Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
 
 
 
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = sb->s_fs_info;
 309
 310	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 311	sb->s_blocksize = PAGE_SIZE;
 312	sb->s_blocksize_bits = PAGE_SHIFT;
 313	sb->s_magic = MQUEUE_MAGIC;
 314	sb->s_op = &mqueue_super_ops;
 315
 316	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 317	if (IS_ERR(inode))
 318		return PTR_ERR(inode);
 319
 320	sb->s_root = d_make_root(inode);
 321	if (!sb->s_root)
 322		return -ENOMEM;
 323	return 0;
 324}
 325
 326static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 327			 int flags, const char *dev_name,
 328			 void *data)
 329{
 330	struct ipc_namespace *ns;
 331	if (flags & MS_KERNMOUNT) {
 332		ns = data;
 333		data = NULL;
 334	} else {
 335		ns = current->nsproxy->ipc_ns;
 336	}
 337	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
 338}
 339
 340static void init_once(void *foo)
 341{
 342	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 343
 344	inode_init_once(&p->vfs_inode);
 345}
 346
 347static struct inode *mqueue_alloc_inode(struct super_block *sb)
 348{
 349	struct mqueue_inode_info *ei;
 350
 351	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 352	if (!ei)
 353		return NULL;
 354	return &ei->vfs_inode;
 355}
 356
 357static void mqueue_i_callback(struct rcu_head *head)
 358{
 359	struct inode *inode = container_of(head, struct inode, i_rcu);
 360	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 361}
 362
 363static void mqueue_destroy_inode(struct inode *inode)
 364{
 365	call_rcu(&inode->i_rcu, mqueue_i_callback);
 366}
 367
 368static void mqueue_evict_inode(struct inode *inode)
 369{
 370	struct mqueue_inode_info *info;
 371	struct user_struct *user;
 372	unsigned long mq_bytes, mq_treesize;
 373	struct ipc_namespace *ipc_ns;
 374	struct msg_msg *msg;
 375
 376	clear_inode(inode);
 377
 378	if (S_ISDIR(inode->i_mode))
 379		return;
 380
 381	ipc_ns = get_ns_from_inode(inode);
 382	info = MQUEUE_I(inode);
 383	spin_lock(&info->lock);
 384	while ((msg = msg_get(info)) != NULL)
 385		free_msg(msg);
 386	kfree(info->node_cache);
 387	spin_unlock(&info->lock);
 388
 389	/* Total amount of bytes accounted for the mqueue */
 390	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 391		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 392		sizeof(struct posix_msg_tree_node);
 393
 394	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 395				  info->attr.mq_msgsize);
 396
 397	user = info->user;
 398	if (user) {
 399		spin_lock(&mq_lock);
 400		user->mq_bytes -= mq_bytes;
 401		/*
 402		 * get_ns_from_inode() ensures that the
 403		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 404		 * to which we now hold a reference, or it is NULL.
 405		 * We can't put it here under mq_lock, though.
 406		 */
 407		if (ipc_ns)
 408			ipc_ns->mq_queues_count--;
 409		spin_unlock(&mq_lock);
 410		free_uid(user);
 411	}
 412	if (ipc_ns)
 413		put_ipc_ns(ipc_ns);
 414}
 415
 416static int mqueue_create(struct inode *dir, struct dentry *dentry,
 417				umode_t mode, bool excl)
 418{
 
 419	struct inode *inode;
 420	struct mq_attr *attr = dentry->d_fsdata;
 421	int error;
 422	struct ipc_namespace *ipc_ns;
 423
 424	spin_lock(&mq_lock);
 425	ipc_ns = __get_ns_from_inode(dir);
 426	if (!ipc_ns) {
 427		error = -EACCES;
 428		goto out_unlock;
 429	}
 430
 431	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 432	    !capable(CAP_SYS_RESOURCE)) {
 433		error = -ENOSPC;
 434		goto out_unlock;
 435	}
 436	ipc_ns->mq_queues_count++;
 437	spin_unlock(&mq_lock);
 438
 439	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 440	if (IS_ERR(inode)) {
 441		error = PTR_ERR(inode);
 442		spin_lock(&mq_lock);
 443		ipc_ns->mq_queues_count--;
 444		goto out_unlock;
 445	}
 446
 447	put_ipc_ns(ipc_ns);
 448	dir->i_size += DIRENT_SIZE;
 449	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 450
 451	d_instantiate(dentry, inode);
 452	dget(dentry);
 453	return 0;
 454out_unlock:
 455	spin_unlock(&mq_lock);
 456	if (ipc_ns)
 457		put_ipc_ns(ipc_ns);
 458	return error;
 459}
 460
 
 
 
 
 
 
 461static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 462{
 463	struct inode *inode = d_inode(dentry);
 464
 465	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 466	dir->i_size -= DIRENT_SIZE;
 467	drop_nlink(inode);
 468	dput(dentry);
 469	return 0;
 470}
 471
 472/*
 473*	This is routine for system read from queue file.
 474*	To avoid mess with doing here some sort of mq_receive we allow
 475*	to read only queue size & notification info (the only values
 476*	that are interesting from user point of view and aren't accessible
 477*	through std routines)
 478*/
 479static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 480				size_t count, loff_t *off)
 481{
 482	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 483	char buffer[FILENT_SIZE];
 484	ssize_t ret;
 485
 486	spin_lock(&info->lock);
 487	snprintf(buffer, sizeof(buffer),
 488			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 489			info->qsize,
 490			info->notify_owner ? info->notify.sigev_notify : 0,
 491			(info->notify_owner &&
 492			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 493				info->notify.sigev_signo : 0,
 494			pid_vnr(info->notify_owner));
 495	spin_unlock(&info->lock);
 496	buffer[sizeof(buffer)-1] = '\0';
 497
 498	ret = simple_read_from_buffer(u_data, count, off, buffer,
 499				strlen(buffer));
 500	if (ret <= 0)
 501		return ret;
 502
 503	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 504	return ret;
 505}
 506
 507static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 508{
 509	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 510
 511	spin_lock(&info->lock);
 512	if (task_tgid(current) == info->notify_owner)
 513		remove_notification(info);
 514
 515	spin_unlock(&info->lock);
 516	return 0;
 517}
 518
 519static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 520{
 521	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 522	int retval = 0;
 523
 524	poll_wait(filp, &info->wait_q, poll_tab);
 525
 526	spin_lock(&info->lock);
 527	if (info->attr.mq_curmsgs)
 528		retval = POLLIN | POLLRDNORM;
 529
 530	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 531		retval |= POLLOUT | POLLWRNORM;
 532	spin_unlock(&info->lock);
 533
 534	return retval;
 535}
 536
 537/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 538static void wq_add(struct mqueue_inode_info *info, int sr,
 539			struct ext_wait_queue *ewp)
 540{
 541	struct ext_wait_queue *walk;
 542
 543	ewp->task = current;
 544
 545	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 546		if (walk->task->static_prio <= current->static_prio) {
 547			list_add_tail(&ewp->list, &walk->list);
 548			return;
 549		}
 550	}
 551	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 552}
 553
 554/*
 555 * Puts current task to sleep. Caller must hold queue lock. After return
 556 * lock isn't held.
 557 * sr: SEND or RECV
 558 */
 559static int wq_sleep(struct mqueue_inode_info *info, int sr,
 560		    ktime_t *timeout, struct ext_wait_queue *ewp)
 
 561{
 562	int retval;
 563	signed long time;
 564
 565	wq_add(info, sr, ewp);
 566
 567	for (;;) {
 568		__set_current_state(TASK_INTERRUPTIBLE);
 569
 570		spin_unlock(&info->lock);
 571		time = schedule_hrtimeout_range_clock(timeout, 0,
 572			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 573
 574		if (ewp->state == STATE_READY) {
 575			retval = 0;
 576			goto out;
 577		}
 578		spin_lock(&info->lock);
 579		if (ewp->state == STATE_READY) {
 580			retval = 0;
 581			goto out_unlock;
 582		}
 583		if (signal_pending(current)) {
 584			retval = -ERESTARTSYS;
 585			break;
 586		}
 587		if (time == 0) {
 588			retval = -ETIMEDOUT;
 589			break;
 590		}
 591	}
 592	list_del(&ewp->list);
 593out_unlock:
 594	spin_unlock(&info->lock);
 595out:
 596	return retval;
 597}
 598
 599/*
 600 * Returns waiting task that should be serviced first or NULL if none exists
 601 */
 602static struct ext_wait_queue *wq_get_first_waiter(
 603		struct mqueue_inode_info *info, int sr)
 604{
 605	struct list_head *ptr;
 606
 607	ptr = info->e_wait_q[sr].list.prev;
 608	if (ptr == &info->e_wait_q[sr].list)
 609		return NULL;
 610	return list_entry(ptr, struct ext_wait_queue, list);
 611}
 612
 613
 614static inline void set_cookie(struct sk_buff *skb, char code)
 615{
 616	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 617}
 618
 619/*
 620 * The next function is only to split too long sys_mq_timedsend
 621 */
 622static void __do_notify(struct mqueue_inode_info *info)
 623{
 624	/* notification
 625	 * invoked when there is registered process and there isn't process
 626	 * waiting synchronously for message AND state of queue changed from
 627	 * empty to not empty. Here we are sure that no one is waiting
 628	 * synchronously. */
 629	if (info->notify_owner &&
 630	    info->attr.mq_curmsgs == 1) {
 631		struct siginfo sig_i;
 632		switch (info->notify.sigev_notify) {
 633		case SIGEV_NONE:
 634			break;
 635		case SIGEV_SIGNAL:
 636			/* sends signal */
 637
 
