Linux Audio

Check our new training course

Loading...
v4.10.11
   1
 
 
 
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/u64_stats_sync.h>
 
 
 
   6#include <linux/sched/deadline.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/binfmts.h>
   8#include <linux/mutex.h>
   9#include <linux/spinlock.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10#include <linux/stop_machine.h>
  11#include <linux/irq_work.h>
  12#include <linux/tick.h>
  13#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
  14
  15#include "cpupri.h"
  16#include "cpudeadline.h"
  17#include "cpuacct.h"
 
  18
  19#ifdef CONFIG_SCHED_DEBUG
  20#define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  21#else
  22#define SCHED_WARN_ON(x)	((void)(x))
  23#endif
  24
  25struct rq;
  26struct cpuidle_state;
  27
  28/* task_struct::on_rq states: */
  29#define TASK_ON_RQ_QUEUED	1
  30#define TASK_ON_RQ_MIGRATING	2
  31
  32extern __read_mostly int scheduler_running;
  33
  34extern unsigned long calc_load_update;
  35extern atomic_long_t calc_load_tasks;
  36
  37extern void calc_global_load_tick(struct rq *this_rq);
  38extern long calc_load_fold_active(struct rq *this_rq, long adjust);
  39
  40#ifdef CONFIG_SMP
  41extern void cpu_load_update_active(struct rq *this_rq);
  42#else
  43static inline void cpu_load_update_active(struct rq *this_rq) { }
  44#endif
  45
  46/*
  47 * Helpers for converting nanosecond timing to jiffy resolution
  48 */
  49#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  50
  51/*
  52 * Increase resolution of nice-level calculations for 64-bit architectures.
  53 * The extra resolution improves shares distribution and load balancing of
  54 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  55 * hierarchies, especially on larger systems. This is not a user-visible change
  56 * and does not change the user-interface for setting shares/weights.
  57 *
  58 * We increase resolution only if we have enough bits to allow this increased
  59 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
  60 * pretty high and the returns do not justify the increased costs.
  61 *
  62 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
  63 * increase coverage and consistency always enable it on 64bit platforms.
  64 */
  65#ifdef CONFIG_64BIT
  66# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
  67# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
  68# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
 
 
 
 
 
 
  69#else
  70# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
  71# define scale_load(w)		(w)
  72# define scale_load_down(w)	(w)
  73#endif
  74
  75/*
  76 * Task weight (visible to users) and its load (invisible to users) have
  77 * independent resolution, but they should be well calibrated. We use
  78 * scale_load() and scale_load_down(w) to convert between them. The
  79 * following must be true:
  80 *
  81 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
  82 *
  83 */
  84#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
  85
  86/*
  87 * Single value that decides SCHED_DEADLINE internal math precision.
  88 * 10 -> just above 1us
  89 * 9  -> just above 0.5us
  90 */
  91#define DL_SCALE (10)
  92
  93/*
  94 * These are the 'tuning knobs' of the scheduler:
  95 */
  96
  97/*
  98 * single value that denotes runtime == period, ie unlimited time.
  99 */
 100#define RUNTIME_INF	((u64)~0ULL)
 101
 102static inline int idle_policy(int policy)
 103{
 104	return policy == SCHED_IDLE;
 105}
 106static inline int fair_policy(int policy)
 107{
 108	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 109}
 110
 111static inline int rt_policy(int policy)
 112{
 113	return policy == SCHED_FIFO || policy == SCHED_RR;
 114}
 115
 116static inline int dl_policy(int policy)
 117{
 118	return policy == SCHED_DEADLINE;
 119}
 120static inline bool valid_policy(int policy)
 121{
 122	return idle_policy(policy) || fair_policy(policy) ||
 123		rt_policy(policy) || dl_policy(policy);
 124}
 125
 
 
 
 
 
 126static inline int task_has_rt_policy(struct task_struct *p)
 127{
 128	return rt_policy(p->policy);
 129}
 130
 131static inline int task_has_dl_policy(struct task_struct *p)
 132{
 133	return dl_policy(p->policy);
 134}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136/*
 137 * Tells if entity @a should preempt entity @b.
 138 */
 139static inline bool
 140dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 141{
 142	return dl_time_before(a->deadline, b->deadline);
 
 143}
 144
 145/*
 146 * This is the priority-queue data structure of the RT scheduling class:
 147 */
 148struct rt_prio_array {
 149	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 150	struct list_head queue[MAX_RT_PRIO];
 151};
 152
 153struct rt_bandwidth {
 154	/* nests inside the rq lock: */
 155	raw_spinlock_t		rt_runtime_lock;
 156	ktime_t			rt_period;
 157	u64			rt_runtime;
 158	struct hrtimer		rt_period_timer;
 159	unsigned int		rt_period_active;
 160};
 161
 162void __dl_clear_params(struct task_struct *p);
 163
 164/*
 165 * To keep the bandwidth of -deadline tasks and groups under control
 166 * we need some place where:
 167 *  - store the maximum -deadline bandwidth of the system (the group);
 168 *  - cache the fraction of that bandwidth that is currently allocated.
 169 *
 170 * This is all done in the data structure below. It is similar to the
 171 * one used for RT-throttling (rt_bandwidth), with the main difference
 172 * that, since here we are only interested in admission control, we
 173 * do not decrease any runtime while the group "executes", neither we
 174 * need a timer to replenish it.
 175 *
 176 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 177 * meaning that:
 178 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 179 *  - dl_total_bw array contains, in the i-eth element, the currently
 180 *    allocated bandwidth on the i-eth CPU.
 181 * Moreover, groups consume bandwidth on each CPU, while tasks only
 182 * consume bandwidth on the CPU they're running on.
 183 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 184 * that will be shown the next time the proc or cgroup controls will
 185 * be red. It on its turn can be changed by writing on its own
 186 * control.
 187 */
 188struct dl_bandwidth {
 189	raw_spinlock_t dl_runtime_lock;
 190	u64 dl_runtime;
 191	u64 dl_period;
 192};
 193
 194static inline int dl_bandwidth_enabled(void)
 195{
 196	return sysctl_sched_rt_runtime >= 0;
 197}
 198
 199extern struct dl_bw *dl_bw_of(int i);
 200
 201struct dl_bw {
 202	raw_spinlock_t lock;
 203	u64 bw, total_bw;
 
 204};
 205
 
 
 206static inline
 207void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 208{
 209	dl_b->total_bw -= tsk_bw;
 
 210}
 211
 212static inline
 213void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 214{
 215	dl_b->total_bw += tsk_bw;
 
 216}
 217
 218static inline
 219bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 220{
 221	return dl_b->bw != -1 &&
 222	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223}
 224
 225extern struct mutex sched_domains_mutex;
 
 
 
 
 
 
 
 
 
 
 226
 227#ifdef CONFIG_CGROUP_SCHED
 228
 229#include <linux/cgroup.h>
 
 230
 231struct cfs_rq;
 232struct rt_rq;
 233
 234extern struct list_head task_groups;
 235
 236struct cfs_bandwidth {
 237#ifdef CONFIG_CFS_BANDWIDTH
 238	raw_spinlock_t lock;
 239	ktime_t period;
 240	u64 quota, runtime;
 241	s64 hierarchical_quota;
 242	u64 runtime_expires;
 243
 244	int idle, period_active;
 245	struct hrtimer period_timer, slack_timer;
 246	struct list_head throttled_cfs_rq;
 247
 248	/* statistics */
 249	int nr_periods, nr_throttled;
 250	u64 throttled_time;
 
 
 
 
 251#endif
 252};
 253
 254/* task group related information */
 255struct task_group {
 256	struct cgroup_subsys_state css;
 257
 258#ifdef CONFIG_FAIR_GROUP_SCHED
 259	/* schedulable entities of this group on each cpu */
 260	struct sched_entity **se;
 261	/* runqueue "owned" by this group on each cpu */
 262	struct cfs_rq **cfs_rq;
 263	unsigned long shares;
 264
 265#ifdef	CONFIG_SMP
 266	/*
 267	 * load_avg can be heavily contended at clock tick time, so put
 268	 * it in its own cacheline separated from the fields above which
 269	 * will also be accessed at each tick.
 270	 */
 271	atomic_long_t load_avg ____cacheline_aligned;
 272#endif
 273#endif
 274
 275#ifdef CONFIG_RT_GROUP_SCHED
 276	struct sched_rt_entity **rt_se;
 277	struct rt_rq **rt_rq;
 278
 279	struct rt_bandwidth rt_bandwidth;
 280#endif
 281
 282	struct rcu_head rcu;
 283	struct list_head list;
 284
 285	struct task_group *parent;
 286	struct list_head siblings;
 287	struct list_head children;
 288
 289#ifdef CONFIG_SCHED_AUTOGROUP
 290	struct autogroup *autogroup;
 
 
 
 
 
 
 
 
 
 
 
 291#endif
 292
 293	struct cfs_bandwidth cfs_bandwidth;
 294};
 295
 296#ifdef CONFIG_FAIR_GROUP_SCHED
 297#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 298
 299/*
 300 * A weight of 0 or 1 can cause arithmetics problems.
 301 * A weight of a cfs_rq is the sum of weights of which entities
 302 * are queued on this cfs_rq, so a weight of a entity should not be
 303 * too large, so as the shares value of a task group.
 304 * (The default weight is 1024 - so there's no practical
 305 *  limitation from this.)
 306 */
 307#define MIN_SHARES	(1UL <<  1)
 308#define MAX_SHARES	(1UL << 18)
 309#endif
 310
 311typedef int (*tg_visitor)(struct task_group *, void *);
 312
 313extern int walk_tg_tree_from(struct task_group *from,
 314			     tg_visitor down, tg_visitor up, void *data);
 315
 316/*
 317 * Iterate the full tree, calling @down when first entering a node and @up when
 318 * leaving it for the final time.
 319 *
 320 * Caller must hold rcu_lock or sufficient equivalent.
 321 */
 322static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 323{
 324	return walk_tg_tree_from(&root_task_group, down, up, data);
 325}
 326
 327extern int tg_nop(struct task_group *tg, void *data);
 328
 329extern void free_fair_sched_group(struct task_group *tg);
 330extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 331extern void online_fair_sched_group(struct task_group *tg);
 332extern void unregister_fair_sched_group(struct task_group *tg);
 333extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 334			struct sched_entity *se, int cpu,
 335			struct sched_entity *parent);
 336extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 337
 338extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 339extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 340extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 341
 342extern void free_rt_sched_group(struct task_group *tg);
 343extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 344extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 345		struct sched_rt_entity *rt_se, int cpu,
 346		struct sched_rt_entity *parent);
 
 
 
 
 
 347
 348extern struct task_group *sched_create_group(struct task_group *parent);
 349extern void sched_online_group(struct task_group *tg,
 350			       struct task_group *parent);
 351extern void sched_destroy_group(struct task_group *tg);
 352extern void sched_offline_group(struct task_group *tg);
 353
 354extern void sched_move_task(struct task_struct *tsk);
 355
 356#ifdef CONFIG_FAIR_GROUP_SCHED
 357extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 358
 359#ifdef CONFIG_SMP
 360extern void set_task_rq_fair(struct sched_entity *se,
 361			     struct cfs_rq *prev, struct cfs_rq *next);
 362#else /* !CONFIG_SMP */
 363static inline void set_task_rq_fair(struct sched_entity *se,
 364			     struct cfs_rq *prev, struct cfs_rq *next) { }
 365#endif /* CONFIG_SMP */
 366#endif /* CONFIG_FAIR_GROUP_SCHED */
 367
 368#else /* CONFIG_CGROUP_SCHED */
 369
 370struct cfs_bandwidth { };
 371
 372#endif	/* CONFIG_CGROUP_SCHED */
 373
 374/* CFS-related fields in a runqueue */
 375struct cfs_rq {
 376	struct load_weight load;
 377	unsigned int nr_running, h_nr_running;
 
 
 378
 379	u64 exec_clock;
 380	u64 min_vruntime;
 381#ifndef CONFIG_64BIT
 382	u64 min_vruntime_copy;
 383#endif
 384
 385	struct rb_root tasks_timeline;
 386	struct rb_node *rb_leftmost;
 387
 388	/*
 389	 * 'curr' points to currently running entity on this cfs_rq.
 390	 * It is set to NULL otherwise (i.e when none are currently running).
 391	 */
 392	struct sched_entity *curr, *next, *last, *skip;
 
 
 
 393
 394#ifdef	CONFIG_SCHED_DEBUG
 395	unsigned int nr_spread_over;
 396#endif
 397
 398#ifdef CONFIG_SMP
 399	/*
 400	 * CFS load tracking
 401	 */
 402	struct sched_avg avg;
 403	u64 runnable_load_sum;
 404	unsigned long runnable_load_avg;
 405#ifdef CONFIG_FAIR_GROUP_SCHED
 406	unsigned long tg_load_avg_contrib;
 407	unsigned long propagate_avg;
 408#endif
 409	atomic_long_t removed_load_avg, removed_util_avg;
 410#ifndef CONFIG_64BIT
 411	u64 load_last_update_time_copy;
 412#endif
 
 
 
 
 
 
 
 413
 414#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 415	/*
 416	 *   h_load = weight * f(tg)
 417	 *
 418	 * Where f(tg) is the recursive weight fraction assigned to
 419	 * this group.
 420	 */
 421	unsigned long h_load;
 422	u64 last_h_load_update;
 423	struct sched_entity *h_load_next;
 424#endif /* CONFIG_FAIR_GROUP_SCHED */
 425#endif /* CONFIG_SMP */
 426
 427#ifdef CONFIG_FAIR_GROUP_SCHED
 428	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 429
 430	/*
 431	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 432	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 433	 * (like users, containers etc.)
 434	 *
 435	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 436	 * list is used during load balance.
 437	 */
 438	int on_list;
 439	struct list_head leaf_cfs_rq_list;
 440	struct task_group *tg;	/* group that "owns" this runqueue */
 441
 442#ifdef CONFIG_CFS_BANDWIDTH
 443	int runtime_enabled;
 444	u64 runtime_expires;
 445	s64 runtime_remaining;
 446
 447	u64 throttled_clock, throttled_clock_task;
 448	u64 throttled_clock_task_time;
 449	int throttled, throttle_count;
 450	struct list_head throttled_list;
 
 451#endif /* CONFIG_CFS_BANDWIDTH */
 452#endif /* CONFIG_FAIR_GROUP_SCHED */
 453};
 454
 455static inline int rt_bandwidth_enabled(void)
 456{
 457	return sysctl_sched_rt_runtime >= 0;
 458}
 459
 460/* RT IPI pull logic requires IRQ_WORK */
 461#ifdef CONFIG_IRQ_WORK
 462# define HAVE_RT_PUSH_IPI
 463#endif
 464
 465/* Real-Time classes' related field in a runqueue: */
 466struct rt_rq {
 467	struct rt_prio_array active;
 468	unsigned int rt_nr_running;
 469	unsigned int rr_nr_running;
 470#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 471	struct {
 472		int curr; /* highest queued rt task prio */
 473#ifdef CONFIG_SMP
 474		int next; /* next highest */
 475#endif
 476	} highest_prio;
 477#endif
 478#ifdef CONFIG_SMP
 479	unsigned long rt_nr_migratory;
 480	unsigned long rt_nr_total;
 481	int overloaded;
 482	struct plist_head pushable_tasks;
 483#ifdef HAVE_RT_PUSH_IPI
 484	int push_flags;
 485	int push_cpu;
 486	struct irq_work push_work;
 487	raw_spinlock_t push_lock;
 488#endif
 489#endif /* CONFIG_SMP */
 490	int rt_queued;
 491
 492	int rt_throttled;
 493	u64 rt_time;
 494	u64 rt_runtime;
 495	/* Nests inside the rq lock: */
 496	raw_spinlock_t rt_runtime_lock;
 497
 498#ifdef CONFIG_RT_GROUP_SCHED
 499	unsigned long rt_nr_boosted;
 500
 501	struct rq *rq;
 502	struct task_group *tg;
 503#endif
 504};
 505
 
 
 
 
 
