Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
 
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
 
 
 
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
 
 
 
 
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
 
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
 
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
 
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 
 
 
 
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = sb->s_fs_info;
 309
 310	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 311	sb->s_blocksize = PAGE_SIZE;
 312	sb->s_blocksize_bits = PAGE_SHIFT;
 313	sb->s_magic = MQUEUE_MAGIC;
 314	sb->s_op = &mqueue_super_ops;
 315
 316	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 317	if (IS_ERR(inode))
 318		return PTR_ERR(inode);
 319
 320	sb->s_root = d_make_root(inode);
 321	if (!sb->s_root)
 322		return -ENOMEM;
 323	return 0;
 324}
 325
 326static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 327			 int flags, const char *dev_name,
 328			 void *data)
 329{
 330	struct ipc_namespace *ns;
 331	if (flags & MS_KERNMOUNT) {
 332		ns = data;
 333		data = NULL;
 334	} else {
 335		ns = current->nsproxy->ipc_ns;
 336	}
 337	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338}
 339
 340static void init_once(void *foo)
 341{
 342	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 343
 344	inode_init_once(&p->vfs_inode);
 345}
 346
 347static struct inode *mqueue_alloc_inode(struct super_block *sb)
 348{
 349	struct mqueue_inode_info *ei;
 350
 351	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 352	if (!ei)
 353		return NULL;
 354	return &ei->vfs_inode;
 355}
 356
 357static void mqueue_i_callback(struct rcu_head *head)
 358{
 359	struct inode *inode = container_of(head, struct inode, i_rcu);
 360	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 361}
 362
 363static void mqueue_destroy_inode(struct inode *inode)
 364{
 365	call_rcu(&inode->i_rcu, mqueue_i_callback);
 366}
 367
 368static void mqueue_evict_inode(struct inode *inode)
 369{
 370	struct mqueue_inode_info *info;
 371	struct user_struct *user;
 372	unsigned long mq_bytes, mq_treesize;
 373	struct ipc_namespace *ipc_ns;
 374	struct msg_msg *msg;
 
 375
 376	clear_inode(inode);
 377
 378	if (S_ISDIR(inode->i_mode))
 379		return;
 380
 381	ipc_ns = get_ns_from_inode(inode);
 382	info = MQUEUE_I(inode);
 383	spin_lock(&info->lock);
 384	while ((msg = msg_get(info)) != NULL)
 385		free_msg(msg);
 386	kfree(info->node_cache);
 387	spin_unlock(&info->lock);
 388
 389	/* Total amount of bytes accounted for the mqueue */
 390	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 391		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 392		sizeof(struct posix_msg_tree_node);
 393
 394	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 395				  info->attr.mq_msgsize);
 396
 397	user = info->user;
 398	if (user) {
 
 
 
 
 
 
 
 
 
 
 399		spin_lock(&mq_lock);
 400		user->mq_bytes -= mq_bytes;
 401		/*
 402		 * get_ns_from_inode() ensures that the
 403		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 404		 * to which we now hold a reference, or it is NULL.
 405		 * We can't put it here under mq_lock, though.
 406		 */
 407		if (ipc_ns)
 408			ipc_ns->mq_queues_count--;
 409		spin_unlock(&mq_lock);
 410		free_uid(user);
 411	}
 412	if (ipc_ns)
 413		put_ipc_ns(ipc_ns);
 414}
 415
 416static int mqueue_create(struct inode *dir, struct dentry *dentry,
 417				umode_t mode, bool excl)
 418{
 
 419	struct inode *inode;
 420	struct mq_attr *attr = dentry->d_fsdata;
 421	int error;
 422	struct ipc_namespace *ipc_ns;
 423
 424	spin_lock(&mq_lock);
 425	ipc_ns = __get_ns_from_inode(dir);
 426	if (!ipc_ns) {
 427		error = -EACCES;
 428		goto out_unlock;
 429	}
 430
 431	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 432	    !capable(CAP_SYS_RESOURCE)) {
 433		error = -ENOSPC;
 434		goto out_unlock;
 435	}
 436	ipc_ns->mq_queues_count++;
 437	spin_unlock(&mq_lock);
 438
 439	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 440	if (IS_ERR(inode)) {
 441		error = PTR_ERR(inode);
 442		spin_lock(&mq_lock);
 443		ipc_ns->mq_queues_count--;
 444		goto out_unlock;
 445	}
 446
 447	put_ipc_ns(ipc_ns);
 448	dir->i_size += DIRENT_SIZE;
 449	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 450
 451	d_instantiate(dentry, inode);
 452	dget(dentry);
 453	return 0;
 454out_unlock:
 455	spin_unlock(&mq_lock);
 456	if (ipc_ns)
 457		put_ipc_ns(ipc_ns);
 458	return error;
 459}
 460
 
 
 
 
 
 
 461static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 462{
 463	struct inode *inode = d_inode(dentry);
 464
 465	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 466	dir->i_size -= DIRENT_SIZE;
 467	drop_nlink(inode);
 468	dput(dentry);
 469	return 0;
 470}
 471
 472/*
 473*	This is routine for system read from queue file.
 474*	To avoid mess with doing here some sort of mq_receive we allow
 475*	to read only queue size & notification info (the only values
 476*	that are interesting from user point of view and aren't accessible
 477*	through std routines)
 478*/
 479static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 480				size_t count, loff_t *off)
 481{
 482	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 483	char buffer[FILENT_SIZE];
 484	ssize_t ret;
 485
 486	spin_lock(&info->lock);
 487	snprintf(buffer, sizeof(buffer),
 488			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 489			info->qsize,
 490			info->notify_owner ? info->notify.sigev_notify : 0,
 491			(info->notify_owner &&
 492			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 493				info->notify.sigev_signo : 0,
 494			pid_vnr(info->notify_owner));
 495	spin_unlock(&info->lock);
 496	buffer[sizeof(buffer)-1] = '\0';
 497
 498	ret = simple_read_from_buffer(u_data, count, off, buffer,
 499				strlen(buffer));
 500	if (ret <= 0)
 501		return ret;
 502
 503	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 504	return ret;
 505}
 506
 507static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 508{
 509	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 510
 511	spin_lock(&info->lock);
 512	if (task_tgid(current) == info->notify_owner)
 513		remove_notification(info);
 514
 515	spin_unlock(&info->lock);
 516	return 0;
 517}
 518
 519static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 520{
 521	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 522	int retval = 0;
 523
 524	poll_wait(filp, &info->wait_q, poll_tab);
 525
 526	spin_lock(&info->lock);
 527	if (info->attr.mq_curmsgs)
 528		retval = POLLIN | POLLRDNORM;
 529
 530	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 531		retval |= POLLOUT | POLLWRNORM;
 532	spin_unlock(&info->lock);
 533
 534	return retval;
 535}
 536
 537/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 538static void wq_add(struct mqueue_inode_info *info, int sr,
 539			struct ext_wait_queue *ewp)
 540{
 541	struct ext_wait_queue *walk;
 542
 543	ewp->task = current;
 544
 545	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 546		if (walk->task->static_prio <= current->static_prio) {
 547			list_add_tail(&ewp->list, &walk->list);
 548			return;
 549		}
 550	}
 551	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 552}
 553
 554/*
 555 * Puts current task to sleep. Caller must hold queue lock. After return
 556 * lock isn't held.
 557 * sr: SEND or RECV
 558 */
 559static int wq_sleep(struct mqueue_inode_info *info, int sr,
 560		    ktime_t *timeout, struct ext_wait_queue *ewp)
 
 561{
 562	int retval;
 563	signed long time;
 564
 565	wq_add(info, sr, ewp);
 566
 567	for (;;) {
 568		__set_current_state(TASK_INTERRUPTIBLE);
 569
 570		spin_unlock(&info->lock);
 571		time = schedule_hrtimeout_range_clock(timeout, 0,
 572			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 573
 574		if (ewp->state == STATE_READY) {
 575			retval = 0;
 576			goto out;
 577		}
 578		spin_lock(&info->lock);
 579		if (ewp->state == STATE_READY) {
 580			retval = 0;
 581			goto out_unlock;
 582		}
 583		if (signal_pending(current)) {
 584			retval = -ERESTARTSYS;
 585			break;
 586		}
 587		if (time == 0) {
 588			retval = -ETIMEDOUT;
 589			break;
 590		}
 591	}
 592	list_del(&ewp->list);
 593out_unlock:
 594	spin_unlock(&info->lock);
 595out:
 596	return retval;
 597}
 598
 599/*
 600 * Returns waiting task that should be serviced first or NULL if none exists
 601 */
 602static struct ext_wait_queue *wq_get_first_waiter(
 603		struct mqueue_inode_info *info, int sr)
 604{
 605	struct list_head *ptr;
 606
 607	ptr = info->e_wait_q[sr].list.prev;
 608	if (ptr == &info->e_wait_q[sr].list)
 609		return NULL;
 610	return list_entry(ptr, struct ext_wait_queue, list);
 611}
 612
 613
 614static inline void set_cookie(struct sk_buff *skb, char code)
 615{
 616	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 617}
 618
 619/*
 620 * The next function is only to split too long sys_mq_timedsend
 621 */
 622static void __do_notify(struct mqueue_inode_info *info)
 623{
 624	/* notification
 625	 * invoked when there is registered process and there isn't process
 626	 * waiting synchronously for message AND state of queue changed from
 627	 * empty to not empty. Here we are sure that no one is waiting
 628	 * synchronously. */
 629	if (info->notify_owner &&
 630	    info->attr.mq_curmsgs == 1) {
 631		struct siginfo sig_i;
 632		switch (info->notify.sigev_notify) {
 633		case SIGEV_NONE:
 634			break;
 635		case SIGEV_SIGNAL:
 636			/* sends signal */
 637
 
