root->fs_info;
2644	u64 num_bytes;
2645	int ret;
2646	u64 tmp;
2647
2648	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2649
2650	trans->block_rsv = rc->block_rsv;
2651	rc->reserved_bytes += num_bytes;
2652
2653	/*
2654	 * We are under a transaction here so we can only do limited flushing.
2655	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2656	 * transaction and try to refill when we can flush all the things.
2657	 */
2658	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2659				BTRFS_RESERVE_FLUSH_LIMIT);
2660	if (ret) {
2661		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2662		while (tmp <= rc->reserved_bytes)
2663			tmp <<= 1;
2664		/*
2665		 * only one thread can access block_rsv at this point,
2666		 * so we don't need hold lock to protect block_rsv.
2667		 * we expand more reservation size here to allow enough
2668		 * space for relocation and we will return eailer in
2669		 * enospc case.
2670		 */
2671		rc->block_rsv->size = tmp + fs_info->nodesize *
2672				      RELOCATION_RESERVED_NODES;
2673		return -EAGAIN;
 
 
 
2674	}
2675
2676	return 0;
2677}
2678
2679/*
2680 * relocate a block tree, and then update pointers in upper level
2681 * blocks that reference the block to point to the new location.
2682 *
2683 * if called by link_to_upper, the block has already been relocated.
2684 * in that case this function just updates pointers.
2685 */
2686static int do_relocation(struct btrfs_trans_handle *trans,
2687			 struct reloc_control *rc,
2688			 struct backref_node *node,
2689			 struct btrfs_key *key,
2690			 struct btrfs_path *path, int lowest)
2691{
2692	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693	struct backref_node *upper;
2694	struct backref_edge *edge;
2695	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2696	struct btrfs_root *root;
2697	struct extent_buffer *eb;
2698	u32 blocksize;
2699	u64 bytenr;
2700	u64 generation;
2701	int slot;
2702	int ret;
2703	int err = 0;
2704
2705	BUG_ON(lowest && node->eb);
2706
2707	path->lowest_level = node->level + 1;
2708	rc->backref_cache.path[node->level] = node;
2709	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2710		cond_resched();
2711
2712		upper = edge->node[UPPER];
2713		root = select_reloc_root(trans, rc, upper, edges);
2714		BUG_ON(!root);
2715
2716		if (upper->eb && !upper->locked) {
2717			if (!lowest) {
2718				ret = btrfs_bin_search(upper->eb, key,
2719						       upper->level, &slot);
2720				BUG_ON(ret);
2721				bytenr = btrfs_node_blockptr(upper->eb, slot);
2722				if (node->eb->start == bytenr)
2723					goto next;
2724			}
2725			drop_node_buffer(upper);
2726		}
2727
2728		if (!upper->eb) {
2729			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2730			if (ret) {
2731				if (ret < 0)
2732					err = ret;
2733				else
2734					err = -ENOENT;
2735
2736				btrfs_release_path(path);
2737				break;
2738			}
 
2739
2740			if (!upper->eb) {
2741				upper->eb = path->nodes[upper->level];
2742				path->nodes[upper->level] = NULL;
2743			} else {
2744				BUG_ON(upper->eb != path->nodes[upper->level]);
2745			}
2746
2747			upper->locked = 1;
2748			path->locks[upper->level] = 0;
2749
2750			slot = path->slots[upper->level];
2751			btrfs_release_path(path);
2752		} else {
2753			ret = btrfs_bin_search(upper->eb, key, upper->level,
2754					       &slot);
2755			BUG_ON(ret);
2756		}
2757
2758		bytenr = btrfs_node_blockptr(upper->eb, slot);
2759		if (lowest) {
2760			if (bytenr != node->bytenr) {
2761				btrfs_err(root->fs_info,
2762		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2763					  bytenr, node->bytenr, slot,
2764					  upper->eb->start);
2765				err = -EIO;
2766				goto next;
2767			}
2768		} else {
2769			if (node->eb->start == bytenr)
2770				goto next;
2771		}
2772
2773		blocksize = root->fs_info->nodesize;
2774		generation = btrfs_node_ptr_generation(upper->eb, slot);
2775		eb = read_tree_block(fs_info, bytenr, generation);
2776		if (IS_ERR(eb)) {
2777			err = PTR_ERR(eb);
2778			goto next;
2779		} else if (!extent_buffer_uptodate(eb)) {
2780			free_extent_buffer(eb);
2781			err = -EIO;
2782			goto next;
2783		}
2784		btrfs_tree_lock(eb);
2785		btrfs_set_lock_blocking(eb);
2786
2787		if (!node->eb) {
2788			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2789					      slot, &eb);
2790			btrfs_tree_unlock(eb);
2791			free_extent_buffer(eb);
2792			if (ret < 0) {
2793				err = ret;
2794				goto next;
2795			}
2796			BUG_ON(node->eb != eb);
2797		} else {
2798			btrfs_set_node_blockptr(upper->eb, slot,
2799						node->eb->start);
2800			btrfs_set_node_ptr_generation(upper->eb, slot,
2801						      trans->transid);
2802			btrfs_mark_buffer_dirty(upper->eb);
2803
2804			ret = btrfs_inc_extent_ref(trans, root->fs_info,
2805						node->eb->start, blocksize,
2806						upper->eb->start,
2807						btrfs_header_owner(upper->eb),
2808						node->level, 0);
2809			BUG_ON(ret);
2810
2811			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2812			BUG_ON(ret);
2813		}
2814next:
2815		if (!upper->pending)
2816			drop_node_buffer(upper);
2817		else
2818			unlock_node_buffer(upper);
2819		if (err)
2820			break;
2821	}
2822
2823	if (!err && node->pending) {
2824		drop_node_buffer(node);
2825		list_move_tail(&node->list, &rc->backref_cache.changed);
2826		node->pending = 0;
2827	}
2828
2829	path->lowest_level = 0;
2830	BUG_ON(err == -ENOSPC);
2831	return err;
2832}
2833
2834static int link_to_upper(struct btrfs_trans_handle *trans,
2835			 struct reloc_control *rc,
2836			 struct backref_node *node,
2837			 struct btrfs_path *path)
2838{
2839	struct btrfs_key key;
2840
2841	btrfs_node_key_to_cpu(node->eb, &key, 0);
2842	return do_relocation(trans, rc, node, &key, path, 0);
2843}
2844
2845static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2846				struct reloc_control *rc,
2847				struct btrfs_path *path, int err)
2848{
2849	LIST_HEAD(list);
2850	struct backref_cache *cache = &rc->backref_cache;
2851	struct backref_node *node;
2852	int level;
2853	int ret;
2854
2855	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2856		while (!list_empty(&cache->pending[level])) {
2857			node = list_entry(cache->pending[level].next,
2858					  struct backref_node, list);
2859			list_move_tail(&node->list, &list);
2860			BUG_ON(!node->pending);
2861
2862			if (!err) {
2863				ret = link_to_upper(trans, rc, node, path);
2864				if (ret < 0)
2865					err = ret;
2866			}
2867		}
2868		list_splice_init(&list, &cache->pending[level]);
2869	}
2870	return err;
2871}
2872
2873static void mark_block_processed(struct reloc_control *rc,
2874				 u64 bytenr, u32 blocksize)
2875{
2876	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2877			EXTENT_DIRTY);
2878}
2879
2880static void __mark_block_processed(struct reloc_control *rc,
2881				   struct backref_node *node)
2882{
2883	u32 blocksize;
2884	if (node->level == 0 ||
2885	    in_block_group(node->bytenr, rc->block_group)) {
2886		blocksize = rc->extent_root->fs_info->nodesize;
2887		mark_block_processed(rc, node->bytenr, blocksize);
2888	}
2889	node->processed = 1;
2890}
2891
2892/*
2893 * mark a block and all blocks directly/indirectly reference the block
2894 * as processed.
2895 */
2896static void update_processed_blocks(struct reloc_control *rc,
2897				    struct backref_node *node)
2898{
2899	struct backref_node *next = node;
2900	struct backref_edge *edge;
2901	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2902	int index = 0;
2903
2904	while (next) {
2905		cond_resched();
2906		while (1) {
2907			if (next->processed)
2908				break;
2909
2910			__mark_block_processed(rc, next);
2911
2912			if (list_empty(&next->upper))
2913				break;
2914
2915			edge = list_entry(next->upper.next,
2916					  struct backref_edge, list[LOWER]);
2917			edges[index++] = edge;
2918			next = edge->node[UPPER];
2919		}
2920		next = walk_down_backref(edges, &index);
2921	}
2922}
2923
2924static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2925{
2926	u32 blocksize = rc->extent_root->fs_info->nodesize;
2927
2928	if (test_range_bit(&rc->processed_blocks, bytenr,
2929			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2930		return 1;
2931	return 0;
2932}
2933
2934static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2935			      struct tree_block *block)
2936{
2937	struct extent_buffer *eb;
2938
2939	BUG_ON(block->key_ready);
2940	eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2941	if (IS_ERR(eb)) {
2942		return PTR_ERR(eb);
2943	} else if (!extent_buffer_uptodate(eb)) {
2944		free_extent_buffer(eb);
2945		return -EIO;
2946	}
2947	WARN_ON(btrfs_header_level(eb) != block->level);
2948	if (block->level == 0)
2949		btrfs_item_key_to_cpu(eb, &block->key, 0);
2950	else
2951		btrfs_node_key_to_cpu(eb, &block->key, 0);
2952	free_extent_buffer(eb);
2953	block->key_ready = 1;
2954	return 0;
2955}
2956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957/*
2958 * helper function to relocate a tree block
2959 */
2960static int relocate_tree_block(struct btrfs_trans_handle *trans,
2961				struct reloc_control *rc,
2962				struct backref_node *node,
2963				struct btrfs_key *key,
2964				struct btrfs_path *path)
2965{
2966	struct btrfs_root *root;
2967	int ret = 0;
2968
2969	if (!node)
2970		return 0;
2971
2972	BUG_ON(node->processed);
2973	root = select_one_root(node);
2974	if (root == ERR_PTR(-ENOENT)) {
2975		update_processed_blocks(rc, node);
2976		goto out;
2977	}
2978
2979	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2980		ret = reserve_metadata_space(trans, rc, node);
2981		if (ret)
2982			goto out;
2983	}
2984
2985	if (root) {
2986		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987			BUG_ON(node->new_bytenr);
2988			BUG_ON(!list_empty(&node->list));
2989			btrfs_record_root_in_trans(trans, root);
2990			root = root->reloc_root;
2991			node->new_bytenr = root->node->start;
2992			node->root = root;
2993			list_add_tail(&node->list, &rc->backref_cache.changed);
2994		} else {
2995			path->lowest_level = node->level;
2996			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2997			btrfs_release_path(path);
2998			if (ret > 0)
2999				ret = 0;
3000		}
3001		if (!ret)
3002			update_processed_blocks(rc, node);
3003	} else {
3004		ret = do_relocation(trans, rc, node, key, path, 1);
3005	}
3006out:
3007	if (ret || node->level == 0 || node->cowonly)
3008		remove_backref_node(&rc->backref_cache, node);
3009	return ret;
3010}
3011
3012/*
3013 * relocate a list of blocks
3014 */
3015static noinline_for_stack
3016int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3017			 struct reloc_control *rc, struct rb_root *blocks)
3018{
3019	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3020	struct backref_node *node;
3021	struct btrfs_path *path;
3022	struct tree_block *block;
3023	struct rb_node *rb_node;
3024	int ret;
3025	int err = 0;
3026
3027	path = btrfs_alloc_path();
3028	if (!path) {
3029		err = -ENOMEM;
3030		goto out_free_blocks;
3031	}
3032
3033	rb_node = rb_first(blocks);
3034	while (rb_node) {
3035		block = rb_entry(rb_node, struct tree_block, rb_node);
3036		if (!block->key_ready)
3037			readahead_tree_block(fs_info, block->bytenr);
3038		rb_node = rb_next(rb_node);
3039	}
3040
3041	rb_node = rb_first(blocks);
3042	while (rb_node) {
3043		block = rb_entry(rb_node, struct tree_block, rb_node);
3044		if (!block->key_ready) {
3045			err = get_tree_block_key(fs_info, block);
3046			if (err)
3047				goto out_free_path;
3048		}
3049		rb_node = rb_next(rb_node);
3050	}
3051
3052	rb_node = rb_first(blocks);
3053	while (rb_node) {
3054		block = rb_entry(rb_node, struct tree_block, rb_node);
3055
3056		node = build_backref_tree(rc, &block->key,
3057					  block->level, block->bytenr);
3058		if (IS_ERR(node)) {
3059			err = PTR_ERR(node);
3060			goto out;
3061		}
3062
3063		ret = relocate_tree_block(trans, rc, node, &block->key,
3064					  path);
3065		if (ret < 0) {
3066			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3067				err = ret;
3068			goto out;
3069		}
3070		rb_node = rb_next(rb_node);
3071	}
3072out:
3073	err = finish_pending_nodes(trans, rc, path, err);
3074
3075out_free_path:
3076	btrfs_free_path(path);
3077out_free_blocks:
3078	free_block_list(blocks);
3079	return err;
3080}
3081
3082static noinline_for_stack
3083int prealloc_file_extent_cluster(struct inode *inode,
3084				 struct file_extent_cluster *cluster)
3085{
3086	u64 alloc_hint = 0;
3087	u64 start;
3088	u64 end;
3089	u64 offset = BTRFS_I(inode)->index_cnt;
3090	u64 num_bytes;
3091	int nr = 0;
3092	int ret = 0;
3093	u64 prealloc_start = cluster->start - offset;
3094	u64 prealloc_end = cluster->end - offset;
3095	u64 cur_offset;
3096
3097	BUG_ON(cluster->start != cluster->boundary[0]);
3098	inode_lock(inode);
3099
3100	ret = btrfs_check_data_free_space(inode, prealloc_start,
3101					  prealloc_end + 1 - prealloc_start);
3102	if (ret)
3103		goto out;
3104
3105	cur_offset = prealloc_start;
3106	while (nr < cluster->nr) {
3107		start = cluster->boundary[nr] - offset;
3108		if (nr + 1 < cluster->nr)
3109			end = cluster->boundary[nr + 1] - 1 - offset;
3110		else
3111			end = cluster->end - offset;
3112
3113		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3114		num_bytes = end + 1 - start;
3115		if (cur_offset < start)
3116			btrfs_free_reserved_data_space(inode, cur_offset,
3117					start - cur_offset);
3118		ret = btrfs_prealloc_file_range(inode, 0, start,
3119						num_bytes, num_bytes,
3120						end + 1, &alloc_hint);
3121		cur_offset = end + 1;
3122		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3123		if (ret)
3124			break;
3125		nr++;
3126	}
3127	if (cur_offset < prealloc_end)
3128		btrfs_free_reserved_data_space(inode, cur_offset,
3129				       prealloc_end + 1 - cur_offset);
3130out:
3131	inode_unlock(inode);
3132	return ret;
3133}
3134
3135static noinline_for_stack
3136int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3137			 u64 block_start)
3138{
3139	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3140	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3141	struct extent_map *em;
3142	int ret = 0;
3143
3144	em = alloc_extent_map();
3145	if (!em)
3146		return -ENOMEM;
3147
3148	em->start = start;
3149	em->len = end + 1 - start;
3150	em->block_len = em->len;
3151	em->block_start = block_start;
3152	em->bdev = fs_info->fs_devices->latest_bdev;
3153	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3154
3155	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3156	while (1) {
3157		write_lock(&em_tree->lock);
3158		ret = add_extent_mapping(em_tree, em, 0);
3159		write_unlock(&em_tree->lock);
3160		if (ret != -EEXIST) {
3161			free_extent_map(em);
3162			break;
3163		}
3164		btrfs_drop_extent_cache(inode, start, end, 0);
3165	}
3166	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3167	return ret;
3168}
3169
3170static int relocate_file_extent_cluster(struct inode *inode,
3171					struct file_extent_cluster *cluster)
3172{
3173	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3174	u64 page_start;
3175	u64 page_end;
3176	u64 offset = BTRFS_I(inode)->index_cnt;
3177	unsigned long index;
3178	unsigned long last_index;
3179	struct page *page;
3180	struct file_ra_state *ra;
3181	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3182	int nr = 0;
3183	int ret = 0;
3184
3185	if (!cluster->nr)
3186		return 0;
3187
3188	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3189	if (!ra)
3190		return -ENOMEM;
3191
3192	ret = prealloc_file_extent_cluster(inode, cluster);
3193	if (ret)
3194		goto out;
3195
3196	file_ra_state_init(ra, inode->i_mapping);
3197
3198	ret = setup_extent_mapping(inode, cluster->start - offset,
3199				   cluster->end - offset, cluster->start);
3200	if (ret)
3201		goto out;
3202
3203	index = (cluster->start - offset) >> PAGE_SHIFT;
3204	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3205	while (index <= last_index) {
3206		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3207		if (ret)
3208			goto out;
3209
3210		page = find_lock_page(inode->i_mapping, index);
3211		if (!page) {
3212			page_cache_sync_readahead(inode->i_mapping,
3213						  ra, NULL, index,
3214						  last_index + 1 - index);
3215			page = find_or_create_page(inode->i_mapping, index,
3216						   mask);
3217			if (!page) {
3218				btrfs_delalloc_release_metadata(inode,
3219							PAGE_SIZE);
3220				ret = -ENOMEM;
3221				goto out;
3222			}
3223		}
3224
3225		if (PageReadahead(page)) {
3226			page_cache_async_readahead(inode->i_mapping,
3227						   ra, NULL, page, index,
3228						   last_index + 1 - index);
3229		}
3230
3231		if (!PageUptodate(page)) {
3232			btrfs_readpage(NULL, page);
3233			lock_page(page);
3234			if (!PageUptodate(page)) {
3235				unlock_page(page);
3236				put_page(page);
3237				btrfs_delalloc_release_metadata(inode,
3238							PAGE_SIZE);
3239				ret = -EIO;
3240				goto out;
3241			}
3242		}
3243
3244		page_start = page_offset(page);
3245		page_end = page_start + PAGE_SIZE - 1;
3246
3247		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3248
3249		set_page_extent_mapped(page);
3250
3251		if (nr < cluster->nr &&
3252		    page_start + offset == cluster->boundary[nr]) {
3253			set_extent_bits(&BTRFS_I(inode)->io_tree,
3254					page_start, page_end,
3255					EXTENT_BOUNDARY);
3256			nr++;
3257		}
3258
3259		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3260		set_page_dirty(page);
3261
3262		unlock_extent(&BTRFS_I(inode)->io_tree,
3263			      page_start, page_end);
3264		unlock_page(page);
3265		put_page(page);
3266
3267		index++;
3268		balance_dirty_pages_ratelimited(inode->i_mapping);
3269		btrfs_throttle(fs_info);
3270	}
3271	WARN_ON(nr != cluster->nr);
3272out:
3273	kfree(ra);
3274	return ret;
3275}
3276
3277static noinline_for_stack
3278int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3279			 struct file_extent_cluster *cluster)
3280{
3281	int ret;
3282
3283	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3284		ret = relocate_file_extent_cluster(inode, cluster);
3285		if (ret)
3286			return ret;
3287		cluster->nr = 0;
3288	}
3289
3290	if (!cluster->nr)
3291		cluster->start = extent_key->objectid;
3292	else
3293		BUG_ON(cluster->nr >= MAX_EXTENTS);
3294	cluster->end = extent_key->objectid + extent_key->offset - 1;
3295	cluster->boundary[cluster->nr] = extent_key->objectid;
3296	cluster->nr++;
3297
3298	if (cluster->nr >= MAX_EXTENTS) {
3299		ret = relocate_file_extent_cluster(inode, cluster);
3300		if (ret)
3301			return ret;
3302		cluster->nr = 0;
3303	}
3304	return 0;
3305}
3306
3307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3308static int get_ref_objectid_v0(struct reloc_control *rc,
3309			       struct btrfs_path *path,
3310			       struct btrfs_key *extent_key,
3311			       u64 *ref_objectid, int *path_change)
3312{
3313	struct btrfs_key key;
3314	struct extent_buffer *leaf;
3315	struct btrfs_extent_ref_v0 *ref0;
3316	int ret;
3317	int slot;
3318
3319	leaf = path->nodes[0];
3320	slot = path->slots[0];
3321	while (1) {
3322		if (slot >= btrfs_header_nritems(leaf)) {
3323			ret = btrfs_next_leaf(rc->extent_root, path);
3324			if (ret < 0)
3325				return ret;
3326			BUG_ON(ret > 0);
3327			leaf = path->nodes[0];
3328			slot = path->slots[0];
3329			if (path_change)
3330				*path_change = 1;
3331		}
3332		btrfs_item_key_to_cpu(leaf, &key, slot);
3333		if (key.objectid != extent_key->objectid)
3334			return -ENOENT;
3335
3336		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3337			slot++;
3338			continue;
3339		}
3340		ref0 = btrfs_item_ptr(leaf, slot,
3341				struct btrfs_extent_ref_v0);
3342		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3343		break;
3344	}
3345	return 0;
3346}
3347#endif
3348
3349/*
3350 * helper to add a tree block to the list.
3351 * the major work is getting the generation and level of the block
3352 */
3353static int add_tree_block(struct reloc_control *rc,
3354			  struct btrfs_key *extent_key,
3355			  struct btrfs_path *path,
3356			  struct rb_root *blocks)
3357{
3358	struct extent_buffer *eb;
3359	struct btrfs_extent_item *ei;
3360	struct btrfs_tree_block_info *bi;
3361	struct tree_block *block;
3362	struct rb_node *rb_node;
3363	u32 item_size;
3364	int level = -1;
3365	u64 generation;
3366
3367	eb =  path->nodes[0];
3368	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3369
3370	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3371	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3372		ei = btrfs_item_ptr(eb, path->slots[0],
3373				struct btrfs_extent_item);
3374		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3375			bi = (struct btrfs_tree_block_info *)(ei + 1);
3376			level = btrfs_tree_block_level(eb, bi);
3377		} else {
3378			level = (int)extent_key->offset;
3379		}
3380		generation = btrfs_extent_generation(eb, ei);
3381	} else {
3382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3383		u64 ref_owner;
3384		int ret;
3385
3386		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3387		ret = get_ref_objectid_v0(rc, path, extent_key,
3388					  &ref_owner, NULL);
3389		if (ret < 0)
3390			return ret;
3391		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3392		level = (int)ref_owner;
3393		/* FIXME: get real generation */
3394		generation = 0;
3395#else
3396		BUG();
3397#endif
3398	}
3399
3400	btrfs_release_path(path);
3401
3402	BUG_ON(level == -1);
3403
3404	block = kmalloc(sizeof(*block), GFP_NOFS);
3405	if (!block)
3406		return -ENOMEM;
3407
3408	block->bytenr = extent_key->objectid;
3409	block->key.objectid = rc->extent_root->fs_info->nodesize;
3410	block->key.offset = generation;
3411	block->level = level;
3412	block->key_ready = 0;
3413
3414	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3415	if (rb_node)
3416		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3417
3418	return 0;
3419}
3420
3421/*
3422 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3423 */
3424static int __add_tree_block(struct reloc_control *rc,
3425			    u64 bytenr, u32 blocksize,
3426			    struct rb_root *blocks)
3427{
3428	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3429	struct btrfs_path *path;
3430	struct btrfs_key key;
3431	int ret;
3432	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
3433
3434	if (tree_block_processed(bytenr, rc))
3435		return 0;
3436
3437	if (tree_search(blocks, bytenr))
3438		return 0;
3439
3440	path = btrfs_alloc_path();
3441	if (!path)
3442		return -ENOMEM;
3443again:
3444	key.objectid = bytenr;
3445	if (skinny) {
3446		key.type = BTRFS_METADATA_ITEM_KEY;
3447		key.offset = (u64)-1;
3448	} else {
3449		key.type = BTRFS_EXTENT_ITEM_KEY;
3450		key.offset = blocksize;
3451	}
3452
3453	path->search_commit_root = 1;
3454	path->skip_locking = 1;
3455	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3456	if (ret < 0)
3457		goto out;
3458
3459	if (ret > 0 && skinny) {
3460		if (path->slots[0]) {
3461			path->slots[0]--;
3462			btrfs_item_key_to_cpu(path->nodes[0], &key,
3463					      path->slots[0]);
3464			if (key.objectid == bytenr &&
3465			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3466			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3467			      key.offset == blocksize)))
3468				ret = 0;
3469		}
3470
3471		if (ret) {
3472			skinny = false;
3473			btrfs_release_path(path);
3474			goto again;
3475		}
3476	}
3477	BUG_ON(ret);
3478
3479	ret = add_tree_block(rc, &key, path, blocks);
3480out:
3481	btrfs_free_path(path);
3482	return ret;
3483}
3484
3485/*
3486 * helper to check if the block use full backrefs for pointers in it
3487 */
3488static int block_use_full_backref(struct reloc_control *rc,
3489				  struct extent_buffer *eb)
3490{
3491	u64 flags;
3492	int ret;
3493
3494	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3495	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3496		return 1;
3497
3498	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3499				       eb->start, btrfs_header_level(eb), 1,
3500				       NULL, &flags);
3501	BUG_ON(ret);
3502
3503	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3504		ret = 1;
3505	else
3506		ret = 0;
3507	return ret;
3508}
3509
3510static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3511				    struct btrfs_block_group_cache *block_group,
3512				    struct inode *inode,
3513				    u64 ino)
3514{
3515	struct btrfs_key key;
3516	struct btrfs_root *root = fs_info->tree_root;
3517	struct btrfs_trans_handle *trans;
3518	int ret = 0;
3519
3520	if (inode)
3521		goto truncate;
3522
3523	key.objectid = ino;
3524	key.type = BTRFS_INODE_ITEM_KEY;
3525	key.offset = 0;
3526
3527	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3528	if (IS_ERR(inode) || is_bad_inode(inode)) {
3529		if (!IS_ERR(inode))
3530			iput(inode);
3531		return -ENOENT;
3532	}
3533
3534truncate:
3535	ret = btrfs_check_trunc_cache_free_space(fs_info,
3536						 &fs_info->global_block_rsv);
3537	if (ret)
3538		goto out;
3539
3540	trans = btrfs_join_transaction(root);
3541	if (IS_ERR(trans)) {
3542		ret = PTR_ERR(trans);
3543		goto out;
3544	}
3545
3546	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3547
3548	btrfs_end_transaction(trans);
3549	btrfs_btree_balance_dirty(fs_info);
3550out:
3551	iput(inode);
3552	return ret;
3553}
3554
3555/*
3556 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3557 * this function scans fs tree to find blocks reference the data extent
3558 */
3559static int find_data_references(struct reloc_control *rc,
3560				struct btrfs_key *extent_key,
3561				struct extent_buffer *leaf,
3562				struct btrfs_extent_data_ref *ref,
3563				struct rb_root *blocks)
3564{
3565	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566	struct btrfs_path *path;
3567	struct tree_block *block;
3568	struct btrfs_root *root;
3569	struct btrfs_file_extent_item *fi;
3570	struct rb_node *rb_node;
3571	struct btrfs_key key;
3572	u64 ref_root;
3573	u64 ref_objectid;
3574	u64 ref_offset;
3575	u32 ref_count;
3576	u32 nritems;
3577	int err = 0;
3578	int added = 0;
3579	int counted;
3580	int ret;
3581
3582	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3583	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3584	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3585	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3586
3587	/*
3588	 * This is an extent belonging to the free space cache, lets just delete
3589	 * it and redo the search.
3590	 */
3591	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3592		ret = delete_block_group_cache(fs_info, rc->block_group,
3593					       NULL, ref_objectid);
3594		if (ret != -ENOENT)
3595			return ret;
3596		ret = 0;
3597	}
3598
3599	path = btrfs_alloc_path();
3600	if (!path)
3601		return -ENOMEM;
3602	path->reada = READA_FORWARD;
3603
3604	root = read_fs_root(fs_info, ref_root);
3605	if (IS_ERR(root)) {
3606		err = PTR_ERR(root);
3607		goto out;
3608	}
3609
3610	key.objectid = ref_objectid;
3611	key.type = BTRFS_EXTENT_DATA_KEY;
3612	if (ref_offset > ((u64)-1 << 32))
3613		key.offset = 0;
3614	else
3615		key.offset = ref_offset;
3616
3617	path->search_commit_root = 1;
3618	path->skip_locking = 1;
3619	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620	if (ret < 0) {
3621		err = ret;
3622		goto out;
3623	}
3624
3625	leaf = path->nodes[0];
3626	nritems = btrfs_header_nritems(leaf);
3627	/*
3628	 * the references in tree blocks that use full backrefs
3629	 * are not counted in
3630	 */
3631	if (block_use_full_backref(rc, leaf))
3632		counted = 0;
3633	else
3634		counted = 1;
3635	rb_node = tree_search(blocks, leaf->start);
3636	if (rb_node) {
3637		if (counted)
3638			added = 1;
3639		else
3640			path->slots[0] = nritems;
3641	}
3642
3643	while (ref_count > 0) {
3644		while (path->slots[0] >= nritems) {
3645			ret = btrfs_next_leaf(root, path);
3646			if (ret < 0) {
3647				err = ret;
3648				goto out;
3649			}
3650			if (WARN_ON(ret > 0))
3651				goto out;
3652
3653			leaf = path->nodes[0];
3654			nritems = btrfs_header_nritems(leaf);
3655			added = 0;
3656
3657			if (block_use_full_backref(rc, leaf))
3658				counted = 0;
3659			else
3660				counted = 1;
3661			rb_node = tree_search(blocks, leaf->start);
3662			if (rb_node) {
3663				if (counted)
3664					added = 1;
3665				else
3666					path->slots[0] = nritems;
3667			}
3668		}
3669
3670		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3671		if (WARN_ON(key.objectid != ref_objectid ||
3672		    key.type != BTRFS_EXTENT_DATA_KEY))
3673			break;
3674
3675		fi = btrfs_item_ptr(leaf, path->slots[0],
3676				    struct btrfs_file_extent_item);
3677
3678		if (btrfs_file_extent_type(leaf, fi) ==
3679		    BTRFS_FILE_EXTENT_INLINE)
3680			goto next;
3681
3682		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3683		    extent_key->objectid)
3684			goto next;
3685
3686		key.offset -= btrfs_file_extent_offset(leaf, fi);
3687		if (key.offset != ref_offset)
3688			goto next;
3689
3690		if (counted)
3691			ref_count--;
3692		if (added)
3693			goto next;
3694
3695		if (!tree_block_processed(leaf->start, rc)) {
3696			block = kmalloc(sizeof(*block), GFP_NOFS);
3697			if (!block) {
3698				err = -ENOMEM;
3699				break;
3700			}
3701			block->bytenr = leaf->start;
3702			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3703			block->level = 0;
3704			block->key_ready = 1;
3705			rb_node = tree_insert(blocks, block->bytenr,
3706					      &block->rb_node);
3707			if (rb_node)
3708				backref_tree_panic(rb_node, -EEXIST,
3709						   block->bytenr);
3710		}
3711		if (counted)
3712			added = 1;
3713		else
3714			path->slots[0] = nritems;
3715next:
3716		path->slots[0]++;
3717
3718	}
3719out:
3720	btrfs_free_path(path);
3721	return err;
3722}
3723
3724/*
3725 * helper to find all tree blocks that reference a given data extent
3726 */
3727static noinline_for_stack
3728int add_data_references(struct reloc_control *rc,
3729			struct btrfs_key *extent_key,
3730			struct btrfs_path *path,
3731			struct rb_root *blocks)
3732{
3733	struct btrfs_key key;
3734	struct extent_buffer *eb;
3735	struct btrfs_extent_data_ref *dref;
3736	struct btrfs_extent_inline_ref *iref;
3737	unsigned long ptr;
3738	unsigned long end;
3739	u32 blocksize = rc->extent_root->fs_info->nodesize;
3740	int ret = 0;
3741	int err = 0;
3742
3743	eb = path->nodes[0];
3744	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3745	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3746#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3747	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3748		ptr = end;
3749	else
3750#endif
3751		ptr += sizeof(struct btrfs_extent_item);
3752
3753	while (ptr < end) {
3754		iref = (struct btrfs_extent_inline_ref *)ptr;
3755		key.type = btrfs_extent_inline_ref_type(eb, iref);
3756		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3757			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3758			ret = __add_tree_block(rc, key.offset, blocksize,
3759					       blocks);
3760		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3761			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3762			ret = find_data_references(rc, extent_key,
3763						   eb, dref, blocks);
3764		} else {
3765			BUG();
3766		}
3767		if (ret) {
3768			err = ret;
3769			goto out;
3770		}
3771		ptr += btrfs_extent_inline_ref_size(key.type);
3772	}
3773	WARN_ON(ptr > end);
3774
3775	while (1) {
3776		cond_resched();
3777		eb = path->nodes[0];
3778		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3779			ret = btrfs_next_leaf(rc->extent_root, path);
3780			if (ret < 0) {
3781				err = ret;
3782				break;
3783			}
3784			if (ret > 0)
3785				break;
3786			eb = path->nodes[0];
3787		}
3788
3789		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3790		if (key.objectid != extent_key->objectid)
3791			break;
3792
3793#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3794		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3795		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3796#else
3797		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3798		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3799#endif
3800			ret = __add_tree_block(rc, key.offset, blocksize,
3801					       blocks);
3802		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3803			dref = btrfs_item_ptr(eb, path->slots[0],
3804					      struct btrfs_extent_data_ref);
3805			ret = find_data_references(rc, extent_key,
3806						   eb, dref, blocks);
3807		} else {
3808			ret = 0;
3809		}
3810		if (ret) {
3811			err = ret;
3812			break;
3813		}
3814		path->slots[0]++;
3815	}
3816out:
3817	btrfs_release_path(path);
3818	if (err)
3819		free_block_list(blocks);
3820	return err;
3821}
3822
3823/*
3824 * helper to find next unprocessed extent
3825 */
3826static noinline_for_stack
3827int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3828		     struct btrfs_key *extent_key)
3829{
3830	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3831	struct btrfs_key key;
3832	struct extent_buffer *leaf;
3833	u64 start, end, last;
3834	int ret;
3835
3836	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3837	while (1) {
3838		cond_resched();
3839		if (rc->search_start >= last) {
3840			ret = 1;
3841			break;
3842		}
3843
3844		key.objectid = rc->search_start;
3845		key.type = BTRFS_EXTENT_ITEM_KEY;
3846		key.offset = 0;
3847
3848		path->search_commit_root = 1;
3849		path->skip_locking = 1;
3850		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3851					0, 0);
3852		if (ret < 0)
3853			break;
3854next:
3855		leaf = path->nodes[0];
3856		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3857			ret = btrfs_next_leaf(rc->extent_root, path);
3858			if (ret != 0)
3859				break;
3860			leaf = path->nodes[0];
3861		}
3862
3863		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864		if (key.objectid >= last) {
3865			ret = 1;
3866			break;
3867		}
3868
3869		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3870		    key.type != BTRFS_METADATA_ITEM_KEY) {
3871			path->slots[0]++;
3872			goto next;
3873		}
3874
3875		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3876		    key.objectid + key.offset <= rc->search_start) {
3877			path->slots[0]++;
3878			goto next;
3879		}
3880
3881		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3882		    key.objectid + fs_info->nodesize <=
3883		    rc->search_start) {
3884			path->slots[0]++;
3885			goto next;
3886		}
3887
3888		ret = find_first_extent_bit(&rc->processed_blocks,
3889					    key.objectid, &start, &end,
3890					    EXTENT_DIRTY, NULL);
3891
3892		if (ret == 0 && start <= key.objectid) {
3893			btrfs_release_path(path);
3894			rc->search_start = end + 1;
3895		} else {
3896			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3897				rc->search_start = key.objectid + key.offset;
3898			else
3899				rc->search_start = key.objectid +
3900					fs_info->nodesize;
3901			memcpy(extent_key, &key, sizeof(key));
3902			return 0;
3903		}
3904	}
3905	btrfs_release_path(path);
3906	return ret;
3907}
3908
3909static void set_reloc_control(struct reloc_control *rc)
3910{
3911	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3912
3913	mutex_lock(&fs_info->reloc_mutex);
3914	fs_info->reloc_ctl = rc;
3915	mutex_unlock(&fs_info->reloc_mutex);
3916}
3917
3918static void unset_reloc_control(struct reloc_control *rc)
3919{
3920	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921
3922	mutex_lock(&fs_info->reloc_mutex);
3923	fs_info->reloc_ctl = NULL;
3924	mutex_unlock(&fs_info->reloc_mutex);
3925}
3926
3927static int check_extent_flags(u64 flags)
3928{
3929	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3930	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3931		return 1;
3932	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3933	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3934		return 1;
3935	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3936	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3937		return 1;
3938	return 0;
3939}
3940
3941static noinline_for_stack
3942int prepare_to_relocate(struct reloc_control *rc)
3943{
3944	struct btrfs_trans_handle *trans;
3945	int ret;
3946
3947	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3948					      BTRFS_BLOCK_RSV_TEMP);
3949	if (!rc->block_rsv)
3950		return -ENOMEM;
3951
3952	memset(&rc->cluster, 0, sizeof(rc->cluster));
3953	rc->search_start = rc->block_group->key.objectid;
3954	rc->extents_found = 0;
3955	rc->nodes_relocated = 0;
3956	rc->merging_rsv_size = 0;
3957	rc->reserved_bytes = 0;
3958	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3959			      RELOCATION_RESERVED_NODES;
3960	ret = btrfs_block_rsv_refill(rc->extent_root,
3961				     rc->block_rsv, rc->block_rsv->size,
3962				     BTRFS_RESERVE_FLUSH_ALL);
3963	if (ret)
3964		return ret;
3965
3966	rc->create_reloc_tree = 1;
3967	set_reloc_control(rc);
3968
3969	trans = btrfs_join_transaction(rc->extent_root);
3970	if (IS_ERR(trans)) {
3971		unset_reloc_control(rc);
3972		/*
3973		 * extent tree is not a ref_cow tree and has no reloc_root to
3974		 * cleanup.  And callers are responsible to free the above
3975		 * block rsv.
3976		 */
3977		return PTR_ERR(trans);
3978	}
3979	btrfs_commit_transaction(trans);
3980	return 0;
3981}
3982
3983static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3984{
3985	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3986	struct rb_root blocks = RB_ROOT;
3987	struct btrfs_key key;
3988	struct btrfs_trans_handle *trans = NULL;
3989	struct btrfs_path *path;
3990	struct btrfs_extent_item *ei;
3991	u64 flags;
3992	u32 item_size;
3993	int ret;
3994	int err = 0;
3995	int progress = 0;
3996
3997	path = btrfs_alloc_path();
3998	if (!path)
3999		return -ENOMEM;
4000	path->reada = READA_FORWARD;
4001
4002	ret = prepare_to_relocate(rc);
4003	if (ret) {
4004		err = ret;
4005		goto out_free;
4006	}
4007
4008	while (1) {
4009		rc->reserved_bytes = 0;
4010		ret = btrfs_block_rsv_refill(rc->extent_root,
4011					rc->block_rsv, rc->block_rsv->size,
4012					BTRFS_RESERVE_FLUSH_ALL);
4013		if (ret) {
4014			err = ret;
4015			break;
4016		}
4017		progress++;
4018		trans = btrfs_start_transaction(rc->extent_root, 0);
4019		if (IS_ERR(trans)) {
4020			err = PTR_ERR(trans);
4021			trans = NULL;
4022			break;
4023		}
4024restart:
4025		if (update_backref_cache(trans, &rc->backref_cache)) {
4026			btrfs_end_transaction(trans);
4027			continue;
4028		}
4029
4030		ret = find_next_extent(rc, path, &key);
4031		if (ret < 0)
4032			err = ret;
4033		if (ret != 0)
4034			break;
4035
4036		rc->extents_found++;
4037
4038		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039				    struct btrfs_extent_item);
4040		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4041		if (item_size >= sizeof(*ei)) {
4042			flags = btrfs_extent_flags(path->nodes[0], ei);
4043			ret = check_extent_flags(flags);
4044			BUG_ON(ret);
4045
4046		} else {
4047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4048			u64 ref_owner;
4049			int path_change = 0;
4050
4051			BUG_ON(item_size !=
4052			       sizeof(struct btrfs_extent_item_v0));
4053			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4054						  &path_change);
4055			if (ret < 0) {
4056				err = ret;
4057				break;
4058			}
4059			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4060				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4061			else
4062				flags = BTRFS_EXTENT_FLAG_DATA;
4063
4064			if (path_change) {
4065				btrfs_release_path(path);
4066
4067				path->search_commit_root = 1;
4068				path->skip_locking = 1;
4069				ret = btrfs_search_slot(NULL, rc->extent_root,
4070							&key, path, 0, 0);
4071				if (ret < 0) {
4072					err = ret;
4073					break;
4074				}
4075				BUG_ON(ret > 0);
4076			}
4077#else
4078			BUG();
4079#endif
4080		}
4081
4082		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4083			ret = add_tree_block(rc, &key, path, &blocks);
4084		} else if (rc->stage == UPDATE_DATA_PTRS &&
4085			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4086			ret = add_data_references(rc, &key, path, &blocks);
4087		} else {
4088			btrfs_release_path(path);
4089			ret = 0;
4090		}
4091		if (ret < 0) {
4092			err = ret;
4093			break;
4094		}
4095
4096		if (!RB_EMPTY_ROOT(&blocks)) {
4097			ret = relocate_tree_blocks(trans, rc, &blocks);
4098			if (ret < 0) {
4099				/*
4100				 * if we fail to relocate tree blocks, force to update
4101				 * backref cache when committing transaction.
4102				 */
4103				rc->backref_cache.last_trans = trans->transid - 1;
4104
4105				if (ret != -EAGAIN) {
4106					err = ret;
4107					break;
4108				}
4109				rc->extents_found--;
4110				rc->search_start = key.objectid;
4111			}
4112		}
4113
4114		btrfs_end_transaction_throttle(trans);
4115		btrfs_btree_balance_dirty(fs_info);
4116		trans = NULL;
4117
4118		if (rc->stage == MOVE_DATA_EXTENTS &&
4119		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4120			rc->found_file_extent = 1;
4121			ret = relocate_data_extent(rc->data_inode,
4122						   &key, &rc->cluster);
4123			if (ret < 0) {
4124				err = ret;
4125				break;
4126			}
4127		}
4128	}
4129	if (trans && progress && err == -ENOSPC) {
4130		ret = btrfs_force_chunk_alloc(trans, fs_info,
4131					      rc->block_group->flags);
4132		if (ret == 1) {
4133			err = 0;
4134			progress = 0;
4135			goto restart;
4136		}
4137	}
4138
4139	btrfs_release_path(path);
4140	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
4141
4142	if (trans) {
4143		btrfs_end_transaction_throttle(trans);
4144		btrfs_btree_balance_dirty(fs_info);
4145	}
4146
4147	if (!err) {
4148		ret = relocate_file_extent_cluster(rc->data_inode,
4149						   &rc->cluster);
4150		if (ret < 0)
4151			err = ret;
4152	}
4153
4154	rc->create_reloc_tree = 0;
4155	set_reloc_control(rc);
4156
4157	backref_cache_cleanup(&rc->backref_cache);
4158	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159
4160	err = prepare_to_merge(rc, err);
4161
4162	merge_reloc_roots(rc);
4163
4164	rc->merge_reloc_tree = 0;
4165	unset_reloc_control(rc);
4166	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4167
4168	/* get rid of pinned extents */
4169	trans = btrfs_join_transaction(rc->extent_root);
4170	if (IS_ERR(trans)) {
4171		err = PTR_ERR(trans);
4172		goto out_free;
4173	}
4174	btrfs_commit_transaction(trans);
4175out_free:
4176	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4177	btrfs_free_path(path);
4178	return err;
4179}
4180
4181static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4182				 struct btrfs_root *root, u64 objectid)
4183{
4184	struct btrfs_path *path;
4185	struct btrfs_inode_item *item;
4186	struct extent_buffer *leaf;
4187	int ret;
4188
4189	path = btrfs_alloc_path();
4190	if (!path)
4191		return -ENOMEM;
4192
4193	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4194	if (ret)
4195		goto out;
4196
4197	leaf = path->nodes[0];
4198	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4199	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4200	btrfs_set_inode_generation(leaf, item, 1);
4201	btrfs_set_inode_size(leaf, item, 0);
4202	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4203	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4204					  BTRFS_INODE_PREALLOC);
4205	btrfs_mark_buffer_dirty(leaf);
 
