Linux Audio

Check our new training course

Loading...
v4.10.11
   1
 
 
 
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/u64_stats_sync.h>
 
 
 
   6#include <linux/sched/deadline.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/binfmts.h>
   8#include <linux/mutex.h>
   9#include <linux/spinlock.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10#include <linux/stop_machine.h>
  11#include <linux/irq_work.h>
  12#include <linux/tick.h>
  13#include <linux/slab.h>
 
 
 
 
 
 
 
 
  14
  15#include "cpupri.h"
  16#include "cpudeadline.h"
  17#include "cpuacct.h"
 
  18
  19#ifdef CONFIG_SCHED_DEBUG
  20#define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  21#else
  22#define SCHED_WARN_ON(x)	((void)(x))
  23#endif
  24
  25struct rq;
  26struct cpuidle_state;
  27
  28/* task_struct::on_rq states: */
  29#define TASK_ON_RQ_QUEUED	1
  30#define TASK_ON_RQ_MIGRATING	2
  31
  32extern __read_mostly int scheduler_running;
  33
  34extern unsigned long calc_load_update;
  35extern atomic_long_t calc_load_tasks;
  36
  37extern void calc_global_load_tick(struct rq *this_rq);
  38extern long calc_load_fold_active(struct rq *this_rq, long adjust);
  39
  40#ifdef CONFIG_SMP
  41extern void cpu_load_update_active(struct rq *this_rq);
  42#else
  43static inline void cpu_load_update_active(struct rq *this_rq) { }
  44#endif
  45
  46/*
  47 * Helpers for converting nanosecond timing to jiffy resolution
  48 */
  49#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  50
  51/*
  52 * Increase resolution of nice-level calculations for 64-bit architectures.
  53 * The extra resolution improves shares distribution and load balancing of
  54 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  55 * hierarchies, especially on larger systems. This is not a user-visible change
  56 * and does not change the user-interface for setting shares/weights.
  57 *
  58 * We increase resolution only if we have enough bits to allow this increased
  59 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
  60 * pretty high and the returns do not justify the increased costs.
  61 *
  62 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
  63 * increase coverage and consistency always enable it on 64bit platforms.
  64 */
  65#ifdef CONFIG_64BIT
  66# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
  67# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
  68# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
 
 
 
 
 
 
  69#else
  70# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
  71# define scale_load(w)		(w)
  72# define scale_load_down(w)	(w)
  73#endif
  74
  75/*
  76 * Task weight (visible to users) and its load (invisible to users) have
  77 * independent resolution, but they should be well calibrated. We use
  78 * scale_load() and scale_load_down(w) to convert between them. The
  79 * following must be true:
  80 *
  81 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
  82 *
  83 */
  84#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
  85
  86/*
  87 * Single value that decides SCHED_DEADLINE internal math precision.
  88 * 10 -> just above 1us
  89 * 9  -> just above 0.5us
  90 */
  91#define DL_SCALE (10)
  92
  93/*
  94 * These are the 'tuning knobs' of the scheduler:
  95 */
  96
  97/*
  98 * single value that denotes runtime == period, ie unlimited time.
  99 */
 100#define RUNTIME_INF	((u64)~0ULL)
 101
 102static inline int idle_policy(int policy)
 103{
 104	return policy == SCHED_IDLE;
 105}
 106static inline int fair_policy(int policy)
 107{
 108	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 109}
 110
 111static inline int rt_policy(int policy)
 112{
 113	return policy == SCHED_FIFO || policy == SCHED_RR;
 114}
 115
 116static inline int dl_policy(int policy)
 117{
 118	return policy == SCHED_DEADLINE;
 119}
 120static inline bool valid_policy(int policy)
 121{
 122	return idle_policy(policy) || fair_policy(policy) ||
 123		rt_policy(policy) || dl_policy(policy);
 124}
 125
 
 
 
 
 
 126static inline int task_has_rt_policy(struct task_struct *p)
 127{
 128	return rt_policy(p->policy);
 129}
 130
 131static inline int task_has_dl_policy(struct task_struct *p)
 132{
 133	return dl_policy(p->policy);
 134}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136/*
 137 * Tells if entity @a should preempt entity @b.
 138 */
 139static inline bool
 140dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 141{
 142	return dl_time_before(a->deadline, b->deadline);
 
 143}
 144
 145/*
 146 * This is the priority-queue data structure of the RT scheduling class:
 147 */
 148struct rt_prio_array {
 149	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 150	struct list_head queue[MAX_RT_PRIO];
 151};
 152
 153struct rt_bandwidth {
 154	/* nests inside the rq lock: */
 155	raw_spinlock_t		rt_runtime_lock;
 156	ktime_t			rt_period;
 157	u64			rt_runtime;
 158	struct hrtimer		rt_period_timer;
 159	unsigned int		rt_period_active;
 160};
 161
 162void __dl_clear_params(struct task_struct *p);
 163
 
 
 
 
 
 
 
 
 
 
 
 164/*
 165 * To keep the bandwidth of -deadline tasks and groups under control
 166 * we need some place where:
 167 *  - store the maximum -deadline bandwidth of the system (the group);
 168 *  - cache the fraction of that bandwidth that is currently allocated.
 
 169 *
 170 * This is all done in the data structure below. It is similar to the
 171 * one used for RT-throttling (rt_bandwidth), with the main difference
 172 * that, since here we are only interested in admission control, we
 173 * do not decrease any runtime while the group "executes", neither we
 174 * need a timer to replenish it.
 175 *
 176 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 177 * meaning that:
 178 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 179 *  - dl_total_bw array contains, in the i-eth element, the currently
 180 *    allocated bandwidth on the i-eth CPU.
 181 * Moreover, groups consume bandwidth on each CPU, while tasks only
 182 * consume bandwidth on the CPU they're running on.
 183 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 184 * that will be shown the next time the proc or cgroup controls will
 185 * be red. It on its turn can be changed by writing on its own
 186 * control.
 187 */
 188struct dl_bandwidth {
 189	raw_spinlock_t dl_runtime_lock;
 190	u64 dl_runtime;
 191	u64 dl_period;
 192};
 193
 194static inline int dl_bandwidth_enabled(void)
 195{
 196	return sysctl_sched_rt_runtime >= 0;
 197}
 198
 199extern struct dl_bw *dl_bw_of(int i);
 200
 201struct dl_bw {
 202	raw_spinlock_t lock;
 203	u64 bw, total_bw;
 
 204};
 205
 
 
 206static inline
 207void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 208{
 209	dl_b->total_bw -= tsk_bw;
 
 210}
 211
 212static inline
 213void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 214{
 215	dl_b->total_bw += tsk_bw;
 
 216}
 217
 218static inline
 219bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 220{
 221	return dl_b->bw != -1 &&
 222	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223}
 224
 225extern struct mutex sched_domains_mutex;
 
 
 
 
 
 
 
 
 
 
 226
 227#ifdef CONFIG_CGROUP_SCHED
 228
 229#include <linux/cgroup.h>
 
 230
 231struct cfs_rq;
 232struct rt_rq;
 233
 234extern struct list_head task_groups;
 235
 236struct cfs_bandwidth {
 237#ifdef CONFIG_CFS_BANDWIDTH
 238	raw_spinlock_t lock;
 239	ktime_t period;
 240	u64 quota, runtime;
 241	s64 hierarchical_quota;
 242	u64 runtime_expires;
 243
 244	int idle, period_active;
 245	struct hrtimer period_timer, slack_timer;
 246	struct list_head throttled_cfs_rq;
 247
 248	/* statistics */
 249	int nr_periods, nr_throttled;
 250	u64 throttled_time;
 
 
 
 
 
 251#endif
 252};
 253
 254/* task group related information */
 255struct task_group {
 256	struct cgroup_subsys_state css;
 257
 258#ifdef CONFIG_FAIR_GROUP_SCHED
 259	/* schedulable entities of this group on each cpu */
 260	struct sched_entity **se;
 261	/* runqueue "owned" by this group on each cpu */
 262	struct cfs_rq **cfs_rq;
 263	unsigned long shares;
 264
 265#ifdef	CONFIG_SMP
 266	/*
 267	 * load_avg can be heavily contended at clock tick time, so put
 268	 * it in its own cacheline separated from the fields above which
 269	 * will also be accessed at each tick.
 270	 */
 271	atomic_long_t load_avg ____cacheline_aligned;
 272#endif
 273#endif
 274
 275#ifdef CONFIG_RT_GROUP_SCHED
 276	struct sched_rt_entity **rt_se;
 277	struct rt_rq **rt_rq;
 278
 279	struct rt_bandwidth rt_bandwidth;
 280#endif
 281
 282	struct rcu_head rcu;
 283	struct list_head list;
 284
 285	struct task_group *parent;
 286	struct list_head siblings;
 287	struct list_head children;
 288
 289#ifdef CONFIG_SCHED_AUTOGROUP
 290	struct autogroup *autogroup;
 
 
 
 
 
 
 
 
 
 
 
 291#endif
 292
 293	struct cfs_bandwidth cfs_bandwidth;
 294};
 295
 296#ifdef CONFIG_FAIR_GROUP_SCHED
 297#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 298
 299/*
 300 * A weight of 0 or 1 can cause arithmetics problems.
 301 * A weight of a cfs_rq is the sum of weights of which entities
 302 * are queued on this cfs_rq, so a weight of a entity should not be
 303 * too large, so as the shares value of a task group.
 304 * (The default weight is 1024 - so there's no practical
 305 *  limitation from this.)
 306 */
 307#define MIN_SHARES	(1UL <<  1)
 308#define MAX_SHARES	(1UL << 18)
 309#endif
 310
 311typedef int (*tg_visitor)(struct task_group *, void *);
 312
 313extern int walk_tg_tree_from(struct task_group *from,
 314			     tg_visitor down, tg_visitor up, void *data);
 315
 316/*
 317 * Iterate the full tree, calling @down when first entering a node and @up when
 318 * leaving it for the final time.
 319 *
 320 * Caller must hold rcu_lock or sufficient equivalent.
 321 */
 322static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 323{
 324	return walk_tg_tree_from(&root_task_group, down, up, data);
 325}
 326
 327extern int tg_nop(struct task_group *tg, void *data);
 328
 329extern void free_fair_sched_group(struct task_group *tg);
 330extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 331extern void online_fair_sched_group(struct task_group *tg);
 332extern void unregister_fair_sched_group(struct task_group *tg);
 333extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 334			struct sched_entity *se, int cpu,
 335			struct sched_entity *parent);
 336extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 337
 338extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 339extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 340extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 341
 342extern void free_rt_sched_group(struct task_group *tg);
 343extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 344extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 345		struct sched_rt_entity *rt_se, int cpu,
 346		struct sched_rt_entity *parent);
 
 
 
 
 
 347
 348extern struct task_group *sched_create_group(struct task_group *parent);
 349extern void sched_online_group(struct task_group *tg,
 350			       struct task_group *parent);
 351extern void sched_destroy_group(struct task_group *tg);
 352extern void sched_offline_group(struct task_group *tg);
 353
 354extern void sched_move_task(struct task_struct *tsk);
 355
 356#ifdef CONFIG_FAIR_GROUP_SCHED
 357extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 358
 359#ifdef CONFIG_SMP
 360extern void set_task_rq_fair(struct sched_entity *se,
 361			     struct cfs_rq *prev, struct cfs_rq *next);
 362#else /* !CONFIG_SMP */
 363static inline void set_task_rq_fair(struct sched_entity *se,
 364			     struct cfs_rq *prev, struct cfs_rq *next) { }
 365#endif /* CONFIG_SMP */
 366#endif /* CONFIG_FAIR_GROUP_SCHED */
 367
 368#else /* CONFIG_CGROUP_SCHED */
 369
 370struct cfs_bandwidth { };
 371
 372#endif	/* CONFIG_CGROUP_SCHED */
 373
 374/* CFS-related fields in a runqueue */
 375struct cfs_rq {
 376	struct load_weight load;
 377	unsigned int nr_running, h_nr_running;
 
 
 
 
 
 
 
 
 
 378
 379	u64 exec_clock;
 380	u64 min_vruntime;
 381#ifndef CONFIG_64BIT
 382	u64 min_vruntime_copy;
 383#endif
 384
 385	struct rb_root tasks_timeline;
 386	struct rb_node *rb_leftmost;
 387
 388	/*
 389	 * 'curr' points to currently running entity on this cfs_rq.
 390	 * It is set to NULL otherwise (i.e when none are currently running).
 391	 */
 392	struct sched_entity *curr, *next, *last, *skip;
 
 
 
 393
 394#ifdef	CONFIG_SCHED_DEBUG
 395	unsigned int nr_spread_over;
 396#endif
 397
 398#ifdef CONFIG_SMP
 399	/*
 400	 * CFS load tracking
 401	 */
 402	struct sched_avg avg;
 403	u64 runnable_load_sum;
 404	unsigned long runnable_load_avg;
 405#ifdef CONFIG_FAIR_GROUP_SCHED
 406	unsigned long tg_load_avg_contrib;
 407	unsigned long propagate_avg;
 408#endif
 409	atomic_long_t removed_load_avg, removed_util_avg;
 410#ifndef CONFIG_64BIT
 411	u64 load_last_update_time_copy;
 412#endif
 
 
 
 
 
 
 
 413
 414#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 415	/*
 416	 *   h_load = weight * f(tg)
 417	 *
 418	 * Where f(tg) is the recursive weight fraction assigned to
 419	 * this group.
 420	 */
 421	unsigned long h_load;
 422	u64 last_h_load_update;
 423	struct sched_entity *h_load_next;
 424#endif /* CONFIG_FAIR_GROUP_SCHED */
 425#endif /* CONFIG_SMP */
 426
 427#ifdef CONFIG_FAIR_GROUP_SCHED
 428	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 429
 430	/*
 431	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 432	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 433	 * (like users, containers etc.)
 434	 *
 435	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 436	 * list is used during load balance.
 437	 */
 438	int on_list;
 439	struct list_head leaf_cfs_rq_list;
 440	struct task_group *tg;	/* group that "owns" this runqueue */
 441
 442#ifdef CONFIG_CFS_BANDWIDTH
 443	int runtime_enabled;
 444	u64 runtime_expires;
 445	s64 runtime_remaining;
 446
 447	u64 throttled_clock, throttled_clock_task;
 448	u64 throttled_clock_task_time;
 449	int throttled, throttle_count;
 450	struct list_head throttled_list;
 
 451#endif /* CONFIG_CFS_BANDWIDTH */
 452#endif /* CONFIG_FAIR_GROUP_SCHED */
 453};
 454
 455static inline int rt_bandwidth_enabled(void)
 456{
 457	return sysctl_sched_rt_runtime >= 0;
 458}
 459
 460/* RT IPI pull logic requires IRQ_WORK */
 461#ifdef CONFIG_IRQ_WORK
 462# define HAVE_RT_PUSH_IPI
 463#endif
 464
 465/* Real-Time classes' related field in a runqueue: */
 466struct rt_rq {
 467	struct rt_prio_array active;
 468	unsigned int rt_nr_running;
 469	unsigned int rr_nr_running;
 470#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 471	struct {
 472		int curr; /* highest queued rt task prio */
 473#ifdef CONFIG_SMP
 474		int next; /* next highest */
 475#endif
 476	} highest_prio;
 477#endif
 478#ifdef CONFIG_SMP
 479	unsigned long rt_nr_migratory;
 480	unsigned long rt_nr_total;
 481	int overloaded;
 482	struct plist_head pushable_tasks;
 483#ifdef HAVE_RT_PUSH_IPI
 484	int push_flags;
 485	int push_cpu;
 486	struct irq_work push_work;
 487	raw_spinlock_t push_lock;
 488#endif
 489#endif /* CONFIG_SMP */
 490	int rt_queued;
 491
 492	int rt_throttled;
 493	u64 rt_time;
 494	u64 rt_runtime;
 495	/* Nests inside the rq lock: */
 496	raw_spinlock_t rt_runtime_lock;
 497
 498#ifdef CONFIG_RT_GROUP_SCHED
 499	unsigned long rt_nr_boosted;
 500
 501	struct rq *rq;
 502	struct task_group *tg;
 503#endif
 504};
 505
 
 
 
 
 
 506/* Deadline class' related fields in a runqueue */
 507struct dl_rq {
 508	/* runqueue is an rbtree, ordered by deadline */
 509	struct rb_root rb_root;
 510	struct rb_node *rb_leftmost;
 511
 512	unsigned long dl_nr_running;
 513
 514#ifdef CONFIG_SMP
 515	/*
 516	 * Deadline values of the currently executing and the
 517	 * earliest ready task on this rq. Caching these facilitates
 518	 * the decision wether or not a ready but not running task
 519	 * should migrate somewhere else.
 520	 */
 521	struct {
 522		u64 curr;
 523		u64 next;
 524	} earliest_dl;
 525
 526	unsigned long dl_nr_migratory;
 527	int overloaded;
 528
 529	/*
 530	 * Tasks on this rq that can be pushed away. They are kept in
 531	 * an rb-tree, ordered by tasks' deadlines, with caching
 532	 * of the leftmost (earliest deadline) element.
 533	 */
 534	struct rb_root pushable_dl_tasks_root;
 535	struct rb_node *pushable_dl_tasks_leftmost;
 536#else
 537	struct dl_bw dl_bw;
 538#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539};
 540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 542
 543static inline bool sched_asym_prefer(int a, int b)
 544{
 545	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 546}
 547
 
 
 
 
 
 
 
 
 
 
 548/*
 549 * We add the notion of a root-domain which will be used to define per-domain
 550 * variables. Each exclusive cpuset essentially defines an island domain by
 551 * fully partitioning the member cpus from any other cpuset. Whenever a new
 552 * exclusive cpuset is created, we also create and attach a new root-domain
 553 * object.
 554 *
 555 */
 556struct root_domain {
 557	atomic_t refcount;
 558	atomic_t rto_count;
 559	struct rcu_head rcu;
 560	cpumask_var_t span;
 561	cpumask_var_t online;
 
