Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
 
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
 
 
 
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
 
 
 
 
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
 
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
 
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
 
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
 
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 
 
 
 
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = sb->s_fs_info;
 309
 310	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 311	sb->s_blocksize = PAGE_SIZE;
 312	sb->s_blocksize_bits = PAGE_SHIFT;
 313	sb->s_magic = MQUEUE_MAGIC;
 314	sb->s_op = &mqueue_super_ops;
 315
 316	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 317	if (IS_ERR(inode))
 318		return PTR_ERR(inode);
 319
 320	sb->s_root = d_make_root(inode);
 321	if (!sb->s_root)
 322		return -ENOMEM;
 323	return 0;
 324}
 325
 326static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 327			 int flags, const char *dev_name,
 328			 void *data)
 329{
 330	struct ipc_namespace *ns;
 331	if (flags & MS_KERNMOUNT) {
 332		ns = data;
 333		data = NULL;
 334	} else {
 335		ns = current->nsproxy->ipc_ns;
 336	}
 337	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338}
 339
 340static void init_once(void *foo)
 341{
 342	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 343
 344	inode_init_once(&p->vfs_inode);
 345}
 346
 347static struct inode *mqueue_alloc_inode(struct super_block *sb)
 348{
 349	struct mqueue_inode_info *ei;
 350
 351	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 352	if (!ei)
 353		return NULL;
 354	return &ei->vfs_inode;
 355}
 356
 357static void mqueue_i_callback(struct rcu_head *head)
 358{
 359	struct inode *inode = container_of(head, struct inode, i_rcu);
 360	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 361}
 362
 363static void mqueue_destroy_inode(struct inode *inode)
 364{
 365	call_rcu(&inode->i_rcu, mqueue_i_callback);
 366}
 367
 368static void mqueue_evict_inode(struct inode *inode)
 369{
 370	struct mqueue_inode_info *info;
 371	struct user_struct *user;
 372	unsigned long mq_bytes, mq_treesize;
 373	struct ipc_namespace *ipc_ns;
 374	struct msg_msg *msg;
 
 375
 376	clear_inode(inode);
 377
 378	if (S_ISDIR(inode->i_mode))
 379		return;
 380
 381	ipc_ns = get_ns_from_inode(inode);
 382	info = MQUEUE_I(inode);
 383	spin_lock(&info->lock);
 384	while ((msg = msg_get(info)) != NULL)
 385		free_msg(msg);
 386	kfree(info->node_cache);
 387	spin_unlock(&info->lock);
 388
 389	/* Total amount of bytes accounted for the mqueue */
 390	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 391		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 392		sizeof(struct posix_msg_tree_node);
 393
 394	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 395				  info->attr.mq_msgsize);
 396
 397	user = info->user;
 398	if (user) {
 
 
 
 
 
 
 
 
 
 
 399		spin_lock(&mq_lock);
 400		user->mq_bytes -= mq_bytes;
 401		/*
 402		 * get_ns_from_inode() ensures that the
 403		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 404		 * to which we now hold a reference, or it is NULL.
 405		 * We can't put it here under mq_lock, though.
 406		 */
 407		if (ipc_ns)
 408			ipc_ns->mq_queues_count--;
 409		spin_unlock(&mq_lock);
 410		free_uid(user);
 411	}
 412	if (ipc_ns)
 413		put_ipc_ns(ipc_ns);
 414}
 415
 416static int mqueue_create(struct inode *dir, struct dentry *dentry,
 417				umode_t mode, bool excl)
 418{
 
 419	struct inode *inode;
 420	struct mq_attr *attr = dentry->d_fsdata;
 421	int error;
 422	struct ipc_namespace *ipc_ns;
 423
 424	spin_lock(&mq_lock);
 425	ipc_ns = __get_ns_from_inode(dir);
 426	if (!ipc_ns) {
 427		error = -EACCES;
 428		goto out_unlock;
 429	}
 430
 431	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 432	    !capable(CAP_SYS_RESOURCE)) {
 433		error = -ENOSPC;
 434		goto out_unlock;
 435	}
 436	ipc_ns->mq_queues_count++;
 437	spin_unlock(&mq_lock);
 438
 439	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 440	if (IS_ERR(inode)) {
 441		error = PTR_ERR(inode);
 442		spin_lock(&mq_lock);
 443		ipc_ns->mq_queues_count--;
 444		goto out_unlock;
 445	}
 446
 447	put_ipc_ns(ipc_ns);
 448	dir->i_size += DIRENT_SIZE;
 449	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 450
 451	d_instantiate(dentry, inode);
 452	dget(dentry);
 453	return 0;
 454out_unlock:
 455	spin_unlock(&mq_lock);
 456	if (ipc_ns)
 457		put_ipc_ns(ipc_ns);
 458	return error;
 459}
 460
 
 
 
 
 
 
 461static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 462{
 463	struct inode *inode = d_inode(dentry);
 464
 465	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 466	dir->i_size -= DIRENT_SIZE;
 467	drop_nlink(inode);
 468	dput(dentry);
 469	return 0;
 470}
 471
 472/*
 473*	This is routine for system read from queue file.
 474*	To avoid mess with doing here some sort of mq_receive we allow
 475*	to read only queue size & notification info (the only values
 476*	that are interesting from user point of view and aren't accessible
 477*	through std routines)
 478*/
 479static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 480				size_t count, loff_t *off)
 481{
 482	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 483	char buffer[FILENT_SIZE];
 484	ssize_t ret;
 485
 486	spin_lock(&info->lock);
 487	snprintf(buffer, sizeof(buffer),
 488			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 489			info->qsize,
 490			info->notify_owner ? info->notify.sigev_notify : 0,
 491			(info->notify_owner &&
 492			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 493				info->notify.sigev_signo : 0,
 494			pid_vnr(info->notify_owner));
 495	spin_unlock(&info->lock);
 496	buffer[sizeof(buffer)-1] = '\0';
 497
 498	ret = simple_read_from_buffer(u_data, count, off, buffer,
 499				strlen(buffer));
 500	if (ret <= 0)
 501		return ret;
 502
 503	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 504	return ret;
 505}
 506
 507static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 508{
 509	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 510
 511	spin_lock(&info->lock);
 512	if (task_tgid(current) == info->notify_owner)
 513		remove_notification(info);
 514
 515	spin_unlock(&info->lock);
 516	return 0;
 517}
 518
 519static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 520{
 521	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 522	int retval = 0;
 523
 524	poll_wait(filp, &info->wait_q, poll_tab);
 525
 526	spin_lock(&info->lock);
 527	if (info->attr.mq_curmsgs)
 528		retval = POLLIN | POLLRDNORM;
 529
 530	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 531		retval |= POLLOUT | POLLWRNORM;
 532	spin_unlock(&info->lock);
 533
 534	return retval;
 535}
 536
 537/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 538static void wq_add(struct mqueue_inode_info *info, int sr,
 539			struct ext_wait_queue *ewp)
 540{
 541	struct ext_wait_queue *walk;
 542
 543	ewp->task = current;
 544
 545	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 546		if (walk->task->static_prio <= current->static_prio) {
 547			list_add_tail(&ewp->list, &walk->list);
 548			return;
 549		}
 550	}
 551	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 552}
 553
 554/*
 555 * Puts current task to sleep. Caller must hold queue lock. After return
 556 * lock isn't held.
 557 * sr: SEND or RECV
 558 */
 559static int wq_sleep(struct mqueue_inode_info *info, int sr,
 560		    ktime_t *timeout, struct ext_wait_queue *ewp)
 
 561{
 562	int retval;
 563	signed long time;
 564
 565	wq_add(info, sr, ewp);
 566
 567	for (;;) {
 
 568		__set_current_state(TASK_INTERRUPTIBLE);
 569
 570		spin_unlock(&info->lock);
 571		time = schedule_hrtimeout_range_clock(timeout, 0,
 572			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 573
 574		if (ewp->state == STATE_READY) {
 
 
 575			retval = 0;
 576			goto out;
 577		}
 578		spin_lock(&info->lock);
 579		if (ewp->state == STATE_READY) {
 
 
 580			retval = 0;
 581			goto out_unlock;
 582		}
 583		if (signal_pending(current)) {
 584			retval = -ERESTARTSYS;
 585			break;
 586		}
 587		if (time == 0) {
 588			retval = -ETIMEDOUT;
 589			break;
 590		}
 591	}
 592	list_del(&ewp->list);
 593out_unlock:
 594	spin_unlock(&info->lock);
 595out:
 596	return retval;
 597}
 598
 599/*
 600 * Returns waiting task that should be serviced first or NULL if none exists
 601 */
 602static struct ext_wait_queue *wq_get_first_waiter(
 603		struct mqueue_inode_info *info, int sr)
 604{
 605	struct list_head *ptr;
 606
 607	ptr = info->e_wait_q[sr].list.prev;
 608	if (ptr == &info->e_wait_q[sr].list)
 609		return NULL;
 610	return list_entry(ptr, struct ext_wait_queue, list);
 611}
 612
 613
 614static inline void set_cookie(struct sk_buff *skb, char code)
 615{
 616	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 617}
 618
 619/*
 620 * The next function is only to split too long sys_mq_timedsend
 621 */
 622static void __do_notify(struct mqueue_inode_info *info)
 623{
 624	/* notification
 625	 * invoked when there is registered process and there isn't process
 626	 * waiting synchronously for message AND state of queue changed from
 627	 * empty to not empty. Here we are sure that no one is waiting
 628	 * synchronously. */
 629	if (info->notify_owner &&
 630	    info->attr.mq_curmsgs == 1) {
 631		struct siginfo sig_i;
 632		switch (info->notify.sigev_notify) {
 633		case SIGEV_NONE:
 634			break;
 635		case SIGEV_SIGNAL:
 636			/* sends signal */
 
 
 
 
 
 637
 
 638			sig_i.si_signo = info->notify.sigev_signo;
 639			sig_i.si_errno = 0;
 640			sig_i.si_code = SI_MESGQ;
 641			sig_i.si_value = info->notify.sigev_value;
 642			/* map current pid/uid into info->owner's namespaces */
 643			rcu_read_lock();
 
 644			sig_i.si_pid = task_tgid_nr_ns(current,
 645						ns_of_pid(info->notify_owner));
 646			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647			rcu_read_unlock();
 648
 649			kill_pid_info(info->notify.sigev_signo,
 650				      &sig_i, info->notify_owner);
 651			break;
 
