Linux Audio

Check our new training course

Loading...
v4.10.11
   1
 
 
 
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/u64_stats_sync.h>
 
 
 
   6#include <linux/sched/deadline.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/binfmts.h>
   8#include <linux/mutex.h>
   9#include <linux/spinlock.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10#include <linux/stop_machine.h>
  11#include <linux/irq_work.h>
  12#include <linux/tick.h>
  13#include <linux/slab.h>
 
 
 
 
 
 
 
 
  14
  15#include "cpupri.h"
  16#include "cpudeadline.h"
  17#include "cpuacct.h"
  18
  19#ifdef CONFIG_SCHED_DEBUG
  20#define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  21#else
  22#define SCHED_WARN_ON(x)	((void)(x))
  23#endif
  24
  25struct rq;
  26struct cpuidle_state;
  27
  28/* task_struct::on_rq states: */
  29#define TASK_ON_RQ_QUEUED	1
  30#define TASK_ON_RQ_MIGRATING	2
  31
  32extern __read_mostly int scheduler_running;
  33
  34extern unsigned long calc_load_update;
  35extern atomic_long_t calc_load_tasks;
  36
  37extern void calc_global_load_tick(struct rq *this_rq);
  38extern long calc_load_fold_active(struct rq *this_rq, long adjust);
  39
  40#ifdef CONFIG_SMP
  41extern void cpu_load_update_active(struct rq *this_rq);
  42#else
  43static inline void cpu_load_update_active(struct rq *this_rq) { }
  44#endif
  45
  46/*
  47 * Helpers for converting nanosecond timing to jiffy resolution
  48 */
  49#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  50
  51/*
  52 * Increase resolution of nice-level calculations for 64-bit architectures.
  53 * The extra resolution improves shares distribution and load balancing of
  54 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  55 * hierarchies, especially on larger systems. This is not a user-visible change
  56 * and does not change the user-interface for setting shares/weights.
  57 *
  58 * We increase resolution only if we have enough bits to allow this increased
  59 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
  60 * pretty high and the returns do not justify the increased costs.
  61 *
  62 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
  63 * increase coverage and consistency always enable it on 64bit platforms.
  64 */
  65#ifdef CONFIG_64BIT
  66# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
  67# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
  68# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
  69#else
  70# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
  71# define scale_load(w)		(w)
  72# define scale_load_down(w)	(w)
  73#endif
  74
  75/*
  76 * Task weight (visible to users) and its load (invisible to users) have
  77 * independent resolution, but they should be well calibrated. We use
  78 * scale_load() and scale_load_down(w) to convert between them. The
  79 * following must be true:
  80 *
  81 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
  82 *
  83 */
  84#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
  85
  86/*
  87 * Single value that decides SCHED_DEADLINE internal math precision.
  88 * 10 -> just above 1us
  89 * 9  -> just above 0.5us
  90 */
  91#define DL_SCALE (10)
  92
  93/*
  94 * These are the 'tuning knobs' of the scheduler:
  95 */
  96
  97/*
  98 * single value that denotes runtime == period, ie unlimited time.
  99 */
 100#define RUNTIME_INF	((u64)~0ULL)
 101
 102static inline int idle_policy(int policy)
 103{
 104	return policy == SCHED_IDLE;
 105}
 106static inline int fair_policy(int policy)
 107{
 108	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 109}
 110
 111static inline int rt_policy(int policy)
 112{
 113	return policy == SCHED_FIFO || policy == SCHED_RR;
 114}
 115
 116static inline int dl_policy(int policy)
 117{
 118	return policy == SCHED_DEADLINE;
 119}
 120static inline bool valid_policy(int policy)
 121{
 122	return idle_policy(policy) || fair_policy(policy) ||
 123		rt_policy(policy) || dl_policy(policy);
 124}
 125
 
 
 
 
 
 126static inline int task_has_rt_policy(struct task_struct *p)
 127{
 128	return rt_policy(p->policy);
 129}
 130
 131static inline int task_has_dl_policy(struct task_struct *p)
 132{
 133	return dl_policy(p->policy);
 134}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136/*
 137 * Tells if entity @a should preempt entity @b.
 138 */
 139static inline bool
 140dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 141{
 142	return dl_time_before(a->deadline, b->deadline);
 
 143}
 144
 145/*
 146 * This is the priority-queue data structure of the RT scheduling class:
 147 */
 148struct rt_prio_array {
 149	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 150	struct list_head queue[MAX_RT_PRIO];
 151};
 152
 153struct rt_bandwidth {
 154	/* nests inside the rq lock: */
 155	raw_spinlock_t		rt_runtime_lock;
 156	ktime_t			rt_period;
 157	u64			rt_runtime;
 158	struct hrtimer		rt_period_timer;
 159	unsigned int		rt_period_active;
 160};
 161
 162void __dl_clear_params(struct task_struct *p);
 163
 164/*
 165 * To keep the bandwidth of -deadline tasks and groups under control
 166 * we need some place where:
 167 *  - store the maximum -deadline bandwidth of the system (the group);
 168 *  - cache the fraction of that bandwidth that is currently allocated.
 169 *
 170 * This is all done in the data structure below. It is similar to the
 171 * one used for RT-throttling (rt_bandwidth), with the main difference
 172 * that, since here we are only interested in admission control, we
 173 * do not decrease any runtime while the group "executes", neither we
 174 * need a timer to replenish it.
 175 *
 176 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 177 * meaning that:
 178 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 179 *  - dl_total_bw array contains, in the i-eth element, the currently
 180 *    allocated bandwidth on the i-eth CPU.
 181 * Moreover, groups consume bandwidth on each CPU, while tasks only
 182 * consume bandwidth on the CPU they're running on.
 183 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 184 * that will be shown the next time the proc or cgroup controls will
 185 * be red. It on its turn can be changed by writing on its own
 186 * control.
 187 */
 188struct dl_bandwidth {
 189	raw_spinlock_t dl_runtime_lock;
 190	u64 dl_runtime;
 191	u64 dl_period;
 192};
 193
 194static inline int dl_bandwidth_enabled(void)
 195{
 196	return sysctl_sched_rt_runtime >= 0;
 197}
 198
 199extern struct dl_bw *dl_bw_of(int i);
 200
 201struct dl_bw {
 202	raw_spinlock_t lock;
 203	u64 bw, total_bw;
 
 204};
 205
 
 
 206static inline
 207void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 208{
 209	dl_b->total_bw -= tsk_bw;
 
 210}
 211
 212static inline
 213void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 214{
 215	dl_b->total_bw += tsk_bw;
 
 216}
 217
 218static inline
 219bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 220{
 221	return dl_b->bw != -1 &&
 222	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 223}
 224
 225extern struct mutex sched_domains_mutex;
 
 
 
 
 
 
 
 
 
 
 
 226
 227#ifdef CONFIG_CGROUP_SCHED
 228
 229#include <linux/cgroup.h>
 
 230
 231struct cfs_rq;
 232struct rt_rq;
 233
 234extern struct list_head task_groups;
 235
 236struct cfs_bandwidth {
 237#ifdef CONFIG_CFS_BANDWIDTH
 238	raw_spinlock_t lock;
 239	ktime_t period;
 240	u64 quota, runtime;
 241	s64 hierarchical_quota;
 242	u64 runtime_expires;
 243
 244	int idle, period_active;
 245	struct hrtimer period_timer, slack_timer;
 246	struct list_head throttled_cfs_rq;
 247
 248	/* statistics */
 249	int nr_periods, nr_throttled;
 250	u64 throttled_time;
 
 
 
 
 
 251#endif
 252};
 253
 254/* task group related information */
 255struct task_group {
 256	struct cgroup_subsys_state css;
 257
 258#ifdef CONFIG_FAIR_GROUP_SCHED
 259	/* schedulable entities of this group on each cpu */
 260	struct sched_entity **se;
 261	/* runqueue "owned" by this group on each cpu */
 262	struct cfs_rq **cfs_rq;
 263	unsigned long shares;
 264
 265#ifdef	CONFIG_SMP
 266	/*
 267	 * load_avg can be heavily contended at clock tick time, so put
 268	 * it in its own cacheline separated from the fields above which
 269	 * will also be accessed at each tick.
 270	 */
 271	atomic_long_t load_avg ____cacheline_aligned;
 272#endif
 273#endif
 274
 275#ifdef CONFIG_RT_GROUP_SCHED
 276	struct sched_rt_entity **rt_se;
 277	struct rt_rq **rt_rq;
 278
 279	struct rt_bandwidth rt_bandwidth;
 280#endif
 281
 282	struct rcu_head rcu;
 283	struct list_head list;
 284
 285	struct task_group *parent;
 286	struct list_head siblings;
 287	struct list_head children;
 288
 289#ifdef CONFIG_SCHED_AUTOGROUP
 290	struct autogroup *autogroup;
 
 
 
 
 
 
 
 
 
 
 
 291#endif
 292
 293	struct cfs_bandwidth cfs_bandwidth;
 294};
 295
 296#ifdef CONFIG_FAIR_GROUP_SCHED
 297#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 298
 299/*
 300 * A weight of 0 or 1 can cause arithmetics problems.
 301 * A weight of a cfs_rq is the sum of weights of which entities
 302 * are queued on this cfs_rq, so a weight of a entity should not be
 303 * too large, so as the shares value of a task group.
 304 * (The default weight is 1024 - so there's no practical
 305 *  limitation from this.)
 306 */
 307#define MIN_SHARES	(1UL <<  1)
 308#define MAX_SHARES	(1UL << 18)
 309#endif
 310
 311typedef int (*tg_visitor)(struct task_group *, void *);
 312
 313extern int walk_tg_tree_from(struct task_group *from,
 314			     tg_visitor down, tg_visitor up, void *data);
 315
 316/*
 317 * Iterate the full tree, calling @down when first entering a node and @up when
 318 * leaving it for the final time.
 319 *
 320 * Caller must hold rcu_lock or sufficient equivalent.
 321 */
 322static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 323{
 324	return walk_tg_tree_from(&root_task_group, down, up, data);
 325}
 326
 327extern int tg_nop(struct task_group *tg, void *data);
 328
 329extern void free_fair_sched_group(struct task_group *tg);
 330extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 331extern void online_fair_sched_group(struct task_group *tg);
 332extern void unregister_fair_sched_group(struct task_group *tg);
 333extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 334			struct sched_entity *se, int cpu,
 335			struct sched_entity *parent);
 336extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 337
 338extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 339extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 340extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 341
 342extern void free_rt_sched_group(struct task_group *tg);
 343extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 344extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 345		struct sched_rt_entity *rt_se, int cpu,
 346		struct sched_rt_entity *parent);
 
 
 
 
 
 347
 348extern struct task_group *sched_create_group(struct task_group *parent);
 349extern void sched_online_group(struct task_group *tg,
 350			       struct task_group *parent);
 351extern void sched_destroy_group(struct task_group *tg);
 352extern void sched_offline_group(struct task_group *tg);
 353
 354extern void sched_move_task(struct task_struct *tsk);
 355
 356#ifdef CONFIG_FAIR_GROUP_SCHED
 357extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 358
 359#ifdef CONFIG_SMP
 360extern void set_task_rq_fair(struct sched_entity *se,
 361			     struct cfs_rq *prev, struct cfs_rq *next);
 362#else /* !CONFIG_SMP */
 363static inline void set_task_rq_fair(struct sched_entity *se,
 364			     struct cfs_rq *prev, struct cfs_rq *next) { }
 365#endif /* CONFIG_SMP */
 366#endif /* CONFIG_FAIR_GROUP_SCHED */
 367
 368#else /* CONFIG_CGROUP_SCHED */
 369
 370struct cfs_bandwidth { };
 371
 372#endif	/* CONFIG_CGROUP_SCHED */
 373
 374/* CFS-related fields in a runqueue */
 375struct cfs_rq {
 376	struct load_weight load;
 377	unsigned int nr_running, h_nr_running;
 
 
 
 378
 379	u64 exec_clock;
 380	u64 min_vruntime;
 381#ifndef CONFIG_64BIT
 382	u64 min_vruntime_copy;
 383#endif
 384
 385	struct rb_root tasks_timeline;
 386	struct rb_node *rb_leftmost;
 387
 388	/*
 389	 * 'curr' points to currently running entity on this cfs_rq.
 390	 * It is set to NULL otherwise (i.e when none are currently running).
 391	 */
 392	struct sched_entity *curr, *next, *last, *skip;
 
 
 
 393
 394#ifdef	CONFIG_SCHED_DEBUG
 395	unsigned int nr_spread_over;
 396#endif
 397
 398#ifdef CONFIG_SMP
 399	/*
 400	 * CFS load tracking
 401	 */
 402	struct sched_avg avg;
 403	u64 runnable_load_sum;
 404	unsigned long runnable_load_avg;
 405#ifdef CONFIG_FAIR_GROUP_SCHED
 406	unsigned long tg_load_avg_contrib;
 407	unsigned long propagate_avg;
 408#endif
 409	atomic_long_t removed_load_avg, removed_util_avg;
 410#ifndef CONFIG_64BIT
 411	u64 load_last_update_time_copy;
 412#endif
 
 
 
 
 
 
 
 413
 414#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 415	/*
 416	 *   h_load = weight * f(tg)
 417	 *
 418	 * Where f(tg) is the recursive weight fraction assigned to
 419	 * this group.
 420	 */
 421	unsigned long h_load;
 422	u64 last_h_load_update;
 423	struct sched_entity *h_load_next;
 424#endif /* CONFIG_FAIR_GROUP_SCHED */
 425#endif /* CONFIG_SMP */
 426
 427#ifdef CONFIG_FAIR_GROUP_SCHED
 428	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 429
 430	/*
 431	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 432	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 433	 * (like users, containers etc.)
 434	 *
 435	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 436	 * list is used during load balance.
 437	 */
 438	int on_list;
 439	struct list_head leaf_cfs_rq_list;
 440	struct task_group *tg;	/* group that "owns" this runqueue */
 441
 442#ifdef CONFIG_CFS_BANDWIDTH
 443	int runtime_enabled;
 444	u64 runtime_expires;
 445	s64 runtime_remaining;
 446
 447	u64 throttled_clock, throttled_clock_task;
 448	u64 throttled_clock_task_time;
 449	int throttled, throttle_count;
 450	struct list_head throttled_list;
 
 451#endif /* CONFIG_CFS_BANDWIDTH */
 452#endif /* CONFIG_FAIR_GROUP_SCHED */
 453};
 454
 455static inline int rt_bandwidth_enabled(void)
 456{
 457	return sysctl_sched_rt_runtime >= 0;
 458}
 459
 460/* RT IPI pull logic requires IRQ_WORK */
 461#ifdef CONFIG_IRQ_WORK
 462# define HAVE_RT_PUSH_IPI
 463#endif
 464
 465/* Real-Time classes' related field in a runqueue: */
 466struct rt_rq {
 467	struct rt_prio_array active;
 468	unsigned int rt_nr_running;
 469	unsigned int rr_nr_running;
 470#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 471	struct {
 472		int curr; /* highest queued rt task prio */
 473#ifdef CONFIG_SMP
 474		int next; /* next highest */
 475#endif
 476	} highest_prio;
 477#endif
 478#ifdef CONFIG_SMP
 479	unsigned long rt_nr_migratory;
 480	unsigned long rt_nr_total;
 481	int overloaded;
 482	struct plist_head pushable_tasks;
 483#ifdef HAVE_RT_PUSH_IPI
 484	int push_flags;
 485	int push_cpu;
 486	struct irq_work push_work;
 487	raw_spinlock_t push_lock;
 488#endif
 489#endif /* CONFIG_SMP */
 490	int rt_queued;
 491
 492	int rt_throttled;
 493	u64 rt_time;
 494	u64 rt_runtime;
 495	/* Nests inside the rq lock: */
 496	raw_spinlock_t rt_runtime_lock;
 497
 498#ifdef CONFIG_RT_GROUP_SCHED
 499	unsigned long rt_nr_boosted;
 500
 501	struct rq *rq;
 502	struct task_group *tg;
 503#endif
 504};
 505
 