 638			sig_i.si_signo = info->notify.sigev_signo;
 639			sig_i.si_errno = 0;
 640			sig_i.si_code = SI_MESGQ;
 641			sig_i.si_value = info->notify.sigev_value;
 642			/* map current pid/uid into info->owner's namespaces */
 643			rcu_read_lock();
 644			sig_i.si_pid = task_tgid_nr_ns(current,
 645						ns_of_pid(info->notify_owner));
 646			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 647			rcu_read_unlock();
 648
 649			kill_pid_info(info->notify.sigev_signo,
 650				      &sig_i, info->notify_owner);
 651			break;
 652		case SIGEV_THREAD:
 653			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 654			netlink_sendskb(info->notify_sock, info->notify_cookie);
 655			break;
 656		}
 657		/* after notification unregisters process */
 658		put_pid(info->notify_owner);
 659		put_user_ns(info->notify_user_ns);
 660		info->notify_owner = NULL;
 661		info->notify_user_ns = NULL;
 662	}
 663	wake_up(&info->wait_q);
 664}
 665
 666static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 667			   ktime_t *expires, struct timespec *ts)
 668{
 669	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 670		return -EFAULT;
 671	if (!timespec_valid(ts))
 672		return -EINVAL;
 673
 674	*expires = timespec_to_ktime(*ts);
 675	return 0;
 676}
 677
 678static void remove_notification(struct mqueue_inode_info *info)
 679{
 680	if (info->notify_owner != NULL &&
 681	    info->notify.sigev_notify == SIGEV_THREAD) {
 682		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 683		netlink_sendskb(info->notify_sock, info->notify_cookie);
 684	}
 685	put_pid(info->notify_owner);
 686	put_user_ns(info->notify_user_ns);
 687	info->notify_owner = NULL;
 688	info->notify_user_ns = NULL;
 689}
 690
 691static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 692{
 693	int mq_treesize;
 694	unsigned long total_size;
 695
 696	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 697		return -EINVAL;
 698	if (capable(CAP_SYS_RESOURCE)) {
 699		if (attr->mq_maxmsg > HARD_MSGMAX ||
 700		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 701			return -EINVAL;
 702	} else {
 703		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 704				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 705			return -EINVAL;
 706	}
 707	/* check for overflow */
 708	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 709		return -EOVERFLOW;
 710	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 711		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 712		sizeof(struct posix_msg_tree_node);
 713	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 714	if (total_size + mq_treesize < total_size)
 715		return -EOVERFLOW;
 716	return 0;
 717}
 718
 719/*
 720 * Invoked when creating a new queue via sys_mq_open
 721 */
 722static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 723			struct path *path, int oflag, umode_t mode,
 724			struct mq_attr *attr)
 725{
 726	const struct cred *cred = current_cred();
 727	int ret;
 728
 729	if (attr) {
 730		ret = mq_attr_ok(ipc_ns, attr);
 731		if (ret)
 732			return ERR_PTR(ret);
 733		/* store for use during create */
 734		path->dentry->d_fsdata = attr;
 735	} else {
 736		struct mq_attr def_attr;
 737
 738		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 739					 ipc_ns->mq_msg_default);
 740		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 741					  ipc_ns->mq_msgsize_default);
 742		ret = mq_attr_ok(ipc_ns, &def_attr);
 743		if (ret)
 744			return ERR_PTR(ret);
 745	}
 746
 747	mode &= ~current_umask();
 748	ret = vfs_create(dir, path->dentry, mode, true);
 749	path->dentry->d_fsdata = NULL;
 750	if (ret)
 751		return ERR_PTR(ret);
 752	return dentry_open(path, oflag, cred);
 753}
 754
 755/* Opens existing queue */
 756static struct file *do_open(struct path *path, int oflag)
 757{
 758	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 759						  MAY_READ | MAY_WRITE };
 760	int acc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 762		return ERR_PTR(-EINVAL);
 763	acc = oflag2acc[oflag & O_ACCMODE];
 764	if (inode_permission(d_inode(path->dentry), acc))
 765		return ERR_PTR(-EACCES);
 766	return dentry_open(path, oflag, current_cred());
 767}
 768
 769SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 770		struct mq_attr __user *, u_attr)
 771{
 772	struct path path;
 773	struct file *filp;
 774	struct filename *name;
 775	struct mq_attr attr;
 776	int fd, error;
 777	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 778	struct vfsmount *mnt = ipc_ns->mq_mnt;
 779	struct dentry *root = mnt->mnt_root;
 780	int ro;
 781
 782	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 783		return -EFAULT;
 784
 785	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 786
 787	if (IS_ERR(name = getname(u_name)))
 788		return PTR_ERR(name);
 789
 790	fd = get_unused_fd_flags(O_CLOEXEC);
 791	if (fd < 0)
 792		goto out_putname;
 793
 794	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 795	error = 0;
 796	inode_lock(d_inode(root));
 797	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 798	if (IS_ERR(path.dentry)) {
 799		error = PTR_ERR(path.dentry);
 800		goto out_putfd;
 801	}
 802	path.mnt = mntget(mnt);
 803
 804	if (oflag & O_CREAT) {
 805		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 806			audit_inode(name, path.dentry, 0);
 807			if (oflag & O_EXCL) {
 808				error = -EEXIST;
 809				goto out;
 810			}
 811			filp = do_open(&path, oflag);
 812		} else {
 813			if (ro) {
 814				error = ro;
 815				goto out;
 816			}
 817			audit_inode_parent_hidden(name, root);
 818			filp = do_create(ipc_ns, d_inode(root),
 819						&path, oflag, mode,
 820						u_attr ? &attr : NULL);
 821		}
 822	} else {
 823		if (d_really_is_negative(path.dentry)) {
 824			error = -ENOENT;
 825			goto out;
 826		}
 827		audit_inode(name, path.dentry, 0);
 828		filp = do_open(&path, oflag);
 829	}
 830
 831	if (!IS_ERR(filp))
 832		fd_install(fd, filp);
 833	else
 834		error = PTR_ERR(filp);
 835out:
 836	path_put(&path);
 837out_putfd:
 838	if (error) {
 839		put_unused_fd(fd);
 840		fd = error;
 841	}
 842	inode_unlock(d_inode(root));
 843	if (!ro)
 844		mnt_drop_write(mnt);
 845out_putname:
 846	putname(name);
 847	return fd;
 848}
 849
 
 
 
 
 
 
 
 
 
 
 850SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 851{
 852	int err;
 853	struct filename *name;
 854	struct dentry *dentry;
 855	struct inode *inode = NULL;
 856	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 857	struct vfsmount *mnt = ipc_ns->mq_mnt;
 858
 859	name = getname(u_name);
 860	if (IS_ERR(name))
 861		return PTR_ERR(name);
 862
 863	audit_inode_parent_hidden(name, mnt->mnt_root);
 864	err = mnt_want_write(mnt);
 865	if (err)
 866		goto out_name;
 867	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 868	dentry = lookup_one_len(name->name, mnt->mnt_root,
 869				strlen(name->name));
 870	if (IS_ERR(dentry)) {
 871		err = PTR_ERR(dentry);
 872		goto out_unlock;
 873	}
 874
 875	inode = d_inode(dentry);
 876	if (!inode) {
 877		err = -ENOENT;
 878	} else {
 879		ihold(inode);
 880		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 881	}
 882	dput(dentry);
 883
 884out_unlock:
 885	inode_unlock(d_inode(mnt->mnt_root));
 886	if (inode)
 887		iput(inode);
 888	mnt_drop_write(mnt);
 889out_name:
 890	putname(name);
 891
 892	return err;
 893}
 894
 895/* Pipelined send and receive functions.
 896 *
 897 * If a receiver finds no waiting message, then it registers itself in the
 898 * list of waiting receivers. A sender checks that list before adding the new
 899 * message into the message array. If there is a waiting receiver, then it
 900 * bypasses the message array and directly hands the message over to the
 901 * receiver. The receiver accepts the message and returns without grabbing the
 902 * queue spinlock:
 903 *
 904 * - Set pointer to message.
 905 * - Queue the receiver task for later wakeup (without the info->lock).
 906 * - Update its state to STATE_READY. Now the receiver can continue.
 907 * - Wake up the process after the lock is dropped. Should the process wake up
 908 *   before this wakeup (due to a timeout or a signal) it will either see
 909 *   STATE_READY and continue or acquire the lock to check the state again.
 910 *
 911 * The same algorithm is used for senders.
 912 */
 913
 914/* pipelined_send() - send a message directly to the task waiting in
 915 * sys_mq_timedreceive() (without inserting message into a queue).
 916 */
 917static inline void pipelined_send(struct wake_q_head *wake_q,
 918				  struct mqueue_inode_info *info,
 919				  struct msg_msg *message,
 920				  struct ext_wait_queue *receiver)
 921{
 922	receiver->msg = message;
 923	list_del(&receiver->list);
 924	wake_q_add(wake_q, receiver->task);
 925	/*
 926	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 927	 * that we can ensure that updating receiver->state is the last
 928	 * write operation: As once set, the receiver can continue,
 929	 * and if we don't have the reference count from the wake_q,
 930	 * yet, at that point we can later have a use-after-free
 931	 * condition and bogus wakeup.
 932	 */
 933	receiver->state = STATE_READY;
 934}
 935
 936/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 937 * gets its message and put to the queue (we have one free place for sure). */
 938static inline void pipelined_receive(struct wake_q_head *wake_q,
 939				     struct mqueue_inode_info *info)
 940{
 941	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 942
 943	if (!sender) {
 944		/* for poll */
 945		wake_up_interruptible(&info->wait_q);
 946		return;
 947	}
 948	if (msg_insert(sender->msg, info))
 949		return;
 950
 951	list_del(&sender->list);
 952	wake_q_add(wake_q, sender->task);
 953	sender->state = STATE_READY;
 954}
 955
 956SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 957		size_t, msg_len, unsigned int, msg_prio,
 958		const struct timespec __user *, u_abs_timeout)
 959{
 960	struct fd f;
 961	struct inode *inode;
 962	struct ext_wait_queue wait;
 963	struct ext_wait_queue *receiver;
 964	struct msg_msg *msg_ptr;
 965	struct mqueue_inode_info *info;
 966	ktime_t expires, *timeout = NULL;
 967	struct timespec ts;
 968	struct posix_msg_tree_node *new_leaf = NULL;
 969	int ret = 0;
 970	DEFINE_WAKE_Q(wake_q);
 971
 972	if (u_abs_timeout) {
 973		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 974		if (res)
 975			return res;
 976		timeout = &expires;
 977	}
 978
 979	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 980		return -EINVAL;
 981
 982	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 
 
 
 