 652		case SIGEV_THREAD:
 653			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 654			netlink_sendskb(info->notify_sock, info->notify_cookie);
 655			break;
 656		}
 657		/* after notification unregisters process */
 658		put_pid(info->notify_owner);
 659		put_user_ns(info->notify_user_ns);
 660		info->notify_owner = NULL;
 661		info->notify_user_ns = NULL;
 662	}
 663	wake_up(&info->wait_q);
 664}
 665
 666static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 667			   ktime_t *expires, struct timespec *ts)
 668{
 669	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 670		return -EFAULT;
 671	if (!timespec_valid(ts))
 672		return -EINVAL;
 673
 674	*expires = timespec_to_ktime(*ts);
 675	return 0;
 676}
 677
 678static void remove_notification(struct mqueue_inode_info *info)
 679{
 680	if (info->notify_owner != NULL &&
 681	    info->notify.sigev_notify == SIGEV_THREAD) {
 682		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 683		netlink_sendskb(info->notify_sock, info->notify_cookie);
 684	}
 685	put_pid(info->notify_owner);
 686	put_user_ns(info->notify_user_ns);
 687	info->notify_owner = NULL;
 688	info->notify_user_ns = NULL;
 689}
 690
 691static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 692{
 693	int mq_treesize;
 694	unsigned long total_size;
 695
 696	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 697		return -EINVAL;
 698	if (capable(CAP_SYS_RESOURCE)) {
 699		if (attr->mq_maxmsg > HARD_MSGMAX ||
 700		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 701			return -EINVAL;
 702	} else {
 703		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 704				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 705			return -EINVAL;
 706	}
 707	/* check for overflow */
 708	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 709		return -EOVERFLOW;
 710	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 711		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 712		sizeof(struct posix_msg_tree_node);
 713	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 714	if (total_size + mq_treesize < total_size)
 715		return -EOVERFLOW;
 716	return 0;
 717}
 718
 719/*
 720 * Invoked when creating a new queue via sys_mq_open
 721 */
 722static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 723			struct path *path, int oflag, umode_t mode,
 724			struct mq_attr *attr)
 725{
 726	const struct cred *cred = current_cred();
 727	int ret;
 728
 729	if (attr) {
 730		ret = mq_attr_ok(ipc_ns, attr);
 731		if (ret)
 732			return ERR_PTR(ret);
 733		/* store for use during create */
 734		path->dentry->d_fsdata = attr;
 735	} else {
 736		struct mq_attr def_attr;
 737
 738		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 739					 ipc_ns->mq_msg_default);
 740		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 741					  ipc_ns->mq_msgsize_default);
 742		ret = mq_attr_ok(ipc_ns, &def_attr);
 743		if (ret)
 744			return ERR_PTR(ret);
 745	}
 746
 747	mode &= ~current_umask();
 748	ret = vfs_create(dir, path->dentry, mode, true);
 749	path->dentry->d_fsdata = NULL;
 750	if (ret)
 751		return ERR_PTR(ret);
 752	return dentry_open(path, oflag, cred);
 753}
 754
 755/* Opens existing queue */
 756static struct file *do_open(struct path *path, int oflag)
 757{
 758	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 759						  MAY_READ | MAY_WRITE };
 760	int acc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 762		return ERR_PTR(-EINVAL);
 763	acc = oflag2acc[oflag & O_ACCMODE];
 764	if (inode_permission(d_inode(path->dentry), acc))
 765		return ERR_PTR(-EACCES);
 766	return dentry_open(path, oflag, current_cred());
 767}
 768
 769SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 770		struct mq_attr __user *, u_attr)
 771{
 772	struct path path;
 773	struct file *filp;
 774	struct filename *name;
 775	struct mq_attr attr;
 776	int fd, error;
 777	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 778	struct vfsmount *mnt = ipc_ns->mq_mnt;
 779	struct dentry *root = mnt->mnt_root;
 780	int ro;
 781
 782	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 783		return -EFAULT;
 784
 785	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 786
 787	if (IS_ERR(name = getname(u_name)))
 788		return PTR_ERR(name);
 789
 790	fd = get_unused_fd_flags(O_CLOEXEC);
 791	if (fd < 0)
 792		goto out_putname;
 793
 794	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 795	error = 0;
 796	inode_lock(d_inode(root));
 797	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 798	if (IS_ERR(path.dentry)) {
 799		error = PTR_ERR(path.dentry);
 800		goto out_putfd;
 801	}
 802	path.mnt = mntget(mnt);
 803
 804	if (oflag & O_CREAT) {
 805		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 806			audit_inode(name, path.dentry, 0);
 807			if (oflag & O_EXCL) {
 808				error = -EEXIST;
 809				goto out;
 810			}
 811			filp = do_open(&path, oflag);
 812		} else {
 813			if (ro) {
 814				error = ro;
 815				goto out;
 816			}
 817			audit_inode_parent_hidden(name, root);
 818			filp = do_create(ipc_ns, d_inode(root),
 819						&path, oflag, mode,
 820						u_attr ? &attr : NULL);
 821		}
 822	} else {
 823		if (d_really_is_negative(path.dentry)) {
 824			error = -ENOENT;
 825			goto out;
 826		}
 827		audit_inode(name, path.dentry, 0);
 828		filp = do_open(&path, oflag);
 829	}
 830
 831	if (!IS_ERR(filp))
 832		fd_install(fd, filp);
 833	else
 834		error = PTR_ERR(filp);
 835out:
 836	path_put(&path);
 837out_putfd:
 838	if (error) {
 839		put_unused_fd(fd);
 840		fd = error;
 841	}
 842	inode_unlock(d_inode(root));
 843	if (!ro)
 844		mnt_drop_write(mnt);
 845out_putname:
 846	putname(name);
 847	return fd;
 848}
 849
 
 
 
 
 
 
 
 
 
 
 850SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 851{
 852	int err;
 853	struct filename *name;
 854	struct dentry *dentry;
 855	struct inode *inode = NULL;
 856	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 857	struct vfsmount *mnt = ipc_ns->mq_mnt;
 858
 859	name = getname(u_name);
 860	if (IS_ERR(name))
 861		return PTR_ERR(name);
 862
 863	audit_inode_parent_hidden(name, mnt->mnt_root);
 864	err = mnt_want_write(mnt);
 865	if (err)
 866		goto out_name;
 867	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 868	dentry = lookup_one_len(name->name, mnt->mnt_root,
 869				strlen(name->name));
 870	if (IS_ERR(dentry)) {
 871		err = PTR_ERR(dentry);
 872		goto out_unlock;
 873	}
 874
 875	inode = d_inode(dentry);
 876	if (!inode) {
 877		err = -ENOENT;
 878	} else {
 879		ihold(inode);
 880		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 881	}
 882	dput(dentry);
 883
 884out_unlock:
 885	inode_unlock(d_inode(mnt->mnt_root));
 886	if (inode)
 887		iput(inode);
 888	mnt_drop_write(mnt);
 889out_name:
 890	putname(name);
 891
 892	return err;
 893}
 894
 895/* Pipelined send and receive functions.
 896 *
 897 * If a receiver finds no waiting message, then it registers itself in the
 898 * list of waiting receivers. A sender checks that list before adding the new
 899 * message into the message array. If there is a waiting receiver, then it
 900 * bypasses the message array and directly hands the message over to the
 901 * receiver. The receiver accepts the message and returns without grabbing the
 902 * queue spinlock:
 903 *
 904 * - Set pointer to message.
 905 * - Queue the receiver task for later wakeup (without the info->lock).
 906 * - Update its state to STATE_READY. Now the receiver can continue.
 907 * - Wake up the process after the lock is dropped. Should the process wake up
 908 *   before this wakeup (due to a timeout or a signal) it will either see
 909 *   STATE_READY and continue or acquire the lock to check the state again.
 910 *
 911 * The same algorithm is used for senders.
 912 */
 913
 
 
 
 
 
 
 
 
 
 
 
 
 914/* pipelined_send() - send a message directly to the task waiting in
 915 * sys_mq_timedreceive() (without inserting message into a queue).
 916 */
 917static inline void pipelined_send(struct wake_q_head *wake_q,
 918				  struct mqueue_inode_info *info,
 919				  struct msg_msg *message,
 920				  struct ext_wait_queue *receiver)
 921{
 922	receiver->msg = message;
 923	list_del(&receiver->list);
 924	wake_q_add(wake_q, receiver->task);
 925	/*
 926	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 927	 * that we can ensure that updating receiver->state is the last
 928	 * write operation: As once set, the receiver can continue,
 929	 * and if we don't have the reference count from the wake_q,
 930	 * yet, at that point we can later have a use-after-free
 931	 * condition and bogus wakeup.
 932	 */
 933	receiver->state = STATE_READY;
 934}
 935
 936/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 937 * gets its message and put to the queue (we have one free place for sure). */
 938static inline void pipelined_receive(struct wake_q_head *wake_q,
 939				     struct mqueue_inode_info *info)
 940{
 941	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 942
 943	if (!sender) {
 944		/* for poll */
 945		wake_up_interruptible(&info->wait_q);
 946		return;
 947	}
 948	if (msg_insert(sender->msg, info))
 949		return;
 950
 951	list_del(&sender->list);
 952	wake_q_add(wake_q, sender->task);
 953	sender->state = STATE_READY;
 954}
 955
 956SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 957		size_t, msg_len, unsigned int, msg_prio,
 958		const struct timespec __user *, u_abs_timeout)
 959{
 960	struct fd f;
 961	struct inode *inode;
 962	struct ext_wait_queue wait;
 963	struct ext_wait_queue *receiver;
 964	struct msg_msg *msg_ptr;
 965	struct mqueue_inode_info *info;
 966	ktime_t expires, *timeout = NULL;
 967	struct timespec ts;
 968	struct posix_msg_tree_node *new_leaf = NULL;
 969	int ret = 0;
 970	DEFINE_WAKE_Q(wake_q);
 971
 972	if (u_abs_timeout) {
 973		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 974		if (res)
 975			return res;
 976		timeout = &expires;
 977	}
 978
 979	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 980		return -EINVAL;
 981
 982	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 
 
 
 
 
 983
 984	f = fdget(mqdes);
 985	if (unlikely(!f.file)) {
 986		ret = -EBADF;
 987		goto out;
 988	}
 989
 990	inode = file_inode(f.file);
 991	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 992		ret = -EBADF;
 993		goto out_fput;
 994	}
 995	info = MQUEUE_I(inode);
 996	audit_file(f.file);
 997
 998	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
 999		ret = -EBADF;
1000		goto out_fput;
1001	}
1002
1003	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1004		ret = -EMSGSIZE;
1005		goto out_fput;
1006	}
1007
1008	/* First try to allocate memory, before doing anything with
1009	 * existing queues. */
1010	msg_ptr = load_msg(u_msg_ptr, msg_len);
1011	if (IS_ERR(msg_ptr)) {
1012		ret = PTR_ERR(msg_ptr);
1013		goto out_fput;
1014	}
1015	msg_ptr->m_ts = msg_len;
1016	msg_ptr->m_type = msg_prio;
1017
1018	/*
1019	 * msg_insert really wants us to have a valid, spare node struct so
1020	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1021	 * fall back to that if necessary.
1022	 */
1023	if (!info->node_cache)
1024		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1025
1026	spin_lock(&info->lock);
1027
1028	if (!info->node_cache && new_leaf) {
1029		/* Save our speculative allocation into the cache */
1030		INIT_LIST_HEAD(&new_leaf->msg_list);
1031		info->node_cache = new_leaf;
1032		new_leaf = NULL;
1033	} else {
1034		kfree(new_leaf);
1035	}
1036
1037	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1038		if (f.file->f_flags & O_NONBLOCK) {
1039			ret = -EAGAIN;
1040		} else {
1041			wait.task = current;
1042			wait.msg = (void *) msg_ptr;
1043			wait.state = STATE_NONE;
 