4206out:
4207	btrfs_free_path(path);
4208	return ret;
4209}
4210
4211/*
4212 * helper to create inode for data relocation.
4213 * the inode is in data relocation tree and its link count is 0
4214 */
4215static noinline_for_stack
4216struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4217				 struct btrfs_block_group_cache *group)
4218{
4219	struct inode *inode = NULL;
4220	struct btrfs_trans_handle *trans;
4221	struct btrfs_root *root;
4222	struct btrfs_key key;
4223	u64 objectid;
4224	int err = 0;
4225
4226	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4227	if (IS_ERR(root))
4228		return ERR_CAST(root);
4229
4230	trans = btrfs_start_transaction(root, 6);
4231	if (IS_ERR(trans))
4232		return ERR_CAST(trans);
4233
4234	err = btrfs_find_free_objectid(root, &objectid);
4235	if (err)
4236		goto out;
4237
4238	err = __insert_orphan_inode(trans, root, objectid);
4239	BUG_ON(err);
4240
4241	key.objectid = objectid;
4242	key.type = BTRFS_INODE_ITEM_KEY;
4243	key.offset = 0;
4244	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4245	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4246	BTRFS_I(inode)->index_cnt = group->key.objectid;
4247
4248	err = btrfs_orphan_add(trans, inode);
4249out:
4250	btrfs_end_transaction(trans);
4251	btrfs_btree_balance_dirty(fs_info);
4252	if (err) {
4253		if (inode)
4254			iput(inode);
4255		inode = ERR_PTR(err);
4256	}
4257	return inode;
4258}
4259
4260static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4261{
4262	struct reloc_control *rc;
4263
4264	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4265	if (!rc)
4266		return NULL;
4267
4268	INIT_LIST_HEAD(&rc->reloc_roots);
4269	backref_cache_init(&rc->backref_cache);
4270	mapping_tree_init(&rc->reloc_root_tree);
4271	extent_io_tree_init(&rc->processed_blocks,
4272			    fs_info->btree_inode->i_mapping);
4273	return rc;
4274}
4275
4276/*
4277 * Print the block group being relocated
4278 */
4279static void describe_relocation(struct btrfs_fs_info *fs_info,
4280				struct btrfs_block_group_cache *block_group)
4281{
4282	char buf[128];		/* prefixed by a '|' that'll be dropped */
4283	u64 flags = block_group->flags;
4284
4285	/* Shouldn't happen */
4286	if (!flags) {
4287		strcpy(buf, "|NONE");
4288	} else {
4289		char *bp = buf;
4290
4291#define DESCRIBE_FLAG(f, d) \
4292		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4293			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4294			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4295		}
4296		DESCRIBE_FLAG(DATA,     "data");
4297		DESCRIBE_FLAG(SYSTEM,   "system");
4298		DESCRIBE_FLAG(METADATA, "metadata");
4299		DESCRIBE_FLAG(RAID0,    "raid0");
4300		DESCRIBE_FLAG(RAID1,    "raid1");
4301		DESCRIBE_FLAG(DUP,      "dup");
4302		DESCRIBE_FLAG(RAID10,   "raid10");
4303		DESCRIBE_FLAG(RAID5,    "raid5");
4304		DESCRIBE_FLAG(RAID6,    "raid6");
4305		if (flags)
4306			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4307#undef DESCRIBE_FLAG
4308	}
4309
4310	btrfs_info(fs_info,
4311		   "relocating block group %llu flags %s",
4312		   block_group->key.objectid, buf + 1);
4313}
4314
4315/*
4316 * function to relocate all extents in a block group.
4317 */
4318int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4319{
4320	struct btrfs_root *extent_root = fs_info->extent_root;
4321	struct reloc_control *rc;
4322	struct inode *inode;
4323	struct btrfs_path *path;
4324	int ret;
4325	int rw = 0;
4326	int err = 0;
4327
4328	rc = alloc_reloc_control(fs_info);
4329	if (!rc)
4330		return -ENOMEM;
4331
4332	rc->extent_root = extent_root;
4333
4334	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4335	BUG_ON(!rc->block_group);
4336
4337	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4338	if (ret) {
4339		err = ret;
4340		goto out;
 