 638			sig_i.si_signo = info->notify.sigev_signo;
 639			sig_i.si_errno = 0;
 640			sig_i.si_code = SI_MESGQ;
 641			sig_i.si_value = info->notify.sigev_value;
 642			/* map current pid/uid into info->owner's namespaces */
 643			rcu_read_lock();
 644			sig_i.si_pid = task_tgid_nr_ns(current,
 645						ns_of_pid(info->notify_owner));
 646			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 647			rcu_read_unlock();
 648
 649			kill_pid_info(info->notify.sigev_signo,
 650				      &sig_i, info->notify_owner);
 651			break;
 652		case SIGEV_THREAD:
 653			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 654			netlink_sendskb(info->notify_sock, info->notify_cookie);
 655			break;
 656		}
 657		/* after notification unregisters process */
 658		put_pid(info->notify_owner);
 659		put_user_ns(info->notify_user_ns);
 660		info->notify_owner = NULL;
 661		info->notify_user_ns = NULL;
 662	}
 663	wake_up(&info->wait_q);
 664}
 665
 666static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 667			   ktime_t *expires, struct timespec *ts)
 668{
 669	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 670		return -EFAULT;
 671	if (!timespec_valid(ts))
 672		return -EINVAL;
 673
 674	*expires = timespec_to_ktime(*ts);
 675	return 0;
 676}
 677
 678static void remove_notification(struct mqueue_inode_info *info)
 679{
 680	if (info->notify_owner != NULL &&
 681	    info->notify.sigev_notify == SIGEV_THREAD) {
 682		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 683		netlink_sendskb(info->notify_sock, info->notify_cookie);
 684	}
 685	put_pid(info->notify_owner);
 686	put_user_ns(info->notify_user_ns);
 687	info->notify_owner = NULL;
 688	info->notify_user_ns = NULL;
 689}
 690
 691static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 692{
 693	int mq_treesize;
 694	unsigned long total_size;
 695
 696	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 697		return -EINVAL;
 698	if (capable(CAP_SYS_RESOURCE)) {
 699		if (attr->mq_maxmsg > HARD_MSGMAX ||
 700		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 701			return -EINVAL;
 702	} else {
 703		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 704				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 705			return -EINVAL;
 706	}
 707	/* check for overflow */
 708	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 709		return -EOVERFLOW;
 710	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 711		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 712		sizeof(struct posix_msg_tree_node);
 713	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 714	if (total_size + mq_treesize < total_size)
 715		return -EOVERFLOW;
 716	return 0;
 717}
 718
 719/*
 720 * Invoked when creating a new queue via sys_mq_open
 721 */
 722static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 723			struct path *path, int oflag, umode_t mode,
 724			struct mq_attr *attr)
 725{
 726	const struct cred *cred = current_cred();
 727	int ret;
 728
 729	if (attr) {
 730		ret = mq_attr_ok(ipc_ns, attr);
 731		if (ret)
 732			return ERR_PTR(ret);
 733		/* store for use during create */
 734		path->dentry->d_fsdata = attr;
 735	} else {
 736		struct mq_attr def_attr;
 737
 738		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 739					 ipc_ns->mq_msg_default);
 740		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 741					  ipc_ns->mq_msgsize_default);
 742		ret = mq_attr_ok(ipc_ns, &def_attr);
 743		if (ret)
 744			return ERR_PTR(ret);
 745	}
 746
 747	mode &= ~current_umask();
 748	ret = vfs_create(dir, path->dentry, mode, true);
 749	path->dentry->d_fsdata = NULL;
 750	if (ret)
 751		return ERR_PTR(ret);
 752	return dentry_open(path, oflag, cred);
 753}
 754
 755/* Opens existing queue */
 756static struct file *do_open(struct path *path, int oflag)
 757{
 758	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 759						  MAY_READ | MAY_WRITE };
 760	int acc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 762		return ERR_PTR(-EINVAL);
 763	acc = oflag2acc[oflag & O_ACCMODE];
 764	if (inode_permission(d_inode(path->dentry), acc))
 765		return ERR_PTR(-EACCES);
 766	return dentry_open(path, oflag, current_cred());
 767}
 768
 769SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 770		struct mq_attr __user *, u_attr)
 771{
 772	struct path path;
 773	struct file *filp;
 774	struct filename *name;
 775	struct mq_attr attr;
 776	int fd, error;
 777	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 778	struct vfsmount *mnt = ipc_ns->mq_mnt;
 779	struct dentry *root = mnt->mnt_root;
 780	int ro;
 781
 782	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 783		return -EFAULT;
 784
 785	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 786
 787	if (IS_ERR(name = getname(u_name)))
 788		return PTR_ERR(name);
 789
 790	fd = get_unused_fd_flags(O_CLOEXEC);
 791	if (fd < 0)
 792		goto out_putname;
 793
 794	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 795	error = 0;
 796	inode_lock(d_inode(root));
 797	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 798	if (IS_ERR(path.dentry)) {
 799		error = PTR_ERR(path.dentry);
 800		goto out_putfd;
 801	}
 802	path.mnt = mntget(mnt);
 803
 804	if (oflag & O_CREAT) {
 805		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 806			audit_inode(name, path.dentry, 0);
 807			if (oflag & O_EXCL) {
 808				error = -EEXIST;
 809				goto out;
 810			}
 811			filp = do_open(&path, oflag);
 812		} else {
 813			if (ro) {
 814				error = ro;
 815				goto out;
 816			}
 817			audit_inode_parent_hidden(name, root);
 818			filp = do_create(ipc_ns, d_inode(root),
 819						&path, oflag, mode,
 820						u_attr ? &attr : NULL);
 821		}
 822	} else {
 823		if (d_really_is_negative(path.dentry)) {
 824			error = -ENOENT;
 825			goto out;
 826		}
 827		audit_inode(name, path.dentry, 0);
 828		filp = do_open(&path, oflag);
 829	}
 830
 831	if (!IS_ERR(filp))
 832		fd_install(fd, filp);
 833	else
 834		error = PTR_ERR(filp);
 835out:
 836	path_put(&path);
 837out_putfd:
 838	if (error) {
 839		put_unused_fd(fd);
 840		fd = error;
 841	}
 842	inode_unlock(d_inode(root));
 843	if (!ro)
 844		mnt_drop_write(mnt);
 845out_putname:
 846	putname(name);
 847	return fd;
 848}
 849
 
 
 
 
 
 
 
 
 
 
 850SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 851{
 852	int err;
 853	struct filename *name;
 854	struct dentry *dentry;
 855	struct inode *inode = NULL;
 856	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 857	struct vfsmount *mnt = ipc_ns->mq_mnt;
 858
 859	name = getname(u_name);
 860	if (IS_ERR(name))
 861		return PTR_ERR(name);
 862
 863	audit_inode_parent_hidden(name, mnt->mnt_root);
 864	err = mnt_want_write(mnt);
 865	if (err)
 866		goto out_name;
 867	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 868	dentry = lookup_one_len(name->name, mnt->mnt_root,
 869				strlen(name->name));
 870	if (IS_ERR(dentry)) {
 871		err = PTR_ERR(dentry);
 872		goto out_unlock;
 873	}
 874
 875	inode = d_inode(dentry);
 876	if (!inode) {
 877		err = -ENOENT;
 878	} else {
 879		ihold(inode);
 880		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 881	}
 882	dput(dentry);
 883
 884out_unlock:
 885	inode_unlock(d_inode(mnt->mnt_root));
 886	if (inode)
 887		iput(inode);
 888	mnt_drop_write(mnt);
 889out_name:
 890	putname(name);
 891
 892	return err;
 893}
 894
 895/* Pipelined send and receive functions.
 896 *
 897 * If a receiver finds no waiting message, then it registers itself in the
 898 * list of waiting receivers. A sender checks that list before adding the new
 899 * message into the message array. If there is a waiting receiver, then it
 900 * bypasses the message array and directly hands the message over to the
 901 * receiver. The receiver accepts the message and returns without grabbing the
 902 * queue spinlock:
 903 *
 904 * - Set pointer to message.
 905 * - Queue the receiver task for later wakeup (without the info->lock).
 906 * - Update its state to STATE_READY. Now the receiver can continue.
 907 * - Wake up the process after the lock is dropped. Should the process wake up
 908 *   before this wakeup (due to a timeout or a signal) it will either see
 909 *   STATE_READY and continue or acquire the lock to check the state again.
 910 *
 911 * The same algorithm is used for senders.
 912 */
 913
 914/* pipelined_send() - send a message directly to the task waiting in
 915 * sys_mq_timedreceive() (without inserting message into a queue).
 916 */
 917static inline void pipelined_send(struct wake_q_head *wake_q,
 918				  struct mqueue_inode_info *info,
 919				  struct msg_msg *message,
 920				  struct ext_wait_queue *receiver)
 921{
 922	receiver->msg = message;
 923	list_del(&receiver->list);
 924	wake_q_add(wake_q, receiver->task);
 925	/*
 926	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 927	 * that we can ensure that updating receiver->state is the last
 928	 * write operation: As once set, the receiver can continue,
 929	 * and if we don't have the reference count from the wake_q,
 930	 * yet, at that point we can later have a use-after-free
 931	 * condition and bogus wakeup.
 932	 */
 933	receiver->state = STATE_READY;
 934}
 935
 936/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 937 * gets its message and put to the queue (we have one free place for sure). */
 938static inline void pipelined_receive(struct wake_q_head *wake_q,
 939				     struct mqueue_inode_info *info)
 940{
 941	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 942
 943	if (!sender) {
 944		/* for poll */
 945		wake_up_interruptible(&info->wait_q);
 946		return;
 947	}
 948	if (msg_insert(sender->msg, info))
 949		return;
 950
 951	list_del(&sender->list);
 952	wake_q_add(wake_q, sender->task);
 953	sender->state = STATE_READY;
 954}
 955
 956SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 957		size_t, msg_len, unsigned int, msg_prio,
 958		const struct timespec __user *, u_abs_timeout)
 959{
 960	struct fd f;
 961	struct inode *inode;
 962	struct ext_wait_queue wait;
 963	struct ext_wait_queue *receiver;
 964	struct msg_msg *msg_ptr;
 965	struct mqueue_inode_info *info;
 966	ktime_t expires, *timeout = NULL;
 967	struct timespec ts;
 968	struct posix_msg_tree_node *new_leaf = NULL;
 969	int ret = 0;
 970	DEFINE_WAKE_Q(wake_q);
 971
 972	if (u_abs_timeout) {
 973		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 974		if (res)
 975			return res;
 976		timeout = &expires;
 977	}
 978
 979	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 980		return -EINVAL;
 981
 982	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 
 
 
 