 506/* Deadline class' related fields in a runqueue */
 507struct dl_rq {
 508	/* runqueue is an rbtree, ordered by deadline */
 509	struct rb_root rb_root;
 510	struct rb_node *rb_leftmost;
 511
 512	unsigned long dl_nr_running;
 513
 514#ifdef CONFIG_SMP
 515	/*
 516	 * Deadline values of the currently executing and the
 517	 * earliest ready task on this rq. Caching these facilitates
 518	 * the decision wether or not a ready but not running task
 519	 * should migrate somewhere else.
 520	 */
 521	struct {
 522		u64 curr;
 523		u64 next;
 524	} earliest_dl;
 525
 526	unsigned long dl_nr_migratory;
 527	int overloaded;
 528
 529	/*
 530	 * Tasks on this rq that can be pushed away. They are kept in
 531	 * an rb-tree, ordered by tasks' deadlines, with caching
 532	 * of the leftmost (earliest deadline) element.
 533	 */
 534	struct rb_root pushable_dl_tasks_root;
 535	struct rb_node *pushable_dl_tasks_leftmost;
 536#else
 537	struct dl_bw dl_bw;
 538#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539};
 540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 542
 543static inline bool sched_asym_prefer(int a, int b)
 544{
 545	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 546}
 547
 
 
 
 
 
 
 
 
 
 
 548/*
 549 * We add the notion of a root-domain which will be used to define per-domain
 550 * variables. Each exclusive cpuset essentially defines an island domain by
 551 * fully partitioning the member cpus from any other cpuset. Whenever a new
 552 * exclusive cpuset is created, we also create and attach a new root-domain
 553 * object.
 554 *
 555 */
 556struct root_domain {
 557	atomic_t refcount;
 558	atomic_t rto_count;
 559	struct rcu_head rcu;
 560	cpumask_var_t span;
 561	cpumask_var_t online;
 
 
 
 
 
 
 
 562
 563	/* Indicate more than one runnable task for any CPU */
 564	bool overload;
 565
 566	/*
 567	 * The bit corresponding to a CPU gets set here if such CPU has more
 568	 * than one runnable -deadline task (as it is below for RT tasks).
 569	 */
 570	cpumask_var_t dlo_mask;
 571	atomic_t dlo_count;
 572	struct dl_bw dl_bw;
 573	struct cpudl cpudl;
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 575	/*
 576	 * The "RT overload" flag: it gets set if a CPU has more than
 577	 * one runnable RT task.
 578	 */
 579	cpumask_var_t rto_mask;
 580	struct cpupri cpupri;
 
 
 581
 582	unsigned long max_cpu_capacity;
 
 
 
 
 583};
 584
 585extern struct root_domain def_root_domain;
 
 
 
 
 586
 
 
 
 587#endif /* CONFIG_SMP */
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/*
 590 * This is the main, per-CPU runqueue data structure.
 591 *
 592 * Locking rule: those places that want to lock multiple runqueues
 593 * (such as the load balancing or the thread migration code), lock
 594 * acquire operations must be ordered by ascending &runqueue.
 595 */
 596struct rq {
 597	/* runqueue lock: */
 598	raw_spinlock_t lock;
 599
 600	/*
 601	 * nr_running and cpu_load should be in the same cacheline because
 602	 * remote CPUs use both these fields when doing load calculation.
 603	 */
 604	unsigned int nr_running;
 605#ifdef CONFIG_NUMA_BALANCING
 606	unsigned int nr_numa_running;
 607	unsigned int nr_preferred_running;
 
 608#endif
 609	#define CPU_LOAD_IDX_MAX 5
 610	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 611#ifdef CONFIG_NO_HZ_COMMON
 612#ifdef CONFIG_SMP
 613	unsigned long last_load_update_tick;
 
 
 614#endif /* CONFIG_SMP */
 615	unsigned long nohz_flags;
 
 616#endif /* CONFIG_NO_HZ_COMMON */
 617#ifdef CONFIG_NO_HZ_FULL
 618	unsigned long last_sched_tick;
 
 
 
 
 
 
 
 
 
 619#endif
 620	/* capture load from *all* tasks on this cpu: */
 621	struct load_weight load;
 622	unsigned long nr_load_updates;
 623	u64 nr_switches;
 624
 625	struct cfs_rq cfs;
 626	struct rt_rq rt;
 627	struct dl_rq dl;
 628
 629#ifdef CONFIG_FAIR_GROUP_SCHED
 630	/* list of leaf cfs_rq on this cpu: */
 631	struct list_head leaf_cfs_rq_list;
 632	struct list_head *tmp_alone_branch;
 633#endif /* CONFIG_FAIR_GROUP_SCHED */
 634
 635	/*
 636	 * This is part of a global counter where only the total sum
 637	 * over all CPUs matters. A task can increase this counter on
 638	 * one CPU and if it got migrated afterwards it may decrease
 639	 * it on another CPU. Always updated under the runqueue lock:
 640	 */
 641	unsigned long nr_uninterruptible;
 
 
 
 
 
 
 642
 643	struct task_struct *curr, *idle, *stop;
 644	unsigned long next_balance;
 645	struct mm_struct *prev_mm;
 
 
 
 646
 647	unsigned int clock_skip_update;
 648	u64 clock;
 649	u64 clock_task;
 650
 651	atomic_t nr_iowait;
 
 
 652
 653#ifdef CONFIG_SMP
 654	struct root_domain *rd;
 655	struct sched_domain *sd;
 656
 657	unsigned long cpu_capacity;
 658	unsigned long cpu_capacity_orig;
 659
 660	struct callback_head *balance_callback;
 
 
 
 
 
 661
 662	unsigned char idle_balance;
 663	/* For active balancing */
 664	int active_balance;
 665	int push_cpu;
 666	struct cpu_stop_work active_balance_work;
 667	/* cpu of this runqueue: */
 668	int cpu;
 669	int online;
 
 670
 671	struct list_head cfs_tasks;
 672
 673	u64 rt_avg;
 674	u64 age_stamp;
 675	u64 idle_stamp;
 676	u64 avg_idle;
 
 
 
 
 
 
 677
 678	/* This is used to determine avg_idle's max value */
 679	u64 max_idle_balance_cost;
 680#endif
 681
 682#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 683	u64 prev_irq_time;
 684#endif
 685#ifdef CONFIG_PARAVIRT
 686	u64 prev_steal_time;
 687#endif
 688#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 689	u64 prev_steal_time_rq;
 690#endif
 691
 692	/* calc_load related fields */
 693	unsigned long calc_load_update;
 694	long calc_load_active;
 695
 696#ifdef CONFIG_SCHED_HRTICK
 697#ifdef CONFIG_SMP
 698	int hrtick_csd_pending;
 699	struct call_single_data hrtick_csd;
 700#endif
 701	struct hrtimer hrtick_timer;
 702#endif
 703
 704#ifdef CONFIG_SCHEDSTATS
 705	/* latency stats */
 706	struct sched_info rq_sched_info;
 707	unsigned long long rq_cpu_time;
 708	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 709
 710	/* sys_sched_yield() stats */
 711	unsigned int yld_count;
 712
 713	/* schedule() stats */
 714	unsigned int sched_count;
 715	unsigned int sched_goidle;
 716
 717	/* try_to_wake_up() stats */
 718	unsigned int ttwu_count;
 719	unsigned int ttwu_local;
 720#endif
 721
 722#ifdef CONFIG_SMP
 723	struct llist_head wake_list;
 724#endif
 725
 726#ifdef CONFIG_CPU_IDLE
 727	/* Must be inspected within a rcu lock section */
 728	struct cpuidle_state *idle_state;
 729#endif
 730};
 731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732static inline int cpu_of(struct rq *rq)
 733{
 734#ifdef CONFIG_SMP
 735	return rq->cpu;
 736#else
 737	return 0;
 738#endif
 739}
 740
 741
 742#ifdef CONFIG_SCHED_SMT
 743
 744extern struct static_key_false sched_smt_present;
 745
 746extern void __update_idle_core(struct rq *rq);
 747
 748static inline void update_idle_core(struct rq *rq)
 749{
 750	if (static_branch_unlikely(&sched_smt_present))
 751		__update_idle_core(rq);
 752}
 753
 754#else
 755static inline void update_idle_core(struct rq *rq) { }
 756#endif
 757
 758DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 759
 760#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 761#define this_rq()		this_cpu_ptr(&runqueues)
 762#define task_rq(p)		cpu_rq(task_cpu(p))
 763#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 764#define raw_rq()		raw_cpu_ptr(&runqueues)
 765
 
 
 766static inline u64 __rq_clock_broken(struct rq *rq)
 767{
 768	return READ_ONCE(rq->clock);
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771static inline u64 rq_clock(struct rq *rq)
 772{
 773	lockdep_assert_held(&rq->lock);
 
 
 774	return rq->clock;
 775}
 776
 777static inline u64 rq_clock_task(struct rq *rq)
 778{
 779	lockdep_assert_held(&rq->lock);
 
 
 780	return rq->clock_task;
 781}
 782
 783#define RQCF_REQ_SKIP	0x01
 784#define RQCF_ACT_SKIP	0x02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785
 786static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 
 
 
 
 787{
 788	lockdep_assert_held(&rq->lock);
 789	if (skip)
 790		rq->clock_skip_update |= RQCF_REQ_SKIP;
 791	else
 792		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793}
 794
 795#ifdef CONFIG_NUMA
 796enum numa_topology_type {
 797	NUMA_DIRECT,
 798	NUMA_GLUELESS_MESH,
 799	NUMA_BACKPLANE,
 800};
 801extern enum numa_topology_type sched_numa_topology_type;
 802extern int sched_max_numa_distance;
 803extern bool find_numa_distance(int distance);
 
 
 
 
 
 
 
 
 
 
 
 
 804#endif
 805
 806#ifdef CONFIG_NUMA_BALANCING
 807/* The regions in numa_faults array from task_struct */
 808enum numa_faults_stats {
 809	NUMA_MEM = 0,
 810	NUMA_CPU,
 811	NUMA_MEMBUF,
 812	NUMA_CPUBUF
 813};
 814extern void sched_setnuma(struct task_struct *p, int node);
 815extern int migrate_task_to(struct task_struct *p, int cpu);
 816extern int migrate_swap(struct task_struct *, struct task_struct *);
 
 
 
 
 
 
 
 817#endif /* CONFIG_NUMA_BALANCING */
 818
 819#ifdef CONFIG_SMP
 820
 821static inline void
 822queue_balance_callback(struct rq *rq,
 823		       struct callback_head *head,
 824		       void (*func)(struct rq *rq))
 825{
 826	lockdep_assert_held(&rq->lock);
 827
 828	if (unlikely(head->next))
 829		return;
 830
 831	head->func = (void (*)(struct callback_head *))func;
 832	head->next = rq->balance_callback;
 833	rq->balance_callback = head;
 834}
 835
 836extern void sched_ttwu_pending(void);
 837
 838#define rcu_dereference_check_sched_domain(p) \
 839	rcu_dereference_check((p), \
 840			      lockdep_is_held(&sched_domains_mutex))
 841
 842/*
 843 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 844 * See detach_destroy_domains: synchronize_sched for details.
 845 *
 846 * The domain tree of any CPU may only be accessed from within
 847 * preempt-disabled sections.
 848 */
 849#define for_each_domain(cpu, __sd) \
 850	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 851			__sd; __sd = __sd->parent)
 852
 853#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 854
 855/**
 856 * highest_flag_domain - Return highest sched_domain containing flag.
 857 * @cpu:	The cpu whose highest level of sched domain is to
 858 *		be returned.
 859 * @flag:	The flag to check for the highest sched_domain
 860 *		for the given cpu.
 861 *
 862 * Returns the highest sched_domain of a cpu which contains the given flag.
 863 */
 864static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 865{
 866	struct sched_domain *sd, *hsd = NULL;
 867
 868	for_each_domain(cpu, sd) {
 869		if (!(sd->flags & flag))
 870			break;
 871		hsd = sd;
 872	}
 873
 874	return hsd;
 875}
 876
 877static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 878{
 879	struct sched_domain *sd;
 880
 881	for_each_domain(cpu, sd) {
 882		if (sd->flags & flag)
 883			break;
 884	}
 885
 886	return sd;
 887}
 888
 889DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 890DECLARE_PER_CPU(int, sd_llc_size);
 891DECLARE_PER_CPU(int, sd_llc_id);
 892DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 893DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 894DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 
 895
 896struct sched_group_capacity {
 897	atomic_t ref;
 898	/*
 899	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
 900	 * for a single CPU.
 901	 */
 902	unsigned long capacity;
 903	unsigned long min_capacity; /* Min per-CPU capacity in group */
 904	unsigned long next_update;
 905	int imbalance; /* XXX unrelated to capacity but shared group state */
 
 
 
 
 
 906
 907	unsigned long cpumask[0]; /* iteration mask */
 908};
 909
 910struct sched_group {
 911	struct sched_group *next;	/* Must be a circular list */
 912	atomic_t ref;
 913
 914	unsigned int group_weight;
 915	struct sched_group_capacity *sgc;
 916	int asym_prefer_cpu;		/* cpu of highest priority in group */
 917
 918	/*
 919	 * The CPUs this group covers.
 920	 *
 921	 * NOTE: this field is variable length. (Allocated dynamically
 922	 * by attaching extra space to the end of the structure,
 923	 * depending on how many CPUs the kernel has booted up with)
 924	 */
 925	unsigned long cpumask[0];
 926};
 927
 928static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 929{
 930	return to_cpumask(sg->cpumask);
 931}
 932
 933/*
 934 * cpumask masking which cpus in the group are allowed to iterate up the domain
 935 * tree.
 936 */
 937static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 938{
 939	return to_cpumask(sg->sgc->cpumask);
 940}
 941
 942/**
 943 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 944 * @group: The group whose first cpu is to be returned.
 945 */
 946static inline unsigned int group_first_cpu(struct sched_group *group)
 947{
 948	return cpumask_first(sched_group_cpus(group));
 949}
 950
 951extern int group_balance_cpu(struct sched_group *sg);
 952
 953#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 954void register_sched_domain_sysctl(void);
 
 955void unregister_sched_domain_sysctl(void);
 956#else
 957static inline void register_sched_domain_sysctl(void)
 958{
 959}
 
 
 
 960static inline void unregister_sched_domain_sysctl(void)
 961{
 962}
 963#endif
 964
 965#else
 966
 967static inline void sched_ttwu_pending(void) { }
 968
 969#endif /* CONFIG_SMP */
 970
 971#include "stats.h"
 972#include "auto_group.h"
 973
 974#ifdef CONFIG_CGROUP_SCHED
 975
 976/*
 977 * Return the group to which this tasks belongs.
 978 *
 979 * We cannot use task_css() and friends because the cgroup subsystem
 980 * changes that value before the cgroup_subsys::attach() method is called,
 981 * therefore we cannot pin it and might observe the wrong value.
 982 *
 983 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 984 * core changes this before calling sched_move_task().
 985 *
 986 * Instead we use a 'copy' which is updated from sched_move_task() while
 987 * holding both task_struct::pi_lock and rq::lock.
 988 */
 989static inline struct task_group *task_group(struct task_struct *p)
 990{
 991	return p->sched_task_group;
 992}
 993
 994/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 995static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 996{
 997#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 998	struct task_group *tg = task_group(p);
 999#endif
1000
1001#ifdef CONFIG_FAIR_GROUP_SCHED
1002	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1003	p->se.cfs_rq = tg->cfs_rq[cpu];
1004	p->se.parent = tg->se[cpu];
1005#endif
1006
1007#ifdef CONFIG_RT_GROUP_SCHED
1008	p->rt.rt_rq  = tg->rt_rq[cpu];
1009	p->rt.parent = tg->rt_se[cpu];
1010#endif
1011}
1012
1013#else /* CONFIG_CGROUP_SCHED */
1014
1015static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1016static inline struct task_group *task_group(struct task_struct *p)
1017{
1018	return NULL;
1019}
1020
1021#endif /* CONFIG_CGROUP_SCHED */
1022
1023static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1024{
1025	set_task_rq(p, cpu);
1026#ifdef CONFIG_SMP
1027	/*
1028	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029	 * successfuly executed on another CPU. We must ensure that updates of
1030	 * per-task data have been completed by this moment.
1031	 */
1032	smp_wmb();
1033#ifdef CONFIG_THREAD_INFO_IN_TASK
1034	p->cpu = cpu;
1035#else
1036	task_thread_info(p)->cpu = cpu;
1037#endif
1038	p->wake_cpu = cpu;
1039#endif
1040}
1041
1042/*
1043 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1044 */
1045#ifdef CONFIG_SCHED_DEBUG
1046# include <linux/static_key.h>
1047# define const_debug __read_mostly
1048#else
1049# define const_debug const
1050#endif
1051
1052extern const_debug unsigned int sysctl_sched_features;
1053
1054#define SCHED_FEAT(name, enabled)	\
1055	__SCHED_FEAT_##name ,
1056
1057enum {
1058#include "features.h"
1059	__SCHED_FEAT_NR,
1060};
1061
1062#undef SCHED_FEAT
1063
1064#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 
 