 
 983
 984	f = fdget(mqdes);
 985	if (unlikely(!f.file)) {
 986		ret = -EBADF;
 987		goto out;
 988	}
 989
 990	inode = file_inode(f.file);
 991	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 992		ret = -EBADF;
 993		goto out_fput;
 994	}
 995	info = MQUEUE_I(inode);
 996	audit_file(f.file);
 997
 998	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
 999		ret = -EBADF;
1000		goto out_fput;
1001	}
1002
1003	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1004		ret = -EMSGSIZE;
1005		goto out_fput;
1006	}
1007
1008	/* First try to allocate memory, before doing anything with
1009	 * existing queues. */
1010	msg_ptr = load_msg(u_msg_ptr, msg_len);
1011	if (IS_ERR(msg_ptr)) {
1012		ret = PTR_ERR(msg_ptr);
1013		goto out_fput;
1014	}
1015	msg_ptr->m_ts = msg_len;
1016	msg_ptr->m_type = msg_prio;
1017
1018	/*
1019	 * msg_insert really wants us to have a valid, spare node struct so
1020	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1021	 * fall back to that if necessary.
1022	 */
1023	if (!info->node_cache)
1024		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1025
1026	spin_lock(&info->lock);
1027
1028	if (!info->node_cache && new_leaf) {
1029		/* Save our speculative allocation into the cache */
1030		INIT_LIST_HEAD(&new_leaf->msg_list);
1031		info->node_cache = new_leaf;
1032		new_leaf = NULL;
1033	} else {
1034		kfree(new_leaf);
1035	}
1036
1037	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1038		if (f.file->f_flags & O_NONBLOCK) {
1039			ret = -EAGAIN;
1040		} else {
1041			wait.task = current;
1042			wait.msg = (void *) msg_ptr;
1043			wait.state = STATE_NONE;
1044			ret = wq_sleep(info, SEND, timeout, &wait);
1045			/*
1046			 * wq_sleep must be called with info->lock held, and
1047			 * returns with the lock released
1048			 */
1049			goto out_free;
1050		}
1051	} else {
1052		receiver = wq_get_first_waiter(info, RECV);
1053		if (receiver) {
1054			pipelined_send(&wake_q, info, msg_ptr, receiver);
1055		} else {
1056			/* adds message to the queue */
1057			ret = msg_insert(msg_ptr, info);
1058			if (ret)
1059				goto out_unlock;
1060			__do_notify(info);
1061		}
1062		inode->i_atime = inode->i_mtime = inode->i_ctime =
1063				current_time(inode);
1064	}
1065out_unlock:
1066	spin_unlock(&info->lock);
1067	wake_up_q(&wake_q);
1068out_free:
1069	if (ret)
1070		free_msg(msg_ptr);
1071out_fput:
1072	fdput(f);
1073out:
1074	return ret;
1075}
1076
1077SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1078		size_t, msg_len, unsigned int __user *, u_msg_prio,
1079		const struct timespec __user *, u_abs_timeout)
1080{
1081	ssize_t ret;
1082	struct msg_msg *msg_ptr;
1083	struct fd f;
1084	struct inode *inode;
1085	struct mqueue_inode_info *info;
1086	struct ext_wait_queue wait;
1087	ktime_t expires, *timeout = NULL;
1088	struct timespec ts;
1089	struct posix_msg_tree_node *new_leaf = NULL;
1090
1091	if (u_abs_timeout) {
1092		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1093		if (res)
1094			return res;
1095		timeout = &expires;
1096	}
1097
1098	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1099
1100	f = fdget(mqdes);
1101	if (unlikely(!f.file)) {
1102		ret = -EBADF;
1103		goto out;
1104	}
1105
1106	inode = file_inode(f.file);
1107	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108		ret = -EBADF;
1109		goto out_fput;
1110	}
1111	info = MQUEUE_I(inode);
1112	audit_file(f.file);
1113
1114	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115		ret = -EBADF;
1116		goto out_fput;
1117	}
1118
1119	/* checks if buffer is big enough */
1120	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121		ret = -EMSGSIZE;
1122		goto out_fput;
1123	}
1124
1125	/*
1126	 * msg_insert really wants us to have a valid, spare node struct so
1127	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128	 * fall back to that if necessary.
1129	 */
1130	if (!info->node_cache)
1131		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1132
1133	spin_lock(&info->lock);
1134
1135	if (!info->node_cache && new_leaf) {
1136		/* Save our speculative allocation into the cache */
1137		INIT_LIST_HEAD(&new_leaf->msg_list);
1138		info->node_cache = new_leaf;
1139	} else {
1140		kfree(new_leaf);
1141	}
1142
1143	if (info->attr.mq_curmsgs == 0) {
1144		if (f.file->f_flags & O_NONBLOCK) {
1145			spin_unlock(&info->lock);
1146			ret = -EAGAIN;
1147		} else {
1148			wait.task = current;
1149			wait.state = STATE_NONE;
1150			ret = wq_sleep(info, RECV, timeout, &wait);
1151			msg_ptr = wait.msg;
1152		}
1153	} else {
1154		DEFINE_WAKE_Q(wake_q);
1155
1156		msg_ptr = msg_get(info);
1157
1158		inode->i_atime = inode->i_mtime = inode->i_ctime =
1159				current_time(inode);
1160
1161		/* There is now free space in queue. */
1162		pipelined_receive(&wake_q, info);
1163		spin_unlock(&info->lock);
1164		wake_up_q(&wake_q);
1165		ret = 0;
1166	}
1167	if (ret == 0) {
1168		ret = msg_ptr->m_ts;
1169
1170		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172			ret = -EFAULT;
1173		}
1174		free_msg(msg_ptr);
1175	}
1176out_fput:
1177	fdput(f);
1178out:
1179	return ret;
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * Notes: the case when user wants us to deregister (with NULL as pointer)
1184 * and he isn't currently owner of notification, will be silently discarded.
1185 * It isn't explicitly defined in the POSIX.
1186 */
1187SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1188		const struct sigevent __user *, u_notification)
1189{
1190	int ret;
1191	struct fd f;
1192	struct sock *sock;
1193	struct inode *inode;
1194	struct sigevent notification;
1195	struct mqueue_inode_info *info;
1196	struct sk_buff *nc;
1197
1198	if (u_notification) {
1199		if (copy_from_user(&notification, u_notification,
1200					sizeof(struct sigevent)))
1201			return -EFAULT;
1202	}
1203
1204	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1205
1206	nc = NULL;
1207	sock = NULL;
1208	if (u_notification != NULL) {
1209		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1210			     notification.sigev_notify != SIGEV_SIGNAL &&
1211			     notification.sigev_notify != SIGEV_THREAD))
1212			return -EINVAL;
1213		if (notification.sigev_notify == SIGEV_SIGNAL &&
1214			!valid_signal(notification.sigev_signo)) {
1215			return -EINVAL;
1216		}
1217		if (notification.sigev_notify == SIGEV_THREAD) {
1218			long timeo;
1219
1220			/* create the notify skb */
1221			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1222			if (!nc) {
1223				ret = -ENOMEM;
1224				goto out;
1225			}
1226			if (copy_from_user(nc->data,
1227					notification.sigev_value.sival_ptr,
1228					NOTIFY_COOKIE_LEN)) {
1229				ret = -EFAULT;
1230				goto out;
1231			}
1232
1233			/* TODO: add a header? */
1234			skb_put(nc, NOTIFY_COOKIE_LEN);
1235			/* and attach it to the socket */
1236retry:
1237			f = fdget(notification.sigev_signo);
1238			if (!f.file) {
1239				ret = -EBADF;
1240				goto out;
1241			}
1242			sock = netlink_getsockbyfilp(f.file);
1243			fdput(f);
1244			if (IS_ERR(sock)) {
1245				ret = PTR_ERR(sock);
1246				sock = NULL;
1247				goto out;
1248			}
1249
1250			timeo = MAX_SCHEDULE_TIMEOUT;
1251			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1252			if (ret == 1)
1253				goto retry;
1254			if (ret) {
1255				sock = NULL;
1256				nc = NULL;
1257				goto out;
1258			}
 
 
1259		}
1260	}
1261
1262	f = fdget(mqdes);
1263	if (!f.file) {
1264		ret = -EBADF;
1265		goto out;
1266	}
1267
1268	inode = file_inode(f.file);
1269	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1270		ret = -EBADF;
1271		goto out_fput;
1272	}
1273	info = MQUEUE_I(inode);
1274
1275	ret = 0;
1276	spin_lock(&info->lock);
1277	if (u_notification == NULL) {
1278		if (info->notify_owner == task_tgid(current)) {
1279			remove_notification(info);
1280			inode->i_atime = inode->i_ctime = current_time(inode);
1281		}
1282	} else if (info->notify_owner != NULL) {
1283		ret = -EBUSY;
1284	} else {
1285		switch (notification.sigev_notify) {
1286		case SIGEV_NONE:
1287			info->notify.sigev_notify = SIGEV_NONE;
1288			break;
1289		case SIGEV_THREAD:
1290			info->notify_sock = sock;
1291			info->notify_cookie = nc;
1292			sock = NULL;
1293			nc = NULL;
1294			info->notify.sigev_notify = SIGEV_THREAD;
1295			break;
1296		case SIGEV_SIGNAL:
1297			info->notify.sigev_signo = notification.sigev_signo;
1298			info->notify.sigev_value = notification.sigev_value;
1299			info->notify.sigev_notify = SIGEV_SIGNAL;
1300			break;
1301		}
1302
1303		info->notify_owner = get_pid(task_tgid(current));
1304		info->notify_user_ns = get_user_ns(current_user_ns());
1305		inode->i_atime = inode->i_ctime = current_time(inode);
1306	}
1307	spin_unlock(&info->lock);
1308out_fput:
1309	fdput(f);
1310out:
1311	if (sock)
1312		netlink_detachskb(sock, nc);
1313	else if (nc)
 
1314		dev_kfree_skb(nc);
1315
1316	return ret;
1317}
1318
1319SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1320		const struct mq_attr __user *, u_mqstat,
1321		struct mq_attr __user *, u_omqstat)
 
 
 
 
 
 
 
 
 
 
1322{
1323	int ret;
1324	struct mq_attr mqstat, omqstat;
1325	struct fd f;
1326	struct inode *inode;
1327	struct mqueue_inode_info *info;
1328
1329	if (u_mqstat != NULL) {
1330		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1331			return -EFAULT;
1332		if (mqstat.mq_flags & (~O_NONBLOCK))
1333			return -EINVAL;
1334	}
1335
1336	f = fdget(mqdes);
1337	if (!f.file) {
1338		ret = -EBADF;
1339		goto out;
1340	}
1341
1342	inode = file_inode(f.file);
1343	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1344		ret = -EBADF;
1345		goto out_fput;
1346	}
 
 
1347	info = MQUEUE_I(inode);
1348
1349	spin_lock(&info->lock);
1350
1351	omqstat = info->attr;
1352	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1353	if (u_mqstat) {
1354		audit_mq_getsetattr(mqdes, &mqstat);
 