 
 
 
 
 506/* Deadline class' related fields in a runqueue */
 507struct dl_rq {
 508	/* runqueue is an rbtree, ordered by deadline */
 509	struct rb_root rb_root;
 510	struct rb_node *rb_leftmost;
 511
 512	unsigned long dl_nr_running;
 513
 514#ifdef CONFIG_SMP
 515	/*
 516	 * Deadline values of the currently executing and the
 517	 * earliest ready task on this rq. Caching these facilitates
 518	 * the decision wether or not a ready but not running task
 519	 * should migrate somewhere else.
 520	 */
 521	struct {
 522		u64 curr;
 523		u64 next;
 524	} earliest_dl;
 525
 526	unsigned long dl_nr_migratory;
 527	int overloaded;
 528
 529	/*
 530	 * Tasks on this rq that can be pushed away. They are kept in
 531	 * an rb-tree, ordered by tasks' deadlines, with caching
 532	 * of the leftmost (earliest deadline) element.
 533	 */
 534	struct rb_root pushable_dl_tasks_root;
 535	struct rb_node *pushable_dl_tasks_leftmost;
 536#else
 537	struct dl_bw dl_bw;
 538#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539};
 540
 
 
 
 
 
 
 
 541#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543static inline bool sched_asym_prefer(int a, int b)
 544{
 545	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 546}
 547
 
 
 
 
 
 
 
 
 
 
 548/*
 549 * We add the notion of a root-domain which will be used to define per-domain
 550 * variables. Each exclusive cpuset essentially defines an island domain by
 551 * fully partitioning the member cpus from any other cpuset. Whenever a new
 552 * exclusive cpuset is created, we also create and attach a new root-domain
 553 * object.
 554 *
 555 */
 556struct root_domain {
 557	atomic_t refcount;
 558	atomic_t rto_count;
 559	struct rcu_head rcu;
 560	cpumask_var_t span;
 561	cpumask_var_t online;
 
 
 
 
 
 
 
 562
 563	/* Indicate more than one runnable task for any CPU */
 564	bool overload;
 565
 566	/*
 567	 * The bit corresponding to a CPU gets set here if such CPU has more
 568	 * than one runnable -deadline task (as it is below for RT tasks).
 569	 */
 570	cpumask_var_t dlo_mask;
 571	atomic_t dlo_count;
 572	struct dl_bw dl_bw;
 573	struct cpudl cpudl;
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 575	/*
 576	 * The "RT overload" flag: it gets set if a CPU has more than
 577	 * one runnable RT task.
 578	 */
 579	cpumask_var_t rto_mask;
 580	struct cpupri cpupri;
 581
 582	unsigned long max_cpu_capacity;
 
 
 
 
 
 
 583};
 584
 585extern struct root_domain def_root_domain;
 
 
 
 
 586
 
 
 
 587#endif /* CONFIG_SMP */
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/*
 590 * This is the main, per-CPU runqueue data structure.
 591 *
 592 * Locking rule: those places that want to lock multiple runqueues
 593 * (such as the load balancing or the thread migration code), lock
 594 * acquire operations must be ordered by ascending &runqueue.
 595 */
 596struct rq {
 597	/* runqueue lock: */
 598	raw_spinlock_t lock;
 599
 600	/*
 601	 * nr_running and cpu_load should be in the same cacheline because
 602	 * remote CPUs use both these fields when doing load calculation.
 603	 */
 604	unsigned int nr_running;
 605#ifdef CONFIG_NUMA_BALANCING
 606	unsigned int nr_numa_running;
 607	unsigned int nr_preferred_running;
 
 608#endif
 609	#define CPU_LOAD_IDX_MAX 5
 610	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 611#ifdef CONFIG_NO_HZ_COMMON
 612#ifdef CONFIG_SMP
 613	unsigned long last_load_update_tick;
 
 
 614#endif /* CONFIG_SMP */
 615	unsigned long nohz_flags;
 
 616#endif /* CONFIG_NO_HZ_COMMON */
 617#ifdef CONFIG_NO_HZ_FULL
 618	unsigned long last_sched_tick;
 
 
 
 
 
 
 
 619#endif
 620	/* capture load from *all* tasks on this cpu: */
 621	struct load_weight load;
 622	unsigned long nr_load_updates;
 623	u64 nr_switches;
 624
 625	struct cfs_rq cfs;
 626	struct rt_rq rt;
 627	struct dl_rq dl;
 628
 629#ifdef CONFIG_FAIR_GROUP_SCHED
 630	/* list of leaf cfs_rq on this cpu: */
 631	struct list_head leaf_cfs_rq_list;
 632	struct list_head *tmp_alone_branch;
 633#endif /* CONFIG_FAIR_GROUP_SCHED */
 634
 635	/*
 636	 * This is part of a global counter where only the total sum
 637	 * over all CPUs matters. A task can increase this counter on
 638	 * one CPU and if it got migrated afterwards it may decrease
 639	 * it on another CPU. Always updated under the runqueue lock:
 640	 */
 641	unsigned long nr_uninterruptible;
 642
 643	struct task_struct *curr, *idle, *stop;
 644	unsigned long next_balance;
 645	struct mm_struct *prev_mm;
 
 
 646
 647	unsigned int clock_skip_update;
 648	u64 clock;
 649	u64 clock_task;
 
 
 
 650
 651	atomic_t nr_iowait;
 
 
 
 
 652
 653#ifdef CONFIG_SMP
 654	struct root_domain *rd;
 655	struct sched_domain *sd;
 656
 657	unsigned long cpu_capacity;
 658	unsigned long cpu_capacity_orig;
 659
 660	struct callback_head *balance_callback;
 
 
 
 
 661
 662	unsigned char idle_balance;
 663	/* For active balancing */
 664	int active_balance;
 665	int push_cpu;
 666	struct cpu_stop_work active_balance_work;
 667	/* cpu of this runqueue: */
 668	int cpu;
 669	int online;
 
 670
 671	struct list_head cfs_tasks;
 672
 673	u64 rt_avg;
 674	u64 age_stamp;
 675	u64 idle_stamp;
 676	u64 avg_idle;
 
 
 
 677
 678	/* This is used to determine avg_idle's max value */
 679	u64 max_idle_balance_cost;
 680#endif
 681
 682#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 683	u64 prev_irq_time;
 684#endif
 685#ifdef CONFIG_PARAVIRT
 686	u64 prev_steal_time;
 687#endif
 688#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 689	u64 prev_steal_time_rq;
 690#endif
 691
 692	/* calc_load related fields */
 693	unsigned long calc_load_update;
 694	long calc_load_active;
 695
 696#ifdef CONFIG_SCHED_HRTICK
 697#ifdef CONFIG_SMP
 698	int hrtick_csd_pending;
 699	struct call_single_data hrtick_csd;
 700#endif
 701	struct hrtimer hrtick_timer;
 702#endif
 703
 704#ifdef CONFIG_SCHEDSTATS
 705	/* latency stats */
 706	struct sched_info rq_sched_info;
 707	unsigned long long rq_cpu_time;
 708	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 709
 710	/* sys_sched_yield() stats */
 711	unsigned int yld_count;
 712
 713	/* schedule() stats */
 714	unsigned int sched_count;
 715	unsigned int sched_goidle;
 716
 717	/* try_to_wake_up() stats */
 718	unsigned int ttwu_count;
 719	unsigned int ttwu_local;
 720#endif
 721
 722#ifdef CONFIG_SMP
 723	struct llist_head wake_list;
 724#endif
 725
 726#ifdef CONFIG_CPU_IDLE
 727	/* Must be inspected within a rcu lock section */
 728	struct cpuidle_state *idle_state;
 729#endif
 730};
 731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732static inline int cpu_of(struct rq *rq)
 733{
 734#ifdef CONFIG_SMP
 735	return rq->cpu;
 736#else
 737	return 0;
 738#endif
 739}
 740
 741
 742#ifdef CONFIG_SCHED_SMT
 743
 744extern struct static_key_false sched_smt_present;
 745
 746extern void __update_idle_core(struct rq *rq);
 747
 748static inline void update_idle_core(struct rq *rq)
 749{
 750	if (static_branch_unlikely(&sched_smt_present))
 751		__update_idle_core(rq);
 752}
 753
 754#else
 755static inline void update_idle_core(struct rq *rq) { }
 756#endif
 757
 758DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 759
 760#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 761#define this_rq()		this_cpu_ptr(&runqueues)
 762#define task_rq(p)		cpu_rq(task_cpu(p))
 763#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 764#define raw_rq()		raw_cpu_ptr(&runqueues)
 765
 
 
 766static inline u64 __rq_clock_broken(struct rq *rq)
 767{
 768	return READ_ONCE(rq->clock);
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771static inline u64 rq_clock(struct rq *rq)
 772{
 773	lockdep_assert_held(&rq->lock);
 
 
 774	return rq->clock;
 775}
 776
 777static inline u64 rq_clock_task(struct rq *rq)
 778{
 779	lockdep_assert_held(&rq->lock);
 
 
 780	return rq->clock_task;
 781}
 782
 783#define RQCF_REQ_SKIP	0x01
 784#define RQCF_ACT_SKIP	0x02
 
 
 
 785
 786static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 
 
 
 
 787{
 788	lockdep_assert_held(&rq->lock);
 789	if (skip)
 790		rq->clock_skip_update |= RQCF_REQ_SKIP;
 791	else
 792		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793}
 794
 795#ifdef CONFIG_NUMA
 796enum numa_topology_type {
 797	NUMA_DIRECT,
 798	NUMA_GLUELESS_MESH,
 799	NUMA_BACKPLANE,
 800};
 801extern enum numa_topology_type sched_numa_topology_type;
 802extern int sched_max_numa_distance;
 803extern bool find_numa_distance(int distance);
 
 
 
 
 
 
 
 
 
 
 
 
 804#endif
 805
 806#ifdef CONFIG_NUMA_BALANCING
 807/* The regions in numa_faults array from task_struct */
 808enum numa_faults_stats {
 809	NUMA_MEM = 0,
 810	NUMA_CPU,
 811	NUMA_MEMBUF,
 812	NUMA_CPUBUF
 813};
 814extern void sched_setnuma(struct task_struct *p, int node);
 815extern int migrate_task_to(struct task_struct *p, int cpu);
 816extern int migrate_swap(struct task_struct *, struct task_struct *);
 
 
 
 
 
 
 
 817#endif /* CONFIG_NUMA_BALANCING */
 818
 819#ifdef CONFIG_SMP
 820
 821static inline void
 822queue_balance_callback(struct rq *rq,
 823		       struct callback_head *head,
 824		       void (*func)(struct rq *rq))
 825{
 826	lockdep_assert_held(&rq->lock);
 827
 828	if (unlikely(head->next))
 829		return;
 830
 831	head->func = (void (*)(struct callback_head *))func;
 832	head->next = rq->balance_callback;
 833	rq->balance_callback = head;
 834}
 835
 836extern void sched_ttwu_pending(void);
 837
 838#define rcu_dereference_check_sched_domain(p) \
 839	rcu_dereference_check((p), \
 840			      lockdep_is_held(&sched_domains_mutex))
 841
 842/*
 843 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 844 * See detach_destroy_domains: synchronize_sched for details.
 845 *
 846 * The domain tree of any CPU may only be accessed from within
 847 * preempt-disabled sections.
 848 */
 849#define for_each_domain(cpu, __sd) \
 850	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 851			__sd; __sd = __sd->parent)
 852
 853#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 854
 855/**
 856 * highest_flag_domain - Return highest sched_domain containing flag.
 857 * @cpu:	The cpu whose highest level of sched domain is to
 858 *		be returned.
 859 * @flag:	The flag to check for the highest sched_domain
 860 *		for the given cpu.
 861 *
 862 * Returns the highest sched_domain of a cpu which contains the given flag.
 863 */
 864static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 865{
 866	struct sched_domain *sd, *hsd = NULL;
 867
 868	for_each_domain(cpu, sd) {
 869		if (!(sd->flags & flag))
 870			break;
 871		hsd = sd;
 872	}
 873
 874	return hsd;
 875}
 876
 877static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 878{
 879	struct sched_domain *sd;
 880
 881	for_each_domain(cpu, sd) {
 882		if (sd->flags & flag)
 883			break;
 884	}
 885
 886	return sd;
 887}
 888
 889DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 890DECLARE_PER_CPU(int, sd_llc_size);
 891DECLARE_PER_CPU(int, sd_llc_id);
 892DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 893DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 894DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 
 895
 896struct sched_group_capacity {
 897	atomic_t ref;
 898	/*
 899	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
 900	 * for a single CPU.
 901	 */
 902	unsigned long capacity;
 903	unsigned long min_capacity; /* Min per-CPU capacity in group */
 904	unsigned long next_update;
 905	int imbalance; /* XXX unrelated to capacity but shared group state */
 
 
 
 
 
 906
 907	unsigned long cpumask[0]; /* iteration mask */
 908};
 909
 910struct sched_group {
 911	struct sched_group *next;	/* Must be a circular list */
 912	atomic_t ref;
 913
 914	unsigned int group_weight;
 915	struct sched_group_capacity *sgc;
 916	int asym_prefer_cpu;		/* cpu of highest priority in group */
 917
 918	/*
 919	 * The CPUs this group covers.
 920	 *
 921	 * NOTE: this field is variable length. (Allocated dynamically
 922	 * by attaching extra space to the end of the structure,
 923	 * depending on how many CPUs the kernel has booted up with)
 924	 */
 925	unsigned long cpumask[0];
 926};
 927
 928static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 929{
 930	return to_cpumask(sg->cpumask);
 931}
 932
 933/*
 934 * cpumask masking which cpus in the group are allowed to iterate up the domain
 935 * tree.
 936 */
 937static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 938{
 939	return to_cpumask(sg->sgc->cpumask);
 940}
 941
 942/**
 943 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 944 * @group: The group whose first cpu is to be returned.
 945 */
 946static inline unsigned int group_first_cpu(struct sched_group *group)
 947{
 948	return cpumask_first(sched_group_cpus(group));
 949}
 950
 951extern int group_balance_cpu(struct sched_group *sg);
 952
 953#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 954void register_sched_domain_sysctl(void);
 
 955void unregister_sched_domain_sysctl(void);
 956#else
 957static inline void register_sched_domain_sysctl(void)
 958{
 959}
 
 
 
 960static inline void unregister_sched_domain_sysctl(void)
 961{
 962}
 963#endif
 964
 
 
 965#else
 966
 967static inline void sched_ttwu_pending(void) { }
 968
 
 
 969#endif /* CONFIG_SMP */
 970
 971#include "stats.h"
 972#include "auto_group.h"
 973
 974#ifdef CONFIG_CGROUP_SCHED
 975
 976/*
 977 * Return the group to which this tasks belongs.
 978 *
 979 * We cannot use task_css() and friends because the cgroup subsystem
 980 * changes that value before the cgroup_subsys::attach() method is called,
 981 * therefore we cannot pin it and might observe the wrong value.
 982 *
 983 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 984 * core changes this before calling sched_move_task().
 985 *
 986 * Instead we use a 'copy' which is updated from sched_move_task() while
 987 * holding both task_struct::pi_lock and rq::lock.
 988 */
 989static inline struct task_group *task_group(struct task_struct *p)
 990{
 991	return p->sched_task_group;
 992}
 993
 994/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 995static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 996{
 997#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 998	struct task_group *tg = task_group(p);
 999#endif
1000
1001#ifdef CONFIG_FAIR_GROUP_SCHED
1002	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1003	p->se.cfs_rq = tg->cfs_rq[cpu];
1004	p->se.parent = tg->se[cpu];
1005#endif
1006
1007#ifdef CONFIG_RT_GROUP_SCHED
1008	p->rt.rt_rq  = tg->rt_rq[cpu];
1009	p->rt.parent = tg->rt_se[cpu];
1010#endif
1011}
1012
1013#else /* CONFIG_CGROUP_SCHED */
1014
1015static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1016static inline struct task_group *task_group(struct task_struct *p)
1017{
1018	return NULL;
1019}
1020
1021#endif /* CONFIG_CGROUP_SCHED */
1022
1023static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1024{
1025	set_task_rq(p, cpu);
1026#ifdef CONFIG_SMP
1027	/*
1028	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029	 * successfuly executed on another CPU. We must ensure that updates of
1030	 * per-task data have been completed by this moment.
1031	 */
1032	smp_wmb();
1033#ifdef CONFIG_THREAD_INFO_IN_TASK
1034	p->cpu = cpu;
1035#else
1036	task_thread_info(p)->cpu = cpu;
1037#endif
1038	p->wake_cpu = cpu;
1039#endif
1040}
1041
1042/*
1043 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1044 */
1045#ifdef CONFIG_SCHED_DEBUG
1046# include <linux/static_key.h>
1047# define const_debug __read_mostly
1048#else
1049# define const_debug const
1050#endif
1051
1052extern const_debug unsigned int sysctl_sched_features;
1053
1054#define SCHED_FEAT(name, enabled)	\
1055	__SCHED_FEAT_##name ,
1056
1057enum {
1058#include "features.h"
1059	__SCHED_FEAT_NR,
1060};
1061
1062#undef SCHED_FEAT
1063
1064#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 
 