 
 
 
 
 
 
 562
 563	/* Indicate more than one runnable task for any CPU */
 564	bool overload;
 565
 566	/*
 567	 * The bit corresponding to a CPU gets set here if such CPU has more
 568	 * than one runnable -deadline task (as it is below for RT tasks).
 569	 */
 570	cpumask_var_t dlo_mask;
 571	atomic_t dlo_count;
 572	struct dl_bw dl_bw;
 573	struct cpudl cpudl;
 574
 575	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	 * The "RT overload" flag: it gets set if a CPU has more than
 577	 * one runnable RT task.
 578	 */
 579	cpumask_var_t rto_mask;
 580	struct cpupri cpupri;
 
 
 581
 582	unsigned long max_cpu_capacity;
 
 
 
 
 583};
 584
 585extern struct root_domain def_root_domain;
 
 
 
 
 586
 
 
 
 587#endif /* CONFIG_SMP */
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/*
 590 * This is the main, per-CPU runqueue data structure.
 591 *
 592 * Locking rule: those places that want to lock multiple runqueues
 593 * (such as the load balancing or the thread migration code), lock
 594 * acquire operations must be ordered by ascending &runqueue.
 595 */
 596struct rq {
 597	/* runqueue lock: */
 598	raw_spinlock_t lock;
 599
 600	/*
 601	 * nr_running and cpu_load should be in the same cacheline because
 602	 * remote CPUs use both these fields when doing load calculation.
 603	 */
 604	unsigned int nr_running;
 605#ifdef CONFIG_NUMA_BALANCING
 606	unsigned int nr_numa_running;
 607	unsigned int nr_preferred_running;
 
 608#endif
 609	#define CPU_LOAD_IDX_MAX 5
 610	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 611#ifdef CONFIG_NO_HZ_COMMON
 612#ifdef CONFIG_SMP
 613	unsigned long last_load_update_tick;
 
 
 614#endif /* CONFIG_SMP */
 615	unsigned long nohz_flags;
 
 616#endif /* CONFIG_NO_HZ_COMMON */
 617#ifdef CONFIG_NO_HZ_FULL
 618	unsigned long last_sched_tick;
 
 
 
 
 
 
 
 
 
 619#endif
 620	/* capture load from *all* tasks on this cpu: */
 621	struct load_weight load;
 622	unsigned long nr_load_updates;
 623	u64 nr_switches;
 624
 625	struct cfs_rq cfs;
 626	struct rt_rq rt;
 627	struct dl_rq dl;
 628
 629#ifdef CONFIG_FAIR_GROUP_SCHED
 630	/* list of leaf cfs_rq on this cpu: */
 631	struct list_head leaf_cfs_rq_list;
 632	struct list_head *tmp_alone_branch;
 633#endif /* CONFIG_FAIR_GROUP_SCHED */
 634
 635	/*
 636	 * This is part of a global counter where only the total sum
 637	 * over all CPUs matters. A task can increase this counter on
 638	 * one CPU and if it got migrated afterwards it may decrease
 639	 * it on another CPU. Always updated under the runqueue lock:
 640	 */
 641	unsigned long nr_uninterruptible;
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	struct task_struct *curr, *idle, *stop;
 644	unsigned long next_balance;
 645	struct mm_struct *prev_mm;
 646
 647	unsigned int clock_skip_update;
 648	u64 clock;
 649	u64 clock_task;
 
 650
 651	atomic_t nr_iowait;
 
 
 652
 653#ifdef CONFIG_SMP
 654	struct root_domain *rd;
 655	struct sched_domain *sd;
 
 
 
 
 
 656
 657	unsigned long cpu_capacity;
 658	unsigned long cpu_capacity_orig;
 659
 660	struct callback_head *balance_callback;
 661
 662	unsigned char idle_balance;
 663	/* For active balancing */
 664	int active_balance;
 665	int push_cpu;
 666	struct cpu_stop_work active_balance_work;
 667	/* cpu of this runqueue: */
 668	int cpu;
 669	int online;
 
 670
 671	struct list_head cfs_tasks;
 672
 673	u64 rt_avg;
 674	u64 age_stamp;
 675	u64 idle_stamp;
 676	u64 avg_idle;
 
 
 
 
 
 
 
 
 
 677
 678	/* This is used to determine avg_idle's max value */
 679	u64 max_idle_balance_cost;
 
 
 
 680#endif
 
 681
 682#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 683	u64 prev_irq_time;
 684#endif
 685#ifdef CONFIG_PARAVIRT
 686	u64 prev_steal_time;
 687#endif
 688#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 689	u64 prev_steal_time_rq;
 690#endif
 691
 692	/* calc_load related fields */
 693	unsigned long calc_load_update;
 694	long calc_load_active;
 695
 696#ifdef CONFIG_SCHED_HRTICK
 697#ifdef CONFIG_SMP
 698	int hrtick_csd_pending;
 699	struct call_single_data hrtick_csd;
 700#endif
 701	struct hrtimer hrtick_timer;
 
 702#endif
 703
 704#ifdef CONFIG_SCHEDSTATS
 705	/* latency stats */
 706	struct sched_info rq_sched_info;
 707	unsigned long long rq_cpu_time;
 708	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 709
 710	/* sys_sched_yield() stats */
 711	unsigned int yld_count;
 712
 713	/* schedule() stats */
 714	unsigned int sched_count;
 715	unsigned int sched_goidle;
 716
 717	/* try_to_wake_up() stats */
 718	unsigned int ttwu_count;
 719	unsigned int ttwu_local;
 
 
 
 
 
 720#endif
 721
 722#ifdef CONFIG_SMP
 723	struct llist_head wake_list;
 724#endif
 
 
 725
 726#ifdef CONFIG_CPU_IDLE
 727	/* Must be inspected within a rcu lock section */
 728	struct cpuidle_state *idle_state;
 
 
 
 
 
 
 
 
 
 
 
 729#endif
 730};
 731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732static inline int cpu_of(struct rq *rq)
 733{
 734#ifdef CONFIG_SMP
 735	return rq->cpu;
 736#else
 737	return 0;
 738#endif
 739}
 740
 
 741
 742#ifdef CONFIG_SCHED_SMT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744extern struct static_key_false sched_smt_present;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746extern void __update_idle_core(struct rq *rq);
 747
 748static inline void update_idle_core(struct rq *rq)
 749{
 750	if (static_branch_unlikely(&sched_smt_present))
 751		__update_idle_core(rq);
 752}
 753
 754#else
 755static inline void update_idle_core(struct rq *rq) { }
 756#endif
 757
 758DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 759
 760#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 761#define this_rq()		this_cpu_ptr(&runqueues)
 762#define task_rq(p)		cpu_rq(task_cpu(p))
 763#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 764#define raw_rq()		raw_cpu_ptr(&runqueues)
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766static inline u64 __rq_clock_broken(struct rq *rq)
 767{
 768	return READ_ONCE(rq->clock);
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771static inline u64 rq_clock(struct rq *rq)
 772{
 773	lockdep_assert_held(&rq->lock);
 
 
 774	return rq->clock;
 775}
 776
 777static inline u64 rq_clock_task(struct rq *rq)
 778{
 779	lockdep_assert_held(&rq->lock);
 
 
 780	return rq->clock_task;
 781}
 782
 783#define RQCF_REQ_SKIP	0x01
 784#define RQCF_ACT_SKIP	0x02
 
 
 
 
 
 
 
 
 
 
 785
 786static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 787{
 788	lockdep_assert_held(&rq->lock);
 789	if (skip)
 790		rq->clock_skip_update |= RQCF_REQ_SKIP;
 791	else
 792		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793}
 794
 795#ifdef CONFIG_NUMA
 796enum numa_topology_type {
 797	NUMA_DIRECT,
 798	NUMA_GLUELESS_MESH,
 799	NUMA_BACKPLANE,
 800};
 801extern enum numa_topology_type sched_numa_topology_type;
 802extern int sched_max_numa_distance;
 803extern bool find_numa_distance(int distance);
 
 
 
 
 
 
 
 
 
 
 
 
 804#endif
 805
 806#ifdef CONFIG_NUMA_BALANCING
 807/* The regions in numa_faults array from task_struct */
 808enum numa_faults_stats {
 809	NUMA_MEM = 0,
 810	NUMA_CPU,
 811	NUMA_MEMBUF,
 812	NUMA_CPUBUF
 813};
 814extern void sched_setnuma(struct task_struct *p, int node);
 815extern int migrate_task_to(struct task_struct *p, int cpu);
 816extern int migrate_swap(struct task_struct *, struct task_struct *);
 
 
 
 
 
 
 
 817#endif /* CONFIG_NUMA_BALANCING */
 818
 819#ifdef CONFIG_SMP
 820
 821static inline void
 822queue_balance_callback(struct rq *rq,
 823		       struct callback_head *head,
 824		       void (*func)(struct rq *rq))
 825{
 826	lockdep_assert_held(&rq->lock);
 827
 828	if (unlikely(head->next))
 829		return;
 830
 831	head->func = (void (*)(struct callback_head *))func;
 832	head->next = rq->balance_callback;
 833	rq->balance_callback = head;
 834}
 835
 836extern void sched_ttwu_pending(void);
 837
 838#define rcu_dereference_check_sched_domain(p) \
 839	rcu_dereference_check((p), \
 840			      lockdep_is_held(&sched_domains_mutex))
 841
 842/*
 843 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 844 * See detach_destroy_domains: synchronize_sched for details.
 845 *
 846 * The domain tree of any CPU may only be accessed from within
 847 * preempt-disabled sections.
 848 */
 849#define for_each_domain(cpu, __sd) \
 850	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 851			__sd; __sd = __sd->parent)
 852
 853#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 854
 855/**
 856 * highest_flag_domain - Return highest sched_domain containing flag.
 857 * @cpu:	The cpu whose highest level of sched domain is to
 858 *		be returned.
 859 * @flag:	The flag to check for the highest sched_domain
 860 *		for the given cpu.
 861 *
 862 * Returns the highest sched_domain of a cpu which contains the given flag.
 863 */
 864static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 865{
 866	struct sched_domain *sd, *hsd = NULL;
 867
 868	for_each_domain(cpu, sd) {
 869		if (!(sd->flags & flag))
 870			break;
 871		hsd = sd;
 872	}
 873
 874	return hsd;
 875}
 876
 877static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 878{
 879	struct sched_domain *sd;
 880
 881	for_each_domain(cpu, sd) {
 882		if (sd->flags & flag)
 883			break;
 884	}
 885
 886	return sd;
 887}
 888
 889DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 890DECLARE_PER_CPU(int, sd_llc_size);
 891DECLARE_PER_CPU(int, sd_llc_id);
 892DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 893DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 894DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 
 895
 896struct sched_group_capacity {
 897	atomic_t ref;
 898	/*
 899	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
 900	 * for a single CPU.
 901	 */
 902	unsigned long capacity;
 903	unsigned long min_capacity; /* Min per-CPU capacity in group */
 904	unsigned long next_update;
 905	int imbalance; /* XXX unrelated to capacity but shared group state */
 
 
 
 
 
 906
 907	unsigned long cpumask[0]; /* iteration mask */
 908};
 909
 910struct sched_group {
 911	struct sched_group *next;	/* Must be a circular list */
 912	atomic_t ref;
 913
 914	unsigned int group_weight;
 915	struct sched_group_capacity *sgc;
 916	int asym_prefer_cpu;		/* cpu of highest priority in group */
 917
 918	/*
 919	 * The CPUs this group covers.
 920	 *
 921	 * NOTE: this field is variable length. (Allocated dynamically
 922	 * by attaching extra space to the end of the structure,
 923	 * depending on how many CPUs the kernel has booted up with)
 924	 */
 925	unsigned long cpumask[0];
 926};
 927
 928static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 929{
 930	return to_cpumask(sg->cpumask);
 931}
 932
 933/*
 934 * cpumask masking which cpus in the group are allowed to iterate up the domain
 935 * tree.
 936 */
 937static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 938{
 939	return to_cpumask(sg->sgc->cpumask);
 940}
 941
 942/**
 943 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 944 * @group: The group whose first cpu is to be returned.
 945 */
 946static inline unsigned int group_first_cpu(struct sched_group *group)
 947{
 948	return cpumask_first(sched_group_cpus(group));
 949}
 950
 951extern int group_balance_cpu(struct sched_group *sg);
 952
 953#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 954void register_sched_domain_sysctl(void);
 955void unregister_sched_domain_sysctl(void);
 956#else
 957static inline void register_sched_domain_sysctl(void)
 958{
 959}
 960static inline void unregister_sched_domain_sysctl(void)
 961{
 962}
 963#endif
 964
 965#else
 966
 967static inline void sched_ttwu_pending(void) { }
 968
 969#endif /* CONFIG_SMP */
 
 
 970
 971#include "stats.h"
 972#include "auto_group.h"
 973
 974#ifdef CONFIG_CGROUP_SCHED
 975
 976/*
 977 * Return the group to which this tasks belongs.
 978 *
 979 * We cannot use task_css() and friends because the cgroup subsystem
 980 * changes that value before the cgroup_subsys::attach() method is called,
 981 * therefore we cannot pin it and might observe the wrong value.
 982 *
 983 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 984 * core changes this before calling sched_move_task().
 985 *
 986 * Instead we use a 'copy' which is updated from sched_move_task() while
 987 * holding both task_struct::pi_lock and rq::lock.
 988 */
 989static inline struct task_group *task_group(struct task_struct *p)
 990{
 991	return p->sched_task_group;
 992}
 993
 994/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 995static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 996{
 997#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 998	struct task_group *tg = task_group(p);
 999#endif
1000
1001#ifdef CONFIG_FAIR_GROUP_SCHED
1002	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1003	p->se.cfs_rq = tg->cfs_rq[cpu];
1004	p->se.parent = tg->se[cpu];
1005#endif
1006
1007#ifdef CONFIG_RT_GROUP_SCHED
1008	p->rt.rt_rq  = tg->rt_rq[cpu];
1009	p->rt.parent = tg->rt_se[cpu];
1010#endif
1011}
1012
1013#else /* CONFIG_CGROUP_SCHED */
1014
1015static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1016static inline struct task_group *task_group(struct task_struct *p)
1017{
1018	return NULL;
1019}
1020
1021#endif /* CONFIG_CGROUP_SCHED */
1022
1023static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1024{
1025	set_task_rq(p, cpu);
1026#ifdef CONFIG_SMP
1027	/*
1028	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029	 * successfuly executed on another CPU. We must ensure that updates of
1030	 * per-task data have been completed by this moment.
1031	 */
1032	smp_wmb();
1033#ifdef CONFIG_THREAD_INFO_IN_TASK
1034	p->cpu = cpu;
1035#else
1036	task_thread_info(p)->cpu = cpu;
1037#endif
1038	p->wake_cpu = cpu;
1039#endif
1040}
1041
1042/*
1043 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1044 */
1045#ifdef CONFIG_SCHED_DEBUG
1046# include <linux/static_key.h>
1047# define const_debug __read_mostly
1048#else
1049# define const_debug const
1050#endif
1051
1052extern const_debug unsigned int sysctl_sched_features;
1053
1054#define SCHED_FEAT(name, enabled)	\
1055	__SCHED_FEAT_##name ,
1056
1057enum {
1058#include "features.h"
1059	__SCHED_FEAT_NR,
1060};
1061
1062#undef SCHED_FEAT
1063
1064#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 
 
 
 
 
 
 
 
1065#define SCHED_FEAT(name, enabled)					\
1066static __always_inline bool static_branch_##name(struct static_key *key) \
1067{									\
1068	return static_key_##enabled(key);				\
1069}
1070
1071#include "features.h"
1072
1073#undef SCHED_FEAT
1074
1075extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1076#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1077#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 
 
1078#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1079#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081extern struct static_key_false sched_numa_balancing;
1082extern struct static_key_false sched_schedstats;
1083
1084static inline u64 global_rt_period(void)
1085{
1086	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1087}
1088
1089static inline u64 global_rt_runtime(void)
1090{
1091	if (sysctl_sched_rt_runtime < 0)
1092		return RUNTIME_INF;
1093
1094	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1095}
1096
1097static inline int task_current(struct rq *rq, struct task_struct *p)
1098{
1099	return rq->curr == p;
1100}
1101
1102static inline int task_running(struct rq *rq, struct task_struct *p)
1103{
1104#ifdef CONFIG_SMP
1105	return p->on_cpu;
1106#else
1107	return task_current(rq, p);
1108#endif
1109}
1110
1111static inline int task_on_rq_queued(struct task_struct *p)
1112{
1113	return p->on_rq == TASK_ON_RQ_QUEUED;
1114}
1115
1116static inline int task_on_rq_migrating(struct task_struct *p)
1117{
1118	return p->on_rq == TASK_ON_RQ_MIGRATING;
1119}
1120
1121#ifndef prepare_arch_switch
1122# define prepare_arch_switch(next)	do { } while (0)
1123#endif
1124#ifndef finish_arch_post_lock_switch
1125# define finish_arch_post_lock_switch()	do { } while (0)
1126#endif
1127
1128static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1129{
1130#ifdef CONFIG_SMP
1131	/*
1132	 * We can optimise this out completely for !SMP, because the
1133	 * SMP rebalancing from interrupt is the only thing that cares
1134	 * here.
1135	 */
1136	next->on_cpu = 1;
1137#endif
1138}
1139
1140static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1141{
1142#ifdef CONFIG_SMP
1143	/*
1144	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1145	 * We must ensure this doesn't happen until the switch is completely
1146	 * finished.
1147	 *
1148	 * In particular, the load of prev->state in finish_task_switch() must
1149	 * happen before this.
1150	 *
1151	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1152	 */
1153	smp_store_release(&prev->on_cpu, 0);
1154#endif
1155#ifdef CONFIG_DEBUG_SPINLOCK
1156	/* this is a valid case when another task releases the spinlock */
1157	rq->lock.owner = current;
1158#endif
1159	/*
1160	 * If we are tracking spinlock dependencies then we have to
1161	 * fix up the runqueue lock - which gets 'carried over' from
1162	 * prev into current:
1163	 */
1164	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1165
1166	raw_spin_unlock_irq(&rq->lock);
1167}
1168
1169/*
1170 * wake flags
1171 */
1172#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1173#define WF_FORK		0x02		/* child wakeup after fork */
1174#define WF_MIGRATED	0x4		/* internal use, task got migrated */
1175
1176/*
1177 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1178 * of tasks with abnormal "nice" values across CPUs the contribution that
1179 * each task makes to its run queue's load is weighted according to its
1180 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1181 * scaled version of the new time slice allocation that they receive on time
1182 * slice expiry etc.
1183 */
1184
1185#define WEIGHT_IDLEPRIO                3
1186#define WMULT_IDLEPRIO         1431655765
1187
1188extern const int sched_prio_to_weight[40];
1189extern const u32 sched_prio_to_wmult[40];
1190
1191/*
1192 * {de,en}queue flags:
1193 *
1194 * DEQUEUE_SLEEP  - task is no longer runnable
1195 * ENQUEUE_WAKEUP - task just became runnable
1196 *
1197 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1198 *                are in a known state which allows modification. Such pairs
1199 *                should preserve as much state as possible.
1200 *
1201 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1202 *        in the runqueue.
1203 *
1204 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1205 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1206 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1207 *
1208 */
1209
1210#define DEQUEUE_SLEEP		0x01
1211#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1212#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
 