 
1355		spin_lock(&f.file->f_lock);
1356		if (mqstat.mq_flags & O_NONBLOCK)
1357			f.file->f_flags |= O_NONBLOCK;
1358		else
1359			f.file->f_flags &= ~O_NONBLOCK;
1360		spin_unlock(&f.file->f_lock);
1361
1362		inode->i_atime = inode->i_ctime = current_time(inode);
1363	}
1364
1365	spin_unlock(&info->lock);
 
 
 
1366
1367	ret = 0;
1368	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1369						sizeof(struct mq_attr)))
1370		ret = -EFAULT;
 
 
 
1371
1372out_fput:
1373	fdput(f);
1374out:
1375	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376}
1377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378static const struct inode_operations mqueue_dir_inode_operations = {
1379	.lookup = simple_lookup,
1380	.create = mqueue_create,
1381	.unlink = mqueue_unlink,
1382};
1383
1384static const struct file_operations mqueue_file_operations = {
1385	.flush = mqueue_flush_file,
1386	.poll = mqueue_poll_file,
1387	.read = mqueue_read_file,
1388	.llseek = default_llseek,
1389};
1390
1391static const struct super_operations mqueue_super_ops = {
1392	.alloc_inode = mqueue_alloc_inode,
1393	.destroy_inode = mqueue_destroy_inode,
1394	.evict_inode = mqueue_evict_inode,
1395	.statfs = simple_statfs,
1396};
1397
 
 
 
 
 
1398static struct file_system_type mqueue_fs_type = {
1399	.name = "mqueue",
1400	.mount = mqueue_mount,
1401	.kill_sb = kill_litter_super,
1402	.fs_flags = FS_USERNS_MOUNT,
1403};
1404
1405int mq_init_ns(struct ipc_namespace *ns)
1406{
 
 
1407	ns->mq_queues_count  = 0;
1408	ns->mq_queues_max    = DFLT_QUEUESMAX;
1409	ns->mq_msg_max       = DFLT_MSGMAX;
1410	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1411	ns->mq_msg_default   = DFLT_MSG;
1412	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1413
1414	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1415	if (IS_ERR(ns->mq_mnt)) {
1416		int err = PTR_ERR(ns->mq_mnt);
1417		ns->mq_mnt = NULL;
1418		return err;
1419	}
1420	return 0;
1421}
1422
1423void mq_clear_sbinfo(struct ipc_namespace *ns)
1424{
1425	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1426}
1427
1428void mq_put_mnt(struct ipc_namespace *ns)
1429{
1430	kern_unmount(ns->mq_mnt);
1431}
1432
1433static int __init init_mqueue_fs(void)
1434{
1435	int error;
1436
1437	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1438				sizeof(struct mqueue_inode_info), 0,
1439				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1440	if (mqueue_inode_cachep == NULL)
1441		return -ENOMEM;
1442
1443	/* ignore failures - they are not fatal */
1444	mq_sysctl_table = mq_register_sysctl_table();
1445
1446	error = register_filesystem(&mqueue_fs_type);
1447	if (error)
1448		goto out_sysctl;
1449
1450	spin_lock_init(&mq_lock);
1451
1452	error = mq_init_ns(&init_ipc_ns);
1453	if (error)
1454		goto out_filesystem;
1455
1456	return 0;
1457
1458out_filesystem:
1459	unregister_filesystem(&mqueue_fs_type);
1460out_sysctl:
1461	if (mq_sysctl_table)
1462		unregister_sysctl_table(mq_sysctl_table);
1463	kmem_cache_destroy(mqueue_inode_cachep);
1464	return error;
1465}
1466
1467device_initcall(init_mqueue_fs);
v5.4
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47	struct ipc_namespace	*ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC	0x19800202
  51#define DIRENT_SIZE	20
  52#define FILENT_SIZE	80
  53
  54#define SEND		0
  55#define RECV		1
  56
  57#define STATE_NONE	0
  58#define STATE_READY	1
  59
  60struct posix_msg_tree_node {
  61	struct rb_node		rb_node;
  62	struct list_head	msg_list;
  63	int			priority;
  64};
  65
  66struct ext_wait_queue {		/* queue of sleeping tasks */
  67	struct task_struct *task;
  68	struct list_head list;
  69	struct msg_msg *msg;	/* ptr of loaded message */
  70	int state;		/* one of STATE_* values */
  71};
  72
  73struct mqueue_inode_info {
  74	spinlock_t lock;
  75	struct inode vfs_inode;
  76	wait_queue_head_t wait_q;
  77
  78	struct rb_root msg_tree;
  79	struct rb_node *msg_tree_rightmost;
  80	struct posix_msg_tree_node *node_cache;
  81	struct mq_attr attr;
  82
  83	struct sigevent notify;
  84	struct pid *notify_owner;
  85	struct user_namespace *notify_user_ns;
  86	struct user_struct *user;	/* user who created, for accounting */
  87	struct sock *notify_sock;
  88	struct sk_buff *notify_cookie;
  89
  90	/* for tasks waiting for free space and messages, respectively */
  91	struct ext_wait_queue e_wait_q[2];
  92
  93	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  94};
  95
  96static struct file_system_type mqueue_fs_type;
  97static const struct inode_operations mqueue_dir_inode_operations;
  98static const struct file_operations mqueue_file_operations;
  99static const struct super_operations mqueue_super_ops;
 100static const struct fs_context_operations mqueue_fs_context_ops;
 101static void remove_notification(struct mqueue_inode_info *info);
 102
 103static struct kmem_cache *mqueue_inode_cachep;
 104
 105static struct ctl_table_header *mq_sysctl_table;
 106
 107static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 108{
 109	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 110}
 111
 112/*
 113 * This routine should be called with the mq_lock held.
 114 */
 115static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 116{
 117	return get_ipc_ns(inode->i_sb->s_fs_info);
 118}
 119
 120static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 121{
 122	struct ipc_namespace *ns;
 123
 124	spin_lock(&mq_lock);
 125	ns = __get_ns_from_inode(inode);
 126	spin_unlock(&mq_lock);
 127	return ns;
 128}
 129
 130/* Auxiliary functions to manipulate messages' list */
 131static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 132{
 133	struct rb_node **p, *parent = NULL;
 134	struct posix_msg_tree_node *leaf;
 135	bool rightmost = true;
 136
 137	p = &info->msg_tree.rb_node;
 138	while (*p) {
 139		parent = *p;
 140		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 141
 142		if (likely(leaf->priority == msg->m_type))
 143			goto insert_msg;
 144		else if (msg->m_type < leaf->priority) {
 145			p = &(*p)->rb_left;
 146			rightmost = false;
 147		} else
 148			p = &(*p)->rb_right;
 149	}
 150	if (info->node_cache) {
 151		leaf = info->node_cache;
 152		info->node_cache = NULL;
 153	} else {
 154		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 155		if (!leaf)
 156			return -ENOMEM;
 157		INIT_LIST_HEAD(&leaf->msg_list);
 158	}
 159	leaf->priority = msg->m_type;
 160
 161	if (rightmost)
 162		info->msg_tree_rightmost = &leaf->rb_node;
 163
 164	rb_link_node(&leaf->rb_node, parent, p);
 165	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 166insert_msg:
 167	info->attr.mq_curmsgs++;
 168	info->qsize += msg->m_ts;
 169	list_add_tail(&msg->m_list, &leaf->msg_list);
 170	return 0;
 171}
 172
 173static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 174				  struct mqueue_inode_info *info)
 175{
 176	struct rb_node *node = &leaf->rb_node;
 177
 178	if (info->msg_tree_rightmost == node)
 179		info->msg_tree_rightmost = rb_prev(node);
 180
 181	rb_erase(node, &info->msg_tree);
 182	if (info->node_cache) {
 183		kfree(leaf);
 184	} else {
 185		info->node_cache = leaf;
 186	}
 187}
 188
 189static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 190{
 191	struct rb_node *parent = NULL;
 192	struct posix_msg_tree_node *leaf;
 193	struct msg_msg *msg;
 194
 195try_again:
 196	/*
 197	 * During insert, low priorities go to the left and high to the
 198	 * right.  On receive, we want the highest priorities first, so
 199	 * walk all the way to the right.
 200	 */
 201	parent = info->msg_tree_rightmost;
 
 
 
 
 202	if (!parent) {
 203		if (info->attr.mq_curmsgs) {
 204			pr_warn_once("Inconsistency in POSIX message queue, "
 205				     "no tree element, but supposedly messages "
 206				     "should exist!\n");
 207			info->attr.mq_curmsgs = 0;
 208		}
 209		return NULL;
 210	}
 211	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 212	if (unlikely(list_empty(&leaf->msg_list))) {
 213		pr_warn_once("Inconsistency in POSIX message queue, "
 214			     "empty leaf node but we haven't implemented "
 215			     "lazy leaf delete!\n");
 216		msg_tree_erase(leaf, info);
 
 
 
 
 
 217		goto try_again;
 218	} else {
 219		msg = list_first_entry(&leaf->msg_list,
 220				       struct msg_msg, m_list);
 221		list_del(&msg->m_list);
 222		if (list_empty(&leaf->msg_list)) {
 223			msg_tree_erase(leaf, info);
 
 
 
 
 