 
 
 
 
 
1065#define SCHED_FEAT(name, enabled)					\
1066static __always_inline bool static_branch_##name(struct static_key *key) \
1067{									\
1068	return static_key_##enabled(key);				\
1069}
1070
1071#include "features.h"
1072
1073#undef SCHED_FEAT
1074
1075extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1076#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1077#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1078#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1079#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081extern struct static_key_false sched_numa_balancing;
1082extern struct static_key_false sched_schedstats;
1083
1084static inline u64 global_rt_period(void)
1085{
1086	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1087}
1088
1089static inline u64 global_rt_runtime(void)
1090{
1091	if (sysctl_sched_rt_runtime < 0)
1092		return RUNTIME_INF;
1093
1094	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1095}
1096
1097static inline int task_current(struct rq *rq, struct task_struct *p)
1098{
1099	return rq->curr == p;
1100}
1101
1102static inline int task_running(struct rq *rq, struct task_struct *p)
1103{
1104#ifdef CONFIG_SMP
1105	return p->on_cpu;
1106#else
1107	return task_current(rq, p);
1108#endif
1109}
1110
1111static inline int task_on_rq_queued(struct task_struct *p)
1112{
1113	return p->on_rq == TASK_ON_RQ_QUEUED;
1114}
1115
1116static inline int task_on_rq_migrating(struct task_struct *p)
1117{
1118	return p->on_rq == TASK_ON_RQ_MIGRATING;
1119}
1120
1121#ifndef prepare_arch_switch
1122# define prepare_arch_switch(next)	do { } while (0)
1123#endif
1124#ifndef finish_arch_post_lock_switch
1125# define finish_arch_post_lock_switch()	do { } while (0)
1126#endif
1127
1128static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1129{
1130#ifdef CONFIG_SMP
1131	/*
1132	 * We can optimise this out completely for !SMP, because the
1133	 * SMP rebalancing from interrupt is the only thing that cares
1134	 * here.
1135	 */
1136	next->on_cpu = 1;
1137#endif
1138}
1139
1140static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1141{
1142#ifdef CONFIG_SMP
1143	/*
1144	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1145	 * We must ensure this doesn't happen until the switch is completely
1146	 * finished.
1147	 *
1148	 * In particular, the load of prev->state in finish_task_switch() must
1149	 * happen before this.
1150	 *
1151	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1152	 */
1153	smp_store_release(&prev->on_cpu, 0);
1154#endif
1155#ifdef CONFIG_DEBUG_SPINLOCK
1156	/* this is a valid case when another task releases the spinlock */
1157	rq->lock.owner = current;
1158#endif
1159	/*
1160	 * If we are tracking spinlock dependencies then we have to
1161	 * fix up the runqueue lock - which gets 'carried over' from
1162	 * prev into current:
1163	 */
1164	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1165
1166	raw_spin_unlock_irq(&rq->lock);
1167}
1168
1169/*
1170 * wake flags
1171 */
1172#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1173#define WF_FORK		0x02		/* child wakeup after fork */
1174#define WF_MIGRATED	0x4		/* internal use, task got migrated */
 
1175
1176/*
1177 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1178 * of tasks with abnormal "nice" values across CPUs the contribution that
1179 * each task makes to its run queue's load is weighted according to its
1180 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1181 * scaled version of the new time slice allocation that they receive on time
1182 * slice expiry etc.
1183 */
1184
1185#define WEIGHT_IDLEPRIO                3
1186#define WMULT_IDLEPRIO         1431655765
1187
1188extern const int sched_prio_to_weight[40];
1189extern const u32 sched_prio_to_wmult[40];
1190
1191/*
1192 * {de,en}queue flags:
1193 *
1194 * DEQUEUE_SLEEP  - task is no longer runnable
1195 * ENQUEUE_WAKEUP - task just became runnable
1196 *
1197 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1198 *                are in a known state which allows modification. Such pairs
1199 *                should preserve as much state as possible.
1200 *
1201 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1202 *        in the runqueue.
1203 *
1204 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1205 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1206 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1207 *
1208 */
1209
1210#define DEQUEUE_SLEEP		0x01
1211#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1212#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
 
1213
1214#define ENQUEUE_WAKEUP		0x01
1215#define ENQUEUE_RESTORE		0x02
1216#define ENQUEUE_MOVE		0x04
 
1217
1218#define ENQUEUE_HEAD		0x08
1219#define ENQUEUE_REPLENISH	0x10
1220#ifdef CONFIG_SMP
1221#define ENQUEUE_MIGRATED	0x20
1222#else
1223#define ENQUEUE_MIGRATED	0x00
1224#endif
1225
1226#define RETRY_TASK		((void *)-1UL)
1227
1228struct sched_class {
1229	const struct sched_class *next;
 
 
 
1230
1231	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1232	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1233	void (*yield_task) (struct rq *rq);
1234	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1235
1236	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1237
1238	/*
1239	 * It is the responsibility of the pick_next_task() method that will
1240	 * return the next task to call put_prev_task() on the @prev task or
1241	 * something equivalent.
1242	 *
1243	 * May return RETRY_TASK when it finds a higher prio class has runnable
1244	 * tasks.
1245	 */
1246	struct task_struct * (*pick_next_task) (struct rq *rq,
1247						struct task_struct *prev,
1248						struct pin_cookie cookie);
1249	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1250
1251#ifdef CONFIG_SMP
 
1252	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1253	void (*migrate_task_rq)(struct task_struct *p);
1254
1255	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1256
1257	void (*set_cpus_allowed)(struct task_struct *p,
1258				 const struct cpumask *newmask);
1259
1260	void (*rq_online)(struct rq *rq);
1261	void (*rq_offline)(struct rq *rq);
1262#endif
1263
1264	void (*set_curr_task) (struct rq *rq);
1265	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1266	void (*task_fork) (struct task_struct *p);
1267	void (*task_dead) (struct task_struct *p);
1268
1269	/*
1270	 * The switched_from() call is allowed to drop rq->lock, therefore we
1271	 * cannot assume the switched_from/switched_to pair is serliazed by
1272	 * rq->lock. They are however serialized by p->pi_lock.
1273	 */
1274	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1275	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1276	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1277			     int oldprio);
1278
1279	unsigned int (*get_rr_interval) (struct rq *rq,
1280					 struct task_struct *task);
1281
1282	void (*update_curr) (struct rq *rq);
1283
1284#define TASK_SET_GROUP  0
1285#define TASK_MOVE_GROUP	1
1286
1287#ifdef CONFIG_FAIR_GROUP_SCHED
1288	void (*task_change_group) (struct task_struct *p, int type);
1289#endif
1290};
1291
1292static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1293{
 
1294	prev->sched_class->put_prev_task(rq, prev);
1295}
1296
1297static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1298{
1299	curr->sched_class->set_curr_task(rq);
 
1300}
1301
1302#define sched_class_highest (&stop_sched_class)
 
 
 
 
 
 
 
 
 
1303#define for_each_class(class) \
1304   for (class = sched_class_highest; class; class = class->next)
1305
1306extern const struct sched_class stop_sched_class;
1307extern const struct sched_class dl_sched_class;
1308extern const struct sched_class rt_sched_class;
1309extern const struct sched_class fair_sched_class;
1310extern const struct sched_class idle_sched_class;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312
1313#ifdef CONFIG_SMP
1314
1315extern void update_group_capacity(struct sched_domain *sd, int cpu);
1316
1317extern void trigger_load_balance(struct rq *rq);
1318
1319extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1320
1321#endif
1322
1323#ifdef CONFIG_CPU_IDLE
1324static inline void idle_set_state(struct rq *rq,
1325				  struct cpuidle_state *idle_state)
1326{
1327	rq->idle_state = idle_state;
1328}
1329
1330static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1331{
1332	SCHED_WARN_ON(!rcu_read_lock_held());
 
1333	return rq->idle_state;
1334}
1335#else
1336static inline void idle_set_state(struct rq *rq,
1337				  struct cpuidle_state *idle_state)
1338{
1339}
1340
1341static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1342{
1343	return NULL;
1344}
1345#endif
1346
 
 
1347extern void sysrq_sched_debug_show(void);
1348extern void sched_init_granularity(void);
1349extern void update_max_interval(void);
1350
1351extern void init_sched_dl_class(void);
1352extern void init_sched_rt_class(void);
1353extern void init_sched_fair_class(void);
1354
 
 
1355extern void resched_curr(struct rq *rq);
1356extern void resched_cpu(int cpu);
1357
1358extern struct rt_bandwidth def_rt_bandwidth;
1359extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1360
1361extern struct dl_bandwidth def_dl_bandwidth;
1362extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1363extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 
1364
 
 
 
 
 
1365unsigned long to_ratio(u64 period, u64 runtime);
1366
1367extern void init_entity_runnable_average(struct sched_entity *se);
1368extern void post_init_entity_util_avg(struct sched_entity *se);
1369
1370#ifdef CONFIG_NO_HZ_FULL
1371extern bool sched_can_stop_tick(struct rq *rq);
 
1372
1373/*
1374 * Tick may be needed by tasks in the runqueue depending on their policy and
1375 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1376 * nohz mode if necessary.
1377 */
1378static inline void sched_update_tick_dependency(struct rq *rq)
1379{
1380	int cpu;
1381
1382	if (!tick_nohz_full_enabled())
1383		return;
1384
1385	cpu = cpu_of(rq);
1386
1387	if (!tick_nohz_full_cpu(cpu))
1388		return;
1389
1390	if (sched_can_stop_tick(rq))
1391		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1392	else
1393		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1394}
1395#else
 
1396static inline void sched_update_tick_dependency(struct rq *rq) { }
1397#endif
1398
1399static inline void add_nr_running(struct rq *rq, unsigned count)
1400{
1401	unsigned prev_nr = rq->nr_running;
1402
1403	rq->nr_running = prev_nr + count;
 
 
 
1404
1405	if (prev_nr < 2 && rq->nr_running >= 2) {
1406#ifdef CONFIG_SMP
1407		if (!rq->rd->overload)
1408			rq->rd->overload = true;
1409#endif
1410	}
 
1411
1412	sched_update_tick_dependency(rq);
1413}
1414
1415static inline void sub_nr_running(struct rq *rq, unsigned count)
1416{
1417	rq->nr_running -= count;
 
 
 
 
1418	/* Check if we still need preemption */
1419	sched_update_tick_dependency(rq);
1420}
1421
1422static inline void rq_last_tick_reset(struct rq *rq)
1423{
1424#ifdef CONFIG_NO_HZ_FULL
1425	rq->last_sched_tick = jiffies;
1426#endif
1427}
1428
1429extern void update_rq_clock(struct rq *rq);
1430
1431extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1432extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1433
1434extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1435
1436extern const_debug unsigned int sysctl_sched_time_avg;
1437extern const_debug unsigned int sysctl_sched_nr_migrate;
1438extern const_debug unsigned int sysctl_sched_migration_cost;
1439
1440static inline u64 sched_avg_period(void)
1441{
1442	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1443}
1444
1445#ifdef CONFIG_SCHED_HRTICK
1446
1447/*
1448 * Use hrtick when:
1449 *  - enabled by features
1450 *  - hrtimer is actually high res
1451 */
1452static inline int hrtick_enabled(struct rq *rq)
1453{
1454	if (!sched_feat(HRTICK))
1455		return 0;
1456	if (!cpu_active(cpu_of(rq)))
1457		return 0;
1458	return hrtimer_is_hres_active(&rq->hrtick_timer);
1459}
1460
1461void hrtick_start(struct rq *rq, u64 delay);
1462
1463#else
1464
1465static inline int hrtick_enabled(struct rq *rq)
1466{
1467	return 0;
1468}
1469
1470#endif /* CONFIG_SCHED_HRTICK */
1471
1472#ifdef CONFIG_SMP
1473extern void sched_avg_update(struct rq *rq);
1474
1475#ifndef arch_scale_freq_capacity
1476static __always_inline
1477unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1478{
1479	return SCHED_CAPACITY_SCALE;
1480}
1481#endif
1482
1483#ifndef arch_scale_cpu_capacity
 
 
 
 
 
 
 
 
 
 
1484static __always_inline
1485unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1486{
1487	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1488		return sd->smt_gain / sd->span_weight;
1489
1490	return SCHED_CAPACITY_SCALE;
1491}
1492#endif
1493
1494static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1495{
1496	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1497	sched_avg_update(rq);
1498}
1499#else
1500static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1501static inline void sched_avg_update(struct rq *rq) { }
1502#endif
1503
1504struct rq_flags {
1505	unsigned long flags;
1506	struct pin_cookie cookie;
1507};
1508
1509struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1510	__acquires(rq->lock);
1511struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1512	__acquires(p->pi_lock)
1513	__acquires(rq->lock);
1514
1515static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1516	__releases(rq->lock)
1517{
1518	lockdep_unpin_lock(&rq->lock, rf->cookie);
1519	raw_spin_unlock(&rq->lock);
1520}
1521
1522static inline void
1523task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1524	__releases(rq->lock)
1525	__releases(p->pi_lock)
1526{
1527	lockdep_unpin_lock(&rq->lock, rf->cookie);
1528	raw_spin_unlock(&rq->lock);
1529	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1530}
1531
1532#ifdef CONFIG_SMP
1533#ifdef CONFIG_PREEMPT
1534
1535static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1536
1537/*
1538 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1539 * way at the expense of forcing extra atomic operations in all
1540 * invocations.  This assures that the double_lock is acquired using the
1541 * same underlying policy as the spinlock_t on this architecture, which
1542 * reduces latency compared to the unfair variant below.  However, it
1543 * also adds more overhead and therefore may reduce throughput.
1544 */
1545static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1546	__releases(this_rq->lock)
1547	__acquires(busiest->lock)
1548	__acquires(this_rq->lock)
1549{
1550	raw_spin_unlock(&this_rq->lock);
1551	double_rq_lock(this_rq, busiest);
1552
1553	return 1;
1554}
1555
1556#else
1557/*
1558 * Unfair double_lock_balance: Optimizes throughput at the expense of
1559 * latency by eliminating extra atomic operations when the locks are
1560 * already in proper order on entry.  This favors lower cpu-ids and will
1561 * grant the double lock to lower cpus over higher ids under contention,
1562 * regardless of entry order into the function.
1563 */
1564static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1565	__releases(this_rq->lock)
1566	__acquires(busiest->lock)
1567	__acquires(this_rq->lock)
1568{
1569	int ret = 0;
1570
1571	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1572		if (busiest < this_rq) {
1573			raw_spin_unlock(&this_rq->lock);
1574			raw_spin_lock(&busiest->lock);
1575			raw_spin_lock_nested(&this_rq->lock,
1576					      SINGLE_DEPTH_NESTING);
1577			ret = 1;
1578		} else
1579			raw_spin_lock_nested(&busiest->lock,
1580					      SINGLE_DEPTH_NESTING);
1581	}
1582	return ret;
1583}
1584
1585#endif /* CONFIG_PREEMPT */
1586
1587/*
1588 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1589 */
1590static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1591{
1592	if (unlikely(!irqs_disabled())) {
1593		/* printk() doesn't work good under rq->lock */
1594		raw_spin_unlock(&this_rq->lock);
1595		BUG_ON(1);
1596	}
1597
1598	return _double_lock_balance(this_rq, busiest);
1599}
1600
1601static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1602	__releases(busiest->lock)
1603{
1604	raw_spin_unlock(&busiest->lock);
1605	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1606}
1607
1608static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1609{
1610	if (l1 > l2)
1611		swap(l1, l2);
1612
1613	spin_lock(l1);
1614	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1615}
1616
1617static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1618{
1619	if (l1 > l2)
1620		swap(l1, l2);
1621
1622	spin_lock_irq(l1);
1623	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1624}
1625
1626static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1627{
1628	if (l1 > l2)
1629		swap(l1, l2);
1630
1631	raw_spin_lock(l1);
1632	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1633}
1634
1635/*
1636 * double_rq_lock - safely lock two runqueues
1637 *
1638 * Note this does not disable interrupts like task_rq_lock,
1639 * you need to do so manually before calling.
1640 */
1641static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1642	__acquires(rq1->lock)
1643	__acquires(rq2->lock)
1644{
1645	BUG_ON(!irqs_disabled());
1646	if (rq1 == rq2) {
1647		raw_spin_lock(&rq1->lock);
1648		__acquire(rq2->lock);	/* Fake it out ;) */
1649	} else {
1650		if (rq1 < rq2) {
1651			raw_spin_lock(&rq1->lock);
1652			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1653		} else {
1654			raw_spin_lock(&rq2->lock);
1655			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1656		}
1657	}
1658}
1659
1660/*
1661 * double_rq_unlock - safely unlock two runqueues
1662 *
1663 * Note this does not restore interrupts like task_rq_unlock,
1664 * you need to do so manually after calling.
1665 */
1666static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1667	__releases(rq1->lock)
1668	__releases(rq2->lock)
1669{
1670	raw_spin_unlock(&rq1->lock);
1671	if (rq1 != rq2)
1672		raw_spin_unlock(&rq2->lock);
1673	else
1674		__release(rq2->lock);
1675}
1676
 