 
 
 
 
 
1065#define SCHED_FEAT(name, enabled)					\
1066static __always_inline bool static_branch_##name(struct static_key *key) \
1067{									\
1068	return static_key_##enabled(key);				\
1069}
1070
1071#include "features.h"
1072
1073#undef SCHED_FEAT
1074
1075extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1076#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1077#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1078#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1079#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081extern struct static_key_false sched_numa_balancing;
1082extern struct static_key_false sched_schedstats;
1083
1084static inline u64 global_rt_period(void)
1085{
1086	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1087}
1088
1089static inline u64 global_rt_runtime(void)
1090{
1091	if (sysctl_sched_rt_runtime < 0)
1092		return RUNTIME_INF;
1093
1094	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1095}
1096
1097static inline int task_current(struct rq *rq, struct task_struct *p)
1098{
1099	return rq->curr == p;
1100}
1101
1102static inline int task_running(struct rq *rq, struct task_struct *p)
1103{
1104#ifdef CONFIG_SMP
1105	return p->on_cpu;
1106#else
1107	return task_current(rq, p);
1108#endif
1109}
1110
1111static inline int task_on_rq_queued(struct task_struct *p)
1112{
1113	return p->on_rq == TASK_ON_RQ_QUEUED;
1114}
1115
1116static inline int task_on_rq_migrating(struct task_struct *p)
1117{
1118	return p->on_rq == TASK_ON_RQ_MIGRATING;
1119}
1120
1121#ifndef prepare_arch_switch
1122# define prepare_arch_switch(next)	do { } while (0)
1123#endif
1124#ifndef finish_arch_post_lock_switch
1125# define finish_arch_post_lock_switch()	do { } while (0)
1126#endif
1127
1128static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1129{
1130#ifdef CONFIG_SMP
1131	/*
1132	 * We can optimise this out completely for !SMP, because the
1133	 * SMP rebalancing from interrupt is the only thing that cares
1134	 * here.
1135	 */
1136	next->on_cpu = 1;
1137#endif
1138}
1139
1140static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1141{
1142#ifdef CONFIG_SMP
1143	/*
1144	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1145	 * We must ensure this doesn't happen until the switch is completely
1146	 * finished.
1147	 *
1148	 * In particular, the load of prev->state in finish_task_switch() must
1149	 * happen before this.
1150	 *
1151	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1152	 */
1153	smp_store_release(&prev->on_cpu, 0);
1154#endif
1155#ifdef CONFIG_DEBUG_SPINLOCK
1156	/* this is a valid case when another task releases the spinlock */
1157	rq->lock.owner = current;
1158#endif
1159	/*
1160	 * If we are tracking spinlock dependencies then we have to
1161	 * fix up the runqueue lock - which gets 'carried over' from
1162	 * prev into current:
1163	 */
1164	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1165
1166	raw_spin_unlock_irq(&rq->lock);
1167}
1168
1169/*
1170 * wake flags
1171 */
1172#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1173#define WF_FORK		0x02		/* child wakeup after fork */
1174#define WF_MIGRATED	0x4		/* internal use, task got migrated */
1175
1176/*
1177 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1178 * of tasks with abnormal "nice" values across CPUs the contribution that
1179 * each task makes to its run queue's load is weighted according to its
1180 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1181 * scaled version of the new time slice allocation that they receive on time
1182 * slice expiry etc.
1183 */
1184
1185#define WEIGHT_IDLEPRIO                3
1186#define WMULT_IDLEPRIO         1431655765
1187
1188extern const int sched_prio_to_weight[40];
1189extern const u32 sched_prio_to_wmult[40];
1190
1191/*
1192 * {de,en}queue flags:
1193 *
1194 * DEQUEUE_SLEEP  - task is no longer runnable
1195 * ENQUEUE_WAKEUP - task just became runnable
1196 *
1197 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1198 *                are in a known state which allows modification. Such pairs
1199 *                should preserve as much state as possible.
1200 *
1201 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1202 *        in the runqueue.
1203 *
1204 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1205 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1206 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1207 *
1208 */
1209
1210#define DEQUEUE_SLEEP		0x01
1211#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1212#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
 
1213
1214#define ENQUEUE_WAKEUP		0x01
1215#define ENQUEUE_RESTORE		0x02
1216#define ENQUEUE_MOVE		0x04
 
1217
1218#define ENQUEUE_HEAD		0x08
1219#define ENQUEUE_REPLENISH	0x10
1220#ifdef CONFIG_SMP
1221#define ENQUEUE_MIGRATED	0x20
1222#else
1223#define ENQUEUE_MIGRATED	0x00
1224#endif
1225
1226#define RETRY_TASK		((void *)-1UL)
1227
1228struct sched_class {
1229	const struct sched_class *next;
1230
 
 
 
 
1231	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1232	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1233	void (*yield_task) (struct rq *rq);
1234	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1235
1236	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1237
1238	/*
1239	 * It is the responsibility of the pick_next_task() method that will
1240	 * return the next task to call put_prev_task() on the @prev task or
1241	 * something equivalent.
1242	 *
1243	 * May return RETRY_TASK when it finds a higher prio class has runnable
1244	 * tasks.
 
 
 
 
1245	 */
1246	struct task_struct * (*pick_next_task) (struct rq *rq,
1247						struct task_struct *prev,
1248						struct pin_cookie cookie);
1249	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 
1250
1251#ifdef CONFIG_SMP
 
1252	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1253	void (*migrate_task_rq)(struct task_struct *p);
1254
1255	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1256
1257	void (*set_cpus_allowed)(struct task_struct *p,
1258				 const struct cpumask *newmask);
1259
1260	void (*rq_online)(struct rq *rq);
1261	void (*rq_offline)(struct rq *rq);
1262#endif
1263
1264	void (*set_curr_task) (struct rq *rq);
1265	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1266	void (*task_fork) (struct task_struct *p);
1267	void (*task_dead) (struct task_struct *p);
1268
1269	/*
1270	 * The switched_from() call is allowed to drop rq->lock, therefore we
1271	 * cannot assume the switched_from/switched_to pair is serliazed by
1272	 * rq->lock. They are however serialized by p->pi_lock.
1273	 */
1274	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1275	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1276	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1277			     int oldprio);
1278
1279	unsigned int (*get_rr_interval) (struct rq *rq,
1280					 struct task_struct *task);
1281
1282	void (*update_curr) (struct rq *rq);
1283
1284#define TASK_SET_GROUP  0
1285#define TASK_MOVE_GROUP	1
1286
1287#ifdef CONFIG_FAIR_GROUP_SCHED
1288	void (*task_change_group) (struct task_struct *p, int type);
1289#endif
1290};
1291
1292static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1293{
 
1294	prev->sched_class->put_prev_task(rq, prev);
1295}
1296
1297static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1298{
1299	curr->sched_class->set_curr_task(rq);
 
1300}
1301
 
1302#define sched_class_highest (&stop_sched_class)
 
 
 
 
 
 
 
1303#define for_each_class(class) \
1304   for (class = sched_class_highest; class; class = class->next)
1305
1306extern const struct sched_class stop_sched_class;
1307extern const struct sched_class dl_sched_class;
1308extern const struct sched_class rt_sched_class;
1309extern const struct sched_class fair_sched_class;
1310extern const struct sched_class idle_sched_class;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312
1313#ifdef CONFIG_SMP
1314
1315extern void update_group_capacity(struct sched_domain *sd, int cpu);
1316
1317extern void trigger_load_balance(struct rq *rq);
1318
1319extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1320
1321#endif
1322
1323#ifdef CONFIG_CPU_IDLE
1324static inline void idle_set_state(struct rq *rq,
1325				  struct cpuidle_state *idle_state)
1326{
1327	rq->idle_state = idle_state;
1328}
1329
1330static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1331{
1332	SCHED_WARN_ON(!rcu_read_lock_held());
 
1333	return rq->idle_state;
1334}
1335#else
1336static inline void idle_set_state(struct rq *rq,
1337				  struct cpuidle_state *idle_state)
1338{
1339}
1340
1341static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1342{
1343	return NULL;
1344}
1345#endif
1346
 
 
1347extern void sysrq_sched_debug_show(void);
1348extern void sched_init_granularity(void);
1349extern void update_max_interval(void);
1350
1351extern void init_sched_dl_class(void);
1352extern void init_sched_rt_class(void);
1353extern void init_sched_fair_class(void);
1354
 
 
1355extern void resched_curr(struct rq *rq);
1356extern void resched_cpu(int cpu);
1357
1358extern struct rt_bandwidth def_rt_bandwidth;
1359extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1360
1361extern struct dl_bandwidth def_dl_bandwidth;
1362extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1363extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 
 
1364
 
 
 
1365unsigned long to_ratio(u64 period, u64 runtime);
1366
1367extern void init_entity_runnable_average(struct sched_entity *se);
1368extern void post_init_entity_util_avg(struct sched_entity *se);
1369
1370#ifdef CONFIG_NO_HZ_FULL
1371extern bool sched_can_stop_tick(struct rq *rq);
 
1372
1373/*
1374 * Tick may be needed by tasks in the runqueue depending on their policy and
1375 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1376 * nohz mode if necessary.
1377 */
1378static inline void sched_update_tick_dependency(struct rq *rq)
1379{
1380	int cpu;
1381
1382	if (!tick_nohz_full_enabled())
1383		return;
1384
1385	cpu = cpu_of(rq);
1386
1387	if (!tick_nohz_full_cpu(cpu))
1388		return;
1389
1390	if (sched_can_stop_tick(rq))
1391		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1392	else
1393		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1394}
1395#else
 
1396static inline void sched_update_tick_dependency(struct rq *rq) { }
1397#endif
1398
1399static inline void add_nr_running(struct rq *rq, unsigned count)
1400{
1401	unsigned prev_nr = rq->nr_running;
1402
1403	rq->nr_running = prev_nr + count;
1404
1405	if (prev_nr < 2 && rq->nr_running >= 2) {
1406#ifdef CONFIG_SMP
1407		if (!rq->rd->overload)
1408			rq->rd->overload = true;
1409#endif
1410	}
 
1411
1412	sched_update_tick_dependency(rq);
1413}
1414
1415static inline void sub_nr_running(struct rq *rq, unsigned count)
1416{
1417	rq->nr_running -= count;
1418	/* Check if we still need preemption */
1419	sched_update_tick_dependency(rq);
1420}
1421
1422static inline void rq_last_tick_reset(struct rq *rq)
1423{
1424#ifdef CONFIG_NO_HZ_FULL
1425	rq->last_sched_tick = jiffies;
1426#endif
1427}
1428
1429extern void update_rq_clock(struct rq *rq);
1430
1431extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1432extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1433
1434extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1435
1436extern const_debug unsigned int sysctl_sched_time_avg;
1437extern const_debug unsigned int sysctl_sched_nr_migrate;
1438extern const_debug unsigned int sysctl_sched_migration_cost;
1439
1440static inline u64 sched_avg_period(void)
1441{
1442	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1443}
1444
1445#ifdef CONFIG_SCHED_HRTICK
1446
1447/*
1448 * Use hrtick when:
1449 *  - enabled by features
1450 *  - hrtimer is actually high res
1451 */
1452static inline int hrtick_enabled(struct rq *rq)
1453{
1454	if (!sched_feat(HRTICK))
1455		return 0;
1456	if (!cpu_active(cpu_of(rq)))
1457		return 0;
1458	return hrtimer_is_hres_active(&rq->hrtick_timer);
1459}
1460
1461void hrtick_start(struct rq *rq, u64 delay);
1462
1463#else
1464
1465static inline int hrtick_enabled(struct rq *rq)
1466{
1467	return 0;
1468}
1469
1470#endif /* CONFIG_SCHED_HRTICK */
1471
1472#ifdef CONFIG_SMP
1473extern void sched_avg_update(struct rq *rq);
1474
1475#ifndef arch_scale_freq_capacity
1476static __always_inline
1477unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1478{
1479	return SCHED_CAPACITY_SCALE;
1480}
1481#endif
1482
1483#ifndef arch_scale_cpu_capacity
1484static __always_inline
1485unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1486{
1487	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1488		return sd->smt_gain / sd->span_weight;
1489
1490	return SCHED_CAPACITY_SCALE;
1491}
1492#endif
1493
1494static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1495{
1496	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1497	sched_avg_update(rq);
1498}
1499#else
1500static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1501static inline void sched_avg_update(struct rq *rq) { }
1502#endif
1503
1504struct rq_flags {
1505	unsigned long flags;
1506	struct pin_cookie cookie;
1507};
1508
1509struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1510	__acquires(rq->lock);
1511struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1512	__acquires(p->pi_lock)
1513	__acquires(rq->lock);
1514
1515static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1516	__releases(rq->lock)
1517{
1518	lockdep_unpin_lock(&rq->lock, rf->cookie);
1519	raw_spin_unlock(&rq->lock);
1520}
1521
1522static inline void
1523task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1524	__releases(rq->lock)
1525	__releases(p->pi_lock)
1526{
1527	lockdep_unpin_lock(&rq->lock, rf->cookie);
1528	raw_spin_unlock(&rq->lock);
1529	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1530}
1531
1532#ifdef CONFIG_SMP
1533#ifdef CONFIG_PREEMPT
1534
1535static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1536
1537/*
1538 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1539 * way at the expense of forcing extra atomic operations in all
1540 * invocations.  This assures that the double_lock is acquired using the
1541 * same underlying policy as the spinlock_t on this architecture, which
1542 * reduces latency compared to the unfair variant below.  However, it
1543 * also adds more overhead and therefore may reduce throughput.
1544 */
1545static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1546	__releases(this_rq->lock)
1547	__acquires(busiest->lock)
1548	__acquires(this_rq->lock)
1549{
1550	raw_spin_unlock(&this_rq->lock);
1551	double_rq_lock(this_rq, busiest);
1552
1553	return 1;
1554}
1555
1556#else
1557/*
1558 * Unfair double_lock_balance: Optimizes throughput at the expense of
1559 * latency by eliminating extra atomic operations when the locks are
1560 * already in proper order on entry.  This favors lower cpu-ids and will
1561 * grant the double lock to lower cpus over higher ids under contention,
1562 * regardless of entry order into the function.
1563 */
1564static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1565	__releases(this_rq->lock)
1566	__acquires(busiest->lock)
1567	__acquires(this_rq->lock)
1568{
1569	int ret = 0;
1570
1571	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1572		if (busiest < this_rq) {
1573			raw_spin_unlock(&this_rq->lock);
1574			raw_spin_lock(&busiest->lock);
1575			raw_spin_lock_nested(&this_rq->lock,
1576					      SINGLE_DEPTH_NESTING);
1577			ret = 1;
1578		} else
1579			raw_spin_lock_nested(&busiest->lock,
1580					      SINGLE_DEPTH_NESTING);
1581	}
1582	return ret;
1583}
1584
1585#endif /* CONFIG_PREEMPT */
1586
1587/*
1588 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1589 */
1590static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1591{
1592	if (unlikely(!irqs_disabled())) {
1593		/* printk() doesn't work good under rq->lock */
1594		raw_spin_unlock(&this_rq->lock);
1595		BUG_ON(1);
1596	}
1597
1598	return _double_lock_balance(this_rq, busiest);
1599}
1600
1601static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1602	__releases(busiest->lock)
1603{
1604	raw_spin_unlock(&busiest->lock);
1605	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1606}
1607
1608static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1609{
1610	if (l1 > l2)
1611		swap(l1, l2);
1612
1613	spin_lock(l1);
1614	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1615}
1616
1617static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1618{
1619	if (l1 > l2)
1620		swap(l1, l2);
1621
1622	spin_lock_irq(l1);
1623	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1624}
1625
1626static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1627{
1628	if (l1 > l2)
1629		swap(l1, l2);
1630
1631	raw_spin_lock(l1);
1632	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1633}
1634
1635/*
1636 * double_rq_lock - safely lock two runqueues
1637 *
1638 * Note this does not disable interrupts like task_rq_lock,
1639 * you need to do so manually before calling.
1640 */
1641static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1642	__acquires(rq1->lock)
1643	__acquires(rq2->lock)
1644{
1645	BUG_ON(!irqs_disabled());
1646	if (rq1 == rq2) {
1647		raw_spin_lock(&rq1->lock);
1648		__acquire(rq2->lock);	/* Fake it out ;) */
1649	} else {
1650		if (rq1 < rq2) {
1651			raw_spin_lock(&rq1->lock);
1652			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1653		} else {
1654			raw_spin_lock(&rq2->lock);
1655			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1656		}
1657	}
1658}
1659
1660/*
1661 * double_rq_unlock - safely unlock two runqueues
1662 *
1663 * Note this does not restore interrupts like task_rq_unlock,
1664 * you need to do so manually after calling.
1665 */
1666static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1667	__releases(rq1->lock)
1668	__releases(rq2->lock)
1669{
1670	raw_spin_unlock(&rq1->lock);
1671	if (rq1 != rq2)
1672		raw_spin_unlock(&rq2->lock);
1673	else
1674		__release(rq2->lock);
1675}
1676
 