 224		}
 225	}
 226	info->attr.mq_curmsgs--;
 227	info->qsize -= msg->m_ts;
 228	return msg;
 229}
 230
 231static struct inode *mqueue_get_inode(struct super_block *sb,
 232		struct ipc_namespace *ipc_ns, umode_t mode,
 233		struct mq_attr *attr)
 234{
 235	struct user_struct *u = current_user();
 236	struct inode *inode;
 237	int ret = -ENOMEM;
 238
 239	inode = new_inode(sb);
 240	if (!inode)
 241		goto err;
 242
 243	inode->i_ino = get_next_ino();
 244	inode->i_mode = mode;
 245	inode->i_uid = current_fsuid();
 246	inode->i_gid = current_fsgid();
 247	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 248
 249	if (S_ISREG(mode)) {
 250		struct mqueue_inode_info *info;
 251		unsigned long mq_bytes, mq_treesize;
 252
 253		inode->i_fop = &mqueue_file_operations;
 254		inode->i_size = FILENT_SIZE;
 255		/* mqueue specific info */
 256		info = MQUEUE_I(inode);
 257		spin_lock_init(&info->lock);
 258		init_waitqueue_head(&info->wait_q);
 259		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 260		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 261		info->notify_owner = NULL;
 262		info->notify_user_ns = NULL;
 263		info->qsize = 0;
 264		info->user = NULL;	/* set when all is ok */
 265		info->msg_tree = RB_ROOT;
 266		info->msg_tree_rightmost = NULL;
 267		info->node_cache = NULL;
 268		memset(&info->attr, 0, sizeof(info->attr));
 269		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 270					   ipc_ns->mq_msg_default);
 271		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 272					    ipc_ns->mq_msgsize_default);
 273		if (attr) {
 274			info->attr.mq_maxmsg = attr->mq_maxmsg;
 275			info->attr.mq_msgsize = attr->mq_msgsize;
 276		}
 277		/*
 278		 * We used to allocate a static array of pointers and account
 279		 * the size of that array as well as one msg_msg struct per
 280		 * possible message into the queue size. That's no longer
 281		 * accurate as the queue is now an rbtree and will grow and
 282		 * shrink depending on usage patterns.  We can, however, still
 283		 * account one msg_msg struct per message, but the nodes are
 284		 * allocated depending on priority usage, and most programs
 285		 * only use one, or a handful, of priorities.  However, since
 286		 * this is pinned memory, we need to assume worst case, so
 287		 * that means the min(mq_maxmsg, max_priorities) * struct
 288		 * posix_msg_tree_node.
 289		 */
 290
 291		ret = -EINVAL;
 292		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 293			goto out_inode;
 294		if (capable(CAP_SYS_RESOURCE)) {
 295			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 296			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 297				goto out_inode;
 298		} else {
 299			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 300					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 301				goto out_inode;
 302		}
 303		ret = -EOVERFLOW;
 304		/* check for overflow */
 305		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 306			goto out_inode;
 307		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 308			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 309			sizeof(struct posix_msg_tree_node);
 310		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 311		if (mq_bytes + mq_treesize < mq_bytes)
 312			goto out_inode;
 313		mq_bytes += mq_treesize;
 314		spin_lock(&mq_lock);
 315		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 316		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 317			spin_unlock(&mq_lock);
 318			/* mqueue_evict_inode() releases info->messages */
 319			ret = -EMFILE;
 320			goto out_inode;
 321		}
 322		u->mq_bytes += mq_bytes;
 323		spin_unlock(&mq_lock);
 324
 325		/* all is ok */
 326		info->user = get_uid(u);
 327	} else if (S_ISDIR(mode)) {
 328		inc_nlink(inode);
 329		/* Some things misbehave if size == 0 on a directory */
 330		inode->i_size = 2 * DIRENT_SIZE;
 331		inode->i_op = &mqueue_dir_inode_operations;
 332		inode->i_fop = &simple_dir_operations;
 333	}
 334
 335	return inode;
 336out_inode:
 337	iput(inode);
 338err:
 339	return ERR_PTR(ret);
 340}
 341
 342static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 343{
 344	struct inode *inode;
 345	struct ipc_namespace *ns = sb->s_fs_info;
 346
 347	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 348	sb->s_blocksize = PAGE_SIZE;
 349	sb->s_blocksize_bits = PAGE_SHIFT;
 350	sb->s_magic = MQUEUE_MAGIC;
 351	sb->s_op = &mqueue_super_ops;
 352
 353	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 354	if (IS_ERR(inode))
 355		return PTR_ERR(inode);
 356
 357	sb->s_root = d_make_root(inode);
 358	if (!sb->s_root)
 359		return -ENOMEM;
 360	return 0;
 361}
 362
 363static int mqueue_get_tree(struct fs_context *fc)
 
 
 364{
 365	struct mqueue_fs_context *ctx = fc->fs_private;
 366
 367	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 368}
 369
 370static void mqueue_fs_context_free(struct fs_context *fc)
 371{
 372	struct mqueue_fs_context *ctx = fc->fs_private;
 373
 374	put_ipc_ns(ctx->ipc_ns);
 375	kfree(ctx);
 376}
 377
 378static int mqueue_init_fs_context(struct fs_context *fc)
 379{
 380	struct mqueue_fs_context *ctx;
 381
 382	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 383	if (!ctx)
 384		return -ENOMEM;
 385
 386	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 387	put_user_ns(fc->user_ns);
 388	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 389	fc->fs_private = ctx;
 390	fc->ops = &mqueue_fs_context_ops;
 391	return 0;
 392}
 393
 394static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 395{
 396	struct mqueue_fs_context *ctx;
 397	struct fs_context *fc;
 398	struct vfsmount *mnt;
 399
 400	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 401	if (IS_ERR(fc))
 402		return ERR_CAST(fc);
 403
 404	ctx = fc->fs_private;
 405	put_ipc_ns(ctx->ipc_ns);
 406	ctx->ipc_ns = get_ipc_ns(ns);
 407	put_user_ns(fc->user_ns);
 408	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 409
 410	mnt = fc_mount(fc);
 411	put_fs_context(fc);
 412	return mnt;
 413}
 414
 415static void init_once(void *foo)
 416{
 417	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 418
 419	inode_init_once(&p->vfs_inode);
 420}
 421
 422static struct inode *mqueue_alloc_inode(struct super_block *sb)
 423{
 424	struct mqueue_inode_info *ei;
 425
 426	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 427	if (!ei)
 428		return NULL;
 429	return &ei->vfs_inode;
 430}
 431
 432static void mqueue_free_inode(struct inode *inode)
 433{
 
 434	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 435}
 436
 
 
 
 
 
 437static void mqueue_evict_inode(struct inode *inode)
 438{
 439	struct mqueue_inode_info *info;
 440	struct user_struct *user;
 
 441	struct ipc_namespace *ipc_ns;
 442	struct msg_msg *msg, *nmsg;
 443	LIST_HEAD(tmp_msg);
 444
 445	clear_inode(inode);
 446
 447	if (S_ISDIR(inode->i_mode))
 448		return;
 449
 450	ipc_ns = get_ns_from_inode(inode);
 451	info = MQUEUE_I(inode);
 452	spin_lock(&info->lock);
 453	while ((msg = msg_get(info)) != NULL)
 454		list_add_tail(&msg->m_list, &tmp_msg);
 455	kfree(info->node_cache);
 456	spin_unlock(&info->lock);
 457
 458	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 459		list_del(&msg->m_list);
 460		free_msg(msg);
 461	}
 
 
 
 462
 463	user = info->user;
 464	if (user) {
 465		unsigned long mq_bytes, mq_treesize;
 466
 467		/* Total amount of bytes accounted for the mqueue */
 468		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 469			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 470			sizeof(struct posix_msg_tree_node);
 471
 472		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 473					  info->attr.mq_msgsize);
 474
 475		spin_lock(&mq_lock);
 476		user->mq_bytes -= mq_bytes;
 477		/*
 478		 * get_ns_from_inode() ensures that the
 479		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 480		 * to which we now hold a reference, or it is NULL.
 481		 * We can't put it here under mq_lock, though.
 482		 */
 483		if (ipc_ns)
 484			ipc_ns->mq_queues_count--;
 485		spin_unlock(&mq_lock);
 486		free_uid(user);
 487	}
 488	if (ipc_ns)
 489		put_ipc_ns(ipc_ns);
 490}
 491
 492static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 
 493{
 494	struct inode *dir = dentry->d_parent->d_inode;
 495	struct inode *inode;
 496	struct mq_attr *attr = arg;
 497	int error;
 498	struct ipc_namespace *ipc_ns;
 499
 500	spin_lock(&mq_lock);
 501	ipc_ns = __get_ns_from_inode(dir);
 502	if (!ipc_ns) {
 503		error = -EACCES;
 504		goto out_unlock;
 505	}
 506
 507	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 508	    !capable(CAP_SYS_RESOURCE)) {
 509		error = -ENOSPC;
 510		goto out_unlock;
 511	}
 512	ipc_ns->mq_queues_count++;
 513	spin_unlock(&mq_lock);
 514
 515	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 516	if (IS_ERR(inode)) {
 517		error = PTR_ERR(inode);
 518		spin_lock(&mq_lock);
 519		ipc_ns->mq_queues_count--;
 520		goto out_unlock;
 521	}
 522
 523	put_ipc_ns(ipc_ns);
 524	dir->i_size += DIRENT_SIZE;
 525	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 526
 527	d_instantiate(dentry, inode);
 528	dget(dentry);
 529	return 0;
 530out_unlock:
 531	spin_unlock(&mq_lock);
 532	if (ipc_ns)
 533		put_ipc_ns(ipc_ns);
 534	return error;
 535}
 536
 537static int mqueue_create(struct inode *dir, struct dentry *dentry,
 538				umode_t mode, bool excl)
 539{
 540	return mqueue_create_attr(dentry, mode, NULL);
 541}
 542
 543static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 544{
 545	struct inode *inode = d_inode(dentry);
 546
 547	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 548	dir->i_size -= DIRENT_SIZE;
 549	drop_nlink(inode);
 550	dput(dentry);
 551	return 0;
 552}
 553
 554/*
 555*	This is routine for system read from queue file.
 556*	To avoid mess with doing here some sort of mq_receive we allow
 557*	to read only queue size & notification info (the only values
 558*	that are interesting from user point of view and aren't accessible
 559*	through std routines)
 560*/
 561static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 562				size_t count, loff_t *off)
 563{
 564	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 565	char buffer[FILENT_SIZE];
 566	ssize_t ret;
 567
 568	spin_lock(&info->lock);
 569	snprintf(buffer, sizeof(buffer),
 570			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 571			info->qsize,
 572			info->notify_owner ? info->notify.sigev_notify : 0,
 573			(info->notify_owner &&
 574			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 575				info->notify.sigev_signo : 0,
 576			pid_vnr(info->notify_owner));
 577	spin_unlock(&info->lock);
 578	buffer[sizeof(buffer)-1] = '\0';
 579
 580	ret = simple_read_from_buffer(u_data, count, off, buffer,
 581				strlen(buffer));
 582	if (ret <= 0)
 583		return ret;
 584
 585	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 586	return ret;
 587}
 588
 589static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 590{
 591	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 592
 593	spin_lock(&info->lock);
 594	if (task_tgid(current) == info->notify_owner)
 595		remove_notification(info);
 596
 597	spin_unlock(&info->lock);
 598	return 0;
 599}
 600
 601static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 602{
 603	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 604	__poll_t retval = 0;
 605
 606	poll_wait(filp, &info->wait_q, poll_tab);
 607
 608	spin_lock(&info->lock);
 609	if (info->attr.mq_curmsgs)
 610		retval = EPOLLIN | EPOLLRDNORM;
 611
 612	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 613		retval |= EPOLLOUT | EPOLLWRNORM;
 614	spin_unlock(&info->lock);
 615
 616	return retval;
 617}
 618
 619/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 620static void wq_add(struct mqueue_inode_info *info, int sr,
 621			struct ext_wait_queue *ewp)
 622{
 623	struct ext_wait_queue *walk;
 624
 