1213
1214#define ENQUEUE_WAKEUP		0x01
1215#define ENQUEUE_RESTORE		0x02
1216#define ENQUEUE_MOVE		0x04
 
1217
1218#define ENQUEUE_HEAD		0x08
1219#define ENQUEUE_REPLENISH	0x10
1220#ifdef CONFIG_SMP
1221#define ENQUEUE_MIGRATED	0x20
1222#else
1223#define ENQUEUE_MIGRATED	0x00
1224#endif
1225
1226#define RETRY_TASK		((void *)-1UL)
1227
1228struct sched_class {
1229	const struct sched_class *next;
 
 
 
1230
1231	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1232	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1233	void (*yield_task) (struct rq *rq);
1234	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1235
1236	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1237
1238	/*
1239	 * It is the responsibility of the pick_next_task() method that will
1240	 * return the next task to call put_prev_task() on the @prev task or
1241	 * something equivalent.
1242	 *
1243	 * May return RETRY_TASK when it finds a higher prio class has runnable
1244	 * tasks.
1245	 */
1246	struct task_struct * (*pick_next_task) (struct rq *rq,
1247						struct task_struct *prev,
1248						struct pin_cookie cookie);
1249	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1250
1251#ifdef CONFIG_SMP
1252	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1253	void (*migrate_task_rq)(struct task_struct *p);
1254
1255	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
 
 
 
 
1256
1257	void (*set_cpus_allowed)(struct task_struct *p,
1258				 const struct cpumask *newmask);
 
1259
1260	void (*rq_online)(struct rq *rq);
1261	void (*rq_offline)(struct rq *rq);
 
 
1262#endif
1263
1264	void (*set_curr_task) (struct rq *rq);
1265	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1266	void (*task_fork) (struct task_struct *p);
1267	void (*task_dead) (struct task_struct *p);
1268
1269	/*
1270	 * The switched_from() call is allowed to drop rq->lock, therefore we
1271	 * cannot assume the switched_from/switched_to pair is serliazed by
1272	 * rq->lock. They are however serialized by p->pi_lock.
1273	 */
1274	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1275	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1276	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1277			     int oldprio);
1278
1279	unsigned int (*get_rr_interval) (struct rq *rq,
1280					 struct task_struct *task);
1281
1282	void (*update_curr) (struct rq *rq);
1283
1284#define TASK_SET_GROUP  0
1285#define TASK_MOVE_GROUP	1
1286
1287#ifdef CONFIG_FAIR_GROUP_SCHED
1288	void (*task_change_group) (struct task_struct *p, int type);
1289#endif
1290};
1291
1292static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1293{
 
1294	prev->sched_class->put_prev_task(rq, prev);
1295}
1296
1297static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1298{
1299	curr->sched_class->set_curr_task(rq);
1300}
1301
1302#define sched_class_highest (&stop_sched_class)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303#define for_each_class(class) \
1304   for (class = sched_class_highest; class; class = class->next)
1305
1306extern const struct sched_class stop_sched_class;
1307extern const struct sched_class dl_sched_class;
1308extern const struct sched_class rt_sched_class;
1309extern const struct sched_class fair_sched_class;
1310extern const struct sched_class idle_sched_class;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312
1313#ifdef CONFIG_SMP
1314
1315extern void update_group_capacity(struct sched_domain *sd, int cpu);
1316
1317extern void trigger_load_balance(struct rq *rq);
1318
1319extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320
1321#endif
1322
1323#ifdef CONFIG_CPU_IDLE
1324static inline void idle_set_state(struct rq *rq,
1325				  struct cpuidle_state *idle_state)
1326{
1327	rq->idle_state = idle_state;
1328}
1329
1330static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1331{
1332	SCHED_WARN_ON(!rcu_read_lock_held());
 
1333	return rq->idle_state;
1334}
1335#else
1336static inline void idle_set_state(struct rq *rq,
1337				  struct cpuidle_state *idle_state)
1338{
1339}
1340
1341static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1342{
1343	return NULL;
1344}
1345#endif
1346
 
 
1347extern void sysrq_sched_debug_show(void);
1348extern void sched_init_granularity(void);
1349extern void update_max_interval(void);
1350
1351extern void init_sched_dl_class(void);
1352extern void init_sched_rt_class(void);
1353extern void init_sched_fair_class(void);
1354
 
 
1355extern void resched_curr(struct rq *rq);
1356extern void resched_cpu(int cpu);
1357
1358extern struct rt_bandwidth def_rt_bandwidth;
1359extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1360
1361extern struct dl_bandwidth def_dl_bandwidth;
1362extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1363extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 
1364
 
 
 
 
 
1365unsigned long to_ratio(u64 period, u64 runtime);
1366
1367extern void init_entity_runnable_average(struct sched_entity *se);
1368extern void post_init_entity_util_avg(struct sched_entity *se);
1369
1370#ifdef CONFIG_NO_HZ_FULL
1371extern bool sched_can_stop_tick(struct rq *rq);
 
1372
1373/*
1374 * Tick may be needed by tasks in the runqueue depending on their policy and
1375 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1376 * nohz mode if necessary.
1377 */
1378static inline void sched_update_tick_dependency(struct rq *rq)
1379{
1380	int cpu;
1381
1382	if (!tick_nohz_full_enabled())
1383		return;
1384
1385	cpu = cpu_of(rq);
1386
1387	if (!tick_nohz_full_cpu(cpu))
1388		return;
1389
1390	if (sched_can_stop_tick(rq))
1391		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1392	else
1393		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1394}
1395#else
 
1396static inline void sched_update_tick_dependency(struct rq *rq) { }
1397#endif
1398
1399static inline void add_nr_running(struct rq *rq, unsigned count)
1400{
1401	unsigned prev_nr = rq->nr_running;
1402
1403	rq->nr_running = prev_nr + count;
 
 
 
1404
1405	if (prev_nr < 2 && rq->nr_running >= 2) {
1406#ifdef CONFIG_SMP
1407		if (!rq->rd->overload)
1408			rq->rd->overload = true;
1409#endif
1410	}
 
1411
1412	sched_update_tick_dependency(rq);
1413}
1414
1415static inline void sub_nr_running(struct rq *rq, unsigned count)
1416{
1417	rq->nr_running -= count;
 
 
 
 
1418	/* Check if we still need preemption */
1419	sched_update_tick_dependency(rq);
1420}
1421
1422static inline void rq_last_tick_reset(struct rq *rq)
1423{
1424#ifdef CONFIG_NO_HZ_FULL
1425	rq->last_sched_tick = jiffies;
1426#endif
1427}
1428
1429extern void update_rq_clock(struct rq *rq);
1430
1431extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1432extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1433
1434extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1435
1436extern const_debug unsigned int sysctl_sched_time_avg;
1437extern const_debug unsigned int sysctl_sched_nr_migrate;
1438extern const_debug unsigned int sysctl_sched_migration_cost;
1439
1440static inline u64 sched_avg_period(void)
1441{
1442	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1443}
1444
1445#ifdef CONFIG_SCHED_HRTICK
1446
1447/*
1448 * Use hrtick when:
1449 *  - enabled by features
1450 *  - hrtimer is actually high res
1451 */
1452static inline int hrtick_enabled(struct rq *rq)
1453{
1454	if (!sched_feat(HRTICK))
1455		return 0;
1456	if (!cpu_active(cpu_of(rq)))
1457		return 0;
1458	return hrtimer_is_hres_active(&rq->hrtick_timer);
1459}
1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461void hrtick_start(struct rq *rq, u64 delay);
1462
1463#else
1464
 
 
 
 
 
 
 
 
 
 
1465static inline int hrtick_enabled(struct rq *rq)
1466{
1467	return 0;
1468}
1469
1470#endif /* CONFIG_SCHED_HRTICK */
1471
1472#ifdef CONFIG_SMP
1473extern void sched_avg_update(struct rq *rq);
1474
1475#ifndef arch_scale_freq_capacity
1476static __always_inline
1477unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1478{
1479	return SCHED_CAPACITY_SCALE;
1480}
1481#endif
1482
1483#ifndef arch_scale_cpu_capacity
 
 
 
 
 
 
 
 
 
 
1484static __always_inline
1485unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1486{
1487	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1488		return sd->smt_gain / sd->span_weight;
1489
1490	return SCHED_CAPACITY_SCALE;
1491}
1492#endif
1493
1494static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1495{
1496	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1497	sched_avg_update(rq);
1498}
1499#else
1500static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1501static inline void sched_avg_update(struct rq *rq) { }
1502#endif
1503
1504struct rq_flags {
1505	unsigned long flags;
1506	struct pin_cookie cookie;
1507};
1508
1509struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1510	__acquires(rq->lock);
1511struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1512	__acquires(p->pi_lock)
1513	__acquires(rq->lock);
1514
1515static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1516	__releases(rq->lock)
1517{
1518	lockdep_unpin_lock(&rq->lock, rf->cookie);
1519	raw_spin_unlock(&rq->lock);
1520}
 
 
 
 
 
 
 
 
 
 
 
 
 
1521
1522static inline void
1523task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1524	__releases(rq->lock)
1525	__releases(p->pi_lock)
1526{
1527	lockdep_unpin_lock(&rq->lock, rf->cookie);
1528	raw_spin_unlock(&rq->lock);
1529	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1530}
1531
1532#ifdef CONFIG_SMP
1533#ifdef CONFIG_PREEMPT
1534
1535static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1536
1537/*
1538 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1539 * way at the expense of forcing extra atomic operations in all
1540 * invocations.  This assures that the double_lock is acquired using the
1541 * same underlying policy as the spinlock_t on this architecture, which
1542 * reduces latency compared to the unfair variant below.  However, it
1543 * also adds more overhead and therefore may reduce throughput.
1544 */
1545static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1546	__releases(this_rq->lock)
1547	__acquires(busiest->lock)
1548	__acquires(this_rq->lock)
1549{
1550	raw_spin_unlock(&this_rq->lock);
1551	double_rq_lock(this_rq, busiest);
1552
1553	return 1;
1554}
1555
1556#else
1557/*
1558 * Unfair double_lock_balance: Optimizes throughput at the expense of
1559 * latency by eliminating extra atomic operations when the locks are
1560 * already in proper order on entry.  This favors lower cpu-ids and will
1561 * grant the double lock to lower cpus over higher ids under contention,
1562 * regardless of entry order into the function.
1563 */
1564static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1565	__releases(this_rq->lock)
1566	__acquires(busiest->lock)
1567	__acquires(this_rq->lock)
1568{
1569	int ret = 0;
 
1570
1571	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1572		if (busiest < this_rq) {
1573			raw_spin_unlock(&this_rq->lock);
1574			raw_spin_lock(&busiest->lock);
1575			raw_spin_lock_nested(&this_rq->lock,
1576					      SINGLE_DEPTH_NESTING);
1577			ret = 1;
1578		} else
1579			raw_spin_lock_nested(&busiest->lock,
1580					      SINGLE_DEPTH_NESTING);
1581	}
1582	return ret;
 
 
 
 
1583}
1584
1585#endif /* CONFIG_PREEMPT */
1586
1587/*
1588 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1589 */
1590static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1591{
1592	if (unlikely(!irqs_disabled())) {
1593		/* printk() doesn't work good under rq->lock */
1594		raw_spin_unlock(&this_rq->lock);
1595		BUG_ON(1);
1596	}
1597
1598	return _double_lock_balance(this_rq, busiest);
1599}
1600
1601static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1602	__releases(busiest->lock)
1603{
1604	raw_spin_unlock(&busiest->lock);
1605	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 
1606}
1607
1608static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1609{
1610	if (l1 > l2)
1611		swap(l1, l2);
1612
1613	spin_lock(l1);
1614	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1615}
1616
1617static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1618{
1619	if (l1 > l2)
1620		swap(l1, l2);
1621
1622	spin_lock_irq(l1);
1623	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1624}
1625
1626static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1627{
1628	if (l1 > l2)
1629		swap(l1, l2);
1630
1631	raw_spin_lock(l1);
1632	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1633}
1634
1635/*
1636 * double_rq_lock - safely lock two runqueues
1637 *
1638 * Note this does not disable interrupts like task_rq_lock,
1639 * you need to do so manually before calling.
1640 */
1641static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1642	__acquires(rq1->lock)
1643	__acquires(rq2->lock)
1644{
1645	BUG_ON(!irqs_disabled());
1646	if (rq1 == rq2) {
1647		raw_spin_lock(&rq1->lock);
1648		__acquire(rq2->lock);	/* Fake it out ;) */
1649	} else {
1650		if (rq1 < rq2) {
1651			raw_spin_lock(&rq1->lock);
1652			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1653		} else {
1654			raw_spin_lock(&rq2->lock);
1655			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1656		}
1657	}
1658}
1659
1660/*
1661 * double_rq_unlock - safely unlock two runqueues
1662 *
1663 * Note this does not restore interrupts like task_rq_unlock,
1664 * you need to do so manually after calling.
1665 */
1666static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1667	__releases(rq1->lock)
1668	__releases(rq2->lock)
1669{
1670	raw_spin_unlock(&rq1->lock);
1671	if (rq1 != rq2)
1672		raw_spin_unlock(&rq2->lock);
1673	else
1674		__release(rq2->lock);
 
1675}
1676
 
 
 
 
1677#else /* CONFIG_SMP */
1678
1679/*
1680 * double_rq_lock - safely lock two runqueues
1681 *
1682 * Note this does not disable interrupts like task_rq_lock,
1683 * you need to do so manually before calling.
1684 */
1685static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1686	__acquires(rq1->lock)
1687	__acquires(rq2->lock)
1688{
1689	BUG_ON(!irqs_disabled());
1690	BUG_ON(rq1 != rq2);
1691	raw_spin_lock(&rq1->lock);
1692	__acquire(rq2->lock);	/* Fake it out ;) */
1693}
1694
1695/*
1696 * double_rq_unlock - safely unlock two runqueues
1697 *
1698 * Note this does not restore interrupts like task_rq_unlock,
1699 * you need to do so manually after calling.
1700 */
1701static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1702	__releases(rq1->lock)
1703	__releases(rq2->lock)
1704{
1705	BUG_ON(rq1 != rq2);
1706	raw_spin_unlock(&rq1->lock);
1707	__release(rq2->lock);
1708}
1709
1710#endif
1711
1712extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1713extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1714
1715#ifdef	CONFIG_SCHED_DEBUG
 
 
1716extern void print_cfs_stats(struct seq_file *m, int cpu);
1717extern void print_rt_stats(struct seq_file *m, int cpu);
1718extern void print_dl_stats(struct seq_file *m, int cpu);
1719extern void
1720print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 
1721
 
1722#ifdef CONFIG_NUMA_BALANCING
1723extern void
1724show_numa_stats(struct task_struct *p, struct seq_file *m);
1725extern void
1726print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1727	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1728#endif /* CONFIG_NUMA_BALANCING */
 
 
1729#endif /* CONFIG_SCHED_DEBUG */
1730
1731extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1732extern void init_rt_rq(struct rt_rq *rt_rq);
1733extern void init_dl_rq(struct dl_rq *dl_rq);
1734
1735extern void cfs_bandwidth_usage_inc(void);
1736extern void cfs_bandwidth_usage_dec(void);
1737
1738#ifdef CONFIG_NO_HZ_COMMON
1739enum rq_nohz_flag_bits {
1740	NOHZ_TICK_STOPPED,
1741	NOHZ_BALANCE_KICK,
1742};
 
 
 
 
 
1743
1744#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1745
1746extern void nohz_balance_exit_idle(unsigned int cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747#else
1748static inline void nohz_balance_exit_idle(unsigned int cpu) { }
 
 
 
 
 
 
1749#endif
1750
 
1751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1752struct irqtime {
1753	u64			hardirq_time;
1754	u64			softirq_time;
1755	u64			irq_start_time;
1756	struct u64_stats_sync	sync;
1757};
1758
1759DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
1760
 
 
 
 
 