 
 
 
1677#else /* CONFIG_SMP */
1678
1679/*
1680 * double_rq_lock - safely lock two runqueues
1681 *
1682 * Note this does not disable interrupts like task_rq_lock,
1683 * you need to do so manually before calling.
1684 */
1685static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1686	__acquires(rq1->lock)
1687	__acquires(rq2->lock)
1688{
1689	BUG_ON(!irqs_disabled());
1690	BUG_ON(rq1 != rq2);
1691	raw_spin_lock(&rq1->lock);
1692	__acquire(rq2->lock);	/* Fake it out ;) */
1693}
1694
1695/*
1696 * double_rq_unlock - safely unlock two runqueues
1697 *
1698 * Note this does not restore interrupts like task_rq_unlock,
1699 * you need to do so manually after calling.
1700 */
1701static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1702	__releases(rq1->lock)
1703	__releases(rq2->lock)
1704{
1705	BUG_ON(rq1 != rq2);
1706	raw_spin_unlock(&rq1->lock);
1707	__release(rq2->lock);
1708}
1709
1710#endif
1711
1712extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1713extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1714
1715#ifdef	CONFIG_SCHED_DEBUG
 
 
1716extern void print_cfs_stats(struct seq_file *m, int cpu);
1717extern void print_rt_stats(struct seq_file *m, int cpu);
1718extern void print_dl_stats(struct seq_file *m, int cpu);
1719extern void
1720print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1721
1722#ifdef CONFIG_NUMA_BALANCING
1723extern void
1724show_numa_stats(struct task_struct *p, struct seq_file *m);
1725extern void
1726print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1727	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1728#endif /* CONFIG_NUMA_BALANCING */
1729#endif /* CONFIG_SCHED_DEBUG */
1730
1731extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1732extern void init_rt_rq(struct rt_rq *rt_rq);
1733extern void init_dl_rq(struct dl_rq *dl_rq);
1734
1735extern void cfs_bandwidth_usage_inc(void);
1736extern void cfs_bandwidth_usage_dec(void);
1737
1738#ifdef CONFIG_NO_HZ_COMMON
1739enum rq_nohz_flag_bits {
1740	NOHZ_TICK_STOPPED,
1741	NOHZ_BALANCE_KICK,
1742};
 
 
 
1743
1744#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1745
1746extern void nohz_balance_exit_idle(unsigned int cpu);
1747#else
1748static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1749#endif
1750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1752struct irqtime {
1753	u64			hardirq_time;
1754	u64			softirq_time;
1755	u64			irq_start_time;
1756	struct u64_stats_sync	sync;
1757};
1758
1759DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1760
 
 
 
 
 
1761static inline u64 irq_time_read(int cpu)
1762{
1763	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1764	unsigned int seq;
1765	u64 total;
1766
1767	do {
1768		seq = __u64_stats_fetch_begin(&irqtime->sync);
1769		total = irqtime->softirq_time + irqtime->hardirq_time;
1770	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1771
1772	return total;
1773}
1774#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1775
1776#ifdef CONFIG_CPU_FREQ
1777DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1778
1779/**
1780 * cpufreq_update_util - Take a note about CPU utilization changes.
1781 * @rq: Runqueue to carry out the update for.
1782 * @flags: Update reason flags.
1783 *
1784 * This function is called by the scheduler on the CPU whose utilization is
1785 * being updated.
1786 *
1787 * It can only be called from RCU-sched read-side critical sections.
1788 *
1789 * The way cpufreq is currently arranged requires it to evaluate the CPU
1790 * performance state (frequency/voltage) on a regular basis to prevent it from
1791 * being stuck in a completely inadequate performance level for too long.
1792 * That is not guaranteed to happen if the updates are only triggered from CFS,
1793 * though, because they may not be coming in if RT or deadline tasks are active
1794 * all the time (or there are RT and DL tasks only).
1795 *
1796 * As a workaround for that issue, this function is called by the RT and DL
1797 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1798 * but that really is a band-aid.  Going forward it should be replaced with
1799 * solutions targeted more specifically at RT and DL tasks.
1800 */
1801static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1802{
1803	struct update_util_data *data;
1804
1805	data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
 
1806	if (data)
1807		data->func(data, rq_clock(rq), flags);
1808}
1809
1810static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1811{
1812	if (cpu_of(rq) == smp_processor_id())
1813		cpufreq_update_util(rq, flags);
1814}
1815#else
1816static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1817static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1818#endif /* CONFIG_CPU_FREQ */
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820#ifdef arch_scale_freq_capacity
1821#ifndef arch_scale_freq_invariant
1822#define arch_scale_freq_invariant()	(true)
 
 
 
1823#endif
1824#else /* arch_scale_freq_capacity */
1825#define arch_scale_freq_invariant()	(false)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826#endif
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#include <linux/sched.h>
   6
   7#include <linux/sched/autogroup.h>
   8#include <linux/sched/clock.h>
   9#include <linux/sched/coredump.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/cputime.h>
  12#include <linux/sched/deadline.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/hotplug.h>
  15#include <linux/sched/idle.h>
  16#include <linux/sched/init.h>
  17#include <linux/sched/isolation.h>
  18#include <linux/sched/jobctl.h>
  19#include <linux/sched/loadavg.h>
  20#include <linux/sched/mm.h>
  21#include <linux/sched/nohz.h>
  22#include <linux/sched/numa_balancing.h>
  23#include <linux/sched/prio.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/smt.h>
  27#include <linux/sched/stat.h>
  28#include <linux/sched/sysctl.h>
  29#include <linux/sched/task.h>
  30#include <linux/sched/task_stack.h>
  31#include <linux/sched/topology.h>
  32#include <linux/sched/user.h>
  33#include <linux/sched/wake_q.h>
  34#include <linux/sched/xacct.h>
  35
  36#include <uapi/linux/sched/types.h>
  37
  38#include <linux/binfmts.h>
  39#include <linux/blkdev.h>
  40#include <linux/compat.h>
  41#include <linux/context_tracking.h>
  42#include <linux/cpufreq.h>
  43#include <linux/cpuidle.h>
  44#include <linux/cpuset.h>
  45#include <linux/ctype.h>
  46#include <linux/debugfs.h>
  47#include <linux/delayacct.h>
  48#include <linux/energy_model.h>
  49#include <linux/init_task.h>
  50#include <linux/kprobes.h>
  51#include <linux/kthread.h>
  52#include <linux/membarrier.h>
  53#include <linux/migrate.h>
  54#include <linux/mmu_context.h>
  55#include <linux/nmi.h>
  56#include <linux/proc_fs.h>
  57#include <linux/prefetch.h>
  58#include <linux/profile.h>
  59#include <linux/psi.h>
  60#include <linux/rcupdate_wait.h>
  61#include <linux/security.h>
  62#include <linux/stop_machine.h>
  63#include <linux/suspend.h>
  64#include <linux/swait.h>
  65#include <linux/syscalls.h>
  66#include <linux/task_work.h>
  67#include <linux/tsacct_kern.h>
  68
  69#include <asm/tlb.h>
  70
  71#ifdef CONFIG_PARAVIRT
  72# include <asm/paravirt.h>
  73#endif
  74
  75#include "cpupri.h"
  76#include "cpudeadline.h"
 
  77
  78#ifdef CONFIG_SCHED_DEBUG
  79# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  80#else
  81# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
  82#endif
  83
  84struct rq;
  85struct cpuidle_state;
  86
  87/* task_struct::on_rq states: */
  88#define TASK_ON_RQ_QUEUED	1
  89#define TASK_ON_RQ_MIGRATING	2
  90
  91extern __read_mostly int scheduler_running;
  92
  93extern unsigned long calc_load_update;
  94extern atomic_long_t calc_load_tasks;
  95
  96extern void calc_global_load_tick(struct rq *this_rq);
  97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
  98
 
 
 
 
 
 
  99/*
 100 * Helpers for converting nanosecond timing to jiffy resolution
 101 */
 102#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 103
 104/*
 105 * Increase resolution of nice-level calculations for 64-bit architectures.
 106 * The extra resolution improves shares distribution and load balancing of
 107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 108 * hierarchies, especially on larger systems. This is not a user-visible change
 109 * and does not change the user-interface for setting shares/weights.
 110 *
 111 * We increase resolution only if we have enough bits to allow this increased
 112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 113 * are pretty high and the returns do not justify the increased costs.
 114 *
 115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 116 * increase coverage and consistency always enable it on 64-bit platforms.
 117 */
 118#ifdef CONFIG_64BIT
 119# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 120# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 121# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
 122#else
 123# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 124# define scale_load(w)		(w)
 125# define scale_load_down(w)	(w)
 126#endif
 127
 128/*
 129 * Task weight (visible to users) and its load (invisible to users) have
 130 * independent resolution, but they should be well calibrated. We use
 131 * scale_load() and scale_load_down(w) to convert between them. The
 132 * following must be true:
 133 *
 134 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
 135 *
 136 */
 137#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 138
 139/*
 140 * Single value that decides SCHED_DEADLINE internal math precision.
 141 * 10 -> just above 1us
 142 * 9  -> just above 0.5us
 143 */
 144#define DL_SCALE		10
 
 
 
 
 145
 146/*
 147 * Single value that denotes runtime == period, ie unlimited time.
 148 */
 149#define RUNTIME_INF		((u64)~0ULL)
 150
 151static inline int idle_policy(int policy)
 152{
 153	return policy == SCHED_IDLE;
 154}
 155static inline int fair_policy(int policy)
 156{
 157	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 158}
 159
 160static inline int rt_policy(int policy)
 161{
 162	return policy == SCHED_FIFO || policy == SCHED_RR;
 163}
 164
 165static inline int dl_policy(int policy)
 166{
 167	return policy == SCHED_DEADLINE;
 168}
 169static inline bool valid_policy(int policy)
 170{
 171	return idle_policy(policy) || fair_policy(policy) ||
 172		rt_policy(policy) || dl_policy(policy);
 173}
 174
 175static inline int task_has_idle_policy(struct task_struct *p)
 176{
 177	return idle_policy(p->policy);
 178}
 179
 180static inline int task_has_rt_policy(struct task_struct *p)
 181{
 182	return rt_policy(p->policy);
 183}
 184
 185static inline int task_has_dl_policy(struct task_struct *p)
 186{
 187	return dl_policy(p->policy);
 188}
 189
 190#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 191
 192/*
 193 * !! For sched_setattr_nocheck() (kernel) only !!
 194 *
 195 * This is actually gross. :(
 196 *
 197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 198 * tasks, but still be able to sleep. We need this on platforms that cannot
 199 * atomically change clock frequency. Remove once fast switching will be
 200 * available on such platforms.
 201 *
 202 * SUGOV stands for SchedUtil GOVernor.
 203 */
 204#define SCHED_FLAG_SUGOV	0x10000000
 205
 206static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 207{
 208#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 209	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 210#else
 211	return false;
 212#endif
 213}
 214
 215/*
 216 * Tells if entity @a should preempt entity @b.
 217 */
 218static inline bool
 219dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 220{
 221	return dl_entity_is_special(a) ||
 222	       dl_time_before(a->deadline, b->deadline);
 223}
 224
 225/*
 226 * This is the priority-queue data structure of the RT scheduling class:
 227 */
 228struct rt_prio_array {
 229	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 230	struct list_head queue[MAX_RT_PRIO];
 231};
 232
 233struct rt_bandwidth {
 234	/* nests inside the rq lock: */
 235	raw_spinlock_t		rt_runtime_lock;
 236	ktime_t			rt_period;
 237	u64			rt_runtime;
 238	struct hrtimer		rt_period_timer;
 239	unsigned int		rt_period_active;
 240};
 241
 242void __dl_clear_params(struct task_struct *p);
 243
 244/*
 245 * To keep the bandwidth of -deadline tasks and groups under control
 246 * we need some place where:
 247 *  - store the maximum -deadline bandwidth of the system (the group);
 248 *  - cache the fraction of that bandwidth that is currently allocated.
 249 *
 250 * This is all done in the data structure below. It is similar to the
 251 * one used for RT-throttling (rt_bandwidth), with the main difference
 252 * that, since here we are only interested in admission control, we
 253 * do not decrease any runtime while the group "executes", neither we
 254 * need a timer to replenish it.
 255 *
 256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 257 * meaning that:
 258 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 259 *  - dl_total_bw array contains, in the i-eth element, the currently
 260 *    allocated bandwidth on the i-eth CPU.
 261 * Moreover, groups consume bandwidth on each CPU, while tasks only
 262 * consume bandwidth on the CPU they're running on.
 263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 264 * that will be shown the next time the proc or cgroup controls will
 265 * be red. It on its turn can be changed by writing on its own
 266 * control.
 267 */
 268struct dl_bandwidth {
 269	raw_spinlock_t		dl_runtime_lock;
 270	u64			dl_runtime;
 271	u64			dl_period;
 272};
 273
 274static inline int dl_bandwidth_enabled(void)
 275{
 276	return sysctl_sched_rt_runtime >= 0;
 277}
 278
 