 
 983
 984	f = fdget(mqdes);
 985	if (unlikely(!f.file)) {
 986		ret = -EBADF;
 987		goto out;
 988	}
 989
 990	inode = file_inode(f.file);
 991	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 992		ret = -EBADF;
 993		goto out_fput;
 994	}
 995	info = MQUEUE_I(inode);
 996	audit_file(f.file);
 997
 998	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
 999		ret = -EBADF;
1000		goto out_fput;
1001	}
1002
1003	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1004		ret = -EMSGSIZE;
1005		goto out_fput;
1006	}
1007
1008	/* First try to allocate memory, before doing anything with
1009	 * existing queues. */
1010	msg_ptr = load_msg(u_msg_ptr, msg_len);
1011	if (IS_ERR(msg_ptr)) {
1012		ret = PTR_ERR(msg_ptr);
1013		goto out_fput;
1014	}
1015	msg_ptr->m_ts = msg_len;
1016	msg_ptr->m_type = msg_prio;
1017
1018	/*
1019	 * msg_insert really wants us to have a valid, spare node struct so
1020	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1021	 * fall back to that if necessary.
1022	 */
1023	if (!info->node_cache)
1024		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1025
1026	spin_lock(&info->lock);
1027
1028	if (!info->node_cache && new_leaf) {
1029		/* Save our speculative allocation into the cache */
1030		INIT_LIST_HEAD(&new_leaf->msg_list);
1031		info->node_cache = new_leaf;
1032		new_leaf = NULL;
1033	} else {
1034		kfree(new_leaf);
1035	}
1036
1037	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1038		if (f.file->f_flags & O_NONBLOCK) {
1039			ret = -EAGAIN;
1040		} else {
1041			wait.task = current;
1042			wait.msg = (void *) msg_ptr;
1043			wait.state = STATE_NONE;
1044			ret = wq_sleep(info, SEND, timeout, &wait);
1045			/*
1046			 * wq_sleep must be called with info->lock held, and
1047			 * returns with the lock released
1048			 */
1049			goto out_free;
1050		}
1051	} else {
1052		receiver = wq_get_first_waiter(info, RECV);
1053		if (receiver) {
1054			pipelined_send(&wake_q, info, msg_ptr, receiver);
1055		} else {
1056			/* adds message to the queue */
1057			ret = msg_insert(msg_ptr, info);
1058			if (ret)
1059				goto out_unlock;
1060			__do_notify(info);
1061		}
1062		inode->i_atime = inode->i_mtime = inode->i_ctime =
1063				current_time(inode);
1064	}
1065out_unlock:
1066	spin_unlock(&info->lock);
1067	wake_up_q(&wake_q);
1068out_free:
1069	if (ret)
1070		free_msg(msg_ptr);
1071out_fput:
1072	fdput(f);
1073out:
1074	return ret;
1075}
1076
1077SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1078		size_t, msg_len, unsigned int __user *, u_msg_prio,
1079		const struct timespec __user *, u_abs_timeout)
1080{
1081	ssize_t ret;
1082	struct msg_msg *msg_ptr;
1083	struct fd f;
1084	struct inode *inode;
1085	struct mqueue_inode_info *info;
1086	struct ext_wait_queue wait;
1087	ktime_t expires, *timeout = NULL;
1088	struct timespec ts;
1089	struct posix_msg_tree_node *new_leaf = NULL;
1090
1091	if (u_abs_timeout) {
1092		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1093		if (res)
1094			return res;
1095		timeout = &expires;
1096	}
1097
1098	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1099
1100	f = fdget(mqdes);
1101	if (unlikely(!f.file)) {
1102		ret = -EBADF;
1103		goto out;
1104	}
1105
1106	inode = file_inode(f.file);
1107	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108		ret = -EBADF;
1109		goto out_fput;
1110	}
1111	info = MQUEUE_I(inode);
1112	audit_file(f.file);
1113
1114	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115		ret = -EBADF;
1116		goto out_fput;
1117	}
1118
1119	/* checks if buffer is big enough */
1120	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121		ret = -EMSGSIZE;
1122		goto out_fput;
1123	}
1124
1125	/*
1126	 * msg_insert really wants us to have a valid, spare node struct so
1127	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128	 * fall back to that if necessary.
1129	 */
1130	if (!info->node_cache)
1131		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1132
1133	spin_lock(&info->lock);
1134
1135	if (!info->node_cache && new_leaf) {
1136		/* Save our speculative allocation into the cache */
1137		INIT_LIST_HEAD(&new_leaf->msg_list);
1138		info->node_cache = new_leaf;
1139	} else {
1140		kfree(new_leaf);
1141	}
1142
1143	if (info->attr.mq_curmsgs == 0) {
1144		if (f.file->f_flags & O_NONBLOCK) {
1145			spin_unlock(&info->lock);
1146			ret = -EAGAIN;
1147		} else {
1148			wait.task = current;
1149			wait.state = STATE_NONE;
1150			ret = wq_sleep(info, RECV, timeout, &wait);
1151			msg_ptr = wait.msg;
1152		}
1153	} else {
1154		DEFINE_WAKE_Q(wake_q);
1155
1156		msg_ptr = msg_get(info);
1157
1158		inode->i_atime = inode->i_mtime = inode->i_ctime =
1159				current_time(inode);
1160
1161		/* There is now free space in queue. */
1162		pipelined_receive(&wake_q, info);
1163		spin_unlock(&info->lock);
1164		wake_up_q(&wake_q);
1165		ret = 0;
1166	}
1167	if (ret == 0) {
1168		ret = msg_ptr->m_ts;
1169
1170		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172			ret = -EFAULT;
1173		}
1174		free_msg(msg_ptr);
1175	}
1176out_fput:
1177	fdput(f);
1178out:
1179	return ret;
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * Notes: the case when user wants us to deregister (with NULL as pointer)
1184 * and he isn't currently owner of notification, will be silently discarded.
1185 * It isn't explicitly defined in the POSIX.
1186 */
1187SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1188		const struct sigevent __user *, u_notification)
1189{
1190	int ret;
1191	struct fd f;
1192	struct sock *sock;
1193	struct inode *inode;
1194	struct sigevent notification;
1195	struct mqueue_inode_info *info;
1196	struct sk_buff *nc;
1197
1198	if (u_notification) {
1199		if (copy_from_user(&notification, u_notification,
1200					sizeof(struct sigevent)))
1201			return -EFAULT;
1202	}
1203
1204	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1205
1206	nc = NULL;
1207	sock = NULL;
1208	if (u_notification != NULL) {
1209		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1210			     notification.sigev_notify != SIGEV_SIGNAL &&
1211			     notification.sigev_notify != SIGEV_THREAD))
1212			return -EINVAL;
1213		if (notification.sigev_notify == SIGEV_SIGNAL &&
1214			!valid_signal(notification.sigev_signo)) {
1215			return -EINVAL;
1216		}
1217		if (notification.sigev_notify == SIGEV_THREAD) {
1218			long timeo;
1219
1220			/* create the notify skb */
1221			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1222			if (!nc) {
1223				ret = -ENOMEM;
1224				goto out;
1225			}
1226			if (copy_from_user(nc->data,
1227					notification.sigev_value.sival_ptr,
1228					NOTIFY_COOKIE_LEN)) {
1229				ret = -EFAULT;
1230				goto out;
1231			}
1232
1233			/* TODO: add a header? */
1234			skb_put(nc, NOTIFY_COOKIE_LEN);
1235			/* and attach it to the socket */
1236retry:
1237			f = fdget(notification.sigev_signo);
1238			if (!f.file) {
1239				ret = -EBADF;
1240				goto out;
1241			}
1242			sock = netlink_getsockbyfilp(f.file);
1243			fdput(f);
1244			if (IS_ERR(sock)) {
1245				ret = PTR_ERR(sock);
1246				sock = NULL;
1247				goto out;
1248			}
1249
1250			timeo = MAX_SCHEDULE_TIMEOUT;
1251			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1252			if (ret == 1)
 
1253				goto retry;
 
1254			if (ret) {
1255				sock = NULL;
1256				nc = NULL;
1257				goto out;
1258			}
1259		}
1260	}
1261
1262	f = fdget(mqdes);
1263	if (!f.file) {
1264		ret = -EBADF;
1265		goto out;
1266	}
1267
1268	inode = file_inode(f.file);
1269	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1270		ret = -EBADF;
1271		goto out_fput;
1272	}
1273	info = MQUEUE_I(inode);
1274
1275	ret = 0;
1276	spin_lock(&info->lock);
1277	if (u_notification == NULL) {
1278		if (info->notify_owner == task_tgid(current)) {
1279			remove_notification(info);
1280			inode->i_atime = inode->i_ctime = current_time(inode);
1281		}
1282	} else if (info->notify_owner != NULL) {
1283		ret = -EBUSY;
1284	} else {
1285		switch (notification.sigev_notify) {
1286		case SIGEV_NONE:
1287			info->notify.sigev_notify = SIGEV_NONE;
1288			break;
1289		case SIGEV_THREAD:
1290			info->notify_sock = sock;
1291			info->notify_cookie = nc;
1292			sock = NULL;
1293			nc = NULL;
1294			info->notify.sigev_notify = SIGEV_THREAD;
1295			break;
1296		case SIGEV_SIGNAL:
1297			info->notify.sigev_signo = notification.sigev_signo;
1298			info->notify.sigev_value = notification.sigev_value;
1299			info->notify.sigev_notify = SIGEV_SIGNAL;
1300			break;
1301		}
1302
1303		info->notify_owner = get_pid(task_tgid(current));
1304		info->notify_user_ns = get_user_ns(current_user_ns());
1305		inode->i_atime = inode->i_ctime = current_time(inode);
1306	}
1307	spin_unlock(&info->lock);
1308out_fput:
1309	fdput(f);
1310out:
1311	if (sock)
1312		netlink_detachskb(sock, nc);
1313	else if (nc)
1314		dev_kfree_skb(nc);
1315
1316	return ret;
1317}
1318
1319SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1320		const struct mq_attr __user *, u_mqstat,
1321		struct mq_attr __user *, u_omqstat)
 
 
 
 
 
 
 
 
 
 
1322{
1323	int ret;
1324	struct mq_attr mqstat, omqstat;
1325	struct fd f;
1326	struct inode *inode;
1327	struct mqueue_inode_info *info;
1328
1329	if (u_mqstat != NULL) {
1330		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1331			return -EFAULT;
1332		if (mqstat.mq_flags & (~O_NONBLOCK))
1333			return -EINVAL;
1334	}
1335
1336	f = fdget(mqdes);
1337	if (!f.file) {
1338		ret = -EBADF;
1339		goto out;
1340	}
1341
1342	inode = file_inode(f.file);
1343	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1344		ret = -EBADF;
1345		goto out_fput;
1346	}
 