 
 625	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 626		if (walk->task->prio <= current->prio) {
 627			list_add_tail(&ewp->list, &walk->list);
 628			return;
 629		}
 630	}
 631	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 632}
 633
 634/*
 635 * Puts current task to sleep. Caller must hold queue lock. After return
 636 * lock isn't held.
 637 * sr: SEND or RECV
 638 */
 639static int wq_sleep(struct mqueue_inode_info *info, int sr,
 640		    ktime_t *timeout, struct ext_wait_queue *ewp)
 641	__releases(&info->lock)
 642{
 643	int retval;
 644	signed long time;
 645
 646	wq_add(info, sr, ewp);
 647
 648	for (;;) {
 649		__set_current_state(TASK_INTERRUPTIBLE);
 650
 651		spin_unlock(&info->lock);
 652		time = schedule_hrtimeout_range_clock(timeout, 0,
 653			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 654
 655		if (ewp->state == STATE_READY) {
 656			retval = 0;
 657			goto out;
 658		}
 659		spin_lock(&info->lock);
 660		if (ewp->state == STATE_READY) {
 661			retval = 0;
 662			goto out_unlock;
 663		}
 664		if (signal_pending(current)) {
 665			retval = -ERESTARTSYS;
 666			break;
 667		}
 668		if (time == 0) {
 669			retval = -ETIMEDOUT;
 670			break;
 671		}
 672	}
 673	list_del(&ewp->list);
 674out_unlock:
 675	spin_unlock(&info->lock);
 676out:
 677	return retval;
 678}
 679
 680/*
 681 * Returns waiting task that should be serviced first or NULL if none exists
 682 */
 683static struct ext_wait_queue *wq_get_first_waiter(
 684		struct mqueue_inode_info *info, int sr)
 685{
 686	struct list_head *ptr;
 687
 688	ptr = info->e_wait_q[sr].list.prev;
 689	if (ptr == &info->e_wait_q[sr].list)
 690		return NULL;
 691	return list_entry(ptr, struct ext_wait_queue, list);
 692}
 693
 694
 695static inline void set_cookie(struct sk_buff *skb, char code)
 696{
 697	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 698}
 699
 700/*
 701 * The next function is only to split too long sys_mq_timedsend
 702 */
 703static void __do_notify(struct mqueue_inode_info *info)
 704{
 705	/* notification
 706	 * invoked when there is registered process and there isn't process
 707	 * waiting synchronously for message AND state of queue changed from
 708	 * empty to not empty. Here we are sure that no one is waiting
 709	 * synchronously. */
 710	if (info->notify_owner &&
 711	    info->attr.mq_curmsgs == 1) {
 712		struct kernel_siginfo sig_i;
 713		switch (info->notify.sigev_notify) {
 714		case SIGEV_NONE:
 715			break;
 716		case SIGEV_SIGNAL:
 717			/* sends signal */
 718
 719			clear_siginfo(&sig_i);
 720			sig_i.si_signo = info->notify.sigev_signo;
 721			sig_i.si_errno = 0;
 722			sig_i.si_code = SI_MESGQ;
 723			sig_i.si_value = info->notify.sigev_value;
 724			/* map current pid/uid into info->owner's namespaces */
 725			rcu_read_lock();
 726			sig_i.si_pid = task_tgid_nr_ns(current,
 727						ns_of_pid(info->notify_owner));
 728			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 729			rcu_read_unlock();
 730
 731			kill_pid_info(info->notify.sigev_signo,
 732				      &sig_i, info->notify_owner);
 733			break;
 734		case SIGEV_THREAD:
 735			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 736			netlink_sendskb(info->notify_sock, info->notify_cookie);
 737			break;
 738		}
 739		/* after notification unregisters process */
 740		put_pid(info->notify_owner);
 741		put_user_ns(info->notify_user_ns);
 742		info->notify_owner = NULL;
 743		info->notify_user_ns = NULL;
 744	}
 745	wake_up(&info->wait_q);
 746}
 747
 748static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 749			   struct timespec64 *ts)
 750{
 751	if (get_timespec64(ts, u_abs_timeout))
 752		return -EFAULT;
 753	if (!timespec64_valid(ts))
 754		return -EINVAL;
 
 
 755	return 0;
 756}
 757
 758static void remove_notification(struct mqueue_inode_info *info)
 759{
 760	if (info->notify_owner != NULL &&
 761	    info->notify.sigev_notify == SIGEV_THREAD) {
 762		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 763		netlink_sendskb(info->notify_sock, info->notify_cookie);
 764	}
 765	put_pid(info->notify_owner);
 766	put_user_ns(info->notify_user_ns);
 767	info->notify_owner = NULL;
 768	info->notify_user_ns = NULL;
 769}
 770
 771static int prepare_open(struct dentry *dentry, int oflag, int ro,
 772			umode_t mode, struct filename *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773			struct mq_attr *attr)
 774{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 776						  MAY_READ | MAY_WRITE };
 777	int acc;
 778
 779	if (d_really_is_negative(dentry)) {
 780		if (!(oflag & O_CREAT))
 781			return -ENOENT;
 782		if (ro)
 783			return ro;
 784		audit_inode_parent_hidden(name, dentry->d_parent);
 785		return vfs_mkobj(dentry, mode & ~current_umask(),
 786				  mqueue_create_attr, attr);
 787	}
 788	/* it already existed */
 789	audit_inode(name, dentry, 0);
 790	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 791		return -EEXIST;
 792	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 793		return -EINVAL;
 794	acc = oflag2acc[oflag & O_ACCMODE];
 795	return inode_permission(d_inode(dentry), acc);
 
 
 796}
 797
 798static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 799		      struct mq_attr *attr)
 800{
 801	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 802	struct dentry *root = mnt->mnt_root;
 803	struct filename *name;
 804	struct path path;
 805	int fd, error;
 
 
 
 806	int ro;
 807
 808	audit_mq_open(oflag, mode, attr);
 
 
 
 809
 810	if (IS_ERR(name = getname(u_name)))
 811		return PTR_ERR(name);
 812
 813	fd = get_unused_fd_flags(O_CLOEXEC);
 814	if (fd < 0)
 815		goto out_putname;
 816
 817	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 
 818	inode_lock(d_inode(root));
 819	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 820	if (IS_ERR(path.dentry)) {
 821		error = PTR_ERR(path.dentry);
 822		goto out_putfd;
 823	}
 824	path.mnt = mntget(mnt);
 825	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 826	if (!error) {
 827		struct file *file = dentry_open(&path, oflag, current_cred());
 828		if (!IS_ERR(file))
 829			fd_install(fd, file);
 830		else
 831			error = PTR_ERR(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832	}
 
 
 
 
 
 
 833	path_put(&path);
 834out_putfd:
 835	if (error) {
 836		put_unused_fd(fd);
 837		fd = error;
 838	}
 839	inode_unlock(d_inode(root));
 840	if (!ro)
 841		mnt_drop_write(mnt);
 842out_putname:
 843	putname(name);
 844	return fd;
 845}
 846
 847SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 848		struct mq_attr __user *, u_attr)
 849{
 850	struct mq_attr attr;
 851	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 852		return -EFAULT;
 853
 854	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 855}
 856
 857SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 858{
 859	int err;
 860	struct filename *name;
 861	struct dentry *dentry;
 862	struct inode *inode = NULL;
 863	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 864	struct vfsmount *mnt = ipc_ns->mq_mnt;
 865
 866	name = getname(u_name);
 867	if (IS_ERR(name))
 868		return PTR_ERR(name);
 869
 870	audit_inode_parent_hidden(name, mnt->mnt_root);
 871	err = mnt_want_write(mnt);
 872	if (err)
 873		goto out_name;
 874	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 875	dentry = lookup_one_len(name->name, mnt->mnt_root,
 876				strlen(name->name));
 877	if (IS_ERR(dentry)) {
 878		err = PTR_ERR(dentry);
 879		goto out_unlock;
 880	}
 881
 882	inode = d_inode(dentry);
 883	if (!inode) {
 884		err = -ENOENT;
 885	} else {
 886		ihold(inode);
 887		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 888	}
 889	dput(dentry);
 890
 891out_unlock:
 892	inode_unlock(d_inode(mnt->mnt_root));
 893	if (inode)
 894		iput(inode);
 895	mnt_drop_write(mnt);
 896out_name:
 897	putname(name);
 898
 899	return err;
 900}
 901
 902/* Pipelined send and receive functions.
 903 *
 904 * If a receiver finds no waiting message, then it registers itself in the
 905 * list of waiting receivers. A sender checks that list before adding the new
 906 * message into the message array. If there is a waiting receiver, then it
 907 * bypasses the message array and directly hands the message over to the
 908 * receiver. The receiver accepts the message and returns without grabbing the
 909 * queue spinlock:
 910 *
 911 * - Set pointer to message.
 912 * - Queue the receiver task for later wakeup (without the info->lock).
 913 * - Update its state to STATE_READY. Now the receiver can continue.
 914 * - Wake up the process after the lock is dropped. Should the process wake up
 915 *   before this wakeup (due to a timeout or a signal) it will either see
 916 *   STATE_READY and continue or acquire the lock to check the state again.
 917 *
 918 * The same algorithm is used for senders.
 919 */
 920
 921/* pipelined_send() - send a message directly to the task waiting in
 922 * sys_mq_timedreceive() (without inserting message into a queue).
 923 */
 924static inline void pipelined_send(struct wake_q_head *wake_q,
 925				  struct mqueue_inode_info *info,
 926				  struct msg_msg *message,
 927				  struct ext_wait_queue *receiver)
 928{
 929	receiver->msg = message;
 930	list_del(&receiver->list);
 931	wake_q_add(wake_q, receiver->task);
 932	/*
 933	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 934	 * that we can ensure that updating receiver->state is the last
 935	 * write operation: As once set, the receiver can continue,
 936	 * and if we don't have the reference count from the wake_q,
 937	 * yet, at that point we can later have a use-after-free
 938	 * condition and bogus wakeup.
 939	 */
 940	receiver->state = STATE_READY;
 941}
 942
 943/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 944 * gets its message and put to the queue (we have one free place for sure). */
 945static inline void pipelined_receive(struct wake_q_head *wake_q,
 946				     struct mqueue_inode_info *info)
 947{
 948	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 949
 950	if (!sender) {
 951		/* for poll */
 952		wake_up_interruptible(&info->wait_q);
 953		return;
 954	}
 955	if (msg_insert(sender->msg, info))
 956		return;
 957
 958	list_del(&sender->list);
 959	wake_q_add(wake_q, sender->task);
 960	sender->state = STATE_READY;
 961}
 962
 963static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 964		size_t msg_len, unsigned int msg_prio,
 965		struct timespec64 *ts)
 966{
 967	struct fd f;
 968	struct inode *inode;
 969	struct ext_wait_queue wait;
 970	struct ext_wait_queue *receiver;
 971	struct msg_msg *msg_ptr;
 972	struct mqueue_inode_info *info;
 973	ktime_t expires, *timeout = NULL;
 