 
 279struct dl_bw {
 280	raw_spinlock_t		lock;
 281	u64			bw;
 282	u64			total_bw;
 283};
 284
 285static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
 286
 287static inline
 288void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 289{
 290	dl_b->total_bw -= tsk_bw;
 291	__dl_update(dl_b, (s32)tsk_bw / cpus);
 292}
 293
 294static inline
 295void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 296{
 297	dl_b->total_bw += tsk_bw;
 298	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 299}
 300
 301static inline
 302bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 303{
 304	return dl_b->bw != -1 &&
 305	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 306}
 307
 308extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
 309extern void init_dl_bw(struct dl_bw *dl_b);
 310extern int  sched_dl_global_validate(void);
 311extern void sched_dl_do_global(void);
 312extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 313extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 314extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 315extern bool __checkparam_dl(const struct sched_attr *attr);
 316extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 317extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
 318extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 319extern bool dl_cpu_busy(unsigned int cpu);
 320
 321#ifdef CONFIG_CGROUP_SCHED
 322
 323#include <linux/cgroup.h>
 324#include <linux/psi.h>
 325
 326struct cfs_rq;
 327struct rt_rq;
 328
 329extern struct list_head task_groups;
 330
 331struct cfs_bandwidth {
 332#ifdef CONFIG_CFS_BANDWIDTH
 333	raw_spinlock_t		lock;
 334	ktime_t			period;
 335	u64			quota;
 336	u64			runtime;
 337	s64			hierarchical_quota;
 338
 339	u8			idle;
 340	u8			period_active;
 341	u8			distribute_running;
 342	u8			slack_started;
 343	struct hrtimer		period_timer;
 344	struct hrtimer		slack_timer;
 345	struct list_head	throttled_cfs_rq;
 346
 347	/* Statistics: */
 348	int			nr_periods;
 349	int			nr_throttled;
 350	u64			throttled_time;
 351#endif
 352};
 353
 354/* Task group related information */
 355struct task_group {
 356	struct cgroup_subsys_state css;
 357
 358#ifdef CONFIG_FAIR_GROUP_SCHED
 359	/* schedulable entities of this group on each CPU */
 360	struct sched_entity	**se;
 361	/* runqueue "owned" by this group on each CPU */
 362	struct cfs_rq		**cfs_rq;
 363	unsigned long		shares;
 364
 365#ifdef	CONFIG_SMP
 366	/*
 367	 * load_avg can be heavily contended at clock tick time, so put
 368	 * it in its own cacheline separated from the fields above which
 369	 * will also be accessed at each tick.
 370	 */
 371	atomic_long_t		load_avg ____cacheline_aligned;
 372#endif
 373#endif
 374
 375#ifdef CONFIG_RT_GROUP_SCHED
 376	struct sched_rt_entity	**rt_se;
 377	struct rt_rq		**rt_rq;
 378
 379	struct rt_bandwidth	rt_bandwidth;
 380#endif
 381
 382	struct rcu_head		rcu;
 383	struct list_head	list;
 384
 385	struct task_group	*parent;
 386	struct list_head	siblings;
 387	struct list_head	children;
 388
 389#ifdef CONFIG_SCHED_AUTOGROUP
 390	struct autogroup	*autogroup;
 391#endif
 392
 393	struct cfs_bandwidth	cfs_bandwidth;
 394
 395#ifdef CONFIG_UCLAMP_TASK_GROUP
 396	/* The two decimal precision [%] value requested from user-space */
 397	unsigned int		uclamp_pct[UCLAMP_CNT];
 398	/* Clamp values requested for a task group */
 399	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 400	/* Effective clamp values used for a task group */
 401	struct uclamp_se	uclamp[UCLAMP_CNT];
 402#endif
 403
 
 404};
 405
 406#ifdef CONFIG_FAIR_GROUP_SCHED
 407#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 408
 409/*
 410 * A weight of 0 or 1 can cause arithmetics problems.
 411 * A weight of a cfs_rq is the sum of weights of which entities
 412 * are queued on this cfs_rq, so a weight of a entity should not be
 413 * too large, so as the shares value of a task group.
 414 * (The default weight is 1024 - so there's no practical
 415 *  limitation from this.)
 416 */
 417#define MIN_SHARES		(1UL <<  1)
 418#define MAX_SHARES		(1UL << 18)
 419#endif
 420
 421typedef int (*tg_visitor)(struct task_group *, void *);
 422
 423extern int walk_tg_tree_from(struct task_group *from,
 424			     tg_visitor down, tg_visitor up, void *data);
 425
 426/*
 427 * Iterate the full tree, calling @down when first entering a node and @up when
 428 * leaving it for the final time.
 429 *
 430 * Caller must hold rcu_lock or sufficient equivalent.
 431 */
 432static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 433{
 434	return walk_tg_tree_from(&root_task_group, down, up, data);
 435}
 436
 437extern int tg_nop(struct task_group *tg, void *data);
 438
 439extern void free_fair_sched_group(struct task_group *tg);
 440extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 441extern void online_fair_sched_group(struct task_group *tg);
 442extern void unregister_fair_sched_group(struct task_group *tg);
 443extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 444			struct sched_entity *se, int cpu,
 445			struct sched_entity *parent);
 446extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 447
 448extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 449extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 450extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 451
 452extern void free_rt_sched_group(struct task_group *tg);
 453extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 454extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 455		struct sched_rt_entity *rt_se, int cpu,
 456		struct sched_rt_entity *parent);
 457extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 458extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 459extern long sched_group_rt_runtime(struct task_group *tg);
 460extern long sched_group_rt_period(struct task_group *tg);
 461extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 462
 463extern struct task_group *sched_create_group(struct task_group *parent);
 464extern void sched_online_group(struct task_group *tg,
 465			       struct task_group *parent);
 466extern void sched_destroy_group(struct task_group *tg);
 467extern void sched_offline_group(struct task_group *tg);
 468
 469extern void sched_move_task(struct task_struct *tsk);
 470
 471#ifdef CONFIG_FAIR_GROUP_SCHED
 472extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 473
 474#ifdef CONFIG_SMP
 475extern void set_task_rq_fair(struct sched_entity *se,
 476			     struct cfs_rq *prev, struct cfs_rq *next);
 477#else /* !CONFIG_SMP */
 478static inline void set_task_rq_fair(struct sched_entity *se,
 479			     struct cfs_rq *prev, struct cfs_rq *next) { }
 480#endif /* CONFIG_SMP */
 481#endif /* CONFIG_FAIR_GROUP_SCHED */
 482
 483#else /* CONFIG_CGROUP_SCHED */
 484
 485struct cfs_bandwidth { };
 486
 487#endif	/* CONFIG_CGROUP_SCHED */
 488
 489/* CFS-related fields in a runqueue */
 490struct cfs_rq {
 491	struct load_weight	load;
 492	unsigned long		runnable_weight;
 493	unsigned int		nr_running;
 494	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 495	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 496
 497	u64			exec_clock;
 498	u64			min_vruntime;
 499#ifndef CONFIG_64BIT
 500	u64			min_vruntime_copy;
 501#endif
 502
 503	struct rb_root_cached	tasks_timeline;
 
 504
 505	/*
 506	 * 'curr' points to currently running entity on this cfs_rq.
 507	 * It is set to NULL otherwise (i.e when none are currently running).
 508	 */
 509	struct sched_entity	*curr;
 510	struct sched_entity	*next;
 511	struct sched_entity	*last;
 512	struct sched_entity	*skip;
 513
 514#ifdef	CONFIG_SCHED_DEBUG
 515	unsigned int		nr_spread_over;
 516#endif
 517
 518#ifdef CONFIG_SMP
 519	/*
 520	 * CFS load tracking
 521	 */
 522	struct sched_avg	avg;
 
 
 
 
 
 
 
 523#ifndef CONFIG_64BIT
 524	u64			load_last_update_time_copy;
 525#endif
 526	struct {
 527		raw_spinlock_t	lock ____cacheline_aligned;
 528		int		nr;
 529		unsigned long	load_avg;
 530		unsigned long	util_avg;
 531		unsigned long	runnable_sum;
 532	} removed;
 533
 534#ifdef CONFIG_FAIR_GROUP_SCHED
 535	unsigned long		tg_load_avg_contrib;
 536	long			propagate;
 537	long			prop_runnable_sum;
 538
 539	/*
 540	 *   h_load = weight * f(tg)
 541	 *
 542	 * Where f(tg) is the recursive weight fraction assigned to
 543	 * this group.
 544	 */
 545	unsigned long		h_load;
 546	u64			last_h_load_update;
 547	struct sched_entity	*h_load_next;
 548#endif /* CONFIG_FAIR_GROUP_SCHED */
 549#endif /* CONFIG_SMP */
 550
 551#ifdef CONFIG_FAIR_GROUP_SCHED
 552	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 553
 554	/*
 555	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 556	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 557	 * (like users, containers etc.)
 558	 *
 559	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 560	 * This list is used during load balance.
 561	 */
 562	int			on_list;
 563	struct list_head	leaf_cfs_rq_list;
 564	struct task_group	*tg;	/* group that "owns" this runqueue */
 565
 566#ifdef CONFIG_CFS_BANDWIDTH
 567	int			runtime_enabled;
 568	s64			runtime_remaining;
 569
 570	u64			throttled_clock;
 571	u64			throttled_clock_task;
 572	u64			throttled_clock_task_time;
 573	int			throttled;
 574	int			throttle_count;
 575	struct list_head	throttled_list;
 576#endif /* CONFIG_CFS_BANDWIDTH */
 577#endif /* CONFIG_FAIR_GROUP_SCHED */
 578};
 579
 580static inline int rt_bandwidth_enabled(void)
 581{
 582	return sysctl_sched_rt_runtime >= 0;
 583}
 584
 585/* RT IPI pull logic requires IRQ_WORK */
 586#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 587# define HAVE_RT_PUSH_IPI
 588#endif
 589
 590/* Real-Time classes' related field in a runqueue: */
 591struct rt_rq {
 592	struct rt_prio_array	active;
 593	unsigned int		rt_nr_running;
 594	unsigned int		rr_nr_running;
 595#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 596	struct {
 597		int		curr; /* highest queued rt task prio */
 598#ifdef CONFIG_SMP
 599		int		next; /* next highest */
 600#endif
 601	} highest_prio;
 602#endif
 603#ifdef CONFIG_SMP
 604	unsigned long		rt_nr_migratory;
 605	unsigned long		rt_nr_total;
 606	int			overloaded;
 607	struct plist_head	pushable_tasks;
 608
 
 
 
 
 
 609#endif /* CONFIG_SMP */
 610	int			rt_queued;
 611
 612	int			rt_throttled;
 613	u64			rt_time;
 614	u64			rt_runtime;
 615	/* Nests inside the rq lock: */
 616	raw_spinlock_t		rt_runtime_lock;
 617
 618#ifdef CONFIG_RT_GROUP_SCHED
 619	unsigned long		rt_nr_boosted;
 620
 621	struct rq		*rq;
 622	struct task_group	*tg;
 623#endif
 624};
 625
 626static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 627{
 628	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 629}
 630
 631/* Deadline class' related fields in a runqueue */
 632struct dl_rq {
 633	/* runqueue is an rbtree, ordered by deadline */
 634	struct rb_root_cached	root;
 
 635
 636	unsigned long		dl_nr_running;
 637
 638#ifdef CONFIG_SMP
 639	/*
 640	 * Deadline values of the currently executing and the
 641	 * earliest ready task on this rq. Caching these facilitates
 642	 * the decision whether or not a ready but not running task
 643	 * should migrate somewhere else.
 644	 */
 645	struct {
 646		u64		curr;
 647		u64		next;
 648	} earliest_dl;
 649
 650	unsigned long		dl_nr_migratory;
 651	int			overloaded;
 652
 653	/*
 654	 * Tasks on this rq that can be pushed away. They are kept in
 655	 * an rb-tree, ordered by tasks' deadlines, with caching
 656	 * of the leftmost (earliest deadline) element.
 657	 */
 658	struct rb_root_cached	pushable_dl_tasks_root;
 
 659#else
 660	struct dl_bw		dl_bw;
 661#endif
 662	/*
 663	 * "Active utilization" for this runqueue: increased when a
 664	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 665	 * task blocks
 666	 */
 667	u64			running_bw;
 668
 669	/*
 670	 * Utilization of the tasks "assigned" to this runqueue (including
 671	 * the tasks that are in runqueue and the tasks that executed on this
 672	 * CPU and blocked). Increased when a task moves to this runqueue, and
 673	 * decreased when the task moves away (migrates, changes scheduling
 674	 * policy, or terminates).
 675	 * This is needed to compute the "inactive utilization" for the
 676	 * runqueue (inactive utilization = this_bw - running_bw).
 677	 */
 678	u64			this_bw;
 679	u64			extra_bw;
 680
 681	/*
 682	 * Inverse of the fraction of CPU utilization that can be reclaimed
 683	 * by the GRUB algorithm.
 684	 */
 685	u64			bw_ratio;
 686};
 687
 688#ifdef CONFIG_FAIR_GROUP_SCHED
 689/* An entity is a task if it doesn't "own" a runqueue */
 690#define entity_is_task(se)	(!se->my_q)
 691#else
 692#define entity_is_task(se)	1
 693#endif
 694
 695#ifdef CONFIG_SMP
 696/*
 697 * XXX we want to get rid of these helpers and use the full load resolution.
 698 */
 699static inline long se_weight(struct sched_entity *se)
 700{
 701	return scale_load_down(se->load.weight);
 702}
 703
 704static inline long se_runnable(struct sched_entity *se)
 705{
 706	return scale_load_down(se->runnable_weight);
 707}
 708
 709static inline bool sched_asym_prefer(int a, int b)
 710{
 711	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 712}
 713
 714struct perf_domain {
 715	struct em_perf_domain *em_pd;
 716	struct perf_domain *next;
 717	struct rcu_head rcu;
 718};
 719
 720/* Scheduling group status flags */
 721#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 722#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 723
 724/*
 725 * We add the notion of a root-domain which will be used to define per-domain
 726 * variables. Each exclusive cpuset essentially defines an island domain by
 727 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 728 * exclusive cpuset is created, we also create and attach a new root-domain
 729 * object.
 730 *
 731 */
 732struct root_domain {
 733	atomic_t		refcount;
 734	atomic_t		rto_count;
 735	struct rcu_head		rcu;
 736	cpumask_var_t		span;
 737	cpumask_var_t		online;
 738
 739	/*
 740	 * Indicate pullable load on at least one CPU, e.g:
 741	 * - More than one runnable task
 742	 * - Running task is misfit
 743	 */
 744	int			overload;
 745
 746	/* Indicate one or more cpus over-utilized (tipping point) */
 747	int			overutilized;
 748
 749	/*
 750	 * The bit corresponding to a CPU gets set here if such CPU has more
 751	 * than one runnable -deadline task (as it is below for RT tasks).
 752	 */
 753	cpumask_var_t		dlo_mask;
 754	atomic_t		dlo_count;
 755	struct dl_bw		dl_bw;
 756	struct cpudl		cpudl;
 757
 758#ifdef HAVE_RT_PUSH_IPI
 759	/*
 760	 * For IPI pull requests, loop across the rto_mask.
 761	 */
 762	struct irq_work		rto_push_work;
 763	raw_spinlock_t		rto_lock;
 764	/* These are only updated and read within rto_lock */
 765	int			rto_loop;
 766	int			rto_cpu;
 767	/* These atomics are updated outside of a lock */
 768	atomic_t		rto_loop_next;
 769	atomic_t		rto_loop_start;
 770#endif
 771	/*
 772	 * The "RT overload" flag: it gets set if a CPU has more than
 773	 * one runnable RT task.
 774	 */
 775	cpumask_var_t		rto_mask;
 776	struct cpupri		cpupri;
 777
 778	unsigned long		max_cpu_capacity;
 779
 780	/*
 781	 * NULL-terminated list of performance domains intersecting with the
 782	 * CPUs of the rd. Protected by RCU.
 783	 */
 784	struct perf_domain __rcu *pd;
 785};
 786
 787extern void init_defrootdomain(void);
 788extern int sched_init_domains(const struct cpumask *cpu_map);
 789extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 790extern void sched_get_rd(struct root_domain *rd);
 791extern void sched_put_rd(struct root_domain *rd);
 792
 793#ifdef HAVE_RT_PUSH_IPI
 794extern void rto_push_irq_work_func(struct irq_work *work);
 795#endif
 796#endif /* CONFIG_SMP */
 797
 798#ifdef CONFIG_UCLAMP_TASK
 799/*
 800 * struct uclamp_bucket - Utilization clamp bucket
 801 * @value: utilization clamp value for tasks on this clamp bucket
 802 * @tasks: number of RUNNABLE tasks on this clamp bucket
 803 *
 804 * Keep track of how many tasks are RUNNABLE for a given utilization
 805 * clamp value.
 806 */
 807struct uclamp_bucket {
 808	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 809	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 810};
 811
 812/*
 813 * struct uclamp_rq - rq's utilization clamp
 814 * @value: currently active clamp values for a rq
 815 * @bucket: utilization clamp buckets affecting a rq
 816 *
 817 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 818 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 819 * (or actually running) with that value.
 820 *
 821 * There are up to UCLAMP_CNT possible different clamp values, currently there
 822 * are only two: minimum utilization and maximum utilization.
 823 *
 824 * All utilization clamping values are MAX aggregated, since:
 825 * - for util_min: we want to run the CPU at least at the max of the minimum
 826 *   utilization required by its currently RUNNABLE tasks.
 827 * - for util_max: we want to allow the CPU to run up to the max of the
 828 *   maximum utilization allowed by its currently RUNNABLE tasks.
 829 *
 830 * Since on each system we expect only a limited number of different
 831 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 832 * the metrics required to compute all the per-rq utilization clamp values.
 833 */
 834struct uclamp_rq {
 835	unsigned int value;
 836	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 837};
 838#endif /* CONFIG_UCLAMP_TASK */
 839
 840/*
 841 * This is the main, per-CPU runqueue data structure.
 842 *
 843 * Locking rule: those places that want to lock multiple runqueues
 844 * (such as the load balancing or the thread migration code), lock
 845 * acquire operations must be ordered by ascending &runqueue.
 846 */
 847struct rq {
 848	/* runqueue lock: */
 849	raw_spinlock_t		lock;
 850
 851	/*
 852	 * nr_running and cpu_load should be in the same cacheline because
 853	 * remote CPUs use both these fields when doing load calculation.
 854	 */
 855	unsigned int		nr_running;
 856#ifdef CONFIG_NUMA_BALANCING
 857	unsigned int		nr_numa_running;
 858	unsigned int		nr_preferred_running;
 859	unsigned int		numa_migrate_on;
 860#endif
 