 
1044			ret = wq_sleep(info, SEND, timeout, &wait);
1045			/*
1046			 * wq_sleep must be called with info->lock held, and
1047			 * returns with the lock released
1048			 */
1049			goto out_free;
1050		}
1051	} else {
1052		receiver = wq_get_first_waiter(info, RECV);
1053		if (receiver) {
1054			pipelined_send(&wake_q, info, msg_ptr, receiver);
1055		} else {
1056			/* adds message to the queue */
1057			ret = msg_insert(msg_ptr, info);
1058			if (ret)
1059				goto out_unlock;
1060			__do_notify(info);
1061		}
1062		inode->i_atime = inode->i_mtime = inode->i_ctime =
1063				current_time(inode);
1064	}
1065out_unlock:
1066	spin_unlock(&info->lock);
1067	wake_up_q(&wake_q);
1068out_free:
1069	if (ret)
1070		free_msg(msg_ptr);
1071out_fput:
1072	fdput(f);
1073out:
1074	return ret;
1075}
1076
1077SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1078		size_t, msg_len, unsigned int __user *, u_msg_prio,
1079		const struct timespec __user *, u_abs_timeout)
1080{
1081	ssize_t ret;
1082	struct msg_msg *msg_ptr;
1083	struct fd f;
1084	struct inode *inode;
1085	struct mqueue_inode_info *info;
1086	struct ext_wait_queue wait;
1087	ktime_t expires, *timeout = NULL;
1088	struct timespec ts;
1089	struct posix_msg_tree_node *new_leaf = NULL;
1090
1091	if (u_abs_timeout) {
1092		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1093		if (res)
1094			return res;
1095		timeout = &expires;
1096	}
1097
1098	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1099
1100	f = fdget(mqdes);
1101	if (unlikely(!f.file)) {
1102		ret = -EBADF;
1103		goto out;
1104	}
1105
1106	inode = file_inode(f.file);
1107	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108		ret = -EBADF;
1109		goto out_fput;
1110	}
1111	info = MQUEUE_I(inode);
1112	audit_file(f.file);
1113
1114	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115		ret = -EBADF;
1116		goto out_fput;
1117	}
1118
1119	/* checks if buffer is big enough */
1120	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121		ret = -EMSGSIZE;
1122		goto out_fput;
1123	}
1124
1125	/*
1126	 * msg_insert really wants us to have a valid, spare node struct so
1127	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128	 * fall back to that if necessary.
1129	 */
1130	if (!info->node_cache)
1131		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1132
1133	spin_lock(&info->lock);
1134
1135	if (!info->node_cache && new_leaf) {
1136		/* Save our speculative allocation into the cache */
1137		INIT_LIST_HEAD(&new_leaf->msg_list);
1138		info->node_cache = new_leaf;
1139	} else {
1140		kfree(new_leaf);
1141	}
1142
1143	if (info->attr.mq_curmsgs == 0) {
1144		if (f.file->f_flags & O_NONBLOCK) {
1145			spin_unlock(&info->lock);
1146			ret = -EAGAIN;
1147		} else {
1148			wait.task = current;
1149			wait.state = STATE_NONE;
 
 
1150			ret = wq_sleep(info, RECV, timeout, &wait);
1151			msg_ptr = wait.msg;
1152		}
1153	} else {
1154		DEFINE_WAKE_Q(wake_q);
1155
1156		msg_ptr = msg_get(info);
1157
1158		inode->i_atime = inode->i_mtime = inode->i_ctime =
1159				current_time(inode);
1160
1161		/* There is now free space in queue. */
1162		pipelined_receive(&wake_q, info);
1163		spin_unlock(&info->lock);
1164		wake_up_q(&wake_q);
1165		ret = 0;
1166	}
1167	if (ret == 0) {
1168		ret = msg_ptr->m_ts;
1169
1170		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172			ret = -EFAULT;
1173		}
1174		free_msg(msg_ptr);
1175	}
1176out_fput:
1177	fdput(f);
1178out:
1179	return ret;
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * Notes: the case when user wants us to deregister (with NULL as pointer)
1184 * and he isn't currently owner of notification, will be silently discarded.
1185 * It isn't explicitly defined in the POSIX.
1186 */
1187SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1188		const struct sigevent __user *, u_notification)
1189{
1190	int ret;
1191	struct fd f;
1192	struct sock *sock;
1193	struct inode *inode;
1194	struct sigevent notification;
1195	struct mqueue_inode_info *info;
1196	struct sk_buff *nc;
1197
1198	if (u_notification) {
1199		if (copy_from_user(&notification, u_notification,
1200					sizeof(struct sigevent)))
1201			return -EFAULT;
1202	}
1203
1204	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1205
1206	nc = NULL;
1207	sock = NULL;
1208	if (u_notification != NULL) {
1209		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1210			     notification.sigev_notify != SIGEV_SIGNAL &&
1211			     notification.sigev_notify != SIGEV_THREAD))
1212			return -EINVAL;
1213		if (notification.sigev_notify == SIGEV_SIGNAL &&
1214			!valid_signal(notification.sigev_signo)) {
1215			return -EINVAL;
1216		}
1217		if (notification.sigev_notify == SIGEV_THREAD) {
1218			long timeo;
1219
1220			/* create the notify skb */
1221			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1222			if (!nc) {
1223				ret = -ENOMEM;
1224				goto out;
1225			}
1226			if (copy_from_user(nc->data,
1227					notification.sigev_value.sival_ptr,
1228					NOTIFY_COOKIE_LEN)) {
1229				ret = -EFAULT;
1230				goto out;
1231			}
1232
1233			/* TODO: add a header? */
1234			skb_put(nc, NOTIFY_COOKIE_LEN);
1235			/* and attach it to the socket */
1236retry:
1237			f = fdget(notification.sigev_signo);
1238			if (!f.file) {
1239				ret = -EBADF;
1240				goto out;
1241			}
1242			sock = netlink_getsockbyfilp(f.file);
1243			fdput(f);
1244			if (IS_ERR(sock)) {
1245				ret = PTR_ERR(sock);
1246				sock = NULL;
1247				goto out;
1248			}
1249
1250			timeo = MAX_SCHEDULE_TIMEOUT;
1251			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1252			if (ret == 1)
1253				goto retry;
1254			if (ret) {
1255				sock = NULL;
1256				nc = NULL;
1257				goto out;
1258			}
 
 
1259		}
1260	}
1261
1262	f = fdget(mqdes);
1263	if (!f.file) {
1264		ret = -EBADF;
1265		goto out;
1266	}
1267
1268	inode = file_inode(f.file);
1269	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1270		ret = -EBADF;
1271		goto out_fput;
1272	}
1273	info = MQUEUE_I(inode);
1274
1275	ret = 0;
1276	spin_lock(&info->lock);
1277	if (u_notification == NULL) {
1278		if (info->notify_owner == task_tgid(current)) {
1279			remove_notification(info);
1280			inode->i_atime = inode->i_ctime = current_time(inode);
1281		}
1282	} else if (info->notify_owner != NULL) {
1283		ret = -EBUSY;
1284	} else {
1285		switch (notification.sigev_notify) {
1286		case SIGEV_NONE:
1287			info->notify.sigev_notify = SIGEV_NONE;
1288			break;
1289		case SIGEV_THREAD:
1290			info->notify_sock = sock;
1291			info->notify_cookie = nc;
1292			sock = NULL;
1293			nc = NULL;
1294			info->notify.sigev_notify = SIGEV_THREAD;
1295			break;
1296		case SIGEV_SIGNAL:
1297			info->notify.sigev_signo = notification.sigev_signo;
1298			info->notify.sigev_value = notification.sigev_value;
1299			info->notify.sigev_notify = SIGEV_SIGNAL;
 
1300			break;
1301		}
1302
1303		info->notify_owner = get_pid(task_tgid(current));
1304		info->notify_user_ns = get_user_ns(current_user_ns());
1305		inode->i_atime = inode->i_ctime = current_time(inode);
1306	}
1307	spin_unlock(&info->lock);
1308out_fput:
1309	fdput(f);
1310out:
1311	if (sock)
1312		netlink_detachskb(sock, nc);
1313	else if (nc)
 
1314		dev_kfree_skb(nc);
1315
1316	return ret;
1317}
1318
1319SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1320		const struct mq_attr __user *, u_mqstat,
1321		struct mq_attr __user *, u_omqstat)
 
 
 
 
 
 
 
 
 
 
1322{
1323	int ret;
1324	struct mq_attr mqstat, omqstat;
1325	struct fd f;
1326	struct inode *inode;
1327	struct mqueue_inode_info *info;
1328
1329	if (u_mqstat != NULL) {
1330		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1331			return -EFAULT;
1332		if (mqstat.mq_flags & (~O_NONBLOCK))
1333			return -EINVAL;
1334	}
1335
1336	f = fdget(mqdes);
1337	if (!f.file) {
1338		ret = -EBADF;
1339		goto out;
1340	}
1341
1342	inode = file_inode(f.file);
1343	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1344		ret = -EBADF;
1345		goto out_fput;
1346	}
 
 
1347	info = MQUEUE_I(inode);
1348
1349	spin_lock(&info->lock);
1350
1351	omqstat = info->attr;
1352	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1353	if (u_mqstat) {
1354		audit_mq_getsetattr(mqdes, &mqstat);
 
 
1355		spin_lock(&f.file->f_lock);
1356		if (mqstat.mq_flags & O_NONBLOCK)
1357			f.file->f_flags |= O_NONBLOCK;
1358		else
1359			f.file->f_flags &= ~O_NONBLOCK;
1360		spin_unlock(&f.file->f_lock);
1361
1362		inode->i_atime = inode->i_ctime = current_time(inode);
1363	}
1364
1365	spin_unlock(&info->lock);
 
 
 
1366
1367	ret = 0;
1368	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1369						sizeof(struct mq_attr)))
1370		ret = -EFAULT;
 
 
 
1371
1372out_fput:
1373	fdput(f);
1374out:
1375	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376}
1377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378static const struct inode_operations mqueue_dir_inode_operations = {
1379	.lookup = simple_lookup,
1380	.create = mqueue_create,
1381	.unlink = mqueue_unlink,
1382};
1383
1384static const struct file_operations mqueue_file_operations = {
1385	.flush = mqueue_flush_file,
1386	.poll = mqueue_poll_file,
1387	.read = mqueue_read_file,
1388	.llseek = default_llseek,
1389};
1390
1391static const struct super_operations mqueue_super_ops = {
1392	.alloc_inode = mqueue_alloc_inode,
1393	.destroy_inode = mqueue_destroy_inode,
1394	.evict_inode = mqueue_evict_inode,
1395	.statfs = simple_statfs,
1396};
1397
 