 974	struct posix_msg_tree_node *new_leaf = NULL;
 975	int ret = 0;
 976	DEFINE_WAKE_Q(wake_q);
 977
 
 
 
 
 
 
 
 978	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 979		return -EINVAL;
 980
 981	if (ts) {
 982		expires = timespec64_to_ktime(*ts);
 983		timeout = &expires;
 984	}
 985
 986	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 987
 988	f = fdget(mqdes);
 989	if (unlikely(!f.file)) {
 990		ret = -EBADF;
 991		goto out;
 992	}
 993
 994	inode = file_inode(f.file);
 995	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 996		ret = -EBADF;
 997		goto out_fput;
 998	}
 999	info = MQUEUE_I(inode);
1000	audit_file(f.file);
1001
1002	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1003		ret = -EBADF;
1004		goto out_fput;
1005	}
1006
1007	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1008		ret = -EMSGSIZE;
1009		goto out_fput;
1010	}
1011
1012	/* First try to allocate memory, before doing anything with
1013	 * existing queues. */
1014	msg_ptr = load_msg(u_msg_ptr, msg_len);
1015	if (IS_ERR(msg_ptr)) {
1016		ret = PTR_ERR(msg_ptr);
1017		goto out_fput;
1018	}
1019	msg_ptr->m_ts = msg_len;
1020	msg_ptr->m_type = msg_prio;
1021
1022	/*
1023	 * msg_insert really wants us to have a valid, spare node struct so
1024	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1025	 * fall back to that if necessary.
1026	 */
1027	if (!info->node_cache)
1028		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1029
1030	spin_lock(&info->lock);
1031
1032	if (!info->node_cache && new_leaf) {
1033		/* Save our speculative allocation into the cache */
1034		INIT_LIST_HEAD(&new_leaf->msg_list);
1035		info->node_cache = new_leaf;
1036		new_leaf = NULL;
1037	} else {
1038		kfree(new_leaf);
1039	}
1040
1041	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1042		if (f.file->f_flags & O_NONBLOCK) {
1043			ret = -EAGAIN;
1044		} else {
1045			wait.task = current;
1046			wait.msg = (void *) msg_ptr;
1047			wait.state = STATE_NONE;
1048			ret = wq_sleep(info, SEND, timeout, &wait);
1049			/*
1050			 * wq_sleep must be called with info->lock held, and
1051			 * returns with the lock released
1052			 */
1053			goto out_free;
1054		}
1055	} else {
1056		receiver = wq_get_first_waiter(info, RECV);
1057		if (receiver) {
1058			pipelined_send(&wake_q, info, msg_ptr, receiver);
1059		} else {
1060			/* adds message to the queue */
1061			ret = msg_insert(msg_ptr, info);
1062			if (ret)
1063				goto out_unlock;
1064			__do_notify(info);
1065		}
1066		inode->i_atime = inode->i_mtime = inode->i_ctime =
1067				current_time(inode);
1068	}
1069out_unlock:
1070	spin_unlock(&info->lock);
1071	wake_up_q(&wake_q);
1072out_free:
1073	if (ret)
1074		free_msg(msg_ptr);
1075out_fput:
1076	fdput(f);
1077out:
1078	return ret;
1079}
1080
1081static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1082		size_t msg_len, unsigned int __user *u_msg_prio,
1083		struct timespec64 *ts)
1084{
1085	ssize_t ret;
1086	struct msg_msg *msg_ptr;
1087	struct fd f;
1088	struct inode *inode;
1089	struct mqueue_inode_info *info;
1090	struct ext_wait_queue wait;
1091	ktime_t expires, *timeout = NULL;
 
1092	struct posix_msg_tree_node *new_leaf = NULL;
1093
1094	if (ts) {
1095		expires = timespec64_to_ktime(*ts);
 
 
1096		timeout = &expires;
1097	}
1098
1099	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1100
1101	f = fdget(mqdes);
1102	if (unlikely(!f.file)) {
1103		ret = -EBADF;
1104		goto out;
1105	}
1106
1107	inode = file_inode(f.file);
1108	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1109		ret = -EBADF;
1110		goto out_fput;
1111	}
1112	info = MQUEUE_I(inode);
1113	audit_file(f.file);
1114
1115	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1116		ret = -EBADF;
1117		goto out_fput;
1118	}
1119
1120	/* checks if buffer is big enough */
1121	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1122		ret = -EMSGSIZE;
1123		goto out_fput;
1124	}
1125
1126	/*
1127	 * msg_insert really wants us to have a valid, spare node struct so
1128	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1129	 * fall back to that if necessary.
1130	 */
1131	if (!info->node_cache)
1132		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133
1134	spin_lock(&info->lock);
1135
1136	if (!info->node_cache && new_leaf) {
1137		/* Save our speculative allocation into the cache */
1138		INIT_LIST_HEAD(&new_leaf->msg_list);
1139		info->node_cache = new_leaf;
1140	} else {
1141		kfree(new_leaf);
1142	}
1143
1144	if (info->attr.mq_curmsgs == 0) {
1145		if (f.file->f_flags & O_NONBLOCK) {
1146			spin_unlock(&info->lock);
1147			ret = -EAGAIN;
1148		} else {
1149			wait.task = current;
1150			wait.state = STATE_NONE;
1151			ret = wq_sleep(info, RECV, timeout, &wait);
1152			msg_ptr = wait.msg;
1153		}
1154	} else {
1155		DEFINE_WAKE_Q(wake_q);
1156
1157		msg_ptr = msg_get(info);
1158
1159		inode->i_atime = inode->i_mtime = inode->i_ctime =
1160				current_time(inode);
1161
1162		/* There is now free space in queue. */
1163		pipelined_receive(&wake_q, info);
1164		spin_unlock(&info->lock);
1165		wake_up_q(&wake_q);
1166		ret = 0;
1167	}
1168	if (ret == 0) {
1169		ret = msg_ptr->m_ts;
1170
1171		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1172			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1173			ret = -EFAULT;
1174		}
1175		free_msg(msg_ptr);
1176	}
1177out_fput:
1178	fdput(f);
1179out:
1180	return ret;
1181}
1182
1183SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1184		size_t, msg_len, unsigned int, msg_prio,
1185		const struct __kernel_timespec __user *, u_abs_timeout)
1186{
1187	struct timespec64 ts, *p = NULL;
1188	if (u_abs_timeout) {
1189		int res = prepare_timeout(u_abs_timeout, &ts);
1190		if (res)
1191			return res;
1192		p = &ts;
1193	}
1194	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1195}
1196
1197SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1198		size_t, msg_len, unsigned int __user *, u_msg_prio,
1199		const struct __kernel_timespec __user *, u_abs_timeout)
1200{
1201	struct timespec64 ts, *p = NULL;
1202	if (u_abs_timeout) {
1203		int res = prepare_timeout(u_abs_timeout, &ts);
1204		if (res)
1205			return res;
1206		p = &ts;
1207	}
1208	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1209}
1210
1211/*
1212 * Notes: the case when user wants us to deregister (with NULL as pointer)
1213 * and he isn't currently owner of notification, will be silently discarded.
1214 * It isn't explicitly defined in the POSIX.
1215 */
1216static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 
1217{
1218	int ret;
1219	struct fd f;
1220	struct sock *sock;
1221	struct inode *inode;
 
1222	struct mqueue_inode_info *info;
1223	struct sk_buff *nc;
1224
1225	audit_mq_notify(mqdes, notification);
 
 
 
 
 
 
1226
1227	nc = NULL;
1228	sock = NULL;
1229	if (notification != NULL) {
1230		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1231			     notification->sigev_notify != SIGEV_SIGNAL &&
1232			     notification->sigev_notify != SIGEV_THREAD))
1233			return -EINVAL;
1234		if (notification->sigev_notify == SIGEV_SIGNAL &&
1235			!valid_signal(notification->sigev_signo)) {
1236			return -EINVAL;
1237		}
1238		if (notification->sigev_notify == SIGEV_THREAD) {
1239			long timeo;
1240
1241			/* create the notify skb */
1242			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1243			if (!nc)
1244				return -ENOMEM;
1245
 
1246			if (copy_from_user(nc->data,
1247					notification->sigev_value.sival_ptr,
1248					NOTIFY_COOKIE_LEN)) {
1249				ret = -EFAULT;
1250				goto free_skb;
1251			}
1252
1253			/* TODO: add a header? */
1254			skb_put(nc, NOTIFY_COOKIE_LEN);
1255			/* and attach it to the socket */
1256retry:
1257			f = fdget(notification->sigev_signo);
1258			if (!f.file) {
1259				ret = -EBADF;
1260				goto out;
1261			}
1262			sock = netlink_getsockbyfilp(f.file);
1263			fdput(f);
1264			if (IS_ERR(sock)) {
1265				ret = PTR_ERR(sock);
1266				goto free_skb;
 
1267			}
1268
1269			timeo = MAX_SCHEDULE_TIMEOUT;
1270			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1271			if (ret == 1) {
 
 
1272				sock = NULL;
1273				goto retry;
 