 
 
 
1677#else /* CONFIG_SMP */
1678
1679/*
1680 * double_rq_lock - safely lock two runqueues
1681 *
1682 * Note this does not disable interrupts like task_rq_lock,
1683 * you need to do so manually before calling.
1684 */
1685static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1686	__acquires(rq1->lock)
1687	__acquires(rq2->lock)
1688{
1689	BUG_ON(!irqs_disabled());
1690	BUG_ON(rq1 != rq2);
1691	raw_spin_lock(&rq1->lock);
1692	__acquire(rq2->lock);	/* Fake it out ;) */
1693}
1694
1695/*
1696 * double_rq_unlock - safely unlock two runqueues
1697 *
1698 * Note this does not restore interrupts like task_rq_unlock,
1699 * you need to do so manually after calling.
1700 */
1701static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1702	__releases(rq1->lock)
1703	__releases(rq2->lock)
1704{
1705	BUG_ON(rq1 != rq2);
1706	raw_spin_unlock(&rq1->lock);
1707	__release(rq2->lock);
1708}
1709
1710#endif
1711
1712extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1713extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1714
1715#ifdef	CONFIG_SCHED_DEBUG
 
 
1716extern void print_cfs_stats(struct seq_file *m, int cpu);
1717extern void print_rt_stats(struct seq_file *m, int cpu);
1718extern void print_dl_stats(struct seq_file *m, int cpu);
1719extern void
1720print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1721
1722#ifdef CONFIG_NUMA_BALANCING
1723extern void
1724show_numa_stats(struct task_struct *p, struct seq_file *m);
1725extern void
1726print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1727	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1728#endif /* CONFIG_NUMA_BALANCING */
1729#endif /* CONFIG_SCHED_DEBUG */
1730
1731extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1732extern void init_rt_rq(struct rt_rq *rt_rq);
1733extern void init_dl_rq(struct dl_rq *dl_rq);
1734
1735extern void cfs_bandwidth_usage_inc(void);
1736extern void cfs_bandwidth_usage_dec(void);
1737
1738#ifdef CONFIG_NO_HZ_COMMON
1739enum rq_nohz_flag_bits {
1740	NOHZ_TICK_STOPPED,
1741	NOHZ_BALANCE_KICK,
1742};
 
 
 
1743
1744#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1745
1746extern void nohz_balance_exit_idle(unsigned int cpu);
1747#else
1748static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1749#endif
1750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1752struct irqtime {
1753	u64			hardirq_time;
1754	u64			softirq_time;
1755	u64			irq_start_time;
1756	struct u64_stats_sync	sync;
1757};
1758
1759DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1760
 
 
 
 
 
1761static inline u64 irq_time_read(int cpu)
1762{
1763	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1764	unsigned int seq;
1765	u64 total;
1766
1767	do {
1768		seq = __u64_stats_fetch_begin(&irqtime->sync);
1769		total = irqtime->softirq_time + irqtime->hardirq_time;
1770	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1771
1772	return total;
1773}
1774#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1775
1776#ifdef CONFIG_CPU_FREQ
1777DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1778
1779/**
1780 * cpufreq_update_util - Take a note about CPU utilization changes.
1781 * @rq: Runqueue to carry out the update for.
1782 * @flags: Update reason flags.
1783 *
1784 * This function is called by the scheduler on the CPU whose utilization is
1785 * being updated.
1786 *
1787 * It can only be called from RCU-sched read-side critical sections.
1788 *
1789 * The way cpufreq is currently arranged requires it to evaluate the CPU
1790 * performance state (frequency/voltage) on a regular basis to prevent it from
1791 * being stuck in a completely inadequate performance level for too long.
1792 * That is not guaranteed to happen if the updates are only triggered from CFS,
1793 * though, because they may not be coming in if RT or deadline tasks are active
1794 * all the time (or there are RT and DL tasks only).
1795 *
1796 * As a workaround for that issue, this function is called by the RT and DL
1797 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1798 * but that really is a band-aid.  Going forward it should be replaced with
1799 * solutions targeted more specifically at RT and DL tasks.
1800 */
1801static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1802{
1803	struct update_util_data *data;
1804
1805	data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
 
1806	if (data)
1807		data->func(data, rq_clock(rq), flags);
1808}
1809
1810static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1811{
1812	if (cpu_of(rq) == smp_processor_id())
1813		cpufreq_update_util(rq, flags);
1814}
1815#else
1816static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1817static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1818#endif /* CONFIG_CPU_FREQ */
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820#ifdef arch_scale_freq_capacity
1821#ifndef arch_scale_freq_invariant
1822#define arch_scale_freq_invariant()	(true)
 
 
 
1823#endif
1824#else /* arch_scale_freq_capacity */
1825#define arch_scale_freq_invariant()	(false)
 
 
 
 
1826#endif
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#include <linux/sched.h>
   6
   7#include <linux/sched/autogroup.h>
   8#include <linux/sched/clock.h>
   9#include <linux/sched/coredump.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/cputime.h>
  12#include <linux/sched/deadline.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/hotplug.h>
  15#include <linux/sched/idle.h>
  16#include <linux/sched/init.h>
  17#include <linux/sched/isolation.h>
  18#include <linux/sched/jobctl.h>
  19#include <linux/sched/loadavg.h>
  20#include <linux/sched/mm.h>
  21#include <linux/sched/nohz.h>
  22#include <linux/sched/numa_balancing.h>
  23#include <linux/sched/prio.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/smt.h>
  27#include <linux/sched/stat.h>
  28#include <linux/sched/sysctl.h>
  29#include <linux/sched/task.h>
  30#include <linux/sched/task_stack.h>
  31#include <linux/sched/topology.h>
  32#include <linux/sched/user.h>
  33#include <linux/sched/wake_q.h>
  34#include <linux/sched/xacct.h>
  35
  36#include <uapi/linux/sched/types.h>
  37
  38#include <linux/binfmts.h>
  39#include <linux/blkdev.h>
  40#include <linux/compat.h>
  41#include <linux/context_tracking.h>
  42#include <linux/cpufreq.h>
  43#include <linux/cpuidle.h>
  44#include <linux/cpuset.h>
  45#include <linux/ctype.h>
  46#include <linux/debugfs.h>
  47#include <linux/delayacct.h>
  48#include <linux/energy_model.h>
  49#include <linux/init_task.h>
  50#include <linux/kprobes.h>
  51#include <linux/kthread.h>
  52#include <linux/membarrier.h>
  53#include <linux/migrate.h>
  54#include <linux/mmu_context.h>
  55#include <linux/nmi.h>
  56#include <linux/proc_fs.h>
  57#include <linux/prefetch.h>
  58#include <linux/profile.h>
  59#include <linux/psi.h>
  60#include <linux/rcupdate_wait.h>
  61#include <linux/security.h>
  62#include <linux/stop_machine.h>
  63#include <linux/suspend.h>
  64#include <linux/swait.h>
  65#include <linux/syscalls.h>
  66#include <linux/task_work.h>
  67#include <linux/tsacct_kern.h>
  68
  69#include <asm/tlb.h>
  70#include <asm-generic/vmlinux.lds.h>
  71
  72#ifdef CONFIG_PARAVIRT
  73# include <asm/paravirt.h>
  74#endif
  75
  76#include "cpupri.h"
  77#include "cpudeadline.h"
  78
  79#include <trace/events/sched.h>
  80
  81#ifdef CONFIG_SCHED_DEBUG
  82# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  83#else
  84# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
  85#endif
  86
  87struct rq;
  88struct cpuidle_state;
  89
  90/* task_struct::on_rq states: */
  91#define TASK_ON_RQ_QUEUED	1
  92#define TASK_ON_RQ_MIGRATING	2
  93
  94extern __read_mostly int scheduler_running;
  95
  96extern unsigned long calc_load_update;
  97extern atomic_long_t calc_load_tasks;
  98
  99extern void calc_global_load_tick(struct rq *this_rq);
 100extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 101
 102extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 
 
 
 
 
 103/*
 104 * Helpers for converting nanosecond timing to jiffy resolution
 105 */
 106#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 107
 108/*
 109 * Increase resolution of nice-level calculations for 64-bit architectures.
 110 * The extra resolution improves shares distribution and load balancing of
 111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 112 * hierarchies, especially on larger systems. This is not a user-visible change
 113 * and does not change the user-interface for setting shares/weights.
 114 *
 115 * We increase resolution only if we have enough bits to allow this increased
 116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 117 * are pretty high and the returns do not justify the increased costs.
 118 *
 119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 120 * increase coverage and consistency always enable it on 64-bit platforms.
 121 */
 122#ifdef CONFIG_64BIT
 123# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 124# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 125# define scale_load_down(w) \
 126({ \
 127	unsigned long __w = (w); \
 128	if (__w) \
 129		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 130	__w; \
 131})
 132#else
 133# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 134# define scale_load(w)		(w)
 135# define scale_load_down(w)	(w)
 136#endif
 137
 138/*
 139 * Task weight (visible to users) and its load (invisible to users) have
 140 * independent resolution, but they should be well calibrated. We use
 141 * scale_load() and scale_load_down(w) to convert between them. The
 142 * following must be true:
 143 *
 144 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
 145 *
 146 */
 147#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 148
 149/*
 150 * Single value that decides SCHED_DEADLINE internal math precision.
 151 * 10 -> just above 1us
 152 * 9  -> just above 0.5us
 153 */
 154#define DL_SCALE		10
 155
 156/*
 157 * Single value that denotes runtime == period, ie unlimited time.
 158 */
 159#define RUNTIME_INF		((u64)~0ULL)
 
 
 
 
 160
 161static inline int idle_policy(int policy)
 162{
 163	return policy == SCHED_IDLE;
 164}
 165static inline int fair_policy(int policy)
 166{
 167	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 168}
 169
 170static inline int rt_policy(int policy)
 171{
 172	return policy == SCHED_FIFO || policy == SCHED_RR;
 173}
 174
 175static inline int dl_policy(int policy)
 176{
 177	return policy == SCHED_DEADLINE;
 178}
 179static inline bool valid_policy(int policy)
 180{
 181	return idle_policy(policy) || fair_policy(policy) ||
 182		rt_policy(policy) || dl_policy(policy);
 183}
 184
 185static inline int task_has_idle_policy(struct task_struct *p)
 186{
 187	return idle_policy(p->policy);
 188}
 189
 190static inline int task_has_rt_policy(struct task_struct *p)
 191{
 192	return rt_policy(p->policy);
 193}
 194
 195static inline int task_has_dl_policy(struct task_struct *p)
 196{
 197	return dl_policy(p->policy);
 198}
 199
 200#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 201
 202static inline void update_avg(u64 *avg, u64 sample)
 203{
 204	s64 diff = sample - *avg;
 205	*avg += diff / 8;
 206}
 207
 208/*
 209 * !! For sched_setattr_nocheck() (kernel) only !!
 210 *
 211 * This is actually gross. :(
 212 *
 213 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 214 * tasks, but still be able to sleep. We need this on platforms that cannot
 215 * atomically change clock frequency. Remove once fast switching will be
 216 * available on such platforms.
 217 *
 218 * SUGOV stands for SchedUtil GOVernor.
 219 */
 220#define SCHED_FLAG_SUGOV	0x10000000
 221
 222static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 223{
 224#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 225	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 226#else
 227	return false;
 228#endif
 229}
 230
 231/*
 232 * Tells if entity @a should preempt entity @b.
 233 */
 234static inline bool
 235dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 236{
 237	return dl_entity_is_special(a) ||
 238	       dl_time_before(a->deadline, b->deadline);
 239}
 240
 241/*
 242 * This is the priority-queue data structure of the RT scheduling class:
 243 */
 244struct rt_prio_array {
 245	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 246	struct list_head queue[MAX_RT_PRIO];
 247};
 248
 249struct rt_bandwidth {
 250	/* nests inside the rq lock: */
 251	raw_spinlock_t		rt_runtime_lock;
 252	ktime_t			rt_period;
 253	u64			rt_runtime;
 254	struct hrtimer		rt_period_timer;
 255	unsigned int		rt_period_active;
 256};
 257
 258void __dl_clear_params(struct task_struct *p);
 259
 260/*
 261 * To keep the bandwidth of -deadline tasks and groups under control
 262 * we need some place where:
 263 *  - store the maximum -deadline bandwidth of the system (the group);
 264 *  - cache the fraction of that bandwidth that is currently allocated.
 265 *
 266 * This is all done in the data structure below. It is similar to the
 267 * one used for RT-throttling (rt_bandwidth), with the main difference
 268 * that, since here we are only interested in admission control, we
 269 * do not decrease any runtime while the group "executes", neither we
 270 * need a timer to replenish it.
 271 *
 272 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 273 * meaning that:
 274 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 275 *  - dl_total_bw array contains, in the i-eth element, the currently
 276 *    allocated bandwidth on the i-eth CPU.
 277 * Moreover, groups consume bandwidth on each CPU, while tasks only
 278 * consume bandwidth on the CPU they're running on.
 279 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 280 * that will be shown the next time the proc or cgroup controls will
 281 * be red. It on its turn can be changed by writing on its own
 282 * control.
 283 */
 284struct dl_bandwidth {
 285	raw_spinlock_t		dl_runtime_lock;
 286	u64			dl_runtime;
 287	u64			dl_period;
 288};
 289
 290static inline int dl_bandwidth_enabled(void)
 291{
 292	return sysctl_sched_rt_runtime >= 0;
 293}
 294
 
 
 295struct dl_bw {
 296	raw_spinlock_t		lock;
 297	u64			bw;
 298	u64			total_bw;
 299};
 300
 301static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
 302
 303static inline
 304void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 305{
 306	dl_b->total_bw -= tsk_bw;
 307	__dl_update(dl_b, (s32)tsk_bw / cpus);
 308}
 309
 310static inline
 311void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 312{
 313	dl_b->total_bw += tsk_bw;
 314	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 315}
 316
 317static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
 318				 u64 old_bw, u64 new_bw)
 319{
 320	return dl_b->bw != -1 &&
 321	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 322}
 323
 324/*
 325 * Verify the fitness of task @p to run on @cpu taking into account the
 326 * CPU original capacity and the runtime/deadline ratio of the task.
 327 *
 328 * The function will return true if the CPU original capacity of the
 329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
 330 * task and false otherwise.
 331 */
 332static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
 333{
 334	unsigned long cap = arch_scale_cpu_capacity(cpu);
 335
 336	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
 337}
 338
 339extern void init_dl_bw(struct dl_bw *dl_b);
 340extern int  sched_dl_global_validate(void);
 341extern void sched_dl_do_global(void);
 342extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 343extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 344extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 345extern bool __checkparam_dl(const struct sched_attr *attr);
 346extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 347extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
 348extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 349extern bool dl_cpu_busy(unsigned int cpu);
 350
 351#ifdef CONFIG_CGROUP_SCHED
 352
 353#include <linux/cgroup.h>
 354#include <linux/psi.h>
 355
 356struct cfs_rq;
 357struct rt_rq;
 358
 359extern struct list_head task_groups;
 360
 361struct cfs_bandwidth {
 362#ifdef CONFIG_CFS_BANDWIDTH
 363	raw_spinlock_t		lock;
 364	ktime_t			period;
 365	u64			quota;
 366	u64			runtime;
 367	s64			hierarchical_quota;
 368
 369	u8			idle;
 370	u8			period_active;
 371	u8			slack_started;
 372	struct hrtimer		period_timer;
 373	struct hrtimer		slack_timer;
 374	struct list_head	throttled_cfs_rq;
 375
 376	/* Statistics: */
 377	int			nr_periods;
 378	int			nr_throttled;
 379	u64			throttled_time;
 380#endif
 381};
 382
 383/* Task group related information */
 384struct task_group {
 385	struct cgroup_subsys_state css;
 386
 387#ifdef CONFIG_FAIR_GROUP_SCHED
 388	/* schedulable entities of this group on each CPU */
 389	struct sched_entity	**se;
 390	/* runqueue "owned" by this group on each CPU */
 391	struct cfs_rq		**cfs_rq;
 392	unsigned long		shares;
 393
 394#ifdef	CONFIG_SMP
 395	/*
 396	 * load_avg can be heavily contended at clock tick time, so put
 397	 * it in its own cacheline separated from the fields above which
 398	 * will also be accessed at each tick.
 399	 */
 400	atomic_long_t		load_avg ____cacheline_aligned;
 401#endif
 402#endif
 403
 404#ifdef CONFIG_RT_GROUP_SCHED
 405	struct sched_rt_entity	**rt_se;
 406	struct rt_rq		**rt_rq;
 407
 408	struct rt_bandwidth	rt_bandwidth;
 409#endif
 410
 411	struct rcu_head		rcu;
 412	struct list_head	list;
 413
 414	struct task_group	*parent;
 415	struct list_head	siblings;
 416	struct list_head	children;
 417
 418#ifdef CONFIG_SCHED_AUTOGROUP
 419	struct autogroup	*autogroup;
 420#endif
 421
 422	struct cfs_bandwidth	cfs_bandwidth;
 423
 424#ifdef CONFIG_UCLAMP_TASK_GROUP
 425	/* The two decimal precision [%] value requested from user-space */
 426	unsigned int		uclamp_pct[UCLAMP_CNT];
 427	/* Clamp values requested for a task group */
 428	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 429	/* Effective clamp values used for a task group */
 430	struct uclamp_se	uclamp[UCLAMP_CNT];
 431#endif
 432
 