 
 
4341	}
4342	rw = 1;
4343
4344	path = btrfs_alloc_path();
4345	if (!path) {
4346		err = -ENOMEM;
4347		goto out;
4348	}
4349
4350	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4351					path);
4352	btrfs_free_path(path);
4353
4354	if (!IS_ERR(inode))
4355		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4356	else
4357		ret = PTR_ERR(inode);
4358
4359	if (ret && ret != -ENOENT) {
4360		err = ret;
4361		goto out;
4362	}
4363
4364	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4365	if (IS_ERR(rc->data_inode)) {
4366		err = PTR_ERR(rc->data_inode);
4367		rc->data_inode = NULL;
4368		goto out;
4369	}
4370
4371	describe_relocation(fs_info, rc->block_group);
 
4372
4373	btrfs_wait_block_group_reservations(rc->block_group);
4374	btrfs_wait_nocow_writers(rc->block_group);
4375	btrfs_wait_ordered_roots(fs_info, -1,
4376				 rc->block_group->key.objectid,
4377				 rc->block_group->key.offset);
 
4378
4379	while (1) {
4380		mutex_lock(&fs_info->cleaner_mutex);
4381		ret = relocate_block_group(rc);
4382		mutex_unlock(&fs_info->cleaner_mutex);
4383		if (ret < 0) {
4384			err = ret;
4385			goto out;
4386		}
4387
4388		if (rc->extents_found == 0)
4389			break;
4390
4391		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
 
4392
4393		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4394			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4395						       (u64)-1);
4396			if (ret) {
4397				err = ret;
4398				goto out;
4399			}
4400			invalidate_mapping_pages(rc->data_inode->i_mapping,
4401						 0, -1);
4402			rc->stage = UPDATE_DATA_PTRS;
4403		}
4404	}
4405
4406	WARN_ON(rc->block_group->pinned > 0);
4407	WARN_ON(rc->block_group->reserved > 0);
4408	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410	if (err && rw)
4411		btrfs_dec_block_group_ro(rc->block_group);
4412	iput(rc->data_inode);
4413	btrfs_put_block_group(rc->block_group);
4414	kfree(rc);
4415	return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420	struct btrfs_fs_info *fs_info = root->fs_info;
4421	struct btrfs_trans_handle *trans;
4422	int ret, err;
4423
4424	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425	if (IS_ERR(trans))
4426		return PTR_ERR(trans);
4427
4428	memset(&root->root_item.drop_progress, 0,
4429		sizeof(root->root_item.drop_progress));
4430	root->root_item.drop_level = 0;
4431	btrfs_set_root_refs(&root->root_item, 0);
4432	ret = btrfs_update_root(trans, fs_info->tree_root,
4433				&root->root_key, &root->root_item);
4434
4435	err = btrfs_end_transaction(trans);
4436	if (err)
4437		return err;
4438	return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449	struct btrfs_fs_info *fs_info = root->fs_info;
4450	LIST_HEAD(reloc_roots);
4451	struct btrfs_key key;
4452	struct btrfs_root *fs_root;
4453	struct btrfs_root *reloc_root;
4454	struct btrfs_path *path;
4455	struct extent_buffer *leaf;
4456	struct reloc_control *rc = NULL;
4457	struct btrfs_trans_handle *trans;
4458	int ret;
4459	int err = 0;
4460
4461	path = btrfs_alloc_path();
4462	if (!path)
4463		return -ENOMEM;
4464	path->reada = READA_BACK;
4465
4466	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467	key.type = BTRFS_ROOT_ITEM_KEY;
4468	key.offset = (u64)-1;
4469
4470	while (1) {
4471		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472					path, 0, 0);
4473		if (ret < 0) {
4474			err = ret;
4475			goto out;
4476		}
4477		if (ret > 0) {
4478			if (path->slots[0] == 0)
4479				break;
4480			path->slots[0]--;
4481		}
4482		leaf = path->nodes[0];
4483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484		btrfs_release_path(path);
4485
4486		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487		    key.type != BTRFS_ROOT_ITEM_KEY)
4488			break;
4489
4490		reloc_root = btrfs_read_fs_root(root, &key);
4491		if (IS_ERR(reloc_root)) {
4492			err = PTR_ERR(reloc_root);
4493			goto out;
4494		}
4495
4496		list_add(&reloc_root->root_list, &reloc_roots);
4497
4498		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499			fs_root = read_fs_root(fs_info,
4500					       reloc_root->root_key.offset);
4501			if (IS_ERR(fs_root)) {
4502				ret = PTR_ERR(fs_root);
4503				if (ret != -ENOENT) {
4504					err = ret;
4505					goto out;
4506				}
4507				ret = mark_garbage_root(reloc_root);
4508				if (ret < 0) {
4509					err = ret;
4510					goto out;
4511				}
4512			}
4513		}
4514
4515		if (key.offset == 0)
4516			break;
4517
4518		key.offset--;
4519	}
4520	btrfs_release_path(path);
4521
4522	if (list_empty(&reloc_roots))
4523		goto out;
4524
4525	rc = alloc_reloc_control(fs_info);
4526	if (!rc) {
4527		err = -ENOMEM;
4528		goto out;
4529	}
4530
4531	rc->extent_root = fs_info->extent_root;
4532
4533	set_reloc_control(rc);
4534
4535	trans = btrfs_join_transaction(rc->extent_root);
4536	if (IS_ERR(trans)) {
4537		unset_reloc_control(rc);
4538		err = PTR_ERR(trans);
4539		goto out_free;
4540	}
4541
4542	rc->merge_reloc_tree = 1;
4543
4544	while (!list_empty(&reloc_roots)) {
4545		reloc_root = list_entry(reloc_roots.next,
4546					struct btrfs_root, root_list);
4547		list_del(&reloc_root->root_list);
4548
4549		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550			list_add_tail(&reloc_root->root_list,
4551				      &rc->reloc_roots);
4552			continue;
4553		}
4554
4555		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
4556		if (IS_ERR(fs_root)) {
4557			err = PTR_ERR(fs_root);
4558			goto out_free;
4559		}
4560
4561		err = __add_reloc_root(reloc_root);
4562		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563		fs_root->reloc_root = reloc_root;
4564	}
4565
4566	err = btrfs_commit_transaction(trans);
4567	if (err)
4568		goto out_free;
4569
4570	merge_reloc_roots(rc);
4571
4572	unset_reloc_control(rc);
4573
4574	trans = btrfs_join_transaction(rc->extent_root);
4575	if (IS_ERR(trans)) {
4576		err = PTR_ERR(trans);
4577		goto out_free;
4578	}
4579	err = btrfs_commit_transaction(trans);
4580out_free:
4581	kfree(rc);
4582out:
4583	if (!list_empty(&reloc_roots))
4584		free_reloc_roots(&reloc_roots);
4585
4586	btrfs_free_path(path);
4587
4588	if (err == 0) {
4589		/* cleanup orphan inode in data relocation tree */
4590		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
 
4591		if (IS_ERR(fs_root))
4592			err = PTR_ERR(fs_root);
4593		else
4594			err = btrfs_orphan_cleanup(fs_root);
4595	}
4596	return err;
4597}
4598
4599/*
4600 * helper to add ordered checksum for data relocation.
4601 *
4602 * cloning checksum properly handles the nodatasum extents.
4603 * it also saves CPU time to re-calculate the checksum.
4604 */
4605int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4606{
4607	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4608	struct btrfs_ordered_sum *sums;
4609	struct btrfs_ordered_extent *ordered;
 
4610	int ret;
4611	u64 disk_bytenr;
4612	u64 new_bytenr;
4613	LIST_HEAD(list);
4614
4615	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4616	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4617
4618	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4619	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4620				       disk_bytenr + len - 1, &list, 0);
4621	if (ret)
4622		goto out;
4623
4624	while (!list_empty(&list)) {
4625		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4626		list_del_init(&sums->list);
4627
4628		/*
4629		 * We need to offset the new_bytenr based on where the csum is.
4630		 * We need to do this because we will read in entire prealloc
4631		 * extents but we may have written to say the middle of the
4632		 * prealloc extent, so we need to make sure the csum goes with
4633		 * the right disk offset.
4634		 *
4635		 * We can do this because the data reloc inode refers strictly
4636		 * to the on disk bytes, so we don't have to worry about
4637		 * disk_len vs real len like with real inodes since it's all
4638		 * disk length.
4639		 */
4640		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4641		sums->bytenr = new_bytenr;
4642
4643		btrfs_add_ordered_sum(inode, ordered, sums);
4644	}
4645out:
4646	btrfs_put_ordered_extent(ordered);
4647	return ret;
4648}
4649
4650int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4651			  struct btrfs_root *root, struct extent_buffer *buf,
4652			  struct extent_buffer *cow)
4653{
4654	struct btrfs_fs_info *fs_info = root->fs_info;
4655	struct reloc_control *rc;
4656	struct backref_node *node;
4657	int first_cow = 0;
4658	int level;
4659	int ret = 0;
4660
4661	rc = fs_info->reloc_ctl;
4662	if (!rc)
4663		return 0;
4664
4665	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4666	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4667
4668	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4669		if (buf == root->node)
4670			__update_reloc_root(root, cow->start);
4671	}
4672
4673	level = btrfs_header_level(buf);
4674	if (btrfs_header_generation(buf) <=
4675	    btrfs_root_last_snapshot(&root->root_item))
4676		first_cow = 1;
4677
4678	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4679	    rc->create_reloc_tree) {
4680		WARN_ON(!first_cow && level == 0);
4681
4682		node = rc->backref_cache.path[level];
4683		BUG_ON(node->bytenr != buf->start &&
4684		       node->new_bytenr != buf->start);
4685
4686		drop_node_buffer(node);
4687		extent_buffer_get(cow);
4688		node->eb = cow;
4689		node->new_bytenr = cow->start;
4690
4691		if (!node->pending) {
4692			list_move_tail(&node->list,
4693				       &rc->backref_cache.pending[level]);
4694			node->pending = 1;
4695		}
4696
4697		if (first_cow)
4698			__mark_block_processed(rc, node);
4699
4700		if (first_cow && level > 0)
4701			rc->nodes_relocated += buf->len;
4702	}
4703
4704	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4705		ret = replace_file_extents(trans, rc, root, cow);
4706	return ret;
4707}
4708
4709/*
4710 * called before creating snapshot. it calculates metadata reservation
4711 * required for relocating tree blocks in the snapshot
4712 */
4713void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4714			      u64 *bytes_to_reserve)
4715{
4716	struct btrfs_root *root;
4717	struct reloc_control *rc;
4718
4719	root = pending->root;
4720	if (!root->reloc_root)
4721		return;
4722
4723	rc = root->fs_info->reloc_ctl;
4724	if (!rc->merge_reloc_tree)
4725		return;
4726
4727	root = root->reloc_root;
4728	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4729	/*
4730	 * relocation is in the stage of merging trees. the space
4731	 * used by merging a reloc tree is twice the size of
4732	 * relocated tree nodes in the worst case. half for cowing
4733	 * the reloc tree, half for cowing the fs tree. the space
4734	 * used by cowing the reloc tree will be freed after the
4735	 * tree is dropped. if we create snapshot, cowing the fs
4736	 * tree may use more space than it frees. so we need
4737	 * reserve extra space.
4738	 */
4739	*bytes_to_reserve += rc->nodes_relocated;
4740}
4741
4742/*
4743 * called after snapshot is created. migrate block reservation
4744 * and create reloc root for the newly created snapshot
4745 */
4746int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4747			       struct btrfs_pending_snapshot *pending)
4748{
4749	struct btrfs_root *root = pending->root;
4750	struct btrfs_root *reloc_root;
4751	struct btrfs_root *new_root;
4752	struct reloc_control *rc;
4753	int ret;
4754
4755	if (!root->reloc_root)
4756		return 0;
4757
4758	rc = root->fs_info->reloc_ctl;
4759	rc->merging_rsv_size += rc->nodes_relocated;
4760
4761	if (rc->merge_reloc_tree) {
4762		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4763					      rc->block_rsv,
4764					      rc->nodes_relocated, 1);
4765		if (ret)
4766			return ret;
4767	}
4768
4769	new_root = pending->snap;
4770	reloc_root = create_reloc_root(trans, root->reloc_root,
4771				       new_root->root_key.objectid);
4772	if (IS_ERR(reloc_root))
4773		return PTR_ERR(reloc_root);
4774
4775	ret = __add_reloc_root(reloc_root);
4776	BUG_ON(ret < 0);
4777	new_root->reloc_root = reloc_root;
4778
4779	if (rc->create_reloc_tree)
4780		ret = clone_backref_node(trans, rc, root, reloc_root);
4781	return ret;
4782}
v3.15
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97#define RELOCATION_RESERVED_NODES	256
  98
  99struct backref_cache {
 100	/* red black tree of all backref nodes in the cache */
 101	struct rb_root rb_root;
 102	/* for passing backref nodes to btrfs_reloc_cow_block */
 103	struct backref_node *path[BTRFS_MAX_LEVEL];
 104	/*
 105	 * list of blocks that have been cowed but some block
 106	 * pointers in upper level blocks may not reflect the
 107	 * new location
 108	 */
 109	struct list_head pending[BTRFS_MAX_LEVEL];
 110	/* list of backref nodes with no child node */
 111	struct list_head leaves;
 112	/* list of blocks that have been cowed in current transaction */
 113	struct list_head changed;
 114	/* list of detached backref node. */
 115	struct list_head detached;
 116
 117	u64 last_trans;
 118
 119	int nr_nodes;
 120	int nr_edges;
 121};
 122
 123/*
 124 * map address of tree root to tree
 125 */
 126struct mapping_node {
 127	struct rb_node rb_node;
 128	u64 bytenr;
 129	void *data;
 130};
 131
 132struct mapping_tree {
 133	struct rb_root rb_root;
 134	spinlock_t lock;
 135};
 136
 137/*
 138 * present a tree block to process
 139 */
 140struct tree_block {
 141	struct rb_node rb_node;
 142	u64 bytenr;
 143	struct btrfs_key key;
 144	unsigned int level:8;
 145	unsigned int key_ready:1;
 146};
 147
 148#define MAX_EXTENTS 128
 149
 150struct file_extent_cluster {
 151	u64 start;
 152	u64 end;
 153	u64 boundary[MAX_EXTENTS];
 154	unsigned int nr;
 155};
 156
 157struct reloc_control {
 158	/* block group to relocate */
 159	struct btrfs_block_group_cache *block_group;
 160	/* extent tree */
 161	struct btrfs_root *extent_root;
 162	/* inode for moving data */
 163	struct inode *data_inode;
 164
 165	struct btrfs_block_rsv *block_rsv;
 166
 167	struct backref_cache backref_cache;
 168
 169	struct file_extent_cluster cluster;
 170	/* tree blocks have been processed */
 171	struct extent_io_tree processed_blocks;
 172	/* map start of tree root to corresponding reloc tree */
 173	struct mapping_tree reloc_root_tree;
 174	/* list of reloc trees */
 175	struct list_head reloc_roots;
 176	/* size of metadata reservation for merging reloc trees */
 177	u64 merging_rsv_size;
 178	/* size of relocated tree nodes */
 179	u64 nodes_relocated;
 180	/* reserved size for block group relocation*/
 181	u64 reserved_bytes;
 182
 183	u64 search_start;
 184	u64 extents_found;
 185
 186	unsigned int stage:8;
 187	unsigned int create_reloc_tree:1;
 188	unsigned int merge_reloc_tree:1;
 189	unsigned int found_file_extent:1;
 190};
 191
 192/* stages of data relocation */
 193#define MOVE_DATA_EXTENTS	0
 194#define UPDATE_DATA_PTRS	1
 195
 196static void remove_backref_node(struct backref_cache *cache,
 197				struct backref_node *node);
 198static void __mark_block_processed(struct reloc_control *rc,
 199				   struct backref_node *node);
 200
 201static void mapping_tree_init(struct mapping_tree *tree)
 202{
 203	tree->rb_root = RB_ROOT;
 204	spin_lock_init(&tree->lock);
 205}
 206
 207static void backref_cache_init(struct backref_cache *cache)
 208{
 209	int i;
 210	cache->rb_root = RB_ROOT;
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 212		INIT_LIST_HEAD(&cache->pending[i]);
 213	INIT_LIST_HEAD(&cache->changed);
 214	INIT_LIST_HEAD(&cache->detached);
 215	INIT_LIST_HEAD(&cache->leaves);
 216}
 217
 218static void backref_cache_cleanup(struct backref_cache *cache)
 219{
 220	struct backref_node *node;
 221	int i;
 222
 223	while (!list_empty(&cache->detached)) {
 224		node = list_entry(cache->detached.next,
 225				  struct backref_node, list);
 226		remove_backref_node(cache, node);
 227	}
 228
 229	while (!list_empty(&cache->leaves)) {
 230		node = list_entry(cache->leaves.next,
 231				  struct backref_node, lower);
 232		remove_backref_node(cache, node);
 233	}
 234
 235	cache->last_trans = 0;
 236
 237	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 238		BUG_ON(!list_empty(&cache->pending[i]));
 239	BUG_ON(!list_empty(&cache->changed));
 240	BUG_ON(!list_empty(&cache->detached));
 241	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 242	BUG_ON(cache->nr_nodes);
 243	BUG_ON(cache->nr_edges);
 244}
 245
 246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 247{
 248	struct backref_node *node;
 249
 250	node = kzalloc(sizeof(*node), GFP_NOFS);
 251	if (node) {
 252		INIT_LIST_HEAD(&node->list);
 253		INIT_LIST_HEAD(&node->upper);
 254		INIT_LIST_HEAD(&node->lower);
 255		RB_CLEAR_NODE(&node->rb_node);
 256		cache->nr_nodes++;
 257	}
 258	return node;
 259}
 260
 261static void free_backref_node(struct backref_cache *cache,
 262			      struct backref_node *node)
 263{
 264	if (node) {
 265		cache->nr_nodes--;
 266		kfree(node);
 267	}
 268}
 269
 270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 271{
 272	struct backref_edge *edge;
 273
 274	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 275	if (edge)
 276		cache->nr_edges++;
 277	return edge;
 278}
 279
 280static void free_backref_edge(struct backref_cache *cache,
 281			      struct backref_edge *edge)
 282{
 283	if (edge) {
 284		cache->nr_edges--;
 285		kfree(edge);
 286	}
 287}
 288
 289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 290				   struct rb_node *node)
 291{
 292	struct rb_node **p = &root->rb_node;
 293	struct rb_node *parent = NULL;
 294	struct tree_entry *entry;
 295
 296	while (*p) {
 297		parent = *p;
 298		entry = rb_entry(parent, struct tree_entry, rb_node);
 299
 300		if (bytenr < entry->bytenr)
 301			p = &(*p)->rb_left;
 302		else if (bytenr > entry->bytenr)
 303			p = &(*p)->rb_right;
 304		else
 305			return parent;
 306	}
 307
 308	rb_link_node(node, parent, p);
 309	rb_insert_color(node, root);
 310	return NULL;
 311}
 312
 313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 314{
 315	struct rb_node *n = root->rb_node;
 316	struct tree_entry *entry;
 317
 318	while (n) {
 319		entry = rb_entry(n, struct tree_entry, rb_node);
 320
 321		if (bytenr < entry->bytenr)
 322			n = n->rb_left;
 323		else if (bytenr > entry->bytenr)
 324			n = n->rb_right;
 325		else
 326			return n;
 327	}
 328	return NULL;
 329}
 330
 331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 332{
 333
 334	struct btrfs_fs_info *fs_info = NULL;
 335	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 336					      rb_node);
 337	if (bnode->root)
 338		fs_info = bnode->root->fs_info;
 339	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 340		    "found at offset %llu\n", bytenr);
 
 341}
 342
 343/*
 344 * walk up backref nodes until reach node presents tree root
 345 */
 346static struct backref_node *walk_up_backref(struct backref_node *node,
 347					    struct backref_edge *edges[],
 348					    int *index)
 349{
 350	struct backref_edge *edge;
 351	int idx = *index;
 352
 353	while (!list_empty(&node->upper)) {
 354		edge = list_entry(node->upper.next,
 355				  struct backref_edge, list[LOWER]);
 356		edges[idx++] = edge;
 357		node = edge->node[UPPER];
 358	}
 359	BUG_ON(node->detached);
 360	*index = idx;
 361	return node;
 362}
 363
 364/*
 365 * walk down backref nodes to find start of next reference path
 366 */
 367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 368					      int *index)
 369{
 370	struct backref_edge *edge;
 371	struct backref_node *lower;
 372	int idx = *index;
 373
 374	while (idx > 0) {
 375		edge = edges[idx - 1];
 376		lower = edge->node[LOWER];
 377		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 378			idx--;
 379			continue;
 380		}
 381		edge = list_entry(edge->list[LOWER].next,
 382				  struct backref_edge, list[LOWER]);
 383		edges[idx - 1] = edge;
 384		*index = idx;
 385		return edge->node[UPPER];
 386	}
 387	*index = 0;
 388	return NULL;
 389}
 390
 391static void unlock_node_buffer(struct backref_node *node)
 392{
 393	if (node->locked) {
 394		btrfs_tree_unlock(node->eb);
 395		node->locked = 0;
 396	}
 397}
 398
 399static void drop_node_buffer(struct backref_node *node)
 400{
 401	if (node->eb) {
 402		unlock_node_buffer(node);
 403		free_extent_buffer(node->eb);
 404		node->eb = NULL;
 405	}
 406}
 407
 408static void drop_backref_node(struct backref_cache *tree,
 409			      struct backref_node *node)
 410{
 411	BUG_ON(!list_empty(&node->upper));
 412
 413	drop_node_buffer(node);
 414	list_del(&node->list);
 415	list_del(&node->lower);
 416	if (!RB_EMPTY_NODE(&node->rb_node))
 417		rb_erase(&node->rb_node, &tree->rb_root);
 418	free_backref_node(tree, node);
 419}
 420
 421/*
 422 * remove a backref node from the backref cache
 423 */
 424static void remove_backref_node(struct backref_cache *cache,
 425				struct backref_node *node)
 426{
 427	struct backref_node *upper;
 428	struct backref_edge *edge;
 429
 430	if (!node)
 431		return;
 432
 433	BUG_ON(!node->lowest && !node->detached);
 434	while (!list_empty(&node->upper)) {
 435		edge = list_entry(node->upper.next, struct backref_edge,
 436				  list[LOWER]);
 437		upper = edge->node[UPPER];
 438		list_del(&edge->list[LOWER]);
 439		list_del(&edge->list[UPPER]);
 440		free_backref_edge(cache, edge);
 441
 442		if (RB_EMPTY_NODE(&upper->rb_node)) {
 443			BUG_ON(!list_empty(&node->upper));
 444			drop_backref_node(cache, node);
 445			node = upper;
 446			node->lowest = 1;
 447			continue;
 448		}
 449		/*
 450		 * add the node to leaf node list if no other
 451		 * child block cached.
 452		 */
 453		if (list_empty(&upper->lower)) {
 454			list_add_tail(&upper->lower, &cache->leaves);
 455			upper->lowest = 1;
 456		}
 457	}
 458
 459	drop_backref_node(cache, node);
 460}
 461
 462static void update_backref_node(struct backref_cache *cache,
 463				struct backref_node *node, u64 bytenr)
 464{
 465	struct rb_node *rb_node;
 466	rb_erase(&node->rb_node, &cache->rb_root);
 467	node->bytenr = bytenr;
 468	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 469	if (rb_node)
 470		backref_tree_panic(rb_node, -EEXIST, bytenr);
 471}
 472
 473/*
 474 * update backref cache after a transaction commit
 475 */
 476static int update_backref_cache(struct btrfs_trans_handle *trans,
 477				struct backref_cache *cache)
 478{
 479	struct backref_node *node;
 480	int level = 0;
 481
 482	if (cache->last_trans == 0) {
 483		cache->last_trans = trans->transid;
 484		return 0;
 485	}
 486
 487	if (cache->last_trans == trans->transid)
 488		return 0;
 489
 490	/*
 491	 * detached nodes are used to avoid unnecessary backref
 492	 * lookup. transaction commit changes the extent tree.
 493	 * so the detached nodes are no longer useful.
 494	 */
 495	while (!list_empty(&cache->detached)) {
 496		node = list_entry(cache->detached.next,
 497				  struct backref_node, list);
 498		remove_backref_node(cache, node);
 499	}
 500
 501	while (!list_empty(&cache->changed)) {
 502		node = list_entry(cache->changed.next,
 503				  struct backref_node, list);
 504		list_del_init(&node->list);
 505		BUG_ON(node->pending);
 506		update_backref_node(cache, node, node->new_bytenr);
 507	}
 508
 509	/*
 510	 * some nodes can be left in the pending list if there were
 511	 * errors during processing the pending nodes.
 512	 */
 513	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 514		list_for_each_entry(node, &cache->pending[level], list) {
 515			BUG_ON(!node->pending);
 516			if (node->bytenr == node->new_bytenr)
 517				continue;
 518			update_backref_node(cache, node, node->new_bytenr);
 519		}
 520	}
 521
 522	cache->last_trans = 0;
 523	return 1;
 524}
 525
 526
 527static int should_ignore_root(struct btrfs_root *root)
 528{
 529	struct btrfs_root *reloc_root;
 530
 531	if (!root->ref_cows)
 532		return 0;
 533
 534	reloc_root = root->reloc_root;
 535	if (!reloc_root)
 536		return 0;
 537
 538	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 539	    root->fs_info->running_transaction->transid - 1)
 540		return 0;
 541	/*
 542	 * if there is reloc tree and it was created in previous
 543	 * transaction backref lookup can find the reloc tree,
 544	 * so backref node for the fs tree root is useless for
 545	 * relocation.
 546	 */
 547	return 1;
 548}
 549/*
 550 * find reloc tree by address of tree root
 551 */
 552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 553					  u64 bytenr)
 554{
 555	struct rb_node *rb_node;
 556	struct mapping_node *node;
 557	struct btrfs_root *root = NULL;
 558
 559	spin_lock(&rc->reloc_root_tree.lock);
 560	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct mapping_node, rb_node);
 563		root = (struct btrfs_root *)node->data;
 564	}
 565	spin_unlock(&rc->reloc_root_tree.lock);
 566	return root;
 567}
 568
 569static int is_cowonly_root(u64 root_objectid)
 570{
 571	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 576	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 578	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
 