 
1347	info = MQUEUE_I(inode);
1348
1349	spin_lock(&info->lock);
1350
1351	omqstat = info->attr;
1352	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1353	if (u_mqstat) {
1354		audit_mq_getsetattr(mqdes, &mqstat);
 
 
1355		spin_lock(&f.file->f_lock);
1356		if (mqstat.mq_flags & O_NONBLOCK)
1357			f.file->f_flags |= O_NONBLOCK;
1358		else
1359			f.file->f_flags &= ~O_NONBLOCK;
1360		spin_unlock(&f.file->f_lock);
1361
1362		inode->i_atime = inode->i_ctime = current_time(inode);
1363	}
1364
1365	spin_unlock(&info->lock);
 
 
 
1366
1367	ret = 0;
1368	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1369						sizeof(struct mq_attr)))
1370		ret = -EFAULT;
 
 
 
1371
1372out_fput:
1373	fdput(f);
1374out:
1375	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376}
 
1377
1378static const struct inode_operations mqueue_dir_inode_operations = {
1379	.lookup = simple_lookup,
1380	.create = mqueue_create,
1381	.unlink = mqueue_unlink,
1382};
1383
1384static const struct file_operations mqueue_file_operations = {
1385	.flush = mqueue_flush_file,
1386	.poll = mqueue_poll_file,
1387	.read = mqueue_read_file,
1388	.llseek = default_llseek,
1389};
1390
1391static const struct super_operations mqueue_super_ops = {
1392	.alloc_inode = mqueue_alloc_inode,
1393	.destroy_inode = mqueue_destroy_inode,
1394	.evict_inode = mqueue_evict_inode,
1395	.statfs = simple_statfs,
1396};
1397
1398static struct file_system_type mqueue_fs_type = {
1399	.name = "mqueue",
1400	.mount = mqueue_mount,
1401	.kill_sb = kill_litter_super,
1402	.fs_flags = FS_USERNS_MOUNT,
1403};
1404
1405int mq_init_ns(struct ipc_namespace *ns)
1406{
1407	ns->mq_queues_count  = 0;
1408	ns->mq_queues_max    = DFLT_QUEUESMAX;
1409	ns->mq_msg_max       = DFLT_MSGMAX;
1410	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1411	ns->mq_msg_default   = DFLT_MSG;
1412	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1413
1414	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1415	if (IS_ERR(ns->mq_mnt)) {
1416		int err = PTR_ERR(ns->mq_mnt);
1417		ns->mq_mnt = NULL;
1418		return err;
1419	}
1420	return 0;
1421}
1422
1423void mq_clear_sbinfo(struct ipc_namespace *ns)
1424{
1425	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1426}
1427
1428void mq_put_mnt(struct ipc_namespace *ns)
1429{
1430	kern_unmount(ns->mq_mnt);
1431}
1432
1433static int __init init_mqueue_fs(void)
1434{
1435	int error;
1436
1437	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1438				sizeof(struct mqueue_inode_info), 0,
1439				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1440	if (mqueue_inode_cachep == NULL)
1441		return -ENOMEM;
1442
1443	/* ignore failures - they are not fatal */
1444	mq_sysctl_table = mq_register_sysctl_table();
1445
1446	error = register_filesystem(&mqueue_fs_type);
1447	if (error)
1448		goto out_sysctl;
1449
1450	spin_lock_init(&mq_lock);
1451
1452	error = mq_init_ns(&init_ipc_ns);
1453	if (error)
1454		goto out_filesystem;
1455
1456	return 0;
1457
1458out_filesystem:
1459	unregister_filesystem(&mqueue_fs_type);
1460out_sysctl:
1461	if (mq_sysctl_table)
1462		unregister_sysctl_table(mq_sysctl_table);
1463	kmem_cache_destroy(mqueue_inode_cachep);
1464	return error;
1465}
1466
1467device_initcall(init_mqueue_fs);
v4.17
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
  38#include <linux/sched/wake_q.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/user.h>
  41
  42#include <net/sock.h>
  43#include "util.h"
  44
  45#define MQUEUE_MAGIC	0x19800202
  46#define DIRENT_SIZE	20
  47#define FILENT_SIZE	80
  48
  49#define SEND		0
  50#define RECV		1
  51
  52#define STATE_NONE	0
  53#define STATE_READY	1
  54
  55struct posix_msg_tree_node {
  56	struct rb_node		rb_node;
  57	struct list_head	msg_list;
  58	int			priority;
  59};
  60
  61struct ext_wait_queue {		/* queue of sleeping tasks */
  62	struct task_struct *task;
  63	struct list_head list;
  64	struct msg_msg *msg;	/* ptr of loaded message */
  65	int state;		/* one of STATE_* values */
  66};
  67
  68struct mqueue_inode_info {
  69	spinlock_t lock;
  70	struct inode vfs_inode;
  71	wait_queue_head_t wait_q;
  72
  73	struct rb_root msg_tree;
  74	struct posix_msg_tree_node *node_cache;
  75	struct mq_attr attr;
  76
  77	struct sigevent notify;
  78	struct pid *notify_owner;
  79	struct user_namespace *notify_user_ns;
  80	struct user_struct *user;	/* user who created, for accounting */
  81	struct sock *notify_sock;
  82	struct sk_buff *notify_cookie;
  83
  84	/* for tasks waiting for free space and messages, respectively */
  85	struct ext_wait_queue e_wait_q[2];
  86
  87	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  88};
  89
  90static const struct inode_operations mqueue_dir_inode_operations;
  91static const struct file_operations mqueue_file_operations;
  92static const struct super_operations mqueue_super_ops;
  93static void remove_notification(struct mqueue_inode_info *info);
  94
  95static struct kmem_cache *mqueue_inode_cachep;
  96
  97static struct ctl_table_header *mq_sysctl_table;
  98
  99static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 100{
 101	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 102}
 103
 104/*
 105 * This routine should be called with the mq_lock held.
 106 */
 107static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 108{
 109	return get_ipc_ns(inode->i_sb->s_fs_info);
 110}
 111
 112static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 113{
 114	struct ipc_namespace *ns;
 115
 116	spin_lock(&mq_lock);
 117	ns = __get_ns_from_inode(inode);
 118	spin_unlock(&mq_lock);
 119	return ns;
 120}
 121
 122/* Auxiliary functions to manipulate messages' list */
 123static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 124{
 125	struct rb_node **p, *parent = NULL;
 126	struct posix_msg_tree_node *leaf;
 127
 128	p = &info->msg_tree.rb_node;
 129	while (*p) {
 130		parent = *p;
 131		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 132
 133		if (likely(leaf->priority == msg->m_type))
 134			goto insert_msg;
 135		else if (msg->m_type < leaf->priority)
 136			p = &(*p)->rb_left;
 137		else
 138			p = &(*p)->rb_right;
 139	}
 140	if (info->node_cache) {
 141		leaf = info->node_cache;
 142		info->node_cache = NULL;
 143	} else {
 144		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 145		if (!leaf)
 146			return -ENOMEM;
 147		INIT_LIST_HEAD(&leaf->msg_list);
 148	}
 149	leaf->priority = msg->m_type;
 150	rb_link_node(&leaf->rb_node, parent, p);
 151	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 152insert_msg:
 153	info->attr.mq_curmsgs++;
 154	info->qsize += msg->m_ts;
 155	list_add_tail(&msg->m_list, &leaf->msg_list);
 156	return 0;
 157}
 158
 159static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 160{
 161	struct rb_node **p, *parent = NULL;
 162	struct posix_msg_tree_node *leaf;
 163	struct msg_msg *msg;
 164
 165try_again:
 166	p = &info->msg_tree.rb_node;
 167	while (*p) {
 168		parent = *p;
 169		/*
 170		 * During insert, low priorities go to the left and high to the
 171		 * right.  On receive, we want the highest priorities first, so
 172		 * walk all the way to the right.
 173		 */
 174		p = &(*p)->rb_right;
 175	}
 176	if (!parent) {
 177		if (info->attr.mq_curmsgs) {
 178			pr_warn_once("Inconsistency in POSIX message queue, "
 179				     "no tree element, but supposedly messages "
 180				     "should exist!\n");
 181			info->attr.mq_curmsgs = 0;
 182		}
 183		return NULL;
 184	}
 185	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 186	if (unlikely(list_empty(&leaf->msg_list))) {
 187		pr_warn_once("Inconsistency in POSIX message queue, "
 188			     "empty leaf node but we haven't implemented "
 189			     "lazy leaf delete!\n");
 190		rb_erase(&leaf->rb_node, &info->msg_tree);
 191		if (info->node_cache) {
 192			kfree(leaf);
 193		} else {
 194			info->node_cache = leaf;
 195		}
 196		goto try_again;
 197	} else {
 198		msg = list_first_entry(&leaf->msg_list,
 199				       struct msg_msg, m_list);
 200		list_del(&msg->m_list);
 201		if (list_empty(&leaf->msg_list)) {
 202			rb_erase(&leaf->rb_node, &info->msg_tree);
 203			if (info->node_cache) {
 204				kfree(leaf);
 205			} else {
 206				info->node_cache = leaf;
 207			}
 208		}
 209	}
 210	info->attr.mq_curmsgs--;
 211	info->qsize -= msg->m_ts;
 212	return msg;
 213}
 214
 215static struct inode *mqueue_get_inode(struct super_block *sb,
 216		struct ipc_namespace *ipc_ns, umode_t mode,
 217		struct mq_attr *attr)
 218{
 219	struct user_struct *u = current_user();
 220	struct inode *inode;
 221	int ret = -ENOMEM;
 222
 223	inode = new_inode(sb);
 224	if (!inode)
 225		goto err;
 226
 227	inode->i_ino = get_next_ino();
 228	inode->i_mode = mode;
 229	inode->i_uid = current_fsuid();
 230	inode->i_gid = current_fsgid();
 231	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 232
 233	if (S_ISREG(mode)) {
 234		struct mqueue_inode_info *info;
 235		unsigned long mq_bytes, mq_treesize;
 236
 237		inode->i_fop = &mqueue_file_operations;
 238		inode->i_size = FILENT_SIZE;
 239		/* mqueue specific info */
 240		info = MQUEUE_I(inode);
 241		spin_lock_init(&info->lock);
 242		init_waitqueue_head(&info->wait_q);
 243		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 244		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 245		info->notify_owner = NULL;
 246		info->notify_user_ns = NULL;
 247		info->qsize = 0;
 248		info->user = NULL;	/* set when all is ok */
 249		info->msg_tree = RB_ROOT;
 250		info->node_cache = NULL;
 251		memset(&info->attr, 0, sizeof(info->attr));
 252		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 253					   ipc_ns->mq_msg_default);
 254		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 255					    ipc_ns->mq_msgsize_default);
 256		if (attr) {
 257			info->attr.mq_maxmsg = attr->mq_maxmsg;
 258			info->attr.mq_msgsize = attr->mq_msgsize;
 259		}
 260		/*
 261		 * We used to allocate a static array of pointers and account
 262		 * the size of that array as well as one msg_msg struct per
 263		 * possible message into the queue size. That's no longer
 264		 * accurate as the queue is now an rbtree and will grow and
 265		 * shrink depending on usage patterns.  We can, however, still
 266		 * account one msg_msg struct per message, but the nodes are
 267		 * allocated depending on priority usage, and most programs
 268		 * only use one, or a handful, of priorities.  However, since
 269		 * this is pinned memory, we need to assume worst case, so
 270		 * that means the min(mq_maxmsg, max_priorities) * struct
 271		 * posix_msg_tree_node.
 272		 */
 273
 274		ret = -EINVAL;
 275		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 276			goto out_inode;
 277		if (capable(CAP_SYS_RESOURCE)) {
 278			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 279			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 280				goto out_inode;
 281		} else {
 282			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 283					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 284				goto out_inode;
 285		}
 286		ret = -EOVERFLOW;
 287		/* check for overflow */
 288		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 289			goto out_inode;
 290		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 291			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 292			sizeof(struct posix_msg_tree_node);