1274			}
1275			if (ret)
1276				return ret;
1277		}
1278	}
1279
1280	f = fdget(mqdes);
1281	if (!f.file) {
1282		ret = -EBADF;
1283		goto out;
1284	}
1285
1286	inode = file_inode(f.file);
1287	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1288		ret = -EBADF;
1289		goto out_fput;
1290	}
1291	info = MQUEUE_I(inode);
1292
1293	ret = 0;
1294	spin_lock(&info->lock);
1295	if (notification == NULL) {
1296		if (info->notify_owner == task_tgid(current)) {
1297			remove_notification(info);
1298			inode->i_atime = inode->i_ctime = current_time(inode);
1299		}
1300	} else if (info->notify_owner != NULL) {
1301		ret = -EBUSY;
1302	} else {
1303		switch (notification->sigev_notify) {
1304		case SIGEV_NONE:
1305			info->notify.sigev_notify = SIGEV_NONE;
1306			break;
1307		case SIGEV_THREAD:
1308			info->notify_sock = sock;
1309			info->notify_cookie = nc;
1310			sock = NULL;
1311			nc = NULL;
1312			info->notify.sigev_notify = SIGEV_THREAD;
1313			break;
1314		case SIGEV_SIGNAL:
1315			info->notify.sigev_signo = notification->sigev_signo;
1316			info->notify.sigev_value = notification->sigev_value;
1317			info->notify.sigev_notify = SIGEV_SIGNAL;
1318			break;
1319		}
1320
1321		info->notify_owner = get_pid(task_tgid(current));
1322		info->notify_user_ns = get_user_ns(current_user_ns());
1323		inode->i_atime = inode->i_ctime = current_time(inode);
1324	}
1325	spin_unlock(&info->lock);
1326out_fput:
1327	fdput(f);
1328out:
1329	if (sock)
1330		netlink_detachskb(sock, nc);
1331	else
1332free_skb:
1333		dev_kfree_skb(nc);
1334
1335	return ret;
1336}
1337
1338SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1339		const struct sigevent __user *, u_notification)
1340{
1341	struct sigevent n, *p = NULL;
1342	if (u_notification) {
1343		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1344			return -EFAULT;
1345		p = &n;
1346	}
1347	return do_mq_notify(mqdes, p);
1348}
1349
1350static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1351{
 
 
1352	struct fd f;
1353	struct inode *inode;
1354	struct mqueue_inode_info *info;
1355
1356	if (new && (new->mq_flags & (~O_NONBLOCK)))
1357		return -EINVAL;
 
 
 
 
1358
1359	f = fdget(mqdes);
1360	if (!f.file)
1361		return -EBADF;
 
 
1362
 
1363	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1364		fdput(f);
1365		return -EBADF;
1366	}
1367
1368	inode = file_inode(f.file);
1369	info = MQUEUE_I(inode);
1370
1371	spin_lock(&info->lock);
1372
1373	if (old) {
1374		*old = info->attr;
1375		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1376	}
1377	if (new) {
1378		audit_mq_getsetattr(mqdes, new);
1379		spin_lock(&f.file->f_lock);
1380		if (new->mq_flags & O_NONBLOCK)
1381			f.file->f_flags |= O_NONBLOCK;
1382		else
1383			f.file->f_flags &= ~O_NONBLOCK;
1384		spin_unlock(&f.file->f_lock);
1385
1386		inode->i_atime = inode->i_ctime = current_time(inode);
1387	}
1388
1389	spin_unlock(&info->lock);
1390	fdput(f);
1391	return 0;
1392}
1393
1394SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1395		const struct mq_attr __user *, u_mqstat,
1396		struct mq_attr __user *, u_omqstat)
1397{
1398	int ret;
1399	struct mq_attr mqstat, omqstat;
1400	struct mq_attr *new = NULL, *old = NULL;
1401
1402	if (u_mqstat) {
1403		new = &mqstat;
1404		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1405			return -EFAULT;
1406	}
1407	if (u_omqstat)
1408		old = &omqstat;
1409
1410	ret = do_mq_getsetattr(mqdes, new, old);
1411	if (ret || !old)
1412		return ret;
1413
1414	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1415		return -EFAULT;
1416	return 0;
1417}
1418
1419#ifdef CONFIG_COMPAT
1420
1421struct compat_mq_attr {
1422	compat_long_t mq_flags;      /* message queue flags		     */
1423	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1424	compat_long_t mq_msgsize;    /* maximum message size		     */
1425	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1426	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1427};
1428
1429static inline int get_compat_mq_attr(struct mq_attr *attr,
1430			const struct compat_mq_attr __user *uattr)
1431{
1432	struct compat_mq_attr v;
1433
1434	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1435		return -EFAULT;
1436
1437	memset(attr, 0, sizeof(*attr));
1438	attr->mq_flags = v.mq_flags;
1439	attr->mq_maxmsg = v.mq_maxmsg;
1440	attr->mq_msgsize = v.mq_msgsize;
1441	attr->mq_curmsgs = v.mq_curmsgs;
1442	return 0;
1443}
1444
1445static inline int put_compat_mq_attr(const struct mq_attr *attr,
1446			struct compat_mq_attr __user *uattr)
1447{
1448	struct compat_mq_attr v;
1449
1450	memset(&v, 0, sizeof(v));
1451	v.mq_flags = attr->mq_flags;
1452	v.mq_maxmsg = attr->mq_maxmsg;
1453	v.mq_msgsize = attr->mq_msgsize;
1454	v.mq_curmsgs = attr->mq_curmsgs;
1455	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1456		return -EFAULT;
1457	return 0;
1458}
1459
1460COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1461		       int, oflag, compat_mode_t, mode,
1462		       struct compat_mq_attr __user *, u_attr)
1463{
1464	struct mq_attr attr, *p = NULL;
1465	if (u_attr && oflag & O_CREAT) {
1466		p = &attr;
1467		if (get_compat_mq_attr(&attr, u_attr))
1468			return -EFAULT;
1469	}
1470	return do_mq_open(u_name, oflag, mode, p);
1471}
1472
1473COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1474		       const struct compat_sigevent __user *, u_notification)
1475{
1476	struct sigevent n, *p = NULL;
1477	if (u_notification) {
1478		if (get_compat_sigevent(&n, u_notification))
1479			return -EFAULT;
1480		if (n.sigev_notify == SIGEV_THREAD)
1481			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1482		p = &n;
1483	}
1484	return do_mq_notify(mqdes, p);
1485}
1486
1487COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1488		       const struct compat_mq_attr __user *, u_mqstat,
1489		       struct compat_mq_attr __user *, u_omqstat)
1490{
1491	int ret;
1492	struct mq_attr mqstat, omqstat;
1493	struct mq_attr *new = NULL, *old = NULL;
1494
1495	if (u_mqstat) {
1496		new = &mqstat;
1497		if (get_compat_mq_attr(new, u_mqstat))
1498			return -EFAULT;
1499	}
1500	if (u_omqstat)
1501		old = &omqstat;
1502
1503	ret = do_mq_getsetattr(mqdes, new, old);
1504	if (ret || !old)
1505		return ret;
1506
1507	if (put_compat_mq_attr(old, u_omqstat))
1508		return -EFAULT;
1509	return 0;
1510}
1511#endif
1512
1513#ifdef CONFIG_COMPAT_32BIT_TIME
1514static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1515				   struct timespec64 *ts)
1516{
1517	if (get_old_timespec32(ts, p))
1518		return -EFAULT;
1519	if (!timespec64_valid(ts))
1520		return -EINVAL;
1521	return 0;
1522}
1523
1524SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1525		const char __user *, u_msg_ptr,
1526		unsigned int, msg_len, unsigned int, msg_prio,
1527		const struct old_timespec32 __user *, u_abs_timeout)
1528{
1529	struct timespec64 ts, *p = NULL;
1530	if (u_abs_timeout) {
1531		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1532		if (res)
1533			return res;
1534		p = &ts;
1535	}
1536	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1537}
1538
1539SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1540		char __user *, u_msg_ptr,
1541		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1542		const struct old_timespec32 __user *, u_abs_timeout)
1543{
1544	struct timespec64 ts, *p = NULL;
1545	if (u_abs_timeout) {
1546		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1547		if (res)
1548			return res;
1549		p = &ts;
1550	}
1551	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1552}
1553#endif
1554
1555static const struct inode_operations mqueue_dir_inode_operations = {
1556	.lookup = simple_lookup,
1557	.create = mqueue_create,
1558	.unlink = mqueue_unlink,
1559};
1560
1561static const struct file_operations mqueue_file_operations = {
1562	.flush = mqueue_flush_file,
1563	.poll = mqueue_poll_file,
1564	.read = mqueue_read_file,
1565	.llseek = default_llseek,
1566};
1567
1568static const struct super_operations mqueue_super_ops = {
1569	.alloc_inode = mqueue_alloc_inode,
1570	.free_inode = mqueue_free_inode,
1571	.evict_inode = mqueue_evict_inode,
1572	.statfs = simple_statfs,
1573};
1574
1575static const struct fs_context_operations mqueue_fs_context_ops = {
1576	.free		= mqueue_fs_context_free,
1577	.get_tree	= mqueue_get_tree,
1578};
1579
1580static struct file_system_type mqueue_fs_type = {
1581	.name			= "mqueue",
1582	.init_fs_context	= mqueue_init_fs_context,
1583	.kill_sb		= kill_litter_super,
1584	.fs_flags		= FS_USERNS_MOUNT,
1585};
1586
1587int mq_init_ns(struct ipc_namespace *ns)
1588{
1589	struct vfsmount *m;
1590
1591	ns->mq_queues_count  = 0;
1592	ns->mq_queues_max    = DFLT_QUEUESMAX;
1593	ns->mq_msg_max       = DFLT_MSGMAX;
1594	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1595	ns->mq_msg_default   = DFLT_MSG;
1596	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1597
1598	m = mq_create_mount(ns);
1599	if (IS_ERR(m))
1600		return PTR_ERR(m);
1601	ns->mq_mnt = m;
 
 
1602	return 0;
1603}
1604
1605void mq_clear_sbinfo(struct ipc_namespace *ns)
1606{
1607	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1608}
1609
1610void mq_put_mnt(struct ipc_namespace *ns)
1611{
1612	kern_unmount(ns->mq_mnt);
1613}
1614
1615static int __init init_mqueue_fs(void)
1616{
1617	int error;
1618
1619	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1620				sizeof(struct mqueue_inode_info), 0,
1621				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1622	if (mqueue_inode_cachep == NULL)
1623		return -ENOMEM;
1624
1625	/* ignore failures - they are not fatal */
1626	mq_sysctl_table = mq_register_sysctl_table();
1627
1628	error = register_filesystem(&mqueue_fs_type);
1629	if (error)
1630		goto out_sysctl;
1631
1632	spin_lock_init(&mq_lock);
1633
1634	error = mq_init_ns(&init_ipc_ns);
1635	if (error)
1636		goto out_filesystem;
1637
1638	return 0;
1639
1640out_filesystem:
1641	unregister_filesystem(&mqueue_fs_type);
1642out_sysctl:
1643	if (mq_sysctl_table)
1644		unregister_sysctl_table(mq_sysctl_table);
1645	kmem_cache_destroy(mqueue_inode_cachep);
1646	return error;
1647}
1648
1649device_initcall(init_mqueue_fs);