 
 
 
 
1398static struct file_system_type mqueue_fs_type = {
1399	.name = "mqueue",
1400	.mount = mqueue_mount,
1401	.kill_sb = kill_litter_super,
1402	.fs_flags = FS_USERNS_MOUNT,
1403};
1404
1405int mq_init_ns(struct ipc_namespace *ns)
1406{
 
 
1407	ns->mq_queues_count  = 0;
1408	ns->mq_queues_max    = DFLT_QUEUESMAX;
1409	ns->mq_msg_max       = DFLT_MSGMAX;
1410	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1411	ns->mq_msg_default   = DFLT_MSG;
1412	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1413
1414	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1415	if (IS_ERR(ns->mq_mnt)) {
1416		int err = PTR_ERR(ns->mq_mnt);
1417		ns->mq_mnt = NULL;
1418		return err;
1419	}
1420	return 0;
1421}
1422
1423void mq_clear_sbinfo(struct ipc_namespace *ns)
1424{
1425	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1426}
1427
1428void mq_put_mnt(struct ipc_namespace *ns)
1429{
1430	kern_unmount(ns->mq_mnt);
1431}
1432
1433static int __init init_mqueue_fs(void)
1434{
1435	int error;
1436
1437	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1438				sizeof(struct mqueue_inode_info), 0,
1439				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1440	if (mqueue_inode_cachep == NULL)
1441		return -ENOMEM;
1442
1443	/* ignore failures - they are not fatal */
1444	mq_sysctl_table = mq_register_sysctl_table();
1445
1446	error = register_filesystem(&mqueue_fs_type);
1447	if (error)
1448		goto out_sysctl;
1449
1450	spin_lock_init(&mq_lock);
1451
1452	error = mq_init_ns(&init_ipc_ns);
1453	if (error)
1454		goto out_filesystem;
1455
1456	return 0;
1457
1458out_filesystem:
1459	unregister_filesystem(&mqueue_fs_type);
1460out_sysctl:
1461	if (mq_sysctl_table)
1462		unregister_sysctl_table(mq_sysctl_table);
1463	kmem_cache_destroy(mqueue_inode_cachep);
1464	return error;
1465}
1466
1467device_initcall(init_mqueue_fs);
v5.9
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47	struct ipc_namespace	*ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC	0x19800202
  51#define DIRENT_SIZE	20
  52#define FILENT_SIZE	80
  53
  54#define SEND		0
  55#define RECV		1
  56
  57#define STATE_NONE	0
  58#define STATE_READY	1
  59
  60struct posix_msg_tree_node {
  61	struct rb_node		rb_node;
  62	struct list_head	msg_list;
  63	int			priority;
  64};
  65
  66/*
  67 * Locking:
  68 *
  69 * Accesses to a message queue are synchronized by acquiring info->lock.
  70 *
  71 * There are two notable exceptions:
  72 * - The actual wakeup of a sleeping task is performed using the wake_q
  73 *   framework. info->lock is already released when wake_up_q is called.
  74 * - The exit codepaths after sleeping check ext_wait_queue->state without
  75 *   any locks. If it is STATE_READY, then the syscall is completed without
  76 *   acquiring info->lock.
  77 *
  78 * MQ_BARRIER:
  79 * To achieve proper release/acquire memory barrier pairing, the state is set to
  80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
  81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
  82 *
  83 * This prevents the following races:
  84 *
  85 * 1) With the simple wake_q_add(), the task could be gone already before
  86 *    the increase of the reference happens
  87 * Thread A
  88 *				Thread B
  89 * WRITE_ONCE(wait.state, STATE_NONE);
  90 * schedule_hrtimeout()
  91 *				wake_q_add(A)
  92 *				if (cmpxchg()) // success
  93 *				   ->state = STATE_READY (reordered)
  94 * <timeout returns>
  95 * if (wait.state == STATE_READY) return;
  96 * sysret to user space
  97 * sys_exit()
  98 *				get_task_struct() // UaF
  99 *
 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
 101 * the smp_store_release() that does ->state = STATE_READY.
 102 *
 103 * 2) Without proper _release/_acquire barriers, the woken up task
 104 *    could read stale data
 105 *
 106 * Thread A
 107 *				Thread B
 108 * do_mq_timedreceive
 109 * WRITE_ONCE(wait.state, STATE_NONE);
 110 * schedule_hrtimeout()
 111 *				state = STATE_READY;
 112 * <timeout returns>
 113 * if (wait.state == STATE_READY) return;
 114 * msg_ptr = wait.msg;		// Access to stale data!
 115 *				receiver->msg = message; (reordered)
 116 *
 117 * Solution: use _release and _acquire barriers.
 118 *
 119 * 3) There is intentionally no barrier when setting current->state
 120 *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
 121 *    release memory barrier, and the wakeup is triggered when holding
 122 *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
 123 *    acquire memory barrier.
 124 */
 125
 126struct ext_wait_queue {		/* queue of sleeping tasks */
 127	struct task_struct *task;
 128	struct list_head list;
 129	struct msg_msg *msg;	/* ptr of loaded message */
 130	int state;		/* one of STATE_* values */
 131};
 132
 133struct mqueue_inode_info {
 134	spinlock_t lock;
 135	struct inode vfs_inode;
 136	wait_queue_head_t wait_q;
 137
 138	struct rb_root msg_tree;
 139	struct rb_node *msg_tree_rightmost;
 140	struct posix_msg_tree_node *node_cache;
 141	struct mq_attr attr;
 142
 143	struct sigevent notify;
 144	struct pid *notify_owner;
 145	u32 notify_self_exec_id;
 146	struct user_namespace *notify_user_ns;
 147	struct user_struct *user;	/* user who created, for accounting */
 148	struct sock *notify_sock;
 149	struct sk_buff *notify_cookie;
 150
 151	/* for tasks waiting for free space and messages, respectively */
 152	struct ext_wait_queue e_wait_q[2];
 153
 154	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
 155};
 156
 157static struct file_system_type mqueue_fs_type;
 158static const struct inode_operations mqueue_dir_inode_operations;
 159static const struct file_operations mqueue_file_operations;
 160static const struct super_operations mqueue_super_ops;
 161static const struct fs_context_operations mqueue_fs_context_ops;
 162static void remove_notification(struct mqueue_inode_info *info);
 163
 164static struct kmem_cache *mqueue_inode_cachep;
 165
 166static struct ctl_table_header *mq_sysctl_table;
 167
 168static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 169{
 170	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 171}
 172
 173/*
 174 * This routine should be called with the mq_lock held.
 175 */
 176static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 177{
 178	return get_ipc_ns(inode->i_sb->s_fs_info);
 179}
 180
 181static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 182{
 183	struct ipc_namespace *ns;
 184
 185	spin_lock(&mq_lock);
 186	ns = __get_ns_from_inode(inode);
 187	spin_unlock(&mq_lock);
 188	return ns;
 189}
 190
 191/* Auxiliary functions to manipulate messages' list */
 192static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 193{
 194	struct rb_node **p, *parent = NULL;
 195	struct posix_msg_tree_node *leaf;
 196	bool rightmost = true;
 197
 198	p = &info->msg_tree.rb_node;
 199	while (*p) {
 200		parent = *p;
 201		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 202
 203		if (likely(leaf->priority == msg->m_type))
 204			goto insert_msg;
 205		else if (msg->m_type < leaf->priority) {
 206			p = &(*p)->rb_left;
 207			rightmost = false;
 208		} else
 209			p = &(*p)->rb_right;
 210	}
 211	if (info->node_cache) {
 212		leaf = info->node_cache;
 213		info->node_cache = NULL;
 214	} else {
 215		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 216		if (!leaf)
 217			return -ENOMEM;
 218		INIT_LIST_HEAD(&leaf->msg_list);
 219	}
 220	leaf->priority = msg->m_type;
 221
 222	if (rightmost)
 223		info->msg_tree_rightmost = &leaf->rb_node;
 224
 225	rb_link_node(&leaf->rb_node, parent, p);
 226	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 227insert_msg:
 228	info->attr.mq_curmsgs++;
 229	info->qsize += msg->m_ts;
 230	list_add_tail(&msg->m_list, &leaf->msg_list);
 231	return 0;
 232}
 233
 234static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 235				  struct mqueue_inode_info *info)
 236{
 237	struct rb_node *node = &leaf->rb_node;
 238
 239	if (info->msg_tree_rightmost == node)
 240		info->msg_tree_rightmost = rb_prev(node);
 241
 242	rb_erase(node, &info->msg_tree);
 243	if (info->node_cache)
 244		kfree(leaf);
 245	else
 246		info->node_cache = leaf;
 247}
 248
 249static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 250{
 251	struct rb_node *parent = NULL;
 252	struct posix_msg_tree_node *leaf;
 253	struct msg_msg *msg;
 254
 255try_again:
 256	/*
 257	 * During insert, low priorities go to the left and high to the
 258	 * right.  On receive, we want the highest priorities first, so
 259	 * walk all the way to the right.
 260	 */
 261	parent = info->msg_tree_rightmost;
 
 
 
 
 262	if (!parent) {
 263		if (info->attr.mq_curmsgs) {
 264			pr_warn_once("Inconsistency in POSIX message queue, "
 265				     "no tree element, but supposedly messages "
 266				     "should exist!\n");
 267			info->attr.mq_curmsgs = 0;
 268		}
 269		return NULL;
 270	}
 271	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 272	if (unlikely(list_empty(&leaf->msg_list))) {
 273		pr_warn_once("Inconsistency in POSIX message queue, "
 274			     "empty leaf node but we haven't implemented "
 275			     "lazy leaf delete!\n");
 276		msg_tree_erase(leaf, info);
 
 
 
 
 
 277		goto try_again;
 278	} else {
 279		msg = list_first_entry(&leaf->msg_list,
 280				       struct msg_msg, m_list);
 281		list_del(&msg->m_list);
 282		if (list_empty(&leaf->msg_list)) {
 283			msg_tree_erase(leaf, info);
 
 
 
 
 