 293		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 294		if (mq_bytes + mq_treesize < mq_bytes)
 295			goto out_inode;
 296		mq_bytes += mq_treesize;
 297		spin_lock(&mq_lock);
 298		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 299		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 300			spin_unlock(&mq_lock);
 301			/* mqueue_evict_inode() releases info->messages */
 302			ret = -EMFILE;
 303			goto out_inode;
 304		}
 305		u->mq_bytes += mq_bytes;
 306		spin_unlock(&mq_lock);
 307
 308		/* all is ok */
 309		info->user = get_uid(u);
 310	} else if (S_ISDIR(mode)) {
 311		inc_nlink(inode);
 312		/* Some things misbehave if size == 0 on a directory */
 313		inode->i_size = 2 * DIRENT_SIZE;
 314		inode->i_op = &mqueue_dir_inode_operations;
 315		inode->i_fop = &simple_dir_operations;
 316	}
 317
 318	return inode;
 319out_inode:
 320	iput(inode);
 321err:
 322	return ERR_PTR(ret);
 323}
 324
 325static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 326{
 327	struct inode *inode;
 328	struct ipc_namespace *ns = sb->s_fs_info;
 329
 330	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 331	sb->s_blocksize = PAGE_SIZE;
 332	sb->s_blocksize_bits = PAGE_SHIFT;
 333	sb->s_magic = MQUEUE_MAGIC;
 334	sb->s_op = &mqueue_super_ops;
 335
 336	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 337	if (IS_ERR(inode))
 338		return PTR_ERR(inode);
 339
 340	sb->s_root = d_make_root(inode);
 341	if (!sb->s_root)
 342		return -ENOMEM;
 343	return 0;
 344}
 345
 346static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 347			 int flags, const char *dev_name,
 348			 void *data)
 349{
 350	struct ipc_namespace *ns;
 351	if (flags & SB_KERNMOUNT) {
 352		ns = data;
 353		data = NULL;
 354	} else {
 355		ns = current->nsproxy->ipc_ns;
 356	}
 357	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
 358}
 359
 360static void init_once(void *foo)
 361{
 362	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 363
 364	inode_init_once(&p->vfs_inode);
 365}
 366
 367static struct inode *mqueue_alloc_inode(struct super_block *sb)
 368{
 369	struct mqueue_inode_info *ei;
 370
 371	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 372	if (!ei)
 373		return NULL;
 374	return &ei->vfs_inode;
 375}
 376
 377static void mqueue_i_callback(struct rcu_head *head)
 378{
 379	struct inode *inode = container_of(head, struct inode, i_rcu);
 380	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 381}
 382
 383static void mqueue_destroy_inode(struct inode *inode)
 384{
 385	call_rcu(&inode->i_rcu, mqueue_i_callback);
 386}
 387
 388static void mqueue_evict_inode(struct inode *inode)
 389{
 390	struct mqueue_inode_info *info;
 391	struct user_struct *user;
 392	unsigned long mq_bytes, mq_treesize;
 393	struct ipc_namespace *ipc_ns;
 394	struct msg_msg *msg;
 395
 396	clear_inode(inode);
 397
 398	if (S_ISDIR(inode->i_mode))
 399		return;
 400
 401	ipc_ns = get_ns_from_inode(inode);
 402	info = MQUEUE_I(inode);
 403	spin_lock(&info->lock);
 404	while ((msg = msg_get(info)) != NULL)
 405		free_msg(msg);
 406	kfree(info->node_cache);
 407	spin_unlock(&info->lock);
 408
 409	/* Total amount of bytes accounted for the mqueue */
 410	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 411		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 412		sizeof(struct posix_msg_tree_node);
 413
 414	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 415				  info->attr.mq_msgsize);
 416
 417	user = info->user;
 418	if (user) {
 419		spin_lock(&mq_lock);
 420		user->mq_bytes -= mq_bytes;
 421		/*
 422		 * get_ns_from_inode() ensures that the
 423		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 424		 * to which we now hold a reference, or it is NULL.
 425		 * We can't put it here under mq_lock, though.
 426		 */
 427		if (ipc_ns)
 428			ipc_ns->mq_queues_count--;
 429		spin_unlock(&mq_lock);
 430		free_uid(user);
 431	}
 432	if (ipc_ns)
 433		put_ipc_ns(ipc_ns);
 434}
 435
 436static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 
 437{
 438	struct inode *dir = dentry->d_parent->d_inode;
 439	struct inode *inode;
 440	struct mq_attr *attr = arg;
 441	int error;
 442	struct ipc_namespace *ipc_ns;
 443
 444	spin_lock(&mq_lock);
 445	ipc_ns = __get_ns_from_inode(dir);
 446	if (!ipc_ns) {
 447		error = -EACCES;
 448		goto out_unlock;
 449	}
 450
 451	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 452	    !capable(CAP_SYS_RESOURCE)) {
 453		error = -ENOSPC;
 454		goto out_unlock;
 455	}
 456	ipc_ns->mq_queues_count++;
 457	spin_unlock(&mq_lock);
 458
 459	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 460	if (IS_ERR(inode)) {
 461		error = PTR_ERR(inode);
 462		spin_lock(&mq_lock);
 463		ipc_ns->mq_queues_count--;
 464		goto out_unlock;
 465	}
 466
 467	put_ipc_ns(ipc_ns);
 468	dir->i_size += DIRENT_SIZE;
 469	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 470
 471	d_instantiate(dentry, inode);
 472	dget(dentry);
 473	return 0;
 474out_unlock:
 475	spin_unlock(&mq_lock);
 476	if (ipc_ns)
 477		put_ipc_ns(ipc_ns);
 478	return error;
 479}
 480
 481static int mqueue_create(struct inode *dir, struct dentry *dentry,
 482				umode_t mode, bool excl)
 483{
 484	return mqueue_create_attr(dentry, mode, NULL);
 485}
 486
 487static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 488{
 489	struct inode *inode = d_inode(dentry);
 490
 491	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 492	dir->i_size -= DIRENT_SIZE;
 493	drop_nlink(inode);
 494	dput(dentry);
 495	return 0;
 496}
 497
 498/*
 499*	This is routine for system read from queue file.
 500*	To avoid mess with doing here some sort of mq_receive we allow
 501*	to read only queue size & notification info (the only values
 502*	that are interesting from user point of view and aren't accessible
 503*	through std routines)
 504*/
 505static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 506				size_t count, loff_t *off)
 507{
 508	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 509	char buffer[FILENT_SIZE];
 510	ssize_t ret;
 511
 512	spin_lock(&info->lock);
 513	snprintf(buffer, sizeof(buffer),
 514			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 515			info->qsize,
 516			info->notify_owner ? info->notify.sigev_notify : 0,
 517			(info->notify_owner &&
 518			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 519				info->notify.sigev_signo : 0,
 520			pid_vnr(info->notify_owner));
 521	spin_unlock(&info->lock);
 522	buffer[sizeof(buffer)-1] = '\0';
 523
 524	ret = simple_read_from_buffer(u_data, count, off, buffer,
 525				strlen(buffer));
 526	if (ret <= 0)
 527		return ret;
 528
 529	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 530	return ret;
 531}
 532
 533static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 534{
 535	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 536
 537	spin_lock(&info->lock);
 538	if (task_tgid(current) == info->notify_owner)
 539		remove_notification(info);
 540
 541	spin_unlock(&info->lock);
 542	return 0;
 543}
 544
 545static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 546{
 547	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 548	__poll_t retval = 0;
 549
 550	poll_wait(filp, &info->wait_q, poll_tab);
 551
 552	spin_lock(&info->lock);
 553	if (info->attr.mq_curmsgs)
 554		retval = EPOLLIN | EPOLLRDNORM;
 555
 556	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 557		retval |= EPOLLOUT | EPOLLWRNORM;
 558	spin_unlock(&info->lock);
 559
 560	return retval;
 561}
 562
 563/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 564static void wq_add(struct mqueue_inode_info *info, int sr,
 565			struct ext_wait_queue *ewp)
 566{
 567	struct ext_wait_queue *walk;
 568
 569	ewp->task = current;
 570
 571	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 572		if (walk->task->prio <= current->prio) {
 573			list_add_tail(&ewp->list, &walk->list);
 574			return;
 575		}
 576	}
 577	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 578}
 579
 580/*
 581 * Puts current task to sleep. Caller must hold queue lock. After return
 582 * lock isn't held.
 583 * sr: SEND or RECV
 584 */
 585static int wq_sleep(struct mqueue_inode_info *info, int sr,
 586		    ktime_t *timeout, struct ext_wait_queue *ewp)
 587	__releases(&info->lock)
 588{
 589	int retval;
 590	signed long time;
 591
 592	wq_add(info, sr, ewp);
 593
 594	for (;;) {
 595		__set_current_state(TASK_INTERRUPTIBLE);
 596
 597		spin_unlock(&info->lock);
 598		time = schedule_hrtimeout_range_clock(timeout, 0,
 599			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 600
 601		if (ewp->state == STATE_READY) {
 602			retval = 0;
 603			goto out;
 604		}
 605		spin_lock(&info->lock);
 606		if (ewp->state == STATE_READY) {
 607			retval = 0;
 608			goto out_unlock;
 609		}
 610		if (signal_pending(current)) {
 611			retval = -ERESTARTSYS;
 612			break;
 613		}
 614		if (time == 0) {
 615			retval = -ETIMEDOUT;
 616			break;
 617		}
 618	}
 619	list_del(&ewp->list);
 620out_unlock:
 621	spin_unlock(&info->lock);
 622out:
 623	return retval;
 624}
 625
 626/*
 627 * Returns waiting task that should be serviced first or NULL if none exists
 628 */
 629static struct ext_wait_queue *wq_get_first_waiter(
 630		struct mqueue_inode_info *info, int sr)
 631{
 632	struct list_head *ptr;
 633
 634	ptr = info->e_wait_q[sr].list.prev;
 635	if (ptr == &info->e_wait_q[sr].list)
 636		return NULL;
 637	return list_entry(ptr, struct ext_wait_queue, list);
 638}
 639
 640
 641static inline void set_cookie(struct sk_buff *skb, char code)
 642{
 643	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 644}
 645
 646/*
 647 * The next function is only to split too long sys_mq_timedsend
 648 */
 649static void __do_notify(struct mqueue_inode_info *info)
 650{
 651	/* notification
 652	 * invoked when there is registered process and there isn't process
 653	 * waiting synchronously for message AND state of queue changed from
 654	 * empty to not empty. Here we are sure that no one is waiting
 655	 * synchronously. */
 656	if (info->notify_owner &&
 657	    info->attr.mq_curmsgs == 1) {
 658		struct siginfo sig_i;
 659		switch (info->notify.sigev_notify) {
 660		case SIGEV_NONE:
 661			break;
 662		case SIGEV_SIGNAL:
 663			/* sends signal */
 664
 665			clear_siginfo(&sig_i);
 666			sig_i.si_signo = info->notify.sigev_signo;
 667			sig_i.si_errno = 0;
 668			sig_i.si_code = SI_MESGQ;
 669			sig_i.si_value = info->notify.sigev_value;
 670			/* map current pid/uid into info->owner's namespaces */
 671			rcu_read_lock();
 672			sig_i.si_pid = task_tgid_nr_ns(current,
 673						ns_of_pid(info->notify_owner));
 674			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 675			rcu_read_unlock();
 676
 677			kill_pid_info(info->notify.sigev_signo,
 678				      &sig_i, info->notify_owner);
 679			break;
 680		case SIGEV_THREAD:
 681			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 682			netlink_sendskb(info->notify_sock, info->notify_cookie);
 683			break;
 684		}
 685		/* after notification unregisters process */
 686		put_pid(info->notify_owner);
 687		put_user_ns(info->notify_user_ns);
 688		info->notify_owner = NULL;
 689		info->notify_user_ns = NULL;
 690	}
 691	wake_up(&info->wait_q);
 692}
 693
 694static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 695			   struct timespec64 *ts)
 696{
 697	if (get_timespec64(ts, u_abs_timeout))
 698		return -EFAULT;
 699	if (!timespec64_valid(ts))
 700		return -EINVAL;
 