 579		return 1;
 580	return 0;
 581}
 582
 583static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 584					u64 root_objectid)
 585{
 586	struct btrfs_key key;
 587
 588	key.objectid = root_objectid;
 589	key.type = BTRFS_ROOT_ITEM_KEY;
 590	if (is_cowonly_root(root_objectid))
 591		key.offset = 0;
 592	else
 593		key.offset = (u64)-1;
 594
 595	return btrfs_get_fs_root(fs_info, &key, false);
 596}
 597
 598#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 599static noinline_for_stack
 600struct btrfs_root *find_tree_root(struct reloc_control *rc,
 601				  struct extent_buffer *leaf,
 602				  struct btrfs_extent_ref_v0 *ref0)
 603{
 604	struct btrfs_root *root;
 605	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 606	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 607
 608	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 609
 610	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 611	BUG_ON(IS_ERR(root));
 612
 613	if (root->ref_cows &&
 614	    generation != btrfs_root_generation(&root->root_item))
 615		return NULL;
 616
 617	return root;
 618}
 619#endif
 620
 621static noinline_for_stack
 622int find_inline_backref(struct extent_buffer *leaf, int slot,
 623			unsigned long *ptr, unsigned long *end)
 624{
 625	struct btrfs_key key;
 626	struct btrfs_extent_item *ei;
 627	struct btrfs_tree_block_info *bi;
 628	u32 item_size;
 629
 630	btrfs_item_key_to_cpu(leaf, &key, slot);
 631
 632	item_size = btrfs_item_size_nr(leaf, slot);
 633#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 634	if (item_size < sizeof(*ei)) {
 635		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 636		return 1;
 637	}
 638#endif
 639	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 640	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 641		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 642
 643	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 644	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 645		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 646		return 1;
 647	}
 648	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 649	    item_size <= sizeof(*ei)) {
 650		WARN_ON(item_size < sizeof(*ei));
 651		return 1;
 652	}
 653
 654	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 655		bi = (struct btrfs_tree_block_info *)(ei + 1);
 656		*ptr = (unsigned long)(bi + 1);
 657	} else {
 658		*ptr = (unsigned long)(ei + 1);
 659	}
 660	*end = (unsigned long)ei + item_size;
 661	return 0;
 662}
 663
 664/*
 665 * build backref tree for a given tree block. root of the backref tree
 666 * corresponds the tree block, leaves of the backref tree correspond
 667 * roots of b-trees that reference the tree block.
 668 *
 669 * the basic idea of this function is check backrefs of a given block
 670 * to find upper level blocks that refernece the block, and then check
 671 * bakcrefs of these upper level blocks recursively. the recursion stop
 672 * when tree root is reached or backrefs for the block is cached.
 673 *
 674 * NOTE: if we find backrefs for a block are cached, we know backrefs
 675 * for all upper level blocks that directly/indirectly reference the
 676 * block are also cached.
 677 */
 678static noinline_for_stack
 679struct backref_node *build_backref_tree(struct reloc_control *rc,
 680					struct btrfs_key *node_key,
 681					int level, u64 bytenr)
 682{
 683	struct backref_cache *cache = &rc->backref_cache;
 684	struct btrfs_path *path1;
 685	struct btrfs_path *path2;
 686	struct extent_buffer *eb;
 687	struct btrfs_root *root;
 688	struct backref_node *cur;
 689	struct backref_node *upper;
 690	struct backref_node *lower;
 691	struct backref_node *node = NULL;
 692	struct backref_node *exist = NULL;
 693	struct backref_edge *edge;
 694	struct rb_node *rb_node;
 695	struct btrfs_key key;
 696	unsigned long end;
 697	unsigned long ptr;
 698	LIST_HEAD(list);
 699	LIST_HEAD(useless);
 700	int cowonly;
 701	int ret;
 702	int err = 0;
 703	bool need_check = true;
 704
 705	path1 = btrfs_alloc_path();
 706	path2 = btrfs_alloc_path();
 707	if (!path1 || !path2) {
 708		err = -ENOMEM;
 709		goto out;
 710	}
 711	path1->reada = 1;
 712	path2->reada = 2;
 713
 714	node = alloc_backref_node(cache);
 715	if (!node) {
 716		err = -ENOMEM;
 717		goto out;
 718	}
 719
 720	node->bytenr = bytenr;
 721	node->level = level;
 722	node->lowest = 1;
 723	cur = node;
 724again:
 725	end = 0;
 726	ptr = 0;
 727	key.objectid = cur->bytenr;
 728	key.type = BTRFS_METADATA_ITEM_KEY;
 729	key.offset = (u64)-1;
 730
 731	path1->search_commit_root = 1;
 732	path1->skip_locking = 1;
 733	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 734				0, 0);
 735	if (ret < 0) {
 736		err = ret;
 737		goto out;
 738	}
 739	BUG_ON(!ret || !path1->slots[0]);
 
 740
 741	path1->slots[0]--;
 742
 743	WARN_ON(cur->checked);
 744	if (!list_empty(&cur->upper)) {
 745		/*
 746		 * the backref was added previously when processing
 747		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 748		 */
 749		BUG_ON(!list_is_singular(&cur->upper));
 750		edge = list_entry(cur->upper.next, struct backref_edge,
 751				  list[LOWER]);
 752		BUG_ON(!list_empty(&edge->list[UPPER]));
 753		exist = edge->node[UPPER];
 754		/*
 755		 * add the upper level block to pending list if we need
 756		 * check its backrefs
 757		 */
 758		if (!exist->checked)
 759			list_add_tail(&edge->list[UPPER], &list);
 760	} else {
 761		exist = NULL;
 762	}
 763
 764	while (1) {
 765		cond_resched();
 766		eb = path1->nodes[0];
 767
 768		if (ptr >= end) {
 769			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 770				ret = btrfs_next_leaf(rc->extent_root, path1);
 771				if (ret < 0) {
 772					err = ret;
 773					goto out;
 774				}
 775				if (ret > 0)
 776					break;
 777				eb = path1->nodes[0];
 778			}
 779
 780			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 781			if (key.objectid != cur->bytenr) {
 782				WARN_ON(exist);
 783				break;
 784			}
 785
 786			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 787			    key.type == BTRFS_METADATA_ITEM_KEY) {
 788				ret = find_inline_backref(eb, path1->slots[0],
 789							  &ptr, &end);
 790				if (ret)
 791					goto next;
 792			}
 793		}
 794
 795		if (ptr < end) {
 796			/* update key for inline back ref */
 797			struct btrfs_extent_inline_ref *iref;
 798			iref = (struct btrfs_extent_inline_ref *)ptr;
 799			key.type = btrfs_extent_inline_ref_type(eb, iref);
 800			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 801			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 802				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 803		}
 804
 805		if (exist &&
 806		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 807		      exist->owner == key.offset) ||
 808		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 809		      exist->bytenr == key.offset))) {
 810			exist = NULL;
 811			goto next;
 812		}
 813
 814#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 815		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 816		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 817			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 818				struct btrfs_extent_ref_v0 *ref0;
 819				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 820						struct btrfs_extent_ref_v0);
 821				if (key.objectid == key.offset) {
 822					root = find_tree_root(rc, eb, ref0);
 823					if (root && !should_ignore_root(root))
 824						cur->root = root;
 825					else
 826						list_add(&cur->list, &useless);
 827					break;
 828				}
 829				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 830								      ref0)))
 831					cur->cowonly = 1;
 832			}
 833#else
 834		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 835		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 836#endif
 837			if (key.objectid == key.offset) {
 838				/*
 839				 * only root blocks of reloc trees use
 840				 * backref of this type.
 841				 */
 842				root = find_reloc_root(rc, cur->bytenr);
 843				BUG_ON(!root);
 844				cur->root = root;
 845				break;
 846			}
 847
 848			edge = alloc_backref_edge(cache);
 849			if (!edge) {
 850				err = -ENOMEM;
 851				goto out;
 852			}
 853			rb_node = tree_search(&cache->rb_root, key.offset);
 854			if (!rb_node) {
 855				upper = alloc_backref_node(cache);
 856				if (!upper) {
 857					free_backref_edge(cache, edge);
 858					err = -ENOMEM;
 859					goto out;
 860				}
 861				upper->bytenr = key.offset;
 862				upper->level = cur->level + 1;
 863				/*
 864				 *  backrefs for the upper level block isn't
 865				 *  cached, add the block to pending list
 866				 */
 867				list_add_tail(&edge->list[UPPER], &list);
 868			} else {
 869				upper = rb_entry(rb_node, struct backref_node,
 870						 rb_node);
 871				BUG_ON(!upper->checked);
 872				INIT_LIST_HEAD(&edge->list[UPPER]);
 873			}
 874			list_add_tail(&edge->list[LOWER], &cur->upper);
 875			edge->node[LOWER] = cur;
 876			edge->node[UPPER] = upper;
 877
 878			goto next;
 879		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 880			goto next;
 881		}
 882
 883		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 884		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 885		if (IS_ERR(root)) {
 886			err = PTR_ERR(root);
 887			goto out;
 888		}
 889
 890		if (!root->ref_cows)
 891			cur->cowonly = 1;
 892
 893		if (btrfs_root_level(&root->root_item) == cur->level) {
 894			/* tree root */
 895			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 896			       cur->bytenr);
 897			if (should_ignore_root(root))
 898				list_add(&cur->list, &useless);
 899			else
 900				cur->root = root;
 901			break;
 902		}
 903
 904		level = cur->level + 1;
 905
 906		/*
 907		 * searching the tree to find upper level blocks
 908		 * reference the block.
 909		 */
 910		path2->search_commit_root = 1;
 911		path2->skip_locking = 1;
 912		path2->lowest_level = level;
 913		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 914		path2->lowest_level = 0;
 915		if (ret < 0) {
 916			err = ret;
 917			goto out;
 918		}
 919		if (ret > 0 && path2->slots[level] > 0)
 920			path2->slots[level]--;
 921
 922		eb = path2->nodes[level];
 923		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 924			cur->bytenr);
 925
 
 
 
 
 
 
 
 926		lower = cur;
 927		need_check = true;
 928		for (; level < BTRFS_MAX_LEVEL; level++) {
 929			if (!path2->nodes[level]) {
 930				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 931				       lower->bytenr);
 932				if (should_ignore_root(root))
 933					list_add(&lower->list, &useless);
 934				else
 935					lower->root = root;
 936				break;
 937			}
 938
 939			edge = alloc_backref_edge(cache);
 940			if (!edge) {
 941				err = -ENOMEM;
 942				goto out;
 943			}
 944
 945			eb = path2->nodes[level];
 946			rb_node = tree_search(&cache->rb_root, eb->start);
 947			if (!rb_node) {
 948				upper = alloc_backref_node(cache);
 949				if (!upper) {
 950					free_backref_edge(cache, edge);
 951					err = -ENOMEM;
 952					goto out;
 953				}
 954				upper->bytenr = eb->start;
 955				upper->owner = btrfs_header_owner(eb);
 956				upper->level = lower->level + 1;
 957				if (!root->ref_cows)
 
 958					upper->cowonly = 1;
 959
 960				/*
 961				 * if we know the block isn't shared
 962				 * we can void checking its backrefs.
 963				 */
 964				if (btrfs_block_can_be_shared(root, eb))
 965					upper->checked = 0;
 966				else
 967					upper->checked = 1;
 968
 969				/*
 970				 * add the block to pending list if we
 971				 * need check its backrefs, we only do this once
 972				 * while walking up a tree as we will catch
 973				 * anything else later on.
 974				 */
 975				if (!upper->checked && need_check) {
 976					need_check = false;
 977					list_add_tail(&edge->list[UPPER],
 978						      &list);
 979				} else
 
 
 980					INIT_LIST_HEAD(&edge->list[UPPER]);
 
 981			} else {
 982				upper = rb_entry(rb_node, struct backref_node,
 983						 rb_node);
 984				BUG_ON(!upper->checked);
 985				INIT_LIST_HEAD(&edge->list[UPPER]);
 986				if (!upper->owner)
 987					upper->owner = btrfs_header_owner(eb);
 988			}
 989			list_add_tail(&edge->list[LOWER], &lower->upper);
 990			edge->node[LOWER] = lower;
 991			edge->node[UPPER] = upper;
 992
 993			if (rb_node)
 994				break;
 995			lower = upper;
 996			upper = NULL;
 997		}
 998		btrfs_release_path(path2);
 999next:
1000		if (ptr < end) {
1001			ptr += btrfs_extent_inline_ref_size(key.type);
1002			if (ptr >= end) {
1003				WARN_ON(ptr > end);
1004				ptr = 0;
1005				end = 0;
1006			}
1007		}
1008		if (ptr >= end)
1009			path1->slots[0]++;
1010	}
1011	btrfs_release_path(path1);
1012
1013	cur->checked = 1;
1014	WARN_ON(exist);
1015
1016	/* the pending list isn't empty, take the first block to process */
1017	if (!list_empty(&list)) {
1018		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1019		list_del_init(&edge->list[UPPER]);
1020		cur = edge->node[UPPER];
1021		goto again;
1022	}
1023
1024	/*
1025	 * everything goes well, connect backref nodes and insert backref nodes
1026	 * into the cache.
1027	 */
1028	BUG_ON(!node->checked);
1029	cowonly = node->cowonly;
1030	if (!cowonly) {
1031		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1032				      &node->rb_node);
1033		if (rb_node)
1034			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1035		list_add_tail(&node->lower, &cache->leaves);
1036	}
1037
1038	list_for_each_entry(edge, &node->upper, list[LOWER])
1039		list_add_tail(&edge->list[UPPER], &list);
1040
1041	while (!list_empty(&list)) {
1042		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043		list_del_init(&edge->list[UPPER]);
1044		upper = edge->node[UPPER];
1045		if (upper->detached) {
1046			list_del(&edge->list[LOWER]);
1047			lower = edge->node[LOWER];
1048			free_backref_edge(cache, edge);
1049			if (list_empty(&lower->upper))
1050				list_add(&lower->list, &useless);
1051			continue;
1052		}
1053
1054		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1055			if (upper->lowest) {
1056				list_del_init(&upper->lower);
1057				upper->lowest = 0;
1058			}
1059
1060			list_add_tail(&edge->list[UPPER], &upper->lower);
1061			continue;
1062		}
1063
1064		BUG_ON(!upper->checked);
1065		BUG_ON(cowonly != upper->cowonly);
 
 
 
 
 
 
 
 
 
 
 
 
 
1066		if (!cowonly) {
1067			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1068					      &upper->rb_node);
1069			if (rb_node)
1070				backref_tree_panic(rb_node, -EEXIST,
1071						   upper->bytenr);
1072		}
1073
1074		list_add_tail(&edge->list[UPPER], &upper->lower);
1075
1076		list_for_each_entry(edge, &upper->upper, list[LOWER])
1077			list_add_tail(&edge->list[UPPER], &list);
1078	}
1079	/*
1080	 * process useless backref nodes. backref nodes for tree leaves
1081	 * are deleted from the cache. backref nodes for upper level
1082	 * tree blocks are left in the cache to avoid unnecessary backref
1083	 * lookup.
1084	 */
1085	while (!list_empty(&useless)) {
1086		upper = list_entry(useless.next, struct backref_node, list);
1087		list_del_init(&upper->list);
1088		BUG_ON(!list_empty(&upper->upper));
1089		if (upper == node)
1090			node = NULL;
1091		if (upper->lowest) {
1092			list_del_init(&upper->lower);
1093			upper->lowest = 0;
1094		}
1095		while (!list_empty(&upper->lower)) {
1096			edge = list_entry(upper->lower.next,
1097					  struct backref_edge, list[UPPER]);
1098			list_del(&edge->list[UPPER]);
1099			list_del(&edge->list[LOWER]);
1100			lower = edge->node[LOWER];
1101			free_backref_edge(cache, edge);
1102
1103			if (list_empty(&lower->upper))
1104				list_add(&lower->list, &useless);
1105		}
1106		__mark_block_processed(rc, upper);
1107		if (upper->level > 0) {
1108			list_add(&upper->list, &cache->detached);
1109			upper->detached = 1;
1110		} else {
1111			rb_erase(&upper->rb_node, &cache->rb_root);
1112			free_backref_node(cache, upper);
1113		}
1114	}
1115out:
1116	btrfs_free_path(path1);
1117	btrfs_free_path(path2);
1118	if (err) {
1119		while (!list_empty(&useless)) {
1120			lower = list_entry(useless.next,
1121					   struct backref_node, upper);
1122			list_del_init(&lower->upper);
1123		}
1124		upper = node;
1125		INIT_LIST_HEAD(&list);
1126		while (upper) {
1127			if (RB_EMPTY_NODE(&upper->rb_node)) {
1128				list_splice_tail(&upper->upper, &list);
1129				free_backref_node(cache, upper);
1130			}
1131
1132			if (list_empty(&list))
1133				break;
1134
1135			edge = list_entry(list.next, struct backref_edge,
1136					  list[LOWER]);
1137			list_del(&edge->list[LOWER]);
 
1138			upper = edge->node[UPPER];
1139			free_backref_edge(cache, edge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140		}
 
 
 
 
 
 
 
 
 
 
 
1141		return ERR_PTR(err);
1142	}
1143	BUG_ON(node && node->detached);
1144	return node;
1145}
1146
1147/*
1148 * helper to add backref node for the newly created snapshot.
1149 * the backref node is created by cloning backref node that
1150 * corresponds to root of source tree
1151 */
1152static int clone_backref_node(struct btrfs_trans_handle *trans,
1153			      struct reloc_control *rc,
1154			      struct btrfs_root *src,
1155			      struct btrfs_root *dest)
1156{
1157	struct btrfs_root *reloc_root = src->reloc_root;
1158	struct backref_cache *cache = &rc->backref_cache;
1159	struct backref_node *node = NULL;
1160	struct backref_node *new_node;
1161	struct backref_edge *edge;
1162	struct backref_edge *new_edge;
1163	struct rb_node *rb_node;
1164
1165	if (cache->last_trans > 0)
1166		update_backref_cache(trans, cache);
1167
1168	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1169	if (rb_node) {
1170		node = rb_entry(rb_node, struct backref_node, rb_node);
1171		if (node->detached)
1172			node = NULL;
1173		else
1174			BUG_ON(node->new_bytenr != reloc_root->node->start);
1175	}
1176
1177	if (!node) {
1178		rb_node = tree_search(&cache->rb_root,
1179				      reloc_root->commit_root->start);
1180		if (rb_node) {
1181			node = rb_entry(rb_node, struct backref_node,
1182					rb_node);
1183			BUG_ON(node->detached);
1184		}
1185	}
1186
1187	if (!node)
1188		return 0;
1189
1190	new_node = alloc_backref_node(cache);
1191	if (!new_node)
1192		return -ENOMEM;
1193
1194	new_node->bytenr = dest->node->start;
1195	new_node->level = node->level;
1196	new_node->lowest = node->lowest;
1197	new_node->checked = 1;
1198	new_node->root = dest;
1199
1200	if (!node->lowest) {
1201		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1202			new_edge = alloc_backref_edge(cache);
1203			if (!new_edge)
1204				goto fail;
1205
1206			new_edge->node[UPPER] = new_node;
1207			new_edge->node[LOWER] = edge->node[LOWER];
1208			list_add_tail(&new_edge->list[UPPER],
1209				      &new_node->lower);
1210		}
1211	} else {
1212		list_add_tail(&new_node->lower, &cache->leaves);
1213	}
1214
1215	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1216			      &new_node->rb_node);
1217	if (rb_node)
1218		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1219
1220	if (!new_node->lowest) {
1221		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1222			list_add_tail(&new_edge->list[LOWER],
1223				      &new_edge->node[LOWER]->upper);
1224		}
1225	}
1226	return 0;
1227fail:
1228	while (!list_empty(&new_node->lower)) {
1229		new_edge = list_entry(new_node->lower.next,
1230				      struct backref_edge, list[UPPER]);
1231		list_del(&new_edge->list[UPPER]);
1232		free_backref_edge(cache, new_edge);
1233	}
1234	free_backref_node(cache, new_node);
1235	return -ENOMEM;
1236}
1237
1238/*
1239 * helper to add 'address of tree root -> reloc tree' mapping
1240 */
1241static int __must_check __add_reloc_root(struct btrfs_root *root)
1242{
 
1243	struct rb_node *rb_node;
1244	struct mapping_node *node;
1245	struct reloc_control *rc = root->fs_info->reloc_ctl;
1246
1247	node = kmalloc(sizeof(*node), GFP_NOFS);
1248	if (!node)
1249		return -ENOMEM;
1250
1251	node->bytenr = root->node->start;
1252	node->data = root;
1253
1254	spin_lock(&rc->reloc_root_tree.lock);
1255	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1256			      node->bytenr, &node->rb_node);
1257	spin_unlock(&rc->reloc_root_tree.lock);
1258	if (rb_node) {
1259		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1260			    "for start=%llu while inserting into relocation "
1261			    "tree\n", node->bytenr);
1262		kfree(node);
1263		return -EEXIST;
1264	}
1265
1266	list_add_tail(&root->root_list, &rc->reloc_roots);
1267	return 0;
1268}
1269
1270/*
1271 * helper to delete the 'address of tree root -> reloc tree'
1272 * mapping
1273 */
1274static void __del_reloc_root(struct btrfs_root *root)
1275{
 
1276	struct rb_node *rb_node;
1277	struct mapping_node *node = NULL;
1278	struct reloc_control *rc = root->fs_info->reloc_ctl;
1279
1280	spin_lock(&rc->reloc_root_tree.lock);
1281	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1282			      root->node->start);
1283	if (rb_node) {
1284		node = rb_entry(rb_node, struct mapping_node, rb_node);
1285		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1286	}
1287	spin_unlock(&rc->reloc_root_tree.lock);
1288
1289	if (!node)
1290		return;
1291	BUG_ON((struct btrfs_root *)node->data != root);
1292
1293	spin_lock(&root->fs_info->trans_lock);
1294	list_del_init(&root->root_list);
1295	spin_unlock(&root->fs_info->trans_lock);
1296	kfree(node);
1297}
1298
1299/*
1300 * helper to update the 'address of tree root -> reloc tree'
1301 * mapping
1302 */
1303static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1304{
 