 284		}
 285	}
 286	info->attr.mq_curmsgs--;
 287	info->qsize -= msg->m_ts;
 288	return msg;
 289}
 290
 291static struct inode *mqueue_get_inode(struct super_block *sb,
 292		struct ipc_namespace *ipc_ns, umode_t mode,
 293		struct mq_attr *attr)
 294{
 295	struct user_struct *u = current_user();
 296	struct inode *inode;
 297	int ret = -ENOMEM;
 298
 299	inode = new_inode(sb);
 300	if (!inode)
 301		goto err;
 302
 303	inode->i_ino = get_next_ino();
 304	inode->i_mode = mode;
 305	inode->i_uid = current_fsuid();
 306	inode->i_gid = current_fsgid();
 307	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 308
 309	if (S_ISREG(mode)) {
 310		struct mqueue_inode_info *info;
 311		unsigned long mq_bytes, mq_treesize;
 312
 313		inode->i_fop = &mqueue_file_operations;
 314		inode->i_size = FILENT_SIZE;
 315		/* mqueue specific info */
 316		info = MQUEUE_I(inode);
 317		spin_lock_init(&info->lock);
 318		init_waitqueue_head(&info->wait_q);
 319		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 320		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 321		info->notify_owner = NULL;
 322		info->notify_user_ns = NULL;
 323		info->qsize = 0;
 324		info->user = NULL;	/* set when all is ok */
 325		info->msg_tree = RB_ROOT;
 326		info->msg_tree_rightmost = NULL;
 327		info->node_cache = NULL;
 328		memset(&info->attr, 0, sizeof(info->attr));
 329		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 330					   ipc_ns->mq_msg_default);
 331		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 332					    ipc_ns->mq_msgsize_default);
 333		if (attr) {
 334			info->attr.mq_maxmsg = attr->mq_maxmsg;
 335			info->attr.mq_msgsize = attr->mq_msgsize;
 336		}
 337		/*
 338		 * We used to allocate a static array of pointers and account
 339		 * the size of that array as well as one msg_msg struct per
 340		 * possible message into the queue size. That's no longer
 341		 * accurate as the queue is now an rbtree and will grow and
 342		 * shrink depending on usage patterns.  We can, however, still
 343		 * account one msg_msg struct per message, but the nodes are
 344		 * allocated depending on priority usage, and most programs
 345		 * only use one, or a handful, of priorities.  However, since
 346		 * this is pinned memory, we need to assume worst case, so
 347		 * that means the min(mq_maxmsg, max_priorities) * struct
 348		 * posix_msg_tree_node.
 349		 */
 350
 351		ret = -EINVAL;
 352		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 353			goto out_inode;
 354		if (capable(CAP_SYS_RESOURCE)) {
 355			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 356			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 357				goto out_inode;
 358		} else {
 359			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 360					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 361				goto out_inode;
 362		}
 363		ret = -EOVERFLOW;
 364		/* check for overflow */
 365		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 366			goto out_inode;
 367		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 368			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 369			sizeof(struct posix_msg_tree_node);
 370		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 371		if (mq_bytes + mq_treesize < mq_bytes)
 372			goto out_inode;
 373		mq_bytes += mq_treesize;
 374		spin_lock(&mq_lock);
 375		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 376		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 377			spin_unlock(&mq_lock);
 378			/* mqueue_evict_inode() releases info->messages */
 379			ret = -EMFILE;
 380			goto out_inode;
 381		}
 382		u->mq_bytes += mq_bytes;
 383		spin_unlock(&mq_lock);
 384
 385		/* all is ok */
 386		info->user = get_uid(u);
 387	} else if (S_ISDIR(mode)) {
 388		inc_nlink(inode);
 389		/* Some things misbehave if size == 0 on a directory */
 390		inode->i_size = 2 * DIRENT_SIZE;
 391		inode->i_op = &mqueue_dir_inode_operations;
 392		inode->i_fop = &simple_dir_operations;
 393	}
 394
 395	return inode;
 396out_inode:
 397	iput(inode);
 398err:
 399	return ERR_PTR(ret);
 400}
 401
 402static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 403{
 404	struct inode *inode;
 405	struct ipc_namespace *ns = sb->s_fs_info;
 406
 407	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 408	sb->s_blocksize = PAGE_SIZE;
 409	sb->s_blocksize_bits = PAGE_SHIFT;
 410	sb->s_magic = MQUEUE_MAGIC;
 411	sb->s_op = &mqueue_super_ops;
 412
 413	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 414	if (IS_ERR(inode))
 415		return PTR_ERR(inode);
 416
 417	sb->s_root = d_make_root(inode);
 418	if (!sb->s_root)
 419		return -ENOMEM;
 420	return 0;
 421}
 422
 423static int mqueue_get_tree(struct fs_context *fc)
 
 
 424{
 425	struct mqueue_fs_context *ctx = fc->fs_private;
 426
 427	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 428}
 429
 430static void mqueue_fs_context_free(struct fs_context *fc)
 431{
 432	struct mqueue_fs_context *ctx = fc->fs_private;
 433
 434	put_ipc_ns(ctx->ipc_ns);
 435	kfree(ctx);
 436}
 437
 438static int mqueue_init_fs_context(struct fs_context *fc)
 439{
 440	struct mqueue_fs_context *ctx;
 441
 442	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 443	if (!ctx)
 444		return -ENOMEM;
 445
 446	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 447	put_user_ns(fc->user_ns);
 448	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 449	fc->fs_private = ctx;
 450	fc->ops = &mqueue_fs_context_ops;
 451	return 0;
 452}
 453
 454static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 455{
 456	struct mqueue_fs_context *ctx;
 457	struct fs_context *fc;
 458	struct vfsmount *mnt;
 459
 460	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 461	if (IS_ERR(fc))
 462		return ERR_CAST(fc);
 463
 464	ctx = fc->fs_private;
 465	put_ipc_ns(ctx->ipc_ns);
 466	ctx->ipc_ns = get_ipc_ns(ns);
 467	put_user_ns(fc->user_ns);
 468	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 469
 470	mnt = fc_mount(fc);
 471	put_fs_context(fc);
 472	return mnt;
 473}
 474
 475static void init_once(void *foo)
 476{
 477	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 478
 479	inode_init_once(&p->vfs_inode);
 480}
 481
 482static struct inode *mqueue_alloc_inode(struct super_block *sb)
 483{
 484	struct mqueue_inode_info *ei;
 485
 486	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 487	if (!ei)
 488		return NULL;
 489	return &ei->vfs_inode;
 490}
 491
 492static void mqueue_free_inode(struct inode *inode)
 493{
 
 494	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 495}
 496
 
 
 
 
 
 497static void mqueue_evict_inode(struct inode *inode)
 498{
 499	struct mqueue_inode_info *info;
 500	struct user_struct *user;
 
 501	struct ipc_namespace *ipc_ns;
 502	struct msg_msg *msg, *nmsg;
 503	LIST_HEAD(tmp_msg);
 504
 505	clear_inode(inode);
 506
 507	if (S_ISDIR(inode->i_mode))
 508		return;
 509
 510	ipc_ns = get_ns_from_inode(inode);
 511	info = MQUEUE_I(inode);
 512	spin_lock(&info->lock);
 513	while ((msg = msg_get(info)) != NULL)
 514		list_add_tail(&msg->m_list, &tmp_msg);
 515	kfree(info->node_cache);
 516	spin_unlock(&info->lock);
 517
 518	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 519		list_del(&msg->m_list);
 520		free_msg(msg);
 521	}
 
 
 
 522
 523	user = info->user;
 524	if (user) {
 525		unsigned long mq_bytes, mq_treesize;
 526
 527		/* Total amount of bytes accounted for the mqueue */
 528		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 529			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 530			sizeof(struct posix_msg_tree_node);
 531
 532		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 533					  info->attr.mq_msgsize);
 534
 535		spin_lock(&mq_lock);
 536		user->mq_bytes -= mq_bytes;
 537		/*
 538		 * get_ns_from_inode() ensures that the
 539		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 540		 * to which we now hold a reference, or it is NULL.
 541		 * We can't put it here under mq_lock, though.
 542		 */
 543		if (ipc_ns)
 544			ipc_ns->mq_queues_count--;
 545		spin_unlock(&mq_lock);
 546		free_uid(user);
 547	}
 548	if (ipc_ns)
 549		put_ipc_ns(ipc_ns);
 550}
 551
 552static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 
 553{
 554	struct inode *dir = dentry->d_parent->d_inode;
 555	struct inode *inode;
 556	struct mq_attr *attr = arg;
 557	int error;
 558	struct ipc_namespace *ipc_ns;
 559
 560	spin_lock(&mq_lock);
 561	ipc_ns = __get_ns_from_inode(dir);
 562	if (!ipc_ns) {
 563		error = -EACCES;
 564		goto out_unlock;
 565	}
 566
 567	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 568	    !capable(CAP_SYS_RESOURCE)) {
 569		error = -ENOSPC;
 570		goto out_unlock;
 571	}
 572	ipc_ns->mq_queues_count++;
 573	spin_unlock(&mq_lock);
 574
 575	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 576	if (IS_ERR(inode)) {
 577		error = PTR_ERR(inode);
 578		spin_lock(&mq_lock);
 579		ipc_ns->mq_queues_count--;
 580		goto out_unlock;
 581	}
 582
 583	put_ipc_ns(ipc_ns);
 584	dir->i_size += DIRENT_SIZE;
 585	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 586
 587	d_instantiate(dentry, inode);
 588	dget(dentry);
 589	return 0;
 590out_unlock:
 591	spin_unlock(&mq_lock);
 592	if (ipc_ns)
 593		put_ipc_ns(ipc_ns);
 594	return error;
 595}
 596
 597static int mqueue_create(struct inode *dir, struct dentry *dentry,
 598				umode_t mode, bool excl)
 599{
 600	return mqueue_create_attr(dentry, mode, NULL);
 601}
 602
 603static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 604{
 605	struct inode *inode = d_inode(dentry);
 606
 607	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 608	dir->i_size -= DIRENT_SIZE;
 609	drop_nlink(inode);
 610	dput(dentry);
 611	return 0;
 612}
 613
 614/*
 615*	This is routine for system read from queue file.
 616*	To avoid mess with doing here some sort of mq_receive we allow
 617*	to read only queue size & notification info (the only values
 618*	that are interesting from user point of view and aren't accessible
 619*	through std routines)
 620*/
 621static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 622				size_t count, loff_t *off)
 623{
 624	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 625	char buffer[FILENT_SIZE];
 626	ssize_t ret;
 627
 628	spin_lock(&info->lock);
 629	snprintf(buffer, sizeof(buffer),
 630			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 631			info->qsize,
 632			info->notify_owner ? info->notify.sigev_notify : 0,
 633			(info->notify_owner &&
 634			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 635				info->notify.sigev_signo : 0,
 636			pid_vnr(info->notify_owner));
 637	spin_unlock(&info->lock);
 638	buffer[sizeof(buffer)-1] = '\0';
 639
 640	ret = simple_read_from_buffer(u_data, count, off, buffer,
 641				strlen(buffer));
 642	if (ret <= 0)
 643		return ret;
 644
 645	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 646	return ret;
 647}
 648
 649static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 650{
 651	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 652
 653	spin_lock(&info->lock);
 654	if (task_tgid(current) == info->notify_owner)
 655		remove_notification(info);
 656
 657	spin_unlock(&info->lock);
 658	return 0;
 659}
 660
 661static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 662{
 663	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 664	__poll_t retval = 0;
 665
 666	poll_wait(filp, &info->wait_q, poll_tab);
 667
 668	spin_lock(&info->lock);
 669	if (info->attr.mq_curmsgs)
 670		retval = EPOLLIN | EPOLLRDNORM;
 671
 672	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 673		retval |= EPOLLOUT | EPOLLWRNORM;
 674	spin_unlock(&info->lock);
 675
 676	return retval;
 677}
 678
 679/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 680static void wq_add(struct mqueue_inode_info *info, int sr,
 681			struct ext_wait_queue *ewp)
 682{
 683	struct ext_wait_queue *walk;
 684
 