 
 701	return 0;
 702}
 703
 704static void remove_notification(struct mqueue_inode_info *info)
 705{
 706	if (info->notify_owner != NULL &&
 707	    info->notify.sigev_notify == SIGEV_THREAD) {
 708		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 709		netlink_sendskb(info->notify_sock, info->notify_cookie);
 710	}
 711	put_pid(info->notify_owner);
 712	put_user_ns(info->notify_user_ns);
 713	info->notify_owner = NULL;
 714	info->notify_user_ns = NULL;
 715}
 716
 717static int prepare_open(struct dentry *dentry, int oflag, int ro,
 718			umode_t mode, struct filename *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719			struct mq_attr *attr)
 720{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 722						  MAY_READ | MAY_WRITE };
 723	int acc;
 724
 725	if (d_really_is_negative(dentry)) {
 726		if (!(oflag & O_CREAT))
 727			return -ENOENT;
 728		if (ro)
 729			return ro;
 730		audit_inode_parent_hidden(name, dentry->d_parent);
 731		return vfs_mkobj(dentry, mode & ~current_umask(),
 732				  mqueue_create_attr, attr);
 733	}
 734	/* it already existed */
 735	audit_inode(name, dentry, 0);
 736	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 737		return -EEXIST;
 738	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 739		return -EINVAL;
 740	acc = oflag2acc[oflag & O_ACCMODE];
 741	return inode_permission(d_inode(dentry), acc);
 
 
 742}
 743
 744static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 745		      struct mq_attr *attr)
 746{
 747	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 748	struct dentry *root = mnt->mnt_root;
 749	struct filename *name;
 750	struct path path;
 751	int fd, error;
 
 
 
 752	int ro;
 753
 754	audit_mq_open(oflag, mode, attr);
 
 
 
 755
 756	if (IS_ERR(name = getname(u_name)))
 757		return PTR_ERR(name);
 758
 759	fd = get_unused_fd_flags(O_CLOEXEC);
 760	if (fd < 0)
 761		goto out_putname;
 762
 763	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 
 764	inode_lock(d_inode(root));
 765	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 766	if (IS_ERR(path.dentry)) {
 767		error = PTR_ERR(path.dentry);
 768		goto out_putfd;
 769	}
 770	path.mnt = mntget(mnt);
 771	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 772	if (!error) {
 773		struct file *file = dentry_open(&path, oflag, current_cred());
 774		if (!IS_ERR(file))
 775			fd_install(fd, file);
 776		else
 777			error = PTR_ERR(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778	}
 
 
 
 
 
 
 779	path_put(&path);
 780out_putfd:
 781	if (error) {
 782		put_unused_fd(fd);
 783		fd = error;
 784	}
 785	inode_unlock(d_inode(root));
 786	if (!ro)
 787		mnt_drop_write(mnt);
 788out_putname:
 789	putname(name);
 790	return fd;
 791}
 792
 793SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 794		struct mq_attr __user *, u_attr)
 795{
 796	struct mq_attr attr;
 797	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 798		return -EFAULT;
 799
 800	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 801}
 802
 803SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 804{
 805	int err;
 806	struct filename *name;
 807	struct dentry *dentry;
 808	struct inode *inode = NULL;
 809	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 810	struct vfsmount *mnt = ipc_ns->mq_mnt;
 811
 812	name = getname(u_name);
 813	if (IS_ERR(name))
 814		return PTR_ERR(name);
 815
 816	audit_inode_parent_hidden(name, mnt->mnt_root);
 817	err = mnt_want_write(mnt);
 818	if (err)
 819		goto out_name;
 820	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 821	dentry = lookup_one_len(name->name, mnt->mnt_root,
 822				strlen(name->name));
 823	if (IS_ERR(dentry)) {
 824		err = PTR_ERR(dentry);
 825		goto out_unlock;
 826	}
 827
 828	inode = d_inode(dentry);
 829	if (!inode) {
 830		err = -ENOENT;
 831	} else {
 832		ihold(inode);
 833		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 834	}
 835	dput(dentry);
 836
 837out_unlock:
 838	inode_unlock(d_inode(mnt->mnt_root));
 839	if (inode)
 840		iput(inode);
 841	mnt_drop_write(mnt);
 842out_name:
 843	putname(name);
 844
 845	return err;
 846}
 847
 848/* Pipelined send and receive functions.
 849 *
 850 * If a receiver finds no waiting message, then it registers itself in the
 851 * list of waiting receivers. A sender checks that list before adding the new
 852 * message into the message array. If there is a waiting receiver, then it
 853 * bypasses the message array and directly hands the message over to the
 854 * receiver. The receiver accepts the message and returns without grabbing the
 855 * queue spinlock:
 856 *
 857 * - Set pointer to message.
 858 * - Queue the receiver task for later wakeup (without the info->lock).
 859 * - Update its state to STATE_READY. Now the receiver can continue.
 860 * - Wake up the process after the lock is dropped. Should the process wake up
 861 *   before this wakeup (due to a timeout or a signal) it will either see
 862 *   STATE_READY and continue or acquire the lock to check the state again.
 863 *
 864 * The same algorithm is used for senders.
 865 */
 866
 867/* pipelined_send() - send a message directly to the task waiting in
 868 * sys_mq_timedreceive() (without inserting message into a queue).
 869 */
 870static inline void pipelined_send(struct wake_q_head *wake_q,
 871				  struct mqueue_inode_info *info,
 872				  struct msg_msg *message,
 873				  struct ext_wait_queue *receiver)
 874{
 875	receiver->msg = message;
 876	list_del(&receiver->list);
 877	wake_q_add(wake_q, receiver->task);
 878	/*
 879	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 880	 * that we can ensure that updating receiver->state is the last
 881	 * write operation: As once set, the receiver can continue,
 882	 * and if we don't have the reference count from the wake_q,
 883	 * yet, at that point we can later have a use-after-free
 884	 * condition and bogus wakeup.
 885	 */
 886	receiver->state = STATE_READY;
 887}
 888
 889/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 890 * gets its message and put to the queue (we have one free place for sure). */
 891static inline void pipelined_receive(struct wake_q_head *wake_q,
 892				     struct mqueue_inode_info *info)
 893{
 894	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 895
 896	if (!sender) {
 897		/* for poll */
 898		wake_up_interruptible(&info->wait_q);
 899		return;
 900	}
 901	if (msg_insert(sender->msg, info))
 902		return;
 903
 904	list_del(&sender->list);
 905	wake_q_add(wake_q, sender->task);
 906	sender->state = STATE_READY;
 907}
 908
 909static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 910		size_t msg_len, unsigned int msg_prio,
 911		struct timespec64 *ts)
 912{
 913	struct fd f;
 914	struct inode *inode;
 915	struct ext_wait_queue wait;
 916	struct ext_wait_queue *receiver;
 917	struct msg_msg *msg_ptr;
 918	struct mqueue_inode_info *info;
 919	ktime_t expires, *timeout = NULL;
 