 433};
 434
 435#ifdef CONFIG_FAIR_GROUP_SCHED
 436#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 437
 438/*
 439 * A weight of 0 or 1 can cause arithmetics problems.
 440 * A weight of a cfs_rq is the sum of weights of which entities
 441 * are queued on this cfs_rq, so a weight of a entity should not be
 442 * too large, so as the shares value of a task group.
 443 * (The default weight is 1024 - so there's no practical
 444 *  limitation from this.)
 445 */
 446#define MIN_SHARES		(1UL <<  1)
 447#define MAX_SHARES		(1UL << 18)
 448#endif
 449
 450typedef int (*tg_visitor)(struct task_group *, void *);
 451
 452extern int walk_tg_tree_from(struct task_group *from,
 453			     tg_visitor down, tg_visitor up, void *data);
 454
 455/*
 456 * Iterate the full tree, calling @down when first entering a node and @up when
 457 * leaving it for the final time.
 458 *
 459 * Caller must hold rcu_lock or sufficient equivalent.
 460 */
 461static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 462{
 463	return walk_tg_tree_from(&root_task_group, down, up, data);
 464}
 465
 466extern int tg_nop(struct task_group *tg, void *data);
 467
 468extern void free_fair_sched_group(struct task_group *tg);
 469extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 470extern void online_fair_sched_group(struct task_group *tg);
 471extern void unregister_fair_sched_group(struct task_group *tg);
 472extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 473			struct sched_entity *se, int cpu,
 474			struct sched_entity *parent);
 475extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 476
 477extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 478extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 479extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 480
 481extern void free_rt_sched_group(struct task_group *tg);
 482extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 483extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 484		struct sched_rt_entity *rt_se, int cpu,
 485		struct sched_rt_entity *parent);
 486extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 487extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 488extern long sched_group_rt_runtime(struct task_group *tg);
 489extern long sched_group_rt_period(struct task_group *tg);
 490extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 491
 492extern struct task_group *sched_create_group(struct task_group *parent);
 493extern void sched_online_group(struct task_group *tg,
 494			       struct task_group *parent);
 495extern void sched_destroy_group(struct task_group *tg);
 496extern void sched_offline_group(struct task_group *tg);
 497
 498extern void sched_move_task(struct task_struct *tsk);
 499
 500#ifdef CONFIG_FAIR_GROUP_SCHED
 501extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 502
 503#ifdef CONFIG_SMP
 504extern void set_task_rq_fair(struct sched_entity *se,
 505			     struct cfs_rq *prev, struct cfs_rq *next);
 506#else /* !CONFIG_SMP */
 507static inline void set_task_rq_fair(struct sched_entity *se,
 508			     struct cfs_rq *prev, struct cfs_rq *next) { }
 509#endif /* CONFIG_SMP */
 510#endif /* CONFIG_FAIR_GROUP_SCHED */
 511
 512#else /* CONFIG_CGROUP_SCHED */
 513
 514struct cfs_bandwidth { };
 515
 516#endif	/* CONFIG_CGROUP_SCHED */
 517
 518/* CFS-related fields in a runqueue */
 519struct cfs_rq {
 520	struct load_weight	load;
 521	unsigned int		nr_running;
 522	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 523	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 524
 525	u64			exec_clock;
 526	u64			min_vruntime;
 527#ifndef CONFIG_64BIT
 528	u64			min_vruntime_copy;
 529#endif
 530
 531	struct rb_root_cached	tasks_timeline;
 
 532
 533	/*
 534	 * 'curr' points to currently running entity on this cfs_rq.
 535	 * It is set to NULL otherwise (i.e when none are currently running).
 536	 */
 537	struct sched_entity	*curr;
 538	struct sched_entity	*next;
 539	struct sched_entity	*last;
 540	struct sched_entity	*skip;
 541
 542#ifdef	CONFIG_SCHED_DEBUG
 543	unsigned int		nr_spread_over;
 544#endif
 545
 546#ifdef CONFIG_SMP
 547	/*
 548	 * CFS load tracking
 549	 */
 550	struct sched_avg	avg;
 
 
 
 
 
 
 
 551#ifndef CONFIG_64BIT
 552	u64			load_last_update_time_copy;
 553#endif
 554	struct {
 555		raw_spinlock_t	lock ____cacheline_aligned;
 556		int		nr;
 557		unsigned long	load_avg;
 558		unsigned long	util_avg;
 559		unsigned long	runnable_avg;
 560	} removed;
 561
 562#ifdef CONFIG_FAIR_GROUP_SCHED
 563	unsigned long		tg_load_avg_contrib;
 564	long			propagate;
 565	long			prop_runnable_sum;
 566
 567	/*
 568	 *   h_load = weight * f(tg)
 569	 *
 570	 * Where f(tg) is the recursive weight fraction assigned to
 571	 * this group.
 572	 */
 573	unsigned long		h_load;
 574	u64			last_h_load_update;
 575	struct sched_entity	*h_load_next;
 576#endif /* CONFIG_FAIR_GROUP_SCHED */
 577#endif /* CONFIG_SMP */
 578
 579#ifdef CONFIG_FAIR_GROUP_SCHED
 580	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 581
 582	/*
 583	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 584	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 585	 * (like users, containers etc.)
 586	 *
 587	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 588	 * This list is used during load balance.
 589	 */
 590	int			on_list;
 591	struct list_head	leaf_cfs_rq_list;
 592	struct task_group	*tg;	/* group that "owns" this runqueue */
 593
 594#ifdef CONFIG_CFS_BANDWIDTH
 595	int			runtime_enabled;
 596	s64			runtime_remaining;
 597
 598	u64			throttled_clock;
 599	u64			throttled_clock_task;
 600	u64			throttled_clock_task_time;
 601	int			throttled;
 602	int			throttle_count;
 603	struct list_head	throttled_list;
 604#endif /* CONFIG_CFS_BANDWIDTH */
 605#endif /* CONFIG_FAIR_GROUP_SCHED */
 606};
 607
 608static inline int rt_bandwidth_enabled(void)
 609{
 610	return sysctl_sched_rt_runtime >= 0;
 611}
 612
 613/* RT IPI pull logic requires IRQ_WORK */
 614#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 615# define HAVE_RT_PUSH_IPI
 616#endif
 617
 618/* Real-Time classes' related field in a runqueue: */
 619struct rt_rq {
 620	struct rt_prio_array	active;
 621	unsigned int		rt_nr_running;
 622	unsigned int		rr_nr_running;
 623#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 624	struct {
 625		int		curr; /* highest queued rt task prio */
 626#ifdef CONFIG_SMP
 627		int		next; /* next highest */
 628#endif
 629	} highest_prio;
 630#endif
 631#ifdef CONFIG_SMP
 632	unsigned long		rt_nr_migratory;
 633	unsigned long		rt_nr_total;
 634	int			overloaded;
 635	struct plist_head	pushable_tasks;
 636
 
 
 
 
 
 637#endif /* CONFIG_SMP */
 638	int			rt_queued;
 639
 640	int			rt_throttled;
 641	u64			rt_time;
 642	u64			rt_runtime;
 643	/* Nests inside the rq lock: */
 644	raw_spinlock_t		rt_runtime_lock;
 645
 646#ifdef CONFIG_RT_GROUP_SCHED
 647	unsigned long		rt_nr_boosted;
 648
 649	struct rq		*rq;
 650	struct task_group	*tg;
 651#endif
 652};
 653
 654static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 655{
 656	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 657}
 658
 659/* Deadline class' related fields in a runqueue */
 660struct dl_rq {
 661	/* runqueue is an rbtree, ordered by deadline */
 662	struct rb_root_cached	root;
 
 663
 664	unsigned long		dl_nr_running;
 665
 666#ifdef CONFIG_SMP
 667	/*
 668	 * Deadline values of the currently executing and the
 669	 * earliest ready task on this rq. Caching these facilitates
 670	 * the decision whether or not a ready but not running task
 671	 * should migrate somewhere else.
 672	 */
 673	struct {
 674		u64		curr;
 675		u64		next;
 676	} earliest_dl;
 677
 678	unsigned long		dl_nr_migratory;
 679	int			overloaded;
 680
 681	/*
 682	 * Tasks on this rq that can be pushed away. They are kept in
 683	 * an rb-tree, ordered by tasks' deadlines, with caching
 684	 * of the leftmost (earliest deadline) element.
 685	 */
 686	struct rb_root_cached	pushable_dl_tasks_root;
 
 687#else
 688	struct dl_bw		dl_bw;
 689#endif
 690	/*
 691	 * "Active utilization" for this runqueue: increased when a
 692	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 693	 * task blocks
 694	 */
 695	u64			running_bw;
 696
 697	/*
 698	 * Utilization of the tasks "assigned" to this runqueue (including
 699	 * the tasks that are in runqueue and the tasks that executed on this
 700	 * CPU and blocked). Increased when a task moves to this runqueue, and
 701	 * decreased when the task moves away (migrates, changes scheduling
 702	 * policy, or terminates).
 703	 * This is needed to compute the "inactive utilization" for the
 704	 * runqueue (inactive utilization = this_bw - running_bw).
 705	 */
 706	u64			this_bw;
 707	u64			extra_bw;
 708
 709	/*
 710	 * Inverse of the fraction of CPU utilization that can be reclaimed
 711	 * by the GRUB algorithm.
 712	 */
 713	u64			bw_ratio;
 714};
 715
 716#ifdef CONFIG_FAIR_GROUP_SCHED
 717/* An entity is a task if it doesn't "own" a runqueue */
 718#define entity_is_task(se)	(!se->my_q)
 719
 720static inline void se_update_runnable(struct sched_entity *se)
 721{
 722	if (!entity_is_task(se))
 723		se->runnable_weight = se->my_q->h_nr_running;
 724}
 725
 726static inline long se_runnable(struct sched_entity *se)
 727{
 728	if (entity_is_task(se))
 729		return !!se->on_rq;
 730	else
 731		return se->runnable_weight;
 732}
 733
 734#else
 735#define entity_is_task(se)	1
 736
 737static inline void se_update_runnable(struct sched_entity *se) {}
 738
 739static inline long se_runnable(struct sched_entity *se)
 740{
 741	return !!se->on_rq;
 742}
 743#endif
 744
 745#ifdef CONFIG_SMP
 746/*
 747 * XXX we want to get rid of these helpers and use the full load resolution.
 748 */
 749static inline long se_weight(struct sched_entity *se)
 750{
 751	return scale_load_down(se->load.weight);
 752}
 753
 754
 755static inline bool sched_asym_prefer(int a, int b)
 756{
 757	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 758}
 759
 760struct perf_domain {
 761	struct em_perf_domain *em_pd;
 762	struct perf_domain *next;
 763	struct rcu_head rcu;
 764};
 765
 766/* Scheduling group status flags */
 767#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 768#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 769
 770/*
 771 * We add the notion of a root-domain which will be used to define per-domain
 772 * variables. Each exclusive cpuset essentially defines an island domain by
 773 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 774 * exclusive cpuset is created, we also create and attach a new root-domain
 775 * object.
 776 *
 777 */
 778struct root_domain {
 779	atomic_t		refcount;
 780	atomic_t		rto_count;
 781	struct rcu_head		rcu;
 782	cpumask_var_t		span;
 783	cpumask_var_t		online;
 784
 785	/*
 786	 * Indicate pullable load on at least one CPU, e.g:
 787	 * - More than one runnable task
 788	 * - Running task is misfit
 789	 */
 790	int			overload;
 791
 792	/* Indicate one or more cpus over-utilized (tipping point) */
 793	int			overutilized;
 794
 795	/*
 796	 * The bit corresponding to a CPU gets set here if such CPU has more
 797	 * than one runnable -deadline task (as it is below for RT tasks).
 798	 */
 799	cpumask_var_t		dlo_mask;
 800	atomic_t		dlo_count;
 801	struct dl_bw		dl_bw;
 802	struct cpudl		cpudl;
 803
 804#ifdef HAVE_RT_PUSH_IPI
 805	/*
 806	 * For IPI pull requests, loop across the rto_mask.
 807	 */
 808	struct irq_work		rto_push_work;
 809	raw_spinlock_t		rto_lock;
 810	/* These are only updated and read within rto_lock */
 811	int			rto_loop;
 812	int			rto_cpu;
 813	/* These atomics are updated outside of a lock */
 814	atomic_t		rto_loop_next;
 815	atomic_t		rto_loop_start;
 816#endif
 817	/*
 818	 * The "RT overload" flag: it gets set if a CPU has more than
 819	 * one runnable RT task.
 820	 */
 821	cpumask_var_t		rto_mask;
 822	struct cpupri		cpupri;
 823
 824	unsigned long		max_cpu_capacity;
 825
 826	/*
 827	 * NULL-terminated list of performance domains intersecting with the
 828	 * CPUs of the rd. Protected by RCU.
 829	 */
 830	struct perf_domain __rcu *pd;
 831};
 832
 833extern void init_defrootdomain(void);
 834extern int sched_init_domains(const struct cpumask *cpu_map);
 835extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 836extern void sched_get_rd(struct root_domain *rd);
 837extern void sched_put_rd(struct root_domain *rd);
 838
 839#ifdef HAVE_RT_PUSH_IPI
 840extern void rto_push_irq_work_func(struct irq_work *work);
 841#endif
 842#endif /* CONFIG_SMP */
 843
 844#ifdef CONFIG_UCLAMP_TASK
 845/*
 846 * struct uclamp_bucket - Utilization clamp bucket
 847 * @value: utilization clamp value for tasks on this clamp bucket
 848 * @tasks: number of RUNNABLE tasks on this clamp bucket
 849 *
 850 * Keep track of how many tasks are RUNNABLE for a given utilization
 851 * clamp value.
 852 */
 853struct uclamp_bucket {
 854	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 855	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 856};
 857
 858/*
 859 * struct uclamp_rq - rq's utilization clamp
 860 * @value: currently active clamp values for a rq
 861 * @bucket: utilization clamp buckets affecting a rq
 862 *
 863 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 864 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 865 * (or actually running) with that value.
 866 *
 867 * There are up to UCLAMP_CNT possible different clamp values, currently there
 868 * are only two: minimum utilization and maximum utilization.
 869 *
 870 * All utilization clamping values are MAX aggregated, since:
 871 * - for util_min: we want to run the CPU at least at the max of the minimum
 872 *   utilization required by its currently RUNNABLE tasks.
 873 * - for util_max: we want to allow the CPU to run up to the max of the
 874 *   maximum utilization allowed by its currently RUNNABLE tasks.
 875 *
 876 * Since on each system we expect only a limited number of different
 877 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 878 * the metrics required to compute all the per-rq utilization clamp values.
 879 */
 880struct uclamp_rq {
 881	unsigned int value;
 882	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 883};
 884
 885DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 886#endif /* CONFIG_UCLAMP_TASK */
 887
 888/*
 889 * This is the main, per-CPU runqueue data structure.
 890 *
 891 * Locking rule: those places that want to lock multiple runqueues
 892 * (such as the load balancing or the thread migration code), lock
 893 * acquire operations must be ordered by ascending &runqueue.
 894 */
 895struct rq {
 896	/* runqueue lock: */
 897	raw_spinlock_t		lock;
 898
 899	/*
 900	 * nr_running and cpu_load should be in the same cacheline because
 901	 * remote CPUs use both these fields when doing load calculation.
 902	 */
 903	unsigned int		nr_running;
 904#ifdef CONFIG_NUMA_BALANCING
 905	unsigned int		nr_numa_running;
 906	unsigned int		nr_preferred_running;
 907	unsigned int		numa_migrate_on;
 908#endif
 