 
 685	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 686		if (walk->task->prio <= current->prio) {
 687			list_add_tail(&ewp->list, &walk->list);
 688			return;
 689		}
 690	}
 691	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 692}
 693
 694/*
 695 * Puts current task to sleep. Caller must hold queue lock. After return
 696 * lock isn't held.
 697 * sr: SEND or RECV
 698 */
 699static int wq_sleep(struct mqueue_inode_info *info, int sr,
 700		    ktime_t *timeout, struct ext_wait_queue *ewp)
 701	__releases(&info->lock)
 702{
 703	int retval;
 704	signed long time;
 705
 706	wq_add(info, sr, ewp);
 707
 708	for (;;) {
 709		/* memory barrier not required, we hold info->lock */
 710		__set_current_state(TASK_INTERRUPTIBLE);
 711
 712		spin_unlock(&info->lock);
 713		time = schedule_hrtimeout_range_clock(timeout, 0,
 714			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 715
 716		if (READ_ONCE(ewp->state) == STATE_READY) {
 717			/* see MQ_BARRIER for purpose/pairing */
 718			smp_acquire__after_ctrl_dep();
 719			retval = 0;
 720			goto out;
 721		}
 722		spin_lock(&info->lock);
 723
 724		/* we hold info->lock, so no memory barrier required */
 725		if (READ_ONCE(ewp->state) == STATE_READY) {
 726			retval = 0;
 727			goto out_unlock;
 728		}
 729		if (signal_pending(current)) {
 730			retval = -ERESTARTSYS;
 731			break;
 732		}
 733		if (time == 0) {
 734			retval = -ETIMEDOUT;
 735			break;
 736		}
 737	}
 738	list_del(&ewp->list);
 739out_unlock:
 740	spin_unlock(&info->lock);
 741out:
 742	return retval;
 743}
 744
 745/*
 746 * Returns waiting task that should be serviced first or NULL if none exists
 747 */
 748static struct ext_wait_queue *wq_get_first_waiter(
 749		struct mqueue_inode_info *info, int sr)
 750{
 751	struct list_head *ptr;
 752
 753	ptr = info->e_wait_q[sr].list.prev;
 754	if (ptr == &info->e_wait_q[sr].list)
 755		return NULL;
 756	return list_entry(ptr, struct ext_wait_queue, list);
 757}
 758
 759
 760static inline void set_cookie(struct sk_buff *skb, char code)
 761{
 762	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 763}
 764
 765/*
 766 * The next function is only to split too long sys_mq_timedsend
 767 */
 768static void __do_notify(struct mqueue_inode_info *info)
 769{
 770	/* notification
 771	 * invoked when there is registered process and there isn't process
 772	 * waiting synchronously for message AND state of queue changed from
 773	 * empty to not empty. Here we are sure that no one is waiting
 774	 * synchronously. */
 775	if (info->notify_owner &&
 776	    info->attr.mq_curmsgs == 1) {
 
 777		switch (info->notify.sigev_notify) {
 778		case SIGEV_NONE:
 779			break;
 780		case SIGEV_SIGNAL: {
 781			struct kernel_siginfo sig_i;
 782			struct task_struct *task;
 783
 784			/* do_mq_notify() accepts sigev_signo == 0, why?? */
 785			if (!info->notify.sigev_signo)
 786				break;
 787
 788			clear_siginfo(&sig_i);
 789			sig_i.si_signo = info->notify.sigev_signo;
 790			sig_i.si_errno = 0;
 791			sig_i.si_code = SI_MESGQ;
 792			sig_i.si_value = info->notify.sigev_value;
 
 793			rcu_read_lock();
 794			/* map current pid/uid into info->owner's namespaces */
 795			sig_i.si_pid = task_tgid_nr_ns(current,
 796						ns_of_pid(info->notify_owner));
 797			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
 798						current_uid());
 799			/*
 800			 * We can't use kill_pid_info(), this signal should
 801			 * bypass check_kill_permission(). It is from kernel
 802			 * but si_fromuser() can't know this.
 803			 * We do check the self_exec_id, to avoid sending
 804			 * signals to programs that don't expect them.
 805			 */
 806			task = pid_task(info->notify_owner, PIDTYPE_TGID);
 807			if (task && task->self_exec_id ==
 808						info->notify_self_exec_id) {
 809				do_send_sig_info(info->notify.sigev_signo,
 810						&sig_i, task, PIDTYPE_TGID);
 811			}
 812			rcu_read_unlock();
 
 
 
 813			break;
 814		}
 815		case SIGEV_THREAD:
 816			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 817			netlink_sendskb(info->notify_sock, info->notify_cookie);
 818			break;
 819		}
 820		/* after notification unregisters process */
 821		put_pid(info->notify_owner);
 822		put_user_ns(info->notify_user_ns);
 823		info->notify_owner = NULL;
 824		info->notify_user_ns = NULL;
 825	}
 826	wake_up(&info->wait_q);
 827}
 828
 829static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 830			   struct timespec64 *ts)
 831{
 832	if (get_timespec64(ts, u_abs_timeout))
 833		return -EFAULT;
 834	if (!timespec64_valid(ts))
 835		return -EINVAL;
 
 
 836	return 0;
 837}
 838
 839static void remove_notification(struct mqueue_inode_info *info)
 840{
 841	if (info->notify_owner != NULL &&
 842	    info->notify.sigev_notify == SIGEV_THREAD) {
 843		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 844		netlink_sendskb(info->notify_sock, info->notify_cookie);
 845	}
 846	put_pid(info->notify_owner);
 847	put_user_ns(info->notify_user_ns);
 848	info->notify_owner = NULL;
 849	info->notify_user_ns = NULL;
 850}
 851
 852static int prepare_open(struct dentry *dentry, int oflag, int ro,
 853			umode_t mode, struct filename *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854			struct mq_attr *attr)
 855{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 857						  MAY_READ | MAY_WRITE };
 858	int acc;
 859
 860	if (d_really_is_negative(dentry)) {
 861		if (!(oflag & O_CREAT))
 862			return -ENOENT;
 863		if (ro)
 864			return ro;
 865		audit_inode_parent_hidden(name, dentry->d_parent);
 866		return vfs_mkobj(dentry, mode & ~current_umask(),
 867				  mqueue_create_attr, attr);
 868	}
 869	/* it already existed */
 870	audit_inode(name, dentry, 0);
 871	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 872		return -EEXIST;
 873	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 874		return -EINVAL;
 875	acc = oflag2acc[oflag & O_ACCMODE];
 876	return inode_permission(d_inode(dentry), acc);
 
 
 877}
 878
 879static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 880		      struct mq_attr *attr)
 881{
 882	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 883	struct dentry *root = mnt->mnt_root;
 884	struct filename *name;
 885	struct path path;
 886	int fd, error;
 
 
 
 887	int ro;
 888
 889	audit_mq_open(oflag, mode, attr);
 
 
 
 890
 891	if (IS_ERR(name = getname(u_name)))
 892		return PTR_ERR(name);
 893
 894	fd = get_unused_fd_flags(O_CLOEXEC);
 895	if (fd < 0)
 896		goto out_putname;
 897
 898	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 
 899	inode_lock(d_inode(root));
 900	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 901	if (IS_ERR(path.dentry)) {
 902		error = PTR_ERR(path.dentry);
 903		goto out_putfd;
 904	}
 905	path.mnt = mntget(mnt);
 906	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 907	if (!error) {
 908		struct file *file = dentry_open(&path, oflag, current_cred());
 909		if (!IS_ERR(file))
 910			fd_install(fd, file);
 911		else
 912			error = PTR_ERR(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913	}
 
 
 
 
 
 
 914	path_put(&path);
 915out_putfd:
 916	if (error) {
 917		put_unused_fd(fd);
 918		fd = error;
 919	}
 920	inode_unlock(d_inode(root));
 921	if (!ro)
 922		mnt_drop_write(mnt);
 923out_putname:
 924	putname(name);
 925	return fd;
 926}
 927
 928SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 929		struct mq_attr __user *, u_attr)
 930{
 931	struct mq_attr attr;
 932	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 933		return -EFAULT;
 934
 935	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 936}
 937
 938SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 939{
 940	int err;
 941	struct filename *name;
 942	struct dentry *dentry;
 943	struct inode *inode = NULL;
 944	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 945	struct vfsmount *mnt = ipc_ns->mq_mnt;
 946
 947	name = getname(u_name);
 948	if (IS_ERR(name))
 949		return PTR_ERR(name);
 950
 951	audit_inode_parent_hidden(name, mnt->mnt_root);
 952	err = mnt_want_write(mnt);
 953	if (err)
 954		goto out_name;
 955	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 956	dentry = lookup_one_len(name->name, mnt->mnt_root,
 957				strlen(name->name));
 958	if (IS_ERR(dentry)) {
 959		err = PTR_ERR(dentry);
 960		goto out_unlock;
 961	}
 962
 963	inode = d_inode(dentry);
 964	if (!inode) {
 965		err = -ENOENT;
 966	} else {
 967		ihold(inode);
 968		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 969	}
 970	dput(dentry);
 971
 972out_unlock:
 973	inode_unlock(d_inode(mnt->mnt_root));
 974	if (inode)
 975		iput(inode);
 976	mnt_drop_write(mnt);
 977out_name:
 978	putname(name);
 979
 980	return err;
 981}
 982
 983/* Pipelined send and receive functions.
 984 *
 985 * If a receiver finds no waiting message, then it registers itself in the
 986 * list of waiting receivers. A sender checks that list before adding the new
 987 * message into the message array. If there is a waiting receiver, then it
 988 * bypasses the message array and directly hands the message over to the
 989 * receiver. The receiver accepts the message and returns without grabbing the
 990 * queue spinlock:
 991 *
 992 * - Set pointer to message.
 993 * - Queue the receiver task for later wakeup (without the info->lock).
 994 * - Update its state to STATE_READY. Now the receiver can continue.
 995 * - Wake up the process after the lock is dropped. Should the process wake up
 996 *   before this wakeup (due to a timeout or a signal) it will either see
 997 *   STATE_READY and continue or acquire the lock to check the state again.
 998 *
 999 * The same algorithm is used for senders.
1000 */
1001
1002static inline void __pipelined_op(struct wake_q_head *wake_q,
1003				  struct mqueue_inode_info *info,
1004				  struct ext_wait_queue *this)
1005{
1006	list_del(&this->list);
1007	get_task_struct(this->task);
1008
1009	/* see MQ_BARRIER for purpose/pairing */
1010	smp_store_release(&this->state, STATE_READY);
1011	wake_q_add_safe(wake_q, this->task);
1012}
1013
1014/* pipelined_send() - send a message directly to the task waiting in
1015 * sys_mq_timedreceive() (without inserting message into a queue).
1016 */
1017static inline void pipelined_send(struct wake_q_head *wake_q,
1018				  struct mqueue_inode_info *info,
1019				  struct msg_msg *message,
1020				  struct ext_wait_queue *receiver)
1021{
1022	receiver->msg = message;
1023	__pipelined_op(wake_q, info, receiver);
 