 920	struct posix_msg_tree_node *new_leaf = NULL;
 921	int ret = 0;
 922	DEFINE_WAKE_Q(wake_q);
 923
 
 
 
 
 
 
 
 924	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 925		return -EINVAL;
 926
 927	if (ts) {
 928		expires = timespec64_to_ktime(*ts);
 929		timeout = &expires;
 930	}
 931
 932	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 933
 934	f = fdget(mqdes);
 935	if (unlikely(!f.file)) {
 936		ret = -EBADF;
 937		goto out;
 938	}
 939
 940	inode = file_inode(f.file);
 941	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 942		ret = -EBADF;
 943		goto out_fput;
 944	}
 945	info = MQUEUE_I(inode);
 946	audit_file(f.file);
 947
 948	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
 949		ret = -EBADF;
 950		goto out_fput;
 951	}
 952
 953	if (unlikely(msg_len > info->attr.mq_msgsize)) {
 954		ret = -EMSGSIZE;
 955		goto out_fput;
 956	}
 957
 958	/* First try to allocate memory, before doing anything with
 959	 * existing queues. */
 960	msg_ptr = load_msg(u_msg_ptr, msg_len);
 961	if (IS_ERR(msg_ptr)) {
 962		ret = PTR_ERR(msg_ptr);
 963		goto out_fput;
 964	}
 965	msg_ptr->m_ts = msg_len;
 966	msg_ptr->m_type = msg_prio;
 967
 968	/*
 969	 * msg_insert really wants us to have a valid, spare node struct so
 970	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
 971	 * fall back to that if necessary.
 972	 */
 973	if (!info->node_cache)
 974		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
 975
 976	spin_lock(&info->lock);
 977
 978	if (!info->node_cache && new_leaf) {
 979		/* Save our speculative allocation into the cache */
 980		INIT_LIST_HEAD(&new_leaf->msg_list);
 981		info->node_cache = new_leaf;
 982		new_leaf = NULL;
 983	} else {
 984		kfree(new_leaf);
 985	}
 986
 987	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
 988		if (f.file->f_flags & O_NONBLOCK) {
 989			ret = -EAGAIN;
 990		} else {
 991			wait.task = current;
 992			wait.msg = (void *) msg_ptr;
 993			wait.state = STATE_NONE;
 994			ret = wq_sleep(info, SEND, timeout, &wait);
 995			/*
 996			 * wq_sleep must be called with info->lock held, and
 997			 * returns with the lock released
 998			 */
 999			goto out_free;
1000		}
1001	} else {
1002		receiver = wq_get_first_waiter(info, RECV);
1003		if (receiver) {
1004			pipelined_send(&wake_q, info, msg_ptr, receiver);
1005		} else {
1006			/* adds message to the queue */
1007			ret = msg_insert(msg_ptr, info);
1008			if (ret)
1009				goto out_unlock;
1010			__do_notify(info);
1011		}
1012		inode->i_atime = inode->i_mtime = inode->i_ctime =
1013				current_time(inode);
1014	}
1015out_unlock:
1016	spin_unlock(&info->lock);
1017	wake_up_q(&wake_q);
1018out_free:
1019	if (ret)
1020		free_msg(msg_ptr);
1021out_fput:
1022	fdput(f);
1023out:
1024	return ret;
1025}
1026
1027static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1028		size_t msg_len, unsigned int __user *u_msg_prio,
1029		struct timespec64 *ts)
1030{
1031	ssize_t ret;
1032	struct msg_msg *msg_ptr;
1033	struct fd f;
1034	struct inode *inode;
1035	struct mqueue_inode_info *info;
1036	struct ext_wait_queue wait;
1037	ktime_t expires, *timeout = NULL;
 
1038	struct posix_msg_tree_node *new_leaf = NULL;
1039
1040	if (ts) {
1041		expires = timespec64_to_ktime(*ts);
 
 
1042		timeout = &expires;
1043	}
1044
1045	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1046
1047	f = fdget(mqdes);
1048	if (unlikely(!f.file)) {
1049		ret = -EBADF;
1050		goto out;
1051	}
1052
1053	inode = file_inode(f.file);
1054	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1055		ret = -EBADF;
1056		goto out_fput;
1057	}
1058	info = MQUEUE_I(inode);
1059	audit_file(f.file);
1060
1061	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1062		ret = -EBADF;
1063		goto out_fput;
1064	}
1065
1066	/* checks if buffer is big enough */
1067	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1068		ret = -EMSGSIZE;
1069		goto out_fput;
1070	}
1071
1072	/*
1073	 * msg_insert really wants us to have a valid, spare node struct so
1074	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1075	 * fall back to that if necessary.
1076	 */
1077	if (!info->node_cache)
1078		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1079
1080	spin_lock(&info->lock);
1081
1082	if (!info->node_cache && new_leaf) {
1083		/* Save our speculative allocation into the cache */
1084		INIT_LIST_HEAD(&new_leaf->msg_list);
1085		info->node_cache = new_leaf;
1086	} else {
1087		kfree(new_leaf);
1088	}
1089
1090	if (info->attr.mq_curmsgs == 0) {
1091		if (f.file->f_flags & O_NONBLOCK) {
1092			spin_unlock(&info->lock);
1093			ret = -EAGAIN;
1094		} else {
1095			wait.task = current;
1096			wait.state = STATE_NONE;
1097			ret = wq_sleep(info, RECV, timeout, &wait);
1098			msg_ptr = wait.msg;
1099		}
1100	} else {
1101		DEFINE_WAKE_Q(wake_q);
1102
1103		msg_ptr = msg_get(info);
1104
1105		inode->i_atime = inode->i_mtime = inode->i_ctime =
1106				current_time(inode);
1107
1108		/* There is now free space in queue. */
1109		pipelined_receive(&wake_q, info);
1110		spin_unlock(&info->lock);
1111		wake_up_q(&wake_q);
1112		ret = 0;
1113	}
1114	if (ret == 0) {
1115		ret = msg_ptr->m_ts;
1116
1117		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1118			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1119			ret = -EFAULT;
1120		}
1121		free_msg(msg_ptr);
1122	}
1123out_fput:
1124	fdput(f);
1125out:
1126	return ret;
1127}
1128
1129SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1130		size_t, msg_len, unsigned int, msg_prio,
1131		const struct timespec __user *, u_abs_timeout)
1132{
1133	struct timespec64 ts, *p = NULL;
1134	if (u_abs_timeout) {
1135		int res = prepare_timeout(u_abs_timeout, &ts);
1136		if (res)
1137			return res;
1138		p = &ts;
1139	}
1140	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1141}
1142
1143SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1144		size_t, msg_len, unsigned int __user *, u_msg_prio,
1145		const struct timespec __user *, u_abs_timeout)
1146{
1147	struct timespec64 ts, *p = NULL;
1148	if (u_abs_timeout) {
1149		int res = prepare_timeout(u_abs_timeout, &ts);
1150		if (res)
1151			return res;
1152		p = &ts;
1153	}
1154	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1155}
1156
1157/*
1158 * Notes: the case when user wants us to deregister (with NULL as pointer)
1159 * and he isn't currently owner of notification, will be silently discarded.
1160 * It isn't explicitly defined in the POSIX.
1161 */
1162static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 
1163{
1164	int ret;
1165	struct fd f;
1166	struct sock *sock;
1167	struct inode *inode;
 
1168	struct mqueue_inode_info *info;
1169	struct sk_buff *nc;
1170
1171	audit_mq_notify(mqdes, notification);
 
 
 
 
 
 
1172
1173	nc = NULL;
1174	sock = NULL;
1175	if (notification != NULL) {
1176		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1177			     notification->sigev_notify != SIGEV_SIGNAL &&
1178			     notification->sigev_notify != SIGEV_THREAD))
1179			return -EINVAL;
1180		if (notification->sigev_notify == SIGEV_SIGNAL &&
1181			!valid_signal(notification->sigev_signo)) {
1182			return -EINVAL;
1183		}
1184		if (notification->sigev_notify == SIGEV_THREAD) {
1185			long timeo;
1186
1187			/* create the notify skb */
1188			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1189			if (!nc) {
1190				ret = -ENOMEM;
1191				goto out;
1192			}
1193			if (copy_from_user(nc->data,
1194					notification->sigev_value.sival_ptr,
1195					NOTIFY_COOKIE_LEN)) {
1196				ret = -EFAULT;
1197				goto out;
1198			}
1199
1200			/* TODO: add a header? */
1201			skb_put(nc, NOTIFY_COOKIE_LEN);
1202			/* and attach it to the socket */
1203retry:
1204			f = fdget(notification->sigev_signo);
1205			if (!f.file) {
1206				ret = -EBADF;
1207				goto out;
1208			}
1209			sock = netlink_getsockbyfilp(f.file);
1210			fdput(f);
1211			if (IS_ERR(sock)) {
1212				ret = PTR_ERR(sock);
1213				sock = NULL;
1214				goto out;
1215			}
1216
1217			timeo = MAX_SCHEDULE_TIMEOUT;
1218			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1219			if (ret == 1) {
1220				sock = NULL;
1221				goto retry;
1222			}
1223			if (ret) {
1224				sock = NULL;
1225				nc = NULL;
1226				goto out;
1227			}
1228		}
1229	}
1230
1231	f = fdget(mqdes);
1232	if (!f.file) {
1233		ret = -EBADF;
1234		goto out;
1235	}
1236
1237	inode = file_inode(f.file);
1238	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1239		ret = -EBADF;
1240		goto out_fput;
1241	}
1242	info = MQUEUE_I(inode);
1243
1244	ret = 0;
1245	spin_lock(&info->lock);
1246	if (notification == NULL) {
1247		if (info->notify_owner == task_tgid(current)) {
1248			remove_notification(info);
1249			inode->i_atime = inode->i_ctime = current_time(inode);
1250		}
1251	} else if (info->notify_owner != NULL) {
1252		ret = -EBUSY;
1253	} else {
1254		switch (notification->sigev_notify) {
1255		case SIGEV_NONE:
1256			info->notify.sigev_notify = SIGEV_NONE;
1257			break;
1258		case SIGEV_THREAD:
1259			info->notify_sock = sock;
1260			info->notify_cookie = nc;
1261			sock = NULL;
1262			nc = NULL;
1263			info->notify.sigev_notify = SIGEV_THREAD;
1264			break;
1265		case SIGEV_SIGNAL:
1266			info->notify.sigev_signo = notification->sigev_signo;
1267			info->notify.sigev_value = notification->sigev_value;
1268			info->notify.sigev_notify = SIGEV_SIGNAL;
1269			break;
1270		}
1271
1272		info->notify_owner = get_pid(task_tgid(current));
1273		info->notify_user_ns = get_user_ns(current_user_ns());
1274		inode->i_atime = inode->i_ctime = current_time(inode);
1275	}
1276	spin_unlock(&info->lock);
1277out_fput:
1278	fdput(f);
1279out:
1280	if (sock)
1281		netlink_detachskb(sock, nc);
1282	else if (nc)
1283		dev_kfree_skb(nc);
1284
1285	return ret;
1286}
1287
1288SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1289		const struct sigevent __user *, u_notification)
1290{
1291	struct sigevent n, *p = NULL;
1292	if (u_notification) {
1293		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1294			return -EFAULT;
1295		p = &n;
1296	}
1297	return do_mq_notify(mqdes, p);
1298}
1299
1300static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1301{
 