1305	struct rb_node *rb_node;
1306	struct mapping_node *node = NULL;
1307	struct reloc_control *rc = root->fs_info->reloc_ctl;
1308
1309	spin_lock(&rc->reloc_root_tree.lock);
1310	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1311			      root->node->start);
1312	if (rb_node) {
1313		node = rb_entry(rb_node, struct mapping_node, rb_node);
1314		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1315	}
1316	spin_unlock(&rc->reloc_root_tree.lock);
1317
1318	if (!node)
1319		return 0;
1320	BUG_ON((struct btrfs_root *)node->data != root);
1321
1322	spin_lock(&rc->reloc_root_tree.lock);
1323	node->bytenr = new_bytenr;
1324	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1325			      node->bytenr, &node->rb_node);
1326	spin_unlock(&rc->reloc_root_tree.lock);
1327	if (rb_node)
1328		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1329	return 0;
1330}
1331
1332static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1333					struct btrfs_root *root, u64 objectid)
1334{
 
1335	struct btrfs_root *reloc_root;
1336	struct extent_buffer *eb;
1337	struct btrfs_root_item *root_item;
1338	struct btrfs_key root_key;
1339	u64 last_snap = 0;
1340	int ret;
1341
1342	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1343	BUG_ON(!root_item);
1344
1345	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1346	root_key.type = BTRFS_ROOT_ITEM_KEY;
1347	root_key.offset = objectid;
1348
1349	if (root->root_key.objectid == objectid) {
 
 
1350		/* called by btrfs_init_reloc_root */
1351		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1352				      BTRFS_TREE_RELOC_OBJECTID);
1353		BUG_ON(ret);
1354
1355		last_snap = btrfs_root_last_snapshot(&root->root_item);
1356		btrfs_set_root_last_snapshot(&root->root_item,
1357					     trans->transid - 1);
 
 
 
 
 
 
1358	} else {
1359		/*
1360		 * called by btrfs_reloc_post_snapshot_hook.
1361		 * the source tree is a reloc tree, all tree blocks
1362		 * modified after it was created have RELOC flag
1363		 * set in their headers. so it's OK to not update
1364		 * the 'last_snapshot'.
1365		 */
1366		ret = btrfs_copy_root(trans, root, root->node, &eb,
1367				      BTRFS_TREE_RELOC_OBJECTID);
1368		BUG_ON(ret);
1369	}
1370
1371	memcpy(root_item, &root->root_item, sizeof(*root_item));
1372	btrfs_set_root_bytenr(root_item, eb->start);
1373	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1374	btrfs_set_root_generation(root_item, trans->transid);
1375
1376	if (root->root_key.objectid == objectid) {
1377		btrfs_set_root_refs(root_item, 0);
1378		memset(&root_item->drop_progress, 0,
1379		       sizeof(struct btrfs_disk_key));
1380		root_item->drop_level = 0;
1381		/*
1382		 * abuse rtransid, it is safe because it is impossible to
1383		 * receive data into a relocation tree.
1384		 */
1385		btrfs_set_root_rtransid(root_item, last_snap);
1386		btrfs_set_root_otransid(root_item, trans->transid);
1387	}
1388
1389	btrfs_tree_unlock(eb);
1390	free_extent_buffer(eb);
1391
1392	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1393				&root_key, root_item);
1394	BUG_ON(ret);
1395	kfree(root_item);
1396
1397	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1398	BUG_ON(IS_ERR(reloc_root));
1399	reloc_root->last_trans = trans->transid;
1400	return reloc_root;
1401}
1402
1403/*
1404 * create reloc tree for a given fs tree. reloc tree is just a
1405 * snapshot of the fs tree with special root objectid.
1406 */
1407int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1408			  struct btrfs_root *root)
1409{
 
1410	struct btrfs_root *reloc_root;
1411	struct reloc_control *rc = root->fs_info->reloc_ctl;
1412	struct btrfs_block_rsv *rsv;
1413	int clear_rsv = 0;
1414	int ret;
1415
1416	if (root->reloc_root) {
1417		reloc_root = root->reloc_root;
1418		reloc_root->last_trans = trans->transid;
1419		return 0;
1420	}
1421
1422	if (!rc || !rc->create_reloc_tree ||
1423	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1424		return 0;
1425
1426	if (!trans->reloc_reserved) {
1427		rsv = trans->block_rsv;
1428		trans->block_rsv = rc->block_rsv;
1429		clear_rsv = 1;
1430	}
1431	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1432	if (clear_rsv)
1433		trans->block_rsv = rsv;
1434
1435	ret = __add_reloc_root(reloc_root);
1436	BUG_ON(ret < 0);
1437	root->reloc_root = reloc_root;
1438	return 0;
1439}
1440
1441/*
1442 * update root item of reloc tree
1443 */
1444int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1445			    struct btrfs_root *root)
1446{
 
1447	struct btrfs_root *reloc_root;
1448	struct btrfs_root_item *root_item;
1449	int ret;
1450
1451	if (!root->reloc_root)
1452		goto out;
1453
1454	reloc_root = root->reloc_root;
1455	root_item = &reloc_root->root_item;
1456
1457	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1458	    btrfs_root_refs(root_item) == 0) {
1459		root->reloc_root = NULL;
1460		__del_reloc_root(reloc_root);
1461	}
1462
1463	if (reloc_root->commit_root != reloc_root->node) {
1464		btrfs_set_root_node(root_item, reloc_root->node);
1465		free_extent_buffer(reloc_root->commit_root);
1466		reloc_root->commit_root = btrfs_root_node(reloc_root);
1467	}
1468
1469	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1470				&reloc_root->root_key, root_item);
1471	BUG_ON(ret);
1472
1473out:
1474	return 0;
1475}
1476
1477/*
1478 * helper to find first cached inode with inode number >= objectid
1479 * in a subvolume
1480 */
1481static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1482{
1483	struct rb_node *node;
1484	struct rb_node *prev;
1485	struct btrfs_inode *entry;
1486	struct inode *inode;
1487
1488	spin_lock(&root->inode_lock);
1489again:
1490	node = root->inode_tree.rb_node;
1491	prev = NULL;
1492	while (node) {
1493		prev = node;
1494		entry = rb_entry(node, struct btrfs_inode, rb_node);
1495
1496		if (objectid < btrfs_ino(&entry->vfs_inode))
1497			node = node->rb_left;
1498		else if (objectid > btrfs_ino(&entry->vfs_inode))
1499			node = node->rb_right;
1500		else
1501			break;
1502	}
1503	if (!node) {
1504		while (prev) {
1505			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1506			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1507				node = prev;
1508				break;
1509			}
1510			prev = rb_next(prev);
1511		}
1512	}
1513	while (node) {
1514		entry = rb_entry(node, struct btrfs_inode, rb_node);
1515		inode = igrab(&entry->vfs_inode);
1516		if (inode) {
1517			spin_unlock(&root->inode_lock);
1518			return inode;
1519		}
1520
1521		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1522		if (cond_resched_lock(&root->inode_lock))
1523			goto again;
1524
1525		node = rb_next(node);
1526	}
1527	spin_unlock(&root->inode_lock);
1528	return NULL;
1529}
1530
1531static int in_block_group(u64 bytenr,
1532			  struct btrfs_block_group_cache *block_group)
1533{
1534	if (bytenr >= block_group->key.objectid &&
1535	    bytenr < block_group->key.objectid + block_group->key.offset)
1536		return 1;
1537	return 0;
1538}
1539
1540/*
1541 * get new location of data
1542 */
1543static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1544			    u64 bytenr, u64 num_bytes)
1545{
1546	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1547	struct btrfs_path *path;
1548	struct btrfs_file_extent_item *fi;
1549	struct extent_buffer *leaf;
1550	int ret;
1551
1552	path = btrfs_alloc_path();
1553	if (!path)
1554		return -ENOMEM;
1555
1556	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1557	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1558				       bytenr, 0);
1559	if (ret < 0)
1560		goto out;
1561	if (ret > 0) {
1562		ret = -ENOENT;
1563		goto out;
1564	}
1565
1566	leaf = path->nodes[0];
1567	fi = btrfs_item_ptr(leaf, path->slots[0],
1568			    struct btrfs_file_extent_item);
1569
1570	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1571	       btrfs_file_extent_compression(leaf, fi) ||
1572	       btrfs_file_extent_encryption(leaf, fi) ||
1573	       btrfs_file_extent_other_encoding(leaf, fi));
1574
1575	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1576		ret = -EINVAL;
1577		goto out;
1578	}
1579
1580	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1581	ret = 0;
1582out:
1583	btrfs_free_path(path);
1584	return ret;
1585}
1586
1587/*
1588 * update file extent items in the tree leaf to point to
1589 * the new locations.
1590 */
1591static noinline_for_stack
1592int replace_file_extents(struct btrfs_trans_handle *trans,
1593			 struct reloc_control *rc,
1594			 struct btrfs_root *root,
1595			 struct extent_buffer *leaf)
1596{
 
1597	struct btrfs_key key;
1598	struct btrfs_file_extent_item *fi;
1599	struct inode *inode = NULL;
1600	u64 parent;
1601	u64 bytenr;
1602	u64 new_bytenr = 0;
1603	u64 num_bytes;
1604	u64 end;
1605	u32 nritems;
1606	u32 i;
1607	int ret = 0;
1608	int first = 1;
1609	int dirty = 0;
1610
1611	if (rc->stage != UPDATE_DATA_PTRS)
1612		return 0;
1613
1614	/* reloc trees always use full backref */
1615	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1616		parent = leaf->start;
1617	else
1618		parent = 0;
1619
1620	nritems = btrfs_header_nritems(leaf);
1621	for (i = 0; i < nritems; i++) {
1622		cond_resched();
1623		btrfs_item_key_to_cpu(leaf, &key, i);
1624		if (key.type != BTRFS_EXTENT_DATA_KEY)
1625			continue;
1626		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1627		if (btrfs_file_extent_type(leaf, fi) ==
1628		    BTRFS_FILE_EXTENT_INLINE)
1629			continue;
1630		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1631		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1632		if (bytenr == 0)
1633			continue;
1634		if (!in_block_group(bytenr, rc->block_group))
1635			continue;
1636
1637		/*
1638		 * if we are modifying block in fs tree, wait for readpage
1639		 * to complete and drop the extent cache
1640		 */
1641		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1642			if (first) {
1643				inode = find_next_inode(root, key.objectid);
1644				first = 0;
1645			} else if (inode && btrfs_ino(inode) < key.objectid) {
1646				btrfs_add_delayed_iput(inode);
1647				inode = find_next_inode(root, key.objectid);
1648			}
1649			if (inode && btrfs_ino(inode) == key.objectid) {
1650				end = key.offset +
1651				      btrfs_file_extent_num_bytes(leaf, fi);
1652				WARN_ON(!IS_ALIGNED(key.offset,
1653						    root->sectorsize));
1654				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1655				end--;
1656				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1657						      key.offset, end);
1658				if (!ret)
1659					continue;
1660
1661				btrfs_drop_extent_cache(inode, key.offset, end,
1662							1);
1663				unlock_extent(&BTRFS_I(inode)->io_tree,
1664					      key.offset, end);
1665			}
1666		}
1667
1668		ret = get_new_location(rc->data_inode, &new_bytenr,
1669				       bytenr, num_bytes);
1670		if (ret) {
1671			/*
1672			 * Don't have to abort since we've not changed anything
1673			 * in the file extent yet.
1674			 */
1675			break;
1676		}
1677
1678		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1679		dirty = 1;
1680
1681		key.offset -= btrfs_file_extent_offset(leaf, fi);
1682		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1683					   num_bytes, parent,
1684					   btrfs_header_owner(leaf),
1685					   key.objectid, key.offset, 1);
1686		if (ret) {
1687			btrfs_abort_transaction(trans, root, ret);
1688			break;
1689		}
1690
1691		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1692					parent, btrfs_header_owner(leaf),
1693					key.objectid, key.offset, 1);
1694		if (ret) {
1695			btrfs_abort_transaction(trans, root, ret);
1696			break;
1697		}
1698	}
1699	if (dirty)
1700		btrfs_mark_buffer_dirty(leaf);
1701	if (inode)
1702		btrfs_add_delayed_iput(inode);
1703	return ret;
1704}
1705
1706static noinline_for_stack
1707int memcmp_node_keys(struct extent_buffer *eb, int slot,
1708		     struct btrfs_path *path, int level)
1709{
1710	struct btrfs_disk_key key1;
1711	struct btrfs_disk_key key2;
1712	btrfs_node_key(eb, &key1, slot);
1713	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1714	return memcmp(&key1, &key2, sizeof(key1));
1715}
1716
1717/*
1718 * try to replace tree blocks in fs tree with the new blocks
1719 * in reloc tree. tree blocks haven't been modified since the
1720 * reloc tree was create can be replaced.
1721 *
1722 * if a block was replaced, level of the block + 1 is returned.
1723 * if no block got replaced, 0 is returned. if there are other
1724 * errors, a negative error number is returned.
1725 */
1726static noinline_for_stack
1727int replace_path(struct btrfs_trans_handle *trans,
1728		 struct btrfs_root *dest, struct btrfs_root *src,
1729		 struct btrfs_path *path, struct btrfs_key *next_key,
1730		 int lowest_level, int max_level)
1731{
 
1732	struct extent_buffer *eb;
1733	struct extent_buffer *parent;
1734	struct btrfs_key key;
1735	u64 old_bytenr;
1736	u64 new_bytenr;
1737	u64 old_ptr_gen;
1738	u64 new_ptr_gen;
1739	u64 last_snapshot;
1740	u32 blocksize;
1741	int cow = 0;
1742	int level;
1743	int ret;
1744	int slot;
1745
1746	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1747	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1748
1749	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1750again:
1751	slot = path->slots[lowest_level];
1752	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1753
1754	eb = btrfs_lock_root_node(dest);
1755	btrfs_set_lock_blocking(eb);
1756	level = btrfs_header_level(eb);
1757
1758	if (level < lowest_level) {
1759		btrfs_tree_unlock(eb);
1760		free_extent_buffer(eb);
1761		return 0;
1762	}
1763
1764	if (cow) {
1765		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1766		BUG_ON(ret);
1767	}
1768	btrfs_set_lock_blocking(eb);
1769
1770	if (next_key) {
1771		next_key->objectid = (u64)-1;
1772		next_key->type = (u8)-1;
1773		next_key->offset = (u64)-1;
1774	}
1775
1776	parent = eb;
1777	while (1) {
1778		level = btrfs_header_level(parent);
1779		BUG_ON(level < lowest_level);
1780
1781		ret = btrfs_bin_search(parent, &key, level, &slot);
1782		if (ret && slot > 0)
1783			slot--;
1784
1785		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1786			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1787
1788		old_bytenr = btrfs_node_blockptr(parent, slot);
1789		blocksize = btrfs_level_size(dest, level - 1);
1790		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1791
1792		if (level <= max_level) {
1793			eb = path->nodes[level];
1794			new_bytenr = btrfs_node_blockptr(eb,
1795							path->slots[level]);
1796			new_ptr_gen = btrfs_node_ptr_generation(eb,
1797							path->slots[level]);
1798		} else {
1799			new_bytenr = 0;
1800			new_ptr_gen = 0;
1801		}
1802
1803		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1804			ret = level;
1805			break;
1806		}
1807
1808		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1809		    memcmp_node_keys(parent, slot, path, level)) {
1810			if (level <= lowest_level) {
1811				ret = 0;
1812				break;
1813			}
1814
1815			eb = read_tree_block(dest, old_bytenr, blocksize,
1816					     old_ptr_gen);
1817			if (!eb || !extent_buffer_uptodate(eb)) {
1818				ret = (!eb) ? -ENOMEM : -EIO;
 
 
1819				free_extent_buffer(eb);
1820				break;
1821			}
1822			btrfs_tree_lock(eb);
1823			if (cow) {
1824				ret = btrfs_cow_block(trans, dest, eb, parent,
1825						      slot, &eb);
1826				BUG_ON(ret);
1827			}
1828			btrfs_set_lock_blocking(eb);
1829
1830			btrfs_tree_unlock(parent);
1831			free_extent_buffer(parent);
1832
1833			parent = eb;
1834			continue;
1835		}
1836
1837		if (!cow) {
1838			btrfs_tree_unlock(parent);
1839			free_extent_buffer(parent);
1840			cow = 1;
1841			goto again;
1842		}
1843
1844		btrfs_node_key_to_cpu(path->nodes[level], &key,
1845				      path->slots[level]);
1846		btrfs_release_path(path);
1847
1848		path->lowest_level = level;
1849		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1850		path->lowest_level = 0;
1851		BUG_ON(ret);
1852
1853		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854		 * swap blocks in fs tree and reloc tree.
1855		 */
1856		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1857		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1858		btrfs_mark_buffer_dirty(parent);
1859
1860		btrfs_set_node_blockptr(path->nodes[level],
1861					path->slots[level], old_bytenr);
1862		btrfs_set_node_ptr_generation(path->nodes[level],
1863					      path->slots[level], old_ptr_gen);
1864		btrfs_mark_buffer_dirty(path->nodes[level]);
1865
1866		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1867					path->nodes[level]->start,
1868					src->root_key.objectid, level - 1, 0,
1869					1);
1870		BUG_ON(ret);
1871		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1872					0, dest->root_key.objectid, level - 1,
1873					0, 1);
1874		BUG_ON(ret);
1875
1876		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1877					path->nodes[level]->start,
1878					src->root_key.objectid, level - 1, 0,
1879					1);
1880		BUG_ON(ret);
1881
1882		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1883					0, dest->root_key.objectid, level - 1,
1884					0, 1);
1885		BUG_ON(ret);
1886
1887		btrfs_unlock_up_safe(path, 0);
1888
1889		ret = level;
1890		break;
1891	}
1892	btrfs_tree_unlock(parent);
1893	free_extent_buffer(parent);
1894	return ret;
1895}
1896
1897/*
1898 * helper to find next relocated block in reloc tree
1899 */
1900static noinline_for_stack
1901int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1902		       int *level)
1903{
1904	struct extent_buffer *eb;
1905	int i;
1906	u64 last_snapshot;
1907	u32 nritems;
1908
1909	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1910
1911	for (i = 0; i < *level; i++) {
1912		free_extent_buffer(path->nodes[i]);
1913		path->nodes[i] = NULL;
1914	}
1915
1916	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1917		eb = path->nodes[i];
1918		nritems = btrfs_header_nritems(eb);
1919		while (path->slots[i] + 1 < nritems) {
1920			path->slots[i]++;
1921			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1922			    last_snapshot)
1923				continue;
1924
1925			*level = i;
1926			return 0;
1927		}
1928		free_extent_buffer(path->nodes[i]);
1929		path->nodes[i] = NULL;
1930	}
1931	return 1;
1932}
1933
1934/*
1935 * walk down reloc tree to find relocated block of lowest level
1936 */
1937static noinline_for_stack
1938int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1939			 int *level)
1940{
 
1941	struct extent_buffer *eb = NULL;
1942	int i;
1943	u64 bytenr;
1944	u64 ptr_gen = 0;
1945	u64 last_snapshot;
1946	u32 blocksize;
1947	u32 nritems;
1948
1949	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1950
1951	for (i = *level; i > 0; i--) {
1952		eb = path->nodes[i];
1953		nritems = btrfs_header_nritems(eb);
1954		while (path->slots[i] < nritems) {
1955			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1956			if (ptr_gen > last_snapshot)
1957				break;
1958			path->slots[i]++;
1959		}
1960		if (path->slots[i] >= nritems) {
1961			if (i == *level)
1962				break;
1963			*level = i + 1;
1964			return 0;
1965		}
1966		if (i == 1) {
1967			*level = i;
1968			return 0;
1969		}
1970
1971		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1972		blocksize = btrfs_level_size(root, i - 1);
1973		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1974		if (!eb || !extent_buffer_uptodate(eb)) {
 
1975			free_extent_buffer(eb);
1976			return -EIO;
1977		}
1978		BUG_ON(btrfs_header_level(eb) != i - 1);
1979		path->nodes[i - 1] = eb;
1980		path->slots[i - 1] = 0;
1981	}
1982	return 1;
1983}
1984
1985/*
1986 * invalidate extent cache for file extents whose key in range of
1987 * [min_key, max_key)
1988 */
1989static int invalidate_extent_cache(struct btrfs_root *root,
1990				   struct btrfs_key *min_key,
1991				   struct btrfs_key *max_key)
1992{
 
1993	struct inode *inode = NULL;
1994	u64 objectid;
1995	u64 start, end;
1996	u64 ino;
1997
1998	objectid = min_key->objectid;
1999	while (1) {
2000		cond_resched();
2001		iput(inode);
2002
2003		if (objectid > max_key->objectid)
2004			break;
2005
2006		inode = find_next_inode(root, objectid);
2007		if (!inode)
2008			break;
2009		ino = btrfs_ino(inode);
2010
2011		if (ino > max_key->objectid) {
2012			iput(inode);
2013			break;
2014		}
2015
2016		objectid = ino + 1;
2017		if (!S_ISREG(inode->i_mode))
2018			continue;
2019
2020		if (unlikely(min_key->objectid == ino)) {
2021			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2022				continue;
2023			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2024				start = 0;
2025			else {
2026				start = min_key->offset;
2027				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2028			}
2029		} else {
2030			start = 0;
2031		}
2032
2033		if (unlikely(max_key->objectid == ino)) {
2034			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2035				continue;
2036			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2037				end = (u64)-1;
2038			} else {
2039				if (max_key->offset == 0)
2040					continue;
2041				end = max_key->offset;
2042				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2043				end--;
2044			}
2045		} else {
2046			end = (u64)-1;
2047		}
2048
2049		/* the lock_extent waits for readpage to complete */
2050		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2051		btrfs_drop_extent_cache(inode, start, end, 1);
2052		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2053	}
2054	return 0;
2055}
2056
2057static int find_next_key(struct btrfs_path *path, int level,
2058			 struct btrfs_key *key)
2059
2060{
2061	while (level < BTRFS_MAX_LEVEL) {
2062		if (!path->nodes[level])
2063			break;
2064		if (path->slots[level] + 1 <
2065		    btrfs_header_nritems(path->nodes[level])) {
2066			btrfs_node_key_to_cpu(path->nodes[level], key,
2067					      path->slots[level] + 1);
2068			return 0;
2069		}
2070		level++;
2071	}
2072	return 1;
2073}
2074
2075/*
2076 * merge the relocated tree blocks in reloc tree with corresponding
2077 * fs tree.
2078 */
2079static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2080					       struct btrfs_root *root)
2081{
 