 
 
 
 
 
 
 
 
 
1024}
1025
1026/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1027 * gets its message and put to the queue (we have one free place for sure). */
1028static inline void pipelined_receive(struct wake_q_head *wake_q,
1029				     struct mqueue_inode_info *info)
1030{
1031	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1032
1033	if (!sender) {
1034		/* for poll */
1035		wake_up_interruptible(&info->wait_q);
1036		return;
1037	}
1038	if (msg_insert(sender->msg, info))
1039		return;
1040
1041	__pipelined_op(wake_q, info, sender);
 
 
1042}
1043
1044static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1045		size_t msg_len, unsigned int msg_prio,
1046		struct timespec64 *ts)
1047{
1048	struct fd f;
1049	struct inode *inode;
1050	struct ext_wait_queue wait;
1051	struct ext_wait_queue *receiver;
1052	struct msg_msg *msg_ptr;
1053	struct mqueue_inode_info *info;
1054	ktime_t expires, *timeout = NULL;
 
1055	struct posix_msg_tree_node *new_leaf = NULL;
1056	int ret = 0;
1057	DEFINE_WAKE_Q(wake_q);
1058
 
 
 
 
 
 
 
1059	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1060		return -EINVAL;
1061
1062	if (ts) {
1063		expires = timespec64_to_ktime(*ts);
1064		timeout = &expires;
1065	}
1066
1067	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1068
1069	f = fdget(mqdes);
1070	if (unlikely(!f.file)) {
1071		ret = -EBADF;
1072		goto out;
1073	}
1074
1075	inode = file_inode(f.file);
1076	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1077		ret = -EBADF;
1078		goto out_fput;
1079	}
1080	info = MQUEUE_I(inode);
1081	audit_file(f.file);
1082
1083	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1084		ret = -EBADF;
1085		goto out_fput;
1086	}
1087
1088	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1089		ret = -EMSGSIZE;
1090		goto out_fput;
1091	}
1092
1093	/* First try to allocate memory, before doing anything with
1094	 * existing queues. */
1095	msg_ptr = load_msg(u_msg_ptr, msg_len);
1096	if (IS_ERR(msg_ptr)) {
1097		ret = PTR_ERR(msg_ptr);
1098		goto out_fput;
1099	}
1100	msg_ptr->m_ts = msg_len;
1101	msg_ptr->m_type = msg_prio;
1102
1103	/*
1104	 * msg_insert really wants us to have a valid, spare node struct so
1105	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1106	 * fall back to that if necessary.
1107	 */
1108	if (!info->node_cache)
1109		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1110
1111	spin_lock(&info->lock);
1112
1113	if (!info->node_cache && new_leaf) {
1114		/* Save our speculative allocation into the cache */
1115		INIT_LIST_HEAD(&new_leaf->msg_list);
1116		info->node_cache = new_leaf;
1117		new_leaf = NULL;
1118	} else {
1119		kfree(new_leaf);
1120	}
1121
1122	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1123		if (f.file->f_flags & O_NONBLOCK) {
1124			ret = -EAGAIN;
1125		} else {
1126			wait.task = current;
1127			wait.msg = (void *) msg_ptr;
1128
1129			/* memory barrier not required, we hold info->lock */
1130			WRITE_ONCE(wait.state, STATE_NONE);
1131			ret = wq_sleep(info, SEND, timeout, &wait);
1132			/*
1133			 * wq_sleep must be called with info->lock held, and
1134			 * returns with the lock released
1135			 */
1136			goto out_free;
1137		}
1138	} else {
1139		receiver = wq_get_first_waiter(info, RECV);
1140		if (receiver) {
1141			pipelined_send(&wake_q, info, msg_ptr, receiver);
1142		} else {
1143			/* adds message to the queue */
1144			ret = msg_insert(msg_ptr, info);
1145			if (ret)
1146				goto out_unlock;
1147			__do_notify(info);
1148		}
1149		inode->i_atime = inode->i_mtime = inode->i_ctime =
1150				current_time(inode);
1151	}
1152out_unlock:
1153	spin_unlock(&info->lock);
1154	wake_up_q(&wake_q);
1155out_free:
1156	if (ret)
1157		free_msg(msg_ptr);
1158out_fput:
1159	fdput(f);
1160out:
1161	return ret;
1162}
1163
1164static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1165		size_t msg_len, unsigned int __user *u_msg_prio,
1166		struct timespec64 *ts)
1167{
1168	ssize_t ret;
1169	struct msg_msg *msg_ptr;
1170	struct fd f;
1171	struct inode *inode;
1172	struct mqueue_inode_info *info;
1173	struct ext_wait_queue wait;
1174	ktime_t expires, *timeout = NULL;
 
1175	struct posix_msg_tree_node *new_leaf = NULL;
1176
1177	if (ts) {
1178		expires = timespec64_to_ktime(*ts);
 
 
1179		timeout = &expires;
1180	}
1181
1182	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1183
1184	f = fdget(mqdes);
1185	if (unlikely(!f.file)) {
1186		ret = -EBADF;
1187		goto out;
1188	}
1189
1190	inode = file_inode(f.file);
1191	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1192		ret = -EBADF;
1193		goto out_fput;
1194	}
1195	info = MQUEUE_I(inode);
1196	audit_file(f.file);
1197
1198	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1199		ret = -EBADF;
1200		goto out_fput;
1201	}
1202
1203	/* checks if buffer is big enough */
1204	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1205		ret = -EMSGSIZE;
1206		goto out_fput;
1207	}
1208
1209	/*
1210	 * msg_insert really wants us to have a valid, spare node struct so
1211	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1212	 * fall back to that if necessary.
1213	 */
1214	if (!info->node_cache)
1215		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1216
1217	spin_lock(&info->lock);
1218
1219	if (!info->node_cache && new_leaf) {
1220		/* Save our speculative allocation into the cache */
1221		INIT_LIST_HEAD(&new_leaf->msg_list);
1222		info->node_cache = new_leaf;
1223	} else {
1224		kfree(new_leaf);
1225	}
1226
1227	if (info->attr.mq_curmsgs == 0) {
1228		if (f.file->f_flags & O_NONBLOCK) {
1229			spin_unlock(&info->lock);
1230			ret = -EAGAIN;
1231		} else {
1232			wait.task = current;
1233
1234			/* memory barrier not required, we hold info->lock */
1235			WRITE_ONCE(wait.state, STATE_NONE);
1236			ret = wq_sleep(info, RECV, timeout, &wait);
1237			msg_ptr = wait.msg;
1238		}
1239	} else {
1240		DEFINE_WAKE_Q(wake_q);
1241
1242		msg_ptr = msg_get(info);
1243
1244		inode->i_atime = inode->i_mtime = inode->i_ctime =
1245				current_time(inode);
1246
1247		/* There is now free space in queue. */
1248		pipelined_receive(&wake_q, info);
1249		spin_unlock(&info->lock);
1250		wake_up_q(&wake_q);
1251		ret = 0;
1252	}
1253	if (ret == 0) {
1254		ret = msg_ptr->m_ts;
1255
1256		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1257			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1258			ret = -EFAULT;
1259		}
1260		free_msg(msg_ptr);
1261	}
1262out_fput:
1263	fdput(f);
1264out:
1265	return ret;
1266}
1267
1268SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1269		size_t, msg_len, unsigned int, msg_prio,
1270		const struct __kernel_timespec __user *, u_abs_timeout)
1271{
1272	struct timespec64 ts, *p = NULL;
1273	if (u_abs_timeout) {
1274		int res = prepare_timeout(u_abs_timeout, &ts);
1275		if (res)
1276			return res;
1277		p = &ts;
1278	}
1279	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1280}
1281
1282SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1283		size_t, msg_len, unsigned int __user *, u_msg_prio,
1284		const struct __kernel_timespec __user *, u_abs_timeout)
1285{
1286	struct timespec64 ts, *p = NULL;
1287	if (u_abs_timeout) {
1288		int res = prepare_timeout(u_abs_timeout, &ts);
1289		if (res)
1290			return res;
1291		p = &ts;
1292	}
1293	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1294}
1295
1296/*
1297 * Notes: the case when user wants us to deregister (with NULL as pointer)
1298 * and he isn't currently owner of notification, will be silently discarded.
1299 * It isn't explicitly defined in the POSIX.
1300 */
1301static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 
1302{
1303	int ret;
1304	struct fd f;
1305	struct sock *sock;
1306	struct inode *inode;
 
1307	struct mqueue_inode_info *info;
1308	struct sk_buff *nc;
1309
1310	audit_mq_notify(mqdes, notification);
 
 
 
 
 
 
1311
1312	nc = NULL;
1313	sock = NULL;
1314	if (notification != NULL) {
1315		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1316			     notification->sigev_notify != SIGEV_SIGNAL &&
1317			     notification->sigev_notify != SIGEV_THREAD))
1318			return -EINVAL;
1319		if (notification->sigev_notify == SIGEV_SIGNAL &&
1320			!valid_signal(notification->sigev_signo)) {
1321			return -EINVAL;
1322		}
1323		if (notification->sigev_notify == SIGEV_THREAD) {
1324			long timeo;
1325
1326			/* create the notify skb */
1327			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1328			if (!nc)
1329				return -ENOMEM;
1330
 
1331			if (copy_from_user(nc->data,
1332					notification->sigev_value.sival_ptr,
1333					NOTIFY_COOKIE_LEN)) {
1334				ret = -EFAULT;
1335				goto free_skb;
1336			}
1337
1338			/* TODO: add a header? */
1339			skb_put(nc, NOTIFY_COOKIE_LEN);
1340			/* and attach it to the socket */
1341retry:
1342			f = fdget(notification->sigev_signo);
1343			if (!f.file) {
1344				ret = -EBADF;
1345				goto out;
1346			}
1347			sock = netlink_getsockbyfilp(f.file);
1348			fdput(f);
1349			if (IS_ERR(sock)) {
1350				ret = PTR_ERR(sock);
1351				goto free_skb;
 
1352			}
1353
1354			timeo = MAX_SCHEDULE_TIMEOUT;
1355			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1356			if (ret == 1) {
 
 
1357				sock = NULL;
1358				goto retry;
 