1761static inline u64 irq_time_read(int cpu)
1762{
1763	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1764	unsigned int seq;
1765	u64 total;
1766
1767	do {
1768		seq = __u64_stats_fetch_begin(&irqtime->sync);
1769		total = irqtime->softirq_time + irqtime->hardirq_time;
1770	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
1771
1772	return total;
1773}
1774#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1775
1776#ifdef CONFIG_CPU_FREQ
1777DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1778
1779/**
1780 * cpufreq_update_util - Take a note about CPU utilization changes.
1781 * @rq: Runqueue to carry out the update for.
1782 * @flags: Update reason flags.
1783 *
1784 * This function is called by the scheduler on the CPU whose utilization is
1785 * being updated.
1786 *
1787 * It can only be called from RCU-sched read-side critical sections.
1788 *
1789 * The way cpufreq is currently arranged requires it to evaluate the CPU
1790 * performance state (frequency/voltage) on a regular basis to prevent it from
1791 * being stuck in a completely inadequate performance level for too long.
1792 * That is not guaranteed to happen if the updates are only triggered from CFS,
1793 * though, because they may not be coming in if RT or deadline tasks are active
1794 * all the time (or there are RT and DL tasks only).
1795 *
1796 * As a workaround for that issue, this function is called by the RT and DL
1797 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1798 * but that really is a band-aid.  Going forward it should be replaced with
1799 * solutions targeted more specifically at RT and DL tasks.
1800 */
1801static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
1802{
1803	struct update_util_data *data;
1804
1805	data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
 
1806	if (data)
1807		data->func(data, rq_clock(rq), flags);
1808}
1809
1810static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1811{
1812	if (cpu_of(rq) == smp_processor_id())
1813		cpufreq_update_util(rq, flags);
1814}
1815#else
1816static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1817static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
1818#endif /* CONFIG_CPU_FREQ */
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820#ifdef arch_scale_freq_capacity
1821#ifndef arch_scale_freq_invariant
1822#define arch_scale_freq_invariant()	(true)
 
 
 
1823#endif
1824#else /* arch_scale_freq_capacity */
1825#define arch_scale_freq_invariant()	(false)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826#endif
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#include <linux/sched.h>
   6
   7#include <linux/sched/autogroup.h>
   8#include <linux/sched/clock.h>
   9#include <linux/sched/coredump.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/cputime.h>
  12#include <linux/sched/deadline.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/hotplug.h>
  15#include <linux/sched/idle.h>
  16#include <linux/sched/init.h>
  17#include <linux/sched/isolation.h>
  18#include <linux/sched/jobctl.h>
  19#include <linux/sched/loadavg.h>
  20#include <linux/sched/mm.h>
  21#include <linux/sched/nohz.h>
  22#include <linux/sched/numa_balancing.h>
  23#include <linux/sched/prio.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/smt.h>
  27#include <linux/sched/stat.h>
  28#include <linux/sched/sysctl.h>
  29#include <linux/sched/task.h>
  30#include <linux/sched/task_stack.h>
  31#include <linux/sched/topology.h>
  32#include <linux/sched/user.h>
  33#include <linux/sched/wake_q.h>
  34#include <linux/sched/xacct.h>
  35
  36#include <uapi/linux/sched/types.h>
  37
  38#include <linux/binfmts.h>
  39#include <linux/bitops.h>
  40#include <linux/blkdev.h>
  41#include <linux/compat.h>
  42#include <linux/context_tracking.h>
  43#include <linux/cpufreq.h>
  44#include <linux/cpuidle.h>
  45#include <linux/cpuset.h>
  46#include <linux/ctype.h>
  47#include <linux/debugfs.h>
  48#include <linux/delayacct.h>
  49#include <linux/energy_model.h>
  50#include <linux/init_task.h>
  51#include <linux/kprobes.h>
  52#include <linux/kthread.h>
  53#include <linux/membarrier.h>
  54#include <linux/migrate.h>
  55#include <linux/mmu_context.h>
  56#include <linux/nmi.h>
  57#include <linux/proc_fs.h>
  58#include <linux/prefetch.h>
  59#include <linux/profile.h>
  60#include <linux/psi.h>
  61#include <linux/ratelimit.h>
  62#include <linux/rcupdate_wait.h>
  63#include <linux/security.h>
  64#include <linux/stop_machine.h>
  65#include <linux/suspend.h>
  66#include <linux/swait.h>
  67#include <linux/syscalls.h>
  68#include <linux/task_work.h>
  69#include <linux/tsacct_kern.h>
  70
  71#include <asm/tlb.h>
  72
  73#ifdef CONFIG_PARAVIRT
  74# include <asm/paravirt.h>
  75#endif
  76
  77#include "cpupri.h"
  78#include "cpudeadline.h"
  79
  80#include <trace/events/sched.h>
  81
  82#ifdef CONFIG_SCHED_DEBUG
  83# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  84#else
  85# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
  86#endif
  87
  88struct rq;
  89struct cpuidle_state;
  90
  91/* task_struct::on_rq states: */
  92#define TASK_ON_RQ_QUEUED	1
  93#define TASK_ON_RQ_MIGRATING	2
  94
  95extern __read_mostly int scheduler_running;
  96
  97extern unsigned long calc_load_update;
  98extern atomic_long_t calc_load_tasks;
  99
 100extern void calc_global_load_tick(struct rq *this_rq);
 101extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 102
 103extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 
 
 
 
 
 104/*
 105 * Helpers for converting nanosecond timing to jiffy resolution
 106 */
 107#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 108
 109/*
 110 * Increase resolution of nice-level calculations for 64-bit architectures.
 111 * The extra resolution improves shares distribution and load balancing of
 112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 113 * hierarchies, especially on larger systems. This is not a user-visible change
 114 * and does not change the user-interface for setting shares/weights.
 115 *
 116 * We increase resolution only if we have enough bits to allow this increased
 117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 118 * are pretty high and the returns do not justify the increased costs.
 119 *
 120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 121 * increase coverage and consistency always enable it on 64-bit platforms.
 122 */
 123#ifdef CONFIG_64BIT
 124# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 125# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 126# define scale_load_down(w) \
 127({ \
 128	unsigned long __w = (w); \
 129	if (__w) \
 130		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 131	__w; \
 132})
 133#else
 134# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 135# define scale_load(w)		(w)
 136# define scale_load_down(w)	(w)
 137#endif
 138
 139/*
 140 * Task weight (visible to users) and its load (invisible to users) have
 141 * independent resolution, but they should be well calibrated. We use
 142 * scale_load() and scale_load_down(w) to convert between them. The
 143 * following must be true:
 144 *
 145 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 146 *
 147 */
 148#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 149
 150/*
 151 * Single value that decides SCHED_DEADLINE internal math precision.
 152 * 10 -> just above 1us
 153 * 9  -> just above 0.5us
 154 */
 155#define DL_SCALE		10
 156
 157/*
 158 * Single value that denotes runtime == period, ie unlimited time.
 159 */
 160#define RUNTIME_INF		((u64)~0ULL)
 
 
 
 
 161
 162static inline int idle_policy(int policy)
 163{
 164	return policy == SCHED_IDLE;
 165}
 166static inline int fair_policy(int policy)
 167{
 168	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 169}
 170
 171static inline int rt_policy(int policy)
 172{
 173	return policy == SCHED_FIFO || policy == SCHED_RR;
 174}
 175
 176static inline int dl_policy(int policy)
 177{
 178	return policy == SCHED_DEADLINE;
 179}
 180static inline bool valid_policy(int policy)
 181{
 182	return idle_policy(policy) || fair_policy(policy) ||
 183		rt_policy(policy) || dl_policy(policy);
 184}
 185
 186static inline int task_has_idle_policy(struct task_struct *p)
 187{
 188	return idle_policy(p->policy);
 189}
 190
 191static inline int task_has_rt_policy(struct task_struct *p)
 192{
 193	return rt_policy(p->policy);
 194}
 195
 196static inline int task_has_dl_policy(struct task_struct *p)
 197{
 198	return dl_policy(p->policy);
 199}
 200
 201#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 202
 203static inline void update_avg(u64 *avg, u64 sample)
 204{
 205	s64 diff = sample - *avg;
 206	*avg += diff / 8;
 207}
 208
 209/*
 210 * Shifting a value by an exponent greater *or equal* to the size of said value
 211 * is UB; cap at size-1.
 212 */
 213#define shr_bound(val, shift)							\
 214	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 215
 216/*
 217 * !! For sched_setattr_nocheck() (kernel) only !!
 218 *
 219 * This is actually gross. :(
 220 *
 221 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 222 * tasks, but still be able to sleep. We need this on platforms that cannot
 223 * atomically change clock frequency. Remove once fast switching will be
 224 * available on such platforms.
 225 *
 226 * SUGOV stands for SchedUtil GOVernor.
 227 */
 228#define SCHED_FLAG_SUGOV	0x10000000
 229
 230#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 231
 232static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 233{
 234#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 235	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 236#else
 237	return false;
 238#endif
 239}
 240
 241/*
 242 * Tells if entity @a should preempt entity @b.
 243 */
 244static inline bool
 245dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 246{
 247	return dl_entity_is_special(a) ||
 248	       dl_time_before(a->deadline, b->deadline);
 249}
 250
 251/*
 252 * This is the priority-queue data structure of the RT scheduling class:
 253 */
 254struct rt_prio_array {
 255	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 256	struct list_head queue[MAX_RT_PRIO];
 257};
 258
 259struct rt_bandwidth {
 260	/* nests inside the rq lock: */
 261	raw_spinlock_t		rt_runtime_lock;
 262	ktime_t			rt_period;
 263	u64			rt_runtime;
 264	struct hrtimer		rt_period_timer;
 265	unsigned int		rt_period_active;
 266};
 267
 268void __dl_clear_params(struct task_struct *p);
 269
 270struct dl_bandwidth {
 271	raw_spinlock_t		dl_runtime_lock;
 272	u64			dl_runtime;
 273	u64			dl_period;
 274};
 275
 276static inline int dl_bandwidth_enabled(void)
 277{
 278	return sysctl_sched_rt_runtime >= 0;
 279}
 280
 281/*
 282 * To keep the bandwidth of -deadline tasks under control
 283 * we need some place where:
 284 *  - store the maximum -deadline bandwidth of each cpu;
 285 *  - cache the fraction of bandwidth that is currently allocated in
 286 *    each root domain;
 287 *
 288 * This is all done in the data structure below. It is similar to the
 289 * one used for RT-throttling (rt_bandwidth), with the main difference
 290 * that, since here we are only interested in admission control, we
 291 * do not decrease any runtime while the group "executes", neither we
 292 * need a timer to replenish it.
 293 *
 294 * With respect to SMP, bandwidth is given on a per root domain basis,
 295 * meaning that:
 296 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 297 *  - total_bw is the currently allocated bandwidth in each root domain;
 
 
 
 
 
 
 
 298 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 299struct dl_bw {
 300	raw_spinlock_t		lock;
 301	u64			bw;
 302	u64			total_bw;
 303};
 304
 305static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
 306
 307static inline
 308void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 309{
 310	dl_b->total_bw -= tsk_bw;
 311	__dl_update(dl_b, (s32)tsk_bw / cpus);
 312}
 313
 314static inline
 315void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 316{
 317	dl_b->total_bw += tsk_bw;
 318	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 319}
 320
 321static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
 322				 u64 old_bw, u64 new_bw)
 323{
 324	return dl_b->bw != -1 &&
 325	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 326}
 327
 328/*
 329 * Verify the fitness of task @p to run on @cpu taking into account the
 330 * CPU original capacity and the runtime/deadline ratio of the task.
 331 *
 332 * The function will return true if the CPU original capacity of the
 333 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
 334 * task and false otherwise.
 335 */
 336static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
 337{
 338	unsigned long cap = arch_scale_cpu_capacity(cpu);
 339
 340	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
 341}
 342
 343extern void init_dl_bw(struct dl_bw *dl_b);
 344extern int  sched_dl_global_validate(void);
 345extern void sched_dl_do_global(void);
 346extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 347extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 348extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 349extern bool __checkparam_dl(const struct sched_attr *attr);
 350extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 351extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
 352extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 353extern bool dl_cpu_busy(unsigned int cpu);
 354
 355#ifdef CONFIG_CGROUP_SCHED
 356
 357#include <linux/cgroup.h>
 358#include <linux/psi.h>
 359
 360struct cfs_rq;
 361struct rt_rq;
 362
 363extern struct list_head task_groups;
 364
 365struct cfs_bandwidth {
 366#ifdef CONFIG_CFS_BANDWIDTH
 367	raw_spinlock_t		lock;
 368	ktime_t			period;
 369	u64			quota;
 370	u64			runtime;
 371	u64			burst;
 372	s64			hierarchical_quota;
 373
 374	u8			idle;
 375	u8			period_active;
 376	u8			slack_started;
 377	struct hrtimer		period_timer;
 378	struct hrtimer		slack_timer;
 379	struct list_head	throttled_cfs_rq;
 380
 381	/* Statistics: */
 382	int			nr_periods;
 383	int			nr_throttled;
 384	u64			throttled_time;
 385#endif
 386};
 387
 388/* Task group related information */
 389struct task_group {
 390	struct cgroup_subsys_state css;
 391
 392#ifdef CONFIG_FAIR_GROUP_SCHED
 393	/* schedulable entities of this group on each CPU */
 394	struct sched_entity	**se;
 395	/* runqueue "owned" by this group on each CPU */
 396	struct cfs_rq		**cfs_rq;
 397	unsigned long		shares;
 398
 399#ifdef	CONFIG_SMP
 400	/*
 401	 * load_avg can be heavily contended at clock tick time, so put
 402	 * it in its own cacheline separated from the fields above which
 403	 * will also be accessed at each tick.
 404	 */
 405	atomic_long_t		load_avg ____cacheline_aligned;
 406#endif
 407#endif
 408
 409#ifdef CONFIG_RT_GROUP_SCHED
 410	struct sched_rt_entity	**rt_se;
 411	struct rt_rq		**rt_rq;
 412
 413	struct rt_bandwidth	rt_bandwidth;
 414#endif
 415
 416	struct rcu_head		rcu;
 417	struct list_head	list;
 418
 419	struct task_group	*parent;
 420	struct list_head	siblings;
 421	struct list_head	children;
 422
 423#ifdef CONFIG_SCHED_AUTOGROUP
 424	struct autogroup	*autogroup;
 425#endif
 426
 427	struct cfs_bandwidth	cfs_bandwidth;
 428
 429#ifdef CONFIG_UCLAMP_TASK_GROUP
 430	/* The two decimal precision [%] value requested from user-space */
 431	unsigned int		uclamp_pct[UCLAMP_CNT];
 432	/* Clamp values requested for a task group */
 433	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 434	/* Effective clamp values used for a task group */
 435	struct uclamp_se	uclamp[UCLAMP_CNT];
 436#endif
 437
 
 438};
 439
 440#ifdef CONFIG_FAIR_GROUP_SCHED
 441#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 442
 443/*
 444 * A weight of 0 or 1 can cause arithmetics problems.
 445 * A weight of a cfs_rq is the sum of weights of which entities
 446 * are queued on this cfs_rq, so a weight of a entity should not be
 447 * too large, so as the shares value of a task group.
 448 * (The default weight is 1024 - so there's no practical
 449 *  limitation from this.)
 450 */
 451#define MIN_SHARES		(1UL <<  1)
 452#define MAX_SHARES		(1UL << 18)
 453#endif
 454
 455typedef int (*tg_visitor)(struct task_group *, void *);
 456
 457extern int walk_tg_tree_from(struct task_group *from,
 458			     tg_visitor down, tg_visitor up, void *data);
 459
 460/*
 461 * Iterate the full tree, calling @down when first entering a node and @up when
 462 * leaving it for the final time.
 463 *
 464 * Caller must hold rcu_lock or sufficient equivalent.
 465 */
 466static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 467{
 468	return walk_tg_tree_from(&root_task_group, down, up, data);
 469}
 470
 471extern int tg_nop(struct task_group *tg, void *data);
 472
 473extern void free_fair_sched_group(struct task_group *tg);
 474extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 475extern void online_fair_sched_group(struct task_group *tg);
 476extern void unregister_fair_sched_group(struct task_group *tg);
 477extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 478			struct sched_entity *se, int cpu,
 479			struct sched_entity *parent);
 480extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 481
 482extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 483extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 484extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 485
 486extern void free_rt_sched_group(struct task_group *tg);
 487extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 488extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 489		struct sched_rt_entity *rt_se, int cpu,
 490		struct sched_rt_entity *parent);
 491extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 492extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 493extern long sched_group_rt_runtime(struct task_group *tg);
 494extern long sched_group_rt_period(struct task_group *tg);
 495extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 496
 497extern struct task_group *sched_create_group(struct task_group *parent);
 498extern void sched_online_group(struct task_group *tg,
 499			       struct task_group *parent);
 500extern void sched_destroy_group(struct task_group *tg);
 501extern void sched_offline_group(struct task_group *tg);
 502
 503extern void sched_move_task(struct task_struct *tsk);
 504
 505#ifdef CONFIG_FAIR_GROUP_SCHED
 506extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 507
 508#ifdef CONFIG_SMP
 509extern void set_task_rq_fair(struct sched_entity *se,
 510			     struct cfs_rq *prev, struct cfs_rq *next);
 511#else /* !CONFIG_SMP */
 512static inline void set_task_rq_fair(struct sched_entity *se,
 513			     struct cfs_rq *prev, struct cfs_rq *next) { }
 514#endif /* CONFIG_SMP */
 515#endif /* CONFIG_FAIR_GROUP_SCHED */
 516
 517#else /* CONFIG_CGROUP_SCHED */
 518
 519struct cfs_bandwidth { };
 520
 521#endif	/* CONFIG_CGROUP_SCHED */
 522
 523/* CFS-related fields in a runqueue */
 524struct cfs_rq {
 525	struct load_weight	load;
 526	unsigned int		nr_running;
 527	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 528	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 529
 530	u64			exec_clock;
 531	u64			min_vruntime;
 532#ifdef CONFIG_SCHED_CORE
 533	unsigned int		forceidle_seq;
 534	u64			min_vruntime_fi;
 535#endif
 536
 