2082	LIST_HEAD(inode_list);
2083	struct btrfs_key key;
2084	struct btrfs_key next_key;
2085	struct btrfs_trans_handle *trans = NULL;
2086	struct btrfs_root *reloc_root;
2087	struct btrfs_root_item *root_item;
2088	struct btrfs_path *path;
2089	struct extent_buffer *leaf;
2090	int level;
2091	int max_level;
2092	int replaced = 0;
2093	int ret;
2094	int err = 0;
2095	u32 min_reserved;
2096
2097	path = btrfs_alloc_path();
2098	if (!path)
2099		return -ENOMEM;
2100	path->reada = 1;
2101
2102	reloc_root = root->reloc_root;
2103	root_item = &reloc_root->root_item;
2104
2105	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2106		level = btrfs_root_level(root_item);
2107		extent_buffer_get(reloc_root->node);
2108		path->nodes[level] = reloc_root->node;
2109		path->slots[level] = 0;
2110	} else {
2111		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2112
2113		level = root_item->drop_level;
2114		BUG_ON(level == 0);
2115		path->lowest_level = level;
2116		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2117		path->lowest_level = 0;
2118		if (ret < 0) {
2119			btrfs_free_path(path);
2120			return ret;
2121		}
2122
2123		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2124				      path->slots[level]);
2125		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2126
2127		btrfs_unlock_up_safe(path, 0);
2128	}
2129
2130	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2131	memset(&next_key, 0, sizeof(next_key));
2132
2133	while (1) {
2134		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2135					     BTRFS_RESERVE_FLUSH_ALL);
2136		if (ret) {
2137			err = ret;
2138			goto out;
2139		}
2140		trans = btrfs_start_transaction(root, 0);
2141		if (IS_ERR(trans)) {
2142			err = PTR_ERR(trans);
2143			trans = NULL;
2144			goto out;
2145		}
2146		trans->block_rsv = rc->block_rsv;
2147
2148		replaced = 0;
2149		max_level = level;
2150
2151		ret = walk_down_reloc_tree(reloc_root, path, &level);
2152		if (ret < 0) {
2153			err = ret;
2154			goto out;
2155		}
2156		if (ret > 0)
2157			break;
2158
2159		if (!find_next_key(path, level, &key) &&
2160		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2161			ret = 0;
2162		} else {
2163			ret = replace_path(trans, root, reloc_root, path,
2164					   &next_key, level, max_level);
2165		}
2166		if (ret < 0) {
2167			err = ret;
2168			goto out;
2169		}
2170
2171		if (ret > 0) {
2172			level = ret;
2173			btrfs_node_key_to_cpu(path->nodes[level], &key,
2174					      path->slots[level]);
2175			replaced = 1;
2176		}
2177
2178		ret = walk_up_reloc_tree(reloc_root, path, &level);
2179		if (ret > 0)
2180			break;
2181
2182		BUG_ON(level == 0);
2183		/*
2184		 * save the merging progress in the drop_progress.
2185		 * this is OK since root refs == 1 in this case.
2186		 */
2187		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2188			       path->slots[level]);
2189		root_item->drop_level = level;
2190
2191		btrfs_end_transaction_throttle(trans, root);
2192		trans = NULL;
2193
2194		btrfs_btree_balance_dirty(root);
2195
2196		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2197			invalidate_extent_cache(root, &key, &next_key);
2198	}
2199
2200	/*
2201	 * handle the case only one block in the fs tree need to be
2202	 * relocated and the block is tree root.
2203	 */
2204	leaf = btrfs_lock_root_node(root);
2205	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2206	btrfs_tree_unlock(leaf);
2207	free_extent_buffer(leaf);
2208	if (ret < 0)
2209		err = ret;
2210out:
2211	btrfs_free_path(path);
2212
2213	if (err == 0) {
2214		memset(&root_item->drop_progress, 0,
2215		       sizeof(root_item->drop_progress));
2216		root_item->drop_level = 0;
2217		btrfs_set_root_refs(root_item, 0);
2218		btrfs_update_reloc_root(trans, root);
2219	}
2220
2221	if (trans)
2222		btrfs_end_transaction_throttle(trans, root);
2223
2224	btrfs_btree_balance_dirty(root);
2225
2226	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2227		invalidate_extent_cache(root, &key, &next_key);
2228
2229	return err;
2230}
2231
2232static noinline_for_stack
2233int prepare_to_merge(struct reloc_control *rc, int err)
2234{
2235	struct btrfs_root *root = rc->extent_root;
 
2236	struct btrfs_root *reloc_root;
2237	struct btrfs_trans_handle *trans;
2238	LIST_HEAD(reloc_roots);
2239	u64 num_bytes = 0;
2240	int ret;
2241
2242	mutex_lock(&root->fs_info->reloc_mutex);
2243	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2244	rc->merging_rsv_size += rc->nodes_relocated * 2;
2245	mutex_unlock(&root->fs_info->reloc_mutex);
2246
2247again:
2248	if (!err) {
2249		num_bytes = rc->merging_rsv_size;
2250		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2251					  BTRFS_RESERVE_FLUSH_ALL);
2252		if (ret)
2253			err = ret;
2254	}
2255
2256	trans = btrfs_join_transaction(rc->extent_root);
2257	if (IS_ERR(trans)) {
2258		if (!err)
2259			btrfs_block_rsv_release(rc->extent_root,
2260						rc->block_rsv, num_bytes);
2261		return PTR_ERR(trans);
2262	}
2263
2264	if (!err) {
2265		if (num_bytes != rc->merging_rsv_size) {
2266			btrfs_end_transaction(trans, rc->extent_root);
2267			btrfs_block_rsv_release(rc->extent_root,
2268						rc->block_rsv, num_bytes);
2269			goto again;
2270		}
2271	}
2272
2273	rc->merge_reloc_tree = 1;
2274
2275	while (!list_empty(&rc->reloc_roots)) {
2276		reloc_root = list_entry(rc->reloc_roots.next,
2277					struct btrfs_root, root_list);
2278		list_del_init(&reloc_root->root_list);
2279
2280		root = read_fs_root(reloc_root->fs_info,
2281				    reloc_root->root_key.offset);
2282		BUG_ON(IS_ERR(root));
2283		BUG_ON(root->reloc_root != reloc_root);
2284
2285		/*
2286		 * set reference count to 1, so btrfs_recover_relocation
2287		 * knows it should resumes merging
2288		 */
2289		if (!err)
2290			btrfs_set_root_refs(&reloc_root->root_item, 1);
2291		btrfs_update_reloc_root(trans, root);
2292
2293		list_add(&reloc_root->root_list, &reloc_roots);
2294	}
2295
2296	list_splice(&reloc_roots, &rc->reloc_roots);
2297
2298	if (!err)
2299		btrfs_commit_transaction(trans, rc->extent_root);
2300	else
2301		btrfs_end_transaction(trans, rc->extent_root);
2302	return err;
2303}
2304
2305static noinline_for_stack
2306void free_reloc_roots(struct list_head *list)
2307{
2308	struct btrfs_root *reloc_root;
2309
2310	while (!list_empty(list)) {
2311		reloc_root = list_entry(list->next, struct btrfs_root,
2312					root_list);
 
 
 
 
2313		__del_reloc_root(reloc_root);
2314	}
2315}
2316
2317static noinline_for_stack
2318int merge_reloc_roots(struct reloc_control *rc)
2319{
 
2320	struct btrfs_root *root;
2321	struct btrfs_root *reloc_root;
2322	u64 last_snap;
2323	u64 otransid;
2324	u64 objectid;
2325	LIST_HEAD(reloc_roots);
2326	int found = 0;
2327	int ret = 0;
2328again:
2329	root = rc->extent_root;
2330
2331	/*
2332	 * this serializes us with btrfs_record_root_in_transaction,
2333	 * we have to make sure nobody is in the middle of
2334	 * adding their roots to the list while we are
2335	 * doing this splice
2336	 */
2337	mutex_lock(&root->fs_info->reloc_mutex);
2338	list_splice_init(&rc->reloc_roots, &reloc_roots);
2339	mutex_unlock(&root->fs_info->reloc_mutex);
2340
2341	while (!list_empty(&reloc_roots)) {
2342		found = 1;
2343		reloc_root = list_entry(reloc_roots.next,
2344					struct btrfs_root, root_list);
2345
2346		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2347			root = read_fs_root(reloc_root->fs_info,
2348					    reloc_root->root_key.offset);
2349			BUG_ON(IS_ERR(root));
2350			BUG_ON(root->reloc_root != reloc_root);
2351
2352			ret = merge_reloc_root(rc, root);
2353			if (ret) {
2354				if (list_empty(&reloc_root->root_list))
2355					list_add_tail(&reloc_root->root_list,
2356						      &reloc_roots);
2357				goto out;
2358			}
2359		} else {
2360			list_del_init(&reloc_root->root_list);
2361		}
2362
2363		/*
2364		 * we keep the old last snapshod transid in rtranid when we
2365		 * created the relocation tree.
2366		 */
2367		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2368		otransid = btrfs_root_otransid(&reloc_root->root_item);
2369		objectid = reloc_root->root_key.offset;
2370
2371		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2372		if (ret < 0) {
2373			if (list_empty(&reloc_root->root_list))
2374				list_add_tail(&reloc_root->root_list,
2375					      &reloc_roots);
2376			goto out;
2377		}
2378	}
2379
2380	if (found) {
2381		found = 0;
2382		goto again;
2383	}
2384out:
2385	if (ret) {
2386		btrfs_std_error(root->fs_info, ret);
2387		if (!list_empty(&reloc_roots))
2388			free_reloc_roots(&reloc_roots);
2389
2390		/* new reloc root may be added */
2391		mutex_lock(&root->fs_info->reloc_mutex);
2392		list_splice_init(&rc->reloc_roots, &reloc_roots);
2393		mutex_unlock(&root->fs_info->reloc_mutex);
2394		if (!list_empty(&reloc_roots))
2395			free_reloc_roots(&reloc_roots);
2396	}
2397
2398	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2399	return ret;
2400}
2401
2402static void free_block_list(struct rb_root *blocks)
2403{
2404	struct tree_block *block;
2405	struct rb_node *rb_node;
2406	while ((rb_node = rb_first(blocks))) {
2407		block = rb_entry(rb_node, struct tree_block, rb_node);
2408		rb_erase(rb_node, blocks);
2409		kfree(block);
2410	}
2411}
2412
2413static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2414				      struct btrfs_root *reloc_root)
2415{
 
2416	struct btrfs_root *root;
2417
2418	if (reloc_root->last_trans == trans->transid)
2419		return 0;
2420
2421	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2422	BUG_ON(IS_ERR(root));
2423	BUG_ON(root->reloc_root != reloc_root);
2424
2425	return btrfs_record_root_in_trans(trans, root);
2426}
2427
2428static noinline_for_stack
2429struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2430				     struct reloc_control *rc,
2431				     struct backref_node *node,
2432				     struct backref_edge *edges[])
2433{
2434	struct backref_node *next;
2435	struct btrfs_root *root;
2436	int index = 0;
2437
2438	next = node;
2439	while (1) {
2440		cond_resched();
2441		next = walk_up_backref(next, edges, &index);
2442		root = next->root;
2443		BUG_ON(!root);
2444		BUG_ON(!root->ref_cows);
2445
2446		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2447			record_reloc_root_in_trans(trans, root);
2448			break;
2449		}
2450
2451		btrfs_record_root_in_trans(trans, root);
2452		root = root->reloc_root;
2453
2454		if (next->new_bytenr != root->node->start) {
2455			BUG_ON(next->new_bytenr);
2456			BUG_ON(!list_empty(&next->list));
2457			next->new_bytenr = root->node->start;
2458			next->root = root;
2459			list_add_tail(&next->list,
2460				      &rc->backref_cache.changed);
2461			__mark_block_processed(rc, next);
2462			break;
2463		}
2464
2465		WARN_ON(1);
2466		root = NULL;
2467		next = walk_down_backref(edges, &index);
2468		if (!next || next->level <= node->level)
2469			break;
2470	}
2471	if (!root)
2472		return NULL;
2473
2474	next = node;
2475	/* setup backref node path for btrfs_reloc_cow_block */
2476	while (1) {
2477		rc->backref_cache.path[next->level] = next;
2478		if (--index < 0)
2479			break;
2480		next = edges[index]->node[UPPER];
2481	}
2482	return root;
2483}
2484
2485/*
2486 * select a tree root for relocation. return NULL if the block
2487 * is reference counted. we should use do_relocation() in this
2488 * case. return a tree root pointer if the block isn't reference
2489 * counted. return -ENOENT if the block is root of reloc tree.
2490 */
2491static noinline_for_stack
2492struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2493				   struct backref_node *node)
2494{
2495	struct backref_node *next;
2496	struct btrfs_root *root;
2497	struct btrfs_root *fs_root = NULL;
2498	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2499	int index = 0;
2500
2501	next = node;
2502	while (1) {
2503		cond_resched();
2504		next = walk_up_backref(next, edges, &index);
2505		root = next->root;
2506		BUG_ON(!root);
2507
2508		/* no other choice for non-references counted tree */
2509		if (!root->ref_cows)
2510			return root;
2511
2512		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2513			fs_root = root;
2514
2515		if (next != node)
2516			return NULL;
2517
2518		next = walk_down_backref(edges, &index);
2519		if (!next || next->level <= node->level)
2520			break;
2521	}
2522
2523	if (!fs_root)
2524		return ERR_PTR(-ENOENT);
2525	return fs_root;
2526}
2527
2528static noinline_for_stack
2529u64 calcu_metadata_size(struct reloc_control *rc,
2530			struct backref_node *node, int reserve)
2531{
 
2532	struct backref_node *next = node;
2533	struct backref_edge *edge;
2534	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2535	u64 num_bytes = 0;
2536	int index = 0;
2537
2538	BUG_ON(reserve && node->processed);
2539
2540	while (next) {
2541		cond_resched();
2542		while (1) {
2543			if (next->processed && (reserve || next != node))
2544				break;
2545
2546			num_bytes += btrfs_level_size(rc->extent_root,
2547						      next->level);
2548
2549			if (list_empty(&next->upper))
2550				break;
2551
2552			edge = list_entry(next->upper.next,
2553					  struct backref_edge, list[LOWER]);
2554			edges[index++] = edge;
2555			next = edge->node[UPPER];
2556		}
2557		next = walk_down_backref(edges, &index);
2558	}
2559	return num_bytes;
2560}
2561
2562static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2563				  struct reloc_control *rc,
2564				  struct backref_node *node)
2565{
2566	struct btrfs_root *root = rc->extent_root;
 
2567	u64 num_bytes;
2568	int ret;
2569	u64 tmp;
2570
2571	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2572
2573	trans->block_rsv = rc->block_rsv;
2574	rc->reserved_bytes += num_bytes;
 
 
 
 
 
 
2575	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2576				BTRFS_RESERVE_FLUSH_ALL);
2577	if (ret) {
2578		if (ret == -EAGAIN) {
2579			tmp = rc->extent_root->nodesize *
2580				RELOCATION_RESERVED_NODES;
2581			while (tmp <= rc->reserved_bytes)
2582				tmp <<= 1;
2583			/*
2584			 * only one thread can access block_rsv at this point,
2585			 * so we don't need hold lock to protect block_rsv.
2586			 * we expand more reservation size here to allow enough
2587			 * space for relocation and we will return eailer in
2588			 * enospc case.
2589			 */
2590			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2591					      RELOCATION_RESERVED_NODES;
2592		}
2593		return ret;
2594	}
2595
2596	return 0;
2597}
2598
2599/*
2600 * relocate a block tree, and then update pointers in upper level
2601 * blocks that reference the block to point to the new location.
2602 *
2603 * if called by link_to_upper, the block has already been relocated.
2604 * in that case this function just updates pointers.
2605 */
2606static int do_relocation(struct btrfs_trans_handle *trans,
2607			 struct reloc_control *rc,
2608			 struct backref_node *node,
2609			 struct btrfs_key *key,
2610			 struct btrfs_path *path, int lowest)
2611{
 
2612	struct backref_node *upper;
2613	struct backref_edge *edge;
2614	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2615	struct btrfs_root *root;
2616	struct extent_buffer *eb;
2617	u32 blocksize;
2618	u64 bytenr;
2619	u64 generation;
2620	int slot;
2621	int ret;
2622	int err = 0;
2623
2624	BUG_ON(lowest && node->eb);
2625
2626	path->lowest_level = node->level + 1;
2627	rc->backref_cache.path[node->level] = node;
2628	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2629		cond_resched();
2630
2631		upper = edge->node[UPPER];
2632		root = select_reloc_root(trans, rc, upper, edges);
2633		BUG_ON(!root);
2634
2635		if (upper->eb && !upper->locked) {
2636			if (!lowest) {
2637				ret = btrfs_bin_search(upper->eb, key,
2638						       upper->level, &slot);
2639				BUG_ON(ret);
2640				bytenr = btrfs_node_blockptr(upper->eb, slot);
2641				if (node->eb->start == bytenr)
2642					goto next;
2643			}
2644			drop_node_buffer(upper);
2645		}
2646
2647		if (!upper->eb) {
2648			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649			if (ret < 0) {
2650				err = ret;
 
 
 
 
 
2651				break;
2652			}
2653			BUG_ON(ret > 0);
2654
2655			if (!upper->eb) {
2656				upper->eb = path->nodes[upper->level];
2657				path->nodes[upper->level] = NULL;
2658			} else {
2659				BUG_ON(upper->eb != path->nodes[upper->level]);
2660			}
2661
2662			upper->locked = 1;
2663			path->locks[upper->level] = 0;
2664
2665			slot = path->slots[upper->level];
2666			btrfs_release_path(path);
2667		} else {
2668			ret = btrfs_bin_search(upper->eb, key, upper->level,
2669					       &slot);
2670			BUG_ON(ret);
2671		}
2672
2673		bytenr = btrfs_node_blockptr(upper->eb, slot);
2674		if (lowest) {
2675			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2676		} else {
2677			if (node->eb->start == bytenr)
2678				goto next;
2679		}
2680
2681		blocksize = btrfs_level_size(root, node->level);
2682		generation = btrfs_node_ptr_generation(upper->eb, slot);
2683		eb = read_tree_block(root, bytenr, blocksize, generation);
2684		if (!eb || !extent_buffer_uptodate(eb)) {
 
 
 
2685			free_extent_buffer(eb);
2686			err = -EIO;
2687			goto next;
2688		}
2689		btrfs_tree_lock(eb);
2690		btrfs_set_lock_blocking(eb);
2691
2692		if (!node->eb) {
2693			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2694					      slot, &eb);
2695			btrfs_tree_unlock(eb);
2696			free_extent_buffer(eb);
2697			if (ret < 0) {
2698				err = ret;
2699				goto next;
2700			}
2701			BUG_ON(node->eb != eb);
2702		} else {
2703			btrfs_set_node_blockptr(upper->eb, slot,
2704						node->eb->start);
2705			btrfs_set_node_ptr_generation(upper->eb, slot,
2706						      trans->transid);
2707			btrfs_mark_buffer_dirty(upper->eb);
2708
2709			ret = btrfs_inc_extent_ref(trans, root,
2710						node->eb->start, blocksize,
2711						upper->eb->start,
2712						btrfs_header_owner(upper->eb),
2713						node->level, 0, 1);
2714			BUG_ON(ret);
2715
2716			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2717			BUG_ON(ret);
2718		}
2719next:
2720		if (!upper->pending)
2721			drop_node_buffer(upper);
2722		else
2723			unlock_node_buffer(upper);
2724		if (err)
2725			break;
2726	}
2727
2728	if (!err && node->pending) {
2729		drop_node_buffer(node);
2730		list_move_tail(&node->list, &rc->backref_cache.changed);
2731		node->pending = 0;
2732	}
2733
2734	path->lowest_level = 0;
2735	BUG_ON(err == -ENOSPC);
2736	return err;
2737}
2738
2739static int link_to_upper(struct btrfs_trans_handle *trans,
2740			 struct reloc_control *rc,
2741			 struct backref_node *node,
2742			 struct btrfs_path *path)
2743{
2744	struct btrfs_key key;
2745
2746	btrfs_node_key_to_cpu(node->eb, &key, 0);
2747	return do_relocation(trans, rc, node, &key, path, 0);
2748}
2749
2750static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2751				struct reloc_control *rc,
2752				struct btrfs_path *path, int err)
2753{
2754	LIST_HEAD(list);
2755	struct backref_cache *cache = &rc->backref_cache;
2756	struct backref_node *node;
2757	int level;
2758	int ret;
2759
2760	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2761		while (!list_empty(&cache->pending[level])) {
2762			node = list_entry(cache->pending[level].next,
2763					  struct backref_node, list);
2764			list_move_tail(&node->list, &list);
2765			BUG_ON(!node->pending);
2766
2767			if (!err) {
2768				ret = link_to_upper(trans, rc, node, path);
2769				if (ret < 0)
2770					err = ret;
2771			}
2772		}
2773		list_splice_init(&list, &cache->pending[level]);
2774	}
2775	return err;
2776}
2777
2778static void mark_block_processed(struct reloc_control *rc,
2779				 u64 bytenr, u32 blocksize)
2780{
2781	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2782			EXTENT_DIRTY, GFP_NOFS);
2783}
2784
2785static void __mark_block_processed(struct reloc_control *rc,
2786				   struct backref_node *node)
2787{
2788	u32 blocksize;
2789	if (node->level == 0 ||
2790	    in_block_group(node->bytenr, rc->block_group)) {
2791		blocksize = btrfs_level_size(rc->extent_root, node->level);
2792		mark_block_processed(rc, node->bytenr, blocksize);
2793	}
2794	node->processed = 1;
2795}
2796
2797/*
2798 * mark a block and all blocks directly/indirectly reference the block
2799 * as processed.
2800 */
2801static void update_processed_blocks(struct reloc_control *rc,
2802				    struct backref_node *node)
2803{
2804	struct backref_node *next = node;
2805	struct backref_edge *edge;
2806	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2807	int index = 0;
2808
2809	while (next) {
2810		cond_resched();
2811		while (1) {
2812			if (next->processed)
2813				break;
2814
2815			__mark_block_processed(rc, next);
2816
2817			if (list_empty(&next->upper))
2818				break;
2819
2820			edge = list_entry(next->upper.next,
2821					  struct backref_edge, list[LOWER]);
2822			edges[index++] = edge;
2823			next = edge->node[UPPER];
2824		}
2825		next = walk_down_backref(edges, &index);
2826	}
2827}
2828
2829static int tree_block_processed(u64 bytenr, u32 blocksize,
2830				struct reloc_control *rc)
2831{
 
 
2832	if (test_range_bit(&rc->processed_blocks, bytenr,
2833			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2834		return 1;
2835	return 0;
2836}
2837
2838static int get_tree_block_key(struct reloc_control *rc,
2839			      struct tree_block *block)
2840{
2841	struct extent_buffer *eb;
2842
2843	BUG_ON(block->key_ready);
2844	eb = read_tree_block(rc->extent_root, block->bytenr,
2845			     block->key.objectid, block->key.offset);
2846	if (!eb || !extent_buffer_uptodate(eb)) {
 
2847		free_extent_buffer(eb);
2848		return -EIO;
2849	}
2850	WARN_ON(btrfs_header_level(eb) != block->level);
2851	if (block->level == 0)
2852		btrfs_item_key_to_cpu(eb, &block->key, 0);
2853	else
2854		btrfs_node_key_to_cpu(eb, &block->key, 0);
2855	free_extent_buffer(eb);
2856	block->key_ready = 1;
2857	return 0;
2858}
2859
2860static int reada_tree_block(struct reloc_control *rc,
2861			    struct tree_block *block)
2862{
2863	BUG_ON(block->key_ready);
2864	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2865		readahead_tree_block(rc->extent_root, block->bytenr,
2866				     block->key.objectid,
2867				     rc->extent_root->leafsize);
2868	else
2869		readahead_tree_block(rc->extent_root, block->bytenr,
2870				     block->key.objectid, block->key.offset);
2871	return 0;
2872}
2873
2874/*
2875 * helper function to relocate a tree block
2876 */
2877static int relocate_tree_block(struct btrfs_trans_handle *trans,
2878				struct reloc_control *rc,
2879				struct backref_node *node,
2880				struct btrfs_key *key,
2881				struct btrfs_path *path)
2882{
2883	struct btrfs_root *root;
2884	int ret = 0;
2885
2886	if (!node)
2887		return 0;
2888
2889	BUG_ON(node->processed);
2890	root = select_one_root(trans, node);
2891	if (root == ERR_PTR(-ENOENT)) {
2892		update_processed_blocks(rc, node);
2893		goto out;
2894	}
2895
2896	if (!root || root->ref_cows) {
2897		ret = reserve_metadata_space(trans, rc, node);
2898		if (ret)
2899			goto out;
2900	}
2901
2902	if (root) {
2903		if (root->ref_cows) {
2904			BUG_ON(node->new_bytenr);
2905			BUG_ON(!list_empty(&node->list));
2906			btrfs_record_root_in_trans(trans, root);
2907			root = root->reloc_root;
2908			node->new_bytenr = root->node->start;
2909			node->root = root;
2910			list_add_tail(&node->list, &rc->backref_cache.changed);
2911		} else {
2912			path->lowest_level = node->level;
2913			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2914			btrfs_release_path(path);
2915			if (ret > 0)
2916				ret = 0;
2917		}
2918		if (!ret)
2919			update_processed_blocks(rc, node);
2920	} else {
2921		ret = do_relocation(trans, rc, node, key, path, 1);
2922	}
2923out:
2924	if (ret || node->level == 0 || node->cowonly)
2925		remove_backref_node(&rc->backref_cache, node);
2926	return ret;
2927}
2928
2929/*
2930 * relocate a list of blocks
2931 */
2932static noinline_for_stack
2933int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2934			 struct reloc_control *rc, struct rb_root *blocks)
2935{
 