 
 861#ifdef CONFIG_NO_HZ_COMMON
 862#ifdef CONFIG_SMP
 863	unsigned long		last_load_update_tick;
 864	unsigned long		last_blocked_load_update_tick;
 865	unsigned int		has_blocked_load;
 866#endif /* CONFIG_SMP */
 867	unsigned int		nohz_tick_stopped;
 868	atomic_t nohz_flags;
 869#endif /* CONFIG_NO_HZ_COMMON */
 870
 871	unsigned long		nr_load_updates;
 872	u64			nr_switches;
 873
 874#ifdef CONFIG_UCLAMP_TASK
 875	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 876	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 877	unsigned int		uclamp_flags;
 878#define UCLAMP_FLAG_IDLE 0x01
 879#endif
 880
 881	struct cfs_rq		cfs;
 882	struct rt_rq		rt;
 883	struct dl_rq		dl;
 
 
 
 
 884
 885#ifdef CONFIG_FAIR_GROUP_SCHED
 886	/* list of leaf cfs_rq on this CPU: */
 887	struct list_head	leaf_cfs_rq_list;
 888	struct list_head	*tmp_alone_branch;
 889#endif /* CONFIG_FAIR_GROUP_SCHED */
 890
 891	/*
 892	 * This is part of a global counter where only the total sum
 893	 * over all CPUs matters. A task can increase this counter on
 894	 * one CPU and if it got migrated afterwards it may decrease
 895	 * it on another CPU. Always updated under the runqueue lock:
 896	 */
 897	unsigned long		nr_uninterruptible;
 898
 899	struct task_struct	*curr;
 900	struct task_struct	*idle;
 901	struct task_struct	*stop;
 902	unsigned long		next_balance;
 903	struct mm_struct	*prev_mm;
 904
 905	unsigned int		clock_update_flags;
 906	u64			clock;
 907	/* Ensure that all clocks are in the same cache line */
 908	u64			clock_task ____cacheline_aligned;
 909	u64			clock_pelt;
 910	unsigned long		lost_idle_time;
 911
 912	atomic_t		nr_iowait;
 913
 914#ifdef CONFIG_MEMBARRIER
 915	int membarrier_state;
 916#endif
 917
 918#ifdef CONFIG_SMP
 919	struct root_domain		*rd;
 920	struct sched_domain __rcu	*sd;
 921
 922	unsigned long		cpu_capacity;
 923	unsigned long		cpu_capacity_orig;
 924
 925	struct callback_head	*balance_callback;
 926
 927	unsigned char		idle_balance;
 928
 929	unsigned long		misfit_task_load;
 930
 
 931	/* For active balancing */
 932	int			active_balance;
 933	int			push_cpu;
 934	struct cpu_stop_work	active_balance_work;
 935
 936	/* CPU of this runqueue: */
 937	int			cpu;
 938	int			online;
 939
 940	struct list_head cfs_tasks;
 941
 942	struct sched_avg	avg_rt;
 943	struct sched_avg	avg_dl;
 944#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 945	struct sched_avg	avg_irq;
 946#endif
 947	u64			idle_stamp;
 948	u64			avg_idle;
 949
 950	/* This is used to determine avg_idle's max value */
 951	u64			max_idle_balance_cost;
 952#endif
 953
 954#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 955	u64			prev_irq_time;
 956#endif
 957#ifdef CONFIG_PARAVIRT
 958	u64			prev_steal_time;
 959#endif
 960#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 961	u64			prev_steal_time_rq;
 962#endif
 963
 964	/* calc_load related fields */
 965	unsigned long		calc_load_update;
 966	long			calc_load_active;
 967
 968#ifdef CONFIG_SCHED_HRTICK
 969#ifdef CONFIG_SMP
 970	int			hrtick_csd_pending;
 971	call_single_data_t	hrtick_csd;
 972#endif
 973	struct hrtimer		hrtick_timer;
 974#endif
 975
 976#ifdef CONFIG_SCHEDSTATS
 977	/* latency stats */
 978	struct sched_info	rq_sched_info;
 979	unsigned long long	rq_cpu_time;
 980	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 981
 982	/* sys_sched_yield() stats */
 983	unsigned int		yld_count;
 984
 985	/* schedule() stats */
 986	unsigned int		sched_count;
 987	unsigned int		sched_goidle;
 988
 989	/* try_to_wake_up() stats */
 990	unsigned int		ttwu_count;
 991	unsigned int		ttwu_local;
 992#endif
 993
 994#ifdef CONFIG_SMP
 995	struct llist_head	wake_list;
 996#endif
 997
 998#ifdef CONFIG_CPU_IDLE
 999	/* Must be inspected within a rcu lock section */
1000	struct cpuidle_state	*idle_state;
1001#endif
1002};
1003
1004#ifdef CONFIG_FAIR_GROUP_SCHED
1005
1006/* CPU runqueue to which this cfs_rq is attached */
1007static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1008{
1009	return cfs_rq->rq;
1010}
1011
1012#else
1013
1014static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1015{
1016	return container_of(cfs_rq, struct rq, cfs);
1017}
1018#endif
1019
1020static inline int cpu_of(struct rq *rq)
1021{
1022#ifdef CONFIG_SMP
1023	return rq->cpu;
1024#else
1025	return 0;
1026#endif
1027}
1028
1029
1030#ifdef CONFIG_SCHED_SMT
 
 
 
1031extern void __update_idle_core(struct rq *rq);
1032
1033static inline void update_idle_core(struct rq *rq)
1034{
1035	if (static_branch_unlikely(&sched_smt_present))
1036		__update_idle_core(rq);
1037}
1038
1039#else
1040static inline void update_idle_core(struct rq *rq) { }
1041#endif
1042
1043DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1044
1045#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1046#define this_rq()		this_cpu_ptr(&runqueues)
1047#define task_rq(p)		cpu_rq(task_cpu(p))
1048#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1049#define raw_rq()		raw_cpu_ptr(&runqueues)
1050
1051extern void update_rq_clock(struct rq *rq);
1052
1053static inline u64 __rq_clock_broken(struct rq *rq)
1054{
1055	return READ_ONCE(rq->clock);
1056}
1057
1058/*
1059 * rq::clock_update_flags bits
1060 *
1061 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1062 *  call to __schedule(). This is an optimisation to avoid
1063 *  neighbouring rq clock updates.
1064 *
1065 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1066 *  in effect and calls to update_rq_clock() are being ignored.
1067 *
1068 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1069 *  made to update_rq_clock() since the last time rq::lock was pinned.
1070 *
1071 * If inside of __schedule(), clock_update_flags will have been
1072 * shifted left (a left shift is a cheap operation for the fast path
1073 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1074 *
1075 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1076 *
1077 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1078 * one position though, because the next rq_unpin_lock() will shift it
1079 * back.
1080 */
1081#define RQCF_REQ_SKIP		0x01
1082#define RQCF_ACT_SKIP		0x02
1083#define RQCF_UPDATED		0x04
1084
1085static inline void assert_clock_updated(struct rq *rq)
1086{
1087	/*
1088	 * The only reason for not seeing a clock update since the
1089	 * last rq_pin_lock() is if we're currently skipping updates.
1090	 */
1091	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1092}
1093
1094static inline u64 rq_clock(struct rq *rq)
1095{
1096	lockdep_assert_held(&rq->lock);
1097	assert_clock_updated(rq);
1098
1099	return rq->clock;
1100}
1101
1102static inline u64 rq_clock_task(struct rq *rq)
1103{
1104	lockdep_assert_held(&rq->lock);
1105	assert_clock_updated(rq);
1106
1107	return rq->clock_task;
1108}
1109
1110static inline void rq_clock_skip_update(struct rq *rq)
1111{
1112	lockdep_assert_held(&rq->lock);
1113	rq->clock_update_flags |= RQCF_REQ_SKIP;
1114}
1115
1116/*
1117 * See rt task throttling, which is the only time a skip
1118 * request is cancelled.
1119 */
1120static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1121{
1122	lockdep_assert_held(&rq->lock);
1123	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1124}
1125
1126struct rq_flags {
1127	unsigned long flags;
1128	struct pin_cookie cookie;
1129#ifdef CONFIG_SCHED_DEBUG
1130	/*
1131	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1132	 * current pin context is stashed here in case it needs to be
1133	 * restored in rq_repin_lock().
1134	 */
1135	unsigned int clock_update_flags;
1136#endif
1137};
1138
1139static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1140{
1141	rf->cookie = lockdep_pin_lock(&rq->lock);
1142
1143#ifdef CONFIG_SCHED_DEBUG
1144	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1145	rf->clock_update_flags = 0;
1146#endif
1147}
1148
1149static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1150{
1151#ifdef CONFIG_SCHED_DEBUG
1152	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1153		rf->clock_update_flags = RQCF_UPDATED;
1154#endif
1155
1156	lockdep_unpin_lock(&rq->lock, rf->cookie);
1157}
1158
1159static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1160{
1161	lockdep_repin_lock(&rq->lock, rf->cookie);
1162
1163#ifdef CONFIG_SCHED_DEBUG
1164	/*
1165	 * Restore the value we stashed in @rf for this pin context.
1166	 */
1167	rq->clock_update_flags |= rf->clock_update_flags;
1168#endif
1169}
1170
1171struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1172	__acquires(rq->lock);
1173
1174struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1175	__acquires(p->pi_lock)
1176	__acquires(rq->lock);
1177
1178static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1179	__releases(rq->lock)
1180{
1181	rq_unpin_lock(rq, rf);
1182	raw_spin_unlock(&rq->lock);
1183}
1184
1185static inline void
1186task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1187	__releases(rq->lock)
1188	__releases(p->pi_lock)
1189{
1190	rq_unpin_lock(rq, rf);
1191	raw_spin_unlock(&rq->lock);
1192	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1193}
1194
1195static inline void
1196rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1197	__acquires(rq->lock)
1198{
1199	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1200	rq_pin_lock(rq, rf);
1201}
1202
1203static inline void
1204rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1205	__acquires(rq->lock)
1206{
1207	raw_spin_lock_irq(&rq->lock);
1208	rq_pin_lock(rq, rf);
1209}
1210
1211static inline void
1212rq_lock(struct rq *rq, struct rq_flags *rf)
1213	__acquires(rq->lock)
1214{
1215	raw_spin_lock(&rq->lock);
1216	rq_pin_lock(rq, rf);
1217}
1218
1219static inline void
1220rq_relock(struct rq *rq, struct rq_flags *rf)
1221	__acquires(rq->lock)
1222{
1223	raw_spin_lock(&rq->lock);
1224	rq_repin_lock(rq, rf);
1225}
1226
1227static inline void
1228rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1229	__releases(rq->lock)
1230{
1231	rq_unpin_lock(rq, rf);
1232	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1233}
1234
1235static inline void
1236rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1237	__releases(rq->lock)
1238{
1239	rq_unpin_lock(rq, rf);
1240	raw_spin_unlock_irq(&rq->lock);
1241}
1242
1243static inline void
1244rq_unlock(struct rq *rq, struct rq_flags *rf)
1245	__releases(rq->lock)
1246{
1247	rq_unpin_lock(rq, rf);
1248	raw_spin_unlock(&rq->lock);
1249}
1250
1251static inline struct rq *
1252this_rq_lock_irq(struct rq_flags *rf)
1253	__acquires(rq->lock)
1254{
1255	struct rq *rq;
1256
1257	local_irq_disable();
1258	rq = this_rq();
1259	rq_lock(rq, rf);
1260	return rq;
1261}
1262
1263#ifdef CONFIG_NUMA
1264enum numa_topology_type {
1265	NUMA_DIRECT,
1266	NUMA_GLUELESS_MESH,
1267	NUMA_BACKPLANE,
1268};
1269extern enum numa_topology_type sched_numa_topology_type;
1270extern int sched_max_numa_distance;
1271extern bool find_numa_distance(int distance);
1272extern void sched_init_numa(void);
1273extern void sched_domains_numa_masks_set(unsigned int cpu);
1274extern void sched_domains_numa_masks_clear(unsigned int cpu);
1275extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1276#else
1277static inline void sched_init_numa(void) { }
1278static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1279static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1280static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1281{
1282	return nr_cpu_ids;
1283}
1284#endif
1285
1286#ifdef CONFIG_NUMA_BALANCING
1287/* The regions in numa_faults array from task_struct */
1288enum numa_faults_stats {
1289	NUMA_MEM = 0,
1290	NUMA_CPU,
1291	NUMA_MEMBUF,
1292	NUMA_CPUBUF
1293};
1294extern void sched_setnuma(struct task_struct *p, int node);
1295extern int migrate_task_to(struct task_struct *p, int cpu);
1296extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1297			int cpu, int scpu);
1298extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1299#else
1300static inline void
1301init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1302{
1303}
1304#endif /* CONFIG_NUMA_BALANCING */
1305
1306#ifdef CONFIG_SMP
1307
1308static inline void
1309queue_balance_callback(struct rq *rq,
1310		       struct callback_head *head,
1311		       void (*func)(struct rq *rq))
1312{
1313	lockdep_assert_held(&rq->lock);
1314
1315	if (unlikely(head->next))
1316		return;
1317
1318	head->func = (void (*)(struct callback_head *))func;
1319	head->next = rq->balance_callback;
1320	rq->balance_callback = head;
1321}
1322
1323extern void sched_ttwu_pending(void);
1324
1325#define rcu_dereference_check_sched_domain(p) \
1326	rcu_dereference_check((p), \
1327			      lockdep_is_held(&sched_domains_mutex))
1328
1329/*
1330 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1331 * See destroy_sched_domains: call_rcu for details.
1332 *
1333 * The domain tree of any CPU may only be accessed from within
1334 * preempt-disabled sections.
1335 */
1336#define for_each_domain(cpu, __sd) \
1337	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1338			__sd; __sd = __sd->parent)
1339
1340#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1341
1342/**
1343 * highest_flag_domain - Return highest sched_domain containing flag.
1344 * @cpu:	The CPU whose highest level of sched domain is to
1345 *		be returned.
1346 * @flag:	The flag to check for the highest sched_domain
1347 *		for the given CPU.
1348 *
1349 * Returns the highest sched_domain of a CPU which contains the given flag.
1350 */
1351static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1352{
1353	struct sched_domain *sd, *hsd = NULL;
1354
1355	for_each_domain(cpu, sd) {
1356		if (!(sd->flags & flag))
1357			break;
1358		hsd = sd;
1359	}
1360
1361	return hsd;
1362}
1363
1364static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1365{
1366	struct sched_domain *sd;
1367
1368	for_each_domain(cpu, sd) {
1369		if (sd->flags & flag)
1370			break;
1371	}
1372
1373	return sd;
1374}
1375
1376DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1377DECLARE_PER_CPU(int, sd_llc_size);
1378DECLARE_PER_CPU(int, sd_llc_id);
1379DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1380DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1381DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1382DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1383extern struct static_key_false sched_asym_cpucapacity;
1384
1385struct sched_group_capacity {
1386	atomic_t		ref;
1387	/*
1388	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1389	 * for a single CPU.
1390	 */
1391	unsigned long		capacity;
1392	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1393	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1394	unsigned long		next_update;
1395	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1396
1397#ifdef CONFIG_SCHED_DEBUG
1398	int			id;
1399#endif
1400
1401	unsigned long		cpumask[0];		/* Balance mask */
1402};
1403
1404struct sched_group {
1405	struct sched_group	*next;			/* Must be a circular list */
1406	atomic_t		ref;
1407
1408	unsigned int		group_weight;
1409	struct sched_group_capacity *sgc;
1410	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1411
1412	/*
1413	 * The CPUs this group covers.
1414	 *
1415	 * NOTE: this field is variable length. (Allocated dynamically
1416	 * by attaching extra space to the end of the structure,
1417	 * depending on how many CPUs the kernel has booted up with)
1418	 */
1419	unsigned long		cpumask[0];
1420};
1421
1422static inline struct cpumask *sched_group_span(struct sched_group *sg)
1423{
1424	return to_cpumask(sg->cpumask);
1425}
1426
1427/*
1428 * See build_balance_mask().
 