 
 537#ifndef CONFIG_64BIT
 538	u64			min_vruntime_copy;
 539#endif
 540
 541	struct rb_root_cached	tasks_timeline;
 
 542
 543	/*
 544	 * 'curr' points to currently running entity on this cfs_rq.
 545	 * It is set to NULL otherwise (i.e when none are currently running).
 546	 */
 547	struct sched_entity	*curr;
 548	struct sched_entity	*next;
 549	struct sched_entity	*last;
 550	struct sched_entity	*skip;
 551
 552#ifdef	CONFIG_SCHED_DEBUG
 553	unsigned int		nr_spread_over;
 554#endif
 555
 556#ifdef CONFIG_SMP
 557	/*
 558	 * CFS load tracking
 559	 */
 560	struct sched_avg	avg;
 
 
 
 
 
 
 
 561#ifndef CONFIG_64BIT
 562	u64			load_last_update_time_copy;
 563#endif
 564	struct {
 565		raw_spinlock_t	lock ____cacheline_aligned;
 566		int		nr;
 567		unsigned long	load_avg;
 568		unsigned long	util_avg;
 569		unsigned long	runnable_avg;
 570	} removed;
 571
 572#ifdef CONFIG_FAIR_GROUP_SCHED
 573	unsigned long		tg_load_avg_contrib;
 574	long			propagate;
 575	long			prop_runnable_sum;
 576
 577	/*
 578	 *   h_load = weight * f(tg)
 579	 *
 580	 * Where f(tg) is the recursive weight fraction assigned to
 581	 * this group.
 582	 */
 583	unsigned long		h_load;
 584	u64			last_h_load_update;
 585	struct sched_entity	*h_load_next;
 586#endif /* CONFIG_FAIR_GROUP_SCHED */
 587#endif /* CONFIG_SMP */
 588
 589#ifdef CONFIG_FAIR_GROUP_SCHED
 590	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 591
 592	/*
 593	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 594	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 595	 * (like users, containers etc.)
 596	 *
 597	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 598	 * This list is used during load balance.
 599	 */
 600	int			on_list;
 601	struct list_head	leaf_cfs_rq_list;
 602	struct task_group	*tg;	/* group that "owns" this runqueue */
 603
 604#ifdef CONFIG_CFS_BANDWIDTH
 605	int			runtime_enabled;
 606	s64			runtime_remaining;
 607
 608	u64			throttled_clock;
 609	u64			throttled_clock_task;
 610	u64			throttled_clock_task_time;
 611	int			throttled;
 612	int			throttle_count;
 613	struct list_head	throttled_list;
 614#endif /* CONFIG_CFS_BANDWIDTH */
 615#endif /* CONFIG_FAIR_GROUP_SCHED */
 616};
 617
 618static inline int rt_bandwidth_enabled(void)
 619{
 620	return sysctl_sched_rt_runtime >= 0;
 621}
 622
 623/* RT IPI pull logic requires IRQ_WORK */
 624#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 625# define HAVE_RT_PUSH_IPI
 626#endif
 627
 628/* Real-Time classes' related field in a runqueue: */
 629struct rt_rq {
 630	struct rt_prio_array	active;
 631	unsigned int		rt_nr_running;
 632	unsigned int		rr_nr_running;
 633#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 634	struct {
 635		int		curr; /* highest queued rt task prio */
 636#ifdef CONFIG_SMP
 637		int		next; /* next highest */
 638#endif
 639	} highest_prio;
 640#endif
 641#ifdef CONFIG_SMP
 642	unsigned int		rt_nr_migratory;
 643	unsigned int		rt_nr_total;
 644	int			overloaded;
 645	struct plist_head	pushable_tasks;
 646
 
 
 
 
 
 647#endif /* CONFIG_SMP */
 648	int			rt_queued;
 649
 650	int			rt_throttled;
 651	u64			rt_time;
 652	u64			rt_runtime;
 653	/* Nests inside the rq lock: */
 654	raw_spinlock_t		rt_runtime_lock;
 655
 656#ifdef CONFIG_RT_GROUP_SCHED
 657	unsigned int		rt_nr_boosted;
 658
 659	struct rq		*rq;
 660	struct task_group	*tg;
 661#endif
 662};
 663
 664static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 665{
 666	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 667}
 668
 669/* Deadline class' related fields in a runqueue */
 670struct dl_rq {
 671	/* runqueue is an rbtree, ordered by deadline */
 672	struct rb_root_cached	root;
 
 673
 674	unsigned int		dl_nr_running;
 675
 676#ifdef CONFIG_SMP
 677	/*
 678	 * Deadline values of the currently executing and the
 679	 * earliest ready task on this rq. Caching these facilitates
 680	 * the decision whether or not a ready but not running task
 681	 * should migrate somewhere else.
 682	 */
 683	struct {
 684		u64		curr;
 685		u64		next;
 686	} earliest_dl;
 687
 688	unsigned int		dl_nr_migratory;
 689	int			overloaded;
 690
 691	/*
 692	 * Tasks on this rq that can be pushed away. They are kept in
 693	 * an rb-tree, ordered by tasks' deadlines, with caching
 694	 * of the leftmost (earliest deadline) element.
 695	 */
 696	struct rb_root_cached	pushable_dl_tasks_root;
 
 697#else
 698	struct dl_bw		dl_bw;
 699#endif
 700	/*
 701	 * "Active utilization" for this runqueue: increased when a
 702	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 703	 * task blocks
 704	 */
 705	u64			running_bw;
 706
 707	/*
 708	 * Utilization of the tasks "assigned" to this runqueue (including
 709	 * the tasks that are in runqueue and the tasks that executed on this
 710	 * CPU and blocked). Increased when a task moves to this runqueue, and
 711	 * decreased when the task moves away (migrates, changes scheduling
 712	 * policy, or terminates).
 713	 * This is needed to compute the "inactive utilization" for the
 714	 * runqueue (inactive utilization = this_bw - running_bw).
 715	 */
 716	u64			this_bw;
 717	u64			extra_bw;
 718
 719	/*
 720	 * Inverse of the fraction of CPU utilization that can be reclaimed
 721	 * by the GRUB algorithm.
 722	 */
 723	u64			bw_ratio;
 724};
 725
 726#ifdef CONFIG_FAIR_GROUP_SCHED
 727/* An entity is a task if it doesn't "own" a runqueue */
 728#define entity_is_task(se)	(!se->my_q)
 729
 730static inline void se_update_runnable(struct sched_entity *se)
 731{
 732	if (!entity_is_task(se))
 733		se->runnable_weight = se->my_q->h_nr_running;
 734}
 735
 736static inline long se_runnable(struct sched_entity *se)
 737{
 738	if (entity_is_task(se))
 739		return !!se->on_rq;
 740	else
 741		return se->runnable_weight;
 742}
 743
 744#else
 745#define entity_is_task(se)	1
 746
 747static inline void se_update_runnable(struct sched_entity *se) {}
 748
 749static inline long se_runnable(struct sched_entity *se)
 750{
 751	return !!se->on_rq;
 752}
 753#endif
 754
 755#ifdef CONFIG_SMP
 756/*
 757 * XXX we want to get rid of these helpers and use the full load resolution.
 758 */
 759static inline long se_weight(struct sched_entity *se)
 760{
 761	return scale_load_down(se->load.weight);
 762}
 763
 764
 765static inline bool sched_asym_prefer(int a, int b)
 766{
 767	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 768}
 769
 770struct perf_domain {
 771	struct em_perf_domain *em_pd;
 772	struct perf_domain *next;
 773	struct rcu_head rcu;
 774};
 775
 776/* Scheduling group status flags */
 777#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 778#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 779
 780/*
 781 * We add the notion of a root-domain which will be used to define per-domain
 782 * variables. Each exclusive cpuset essentially defines an island domain by
 783 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 784 * exclusive cpuset is created, we also create and attach a new root-domain
 785 * object.
 786 *
 787 */
 788struct root_domain {
 789	atomic_t		refcount;
 790	atomic_t		rto_count;
 791	struct rcu_head		rcu;
 792	cpumask_var_t		span;
 793	cpumask_var_t		online;
 794
 795	/*
 796	 * Indicate pullable load on at least one CPU, e.g:
 797	 * - More than one runnable task
 798	 * - Running task is misfit
 799	 */
 800	int			overload;
 801
 802	/* Indicate one or more cpus over-utilized (tipping point) */
 803	int			overutilized;
 804
 805	/*
 806	 * The bit corresponding to a CPU gets set here if such CPU has more
 807	 * than one runnable -deadline task (as it is below for RT tasks).
 808	 */
 809	cpumask_var_t		dlo_mask;
 810	atomic_t		dlo_count;
 811	struct dl_bw		dl_bw;
 812	struct cpudl		cpudl;
 813
 814	/*
 815	 * Indicate whether a root_domain's dl_bw has been checked or
 816	 * updated. It's monotonously increasing value.
 817	 *
 818	 * Also, some corner cases, like 'wrap around' is dangerous, but given
 819	 * that u64 is 'big enough'. So that shouldn't be a concern.
 820	 */
 821	u64 visit_gen;
 822
 823#ifdef HAVE_RT_PUSH_IPI
 824	/*
 825	 * For IPI pull requests, loop across the rto_mask.
 826	 */
 827	struct irq_work		rto_push_work;
 828	raw_spinlock_t		rto_lock;
 829	/* These are only updated and read within rto_lock */
 830	int			rto_loop;
 831	int			rto_cpu;
 832	/* These atomics are updated outside of a lock */
 833	atomic_t		rto_loop_next;
 834	atomic_t		rto_loop_start;
 835#endif
 836	/*
 837	 * The "RT overload" flag: it gets set if a CPU has more than
 838	 * one runnable RT task.
 839	 */
 840	cpumask_var_t		rto_mask;
 841	struct cpupri		cpupri;
 842
 843	unsigned long		max_cpu_capacity;
 844
 845	/*
 846	 * NULL-terminated list of performance domains intersecting with the
 847	 * CPUs of the rd. Protected by RCU.
 848	 */
 849	struct perf_domain __rcu *pd;
 850};
 851
 852extern void init_defrootdomain(void);
 853extern int sched_init_domains(const struct cpumask *cpu_map);
 854extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 855extern void sched_get_rd(struct root_domain *rd);
 856extern void sched_put_rd(struct root_domain *rd);
 857
 858#ifdef HAVE_RT_PUSH_IPI
 859extern void rto_push_irq_work_func(struct irq_work *work);
 860#endif
 861#endif /* CONFIG_SMP */
 862
 863#ifdef CONFIG_UCLAMP_TASK
 864/*
 865 * struct uclamp_bucket - Utilization clamp bucket
 866 * @value: utilization clamp value for tasks on this clamp bucket
 867 * @tasks: number of RUNNABLE tasks on this clamp bucket
 868 *
 869 * Keep track of how many tasks are RUNNABLE for a given utilization
 870 * clamp value.
 871 */
 872struct uclamp_bucket {
 873	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 874	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 875};
 876
 877/*
 878 * struct uclamp_rq - rq's utilization clamp
 879 * @value: currently active clamp values for a rq
 880 * @bucket: utilization clamp buckets affecting a rq
 881 *
 882 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 883 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 884 * (or actually running) with that value.
 885 *
 886 * There are up to UCLAMP_CNT possible different clamp values, currently there
 887 * are only two: minimum utilization and maximum utilization.
 888 *
 889 * All utilization clamping values are MAX aggregated, since:
 890 * - for util_min: we want to run the CPU at least at the max of the minimum
 891 *   utilization required by its currently RUNNABLE tasks.
 892 * - for util_max: we want to allow the CPU to run up to the max of the
 893 *   maximum utilization allowed by its currently RUNNABLE tasks.
 894 *
 895 * Since on each system we expect only a limited number of different
 896 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 897 * the metrics required to compute all the per-rq utilization clamp values.
 898 */
 899struct uclamp_rq {
 900	unsigned int value;
 901	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 902};
 903
 904DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 905#endif /* CONFIG_UCLAMP_TASK */
 906
 907/*
 908 * This is the main, per-CPU runqueue data structure.
 909 *
 910 * Locking rule: those places that want to lock multiple runqueues
 911 * (such as the load balancing or the thread migration code), lock
 912 * acquire operations must be ordered by ascending &runqueue.
 913 */
 914struct rq {
 915	/* runqueue lock: */
 916	raw_spinlock_t		__lock;
 917
 918	/*
 919	 * nr_running and cpu_load should be in the same cacheline because
 920	 * remote CPUs use both these fields when doing load calculation.
 921	 */
 922	unsigned int		nr_running;
 923#ifdef CONFIG_NUMA_BALANCING
 924	unsigned int		nr_numa_running;
 925	unsigned int		nr_preferred_running;
 926	unsigned int		numa_migrate_on;
 927#endif
 
 
 928#ifdef CONFIG_NO_HZ_COMMON
 929#ifdef CONFIG_SMP
 930	unsigned long		last_blocked_load_update_tick;
 931	unsigned int		has_blocked_load;
 932	call_single_data_t	nohz_csd;
 933#endif /* CONFIG_SMP */
 934	unsigned int		nohz_tick_stopped;
 935	atomic_t		nohz_flags;
 936#endif /* CONFIG_NO_HZ_COMMON */
 937
 938#ifdef CONFIG_SMP
 939	unsigned int		ttwu_pending;
 940#endif
 941	u64			nr_switches;
 942
 943#ifdef CONFIG_UCLAMP_TASK
 944	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 945	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 946	unsigned int		uclamp_flags;
 947#define UCLAMP_FLAG_IDLE 0x01
 948#endif
 949
 950	struct cfs_rq		cfs;
 951	struct rt_rq		rt;
 952	struct dl_rq		dl;
 
 
 
 
 953
 954#ifdef CONFIG_FAIR_GROUP_SCHED
 955	/* list of leaf cfs_rq on this CPU: */
 956	struct list_head	leaf_cfs_rq_list;
 957	struct list_head	*tmp_alone_branch;
 958#endif /* CONFIG_FAIR_GROUP_SCHED */
 959
 960	/*
 961	 * This is part of a global counter where only the total sum
 962	 * over all CPUs matters. A task can increase this counter on
 963	 * one CPU and if it got migrated afterwards it may decrease
 964	 * it on another CPU. Always updated under the runqueue lock:
 965	 */
 966	unsigned int		nr_uninterruptible;
 967
 968	struct task_struct __rcu	*curr;
 969	struct task_struct	*idle;
 970	struct task_struct	*stop;
 971	unsigned long		next_balance;
 972	struct mm_struct	*prev_mm;
 973
 974	unsigned int		clock_update_flags;
 975	u64			clock;
 976	/* Ensure that all clocks are in the same cache line */
 977	u64			clock_task ____cacheline_aligned;
 978	u64			clock_pelt;
 979	unsigned long		lost_idle_time;
 980
 981	atomic_t		nr_iowait;
 
 
 982
 983#ifdef CONFIG_SCHED_DEBUG
 984	u64 last_seen_need_resched_ns;
 985	int ticks_without_resched;
 986#endif
 987
 988#ifdef CONFIG_MEMBARRIER
 989	int membarrier_state;
 990#endif
 991
 992#ifdef CONFIG_SMP
 993	struct root_domain		*rd;
 994	struct sched_domain __rcu	*sd;
 995
 996	unsigned long		cpu_capacity;
 997	unsigned long		cpu_capacity_orig;
 998
 999	struct callback_head	*balance_callback;
1000
1001	unsigned char		nohz_idle_balance;
1002	unsigned char		idle_balance;
1003
1004	unsigned long		misfit_task_load;
1005
 
1006	/* For active balancing */
1007	int			active_balance;
1008	int			push_cpu;
1009	struct cpu_stop_work	active_balance_work;
1010
1011	/* CPU of this runqueue: */
1012	int			cpu;
1013	int			online;
1014
1015	struct list_head cfs_tasks;
1016
1017	struct sched_avg	avg_rt;
1018	struct sched_avg	avg_dl;
1019#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1020	struct sched_avg	avg_irq;
1021#endif
1022#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1023	struct sched_avg	avg_thermal;
1024#endif
1025	u64			idle_stamp;
1026	u64			avg_idle;
1027
1028	unsigned long		wake_stamp;
1029	u64			wake_avg_idle;
1030
1031	/* This is used to determine avg_idle's max value */
1032	u64			max_idle_balance_cost;
1033
1034#ifdef CONFIG_HOTPLUG_CPU
1035	struct rcuwait		hotplug_wait;
1036#endif
1037#endif /* CONFIG_SMP */
1038
1039#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1040	u64			prev_irq_time;
1041#endif
1042#ifdef CONFIG_PARAVIRT
1043	u64			prev_steal_time;
1044#endif
1045#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1046	u64			prev_steal_time_rq;
1047#endif
1048
1049	/* calc_load related fields */
1050	unsigned long		calc_load_update;
1051	long			calc_load_active;
1052
1053#ifdef CONFIG_SCHED_HRTICK
1054#ifdef CONFIG_SMP
1055	call_single_data_t	hrtick_csd;
 