 
 909#ifdef CONFIG_NO_HZ_COMMON
 910#ifdef CONFIG_SMP
 911	unsigned long		last_blocked_load_update_tick;
 912	unsigned int		has_blocked_load;
 913	call_single_data_t	nohz_csd;
 914#endif /* CONFIG_SMP */
 915	unsigned int		nohz_tick_stopped;
 916	atomic_t		nohz_flags;
 917#endif /* CONFIG_NO_HZ_COMMON */
 918
 919#ifdef CONFIG_SMP
 920	unsigned int		ttwu_pending;
 921#endif
 922	u64			nr_switches;
 923
 924#ifdef CONFIG_UCLAMP_TASK
 925	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 926	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 927	unsigned int		uclamp_flags;
 928#define UCLAMP_FLAG_IDLE 0x01
 929#endif
 930
 931	struct cfs_rq		cfs;
 932	struct rt_rq		rt;
 933	struct dl_rq		dl;
 
 
 
 
 934
 935#ifdef CONFIG_FAIR_GROUP_SCHED
 936	/* list of leaf cfs_rq on this CPU: */
 937	struct list_head	leaf_cfs_rq_list;
 938	struct list_head	*tmp_alone_branch;
 939#endif /* CONFIG_FAIR_GROUP_SCHED */
 940
 941	/*
 942	 * This is part of a global counter where only the total sum
 943	 * over all CPUs matters. A task can increase this counter on
 944	 * one CPU and if it got migrated afterwards it may decrease
 945	 * it on another CPU. Always updated under the runqueue lock:
 946	 */
 947	unsigned long		nr_uninterruptible;
 948
 949	struct task_struct __rcu	*curr;
 950	struct task_struct	*idle;
 951	struct task_struct	*stop;
 952	unsigned long		next_balance;
 953	struct mm_struct	*prev_mm;
 954
 955	unsigned int		clock_update_flags;
 956	u64			clock;
 957	/* Ensure that all clocks are in the same cache line */
 958	u64			clock_task ____cacheline_aligned;
 959	u64			clock_pelt;
 960	unsigned long		lost_idle_time;
 961
 962	atomic_t		nr_iowait;
 
 
 963
 964#ifdef CONFIG_MEMBARRIER
 965	int membarrier_state;
 966#endif
 967
 968#ifdef CONFIG_SMP
 969	struct root_domain		*rd;
 970	struct sched_domain __rcu	*sd;
 971
 972	unsigned long		cpu_capacity;
 973	unsigned long		cpu_capacity_orig;
 974
 975	struct callback_head	*balance_callback;
 976
 977	unsigned char		nohz_idle_balance;
 978	unsigned char		idle_balance;
 979
 980	unsigned long		misfit_task_load;
 981
 
 982	/* For active balancing */
 983	int			active_balance;
 984	int			push_cpu;
 985	struct cpu_stop_work	active_balance_work;
 986
 987	/* CPU of this runqueue: */
 988	int			cpu;
 989	int			online;
 990
 991	struct list_head cfs_tasks;
 992
 993	struct sched_avg	avg_rt;
 994	struct sched_avg	avg_dl;
 995#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 996	struct sched_avg	avg_irq;
 997#endif
 998#ifdef CONFIG_SCHED_THERMAL_PRESSURE
 999	struct sched_avg	avg_thermal;
1000#endif
1001	u64			idle_stamp;
1002	u64			avg_idle;
1003
1004	/* This is used to determine avg_idle's max value */
1005	u64			max_idle_balance_cost;
1006#endif /* CONFIG_SMP */
1007
1008#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1009	u64			prev_irq_time;
1010#endif
1011#ifdef CONFIG_PARAVIRT
1012	u64			prev_steal_time;
1013#endif
1014#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1015	u64			prev_steal_time_rq;
1016#endif
1017
1018	/* calc_load related fields */
1019	unsigned long		calc_load_update;
1020	long			calc_load_active;
1021
1022#ifdef CONFIG_SCHED_HRTICK
1023#ifdef CONFIG_SMP
1024	call_single_data_t	hrtick_csd;
 
1025#endif
1026	struct hrtimer		hrtick_timer;
1027#endif
1028
1029#ifdef CONFIG_SCHEDSTATS
1030	/* latency stats */
1031	struct sched_info	rq_sched_info;
1032	unsigned long long	rq_cpu_time;
1033	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1034
1035	/* sys_sched_yield() stats */
1036	unsigned int		yld_count;
1037
1038	/* schedule() stats */
1039	unsigned int		sched_count;
1040	unsigned int		sched_goidle;
1041
1042	/* try_to_wake_up() stats */
1043	unsigned int		ttwu_count;
1044	unsigned int		ttwu_local;
 
 
 
 
1045#endif
1046
1047#ifdef CONFIG_CPU_IDLE
1048	/* Must be inspected within a rcu lock section */
1049	struct cpuidle_state	*idle_state;
1050#endif
1051};
1052
1053#ifdef CONFIG_FAIR_GROUP_SCHED
1054
1055/* CPU runqueue to which this cfs_rq is attached */
1056static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1057{
1058	return cfs_rq->rq;
1059}
1060
1061#else
1062
1063static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1064{
1065	return container_of(cfs_rq, struct rq, cfs);
1066}
1067#endif
1068
1069static inline int cpu_of(struct rq *rq)
1070{
1071#ifdef CONFIG_SMP
1072	return rq->cpu;
1073#else
1074	return 0;
1075#endif
1076}
1077
1078
1079#ifdef CONFIG_SCHED_SMT
 
 
 
1080extern void __update_idle_core(struct rq *rq);
1081
1082static inline void update_idle_core(struct rq *rq)
1083{
1084	if (static_branch_unlikely(&sched_smt_present))
1085		__update_idle_core(rq);
1086}
1087
1088#else
1089static inline void update_idle_core(struct rq *rq) { }
1090#endif
1091
1092DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1093
1094#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1095#define this_rq()		this_cpu_ptr(&runqueues)
1096#define task_rq(p)		cpu_rq(task_cpu(p))
1097#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1098#define raw_rq()		raw_cpu_ptr(&runqueues)
1099
1100extern void update_rq_clock(struct rq *rq);
1101
1102static inline u64 __rq_clock_broken(struct rq *rq)
1103{
1104	return READ_ONCE(rq->clock);
1105}
1106
1107/*
1108 * rq::clock_update_flags bits
1109 *
1110 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1111 *  call to __schedule(). This is an optimisation to avoid
1112 *  neighbouring rq clock updates.
1113 *
1114 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1115 *  in effect and calls to update_rq_clock() are being ignored.
1116 *
1117 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1118 *  made to update_rq_clock() since the last time rq::lock was pinned.
1119 *
1120 * If inside of __schedule(), clock_update_flags will have been
1121 * shifted left (a left shift is a cheap operation for the fast path
1122 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1123 *
1124 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1125 *
1126 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1127 * one position though, because the next rq_unpin_lock() will shift it
1128 * back.
1129 */
1130#define RQCF_REQ_SKIP		0x01
1131#define RQCF_ACT_SKIP		0x02
1132#define RQCF_UPDATED		0x04
1133
1134static inline void assert_clock_updated(struct rq *rq)
1135{
1136	/*
1137	 * The only reason for not seeing a clock update since the
1138	 * last rq_pin_lock() is if we're currently skipping updates.
1139	 */
1140	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1141}
1142
1143static inline u64 rq_clock(struct rq *rq)
1144{
1145	lockdep_assert_held(&rq->lock);
1146	assert_clock_updated(rq);
1147
1148	return rq->clock;
1149}
1150
1151static inline u64 rq_clock_task(struct rq *rq)
1152{
1153	lockdep_assert_held(&rq->lock);
1154	assert_clock_updated(rq);
1155
1156	return rq->clock_task;
1157}
1158
1159/**
1160 * By default the decay is the default pelt decay period.
1161 * The decay shift can change the decay period in
1162 * multiples of 32.
1163 *  Decay shift		Decay period(ms)
1164 *	0			32
1165 *	1			64
1166 *	2			128
1167 *	3			256
1168 *	4			512
1169 */
1170extern int sched_thermal_decay_shift;
1171
1172static inline u64 rq_clock_thermal(struct rq *rq)
1173{
1174	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1175}
1176
1177static inline void rq_clock_skip_update(struct rq *rq)
1178{
1179	lockdep_assert_held(&rq->lock);
1180	rq->clock_update_flags |= RQCF_REQ_SKIP;
1181}
1182
1183/*
1184 * See rt task throttling, which is the only time a skip
1185 * request is cancelled.
1186 */
1187static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1188{
1189	lockdep_assert_held(&rq->lock);
1190	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1191}
1192
1193struct rq_flags {
1194	unsigned long flags;
1195	struct pin_cookie cookie;
1196#ifdef CONFIG_SCHED_DEBUG
1197	/*
1198	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1199	 * current pin context is stashed here in case it needs to be
1200	 * restored in rq_repin_lock().
1201	 */
1202	unsigned int clock_update_flags;
1203#endif
1204};
1205
1206/*
1207 * Lockdep annotation that avoids accidental unlocks; it's like a
1208 * sticky/continuous lockdep_assert_held().
1209 *
1210 * This avoids code that has access to 'struct rq *rq' (basically everything in
1211 * the scheduler) from accidentally unlocking the rq if they do not also have a
1212 * copy of the (on-stack) 'struct rq_flags rf'.
1213 *
1214 * Also see Documentation/locking/lockdep-design.rst.
1215 */
1216static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1217{
1218	rf->cookie = lockdep_pin_lock(&rq->lock);
1219
1220#ifdef CONFIG_SCHED_DEBUG
1221	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1222	rf->clock_update_flags = 0;
1223#endif
1224}
1225
1226static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1227{
1228#ifdef CONFIG_SCHED_DEBUG
1229	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1230		rf->clock_update_flags = RQCF_UPDATED;
1231#endif
1232
1233	lockdep_unpin_lock(&rq->lock, rf->cookie);
1234}
1235
1236static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1237{
1238	lockdep_repin_lock(&rq->lock, rf->cookie);
1239
1240#ifdef CONFIG_SCHED_DEBUG
1241	/*
1242	 * Restore the value we stashed in @rf for this pin context.
1243	 */
1244	rq->clock_update_flags |= rf->clock_update_flags;
1245#endif
1246}
1247
1248struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1249	__acquires(rq->lock);
1250
1251struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1252	__acquires(p->pi_lock)
1253	__acquires(rq->lock);
1254
1255static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1256	__releases(rq->lock)
1257{
1258	rq_unpin_lock(rq, rf);
1259	raw_spin_unlock(&rq->lock);
1260}
1261
1262static inline void
1263task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1264	__releases(rq->lock)
1265	__releases(p->pi_lock)
1266{
1267	rq_unpin_lock(rq, rf);
1268	raw_spin_unlock(&rq->lock);
1269	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1270}
1271
1272static inline void
1273rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1274	__acquires(rq->lock)
1275{
1276	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1277	rq_pin_lock(rq, rf);
1278}
1279
1280static inline void
1281rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1282	__acquires(rq->lock)
1283{
1284	raw_spin_lock_irq(&rq->lock);
1285	rq_pin_lock(rq, rf);
1286}
1287
1288static inline void
1289rq_lock(struct rq *rq, struct rq_flags *rf)
1290	__acquires(rq->lock)
1291{
1292	raw_spin_lock(&rq->lock);
1293	rq_pin_lock(rq, rf);
1294}
1295
1296static inline void
1297rq_relock(struct rq *rq, struct rq_flags *rf)
1298	__acquires(rq->lock)
1299{
1300	raw_spin_lock(&rq->lock);
1301	rq_repin_lock(rq, rf);
1302}
1303
1304static inline void
1305rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1306	__releases(rq->lock)
1307{
1308	rq_unpin_lock(rq, rf);
1309	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1310}
1311
1312static inline void
1313rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1314	__releases(rq->lock)
1315{
1316	rq_unpin_lock(rq, rf);
1317	raw_spin_unlock_irq(&rq->lock);
1318}
1319
1320static inline void
1321rq_unlock(struct rq *rq, struct rq_flags *rf)
1322	__releases(rq->lock)
1323{
1324	rq_unpin_lock(rq, rf);
1325	raw_spin_unlock(&rq->lock);
1326}
1327
1328static inline struct rq *
1329this_rq_lock_irq(struct rq_flags *rf)
1330	__acquires(rq->lock)
1331{
1332	struct rq *rq;
1333
1334	local_irq_disable();
1335	rq = this_rq();
1336	rq_lock(rq, rf);
1337	return rq;
1338}
1339
1340#ifdef CONFIG_NUMA
1341enum numa_topology_type {
1342	NUMA_DIRECT,
1343	NUMA_GLUELESS_MESH,
1344	NUMA_BACKPLANE,
1345};
1346extern enum numa_topology_type sched_numa_topology_type;
1347extern int sched_max_numa_distance;
1348extern bool find_numa_distance(int distance);
1349extern void sched_init_numa(void);
1350extern void sched_domains_numa_masks_set(unsigned int cpu);
1351extern void sched_domains_numa_masks_clear(unsigned int cpu);
1352extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1353#else
1354static inline void sched_init_numa(void) { }
1355static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1356static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1357static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1358{
1359	return nr_cpu_ids;
1360}
1361#endif
1362
1363#ifdef CONFIG_NUMA_BALANCING
1364/* The regions in numa_faults array from task_struct */
1365enum numa_faults_stats {
1366	NUMA_MEM = 0,
1367	NUMA_CPU,
1368	NUMA_MEMBUF,
1369	NUMA_CPUBUF
1370};
1371extern void sched_setnuma(struct task_struct *p, int node);
1372extern int migrate_task_to(struct task_struct *p, int cpu);
1373extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1374			int cpu, int scpu);
1375extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1376#else
1377static inline void
1378init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1379{
1380}
1381#endif /* CONFIG_NUMA_BALANCING */
1382
1383#ifdef CONFIG_SMP
1384
1385static inline void
1386queue_balance_callback(struct rq *rq,
1387		       struct callback_head *head,
1388		       void (*func)(struct rq *rq))
1389{
1390	lockdep_assert_held(&rq->lock);
1391
1392	if (unlikely(head->next))
1393		return;
1394
1395	head->func = (void (*)(struct callback_head *))func;
1396	head->next = rq->balance_callback;
1397	rq->balance_callback = head;
1398}
1399
 
 
1400#define rcu_dereference_check_sched_domain(p) \
1401	rcu_dereference_check((p), \
1402			      lockdep_is_held(&sched_domains_mutex))
1403
1404/*
1405 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1406 * See destroy_sched_domains: call_rcu for details.
1407 *
1408 * The domain tree of any CPU may only be accessed from within
1409 * preempt-disabled sections.
1410 */
1411#define for_each_domain(cpu, __sd) \
1412	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1413			__sd; __sd = __sd->parent)
1414
 
 
1415/**
1416 * highest_flag_domain - Return highest sched_domain containing flag.
1417 * @cpu:	The CPU whose highest level of sched domain is to
1418 *		be returned.
1419 * @flag:	The flag to check for the highest sched_domain
1420 *		for the given CPU.
1421 *
1422 * Returns the highest sched_domain of a CPU which contains the given flag.
1423 */
1424static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1425{
1426	struct sched_domain *sd, *hsd = NULL;
1427
1428	for_each_domain(cpu, sd) {
1429		if (!(sd->flags & flag))
1430			break;
1431		hsd = sd;
1432	}
1433
1434	return hsd;
1435}
1436
1437static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1438{
1439	struct sched_domain *sd;
1440
1441	for_each_domain(cpu, sd) {
1442		if (sd->flags & flag)
1443			break;
1444	}
1445
1446	return sd;
1447}
1448
1449DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1450DECLARE_PER_CPU(int, sd_llc_size);
1451DECLARE_PER_CPU(int, sd_llc_id);
1452DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1453DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1454DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1455DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1456extern struct static_key_false sched_asym_cpucapacity;
1457
1458struct sched_group_capacity {
1459	atomic_t		ref;
1460	/*
1461	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1462	 * for a single CPU.
1463	 */
1464	unsigned long		capacity;
1465	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1466	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1467	unsigned long		next_update;
1468	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1469
1470#ifdef CONFIG_SCHED_DEBUG
1471	int			id;
1472#endif
1473
1474	unsigned long		cpumask[0];		/* Balance mask */
1475};
1476
1477struct sched_group {
1478	struct sched_group	*next;			/* Must be a circular list */
1479	atomic_t		ref;
1480
1481	unsigned int		group_weight;
1482	struct sched_group_capacity *sgc;
1483	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1484
1485	/*
1486	 * The CPUs this group covers.
1487	 *
1488	 * NOTE: this field is variable length. (Allocated dynamically
1489	 * by attaching extra space to the end of the structure,
1490	 * depending on how many CPUs the kernel has booted up with)
1491	 */
1492	unsigned long		cpumask[];
1493};
1494
1495static inline struct cpumask *sched_group_span(struct sched_group *sg)
1496{
1497	return to_cpumask(sg->cpumask);
1498}
1499
1500/*
1501 * See build_balance_mask().
 