2936	struct backref_node *node;
2937	struct btrfs_path *path;
2938	struct tree_block *block;
2939	struct rb_node *rb_node;
2940	int ret;
2941	int err = 0;
2942
2943	path = btrfs_alloc_path();
2944	if (!path) {
2945		err = -ENOMEM;
2946		goto out_free_blocks;
2947	}
2948
2949	rb_node = rb_first(blocks);
2950	while (rb_node) {
2951		block = rb_entry(rb_node, struct tree_block, rb_node);
2952		if (!block->key_ready)
2953			reada_tree_block(rc, block);
2954		rb_node = rb_next(rb_node);
2955	}
2956
2957	rb_node = rb_first(blocks);
2958	while (rb_node) {
2959		block = rb_entry(rb_node, struct tree_block, rb_node);
2960		if (!block->key_ready) {
2961			err = get_tree_block_key(rc, block);
2962			if (err)
2963				goto out_free_path;
2964		}
2965		rb_node = rb_next(rb_node);
2966	}
2967
2968	rb_node = rb_first(blocks);
2969	while (rb_node) {
2970		block = rb_entry(rb_node, struct tree_block, rb_node);
2971
2972		node = build_backref_tree(rc, &block->key,
2973					  block->level, block->bytenr);
2974		if (IS_ERR(node)) {
2975			err = PTR_ERR(node);
2976			goto out;
2977		}
2978
2979		ret = relocate_tree_block(trans, rc, node, &block->key,
2980					  path);
2981		if (ret < 0) {
2982			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2983				err = ret;
2984			goto out;
2985		}
2986		rb_node = rb_next(rb_node);
2987	}
2988out:
2989	err = finish_pending_nodes(trans, rc, path, err);
2990
2991out_free_path:
2992	btrfs_free_path(path);
2993out_free_blocks:
2994	free_block_list(blocks);
2995	return err;
2996}
2997
2998static noinline_for_stack
2999int prealloc_file_extent_cluster(struct inode *inode,
3000				 struct file_extent_cluster *cluster)
3001{
3002	u64 alloc_hint = 0;
3003	u64 start;
3004	u64 end;
3005	u64 offset = BTRFS_I(inode)->index_cnt;
3006	u64 num_bytes;
3007	int nr = 0;
3008	int ret = 0;
 
 
 
3009
3010	BUG_ON(cluster->start != cluster->boundary[0]);
3011	mutex_lock(&inode->i_mutex);
3012
3013	ret = btrfs_check_data_free_space(inode, cluster->end +
3014					  1 - cluster->start);
3015	if (ret)
3016		goto out;
3017
 
3018	while (nr < cluster->nr) {
3019		start = cluster->boundary[nr] - offset;
3020		if (nr + 1 < cluster->nr)
3021			end = cluster->boundary[nr + 1] - 1 - offset;
3022		else
3023			end = cluster->end - offset;
3024
3025		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3026		num_bytes = end + 1 - start;
 
 
 
3027		ret = btrfs_prealloc_file_range(inode, 0, start,
3028						num_bytes, num_bytes,
3029						end + 1, &alloc_hint);
 
3030		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3031		if (ret)
3032			break;
3033		nr++;
3034	}
3035	btrfs_free_reserved_data_space(inode, cluster->end +
3036				       1 - cluster->start);
 
3037out:
3038	mutex_unlock(&inode->i_mutex);
3039	return ret;
3040}
3041
3042static noinline_for_stack
3043int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3044			 u64 block_start)
3045{
3046	struct btrfs_root *root = BTRFS_I(inode)->root;
3047	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3048	struct extent_map *em;
3049	int ret = 0;
3050
3051	em = alloc_extent_map();
3052	if (!em)
3053		return -ENOMEM;
3054
3055	em->start = start;
3056	em->len = end + 1 - start;
3057	em->block_len = em->len;
3058	em->block_start = block_start;
3059	em->bdev = root->fs_info->fs_devices->latest_bdev;
3060	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3061
3062	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3063	while (1) {
3064		write_lock(&em_tree->lock);
3065		ret = add_extent_mapping(em_tree, em, 0);
3066		write_unlock(&em_tree->lock);
3067		if (ret != -EEXIST) {
3068			free_extent_map(em);
3069			break;
3070		}
3071		btrfs_drop_extent_cache(inode, start, end, 0);
3072	}
3073	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3074	return ret;
3075}
3076
3077static int relocate_file_extent_cluster(struct inode *inode,
3078					struct file_extent_cluster *cluster)
3079{
 
3080	u64 page_start;
3081	u64 page_end;
3082	u64 offset = BTRFS_I(inode)->index_cnt;
3083	unsigned long index;
3084	unsigned long last_index;
3085	struct page *page;
3086	struct file_ra_state *ra;
3087	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3088	int nr = 0;
3089	int ret = 0;
3090
3091	if (!cluster->nr)
3092		return 0;
3093
3094	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3095	if (!ra)
3096		return -ENOMEM;
3097
3098	ret = prealloc_file_extent_cluster(inode, cluster);
3099	if (ret)
3100		goto out;
3101
3102	file_ra_state_init(ra, inode->i_mapping);
3103
3104	ret = setup_extent_mapping(inode, cluster->start - offset,
3105				   cluster->end - offset, cluster->start);
3106	if (ret)
3107		goto out;
3108
3109	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3110	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3111	while (index <= last_index) {
3112		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3113		if (ret)
3114			goto out;
3115
3116		page = find_lock_page(inode->i_mapping, index);
3117		if (!page) {
3118			page_cache_sync_readahead(inode->i_mapping,
3119						  ra, NULL, index,
3120						  last_index + 1 - index);
3121			page = find_or_create_page(inode->i_mapping, index,
3122						   mask);
3123			if (!page) {
3124				btrfs_delalloc_release_metadata(inode,
3125							PAGE_CACHE_SIZE);
3126				ret = -ENOMEM;
3127				goto out;
3128			}
3129		}
3130
3131		if (PageReadahead(page)) {
3132			page_cache_async_readahead(inode->i_mapping,
3133						   ra, NULL, page, index,
3134						   last_index + 1 - index);
3135		}
3136
3137		if (!PageUptodate(page)) {
3138			btrfs_readpage(NULL, page);
3139			lock_page(page);
3140			if (!PageUptodate(page)) {
3141				unlock_page(page);
3142				page_cache_release(page);
3143				btrfs_delalloc_release_metadata(inode,
3144							PAGE_CACHE_SIZE);
3145				ret = -EIO;
3146				goto out;
3147			}
3148		}
3149
3150		page_start = page_offset(page);
3151		page_end = page_start + PAGE_CACHE_SIZE - 1;
3152
3153		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3154
3155		set_page_extent_mapped(page);
3156
3157		if (nr < cluster->nr &&
3158		    page_start + offset == cluster->boundary[nr]) {
3159			set_extent_bits(&BTRFS_I(inode)->io_tree,
3160					page_start, page_end,
3161					EXTENT_BOUNDARY, GFP_NOFS);
3162			nr++;
3163		}
3164
3165		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3166		set_page_dirty(page);
3167
3168		unlock_extent(&BTRFS_I(inode)->io_tree,
3169			      page_start, page_end);
3170		unlock_page(page);
3171		page_cache_release(page);
3172
3173		index++;
3174		balance_dirty_pages_ratelimited(inode->i_mapping);
3175		btrfs_throttle(BTRFS_I(inode)->root);
3176	}
3177	WARN_ON(nr != cluster->nr);
3178out:
3179	kfree(ra);
3180	return ret;
3181}
3182
3183static noinline_for_stack
3184int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3185			 struct file_extent_cluster *cluster)
3186{
3187	int ret;
3188
3189	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3190		ret = relocate_file_extent_cluster(inode, cluster);
3191		if (ret)
3192			return ret;
3193		cluster->nr = 0;
3194	}
3195
3196	if (!cluster->nr)
3197		cluster->start = extent_key->objectid;
3198	else
3199		BUG_ON(cluster->nr >= MAX_EXTENTS);
3200	cluster->end = extent_key->objectid + extent_key->offset - 1;
3201	cluster->boundary[cluster->nr] = extent_key->objectid;
3202	cluster->nr++;
3203
3204	if (cluster->nr >= MAX_EXTENTS) {
3205		ret = relocate_file_extent_cluster(inode, cluster);
3206		if (ret)
3207			return ret;
3208		cluster->nr = 0;
3209	}
3210	return 0;
3211}
3212
3213#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3214static int get_ref_objectid_v0(struct reloc_control *rc,
3215			       struct btrfs_path *path,
3216			       struct btrfs_key *extent_key,
3217			       u64 *ref_objectid, int *path_change)
3218{
3219	struct btrfs_key key;
3220	struct extent_buffer *leaf;
3221	struct btrfs_extent_ref_v0 *ref0;
3222	int ret;
3223	int slot;
3224
3225	leaf = path->nodes[0];
3226	slot = path->slots[0];
3227	while (1) {
3228		if (slot >= btrfs_header_nritems(leaf)) {
3229			ret = btrfs_next_leaf(rc->extent_root, path);
3230			if (ret < 0)
3231				return ret;
3232			BUG_ON(ret > 0);
3233			leaf = path->nodes[0];
3234			slot = path->slots[0];
3235			if (path_change)
3236				*path_change = 1;
3237		}
3238		btrfs_item_key_to_cpu(leaf, &key, slot);
3239		if (key.objectid != extent_key->objectid)
3240			return -ENOENT;
3241
3242		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3243			slot++;
3244			continue;
3245		}
3246		ref0 = btrfs_item_ptr(leaf, slot,
3247				struct btrfs_extent_ref_v0);
3248		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3249		break;
3250	}
3251	return 0;
3252}
3253#endif
3254
3255/*
3256 * helper to add a tree block to the list.
3257 * the major work is getting the generation and level of the block
3258 */
3259static int add_tree_block(struct reloc_control *rc,
3260			  struct btrfs_key *extent_key,
3261			  struct btrfs_path *path,
3262			  struct rb_root *blocks)
3263{
3264	struct extent_buffer *eb;
3265	struct btrfs_extent_item *ei;
3266	struct btrfs_tree_block_info *bi;
3267	struct tree_block *block;
3268	struct rb_node *rb_node;
3269	u32 item_size;
3270	int level = -1;
3271	u64 generation;
3272
3273	eb =  path->nodes[0];
3274	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3275
3276	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3277	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3278		ei = btrfs_item_ptr(eb, path->slots[0],
3279				struct btrfs_extent_item);
3280		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3281			bi = (struct btrfs_tree_block_info *)(ei + 1);
3282			level = btrfs_tree_block_level(eb, bi);
3283		} else {
3284			level = (int)extent_key->offset;
3285		}
3286		generation = btrfs_extent_generation(eb, ei);
3287	} else {
3288#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3289		u64 ref_owner;
3290		int ret;
3291
3292		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3293		ret = get_ref_objectid_v0(rc, path, extent_key,
3294					  &ref_owner, NULL);
3295		if (ret < 0)
3296			return ret;
3297		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3298		level = (int)ref_owner;
3299		/* FIXME: get real generation */
3300		generation = 0;
3301#else
3302		BUG();
3303#endif
3304	}
3305
3306	btrfs_release_path(path);
3307
3308	BUG_ON(level == -1);
3309
3310	block = kmalloc(sizeof(*block), GFP_NOFS);
3311	if (!block)
3312		return -ENOMEM;
3313
3314	block->bytenr = extent_key->objectid;
3315	block->key.objectid = rc->extent_root->leafsize;
3316	block->key.offset = generation;
3317	block->level = level;
3318	block->key_ready = 0;
3319
3320	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3321	if (rb_node)
3322		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3323
3324	return 0;
3325}
3326
3327/*
3328 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3329 */
3330static int __add_tree_block(struct reloc_control *rc,
3331			    u64 bytenr, u32 blocksize,
3332			    struct rb_root *blocks)
3333{
 
3334	struct btrfs_path *path;
3335	struct btrfs_key key;
3336	int ret;
3337	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3338					SKINNY_METADATA);
3339
3340	if (tree_block_processed(bytenr, blocksize, rc))
3341		return 0;
3342
3343	if (tree_search(blocks, bytenr))
3344		return 0;
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349again:
3350	key.objectid = bytenr;
3351	if (skinny) {
3352		key.type = BTRFS_METADATA_ITEM_KEY;
3353		key.offset = (u64)-1;
3354	} else {
3355		key.type = BTRFS_EXTENT_ITEM_KEY;
3356		key.offset = blocksize;
3357	}
3358
3359	path->search_commit_root = 1;
3360	path->skip_locking = 1;
3361	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3362	if (ret < 0)
3363		goto out;
3364
3365	if (ret > 0 && skinny) {
3366		if (path->slots[0]) {
3367			path->slots[0]--;
3368			btrfs_item_key_to_cpu(path->nodes[0], &key,
3369					      path->slots[0]);
3370			if (key.objectid == bytenr &&
3371			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3372			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3373			      key.offset == blocksize)))
3374				ret = 0;
3375		}
3376
3377		if (ret) {
3378			skinny = false;
3379			btrfs_release_path(path);
3380			goto again;
3381		}
3382	}
3383	BUG_ON(ret);
3384
3385	ret = add_tree_block(rc, &key, path, blocks);
3386out:
3387	btrfs_free_path(path);
3388	return ret;
3389}
3390
3391/*
3392 * helper to check if the block use full backrefs for pointers in it
3393 */
3394static int block_use_full_backref(struct reloc_control *rc,
3395				  struct extent_buffer *eb)
3396{
3397	u64 flags;
3398	int ret;
3399
3400	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3401	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3402		return 1;
3403
3404	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3405				       eb->start, btrfs_header_level(eb), 1,
3406				       NULL, &flags);
3407	BUG_ON(ret);
3408
3409	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3410		ret = 1;
3411	else
3412		ret = 0;
3413	return ret;
3414}
3415
3416static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3417				    struct inode *inode, u64 ino)
 
 
3418{
3419	struct btrfs_key key;
3420	struct btrfs_root *root = fs_info->tree_root;
3421	struct btrfs_trans_handle *trans;
3422	int ret = 0;
3423
3424	if (inode)
3425		goto truncate;
3426
3427	key.objectid = ino;
3428	key.type = BTRFS_INODE_ITEM_KEY;
3429	key.offset = 0;
3430
3431	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3432	if (IS_ERR(inode) || is_bad_inode(inode)) {
3433		if (!IS_ERR(inode))
3434			iput(inode);
3435		return -ENOENT;
3436	}
3437
3438truncate:
3439	ret = btrfs_check_trunc_cache_free_space(root,
3440						 &fs_info->global_block_rsv);
3441	if (ret)
3442		goto out;
3443
3444	trans = btrfs_join_transaction(root);
3445	if (IS_ERR(trans)) {
3446		ret = PTR_ERR(trans);
3447		goto out;
3448	}
3449
3450	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3451
3452	btrfs_end_transaction(trans, root);
3453	btrfs_btree_balance_dirty(root);
3454out:
3455	iput(inode);
3456	return ret;
3457}
3458
3459/*
3460 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3461 * this function scans fs tree to find blocks reference the data extent
3462 */
3463static int find_data_references(struct reloc_control *rc,
3464				struct btrfs_key *extent_key,
3465				struct extent_buffer *leaf,
3466				struct btrfs_extent_data_ref *ref,
3467				struct rb_root *blocks)
3468{
 
3469	struct btrfs_path *path;
3470	struct tree_block *block;
3471	struct btrfs_root *root;
3472	struct btrfs_file_extent_item *fi;
3473	struct rb_node *rb_node;
3474	struct btrfs_key key;
3475	u64 ref_root;
3476	u64 ref_objectid;
3477	u64 ref_offset;
3478	u32 ref_count;
3479	u32 nritems;
3480	int err = 0;
3481	int added = 0;
3482	int counted;
3483	int ret;
3484
3485	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3486	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3487	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3488	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3489
3490	/*
3491	 * This is an extent belonging to the free space cache, lets just delete
3492	 * it and redo the search.
3493	 */
3494	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3495		ret = delete_block_group_cache(rc->extent_root->fs_info,
3496					       NULL, ref_objectid);
3497		if (ret != -ENOENT)
3498			return ret;
3499		ret = 0;
3500	}
3501
3502	path = btrfs_alloc_path();
3503	if (!path)
3504		return -ENOMEM;
3505	path->reada = 1;
3506
3507	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3508	if (IS_ERR(root)) {
3509		err = PTR_ERR(root);
3510		goto out;
3511	}
3512
3513	key.objectid = ref_objectid;
3514	key.type = BTRFS_EXTENT_DATA_KEY;
3515	if (ref_offset > ((u64)-1 << 32))
3516		key.offset = 0;
3517	else
3518		key.offset = ref_offset;
3519
3520	path->search_commit_root = 1;
3521	path->skip_locking = 1;
3522	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523	if (ret < 0) {
3524		err = ret;
3525		goto out;
3526	}
3527
3528	leaf = path->nodes[0];
3529	nritems = btrfs_header_nritems(leaf);
3530	/*
3531	 * the references in tree blocks that use full backrefs
3532	 * are not counted in
3533	 */
3534	if (block_use_full_backref(rc, leaf))
3535		counted = 0;
3536	else
3537		counted = 1;
3538	rb_node = tree_search(blocks, leaf->start);
3539	if (rb_node) {
3540		if (counted)
3541			added = 1;
3542		else
3543			path->slots[0] = nritems;
3544	}
3545
3546	while (ref_count > 0) {
3547		while (path->slots[0] >= nritems) {
3548			ret = btrfs_next_leaf(root, path);
3549			if (ret < 0) {
3550				err = ret;
3551				goto out;
3552			}
3553			if (WARN_ON(ret > 0))
3554				goto out;
3555
3556			leaf = path->nodes[0];
3557			nritems = btrfs_header_nritems(leaf);
3558			added = 0;
3559
3560			if (block_use_full_backref(rc, leaf))
3561				counted = 0;
3562			else
3563				counted = 1;
3564			rb_node = tree_search(blocks, leaf->start);
3565			if (rb_node) {
3566				if (counted)
3567					added = 1;
3568				else
3569					path->slots[0] = nritems;
3570			}
3571		}
3572
3573		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3574		if (WARN_ON(key.objectid != ref_objectid ||
3575		    key.type != BTRFS_EXTENT_DATA_KEY))
3576			break;
3577
3578		fi = btrfs_item_ptr(leaf, path->slots[0],
3579				    struct btrfs_file_extent_item);
3580
3581		if (btrfs_file_extent_type(leaf, fi) ==
3582		    BTRFS_FILE_EXTENT_INLINE)
3583			goto next;
3584
3585		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3586		    extent_key->objectid)
3587			goto next;
3588
3589		key.offset -= btrfs_file_extent_offset(leaf, fi);
3590		if (key.offset != ref_offset)
3591			goto next;
3592
3593		if (counted)
3594			ref_count--;
3595		if (added)
3596			goto next;
3597
3598		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3599			block = kmalloc(sizeof(*block), GFP_NOFS);
3600			if (!block) {
3601				err = -ENOMEM;
3602				break;
3603			}
3604			block->bytenr = leaf->start;
3605			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3606			block->level = 0;
3607			block->key_ready = 1;
3608			rb_node = tree_insert(blocks, block->bytenr,
3609					      &block->rb_node);
3610			if (rb_node)
3611				backref_tree_panic(rb_node, -EEXIST,
3612						   block->bytenr);
3613		}
3614		if (counted)
3615			added = 1;
3616		else
3617			path->slots[0] = nritems;
3618next:
3619		path->slots[0]++;
3620
3621	}
3622out:
3623	btrfs_free_path(path);
3624	return err;
3625}
3626
3627/*
3628 * helper to find all tree blocks that reference a given data extent
3629 */
3630static noinline_for_stack
3631int add_data_references(struct reloc_control *rc,
3632			struct btrfs_key *extent_key,
3633			struct btrfs_path *path,
3634			struct rb_root *blocks)
3635{
3636	struct btrfs_key key;
3637	struct extent_buffer *eb;
3638	struct btrfs_extent_data_ref *dref;
3639	struct btrfs_extent_inline_ref *iref;
3640	unsigned long ptr;
3641	unsigned long end;
3642	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3643	int ret = 0;
3644	int err = 0;
3645
3646	eb = path->nodes[0];
3647	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3648	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3649#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3650	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3651		ptr = end;
3652	else
3653#endif
3654		ptr += sizeof(struct btrfs_extent_item);
3655
3656	while (ptr < end) {
3657		iref = (struct btrfs_extent_inline_ref *)ptr;
3658		key.type = btrfs_extent_inline_ref_type(eb, iref);
3659		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3660			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3661			ret = __add_tree_block(rc, key.offset, blocksize,
3662					       blocks);
3663		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3665			ret = find_data_references(rc, extent_key,
3666						   eb, dref, blocks);
3667		} else {
3668			BUG();
3669		}
3670		if (ret) {
3671			err = ret;
3672			goto out;
3673		}
3674		ptr += btrfs_extent_inline_ref_size(key.type);
3675	}
3676	WARN_ON(ptr > end);
3677
3678	while (1) {
3679		cond_resched();
3680		eb = path->nodes[0];
3681		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3682			ret = btrfs_next_leaf(rc->extent_root, path);
3683			if (ret < 0) {
3684				err = ret;
3685				break;
3686			}
3687			if (ret > 0)
3688				break;
3689			eb = path->nodes[0];
3690		}
3691
3692		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3693		if (key.objectid != extent_key->objectid)
3694			break;
3695
3696#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3697		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3698		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3699#else
3700		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3701		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3702#endif
3703			ret = __add_tree_block(rc, key.offset, blocksize,
3704					       blocks);
3705		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3706			dref = btrfs_item_ptr(eb, path->slots[0],
3707					      struct btrfs_extent_data_ref);
3708			ret = find_data_references(rc, extent_key,
3709						   eb, dref, blocks);
3710		} else {
3711			ret = 0;
3712		}
3713		if (ret) {
3714			err = ret;
3715			break;
3716		}
3717		path->slots[0]++;
3718	}
3719out:
3720	btrfs_release_path(path);
3721	if (err)
3722		free_block_list(blocks);
3723	return err;
3724}
3725
3726/*
3727 * helper to find next unprocessed extent
3728 */
3729static noinline_for_stack
3730int find_next_extent(struct btrfs_trans_handle *trans,
3731		     struct reloc_control *rc, struct btrfs_path *path,
3732		     struct btrfs_key *extent_key)
3733{
 
3734	struct btrfs_key key;
3735	struct extent_buffer *leaf;
3736	u64 start, end, last;
3737	int ret;
3738
3739	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3740	while (1) {
3741		cond_resched();
3742		if (rc->search_start >= last) {
3743			ret = 1;
3744			break;
3745		}
3746
3747		key.objectid = rc->search_start;
3748		key.type = BTRFS_EXTENT_ITEM_KEY;
3749		key.offset = 0;
3750
3751		path->search_commit_root = 1;
3752		path->skip_locking = 1;
3753		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3754					0, 0);
3755		if (ret < 0)
3756			break;
3757next:
3758		leaf = path->nodes[0];
3759		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3760			ret = btrfs_next_leaf(rc->extent_root, path);
3761			if (ret != 0)
3762				break;
3763			leaf = path->nodes[0];
3764		}
3765
3766		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3767		if (key.objectid >= last) {
3768			ret = 1;
3769			break;
3770		}
3771
3772		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3773		    key.type != BTRFS_METADATA_ITEM_KEY) {
3774			path->slots[0]++;
3775			goto next;
3776		}
3777
3778		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3779		    key.objectid + key.offset <= rc->search_start) {
3780			path->slots[0]++;
3781			goto next;
3782		}
3783
3784		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3785		    key.objectid + rc->extent_root->leafsize <=
3786		    rc->search_start) {
3787			path->slots[0]++;
3788			goto next;
3789		}
3790
3791		ret = find_first_extent_bit(&rc->processed_blocks,
3792					    key.objectid, &start, &end,
3793					    EXTENT_DIRTY, NULL);
3794
3795		if (ret == 0 && start <= key.objectid) {
3796			btrfs_release_path(path);
3797			rc->search_start = end + 1;
3798		} else {
3799			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3800				rc->search_start = key.objectid + key.offset;
3801			else
3802				rc->search_start = key.objectid +
3803					rc->extent_root->leafsize;
3804			memcpy(extent_key, &key, sizeof(key));
3805			return 0;
3806		}
3807	}
3808	btrfs_release_path(path);
3809	return ret;
3810}
3811
3812static void set_reloc_control(struct reloc_control *rc)
3813{
3814	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3815
3816	mutex_lock(&fs_info->reloc_mutex);
3817	fs_info->reloc_ctl = rc;
3818	mutex_unlock(&fs_info->reloc_mutex);
3819}
3820
3821static void unset_reloc_control(struct reloc_control *rc)
3822{
3823	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3824
3825	mutex_lock(&fs_info->reloc_mutex);
3826	fs_info->reloc_ctl = NULL;
3827	mutex_unlock(&fs_info->reloc_mutex);
3828}
3829
3830static int check_extent_flags(u64 flags)
3831{
3832	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3833	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3834		return 1;
3835	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3836	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3837		return 1;
3838	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3839	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3840		return 1;
3841	return 0;
3842}
3843
3844static noinline_for_stack
3845int prepare_to_relocate(struct reloc_control *rc)
3846{
3847	struct btrfs_trans_handle *trans;
 