1056#endif
1057	struct hrtimer		hrtick_timer;
1058	ktime_t 		hrtick_time;
1059#endif
1060
1061#ifdef CONFIG_SCHEDSTATS
1062	/* latency stats */
1063	struct sched_info	rq_sched_info;
1064	unsigned long long	rq_cpu_time;
1065	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1066
1067	/* sys_sched_yield() stats */
1068	unsigned int		yld_count;
1069
1070	/* schedule() stats */
1071	unsigned int		sched_count;
1072	unsigned int		sched_goidle;
1073
1074	/* try_to_wake_up() stats */
1075	unsigned int		ttwu_count;
1076	unsigned int		ttwu_local;
1077#endif
1078
1079#ifdef CONFIG_CPU_IDLE
1080	/* Must be inspected within a rcu lock section */
1081	struct cpuidle_state	*idle_state;
1082#endif
1083
1084#ifdef CONFIG_SMP
1085	unsigned int		nr_pinned;
1086#endif
1087	unsigned int		push_busy;
1088	struct cpu_stop_work	push_work;
1089
1090#ifdef CONFIG_SCHED_CORE
1091	/* per rq */
1092	struct rq		*core;
1093	struct task_struct	*core_pick;
1094	unsigned int		core_enabled;
1095	unsigned int		core_sched_seq;
1096	struct rb_root		core_tree;
1097
1098	/* shared state -- careful with sched_core_cpu_deactivate() */
1099	unsigned int		core_task_seq;
1100	unsigned int		core_pick_seq;
1101	unsigned long		core_cookie;
1102	unsigned char		core_forceidle;
1103	unsigned int		core_forceidle_seq;
1104#endif
1105};
1106
1107#ifdef CONFIG_FAIR_GROUP_SCHED
1108
1109/* CPU runqueue to which this cfs_rq is attached */
1110static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1111{
1112	return cfs_rq->rq;
1113}
1114
1115#else
1116
1117static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1118{
1119	return container_of(cfs_rq, struct rq, cfs);
1120}
1121#endif
1122
1123static inline int cpu_of(struct rq *rq)
1124{
1125#ifdef CONFIG_SMP
1126	return rq->cpu;
1127#else
1128	return 0;
1129#endif
1130}
1131
1132#define MDF_PUSH	0x01
1133
1134static inline bool is_migration_disabled(struct task_struct *p)
1135{
1136#ifdef CONFIG_SMP
1137	return p->migration_disabled;
1138#else
1139	return false;
1140#endif
1141}
1142
1143struct sched_group;
1144#ifdef CONFIG_SCHED_CORE
1145static inline struct cpumask *sched_group_span(struct sched_group *sg);
1146
1147DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1148
1149static inline bool sched_core_enabled(struct rq *rq)
1150{
1151	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1152}
1153
1154static inline bool sched_core_disabled(void)
1155{
1156	return !static_branch_unlikely(&__sched_core_enabled);
1157}
1158
1159/*
1160 * Be careful with this function; not for general use. The return value isn't
1161 * stable unless you actually hold a relevant rq->__lock.
1162 */
1163static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1164{
1165	if (sched_core_enabled(rq))
1166		return &rq->core->__lock;
1167
1168	return &rq->__lock;
1169}
1170
1171static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1172{
1173	if (rq->core_enabled)
1174		return &rq->core->__lock;
1175
1176	return &rq->__lock;
1177}
1178
1179bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1180
1181/*
1182 * Helpers to check if the CPU's core cookie matches with the task's cookie
1183 * when core scheduling is enabled.
1184 * A special case is that the task's cookie always matches with CPU's core
1185 * cookie if the CPU is in an idle core.
1186 */
1187static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1188{
1189	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1190	if (!sched_core_enabled(rq))
1191		return true;
1192
1193	return rq->core->core_cookie == p->core_cookie;
1194}
1195
1196static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1197{
1198	bool idle_core = true;
1199	int cpu;
1200
1201	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1202	if (!sched_core_enabled(rq))
1203		return true;
1204
1205	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1206		if (!available_idle_cpu(cpu)) {
1207			idle_core = false;
1208			break;
1209		}
1210	}
1211
1212	/*
1213	 * A CPU in an idle core is always the best choice for tasks with
1214	 * cookies.
1215	 */
1216	return idle_core || rq->core->core_cookie == p->core_cookie;
1217}
1218
1219static inline bool sched_group_cookie_match(struct rq *rq,
1220					    struct task_struct *p,
1221					    struct sched_group *group)
1222{
1223	int cpu;
1224
1225	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1226	if (!sched_core_enabled(rq))
1227		return true;
1228
1229	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1230		if (sched_core_cookie_match(rq, p))
1231			return true;
1232	}
1233	return false;
1234}
1235
1236extern void queue_core_balance(struct rq *rq);
1237
1238static inline bool sched_core_enqueued(struct task_struct *p)
1239{
1240	return !RB_EMPTY_NODE(&p->core_node);
1241}
1242
1243extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1244extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1245
1246extern void sched_core_get(void);
1247extern void sched_core_put(void);
1248
1249extern unsigned long sched_core_alloc_cookie(void);
1250extern void sched_core_put_cookie(unsigned long cookie);
1251extern unsigned long sched_core_get_cookie(unsigned long cookie);
1252extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie);
1253
1254#else /* !CONFIG_SCHED_CORE */
1255
1256static inline bool sched_core_enabled(struct rq *rq)
1257{
1258	return false;
1259}
1260
1261static inline bool sched_core_disabled(void)
1262{
1263	return true;
1264}
1265
1266static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1267{
1268	return &rq->__lock;
1269}
1270
1271static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1272{
1273	return &rq->__lock;
1274}
1275
1276static inline void queue_core_balance(struct rq *rq)
1277{
1278}
1279
1280static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1281{
1282	return true;
1283}
1284
1285static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1286{
1287	return true;
1288}
1289
1290static inline bool sched_group_cookie_match(struct rq *rq,
1291					    struct task_struct *p,
1292					    struct sched_group *group)
1293{
1294	return true;
1295}
1296#endif /* CONFIG_SCHED_CORE */
1297
1298static inline void lockdep_assert_rq_held(struct rq *rq)
1299{
1300	lockdep_assert_held(__rq_lockp(rq));
1301}
1302
1303extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1304extern bool raw_spin_rq_trylock(struct rq *rq);
1305extern void raw_spin_rq_unlock(struct rq *rq);
1306
1307static inline void raw_spin_rq_lock(struct rq *rq)
1308{
1309	raw_spin_rq_lock_nested(rq, 0);
1310}
1311
1312static inline void raw_spin_rq_lock_irq(struct rq *rq)
1313{
1314	local_irq_disable();
1315	raw_spin_rq_lock(rq);
1316}
1317
1318static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1319{
1320	raw_spin_rq_unlock(rq);
1321	local_irq_enable();
1322}
1323
1324static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1325{
1326	unsigned long flags;
1327	local_irq_save(flags);
1328	raw_spin_rq_lock(rq);
1329	return flags;
1330}
1331
1332static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1333{
1334	raw_spin_rq_unlock(rq);
1335	local_irq_restore(flags);
1336}
1337
1338#define raw_spin_rq_lock_irqsave(rq, flags)	\
1339do {						\
1340	flags = _raw_spin_rq_lock_irqsave(rq);	\
1341} while (0)
1342
1343#ifdef CONFIG_SCHED_SMT
1344extern void __update_idle_core(struct rq *rq);
1345
1346static inline void update_idle_core(struct rq *rq)
1347{
1348	if (static_branch_unlikely(&sched_smt_present))
1349		__update_idle_core(rq);
1350}
1351
1352#else
1353static inline void update_idle_core(struct rq *rq) { }
1354#endif
1355
1356DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1357
1358#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1359#define this_rq()		this_cpu_ptr(&runqueues)
1360#define task_rq(p)		cpu_rq(task_cpu(p))
1361#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1362#define raw_rq()		raw_cpu_ptr(&runqueues)
1363
1364#ifdef CONFIG_FAIR_GROUP_SCHED
1365static inline struct task_struct *task_of(struct sched_entity *se)
1366{
1367	SCHED_WARN_ON(!entity_is_task(se));
1368	return container_of(se, struct task_struct, se);
1369}
1370
1371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1372{
1373	return p->se.cfs_rq;
1374}
1375
1376/* runqueue on which this entity is (to be) queued */
1377static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1378{
1379	return se->cfs_rq;
1380}
1381
1382/* runqueue "owned" by this group */
1383static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1384{
1385	return grp->my_q;
1386}
1387
1388#else
1389
1390static inline struct task_struct *task_of(struct sched_entity *se)
1391{
1392	return container_of(se, struct task_struct, se);
1393}
1394
1395static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1396{
1397	return &task_rq(p)->cfs;
1398}
1399
1400static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1401{
1402	struct task_struct *p = task_of(se);
1403	struct rq *rq = task_rq(p);
1404
1405	return &rq->cfs;
1406}
1407
1408/* runqueue "owned" by this group */
1409static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1410{
1411	return NULL;
1412}
1413#endif
1414
1415extern void update_rq_clock(struct rq *rq);
1416
1417static inline u64 __rq_clock_broken(struct rq *rq)
1418{
1419	return READ_ONCE(rq->clock);
1420}
1421
1422/*
1423 * rq::clock_update_flags bits
1424 *
1425 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1426 *  call to __schedule(). This is an optimisation to avoid
1427 *  neighbouring rq clock updates.
1428 *
1429 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1430 *  in effect and calls to update_rq_clock() are being ignored.
1431 *
1432 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1433 *  made to update_rq_clock() since the last time rq::lock was pinned.
1434 *
1435 * If inside of __schedule(), clock_update_flags will have been
1436 * shifted left (a left shift is a cheap operation for the fast path
1437 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1438 *
1439 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1440 *
1441 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1442 * one position though, because the next rq_unpin_lock() will shift it
1443 * back.
1444 */
1445#define RQCF_REQ_SKIP		0x01
1446#define RQCF_ACT_SKIP		0x02
1447#define RQCF_UPDATED		0x04
1448
1449static inline void assert_clock_updated(struct rq *rq)
1450{
1451	/*
1452	 * The only reason for not seeing a clock update since the
1453	 * last rq_pin_lock() is if we're currently skipping updates.
1454	 */
1455	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1456}
1457
1458static inline u64 rq_clock(struct rq *rq)
1459{
1460	lockdep_assert_rq_held(rq);
1461	assert_clock_updated(rq);
1462
1463	return rq->clock;
1464}
1465
1466static inline u64 rq_clock_task(struct rq *rq)
1467{
1468	lockdep_assert_rq_held(rq);
1469	assert_clock_updated(rq);
1470
1471	return rq->clock_task;
1472}
1473
1474/**
1475 * By default the decay is the default pelt decay period.
1476 * The decay shift can change the decay period in
1477 * multiples of 32.
1478 *  Decay shift		Decay period(ms)
1479 *	0			32
1480 *	1			64
1481 *	2			128
1482 *	3			256
1483 *	4			512
1484 */
1485extern int sched_thermal_decay_shift;
1486
1487static inline u64 rq_clock_thermal(struct rq *rq)
1488{
1489	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1490}
1491
1492static inline void rq_clock_skip_update(struct rq *rq)
1493{
1494	lockdep_assert_rq_held(rq);
1495	rq->clock_update_flags |= RQCF_REQ_SKIP;
1496}
1497
1498/*
1499 * See rt task throttling, which is the only time a skip
1500 * request is canceled.
1501 */
1502static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1503{
1504	lockdep_assert_rq_held(rq);
1505	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1506}
1507
1508struct rq_flags {
1509	unsigned long flags;
1510	struct pin_cookie cookie;
1511#ifdef CONFIG_SCHED_DEBUG
1512	/*
1513	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1514	 * current pin context is stashed here in case it needs to be
1515	 * restored in rq_repin_lock().
1516	 */
1517	unsigned int clock_update_flags;
1518#endif
1519};
1520
1521extern struct callback_head balance_push_callback;
1522
1523/*
1524 * Lockdep annotation that avoids accidental unlocks; it's like a
1525 * sticky/continuous lockdep_assert_held().
1526 *
1527 * This avoids code that has access to 'struct rq *rq' (basically everything in
1528 * the scheduler) from accidentally unlocking the rq if they do not also have a
1529 * copy of the (on-stack) 'struct rq_flags rf'.
1530 *
1531 * Also see Documentation/locking/lockdep-design.rst.
1532 */
1533static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1534{
1535	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1536
1537#ifdef CONFIG_SCHED_DEBUG
1538	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1539	rf->clock_update_flags = 0;
1540#ifdef CONFIG_SMP
1541	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1542#endif
1543#endif
1544}
1545
1546static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1547{
1548#ifdef CONFIG_SCHED_DEBUG
1549	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1550		rf->clock_update_flags = RQCF_UPDATED;
1551#endif
1552
1553	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1554}
1555
1556static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1557{
1558	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1559
1560#ifdef CONFIG_SCHED_DEBUG
1561	/*
1562	 * Restore the value we stashed in @rf for this pin context.
1563	 */
1564	rq->clock_update_flags |= rf->clock_update_flags;
1565#endif
1566}
1567
1568struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1569	__acquires(rq->lock);
1570
1571struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1572	__acquires(p->pi_lock)
1573	__acquires(rq->lock);
1574
1575static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1576	__releases(rq->lock)
1577{
1578	rq_unpin_lock(rq, rf);
1579	raw_spin_rq_unlock(rq);
1580}
1581
1582static inline void
1583task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1584	__releases(rq->lock)
1585	__releases(p->pi_lock)
1586{
1587	rq_unpin_lock(rq, rf);
1588	raw_spin_rq_unlock(rq);
1589	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1590}
1591
1592static inline void
1593rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1594	__acquires(rq->lock)
1595{
1596	raw_spin_rq_lock_irqsave(rq, rf->flags);
1597	rq_pin_lock(rq, rf);
1598}
1599
1600static inline void
1601rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1602	__acquires(rq->lock)
1603{
1604	raw_spin_rq_lock_irq(rq);
1605	rq_pin_lock(rq, rf);
1606}
1607
1608static inline void
1609rq_lock(struct rq *rq, struct rq_flags *rf)
1610	__acquires(rq->lock)
1611{
1612	raw_spin_rq_lock(rq);
1613	rq_pin_lock(rq, rf);
1614}
1615
1616static inline void
1617rq_relock(struct rq *rq, struct rq_flags *rf)
1618	__acquires(rq->lock)
1619{
1620	raw_spin_rq_lock(rq);
1621	rq_repin_lock(rq, rf);
1622}
1623
1624static inline void
1625rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1626	__releases(rq->lock)
1627{
1628	rq_unpin_lock(rq, rf);
1629	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1630}
1631
1632static inline void
1633rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1634	__releases(rq->lock)
1635{
1636	rq_unpin_lock(rq, rf);
1637	raw_spin_rq_unlock_irq(rq);
1638}
1639
1640static inline void
1641rq_unlock(struct rq *rq, struct rq_flags *rf)
1642	__releases(rq->lock)
1643{
1644	rq_unpin_lock(rq, rf);
1645	raw_spin_rq_unlock(rq);
1646}
1647
1648static inline struct rq *
1649this_rq_lock_irq(struct rq_flags *rf)
1650	__acquires(rq->lock)
1651{
1652	struct rq *rq;
1653
1654	local_irq_disable();
1655	rq = this_rq();
1656	rq_lock(rq, rf);
1657	return rq;
1658}
1659
1660#ifdef CONFIG_NUMA
1661enum numa_topology_type {
1662	NUMA_DIRECT,
1663	NUMA_GLUELESS_MESH,
1664	NUMA_BACKPLANE,
1665};
1666extern enum numa_topology_type sched_numa_topology_type;
1667extern int sched_max_numa_distance;
1668extern bool find_numa_distance(int distance);
1669extern void sched_init_numa(void);
1670extern void sched_domains_numa_masks_set(unsigned int cpu);
1671extern void sched_domains_numa_masks_clear(unsigned int cpu);
1672extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1673#else
1674static inline void sched_init_numa(void) { }
1675static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1676static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1677static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1678{
1679	return nr_cpu_ids;
1680}
1681#endif
1682
1683#ifdef CONFIG_NUMA_BALANCING
1684/* The regions in numa_faults array from task_struct */
1685enum numa_faults_stats {
1686	NUMA_MEM = 0,
1687	NUMA_CPU,
1688	NUMA_MEMBUF,
1689	NUMA_CPUBUF
1690};
1691extern void sched_setnuma(struct task_struct *p, int node);
1692extern int migrate_task_to(struct task_struct *p, int cpu);
1693extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1694			int cpu, int scpu);
1695extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1696#else
1697static inline void
1698init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1699{
1700}
1701#endif /* CONFIG_NUMA_BALANCING */
1702
1703#ifdef CONFIG_SMP
1704
1705static inline void
1706queue_balance_callback(struct rq *rq,
1707		       struct callback_head *head,
1708		       void (*func)(struct rq *rq))
1709{
1710	lockdep_assert_rq_held(rq);
1711
1712	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1713		return;
1714
1715	head->func = (void (*)(struct callback_head *))func;
1716	head->next = rq->balance_callback;
1717	rq->balance_callback = head;
1718}
1719
 
 
1720#define rcu_dereference_check_sched_domain(p) \
1721	rcu_dereference_check((p), \
1722			      lockdep_is_held(&sched_domains_mutex))
1723
1724/*
1725 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1726 * See destroy_sched_domains: call_rcu for details.
1727 *
1728 * The domain tree of any CPU may only be accessed from within
1729 * preempt-disabled sections.
1730 */
1731#define for_each_domain(cpu, __sd) \
1732	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1733			__sd; __sd = __sd->parent)
1734
 
 
1735/**
1736 * highest_flag_domain - Return highest sched_domain containing flag.
1737 * @cpu:	The CPU whose highest level of sched domain is to
1738 *		be returned.
1739 * @flag:	The flag to check for the highest sched_domain
1740 *		for the given CPU.
1741 *
1742 * Returns the highest sched_domain of a CPU which contains the given flag.
1743 */
1744static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1745{
1746	struct sched_domain *sd, *hsd = NULL;
1747
1748	for_each_domain(cpu, sd) {
1749		if (!(sd->flags & flag))
1750			break;
1751		hsd = sd;
1752	}
1753
1754	return hsd;
1755}
1756
1757static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1758{
1759	struct sched_domain *sd;
1760
1761	for_each_domain(cpu, sd) {
1762		if (sd->flags & flag)
1763			break;
1764	}
1765
1766	return sd;
1767}
1768
1769DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1770DECLARE_PER_CPU(int, sd_llc_size);
1771DECLARE_PER_CPU(int, sd_llc_id);
1772DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1773DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1774DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1775DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1776extern struct static_key_false sched_asym_cpucapacity;
1777
1778struct sched_group_capacity {
1779	atomic_t		ref;
1780	/*
1781	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1782	 * for a single CPU.
1783	 */
1784	unsigned long		capacity;
1785	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1786	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1787	unsigned long		next_update;
1788	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1789
1790#ifdef CONFIG_SCHED_DEBUG
1791	int			id;
1792#endif
1793
1794	unsigned long		cpumask[];		/* Balance mask */
1795};
1796
1797struct sched_group {
1798	struct sched_group	*next;			/* Must be a circular list */
1799	atomic_t		ref;
1800
1801	unsigned int		group_weight;
1802	struct sched_group_capacity *sgc;
1803	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1804
1805	/*
1806	 * The CPUs this group covers.
1807	 *
1808	 * NOTE: this field is variable length. (Allocated dynamically
1809	 * by attaching extra space to the end of the structure,
1810	 * depending on how many CPUs the kernel has booted up with)
1811	 */
1812	unsigned long		cpumask[];
1813};
1814
1815static inline struct cpumask *sched_group_span(struct sched_group *sg)
1816{
1817	return to_cpumask(sg->cpumask);
1818}
1819
1820/*
1821 * See build_balance_mask().
 