1502 */
1503static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1504{
1505	return to_cpumask(sg->sgc->cpumask);
1506}
1507
1508/**
1509 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1510 * @group: The group whose first CPU is to be returned.
1511 */
1512static inline unsigned int group_first_cpu(struct sched_group *group)
1513{
1514	return cpumask_first(sched_group_span(group));
1515}
1516
1517extern int group_balance_cpu(struct sched_group *sg);
1518
1519#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1520void register_sched_domain_sysctl(void);
1521void dirty_sched_domain_sysctl(int cpu);
1522void unregister_sched_domain_sysctl(void);
1523#else
1524static inline void register_sched_domain_sysctl(void)
1525{
1526}
1527static inline void dirty_sched_domain_sysctl(int cpu)
1528{
1529}
1530static inline void unregister_sched_domain_sysctl(void)
1531{
1532}
1533#endif
1534
1535extern void flush_smp_call_function_from_idle(void);
1536
1537#else /* !CONFIG_SMP: */
1538static inline void flush_smp_call_function_from_idle(void) { }
1539#endif
1540
1541#include "stats.h"
1542#include "autogroup.h"
1543
1544#ifdef CONFIG_CGROUP_SCHED
1545
1546/*
1547 * Return the group to which this tasks belongs.
1548 *
1549 * We cannot use task_css() and friends because the cgroup subsystem
1550 * changes that value before the cgroup_subsys::attach() method is called,
1551 * therefore we cannot pin it and might observe the wrong value.
1552 *
1553 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1554 * core changes this before calling sched_move_task().
1555 *
1556 * Instead we use a 'copy' which is updated from sched_move_task() while
1557 * holding both task_struct::pi_lock and rq::lock.
1558 */
1559static inline struct task_group *task_group(struct task_struct *p)
1560{
1561	return p->sched_task_group;
1562}
1563
1564/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1565static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1566{
1567#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1568	struct task_group *tg = task_group(p);
1569#endif
1570
1571#ifdef CONFIG_FAIR_GROUP_SCHED
1572	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1573	p->se.cfs_rq = tg->cfs_rq[cpu];
1574	p->se.parent = tg->se[cpu];
1575#endif
1576
1577#ifdef CONFIG_RT_GROUP_SCHED
1578	p->rt.rt_rq  = tg->rt_rq[cpu];
1579	p->rt.parent = tg->rt_se[cpu];
1580#endif
1581}
1582
1583#else /* CONFIG_CGROUP_SCHED */
1584
1585static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1586static inline struct task_group *task_group(struct task_struct *p)
1587{
1588	return NULL;
1589}
1590
1591#endif /* CONFIG_CGROUP_SCHED */
1592
1593static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1594{
1595	set_task_rq(p, cpu);
1596#ifdef CONFIG_SMP
1597	/*
1598	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1599	 * successfully executed on another CPU. We must ensure that updates of
1600	 * per-task data have been completed by this moment.
1601	 */
1602	smp_wmb();
1603#ifdef CONFIG_THREAD_INFO_IN_TASK
1604	WRITE_ONCE(p->cpu, cpu);
1605#else
1606	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1607#endif
1608	p->wake_cpu = cpu;
1609#endif
1610}
1611
1612/*
1613 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1614 */
1615#ifdef CONFIG_SCHED_DEBUG
1616# include <linux/static_key.h>
1617# define const_debug __read_mostly
1618#else
1619# define const_debug const
1620#endif
1621
 
 
1622#define SCHED_FEAT(name, enabled)	\
1623	__SCHED_FEAT_##name ,
1624
1625enum {
1626#include "features.h"
1627	__SCHED_FEAT_NR,
1628};
1629
1630#undef SCHED_FEAT
1631
1632#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1633
1634/*
1635 * To support run-time toggling of sched features, all the translation units
1636 * (but core.c) reference the sysctl_sched_features defined in core.c.
1637 */
1638extern const_debug unsigned int sysctl_sched_features;
1639
1640#define SCHED_FEAT(name, enabled)					\
1641static __always_inline bool static_branch_##name(struct static_key *key) \
1642{									\
1643	return static_key_##enabled(key);				\
1644}
1645
1646#include "features.h"
 
1647#undef SCHED_FEAT
1648
1649extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1650#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1651
1652#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1653
1654/*
1655 * Each translation unit has its own copy of sysctl_sched_features to allow
1656 * constants propagation at compile time and compiler optimization based on
1657 * features default.
1658 */
1659#define SCHED_FEAT(name, enabled)	\
1660	(1UL << __SCHED_FEAT_##name) * enabled |
1661static const_debug __maybe_unused unsigned int sysctl_sched_features =
1662#include "features.h"
1663	0;
1664#undef SCHED_FEAT
1665
1666#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1667
1668#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1669
1670extern struct static_key_false sched_numa_balancing;
1671extern struct static_key_false sched_schedstats;
1672
1673static inline u64 global_rt_period(void)
1674{
1675	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1676}
1677
1678static inline u64 global_rt_runtime(void)
1679{
1680	if (sysctl_sched_rt_runtime < 0)
1681		return RUNTIME_INF;
1682
1683	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1684}
1685
1686static inline int task_current(struct rq *rq, struct task_struct *p)
1687{
1688	return rq->curr == p;
1689}
1690
1691static inline int task_running(struct rq *rq, struct task_struct *p)
1692{
1693#ifdef CONFIG_SMP
1694	return p->on_cpu;
1695#else
1696	return task_current(rq, p);
1697#endif
1698}
1699
1700static inline int task_on_rq_queued(struct task_struct *p)
1701{
1702	return p->on_rq == TASK_ON_RQ_QUEUED;
1703}
1704
1705static inline int task_on_rq_migrating(struct task_struct *p)
1706{
1707	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708}
1709
1710/*
1711 * wake flags
1712 */
1713#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1714#define WF_FORK			0x02		/* Child wakeup after fork */
1715#define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1716#define WF_ON_CPU		0x08		/* Wakee is on_cpu */
1717
1718/*
1719 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1720 * of tasks with abnormal "nice" values across CPUs the contribution that
1721 * each task makes to its run queue's load is weighted according to its
1722 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1723 * scaled version of the new time slice allocation that they receive on time
1724 * slice expiry etc.
1725 */
1726
1727#define WEIGHT_IDLEPRIO		3
1728#define WMULT_IDLEPRIO		1431655765
1729
1730extern const int		sched_prio_to_weight[40];
1731extern const u32		sched_prio_to_wmult[40];
1732
1733/*
1734 * {de,en}queue flags:
1735 *
1736 * DEQUEUE_SLEEP  - task is no longer runnable
1737 * ENQUEUE_WAKEUP - task just became runnable
1738 *
1739 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1740 *                are in a known state which allows modification. Such pairs
1741 *                should preserve as much state as possible.
1742 *
1743 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1744 *        in the runqueue.
1745 *
1746 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1747 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1748 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1749 *
1750 */
1751
1752#define DEQUEUE_SLEEP		0x01
1753#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1754#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1755#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1756
1757#define ENQUEUE_WAKEUP		0x01
1758#define ENQUEUE_RESTORE		0x02
1759#define ENQUEUE_MOVE		0x04
1760#define ENQUEUE_NOCLOCK		0x08
1761
1762#define ENQUEUE_HEAD		0x10
1763#define ENQUEUE_REPLENISH	0x20
1764#ifdef CONFIG_SMP
1765#define ENQUEUE_MIGRATED	0x40
1766#else
1767#define ENQUEUE_MIGRATED	0x00
1768#endif
1769
1770#define RETRY_TASK		((void *)-1UL)
1771
1772struct sched_class {
1773
1774#ifdef CONFIG_UCLAMP_TASK
1775	int uclamp_enabled;
1776#endif
1777
1778	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1779	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1780	void (*yield_task)   (struct rq *rq);
1781	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1782
1783	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1784
1785	struct task_struct *(*pick_next_task)(struct rq *rq);
1786
1787	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1788	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
 
 
 
 
 
 
 
 
1789
1790#ifdef CONFIG_SMP
1791	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1792	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1793	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1794
1795	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1796
1797	void (*set_cpus_allowed)(struct task_struct *p,
1798				 const struct cpumask *newmask);
1799
1800	void (*rq_online)(struct rq *rq);
1801	void (*rq_offline)(struct rq *rq);
1802#endif
1803
1804	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1805	void (*task_fork)(struct task_struct *p);
1806	void (*task_dead)(struct task_struct *p);
 
1807
1808	/*
1809	 * The switched_from() call is allowed to drop rq->lock, therefore we
1810	 * cannot assume the switched_from/switched_to pair is serliazed by
1811	 * rq->lock. They are however serialized by p->pi_lock.
1812	 */
1813	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1814	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1815	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1816			      int oldprio);
1817
1818	unsigned int (*get_rr_interval)(struct rq *rq,
1819					struct task_struct *task);
1820
1821	void (*update_curr)(struct rq *rq);
1822
1823#define TASK_SET_GROUP		0
1824#define TASK_MOVE_GROUP		1
1825
1826#ifdef CONFIG_FAIR_GROUP_SCHED
1827	void (*task_change_group)(struct task_struct *p, int type);
1828#endif
1829} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1830
1831static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1832{
1833	WARN_ON_ONCE(rq->curr != prev);
1834	prev->sched_class->put_prev_task(rq, prev);
1835}
1836
1837static inline void set_next_task(struct rq *rq, struct task_struct *next)
1838{
1839	WARN_ON_ONCE(rq->curr != next);
1840	next->sched_class->set_next_task(rq, next, false);
1841}
1842
1843/* Defined in include/asm-generic/vmlinux.lds.h */
1844extern struct sched_class __begin_sched_classes[];
1845extern struct sched_class __end_sched_classes[];
1846
1847#define sched_class_highest (__end_sched_classes - 1)
1848#define sched_class_lowest  (__begin_sched_classes - 1)
1849
1850#define for_class_range(class, _from, _to) \
1851	for (class = (_from); class != (_to); class--)
1852
1853#define for_each_class(class) \
1854	for_class_range(class, sched_class_highest, sched_class_lowest)
1855
1856extern const struct sched_class stop_sched_class;
1857extern const struct sched_class dl_sched_class;
1858extern const struct sched_class rt_sched_class;
1859extern const struct sched_class fair_sched_class;
1860extern const struct sched_class idle_sched_class;
1861
1862static inline bool sched_stop_runnable(struct rq *rq)
1863{
1864	return rq->stop && task_on_rq_queued(rq->stop);
1865}
1866
1867static inline bool sched_dl_runnable(struct rq *rq)
1868{
1869	return rq->dl.dl_nr_running > 0;
1870}
1871
1872static inline bool sched_rt_runnable(struct rq *rq)
1873{
1874	return rq->rt.rt_queued > 0;
1875}
1876
1877static inline bool sched_fair_runnable(struct rq *rq)
1878{
1879	return rq->cfs.nr_running > 0;
1880}
1881
1882extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1883extern struct task_struct *pick_next_task_idle(struct rq *rq);
1884
1885#ifdef CONFIG_SMP
1886
1887extern void update_group_capacity(struct sched_domain *sd, int cpu);
1888
1889extern void trigger_load_balance(struct rq *rq);
1890
1891extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1892
1893#endif
1894
1895#ifdef CONFIG_CPU_IDLE
1896static inline void idle_set_state(struct rq *rq,
1897				  struct cpuidle_state *idle_state)
1898{
1899	rq->idle_state = idle_state;
1900}
1901
1902static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1903{
1904	SCHED_WARN_ON(!rcu_read_lock_held());
1905
1906	return rq->idle_state;
1907}
1908#else
1909static inline void idle_set_state(struct rq *rq,
1910				  struct cpuidle_state *idle_state)
1911{
1912}
1913
1914static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1915{
1916	return NULL;
1917}
1918#endif
1919
1920extern void schedule_idle(void);
1921
1922extern void sysrq_sched_debug_show(void);
1923extern void sched_init_granularity(void);
1924extern void update_max_interval(void);
1925
1926extern void init_sched_dl_class(void);
1927extern void init_sched_rt_class(void);
1928extern void init_sched_fair_class(void);
1929
1930extern void reweight_task(struct task_struct *p, int prio);
1931
1932extern void resched_curr(struct rq *rq);
1933extern void resched_cpu(int cpu);
1934
1935extern struct rt_bandwidth def_rt_bandwidth;
1936extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1937
1938extern struct dl_bandwidth def_dl_bandwidth;
1939extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1940extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1941extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1942
1943#define BW_SHIFT		20
1944#define BW_UNIT			(1 << BW_SHIFT)
1945#define RATIO_SHIFT		8
1946#define MAX_BW_BITS		(64 - BW_SHIFT)
1947#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
1948unsigned long to_ratio(u64 period, u64 runtime);
1949
1950extern void init_entity_runnable_average(struct sched_entity *se);
1951extern void post_init_entity_util_avg(struct task_struct *p);
1952
1953#ifdef CONFIG_NO_HZ_FULL
1954extern bool sched_can_stop_tick(struct rq *rq);
1955extern int __init sched_tick_offload_init(void);
1956
1957/*
1958 * Tick may be needed by tasks in the runqueue depending on their policy and
1959 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1960 * nohz mode if necessary.
1961 */
1962static inline void sched_update_tick_dependency(struct rq *rq)
1963{
1964	int cpu = cpu_of(rq);
 
 
 
 
 
1965
1966	if (!tick_nohz_full_cpu(cpu))
1967		return;
1968
1969	if (sched_can_stop_tick(rq))
1970		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1971	else
1972		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1973}
1974#else
1975static inline int sched_tick_offload_init(void) { return 0; }
1976static inline void sched_update_tick_dependency(struct rq *rq) { }
1977#endif
1978
1979static inline void add_nr_running(struct rq *rq, unsigned count)
1980{
1981	unsigned prev_nr = rq->nr_running;
1982
1983	rq->nr_running = prev_nr + count;
1984	if (trace_sched_update_nr_running_tp_enabled()) {
1985		call_trace_sched_update_nr_running(rq, count);
1986	}
1987
 
1988#ifdef CONFIG_SMP
1989	if (prev_nr < 2 && rq->nr_running >= 2) {
1990		if (!READ_ONCE(rq->rd->overload))
1991			WRITE_ONCE(rq->rd->overload, 1);
1992	}
1993#endif
1994
1995	sched_update_tick_dependency(rq);
1996}
1997
1998static inline void sub_nr_running(struct rq *rq, unsigned count)
1999{
2000	rq->nr_running -= count;
2001	if (trace_sched_update_nr_running_tp_enabled()) {
2002		call_trace_sched_update_nr_running(rq, -count);
2003	}
2004
2005	/* Check if we still need preemption */
2006	sched_update_tick_dependency(rq);
2007}
2008
 
 
 
 
 
 
 
 
 
2009extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2010extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2011
2012extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2013
 
2014extern const_debug unsigned int sysctl_sched_nr_migrate;
2015extern const_debug unsigned int sysctl_sched_migration_cost;
2016
 