1429 */
1430static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1431{
1432	return to_cpumask(sg->sgc->cpumask);
1433}
1434
1435/**
1436 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1437 * @group: The group whose first CPU is to be returned.
1438 */
1439static inline unsigned int group_first_cpu(struct sched_group *group)
1440{
1441	return cpumask_first(sched_group_span(group));
1442}
1443
1444extern int group_balance_cpu(struct sched_group *sg);
1445
1446#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1447void register_sched_domain_sysctl(void);
1448void dirty_sched_domain_sysctl(int cpu);
1449void unregister_sched_domain_sysctl(void);
1450#else
1451static inline void register_sched_domain_sysctl(void)
1452{
1453}
1454static inline void dirty_sched_domain_sysctl(int cpu)
1455{
1456}
1457static inline void unregister_sched_domain_sysctl(void)
1458{
1459}
1460#endif
1461
1462extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1463
1464#else
1465
1466static inline void sched_ttwu_pending(void) { }
1467
1468static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1469
1470#endif /* CONFIG_SMP */
1471
1472#include "stats.h"
1473#include "autogroup.h"
1474
1475#ifdef CONFIG_CGROUP_SCHED
1476
1477/*
1478 * Return the group to which this tasks belongs.
1479 *
1480 * We cannot use task_css() and friends because the cgroup subsystem
1481 * changes that value before the cgroup_subsys::attach() method is called,
1482 * therefore we cannot pin it and might observe the wrong value.
1483 *
1484 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1485 * core changes this before calling sched_move_task().
1486 *
1487 * Instead we use a 'copy' which is updated from sched_move_task() while
1488 * holding both task_struct::pi_lock and rq::lock.
1489 */
1490static inline struct task_group *task_group(struct task_struct *p)
1491{
1492	return p->sched_task_group;
1493}
1494
1495/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1496static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1497{
1498#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1499	struct task_group *tg = task_group(p);
1500#endif
1501
1502#ifdef CONFIG_FAIR_GROUP_SCHED
1503	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1504	p->se.cfs_rq = tg->cfs_rq[cpu];
1505	p->se.parent = tg->se[cpu];
1506#endif
1507
1508#ifdef CONFIG_RT_GROUP_SCHED
1509	p->rt.rt_rq  = tg->rt_rq[cpu];
1510	p->rt.parent = tg->rt_se[cpu];
1511#endif
1512}
1513
1514#else /* CONFIG_CGROUP_SCHED */
1515
1516static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1517static inline struct task_group *task_group(struct task_struct *p)
1518{
1519	return NULL;
1520}
1521
1522#endif /* CONFIG_CGROUP_SCHED */
1523
1524static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1525{
1526	set_task_rq(p, cpu);
1527#ifdef CONFIG_SMP
1528	/*
1529	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1530	 * successfully executed on another CPU. We must ensure that updates of
1531	 * per-task data have been completed by this moment.
1532	 */
1533	smp_wmb();
1534#ifdef CONFIG_THREAD_INFO_IN_TASK
1535	WRITE_ONCE(p->cpu, cpu);
1536#else
1537	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1538#endif
1539	p->wake_cpu = cpu;
1540#endif
1541}
1542
1543/*
1544 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1545 */
1546#ifdef CONFIG_SCHED_DEBUG
1547# include <linux/static_key.h>
1548# define const_debug __read_mostly
1549#else
1550# define const_debug const
1551#endif
1552
 
 
1553#define SCHED_FEAT(name, enabled)	\
1554	__SCHED_FEAT_##name ,
1555
1556enum {
1557#include "features.h"
1558	__SCHED_FEAT_NR,
1559};
1560
1561#undef SCHED_FEAT
1562
1563#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1564
1565/*
1566 * To support run-time toggling of sched features, all the translation units
1567 * (but core.c) reference the sysctl_sched_features defined in core.c.
1568 */
1569extern const_debug unsigned int sysctl_sched_features;
1570
1571#define SCHED_FEAT(name, enabled)					\
1572static __always_inline bool static_branch_##name(struct static_key *key) \
1573{									\
1574	return static_key_##enabled(key);				\
1575}
1576
1577#include "features.h"
 
1578#undef SCHED_FEAT
1579
1580extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1581#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1582
1583#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1584
1585/*
1586 * Each translation unit has its own copy of sysctl_sched_features to allow
1587 * constants propagation at compile time and compiler optimization based on
1588 * features default.
1589 */
1590#define SCHED_FEAT(name, enabled)	\
1591	(1UL << __SCHED_FEAT_##name) * enabled |
1592static const_debug __maybe_unused unsigned int sysctl_sched_features =
1593#include "features.h"
1594	0;
1595#undef SCHED_FEAT
1596
1597#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1598
1599#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1600
1601extern struct static_key_false sched_numa_balancing;
1602extern struct static_key_false sched_schedstats;
1603
1604static inline u64 global_rt_period(void)
1605{
1606	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1607}
1608
1609static inline u64 global_rt_runtime(void)
1610{
1611	if (sysctl_sched_rt_runtime < 0)
1612		return RUNTIME_INF;
1613
1614	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1615}
1616
1617static inline int task_current(struct rq *rq, struct task_struct *p)
1618{
1619	return rq->curr == p;
1620}
1621
1622static inline int task_running(struct rq *rq, struct task_struct *p)
1623{
1624#ifdef CONFIG_SMP
1625	return p->on_cpu;
1626#else
1627	return task_current(rq, p);
1628#endif
1629}
1630
1631static inline int task_on_rq_queued(struct task_struct *p)
1632{
1633	return p->on_rq == TASK_ON_RQ_QUEUED;
1634}
1635
1636static inline int task_on_rq_migrating(struct task_struct *p)
1637{
1638	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639}
1640
1641/*
1642 * wake flags
1643 */
1644#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1645#define WF_FORK			0x02		/* Child wakeup after fork */
1646#define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1647
1648/*
1649 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1650 * of tasks with abnormal "nice" values across CPUs the contribution that
1651 * each task makes to its run queue's load is weighted according to its
1652 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1653 * scaled version of the new time slice allocation that they receive on time
1654 * slice expiry etc.
1655 */
1656
1657#define WEIGHT_IDLEPRIO		3
1658#define WMULT_IDLEPRIO		1431655765
1659
1660extern const int		sched_prio_to_weight[40];
1661extern const u32		sched_prio_to_wmult[40];
1662
1663/*
1664 * {de,en}queue flags:
1665 *
1666 * DEQUEUE_SLEEP  - task is no longer runnable
1667 * ENQUEUE_WAKEUP - task just became runnable
1668 *
1669 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1670 *                are in a known state which allows modification. Such pairs
1671 *                should preserve as much state as possible.
1672 *
1673 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1674 *        in the runqueue.
1675 *
1676 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1677 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1678 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1679 *
1680 */
1681
1682#define DEQUEUE_SLEEP		0x01
1683#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1684#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1685#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1686
1687#define ENQUEUE_WAKEUP		0x01
1688#define ENQUEUE_RESTORE		0x02
1689#define ENQUEUE_MOVE		0x04
1690#define ENQUEUE_NOCLOCK		0x08
1691
1692#define ENQUEUE_HEAD		0x10
1693#define ENQUEUE_REPLENISH	0x20
1694#ifdef CONFIG_SMP
1695#define ENQUEUE_MIGRATED	0x40
1696#else
1697#define ENQUEUE_MIGRATED	0x00
1698#endif
1699
1700#define RETRY_TASK		((void *)-1UL)
1701
1702struct sched_class {
1703	const struct sched_class *next;
1704
1705#ifdef CONFIG_UCLAMP_TASK
1706	int uclamp_enabled;
1707#endif
1708
1709	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1710	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1711	void (*yield_task)   (struct rq *rq);
1712	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1713
1714	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1715
1716	/*
1717	 * Both @prev and @rf are optional and may be NULL, in which case the
1718	 * caller must already have invoked put_prev_task(rq, prev, rf).
 
1719	 *
1720	 * Otherwise it is the responsibility of the pick_next_task() to call
1721	 * put_prev_task() on the @prev task or something equivalent, IFF it
1722	 * returns a next task.
1723	 *
1724	 * In that case (@rf != NULL) it may return RETRY_TASK when it finds a
1725	 * higher prio class has runnable tasks.
1726	 */
1727	struct task_struct * (*pick_next_task)(struct rq *rq,
1728					       struct task_struct *prev,
1729					       struct rq_flags *rf);
1730	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1731	void (*set_next_task)(struct rq *rq, struct task_struct *p);
1732
1733#ifdef CONFIG_SMP
1734	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1735	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1736	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1737
1738	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1739
1740	void (*set_cpus_allowed)(struct task_struct *p,
1741				 const struct cpumask *newmask);
1742
1743	void (*rq_online)(struct rq *rq);
1744	void (*rq_offline)(struct rq *rq);
1745#endif
1746
1747	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1748	void (*task_fork)(struct task_struct *p);
1749	void (*task_dead)(struct task_struct *p);
 
1750
1751	/*
1752	 * The switched_from() call is allowed to drop rq->lock, therefore we
1753	 * cannot assume the switched_from/switched_to pair is serliazed by
1754	 * rq->lock. They are however serialized by p->pi_lock.
1755	 */
1756	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1757	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1758	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1759			      int oldprio);
1760
1761	unsigned int (*get_rr_interval)(struct rq *rq,
1762					struct task_struct *task);
1763
1764	void (*update_curr)(struct rq *rq);
1765
1766#define TASK_SET_GROUP		0
1767#define TASK_MOVE_GROUP		1
1768
1769#ifdef CONFIG_FAIR_GROUP_SCHED
1770	void (*task_change_group)(struct task_struct *p, int type);
1771#endif
1772};
1773
1774static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1775{
1776	WARN_ON_ONCE(rq->curr != prev);
1777	prev->sched_class->put_prev_task(rq, prev);
1778}
1779
1780static inline void set_next_task(struct rq *rq, struct task_struct *next)
1781{
1782	WARN_ON_ONCE(rq->curr != next);
1783	next->sched_class->set_next_task(rq, next);
1784}
1785
1786#ifdef CONFIG_SMP
1787#define sched_class_highest (&stop_sched_class)
1788#else
1789#define sched_class_highest (&dl_sched_class)
1790#endif
1791
1792#define for_class_range(class, _from, _to) \
1793	for (class = (_from); class != (_to); class = class->next)
1794
1795#define for_each_class(class) \
1796	for_class_range(class, sched_class_highest, NULL)
1797
1798extern const struct sched_class stop_sched_class;
1799extern const struct sched_class dl_sched_class;
1800extern const struct sched_class rt_sched_class;
1801extern const struct sched_class fair_sched_class;
1802extern const struct sched_class idle_sched_class;
1803
1804static inline bool sched_stop_runnable(struct rq *rq)
1805{
1806	return rq->stop && task_on_rq_queued(rq->stop);
1807}
1808
1809static inline bool sched_dl_runnable(struct rq *rq)
1810{
1811	return rq->dl.dl_nr_running > 0;
1812}
1813
1814static inline bool sched_rt_runnable(struct rq *rq)
1815{
1816	return rq->rt.rt_queued > 0;
1817}
1818
1819static inline bool sched_fair_runnable(struct rq *rq)
1820{
1821	return rq->cfs.nr_running > 0;
1822}
1823
1824#ifdef CONFIG_SMP
1825
1826extern void update_group_capacity(struct sched_domain *sd, int cpu);
1827
1828extern void trigger_load_balance(struct rq *rq);
1829
1830extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1831
1832#endif
1833
1834#ifdef CONFIG_CPU_IDLE
1835static inline void idle_set_state(struct rq *rq,
1836				  struct cpuidle_state *idle_state)
1837{
1838	rq->idle_state = idle_state;
1839}
1840
1841static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1842{
1843	SCHED_WARN_ON(!rcu_read_lock_held());
1844
1845	return rq->idle_state;
1846}
1847#else
1848static inline void idle_set_state(struct rq *rq,
1849				  struct cpuidle_state *idle_state)
1850{
1851}
1852
1853static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1854{
1855	return NULL;
1856}
1857#endif
1858
1859extern void schedule_idle(void);
1860
1861extern void sysrq_sched_debug_show(void);
1862extern void sched_init_granularity(void);
1863extern void update_max_interval(void);
1864
1865extern void init_sched_dl_class(void);
1866extern void init_sched_rt_class(void);
1867extern void init_sched_fair_class(void);
1868
1869extern void reweight_task(struct task_struct *p, int prio);
1870
1871extern void resched_curr(struct rq *rq);
1872extern void resched_cpu(int cpu);
1873
1874extern struct rt_bandwidth def_rt_bandwidth;
1875extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1876
1877extern struct dl_bandwidth def_dl_bandwidth;
1878extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1879extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1880extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1881extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1882
1883#define BW_SHIFT		20
1884#define BW_UNIT			(1 << BW_SHIFT)
1885#define RATIO_SHIFT		8
1886unsigned long to_ratio(u64 period, u64 runtime);
1887
1888extern void init_entity_runnable_average(struct sched_entity *se);
1889extern void post_init_entity_util_avg(struct task_struct *p);
1890
1891#ifdef CONFIG_NO_HZ_FULL
1892extern bool sched_can_stop_tick(struct rq *rq);
1893extern int __init sched_tick_offload_init(void);
1894
1895/*
1896 * Tick may be needed by tasks in the runqueue depending on their policy and
1897 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1898 * nohz mode if necessary.
1899 */
1900static inline void sched_update_tick_dependency(struct rq *rq)
1901{
1902	int cpu;
1903
1904	if (!tick_nohz_full_enabled())
1905		return;
1906
1907	cpu = cpu_of(rq);
1908
1909	if (!tick_nohz_full_cpu(cpu))
1910		return;
1911
1912	if (sched_can_stop_tick(rq))
1913		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1914	else
1915		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1916}
1917#else
1918static inline int sched_tick_offload_init(void) { return 0; }
1919static inline void sched_update_tick_dependency(struct rq *rq) { }
1920#endif
1921
1922static inline void add_nr_running(struct rq *rq, unsigned count)
1923{
1924	unsigned prev_nr = rq->nr_running;
1925
1926	rq->nr_running = prev_nr + count;
1927
 