1822 */
1823static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1824{
1825	return to_cpumask(sg->sgc->cpumask);
1826}
1827
1828/**
1829 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1830 * @group: The group whose first CPU is to be returned.
1831 */
1832static inline unsigned int group_first_cpu(struct sched_group *group)
1833{
1834	return cpumask_first(sched_group_span(group));
1835}
1836
1837extern int group_balance_cpu(struct sched_group *sg);
1838
1839#ifdef CONFIG_SCHED_DEBUG
1840void update_sched_domain_debugfs(void);
1841void dirty_sched_domain_sysctl(int cpu);
1842#else
1843static inline void update_sched_domain_debugfs(void)
1844{
1845}
1846static inline void dirty_sched_domain_sysctl(int cpu)
1847{
1848}
1849#endif
1850
1851extern int sched_update_scaling(void);
1852
1853extern void flush_smp_call_function_from_idle(void);
1854
1855#else /* !CONFIG_SMP: */
1856static inline void flush_smp_call_function_from_idle(void) { }
1857#endif
1858
1859#include "stats.h"
1860#include "autogroup.h"
1861
1862#ifdef CONFIG_CGROUP_SCHED
1863
1864/*
1865 * Return the group to which this tasks belongs.
1866 *
1867 * We cannot use task_css() and friends because the cgroup subsystem
1868 * changes that value before the cgroup_subsys::attach() method is called,
1869 * therefore we cannot pin it and might observe the wrong value.
1870 *
1871 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1872 * core changes this before calling sched_move_task().
1873 *
1874 * Instead we use a 'copy' which is updated from sched_move_task() while
1875 * holding both task_struct::pi_lock and rq::lock.
1876 */
1877static inline struct task_group *task_group(struct task_struct *p)
1878{
1879	return p->sched_task_group;
1880}
1881
1882/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1883static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1884{
1885#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1886	struct task_group *tg = task_group(p);
1887#endif
1888
1889#ifdef CONFIG_FAIR_GROUP_SCHED
1890	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1891	p->se.cfs_rq = tg->cfs_rq[cpu];
1892	p->se.parent = tg->se[cpu];
1893#endif
1894
1895#ifdef CONFIG_RT_GROUP_SCHED
1896	p->rt.rt_rq  = tg->rt_rq[cpu];
1897	p->rt.parent = tg->rt_se[cpu];
1898#endif
1899}
1900
1901#else /* CONFIG_CGROUP_SCHED */
1902
1903static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1904static inline struct task_group *task_group(struct task_struct *p)
1905{
1906	return NULL;
1907}
1908
1909#endif /* CONFIG_CGROUP_SCHED */
1910
1911static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1912{
1913	set_task_rq(p, cpu);
1914#ifdef CONFIG_SMP
1915	/*
1916	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1917	 * successfully executed on another CPU. We must ensure that updates of
1918	 * per-task data have been completed by this moment.
1919	 */
1920	smp_wmb();
1921#ifdef CONFIG_THREAD_INFO_IN_TASK
1922	WRITE_ONCE(p->cpu, cpu);
1923#else
1924	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1925#endif
1926	p->wake_cpu = cpu;
1927#endif
1928}
1929
1930/*
1931 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1932 */
1933#ifdef CONFIG_SCHED_DEBUG
1934# include <linux/static_key.h>
1935# define const_debug __read_mostly
1936#else
1937# define const_debug const
1938#endif
1939
 
 
1940#define SCHED_FEAT(name, enabled)	\
1941	__SCHED_FEAT_##name ,
1942
1943enum {
1944#include "features.h"
1945	__SCHED_FEAT_NR,
1946};
1947
1948#undef SCHED_FEAT
1949
1950#ifdef CONFIG_SCHED_DEBUG
1951
1952/*
1953 * To support run-time toggling of sched features, all the translation units
1954 * (but core.c) reference the sysctl_sched_features defined in core.c.
1955 */
1956extern const_debug unsigned int sysctl_sched_features;
1957
1958#ifdef CONFIG_JUMP_LABEL
1959#define SCHED_FEAT(name, enabled)					\
1960static __always_inline bool static_branch_##name(struct static_key *key) \
1961{									\
1962	return static_key_##enabled(key);				\
1963}
1964
1965#include "features.h"
 
1966#undef SCHED_FEAT
1967
1968extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1969#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1970
1971#else /* !CONFIG_JUMP_LABEL */
1972
1973#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1974
1975#endif /* CONFIG_JUMP_LABEL */
1976
1977#else /* !SCHED_DEBUG */
1978
1979/*
1980 * Each translation unit has its own copy of sysctl_sched_features to allow
1981 * constants propagation at compile time and compiler optimization based on
1982 * features default.
1983 */
1984#define SCHED_FEAT(name, enabled)	\
1985	(1UL << __SCHED_FEAT_##name) * enabled |
1986static const_debug __maybe_unused unsigned int sysctl_sched_features =
1987#include "features.h"
1988	0;
1989#undef SCHED_FEAT
1990
1991#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1992
1993#endif /* SCHED_DEBUG */
1994
1995extern struct static_key_false sched_numa_balancing;
1996extern struct static_key_false sched_schedstats;
1997
1998static inline u64 global_rt_period(void)
1999{
2000	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2001}
2002
2003static inline u64 global_rt_runtime(void)
2004{
2005	if (sysctl_sched_rt_runtime < 0)
2006		return RUNTIME_INF;
2007
2008	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2009}
2010
2011static inline int task_current(struct rq *rq, struct task_struct *p)
2012{
2013	return rq->curr == p;
2014}
2015
2016static inline int task_running(struct rq *rq, struct task_struct *p)
2017{
2018#ifdef CONFIG_SMP
2019	return p->on_cpu;
2020#else
2021	return task_current(rq, p);
2022#endif
2023}
2024
2025static inline int task_on_rq_queued(struct task_struct *p)
2026{
2027	return p->on_rq == TASK_ON_RQ_QUEUED;
2028}
2029
2030static inline int task_on_rq_migrating(struct task_struct *p)
2031{
2032	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2033}
2034
2035/* Wake flags. The first three directly map to some SD flag value */
2036#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2037#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2038#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
 
 
2039
2040#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2041#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2042#define WF_ON_CPU   0x40 /* Wakee is on_cpu */
 
 
 
 
 
 
 
 
2043
 
 
2044#ifdef CONFIG_SMP
2045static_assert(WF_EXEC == SD_BALANCE_EXEC);
2046static_assert(WF_FORK == SD_BALANCE_FORK);
2047static_assert(WF_TTWU == SD_BALANCE_WAKE);
 
 
 
 
 
 
 
 
2048#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049
2050/*
2051 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2052 * of tasks with abnormal "nice" values across CPUs the contribution that
2053 * each task makes to its run queue's load is weighted according to its
2054 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2055 * scaled version of the new time slice allocation that they receive on time
2056 * slice expiry etc.
2057 */
2058
2059#define WEIGHT_IDLEPRIO		3
2060#define WMULT_IDLEPRIO		1431655765
2061
2062extern const int		sched_prio_to_weight[40];
2063extern const u32		sched_prio_to_wmult[40];
2064
2065/*
2066 * {de,en}queue flags:
2067 *
2068 * DEQUEUE_SLEEP  - task is no longer runnable
2069 * ENQUEUE_WAKEUP - task just became runnable
2070 *
2071 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2072 *                are in a known state which allows modification. Such pairs
2073 *                should preserve as much state as possible.
2074 *
2075 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2076 *        in the runqueue.
2077 *
2078 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2079 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2080 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2081 *
2082 */
2083
2084#define DEQUEUE_SLEEP		0x01
2085#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2086#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2087#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2088
2089#define ENQUEUE_WAKEUP		0x01
2090#define ENQUEUE_RESTORE		0x02
2091#define ENQUEUE_MOVE		0x04
2092#define ENQUEUE_NOCLOCK		0x08
2093
2094#define ENQUEUE_HEAD		0x10
2095#define ENQUEUE_REPLENISH	0x20
2096#ifdef CONFIG_SMP
2097#define ENQUEUE_MIGRATED	0x40
2098#else
2099#define ENQUEUE_MIGRATED	0x00
2100#endif
2101
2102#define RETRY_TASK		((void *)-1UL)
2103
2104struct sched_class {
2105
2106#ifdef CONFIG_UCLAMP_TASK
2107	int uclamp_enabled;
2108#endif
2109
2110	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2111	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2112	void (*yield_task)   (struct rq *rq);
2113	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2114
2115	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2116
2117	struct task_struct *(*pick_next_task)(struct rq *rq);
2118
2119	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2120	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
 
 
 
 
 
 
 
 
2121
2122#ifdef CONFIG_SMP
2123	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2124	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2125
2126	struct task_struct * (*pick_task)(struct rq *rq);
2127
2128	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2129
2130	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2131
2132	void (*set_cpus_allowed)(struct task_struct *p,
2133				 const struct cpumask *newmask,
2134				 u32 flags);
2135
2136	void (*rq_online)(struct rq *rq);
2137	void (*rq_offline)(struct rq *rq);
2138
2139	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2140#endif
2141
2142	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2143	void (*task_fork)(struct task_struct *p);
2144	void (*task_dead)(struct task_struct *p);
 
2145
2146	/*
2147	 * The switched_from() call is allowed to drop rq->lock, therefore we
2148	 * cannot assume the switched_from/switched_to pair is serialized by
2149	 * rq->lock. They are however serialized by p->pi_lock.
2150	 */
2151	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2152	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2153	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2154			      int oldprio);
2155
2156	unsigned int (*get_rr_interval)(struct rq *rq,
2157					struct task_struct *task);
2158
2159	void (*update_curr)(struct rq *rq);
2160
2161#define TASK_SET_GROUP		0
2162#define TASK_MOVE_GROUP		1
2163
2164#ifdef CONFIG_FAIR_GROUP_SCHED
2165	void (*task_change_group)(struct task_struct *p, int type);
2166#endif
2167};
2168
2169static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2170{
2171	WARN_ON_ONCE(rq->curr != prev);
2172	prev->sched_class->put_prev_task(rq, prev);
2173}
2174
2175static inline void set_next_task(struct rq *rq, struct task_struct *next)
2176{
2177	next->sched_class->set_next_task(rq, next, false);
2178}
2179
2180
2181/*
2182 * Helper to define a sched_class instance; each one is placed in a separate
2183 * section which is ordered by the linker script:
2184 *
2185 *   include/asm-generic/vmlinux.lds.h
2186 *
2187 * Also enforce alignment on the instance, not the type, to guarantee layout.
2188 */
2189#define DEFINE_SCHED_CLASS(name) \
2190const struct sched_class name##_sched_class \
2191	__aligned(__alignof__(struct sched_class)) \
2192	__section("__" #name "_sched_class")
2193
2194/* Defined in include/asm-generic/vmlinux.lds.h */
2195extern struct sched_class __begin_sched_classes[];
2196extern struct sched_class __end_sched_classes[];
2197
2198#define sched_class_highest (__end_sched_classes - 1)
2199#define sched_class_lowest  (__begin_sched_classes - 1)
2200
2201#define for_class_range(class, _from, _to) \
2202	for (class = (_from); class != (_to); class--)
2203
2204#define for_each_class(class) \
2205	for_class_range(class, sched_class_highest, sched_class_lowest)
2206
2207extern const struct sched_class stop_sched_class;
2208extern const struct sched_class dl_sched_class;
2209extern const struct sched_class rt_sched_class;
2210extern const struct sched_class fair_sched_class;
2211extern const struct sched_class idle_sched_class;
2212
2213static inline bool sched_stop_runnable(struct rq *rq)
2214{
2215	return rq->stop && task_on_rq_queued(rq->stop);
2216}
2217
2218static inline bool sched_dl_runnable(struct rq *rq)
2219{
2220	return rq->dl.dl_nr_running > 0;
2221}
2222
2223static inline bool sched_rt_runnable(struct rq *rq)
2224{
2225	return rq->rt.rt_queued > 0;
2226}
2227
2228static inline bool sched_fair_runnable(struct rq *rq)
2229{
2230	return rq->cfs.nr_running > 0;
2231}
2232
2233extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2234extern struct task_struct *pick_next_task_idle(struct rq *rq);
2235
2236#define SCA_CHECK		0x01
2237#define SCA_MIGRATE_DISABLE	0x02
2238#define SCA_MIGRATE_ENABLE	0x04
2239
2240#ifdef CONFIG_SMP
2241
2242extern void update_group_capacity(struct sched_domain *sd, int cpu);
2243
2244extern void trigger_load_balance(struct rq *rq);
2245
2246extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2247
2248static inline struct task_struct *get_push_task(struct rq *rq)
2249{
2250	struct task_struct *p = rq->curr;
2251
2252	lockdep_assert_rq_held(rq);
2253
2254	if (rq->push_busy)
2255		return NULL;
2256
2257	if (p->nr_cpus_allowed == 1)
2258		return NULL;
2259
2260	if (p->migration_disabled)
2261		return NULL;
2262
2263	rq->push_busy = true;
2264	return get_task_struct(p);
2265}
2266
2267extern int push_cpu_stop(void *arg);
2268
2269#endif
2270
2271#ifdef CONFIG_CPU_IDLE
2272static inline void idle_set_state(struct rq *rq,
2273				  struct cpuidle_state *idle_state)
2274{
2275	rq->idle_state = idle_state;
2276}
2277
2278static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2279{
2280	SCHED_WARN_ON(!rcu_read_lock_held());
2281
2282	return rq->idle_state;
2283}
2284#else
2285static inline void idle_set_state(struct rq *rq,
2286				  struct cpuidle_state *idle_state)
2287{
2288}
2289
2290static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2291{
2292	return NULL;
2293}
2294#endif
2295
2296extern void schedule_idle(void);
2297
2298extern void sysrq_sched_debug_show(void);
2299extern void sched_init_granularity(void);
2300extern void update_max_interval(void);
2301
2302extern void init_sched_dl_class(void);
2303extern void init_sched_rt_class(void);
2304extern void init_sched_fair_class(void);
2305
2306extern void reweight_task(struct task_struct *p, int prio);
2307
2308extern void resched_curr(struct rq *rq);
2309extern void resched_cpu(int cpu);
2310
2311extern struct rt_bandwidth def_rt_bandwidth;
2312extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2313
2314extern struct dl_bandwidth def_dl_bandwidth;
2315extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2316extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2317extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2318
2319#define BW_SHIFT		20
2320#define BW_UNIT			(1 << BW_SHIFT)
2321#define RATIO_SHIFT		8
2322#define MAX_BW_BITS		(64 - BW_SHIFT)
2323#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2324unsigned long to_ratio(u64 period, u64 runtime);
2325
2326extern void init_entity_runnable_average(struct sched_entity *se);
2327extern void post_init_entity_util_avg(struct task_struct *p);
2328
2329#ifdef CONFIG_NO_HZ_FULL
2330extern bool sched_can_stop_tick(struct rq *rq);
2331extern int __init sched_tick_offload_init(void);
2332
2333/*
2334 * Tick may be needed by tasks in the runqueue depending on their policy and
2335 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2336 * nohz mode if necessary.
2337 */
2338static inline void sched_update_tick_dependency(struct rq *rq)
2339{
2340	int cpu = cpu_of(rq);
 
 
 
 
 
2341
2342	if (!tick_nohz_full_cpu(cpu))
2343		return;
2344
2345	if (sched_can_stop_tick(rq))
2346		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2347	else
2348		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2349}
2350#else
2351static inline int sched_tick_offload_init(void) { return 0; }
2352static inline void sched_update_tick_dependency(struct rq *rq) { }
2353#endif
2354
2355static inline void add_nr_running(struct rq *rq, unsigned count)
2356{
2357	unsigned prev_nr = rq->nr_running;
2358
2359	rq->nr_running = prev_nr + count;
2360	if (trace_sched_update_nr_running_tp_enabled()) {
2361		call_trace_sched_update_nr_running(rq, count);
2362	}
2363
 
2364#ifdef CONFIG_SMP
2365	if (prev_nr < 2 && rq->nr_running >= 2) {
2366		if (!READ_ONCE(rq->rd->overload))
2367			WRITE_ONCE(rq->rd->overload, 1);
2368	}
2369#endif
2370
2371	sched_update_tick_dependency(rq);
2372}
2373
2374static inline void sub_nr_running(struct rq *rq, unsigned count)
2375{
2376	rq->nr_running -= count;
2377	if (trace_sched_update_nr_running_tp_enabled()) {
2378		call_trace_sched_update_nr_running(rq, -count);
2379	}
2380
2381	/* Check if we still need preemption */
2382	sched_update_tick_dependency(rq);
2383}
2384
 