 
 
 
 
2017#ifdef CONFIG_SCHED_HRTICK
2018
2019/*
2020 * Use hrtick when:
2021 *  - enabled by features
2022 *  - hrtimer is actually high res
2023 */
2024static inline int hrtick_enabled(struct rq *rq)
2025{
2026	if (!sched_feat(HRTICK))
2027		return 0;
2028	if (!cpu_active(cpu_of(rq)))
2029		return 0;
2030	return hrtimer_is_hres_active(&rq->hrtick_timer);
2031}
2032
2033void hrtick_start(struct rq *rq, u64 delay);
2034
2035#else
2036
2037static inline int hrtick_enabled(struct rq *rq)
2038{
2039	return 0;
2040}
2041
2042#endif /* CONFIG_SCHED_HRTICK */
2043
2044#ifndef arch_scale_freq_tick
 
 
 
2045static __always_inline
2046void arch_scale_freq_tick(void)
2047{
 
2048}
2049#endif
2050
2051#ifndef arch_scale_freq_capacity
2052/**
2053 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2054 * @cpu: the CPU in question.
2055 *
2056 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2057 *
2058 *     f_curr
2059 *     ------ * SCHED_CAPACITY_SCALE
2060 *     f_max
2061 */
2062static __always_inline
2063unsigned long arch_scale_freq_capacity(int cpu)
2064{
 
 
 
2065	return SCHED_CAPACITY_SCALE;
2066}
2067#endif
2068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069#ifdef CONFIG_SMP
2070#ifdef CONFIG_PREEMPTION
2071
2072static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2073
2074/*
2075 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2076 * way at the expense of forcing extra atomic operations in all
2077 * invocations.  This assures that the double_lock is acquired using the
2078 * same underlying policy as the spinlock_t on this architecture, which
2079 * reduces latency compared to the unfair variant below.  However, it
2080 * also adds more overhead and therefore may reduce throughput.
2081 */
2082static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2083	__releases(this_rq->lock)
2084	__acquires(busiest->lock)
2085	__acquires(this_rq->lock)
2086{
2087	raw_spin_unlock(&this_rq->lock);
2088	double_rq_lock(this_rq, busiest);
2089
2090	return 1;
2091}
2092
2093#else
2094/*
2095 * Unfair double_lock_balance: Optimizes throughput at the expense of
2096 * latency by eliminating extra atomic operations when the locks are
2097 * already in proper order on entry.  This favors lower CPU-ids and will
2098 * grant the double lock to lower CPUs over higher ids under contention,
2099 * regardless of entry order into the function.
2100 */
2101static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2102	__releases(this_rq->lock)
2103	__acquires(busiest->lock)
2104	__acquires(this_rq->lock)
2105{
2106	int ret = 0;
2107
2108	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2109		if (busiest < this_rq) {
2110			raw_spin_unlock(&this_rq->lock);
2111			raw_spin_lock(&busiest->lock);
2112			raw_spin_lock_nested(&this_rq->lock,
2113					      SINGLE_DEPTH_NESTING);
2114			ret = 1;
2115		} else
2116			raw_spin_lock_nested(&busiest->lock,
2117					      SINGLE_DEPTH_NESTING);
2118	}
2119	return ret;
2120}
2121
2122#endif /* CONFIG_PREEMPTION */
2123
2124/*
2125 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2126 */
2127static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2128{
2129	if (unlikely(!irqs_disabled())) {
2130		/* printk() doesn't work well under rq->lock */
2131		raw_spin_unlock(&this_rq->lock);
2132		BUG_ON(1);
2133	}
2134
2135	return _double_lock_balance(this_rq, busiest);
2136}
2137
2138static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2139	__releases(busiest->lock)
2140{
2141	raw_spin_unlock(&busiest->lock);
2142	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2143}
2144
2145static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2146{
2147	if (l1 > l2)
2148		swap(l1, l2);
2149
2150	spin_lock(l1);
2151	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2152}
2153
2154static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2155{
2156	if (l1 > l2)
2157		swap(l1, l2);
2158
2159	spin_lock_irq(l1);
2160	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2161}
2162
2163static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2164{
2165	if (l1 > l2)
2166		swap(l1, l2);
2167
2168	raw_spin_lock(l1);
2169	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2170}
2171
2172/*
2173 * double_rq_lock - safely lock two runqueues
2174 *
2175 * Note this does not disable interrupts like task_rq_lock,
2176 * you need to do so manually before calling.
2177 */
2178static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2179	__acquires(rq1->lock)
2180	__acquires(rq2->lock)
2181{
2182	BUG_ON(!irqs_disabled());
2183	if (rq1 == rq2) {
2184		raw_spin_lock(&rq1->lock);
2185		__acquire(rq2->lock);	/* Fake it out ;) */
2186	} else {
2187		if (rq1 < rq2) {
2188			raw_spin_lock(&rq1->lock);
2189			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2190		} else {
2191			raw_spin_lock(&rq2->lock);
2192			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2193		}
2194	}
2195}
2196
2197/*
2198 * double_rq_unlock - safely unlock two runqueues
2199 *
2200 * Note this does not restore interrupts like task_rq_unlock,
2201 * you need to do so manually after calling.
2202 */
2203static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2204	__releases(rq1->lock)
2205	__releases(rq2->lock)
2206{
2207	raw_spin_unlock(&rq1->lock);
2208	if (rq1 != rq2)
2209		raw_spin_unlock(&rq2->lock);
2210	else
2211		__release(rq2->lock);
2212}
2213
2214extern void set_rq_online (struct rq *rq);
2215extern void set_rq_offline(struct rq *rq);
2216extern bool sched_smp_initialized;
2217
2218#else /* CONFIG_SMP */
2219
2220/*
2221 * double_rq_lock - safely lock two runqueues
2222 *
2223 * Note this does not disable interrupts like task_rq_lock,
2224 * you need to do so manually before calling.
2225 */
2226static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2227	__acquires(rq1->lock)
2228	__acquires(rq2->lock)
2229{
2230	BUG_ON(!irqs_disabled());
2231	BUG_ON(rq1 != rq2);
2232	raw_spin_lock(&rq1->lock);
2233	__acquire(rq2->lock);	/* Fake it out ;) */
2234}
2235
2236/*
2237 * double_rq_unlock - safely unlock two runqueues
2238 *
2239 * Note this does not restore interrupts like task_rq_unlock,
2240 * you need to do so manually after calling.
2241 */
2242static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2243	__releases(rq1->lock)
2244	__releases(rq2->lock)
2245{
2246	BUG_ON(rq1 != rq2);
2247	raw_spin_unlock(&rq1->lock);
2248	__release(rq2->lock);
2249}
2250
2251#endif
2252
2253extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2254extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2255
2256#ifdef	CONFIG_SCHED_DEBUG
2257extern bool sched_debug_enabled;
2258
2259extern void print_cfs_stats(struct seq_file *m, int cpu);
2260extern void print_rt_stats(struct seq_file *m, int cpu);
2261extern void print_dl_stats(struct seq_file *m, int cpu);
2262extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2263extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2264extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2265#ifdef CONFIG_NUMA_BALANCING
2266extern void
2267show_numa_stats(struct task_struct *p, struct seq_file *m);
2268extern void
2269print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2270	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2271#endif /* CONFIG_NUMA_BALANCING */
2272#endif /* CONFIG_SCHED_DEBUG */
2273
2274extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2275extern void init_rt_rq(struct rt_rq *rt_rq);
2276extern void init_dl_rq(struct dl_rq *dl_rq);
2277
2278extern void cfs_bandwidth_usage_inc(void);
2279extern void cfs_bandwidth_usage_dec(void);
2280
2281#ifdef CONFIG_NO_HZ_COMMON
2282#define NOHZ_BALANCE_KICK_BIT	0
2283#define NOHZ_STATS_KICK_BIT	1
2284
2285#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2286#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2287
2288#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2289
2290#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2291
2292extern void nohz_balance_exit_idle(struct rq *rq);
2293#else
2294static inline void nohz_balance_exit_idle(struct rq *rq) { }
2295#endif
2296
2297
2298#ifdef CONFIG_SMP
2299static inline
2300void __dl_update(struct dl_bw *dl_b, s64 bw)
2301{
2302	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2303	int i;
2304
2305	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2306			 "sched RCU must be held");
2307	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2308		struct rq *rq = cpu_rq(i);
2309
2310		rq->dl.extra_bw += bw;
2311	}
2312}
2313#else
2314static inline
2315void __dl_update(struct dl_bw *dl_b, s64 bw)
2316{
2317	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2318
2319	dl->extra_bw += bw;
2320}
2321#endif
2322
2323
2324#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2325struct irqtime {
2326	u64			total;
2327	u64			tick_delta;
2328	u64			irq_start_time;
2329	struct u64_stats_sync	sync;
2330};
2331
2332DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2333
2334/*
2335 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2336 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2337 * and never move forward.
2338 */
2339static inline u64 irq_time_read(int cpu)
2340{
2341	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2342	unsigned int seq;
2343	u64 total;
2344
2345	do {
2346		seq = __u64_stats_fetch_begin(&irqtime->sync);
2347		total = irqtime->total;
2348	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2349
2350	return total;
2351}
2352#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2353
2354#ifdef CONFIG_CPU_FREQ
2355DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2356
2357/**
2358 * cpufreq_update_util - Take a note about CPU utilization changes.
2359 * @rq: Runqueue to carry out the update for.
2360 * @flags: Update reason flags.
2361 *
2362 * This function is called by the scheduler on the CPU whose utilization is
2363 * being updated.
2364 *
2365 * It can only be called from RCU-sched read-side critical sections.
2366 *
2367 * The way cpufreq is currently arranged requires it to evaluate the CPU
2368 * performance state (frequency/voltage) on a regular basis to prevent it from
2369 * being stuck in a completely inadequate performance level for too long.
2370 * That is not guaranteed to happen if the updates are only triggered from CFS
2371 * and DL, though, because they may not be coming in if only RT tasks are
2372 * active all the time (or there are RT tasks only).
2373 *
2374 * As a workaround for that issue, this function is called periodically by the
2375 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2376 * but that really is a band-aid.  Going forward it should be replaced with
2377 * solutions targeted more specifically at RT tasks.
2378 */
2379static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2380{
2381	struct update_util_data *data;
2382
2383	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2384						  cpu_of(rq)));
2385	if (data)
2386		data->func(data, rq_clock(rq), flags);
2387}
 
 
 
 
 
 
2388#else
2389static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
 
2390#endif /* CONFIG_CPU_FREQ */
2391
2392#ifdef CONFIG_UCLAMP_TASK
2393unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2394
2395/**
2396 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2397 * @rq:		The rq to clamp against. Must not be NULL.
2398 * @util:	The util value to clamp.
2399 * @p:		The task to clamp against. Can be NULL if you want to clamp
2400 *		against @rq only.
2401 *
2402 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2403 *
2404 * If sched_uclamp_used static key is disabled, then just return the util
2405 * without any clamping since uclamp aggregation at the rq level in the fast
2406 * path is disabled, rendering this operation a NOP.
2407 *
2408 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2409 * will return the correct effective uclamp value of the task even if the
2410 * static key is disabled.
2411 */
2412static __always_inline
2413unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2414				  struct task_struct *p)
2415{
2416	unsigned long min_util;
2417	unsigned long max_util;
2418
2419	if (!static_branch_likely(&sched_uclamp_used))
2420		return util;
2421
2422	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2423	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2424
2425	if (p) {
2426		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2427		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2428	}
2429
2430	/*
2431	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2432	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2433	 * inversion. Fix it now when the clamps are applied.
2434	 */
2435	if (unlikely(min_util >= max_util))
2436		return min_util;
2437
2438	return clamp(util, min_util, max_util);
2439}
2440
2441/*
2442 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2443 * by default in the fast path and only gets turned on once userspace performs
2444 * an operation that requires it.
2445 *
2446 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2447 * hence is active.
2448 */
2449static inline bool uclamp_is_used(void)
2450{
2451	return static_branch_likely(&sched_uclamp_used);
2452}
2453#else /* CONFIG_UCLAMP_TASK */
2454static inline
2455unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2456				  struct task_struct *p)
2457{
2458	return util;
2459}
2460
2461static inline bool uclamp_is_used(void)
2462{
2463	return false;
2464}
2465#endif /* CONFIG_UCLAMP_TASK */
2466
2467#ifdef arch_scale_freq_capacity
2468# ifndef arch_scale_freq_invariant
2469#  define arch_scale_freq_invariant()	true
2470# endif
2471#else
2472# define arch_scale_freq_invariant()	false
2473#endif
2474
2475#ifdef CONFIG_SMP
2476static inline unsigned long capacity_orig_of(int cpu)
2477{
2478	return cpu_rq(cpu)->cpu_capacity_orig;
2479}
2480#endif
2481
2482/**
2483 * enum schedutil_type - CPU utilization type
2484 * @FREQUENCY_UTIL:	Utilization used to select frequency
2485 * @ENERGY_UTIL:	Utilization used during energy calculation
2486 *
2487 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2488 * need to be aggregated differently depending on the usage made of them. This
2489 * enum is used within schedutil_freq_util() to differentiate the types of
2490 * utilization expected by the callers, and adjust the aggregation accordingly.
2491 */
2492enum schedutil_type {
2493	FREQUENCY_UTIL,
2494	ENERGY_UTIL,
2495};
2496
2497#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2498
2499unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2500				 unsigned long max, enum schedutil_type type,
2501				 struct task_struct *p);
2502
2503static inline unsigned long cpu_bw_dl(struct rq *rq)
2504{
2505	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2506}
2507
2508static inline unsigned long cpu_util_dl(struct rq *rq)
2509{
2510	return READ_ONCE(rq->avg_dl.util_avg);
2511}
2512
2513static inline unsigned long cpu_util_cfs(struct rq *rq)
2514{
2515	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2516
2517	if (sched_feat(UTIL_EST)) {
2518		util = max_t(unsigned long, util,
2519			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2520	}
2521
2522	return util;
2523}
2524
2525static inline unsigned long cpu_util_rt(struct rq *rq)
2526{
2527	return READ_ONCE(rq->avg_rt.util_avg);
2528}
2529#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2530static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2531				 unsigned long max, enum schedutil_type type,
2532				 struct task_struct *p)
2533{
2534	return 0;
2535}
2536#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2537
2538#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2539static inline unsigned long cpu_util_irq(struct rq *rq)
2540{
2541	return rq->avg_irq.util_avg;
2542}
2543
2544static inline
2545unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2546{
2547	util *= (max - irq);
2548	util /= max;
2549
2550	return util;
2551
2552}
2553#else
2554static inline unsigned long cpu_util_irq(struct rq *rq)
2555{
2556	return 0;
2557}
2558
2559static inline
2560unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2561{
2562	return util;
2563}
2564#endif
2565
2566#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2567
2568#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2569
2570DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2571
2572static inline bool sched_energy_enabled(void)
2573{
2574	return static_branch_unlikely(&sched_energy_present);
2575}
2576
2577#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2578
2579#define perf_domain_span(pd) NULL
2580static inline bool sched_energy_enabled(void) { return false; }
2581
2582#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2583
2584#ifdef CONFIG_MEMBARRIER
2585/*
2586 * The scheduler provides memory barriers required by membarrier between:
2587 * - prior user-space memory accesses and store to rq->membarrier_state,
2588 * - store to rq->membarrier_state and following user-space memory accesses.
2589 * In the same way it provides those guarantees around store to rq->curr.
2590 */
2591static inline void membarrier_switch_mm(struct rq *rq,
2592					struct mm_struct *prev_mm,
2593					struct mm_struct *next_mm)
2594{
2595	int membarrier_state;
2596
2597	if (prev_mm == next_mm)
2598		return;
2599
2600	membarrier_state = atomic_read(&next_mm->membarrier_state);
2601	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2602		return;
2603
2604	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2605}
2606#else
2607static inline void membarrier_switch_mm(struct rq *rq,
2608					struct mm_struct *prev_mm,
2609					struct mm_struct *next_mm)
2610{
2611}
2612#endif
2613
2614#ifdef CONFIG_SMP
2615static inline bool is_per_cpu_kthread(struct task_struct *p)
2616{
2617	if (!(p->flags & PF_KTHREAD))
2618		return false;
2619
2620	if (p->nr_cpus_allowed != 1)
2621		return false;
2622
2623	return true;
2624}
2625#endif
2626
2627void swake_up_all_locked(struct swait_queue_head *q);
2628void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);