1359			}
1360			if (ret)
1361				return ret;
1362		}
1363	}
1364
1365	f = fdget(mqdes);
1366	if (!f.file) {
1367		ret = -EBADF;
1368		goto out;
1369	}
1370
1371	inode = file_inode(f.file);
1372	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1373		ret = -EBADF;
1374		goto out_fput;
1375	}
1376	info = MQUEUE_I(inode);
1377
1378	ret = 0;
1379	spin_lock(&info->lock);
1380	if (notification == NULL) {
1381		if (info->notify_owner == task_tgid(current)) {
1382			remove_notification(info);
1383			inode->i_atime = inode->i_ctime = current_time(inode);
1384		}
1385	} else if (info->notify_owner != NULL) {
1386		ret = -EBUSY;
1387	} else {
1388		switch (notification->sigev_notify) {
1389		case SIGEV_NONE:
1390			info->notify.sigev_notify = SIGEV_NONE;
1391			break;
1392		case SIGEV_THREAD:
1393			info->notify_sock = sock;
1394			info->notify_cookie = nc;
1395			sock = NULL;
1396			nc = NULL;
1397			info->notify.sigev_notify = SIGEV_THREAD;
1398			break;
1399		case SIGEV_SIGNAL:
1400			info->notify.sigev_signo = notification->sigev_signo;
1401			info->notify.sigev_value = notification->sigev_value;
1402			info->notify.sigev_notify = SIGEV_SIGNAL;
1403			info->notify_self_exec_id = current->self_exec_id;
1404			break;
1405		}
1406
1407		info->notify_owner = get_pid(task_tgid(current));
1408		info->notify_user_ns = get_user_ns(current_user_ns());
1409		inode->i_atime = inode->i_ctime = current_time(inode);
1410	}
1411	spin_unlock(&info->lock);
1412out_fput:
1413	fdput(f);
1414out:
1415	if (sock)
1416		netlink_detachskb(sock, nc);
1417	else
1418free_skb:
1419		dev_kfree_skb(nc);
1420
1421	return ret;
1422}
1423
1424SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1425		const struct sigevent __user *, u_notification)
1426{
1427	struct sigevent n, *p = NULL;
1428	if (u_notification) {
1429		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1430			return -EFAULT;
1431		p = &n;
1432	}
1433	return do_mq_notify(mqdes, p);
1434}
1435
1436static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1437{
 
 
1438	struct fd f;
1439	struct inode *inode;
1440	struct mqueue_inode_info *info;
1441
1442	if (new && (new->mq_flags & (~O_NONBLOCK)))
1443		return -EINVAL;
 
 
 
 
1444
1445	f = fdget(mqdes);
1446	if (!f.file)
1447		return -EBADF;
 
 
1448
 
1449	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1450		fdput(f);
1451		return -EBADF;
1452	}
1453
1454	inode = file_inode(f.file);
1455	info = MQUEUE_I(inode);
1456
1457	spin_lock(&info->lock);
1458
1459	if (old) {
1460		*old = info->attr;
1461		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1462	}
1463	if (new) {
1464		audit_mq_getsetattr(mqdes, new);
1465		spin_lock(&f.file->f_lock);
1466		if (new->mq_flags & O_NONBLOCK)
1467			f.file->f_flags |= O_NONBLOCK;
1468		else
1469			f.file->f_flags &= ~O_NONBLOCK;
1470		spin_unlock(&f.file->f_lock);
1471
1472		inode->i_atime = inode->i_ctime = current_time(inode);
1473	}
1474
1475	spin_unlock(&info->lock);
1476	fdput(f);
1477	return 0;
1478}
1479
1480SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1481		const struct mq_attr __user *, u_mqstat,
1482		struct mq_attr __user *, u_omqstat)
1483{
1484	int ret;
1485	struct mq_attr mqstat, omqstat;
1486	struct mq_attr *new = NULL, *old = NULL;
1487
1488	if (u_mqstat) {
1489		new = &mqstat;
1490		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1491			return -EFAULT;
1492	}
1493	if (u_omqstat)
1494		old = &omqstat;
1495
1496	ret = do_mq_getsetattr(mqdes, new, old);
1497	if (ret || !old)
1498		return ret;
1499
1500	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1501		return -EFAULT;
1502	return 0;
1503}
1504
1505#ifdef CONFIG_COMPAT
1506
1507struct compat_mq_attr {
1508	compat_long_t mq_flags;      /* message queue flags		     */
1509	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1510	compat_long_t mq_msgsize;    /* maximum message size		     */
1511	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1512	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1513};
1514
1515static inline int get_compat_mq_attr(struct mq_attr *attr,
1516			const struct compat_mq_attr __user *uattr)
1517{
1518	struct compat_mq_attr v;
1519
1520	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1521		return -EFAULT;
1522
1523	memset(attr, 0, sizeof(*attr));
1524	attr->mq_flags = v.mq_flags;
1525	attr->mq_maxmsg = v.mq_maxmsg;
1526	attr->mq_msgsize = v.mq_msgsize;
1527	attr->mq_curmsgs = v.mq_curmsgs;
1528	return 0;
1529}
1530
1531static inline int put_compat_mq_attr(const struct mq_attr *attr,
1532			struct compat_mq_attr __user *uattr)
1533{
1534	struct compat_mq_attr v;
1535
1536	memset(&v, 0, sizeof(v));
1537	v.mq_flags = attr->mq_flags;
1538	v.mq_maxmsg = attr->mq_maxmsg;
1539	v.mq_msgsize = attr->mq_msgsize;
1540	v.mq_curmsgs = attr->mq_curmsgs;
1541	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1542		return -EFAULT;
1543	return 0;
1544}
1545
1546COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1547		       int, oflag, compat_mode_t, mode,
1548		       struct compat_mq_attr __user *, u_attr)
1549{
1550	struct mq_attr attr, *p = NULL;
1551	if (u_attr && oflag & O_CREAT) {
1552		p = &attr;
1553		if (get_compat_mq_attr(&attr, u_attr))
1554			return -EFAULT;
1555	}
1556	return do_mq_open(u_name, oflag, mode, p);
1557}
1558
1559COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1560		       const struct compat_sigevent __user *, u_notification)
1561{
1562	struct sigevent n, *p = NULL;
1563	if (u_notification) {
1564		if (get_compat_sigevent(&n, u_notification))
1565			return -EFAULT;
1566		if (n.sigev_notify == SIGEV_THREAD)
1567			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1568		p = &n;
1569	}
1570	return do_mq_notify(mqdes, p);
1571}
1572
1573COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1574		       const struct compat_mq_attr __user *, u_mqstat,
1575		       struct compat_mq_attr __user *, u_omqstat)
1576{
1577	int ret;
1578	struct mq_attr mqstat, omqstat;
1579	struct mq_attr *new = NULL, *old = NULL;
1580
1581	if (u_mqstat) {
1582		new = &mqstat;
1583		if (get_compat_mq_attr(new, u_mqstat))
1584			return -EFAULT;
1585	}
1586	if (u_omqstat)
1587		old = &omqstat;
1588
1589	ret = do_mq_getsetattr(mqdes, new, old);
1590	if (ret || !old)
1591		return ret;
1592
1593	if (put_compat_mq_attr(old, u_omqstat))
1594		return -EFAULT;
1595	return 0;
1596}
1597#endif
1598
1599#ifdef CONFIG_COMPAT_32BIT_TIME
1600static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1601				   struct timespec64 *ts)
1602{
1603	if (get_old_timespec32(ts, p))
1604		return -EFAULT;
1605	if (!timespec64_valid(ts))
1606		return -EINVAL;
1607	return 0;
1608}
1609
1610SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1611		const char __user *, u_msg_ptr,
1612		unsigned int, msg_len, unsigned int, msg_prio,
1613		const struct old_timespec32 __user *, u_abs_timeout)
1614{
1615	struct timespec64 ts, *p = NULL;
1616	if (u_abs_timeout) {
1617		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1618		if (res)
1619			return res;
1620		p = &ts;
1621	}
1622	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1623}
1624
1625SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1626		char __user *, u_msg_ptr,
1627		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1628		const struct old_timespec32 __user *, u_abs_timeout)
1629{
1630	struct timespec64 ts, *p = NULL;
1631	if (u_abs_timeout) {
1632		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1633		if (res)
1634			return res;
1635		p = &ts;
1636	}
1637	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1638}
1639#endif
1640
1641static const struct inode_operations mqueue_dir_inode_operations = {
1642	.lookup = simple_lookup,
1643	.create = mqueue_create,
1644	.unlink = mqueue_unlink,
1645};
1646
1647static const struct file_operations mqueue_file_operations = {
1648	.flush = mqueue_flush_file,
1649	.poll = mqueue_poll_file,
1650	.read = mqueue_read_file,
1651	.llseek = default_llseek,
1652};
1653
1654static const struct super_operations mqueue_super_ops = {
1655	.alloc_inode = mqueue_alloc_inode,
1656	.free_inode = mqueue_free_inode,
1657	.evict_inode = mqueue_evict_inode,
1658	.statfs = simple_statfs,
1659};
1660
1661static const struct fs_context_operations mqueue_fs_context_ops = {
1662	.free		= mqueue_fs_context_free,
1663	.get_tree	= mqueue_get_tree,
1664};
1665
1666static struct file_system_type mqueue_fs_type = {
1667	.name			= "mqueue",
1668	.init_fs_context	= mqueue_init_fs_context,
1669	.kill_sb		= kill_litter_super,
1670	.fs_flags		= FS_USERNS_MOUNT,
1671};
1672
1673int mq_init_ns(struct ipc_namespace *ns)
1674{
1675	struct vfsmount *m;
1676
1677	ns->mq_queues_count  = 0;
1678	ns->mq_queues_max    = DFLT_QUEUESMAX;
1679	ns->mq_msg_max       = DFLT_MSGMAX;
1680	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1681	ns->mq_msg_default   = DFLT_MSG;
1682	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1683
1684	m = mq_create_mount(ns);
1685	if (IS_ERR(m))
1686		return PTR_ERR(m);
1687	ns->mq_mnt = m;
 
 
1688	return 0;
1689}
1690
1691void mq_clear_sbinfo(struct ipc_namespace *ns)
1692{
1693	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1694}
1695
1696void mq_put_mnt(struct ipc_namespace *ns)
1697{
1698	kern_unmount(ns->mq_mnt);
1699}
1700
1701static int __init init_mqueue_fs(void)
1702{
1703	int error;
1704
1705	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1706				sizeof(struct mqueue_inode_info), 0,
1707				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1708	if (mqueue_inode_cachep == NULL)
1709		return -ENOMEM;
1710
1711	/* ignore failures - they are not fatal */
1712	mq_sysctl_table = mq_register_sysctl_table();
1713
1714	error = register_filesystem(&mqueue_fs_type);
1715	if (error)
1716		goto out_sysctl;
1717
1718	spin_lock_init(&mq_lock);
1719
1720	error = mq_init_ns(&init_ipc_ns);
1721	if (error)
1722		goto out_filesystem;
1723
1724	return 0;
1725
1726out_filesystem:
1727	unregister_filesystem(&mqueue_fs_type);
1728out_sysctl:
1729	if (mq_sysctl_table)
1730		unregister_sysctl_table(mq_sysctl_table);
1731	kmem_cache_destroy(mqueue_inode_cachep);
1732	return error;
1733}
1734
1735device_initcall(init_mqueue_fs);