1928#ifdef CONFIG_SMP
1929	if (prev_nr < 2 && rq->nr_running >= 2) {
1930		if (!READ_ONCE(rq->rd->overload))
1931			WRITE_ONCE(rq->rd->overload, 1);
1932	}
1933#endif
1934
1935	sched_update_tick_dependency(rq);
1936}
1937
1938static inline void sub_nr_running(struct rq *rq, unsigned count)
1939{
1940	rq->nr_running -= count;
1941	/* Check if we still need preemption */
1942	sched_update_tick_dependency(rq);
1943}
1944
 
 
 
 
 
 
 
 
 
1945extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1946extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1947
1948extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1949
 
1950extern const_debug unsigned int sysctl_sched_nr_migrate;
1951extern const_debug unsigned int sysctl_sched_migration_cost;
1952
 
 
 
 
 
1953#ifdef CONFIG_SCHED_HRTICK
1954
1955/*
1956 * Use hrtick when:
1957 *  - enabled by features
1958 *  - hrtimer is actually high res
1959 */
1960static inline int hrtick_enabled(struct rq *rq)
1961{
1962	if (!sched_feat(HRTICK))
1963		return 0;
1964	if (!cpu_active(cpu_of(rq)))
1965		return 0;
1966	return hrtimer_is_hres_active(&rq->hrtick_timer);
1967}
1968
1969void hrtick_start(struct rq *rq, u64 delay);
1970
1971#else
1972
1973static inline int hrtick_enabled(struct rq *rq)
1974{
1975	return 0;
1976}
1977
1978#endif /* CONFIG_SCHED_HRTICK */
1979
 
 
 
1980#ifndef arch_scale_freq_capacity
1981static __always_inline
1982unsigned long arch_scale_freq_capacity(int cpu)
1983{
1984	return SCHED_CAPACITY_SCALE;
1985}
1986#endif
1987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988#ifdef CONFIG_SMP
1989#ifdef CONFIG_PREEMPTION
1990
1991static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1992
1993/*
1994 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1995 * way at the expense of forcing extra atomic operations in all
1996 * invocations.  This assures that the double_lock is acquired using the
1997 * same underlying policy as the spinlock_t on this architecture, which
1998 * reduces latency compared to the unfair variant below.  However, it
1999 * also adds more overhead and therefore may reduce throughput.
2000 */
2001static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2002	__releases(this_rq->lock)
2003	__acquires(busiest->lock)
2004	__acquires(this_rq->lock)
2005{
2006	raw_spin_unlock(&this_rq->lock);
2007	double_rq_lock(this_rq, busiest);
2008
2009	return 1;
2010}
2011
2012#else
2013/*
2014 * Unfair double_lock_balance: Optimizes throughput at the expense of
2015 * latency by eliminating extra atomic operations when the locks are
2016 * already in proper order on entry.  This favors lower CPU-ids and will
2017 * grant the double lock to lower CPUs over higher ids under contention,
2018 * regardless of entry order into the function.
2019 */
2020static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2021	__releases(this_rq->lock)
2022	__acquires(busiest->lock)
2023	__acquires(this_rq->lock)
2024{
2025	int ret = 0;
2026
2027	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2028		if (busiest < this_rq) {
2029			raw_spin_unlock(&this_rq->lock);
2030			raw_spin_lock(&busiest->lock);
2031			raw_spin_lock_nested(&this_rq->lock,
2032					      SINGLE_DEPTH_NESTING);
2033			ret = 1;
2034		} else
2035			raw_spin_lock_nested(&busiest->lock,
2036					      SINGLE_DEPTH_NESTING);
2037	}
2038	return ret;
2039}
2040
2041#endif /* CONFIG_PREEMPTION */
2042
2043/*
2044 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2045 */
2046static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2047{
2048	if (unlikely(!irqs_disabled())) {
2049		/* printk() doesn't work well under rq->lock */
2050		raw_spin_unlock(&this_rq->lock);
2051		BUG_ON(1);
2052	}
2053
2054	return _double_lock_balance(this_rq, busiest);
2055}
2056
2057static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2058	__releases(busiest->lock)
2059{
2060	raw_spin_unlock(&busiest->lock);
2061	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2062}
2063
2064static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2065{
2066	if (l1 > l2)
2067		swap(l1, l2);
2068
2069	spin_lock(l1);
2070	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2071}
2072
2073static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2074{
2075	if (l1 > l2)
2076		swap(l1, l2);
2077
2078	spin_lock_irq(l1);
2079	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2080}
2081
2082static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2083{
2084	if (l1 > l2)
2085		swap(l1, l2);
2086
2087	raw_spin_lock(l1);
2088	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2089}
2090
2091/*
2092 * double_rq_lock - safely lock two runqueues
2093 *
2094 * Note this does not disable interrupts like task_rq_lock,
2095 * you need to do so manually before calling.
2096 */
2097static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2098	__acquires(rq1->lock)
2099	__acquires(rq2->lock)
2100{
2101	BUG_ON(!irqs_disabled());
2102	if (rq1 == rq2) {
2103		raw_spin_lock(&rq1->lock);
2104		__acquire(rq2->lock);	/* Fake it out ;) */
2105	} else {
2106		if (rq1 < rq2) {
2107			raw_spin_lock(&rq1->lock);
2108			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2109		} else {
2110			raw_spin_lock(&rq2->lock);
2111			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2112		}
2113	}
2114}
2115
2116/*
2117 * double_rq_unlock - safely unlock two runqueues
2118 *
2119 * Note this does not restore interrupts like task_rq_unlock,
2120 * you need to do so manually after calling.
2121 */
2122static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2123	__releases(rq1->lock)
2124	__releases(rq2->lock)
2125{
2126	raw_spin_unlock(&rq1->lock);
2127	if (rq1 != rq2)
2128		raw_spin_unlock(&rq2->lock);
2129	else
2130		__release(rq2->lock);
2131}
2132
2133extern void set_rq_online (struct rq *rq);
2134extern void set_rq_offline(struct rq *rq);
2135extern bool sched_smp_initialized;
2136
2137#else /* CONFIG_SMP */
2138
2139/*
2140 * double_rq_lock - safely lock two runqueues
2141 *
2142 * Note this does not disable interrupts like task_rq_lock,
2143 * you need to do so manually before calling.
2144 */
2145static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2146	__acquires(rq1->lock)
2147	__acquires(rq2->lock)
2148{
2149	BUG_ON(!irqs_disabled());
2150	BUG_ON(rq1 != rq2);
2151	raw_spin_lock(&rq1->lock);
2152	__acquire(rq2->lock);	/* Fake it out ;) */
2153}
2154
2155/*
2156 * double_rq_unlock - safely unlock two runqueues
2157 *
2158 * Note this does not restore interrupts like task_rq_unlock,
2159 * you need to do so manually after calling.
2160 */
2161static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2162	__releases(rq1->lock)
2163	__releases(rq2->lock)
2164{
2165	BUG_ON(rq1 != rq2);
2166	raw_spin_unlock(&rq1->lock);
2167	__release(rq2->lock);
2168}
2169
2170#endif
2171
2172extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2173extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2174
2175#ifdef	CONFIG_SCHED_DEBUG
2176extern bool sched_debug_enabled;
2177
2178extern void print_cfs_stats(struct seq_file *m, int cpu);
2179extern void print_rt_stats(struct seq_file *m, int cpu);
2180extern void print_dl_stats(struct seq_file *m, int cpu);
2181extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2182extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2183extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2184#ifdef CONFIG_NUMA_BALANCING
2185extern void
2186show_numa_stats(struct task_struct *p, struct seq_file *m);
2187extern void
2188print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2189	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2190#endif /* CONFIG_NUMA_BALANCING */
2191#endif /* CONFIG_SCHED_DEBUG */
2192
2193extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2194extern void init_rt_rq(struct rt_rq *rt_rq);
2195extern void init_dl_rq(struct dl_rq *dl_rq);
2196
2197extern void cfs_bandwidth_usage_inc(void);
2198extern void cfs_bandwidth_usage_dec(void);
2199
2200#ifdef CONFIG_NO_HZ_COMMON
2201#define NOHZ_BALANCE_KICK_BIT	0
2202#define NOHZ_STATS_KICK_BIT	1
2203
2204#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2205#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2206
2207#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2208
2209#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2210
2211extern void nohz_balance_exit_idle(struct rq *rq);
2212#else
2213static inline void nohz_balance_exit_idle(struct rq *rq) { }
2214#endif
2215
2216
2217#ifdef CONFIG_SMP
2218static inline
2219void __dl_update(struct dl_bw *dl_b, s64 bw)
2220{
2221	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2222	int i;
2223
2224	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2225			 "sched RCU must be held");
2226	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2227		struct rq *rq = cpu_rq(i);
2228
2229		rq->dl.extra_bw += bw;
2230	}
2231}
2232#else
2233static inline
2234void __dl_update(struct dl_bw *dl_b, s64 bw)
2235{
2236	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2237
2238	dl->extra_bw += bw;
2239}
2240#endif
2241
2242
2243#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2244struct irqtime {
2245	u64			total;
2246	u64			tick_delta;
2247	u64			irq_start_time;
2248	struct u64_stats_sync	sync;
2249};
2250
2251DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2252
2253/*
2254 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2255 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2256 * and never move forward.
2257 */
2258static inline u64 irq_time_read(int cpu)
2259{
2260	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2261	unsigned int seq;
2262	u64 total;
2263
2264	do {
2265		seq = __u64_stats_fetch_begin(&irqtime->sync);
2266		total = irqtime->total;
2267	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2268
2269	return total;
2270}
2271#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2272
2273#ifdef CONFIG_CPU_FREQ
2274DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2275
2276/**
2277 * cpufreq_update_util - Take a note about CPU utilization changes.
2278 * @rq: Runqueue to carry out the update for.
2279 * @flags: Update reason flags.
2280 *
2281 * This function is called by the scheduler on the CPU whose utilization is
2282 * being updated.
2283 *
2284 * It can only be called from RCU-sched read-side critical sections.
2285 *
2286 * The way cpufreq is currently arranged requires it to evaluate the CPU
2287 * performance state (frequency/voltage) on a regular basis to prevent it from
2288 * being stuck in a completely inadequate performance level for too long.
2289 * That is not guaranteed to happen if the updates are only triggered from CFS
2290 * and DL, though, because they may not be coming in if only RT tasks are
2291 * active all the time (or there are RT tasks only).
2292 *
2293 * As a workaround for that issue, this function is called periodically by the
2294 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2295 * but that really is a band-aid.  Going forward it should be replaced with
2296 * solutions targeted more specifically at RT tasks.
2297 */
2298static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2299{
2300	struct update_util_data *data;
2301
2302	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2303						  cpu_of(rq)));
2304	if (data)
2305		data->func(data, rq_clock(rq), flags);
2306}
 
 
 
 
 
 
2307#else
2308static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
 
2309#endif /* CONFIG_CPU_FREQ */
2310
2311#ifdef CONFIG_UCLAMP_TASK
2312enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2313
2314static __always_inline
2315unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
2316			      struct task_struct *p)
2317{
2318	unsigned int min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2319	unsigned int max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2320
2321	if (p) {
2322		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2323		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2324	}
2325
2326	/*
2327	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2328	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2329	 * inversion. Fix it now when the clamps are applied.
2330	 */
2331	if (unlikely(min_util >= max_util))
2332		return min_util;
2333
2334	return clamp(util, min_util, max_util);
2335}
2336
2337static inline unsigned int uclamp_util(struct rq *rq, unsigned int util)
2338{
2339	return uclamp_util_with(rq, util, NULL);
2340}
2341#else /* CONFIG_UCLAMP_TASK */
2342static inline unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
2343					    struct task_struct *p)
2344{
2345	return util;
2346}
2347static inline unsigned int uclamp_util(struct rq *rq, unsigned int util)
2348{
2349	return util;
2350}
2351#endif /* CONFIG_UCLAMP_TASK */
2352
2353#ifdef arch_scale_freq_capacity
2354# ifndef arch_scale_freq_invariant
2355#  define arch_scale_freq_invariant()	true
2356# endif
2357#else
2358# define arch_scale_freq_invariant()	false
2359#endif
2360
2361#ifdef CONFIG_SMP
2362static inline unsigned long capacity_orig_of(int cpu)
2363{
2364	return cpu_rq(cpu)->cpu_capacity_orig;
2365}
2366#endif
2367
2368/**
2369 * enum schedutil_type - CPU utilization type
2370 * @FREQUENCY_UTIL:	Utilization used to select frequency
2371 * @ENERGY_UTIL:	Utilization used during energy calculation
2372 *
2373 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2374 * need to be aggregated differently depending on the usage made of them. This
2375 * enum is used within schedutil_freq_util() to differentiate the types of
2376 * utilization expected by the callers, and adjust the aggregation accordingly.
2377 */
2378enum schedutil_type {
2379	FREQUENCY_UTIL,
2380	ENERGY_UTIL,
2381};
2382
2383#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2384
2385unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2386				 unsigned long max, enum schedutil_type type,
2387				 struct task_struct *p);
2388
2389static inline unsigned long cpu_bw_dl(struct rq *rq)
2390{
2391	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2392}
2393
2394static inline unsigned long cpu_util_dl(struct rq *rq)
2395{
2396	return READ_ONCE(rq->avg_dl.util_avg);
2397}
2398
2399static inline unsigned long cpu_util_cfs(struct rq *rq)
2400{
2401	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2402
2403	if (sched_feat(UTIL_EST)) {
2404		util = max_t(unsigned long, util,
2405			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2406	}
2407
2408	return util;
2409}
2410
2411static inline unsigned long cpu_util_rt(struct rq *rq)
2412{
2413	return READ_ONCE(rq->avg_rt.util_avg);
2414}
2415#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2416static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2417				 unsigned long max, enum schedutil_type type,
2418				 struct task_struct *p)
2419{
2420	return 0;
2421}
2422#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2423
2424#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2425static inline unsigned long cpu_util_irq(struct rq *rq)
2426{
2427	return rq->avg_irq.util_avg;
2428}
2429
2430static inline
2431unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2432{
2433	util *= (max - irq);
2434	util /= max;
2435
2436	return util;
2437
2438}
2439#else
2440static inline unsigned long cpu_util_irq(struct rq *rq)
2441{
2442	return 0;
2443}
2444
2445static inline
2446unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2447{
2448	return util;
2449}
2450#endif
2451
2452#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2453
2454#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2455
2456DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2457
2458static inline bool sched_energy_enabled(void)
2459{
2460	return static_branch_unlikely(&sched_energy_present);
2461}
2462
2463#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2464
2465#define perf_domain_span(pd) NULL
2466static inline bool sched_energy_enabled(void) { return false; }
2467
2468#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2469
2470#ifdef CONFIG_MEMBARRIER
2471/*
2472 * The scheduler provides memory barriers required by membarrier between:
2473 * - prior user-space memory accesses and store to rq->membarrier_state,
2474 * - store to rq->membarrier_state and following user-space memory accesses.
2475 * In the same way it provides those guarantees around store to rq->curr.
2476 */
2477static inline void membarrier_switch_mm(struct rq *rq,
2478					struct mm_struct *prev_mm,
2479					struct mm_struct *next_mm)
2480{
2481	int membarrier_state;
2482
2483	if (prev_mm == next_mm)
2484		return;
2485
2486	membarrier_state = atomic_read(&next_mm->membarrier_state);
2487	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2488		return;
2489
2490	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2491}
2492#else
2493static inline void membarrier_switch_mm(struct rq *rq,
2494					struct mm_struct *prev_mm,
2495					struct mm_struct *next_mm)
2496{
2497}
2498#endif