3848
3849	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3850					      BTRFS_BLOCK_RSV_TEMP);
3851	if (!rc->block_rsv)
3852		return -ENOMEM;
3853
3854	memset(&rc->cluster, 0, sizeof(rc->cluster));
3855	rc->search_start = rc->block_group->key.objectid;
3856	rc->extents_found = 0;
3857	rc->nodes_relocated = 0;
3858	rc->merging_rsv_size = 0;
3859	rc->reserved_bytes = 0;
3860	rc->block_rsv->size = rc->extent_root->nodesize *
3861			      RELOCATION_RESERVED_NODES;
 
 
 
 
 
3862
3863	rc->create_reloc_tree = 1;
3864	set_reloc_control(rc);
3865
3866	trans = btrfs_join_transaction(rc->extent_root);
3867	if (IS_ERR(trans)) {
3868		unset_reloc_control(rc);
3869		/*
3870		 * extent tree is not a ref_cow tree and has no reloc_root to
3871		 * cleanup.  And callers are responsible to free the above
3872		 * block rsv.
3873		 */
3874		return PTR_ERR(trans);
3875	}
3876	btrfs_commit_transaction(trans, rc->extent_root);
3877	return 0;
3878}
3879
3880static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3881{
 
3882	struct rb_root blocks = RB_ROOT;
3883	struct btrfs_key key;
3884	struct btrfs_trans_handle *trans = NULL;
3885	struct btrfs_path *path;
3886	struct btrfs_extent_item *ei;
3887	u64 flags;
3888	u32 item_size;
3889	int ret;
3890	int err = 0;
3891	int progress = 0;
3892
3893	path = btrfs_alloc_path();
3894	if (!path)
3895		return -ENOMEM;
3896	path->reada = 1;
3897
3898	ret = prepare_to_relocate(rc);
3899	if (ret) {
3900		err = ret;
3901		goto out_free;
3902	}
3903
3904	while (1) {
3905		rc->reserved_bytes = 0;
3906		ret = btrfs_block_rsv_refill(rc->extent_root,
3907					rc->block_rsv, rc->block_rsv->size,
3908					BTRFS_RESERVE_FLUSH_ALL);
3909		if (ret) {
3910			err = ret;
3911			break;
3912		}
3913		progress++;
3914		trans = btrfs_start_transaction(rc->extent_root, 0);
3915		if (IS_ERR(trans)) {
3916			err = PTR_ERR(trans);
3917			trans = NULL;
3918			break;
3919		}
3920restart:
3921		if (update_backref_cache(trans, &rc->backref_cache)) {
3922			btrfs_end_transaction(trans, rc->extent_root);
3923			continue;
3924		}
3925
3926		ret = find_next_extent(trans, rc, path, &key);
3927		if (ret < 0)
3928			err = ret;
3929		if (ret != 0)
3930			break;
3931
3932		rc->extents_found++;
3933
3934		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3935				    struct btrfs_extent_item);
3936		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3937		if (item_size >= sizeof(*ei)) {
3938			flags = btrfs_extent_flags(path->nodes[0], ei);
3939			ret = check_extent_flags(flags);
3940			BUG_ON(ret);
3941
3942		} else {
3943#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3944			u64 ref_owner;
3945			int path_change = 0;
3946
3947			BUG_ON(item_size !=
3948			       sizeof(struct btrfs_extent_item_v0));
3949			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3950						  &path_change);
 
 
 
 
3951			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3952				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3953			else
3954				flags = BTRFS_EXTENT_FLAG_DATA;
3955
3956			if (path_change) {
3957				btrfs_release_path(path);
3958
3959				path->search_commit_root = 1;
3960				path->skip_locking = 1;
3961				ret = btrfs_search_slot(NULL, rc->extent_root,
3962							&key, path, 0, 0);
3963				if (ret < 0) {
3964					err = ret;
3965					break;
3966				}
3967				BUG_ON(ret > 0);
3968			}
3969#else
3970			BUG();
3971#endif
3972		}
3973
3974		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3975			ret = add_tree_block(rc, &key, path, &blocks);
3976		} else if (rc->stage == UPDATE_DATA_PTRS &&
3977			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3978			ret = add_data_references(rc, &key, path, &blocks);
3979		} else {
3980			btrfs_release_path(path);
3981			ret = 0;
3982		}
3983		if (ret < 0) {
3984			err = ret;
3985			break;
3986		}
3987
3988		if (!RB_EMPTY_ROOT(&blocks)) {
3989			ret = relocate_tree_blocks(trans, rc, &blocks);
3990			if (ret < 0) {
3991				/*
3992				 * if we fail to relocate tree blocks, force to update
3993				 * backref cache when committing transaction.
3994				 */
3995				rc->backref_cache.last_trans = trans->transid - 1;
3996
3997				if (ret != -EAGAIN) {
3998					err = ret;
3999					break;
4000				}
4001				rc->extents_found--;
4002				rc->search_start = key.objectid;
4003			}
4004		}
4005
4006		btrfs_end_transaction_throttle(trans, rc->extent_root);
4007		btrfs_btree_balance_dirty(rc->extent_root);
4008		trans = NULL;
4009
4010		if (rc->stage == MOVE_DATA_EXTENTS &&
4011		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4012			rc->found_file_extent = 1;
4013			ret = relocate_data_extent(rc->data_inode,
4014						   &key, &rc->cluster);
4015			if (ret < 0) {
4016				err = ret;
4017				break;
4018			}
4019		}
4020	}
4021	if (trans && progress && err == -ENOSPC) {
4022		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4023					      rc->block_group->flags);
4024		if (ret == 0) {
4025			err = 0;
4026			progress = 0;
4027			goto restart;
4028		}
4029	}
4030
4031	btrfs_release_path(path);
4032	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4033			  GFP_NOFS);
4034
4035	if (trans) {
4036		btrfs_end_transaction_throttle(trans, rc->extent_root);
4037		btrfs_btree_balance_dirty(rc->extent_root);
4038	}
4039
4040	if (!err) {
4041		ret = relocate_file_extent_cluster(rc->data_inode,
4042						   &rc->cluster);
4043		if (ret < 0)
4044			err = ret;
4045	}
4046
4047	rc->create_reloc_tree = 0;
4048	set_reloc_control(rc);
4049
4050	backref_cache_cleanup(&rc->backref_cache);
4051	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4052
4053	err = prepare_to_merge(rc, err);
4054
4055	merge_reloc_roots(rc);
4056
4057	rc->merge_reloc_tree = 0;
4058	unset_reloc_control(rc);
4059	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4060
4061	/* get rid of pinned extents */
4062	trans = btrfs_join_transaction(rc->extent_root);
4063	if (IS_ERR(trans))
4064		err = PTR_ERR(trans);
4065	else
4066		btrfs_commit_transaction(trans, rc->extent_root);
 
4067out_free:
4068	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4069	btrfs_free_path(path);
4070	return err;
4071}
4072
4073static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4074				 struct btrfs_root *root, u64 objectid)
4075{
4076	struct btrfs_path *path;
4077	struct btrfs_inode_item *item;
4078	struct extent_buffer *leaf;
4079	int ret;
4080
4081	path = btrfs_alloc_path();
4082	if (!path)
4083		return -ENOMEM;
4084
4085	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4086	if (ret)
4087		goto out;
4088
4089	leaf = path->nodes[0];
4090	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4091	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4092	btrfs_set_inode_generation(leaf, item, 1);
4093	btrfs_set_inode_size(leaf, item, 0);
4094	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4095	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4096					  BTRFS_INODE_PREALLOC);
4097	btrfs_mark_buffer_dirty(leaf);
4098	btrfs_release_path(path);
4099out:
4100	btrfs_free_path(path);
4101	return ret;
4102}
4103
4104/*
4105 * helper to create inode for data relocation.
4106 * the inode is in data relocation tree and its link count is 0
4107 */
4108static noinline_for_stack
4109struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4110				 struct btrfs_block_group_cache *group)
4111{
4112	struct inode *inode = NULL;
4113	struct btrfs_trans_handle *trans;
4114	struct btrfs_root *root;
4115	struct btrfs_key key;
4116	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4117	int err = 0;
4118
4119	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4120	if (IS_ERR(root))
4121		return ERR_CAST(root);
4122
4123	trans = btrfs_start_transaction(root, 6);
4124	if (IS_ERR(trans))
4125		return ERR_CAST(trans);
4126
4127	err = btrfs_find_free_objectid(root, &objectid);
4128	if (err)
4129		goto out;
4130
4131	err = __insert_orphan_inode(trans, root, objectid);
4132	BUG_ON(err);
4133
4134	key.objectid = objectid;
4135	key.type = BTRFS_INODE_ITEM_KEY;
4136	key.offset = 0;
4137	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4138	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4139	BTRFS_I(inode)->index_cnt = group->key.objectid;
4140
4141	err = btrfs_orphan_add(trans, inode);
4142out:
4143	btrfs_end_transaction(trans, root);
4144	btrfs_btree_balance_dirty(root);
4145	if (err) {
4146		if (inode)
4147			iput(inode);
4148		inode = ERR_PTR(err);
4149	}
4150	return inode;
4151}
4152
4153static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4154{
4155	struct reloc_control *rc;
4156
4157	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4158	if (!rc)
4159		return NULL;
4160
4161	INIT_LIST_HEAD(&rc->reloc_roots);
4162	backref_cache_init(&rc->backref_cache);
4163	mapping_tree_init(&rc->reloc_root_tree);
4164	extent_io_tree_init(&rc->processed_blocks,
4165			    fs_info->btree_inode->i_mapping);
4166	return rc;
4167}
4168
4169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170 * function to relocate all extents in a block group.
4171 */
4172int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4173{
4174	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4175	struct reloc_control *rc;
4176	struct inode *inode;
4177	struct btrfs_path *path;
4178	int ret;
4179	int rw = 0;
4180	int err = 0;
4181
4182	rc = alloc_reloc_control(fs_info);
4183	if (!rc)
4184		return -ENOMEM;
4185
4186	rc->extent_root = extent_root;
4187
4188	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4189	BUG_ON(!rc->block_group);
4190
4191	if (!rc->block_group->ro) {
4192		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4193		if (ret) {
4194			err = ret;
4195			goto out;
4196		}
4197		rw = 1;
4198	}
 
4199
4200	path = btrfs_alloc_path();
4201	if (!path) {
4202		err = -ENOMEM;
4203		goto out;
4204	}
4205
4206	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4207					path);
4208	btrfs_free_path(path);
4209
4210	if (!IS_ERR(inode))
4211		ret = delete_block_group_cache(fs_info, inode, 0);
4212	else
4213		ret = PTR_ERR(inode);
4214
4215	if (ret && ret != -ENOENT) {
4216		err = ret;
4217		goto out;
4218	}
4219
4220	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4221	if (IS_ERR(rc->data_inode)) {
4222		err = PTR_ERR(rc->data_inode);
4223		rc->data_inode = NULL;
4224		goto out;
4225	}
4226
4227	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4228	       rc->block_group->key.objectid, rc->block_group->flags);
4229
4230	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4231	if (ret < 0) {
4232		err = ret;
4233		goto out;
4234	}
4235	btrfs_wait_ordered_roots(fs_info, -1);
4236
4237	while (1) {
4238		mutex_lock(&fs_info->cleaner_mutex);
4239		ret = relocate_block_group(rc);
4240		mutex_unlock(&fs_info->cleaner_mutex);
4241		if (ret < 0) {
4242			err = ret;
4243			goto out;
4244		}
4245
4246		if (rc->extents_found == 0)
4247			break;
4248
4249		btrfs_info(extent_root->fs_info, "found %llu extents",
4250			rc->extents_found);
4251
4252		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4253			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4254						       (u64)-1);
4255			if (ret) {
4256				err = ret;
4257				goto out;
4258			}
4259			invalidate_mapping_pages(rc->data_inode->i_mapping,
4260						 0, -1);
4261			rc->stage = UPDATE_DATA_PTRS;
4262		}
4263	}
4264
4265	WARN_ON(rc->block_group->pinned > 0);
4266	WARN_ON(rc->block_group->reserved > 0);
4267	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4268out:
4269	if (err && rw)
4270		btrfs_set_block_group_rw(extent_root, rc->block_group);
4271	iput(rc->data_inode);
4272	btrfs_put_block_group(rc->block_group);
4273	kfree(rc);
4274	return err;
4275}
4276
4277static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4278{
 
4279	struct btrfs_trans_handle *trans;
4280	int ret, err;
4281
4282	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4283	if (IS_ERR(trans))
4284		return PTR_ERR(trans);
4285
4286	memset(&root->root_item.drop_progress, 0,
4287		sizeof(root->root_item.drop_progress));
4288	root->root_item.drop_level = 0;
4289	btrfs_set_root_refs(&root->root_item, 0);
4290	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4291				&root->root_key, &root->root_item);
4292
4293	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4294	if (err)
4295		return err;
4296	return ret;
4297}
4298
4299/*
4300 * recover relocation interrupted by system crash.
4301 *
4302 * this function resumes merging reloc trees with corresponding fs trees.
4303 * this is important for keeping the sharing of tree blocks
4304 */
4305int btrfs_recover_relocation(struct btrfs_root *root)
4306{
 
4307	LIST_HEAD(reloc_roots);
4308	struct btrfs_key key;
4309	struct btrfs_root *fs_root;
4310	struct btrfs_root *reloc_root;
4311	struct btrfs_path *path;
4312	struct extent_buffer *leaf;
4313	struct reloc_control *rc = NULL;
4314	struct btrfs_trans_handle *trans;
4315	int ret;
4316	int err = 0;
4317
4318	path = btrfs_alloc_path();
4319	if (!path)
4320		return -ENOMEM;
4321	path->reada = -1;
4322
4323	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4324	key.type = BTRFS_ROOT_ITEM_KEY;
4325	key.offset = (u64)-1;
4326
4327	while (1) {
4328		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4329					path, 0, 0);
4330		if (ret < 0) {
4331			err = ret;
4332			goto out;
4333		}
4334		if (ret > 0) {
4335			if (path->slots[0] == 0)
4336				break;
4337			path->slots[0]--;
4338		}
4339		leaf = path->nodes[0];
4340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4341		btrfs_release_path(path);
4342
4343		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4344		    key.type != BTRFS_ROOT_ITEM_KEY)
4345			break;
4346
4347		reloc_root = btrfs_read_fs_root(root, &key);
4348		if (IS_ERR(reloc_root)) {
4349			err = PTR_ERR(reloc_root);
4350			goto out;
4351		}
4352
4353		list_add(&reloc_root->root_list, &reloc_roots);
4354
4355		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4356			fs_root = read_fs_root(root->fs_info,
4357					       reloc_root->root_key.offset);
4358			if (IS_ERR(fs_root)) {
4359				ret = PTR_ERR(fs_root);
4360				if (ret != -ENOENT) {
4361					err = ret;
4362					goto out;
4363				}
4364				ret = mark_garbage_root(reloc_root);
4365				if (ret < 0) {
4366					err = ret;
4367					goto out;
4368				}
4369			}
4370		}
4371
4372		if (key.offset == 0)
4373			break;
4374
4375		key.offset--;
4376	}
4377	btrfs_release_path(path);
4378
4379	if (list_empty(&reloc_roots))
4380		goto out;
4381
4382	rc = alloc_reloc_control(root->fs_info);
4383	if (!rc) {
4384		err = -ENOMEM;
4385		goto out;
4386	}
4387
4388	rc->extent_root = root->fs_info->extent_root;
4389
4390	set_reloc_control(rc);
4391
4392	trans = btrfs_join_transaction(rc->extent_root);
4393	if (IS_ERR(trans)) {
4394		unset_reloc_control(rc);
4395		err = PTR_ERR(trans);
4396		goto out_free;
4397	}
4398
4399	rc->merge_reloc_tree = 1;
4400
4401	while (!list_empty(&reloc_roots)) {
4402		reloc_root = list_entry(reloc_roots.next,
4403					struct btrfs_root, root_list);
4404		list_del(&reloc_root->root_list);
4405
4406		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4407			list_add_tail(&reloc_root->root_list,
4408				      &rc->reloc_roots);
4409			continue;
4410		}
4411
4412		fs_root = read_fs_root(root->fs_info,
4413				       reloc_root->root_key.offset);
4414		if (IS_ERR(fs_root)) {
4415			err = PTR_ERR(fs_root);
4416			goto out_free;
4417		}
4418
4419		err = __add_reloc_root(reloc_root);
4420		BUG_ON(err < 0); /* -ENOMEM or logic error */
4421		fs_root->reloc_root = reloc_root;
4422	}
4423
4424	err = btrfs_commit_transaction(trans, rc->extent_root);
4425	if (err)
4426		goto out_free;
4427
4428	merge_reloc_roots(rc);
4429
4430	unset_reloc_control(rc);
4431
4432	trans = btrfs_join_transaction(rc->extent_root);
4433	if (IS_ERR(trans))
4434		err = PTR_ERR(trans);
4435	else
4436		err = btrfs_commit_transaction(trans, rc->extent_root);
 
4437out_free:
4438	kfree(rc);
4439out:
4440	if (!list_empty(&reloc_roots))
4441		free_reloc_roots(&reloc_roots);
4442
4443	btrfs_free_path(path);
4444
4445	if (err == 0) {
4446		/* cleanup orphan inode in data relocation tree */
4447		fs_root = read_fs_root(root->fs_info,
4448				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4449		if (IS_ERR(fs_root))
4450			err = PTR_ERR(fs_root);
4451		else
4452			err = btrfs_orphan_cleanup(fs_root);
4453	}
4454	return err;
4455}
4456
4457/*
4458 * helper to add ordered checksum for data relocation.
4459 *
4460 * cloning checksum properly handles the nodatasum extents.
4461 * it also saves CPU time to re-calculate the checksum.
4462 */
4463int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4464{
 
4465	struct btrfs_ordered_sum *sums;
4466	struct btrfs_ordered_extent *ordered;
4467	struct btrfs_root *root = BTRFS_I(inode)->root;
4468	int ret;
4469	u64 disk_bytenr;
4470	u64 new_bytenr;
4471	LIST_HEAD(list);
4472
4473	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4474	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4475
4476	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4477	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4478				       disk_bytenr + len - 1, &list, 0);
4479	if (ret)
4480		goto out;
4481
4482	while (!list_empty(&list)) {
4483		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4484		list_del_init(&sums->list);
4485
4486		/*
4487		 * We need to offset the new_bytenr based on where the csum is.
4488		 * We need to do this because we will read in entire prealloc
4489		 * extents but we may have written to say the middle of the
4490		 * prealloc extent, so we need to make sure the csum goes with
4491		 * the right disk offset.
4492		 *
4493		 * We can do this because the data reloc inode refers strictly
4494		 * to the on disk bytes, so we don't have to worry about
4495		 * disk_len vs real len like with real inodes since it's all
4496		 * disk length.
4497		 */
4498		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4499		sums->bytenr = new_bytenr;
4500
4501		btrfs_add_ordered_sum(inode, ordered, sums);
4502	}
4503out:
4504	btrfs_put_ordered_extent(ordered);
4505	return ret;
4506}
4507
4508int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4509			  struct btrfs_root *root, struct extent_buffer *buf,
4510			  struct extent_buffer *cow)
4511{
 
4512	struct reloc_control *rc;
4513	struct backref_node *node;
4514	int first_cow = 0;
4515	int level;
4516	int ret = 0;
4517
4518	rc = root->fs_info->reloc_ctl;
4519	if (!rc)
4520		return 0;
4521
4522	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4523	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4524
4525	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4526		if (buf == root->node)
4527			__update_reloc_root(root, cow->start);
4528	}
4529
4530	level = btrfs_header_level(buf);
4531	if (btrfs_header_generation(buf) <=
4532	    btrfs_root_last_snapshot(&root->root_item))
4533		first_cow = 1;
4534
4535	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4536	    rc->create_reloc_tree) {
4537		WARN_ON(!first_cow && level == 0);
4538
4539		node = rc->backref_cache.path[level];
4540		BUG_ON(node->bytenr != buf->start &&
4541		       node->new_bytenr != buf->start);
4542
4543		drop_node_buffer(node);
4544		extent_buffer_get(cow);
4545		node->eb = cow;
4546		node->new_bytenr = cow->start;
4547
4548		if (!node->pending) {
4549			list_move_tail(&node->list,
4550				       &rc->backref_cache.pending[level]);
4551			node->pending = 1;
4552		}
4553
4554		if (first_cow)
4555			__mark_block_processed(rc, node);
4556
4557		if (first_cow && level > 0)
4558			rc->nodes_relocated += buf->len;
4559	}
4560
4561	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4562		ret = replace_file_extents(trans, rc, root, cow);
4563	return ret;
4564}
4565
4566/*
4567 * called before creating snapshot. it calculates metadata reservation
4568 * requried for relocating tree blocks in the snapshot
4569 */
4570void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4571			      struct btrfs_pending_snapshot *pending,
4572			      u64 *bytes_to_reserve)
4573{
4574	struct btrfs_root *root;
4575	struct reloc_control *rc;
4576
4577	root = pending->root;
4578	if (!root->reloc_root)
4579		return;
4580
4581	rc = root->fs_info->reloc_ctl;
4582	if (!rc->merge_reloc_tree)
4583		return;
4584
4585	root = root->reloc_root;
4586	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4587	/*
4588	 * relocation is in the stage of merging trees. the space
4589	 * used by merging a reloc tree is twice the size of
4590	 * relocated tree nodes in the worst case. half for cowing
4591	 * the reloc tree, half for cowing the fs tree. the space
4592	 * used by cowing the reloc tree will be freed after the
4593	 * tree is dropped. if we create snapshot, cowing the fs
4594	 * tree may use more space than it frees. so we need
4595	 * reserve extra space.
4596	 */
4597	*bytes_to_reserve += rc->nodes_relocated;
4598}
4599
4600/*
4601 * called after snapshot is created. migrate block reservation
4602 * and create reloc root for the newly created snapshot
4603 */
4604int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4605			       struct btrfs_pending_snapshot *pending)
4606{
4607	struct btrfs_root *root = pending->root;
4608	struct btrfs_root *reloc_root;
4609	struct btrfs_root *new_root;
4610	struct reloc_control *rc;
4611	int ret;
4612
4613	if (!root->reloc_root)
4614		return 0;
4615
4616	rc = root->fs_info->reloc_ctl;
4617	rc->merging_rsv_size += rc->nodes_relocated;
4618
4619	if (rc->merge_reloc_tree) {
4620		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4621					      rc->block_rsv,
4622					      rc->nodes_relocated);
4623		if (ret)
4624			return ret;
4625	}
4626
4627	new_root = pending->snap;
4628	reloc_root = create_reloc_root(trans, root->reloc_root,
4629				       new_root->root_key.objectid);
4630	if (IS_ERR(reloc_root))
4631		return PTR_ERR(reloc_root);
4632
4633	ret = __add_reloc_root(reloc_root);
4634	BUG_ON(ret < 0);
4635	new_root->reloc_root = reloc_root;
4636
4637	if (rc->create_reloc_tree)
4638		ret = clone_backref_node(trans, rc, root, reloc_root);
4639	return ret;
4640}