 
1302	struct fd f;
1303	struct inode *inode;
1304	struct mqueue_inode_info *info;
1305
1306	if (new && (new->mq_flags & (~O_NONBLOCK)))
1307		return -EINVAL;
 
 
 
 
1308
1309	f = fdget(mqdes);
1310	if (!f.file)
1311		return -EBADF;
 
 
1312
 
1313	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1314		fdput(f);
1315		return -EBADF;
1316	}
1317
1318	inode = file_inode(f.file);
1319	info = MQUEUE_I(inode);
1320
1321	spin_lock(&info->lock);
1322
1323	if (old) {
1324		*old = info->attr;
1325		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1326	}
1327	if (new) {
1328		audit_mq_getsetattr(mqdes, new);
1329		spin_lock(&f.file->f_lock);
1330		if (new->mq_flags & O_NONBLOCK)
1331			f.file->f_flags |= O_NONBLOCK;
1332		else
1333			f.file->f_flags &= ~O_NONBLOCK;
1334		spin_unlock(&f.file->f_lock);
1335
1336		inode->i_atime = inode->i_ctime = current_time(inode);
1337	}
1338
1339	spin_unlock(&info->lock);
1340	fdput(f);
1341	return 0;
1342}
1343
1344SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1345		const struct mq_attr __user *, u_mqstat,
1346		struct mq_attr __user *, u_omqstat)
1347{
1348	int ret;
1349	struct mq_attr mqstat, omqstat;
1350	struct mq_attr *new = NULL, *old = NULL;
1351
1352	if (u_mqstat) {
1353		new = &mqstat;
1354		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1355			return -EFAULT;
1356	}
1357	if (u_omqstat)
1358		old = &omqstat;
1359
1360	ret = do_mq_getsetattr(mqdes, new, old);
1361	if (ret || !old)
1362		return ret;
1363
1364	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1365		return -EFAULT;
1366	return 0;
1367}
1368
1369#ifdef CONFIG_COMPAT
1370
1371struct compat_mq_attr {
1372	compat_long_t mq_flags;      /* message queue flags		     */
1373	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1374	compat_long_t mq_msgsize;    /* maximum message size		     */
1375	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1376	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1377};
1378
1379static inline int get_compat_mq_attr(struct mq_attr *attr,
1380			const struct compat_mq_attr __user *uattr)
1381{
1382	struct compat_mq_attr v;
1383
1384	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1385		return -EFAULT;
1386
1387	memset(attr, 0, sizeof(*attr));
1388	attr->mq_flags = v.mq_flags;
1389	attr->mq_maxmsg = v.mq_maxmsg;
1390	attr->mq_msgsize = v.mq_msgsize;
1391	attr->mq_curmsgs = v.mq_curmsgs;
1392	return 0;
1393}
1394
1395static inline int put_compat_mq_attr(const struct mq_attr *attr,
1396			struct compat_mq_attr __user *uattr)
1397{
1398	struct compat_mq_attr v;
1399
1400	memset(&v, 0, sizeof(v));
1401	v.mq_flags = attr->mq_flags;
1402	v.mq_maxmsg = attr->mq_maxmsg;
1403	v.mq_msgsize = attr->mq_msgsize;
1404	v.mq_curmsgs = attr->mq_curmsgs;
1405	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1406		return -EFAULT;
1407	return 0;
1408}
1409
1410COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1411		       int, oflag, compat_mode_t, mode,
1412		       struct compat_mq_attr __user *, u_attr)
1413{
1414	struct mq_attr attr, *p = NULL;
1415	if (u_attr && oflag & O_CREAT) {
1416		p = &attr;
1417		if (get_compat_mq_attr(&attr, u_attr))
1418			return -EFAULT;
1419	}
1420	return do_mq_open(u_name, oflag, mode, p);
1421}
1422
1423static int compat_prepare_timeout(const struct compat_timespec __user *p,
1424				   struct timespec64 *ts)
1425{
1426	if (compat_get_timespec64(ts, p))
1427		return -EFAULT;
1428	if (!timespec64_valid(ts))
1429		return -EINVAL;
1430	return 0;
1431}
1432
1433COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1434		       const char __user *, u_msg_ptr,
1435		       compat_size_t, msg_len, unsigned int, msg_prio,
1436		       const struct compat_timespec __user *, u_abs_timeout)
1437{
1438	struct timespec64 ts, *p = NULL;
1439	if (u_abs_timeout) {
1440		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1441		if (res)
1442			return res;
1443		p = &ts;
1444	}
1445	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1446}
1447
1448COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1449		       char __user *, u_msg_ptr,
1450		       compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1451		       const struct compat_timespec __user *, u_abs_timeout)
1452{
1453	struct timespec64 ts, *p = NULL;
1454	if (u_abs_timeout) {
1455		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1456		if (res)
1457			return res;
1458		p = &ts;
1459	}
1460	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1461}
1462
1463COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1464		       const struct compat_sigevent __user *, u_notification)
1465{
1466	struct sigevent n, *p = NULL;
1467	if (u_notification) {
1468		if (get_compat_sigevent(&n, u_notification))
1469			return -EFAULT;
1470		if (n.sigev_notify == SIGEV_THREAD)
1471			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1472		p = &n;
1473	}
1474	return do_mq_notify(mqdes, p);
1475}
1476
1477COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1478		       const struct compat_mq_attr __user *, u_mqstat,
1479		       struct compat_mq_attr __user *, u_omqstat)
1480{
1481	int ret;
1482	struct mq_attr mqstat, omqstat;
1483	struct mq_attr *new = NULL, *old = NULL;
1484
1485	if (u_mqstat) {
1486		new = &mqstat;
1487		if (get_compat_mq_attr(new, u_mqstat))
1488			return -EFAULT;
1489	}
1490	if (u_omqstat)
1491		old = &omqstat;
1492
1493	ret = do_mq_getsetattr(mqdes, new, old);
1494	if (ret || !old)
1495		return ret;
1496
1497	if (put_compat_mq_attr(old, u_omqstat))
1498		return -EFAULT;
1499	return 0;
1500}
1501#endif
1502
1503static const struct inode_operations mqueue_dir_inode_operations = {
1504	.lookup = simple_lookup,
1505	.create = mqueue_create,
1506	.unlink = mqueue_unlink,
1507};
1508
1509static const struct file_operations mqueue_file_operations = {
1510	.flush = mqueue_flush_file,
1511	.poll = mqueue_poll_file,
1512	.read = mqueue_read_file,
1513	.llseek = default_llseek,
1514};
1515
1516static const struct super_operations mqueue_super_ops = {
1517	.alloc_inode = mqueue_alloc_inode,
1518	.destroy_inode = mqueue_destroy_inode,
1519	.evict_inode = mqueue_evict_inode,
1520	.statfs = simple_statfs,
1521};
1522
1523static struct file_system_type mqueue_fs_type = {
1524	.name = "mqueue",
1525	.mount = mqueue_mount,
1526	.kill_sb = kill_litter_super,
1527	.fs_flags = FS_USERNS_MOUNT,
1528};
1529
1530int mq_init_ns(struct ipc_namespace *ns)
1531{
1532	ns->mq_queues_count  = 0;
1533	ns->mq_queues_max    = DFLT_QUEUESMAX;
1534	ns->mq_msg_max       = DFLT_MSGMAX;
1535	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1536	ns->mq_msg_default   = DFLT_MSG;
1537	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1538
1539	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1540	if (IS_ERR(ns->mq_mnt)) {
1541		int err = PTR_ERR(ns->mq_mnt);
1542		ns->mq_mnt = NULL;
1543		return err;
1544	}
1545	return 0;
1546}
1547
1548void mq_clear_sbinfo(struct ipc_namespace *ns)
1549{
1550	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1551}
1552
1553void mq_put_mnt(struct ipc_namespace *ns)
1554{
1555	kern_unmount(ns->mq_mnt);
1556}
1557
1558static int __init init_mqueue_fs(void)
1559{
1560	int error;
1561
1562	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1563				sizeof(struct mqueue_inode_info), 0,
1564				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1565	if (mqueue_inode_cachep == NULL)
1566		return -ENOMEM;
1567
1568	/* ignore failures - they are not fatal */
1569	mq_sysctl_table = mq_register_sysctl_table();
1570
1571	error = register_filesystem(&mqueue_fs_type);
1572	if (error)
1573		goto out_sysctl;
1574
1575	spin_lock_init(&mq_lock);
1576
1577	error = mq_init_ns(&init_ipc_ns);
1578	if (error)
1579		goto out_filesystem;
1580
1581	return 0;
1582
1583out_filesystem:
1584	unregister_filesystem(&mqueue_fs_type);
1585out_sysctl:
1586	if (mq_sysctl_table)
1587		unregister_sysctl_table(mq_sysctl_table);
1588	kmem_cache_destroy(mqueue_inode_cachep);
1589	return error;
1590}
1591
1592device_initcall(init_mqueue_fs);