 
 
 
 
 
 
 
 
2385extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2386extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2387
2388extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2389
 
2390extern const_debug unsigned int sysctl_sched_nr_migrate;
2391extern const_debug unsigned int sysctl_sched_migration_cost;
2392
 
 
 
 
 
2393#ifdef CONFIG_SCHED_HRTICK
2394
2395/*
2396 * Use hrtick when:
2397 *  - enabled by features
2398 *  - hrtimer is actually high res
2399 */
2400static inline int hrtick_enabled(struct rq *rq)
2401{
 
 
2402	if (!cpu_active(cpu_of(rq)))
2403		return 0;
2404	return hrtimer_is_hres_active(&rq->hrtick_timer);
2405}
2406
2407static inline int hrtick_enabled_fair(struct rq *rq)
2408{
2409	if (!sched_feat(HRTICK))
2410		return 0;
2411	return hrtick_enabled(rq);
2412}
2413
2414static inline int hrtick_enabled_dl(struct rq *rq)
2415{
2416	if (!sched_feat(HRTICK_DL))
2417		return 0;
2418	return hrtick_enabled(rq);
2419}
2420
2421void hrtick_start(struct rq *rq, u64 delay);
2422
2423#else
2424
2425static inline int hrtick_enabled_fair(struct rq *rq)
2426{
2427	return 0;
2428}
2429
2430static inline int hrtick_enabled_dl(struct rq *rq)
2431{
2432	return 0;
2433}
2434
2435static inline int hrtick_enabled(struct rq *rq)
2436{
2437	return 0;
2438}
2439
2440#endif /* CONFIG_SCHED_HRTICK */
2441
2442#ifndef arch_scale_freq_tick
 
 
 
2443static __always_inline
2444void arch_scale_freq_tick(void)
2445{
 
2446}
2447#endif
2448
2449#ifndef arch_scale_freq_capacity
2450/**
2451 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2452 * @cpu: the CPU in question.
2453 *
2454 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2455 *
2456 *     f_curr
2457 *     ------ * SCHED_CAPACITY_SCALE
2458 *     f_max
2459 */
2460static __always_inline
2461unsigned long arch_scale_freq_capacity(int cpu)
2462{
 
 
 
2463	return SCHED_CAPACITY_SCALE;
2464}
2465#endif
2466
 
 
 
 
 
 
 
 
 
2467
2468#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
2469
2470static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
 
2471{
2472#ifdef CONFIG_SCHED_CORE
2473	/*
2474	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2475	 * order by core-id first and cpu-id second.
2476	 *
2477	 * Notably:
2478	 *
2479	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2480	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2481	 *
2482	 * when only cpu-id is considered.
2483	 */
2484	if (rq1->core->cpu < rq2->core->cpu)
2485		return true;
2486	if (rq1->core->cpu > rq2->core->cpu)
2487		return false;
2488
2489	/*
2490	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2491	 */
2492#endif
2493	return rq1->cpu < rq2->cpu;
 
 
 
2494}
2495
2496extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
 
2497
2498#ifdef CONFIG_PREEMPTION
2499
2500/*
2501 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2502 * way at the expense of forcing extra atomic operations in all
2503 * invocations.  This assures that the double_lock is acquired using the
2504 * same underlying policy as the spinlock_t on this architecture, which
2505 * reduces latency compared to the unfair variant below.  However, it
2506 * also adds more overhead and therefore may reduce throughput.
2507 */
2508static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2509	__releases(this_rq->lock)
2510	__acquires(busiest->lock)
2511	__acquires(this_rq->lock)
2512{
2513	raw_spin_rq_unlock(this_rq);
2514	double_rq_lock(this_rq, busiest);
2515
2516	return 1;
2517}
2518
2519#else
2520/*
2521 * Unfair double_lock_balance: Optimizes throughput at the expense of
2522 * latency by eliminating extra atomic operations when the locks are
2523 * already in proper order on entry.  This favors lower CPU-ids and will
2524 * grant the double lock to lower CPUs over higher ids under contention,
2525 * regardless of entry order into the function.
2526 */
2527static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2528	__releases(this_rq->lock)
2529	__acquires(busiest->lock)
2530	__acquires(this_rq->lock)
2531{
2532	if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2533		return 0;
2534
2535	if (likely(raw_spin_rq_trylock(busiest)))
2536		return 0;
2537
2538	if (rq_order_less(this_rq, busiest)) {
2539		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2540		return 0;
 
 
 
 
2541	}
2542
2543	raw_spin_rq_unlock(this_rq);
2544	double_rq_lock(this_rq, busiest);
2545
2546	return 1;
2547}
2548
2549#endif /* CONFIG_PREEMPTION */
2550
2551/*
2552 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2553 */
2554static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2555{
2556	lockdep_assert_irqs_disabled();
 
 
 
 
2557
2558	return _double_lock_balance(this_rq, busiest);
2559}
2560
2561static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2562	__releases(busiest->lock)
2563{
2564	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2565		raw_spin_rq_unlock(busiest);
2566	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2567}
2568
2569static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2570{
2571	if (l1 > l2)
2572		swap(l1, l2);
2573
2574	spin_lock(l1);
2575	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2576}
2577
2578static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2579{
2580	if (l1 > l2)
2581		swap(l1, l2);
2582
2583	spin_lock_irq(l1);
2584	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2585}
2586
2587static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2588{
2589	if (l1 > l2)
2590		swap(l1, l2);
2591
2592	raw_spin_lock(l1);
2593	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2594}
2595
2596/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2597 * double_rq_unlock - safely unlock two runqueues
2598 *
2599 * Note this does not restore interrupts like task_rq_unlock,
2600 * you need to do so manually after calling.
2601 */
2602static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2603	__releases(rq1->lock)
2604	__releases(rq2->lock)
2605{
2606	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2607		raw_spin_rq_unlock(rq2);
 
2608	else
2609		__release(rq2->lock);
2610	raw_spin_rq_unlock(rq1);
2611}
2612
2613extern void set_rq_online (struct rq *rq);
2614extern void set_rq_offline(struct rq *rq);
2615extern bool sched_smp_initialized;
2616
2617#else /* CONFIG_SMP */
2618
2619/*
2620 * double_rq_lock - safely lock two runqueues
2621 *
2622 * Note this does not disable interrupts like task_rq_lock,
2623 * you need to do so manually before calling.
2624 */
2625static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2626	__acquires(rq1->lock)
2627	__acquires(rq2->lock)
2628{
2629	BUG_ON(!irqs_disabled());
2630	BUG_ON(rq1 != rq2);
2631	raw_spin_rq_lock(rq1);
2632	__acquire(rq2->lock);	/* Fake it out ;) */
2633}
2634
2635/*
2636 * double_rq_unlock - safely unlock two runqueues
2637 *
2638 * Note this does not restore interrupts like task_rq_unlock,
2639 * you need to do so manually after calling.
2640 */
2641static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2642	__releases(rq1->lock)
2643	__releases(rq2->lock)
2644{
2645	BUG_ON(rq1 != rq2);
2646	raw_spin_rq_unlock(rq1);
2647	__release(rq2->lock);
2648}
2649
2650#endif
2651
2652extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2653extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2654
2655#ifdef	CONFIG_SCHED_DEBUG
2656extern bool sched_debug_verbose;
2657
2658extern void print_cfs_stats(struct seq_file *m, int cpu);
2659extern void print_rt_stats(struct seq_file *m, int cpu);
2660extern void print_dl_stats(struct seq_file *m, int cpu);
2661extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2662extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2663extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2664
2665extern void resched_latency_warn(int cpu, u64 latency);
2666#ifdef CONFIG_NUMA_BALANCING
2667extern void
2668show_numa_stats(struct task_struct *p, struct seq_file *m);
2669extern void
2670print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2671	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2672#endif /* CONFIG_NUMA_BALANCING */
2673#else
2674static inline void resched_latency_warn(int cpu, u64 latency) {}
2675#endif /* CONFIG_SCHED_DEBUG */
2676
2677extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2678extern void init_rt_rq(struct rt_rq *rt_rq);
2679extern void init_dl_rq(struct dl_rq *dl_rq);
2680
2681extern void cfs_bandwidth_usage_inc(void);
2682extern void cfs_bandwidth_usage_dec(void);
2683
2684#ifdef CONFIG_NO_HZ_COMMON
2685#define NOHZ_BALANCE_KICK_BIT	0
2686#define NOHZ_STATS_KICK_BIT	1
2687#define NOHZ_NEWILB_KICK_BIT	2
2688
2689#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2690#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2691#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2692
2693#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2694
2695#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2696
2697extern void nohz_balance_exit_idle(struct rq *rq);
2698#else
2699static inline void nohz_balance_exit_idle(struct rq *rq) { }
2700#endif
2701
2702#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2703extern void nohz_run_idle_balance(int cpu);
2704#else
2705static inline void nohz_run_idle_balance(int cpu) { }
2706#endif
2707
2708#ifdef CONFIG_SMP
2709static inline
2710void __dl_update(struct dl_bw *dl_b, s64 bw)
2711{
2712	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2713	int i;
2714
2715	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2716			 "sched RCU must be held");
2717	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2718		struct rq *rq = cpu_rq(i);
2719
2720		rq->dl.extra_bw += bw;
2721	}
2722}
2723#else
2724static inline
2725void __dl_update(struct dl_bw *dl_b, s64 bw)
2726{
2727	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2728
2729	dl->extra_bw += bw;
2730}
2731#endif
2732
2733
2734#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2735struct irqtime {
2736	u64			total;
2737	u64			tick_delta;
2738	u64			irq_start_time;
2739	struct u64_stats_sync	sync;
2740};
2741
2742DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2743
2744/*
2745 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2746 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2747 * and never move forward.
2748 */
2749static inline u64 irq_time_read(int cpu)
2750{
2751	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2752	unsigned int seq;
2753	u64 total;
2754
2755	do {
2756		seq = __u64_stats_fetch_begin(&irqtime->sync);
2757		total = irqtime->total;
2758	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2759
2760	return total;
2761}
2762#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2763
2764#ifdef CONFIG_CPU_FREQ
2765DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2766
2767/**
2768 * cpufreq_update_util - Take a note about CPU utilization changes.
2769 * @rq: Runqueue to carry out the update for.
2770 * @flags: Update reason flags.
2771 *
2772 * This function is called by the scheduler on the CPU whose utilization is
2773 * being updated.
2774 *
2775 * It can only be called from RCU-sched read-side critical sections.
2776 *
2777 * The way cpufreq is currently arranged requires it to evaluate the CPU
2778 * performance state (frequency/voltage) on a regular basis to prevent it from
2779 * being stuck in a completely inadequate performance level for too long.
2780 * That is not guaranteed to happen if the updates are only triggered from CFS
2781 * and DL, though, because they may not be coming in if only RT tasks are
2782 * active all the time (or there are RT tasks only).
2783 *
2784 * As a workaround for that issue, this function is called periodically by the
2785 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2786 * but that really is a band-aid.  Going forward it should be replaced with
2787 * solutions targeted more specifically at RT tasks.
2788 */
2789static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2790{
2791	struct update_util_data *data;
2792
2793	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2794						  cpu_of(rq)));
2795	if (data)
2796		data->func(data, rq_clock(rq), flags);
2797}
 
 
 
 
 
 
2798#else
2799static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
 
2800#endif /* CONFIG_CPU_FREQ */
2801
2802#ifdef CONFIG_UCLAMP_TASK
2803unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2804
2805/**
2806 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2807 * @rq:		The rq to clamp against. Must not be NULL.
2808 * @util:	The util value to clamp.
2809 * @p:		The task to clamp against. Can be NULL if you want to clamp
2810 *		against @rq only.
2811 *
2812 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2813 *
2814 * If sched_uclamp_used static key is disabled, then just return the util
2815 * without any clamping since uclamp aggregation at the rq level in the fast
2816 * path is disabled, rendering this operation a NOP.
2817 *
2818 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2819 * will return the correct effective uclamp value of the task even if the
2820 * static key is disabled.
2821 */
2822static __always_inline
2823unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2824				  struct task_struct *p)
2825{
2826	unsigned long min_util = 0;
2827	unsigned long max_util = 0;
2828
2829	if (!static_branch_likely(&sched_uclamp_used))
2830		return util;
2831
2832	if (p) {
2833		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2834		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2835
2836		/*
2837		 * Ignore last runnable task's max clamp, as this task will
2838		 * reset it. Similarly, no need to read the rq's min clamp.
2839		 */
2840		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2841			goto out;
2842	}
2843
2844	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2845	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2846out:
2847	/*
2848	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2849	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2850	 * inversion. Fix it now when the clamps are applied.
2851	 */
2852	if (unlikely(min_util >= max_util))
2853		return min_util;
2854
2855	return clamp(util, min_util, max_util);
2856}
2857
2858/*
2859 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2860 * by default in the fast path and only gets turned on once userspace performs
2861 * an operation that requires it.
2862 *
2863 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2864 * hence is active.
2865 */
2866static inline bool uclamp_is_used(void)
2867{
2868	return static_branch_likely(&sched_uclamp_used);
2869}
2870#else /* CONFIG_UCLAMP_TASK */
2871static inline
2872unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2873				  struct task_struct *p)
2874{
2875	return util;
2876}
2877
2878static inline bool uclamp_is_used(void)
2879{
2880	return false;
2881}
2882#endif /* CONFIG_UCLAMP_TASK */
2883
2884#ifdef arch_scale_freq_capacity
2885# ifndef arch_scale_freq_invariant
2886#  define arch_scale_freq_invariant()	true
2887# endif
2888#else
2889# define arch_scale_freq_invariant()	false
2890#endif
2891
2892#ifdef CONFIG_SMP
2893static inline unsigned long capacity_orig_of(int cpu)
2894{
2895	return cpu_rq(cpu)->cpu_capacity_orig;
2896}
2897
2898/**
2899 * enum cpu_util_type - CPU utilization type
2900 * @FREQUENCY_UTIL:	Utilization used to select frequency
2901 * @ENERGY_UTIL:	Utilization used during energy calculation
2902 *
2903 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2904 * need to be aggregated differently depending on the usage made of them. This
2905 * enum is used within effective_cpu_util() to differentiate the types of
2906 * utilization expected by the callers, and adjust the aggregation accordingly.
2907 */
2908enum cpu_util_type {
2909	FREQUENCY_UTIL,
2910	ENERGY_UTIL,
2911};
2912
2913unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2914				 unsigned long max, enum cpu_util_type type,
2915				 struct task_struct *p);
2916
2917static inline unsigned long cpu_bw_dl(struct rq *rq)
2918{
2919	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2920}
2921
2922static inline unsigned long cpu_util_dl(struct rq *rq)
2923{
2924	return READ_ONCE(rq->avg_dl.util_avg);
2925}
2926
2927static inline unsigned long cpu_util_cfs(struct rq *rq)
2928{
2929	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2930
2931	if (sched_feat(UTIL_EST)) {
2932		util = max_t(unsigned long, util,
2933			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2934	}
2935
2936	return util;
2937}
2938
2939static inline unsigned long cpu_util_rt(struct rq *rq)
2940{
2941	return READ_ONCE(rq->avg_rt.util_avg);
2942}
2943#endif
2944
2945#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2946static inline unsigned long cpu_util_irq(struct rq *rq)
2947{
2948	return rq->avg_irq.util_avg;
2949}
2950
2951static inline
2952unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2953{
2954	util *= (max - irq);
2955	util /= max;
2956
2957	return util;
2958
2959}
2960#else
2961static inline unsigned long cpu_util_irq(struct rq *rq)
2962{
2963	return 0;
2964}
2965
2966static inline
2967unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2968{
2969	return util;
2970}
2971#endif
2972
2973#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2974
2975#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2976
2977DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2978
2979static inline bool sched_energy_enabled(void)
2980{
2981	return static_branch_unlikely(&sched_energy_present);
2982}
2983
2984#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2985
2986#define perf_domain_span(pd) NULL
2987static inline bool sched_energy_enabled(void) { return false; }
2988
2989#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2990
2991#ifdef CONFIG_MEMBARRIER
2992/*
2993 * The scheduler provides memory barriers required by membarrier between:
2994 * - prior user-space memory accesses and store to rq->membarrier_state,
2995 * - store to rq->membarrier_state and following user-space memory accesses.
2996 * In the same way it provides those guarantees around store to rq->curr.
2997 */
2998static inline void membarrier_switch_mm(struct rq *rq,
2999					struct mm_struct *prev_mm,
3000					struct mm_struct *next_mm)
3001{
3002	int membarrier_state;
3003
3004	if (prev_mm == next_mm)
3005		return;
3006
3007	membarrier_state = atomic_read(&next_mm->membarrier_state);
3008	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3009		return;
3010
3011	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3012}
3013#else
3014static inline void membarrier_switch_mm(struct rq *rq,
3015					struct mm_struct *prev_mm,
3016					struct mm_struct *next_mm)
3017{
3018}
3019#endif
3020
3021#ifdef CONFIG_SMP
3022static inline bool is_per_cpu_kthread(struct task_struct *p)
3023{
3024	if (!(p->flags & PF_KTHREAD))
3025		return false;
3026
3027	if (p->nr_cpus_allowed != 1)
3028		return false;
3029
3030	return true;
3031}
3032#endif
3033
3034extern void swake_up_all_locked(struct swait_queue_head *q);
3035extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3036
3037#ifdef CONFIG_PREEMPT_DYNAMIC
3038extern int preempt_dynamic_mode;
3039extern int sched_dynamic_mode(const char *str);
3040extern void sched_dynamic_update(int mode);
3041#endif
3042